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“There is no progress toward ultimate freedom without transformation, and this is the key issue in all lives.” 

― B.K.S. Iyengar, Light on Life 
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Abstract 
 

The best unbiased estimates of some unknown parameters have the smallest expected mean-squared errors. 
This condition is only fulfilled when the residuals are weighted with their true variance-covariance matrix. 
Applied to positioning with Global Navigation Satellite Systems (GNSS) using a Least-Squares estimator, this 
means that the physical relationship between observations should be known as accurately as possible. However, 
this condition is never met in real applications. As a consequence, the Least-Squares solution is not trustworthy, 
the parameter precision estimates being over-optimistic.  

Although correlations between GNSS observations were empirically evidenced, they remain disregarded and 
diagonal variance-covariance matrices describing only the elevation dependency of the observations are still 
preferred. However, besides computationally demanding procedures by means of iterative operations on 
observation residuals or empirical fitting with exponential functions, correlations can be physically modeled. This 
strategy leads to a better understanding and acceptance of the corresponding covariance function, allowing a 
wider use and as a consequence, a more trustworthy positioning.  

Built on a covariance function for GPS phase observations due to tropospheric refractivity fluctuations, this work 
proposes an improved correlation function for GNSS phase observations. The elevation-weighted Matérn 
covariance function allows to easily compute fully populated variance-covariance matrices (VCM) that have a 
physical signification. The correlation structure is controlled by two model parameters: the smoothness and the 
correlation length. Hence, the impact on the Least-Squares solution and test statistics of wrongly assumed 
correlation structures up to their omission can be studied.  

It is shown that correlations -if present- should not be neglected in order to obtain a realistic precision and a 
trustworthy solution. When ambiguities are fixed either before or with enough confidence during the final 
adjustment, taking correlations into account leads to negligible improvements at the estimate level compared 
with omitting them, particularly for long sessions of observations. However, for short sessions, the impact of a 
more accurate stochastic model is stronger; the test statistics being less biased allow for an improved least-
squares solution. In such cases, fully populated VCM represent additional parameters, like e.g. tropospheric 
zenith wet delays, that cannot be estimated with enough reliability and without loss of data strength. These 
conclusions, based both on simulations and case studies, evidence in which cases taking correlations is relevant 
for an improved Least-Squares solution. Thus, in order to reduce the computational burden associated with 
correlations, an equivalent diagonal model is additionally proposed that reduces fully populated VCM to diagonal 
matrices for GNSS positioning scenarios, allowing from a GNSS user perspective a better stochastic model to be 
applied more easily.  
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Zusammenfassung 
 

Parameterschätzwerte aus einer Ausgleichung nach der Methode der kleinsten Quadrate sind fehlerfrei mit 
minimaler Varianz, wenn das funktionale und stochastische Model der Beobachtungen korrekt ist. Für die 
Positionierung mit Globalen Satellitennavigationssystemen heißt dies, dass eine verlässliche Positionierung mit 
realistischen Genauigkeitsmaßen nur gewährleistet ist, wenn die stochastischen Eigenschaften zwischen den 
Beobachtungen perfekt modelliert werden können. Bei realen Anwendungen ist die stochastische Beschreibung 
der GNSS-Beobachtungen unbekannt und kann nur auf Grundlage einer vorherigen Abhängigkeitsanalyse 
abgeschätzt werden. Infolgedessen sind die Ergebnisse der Kleinsten-Quadrate-Schätzung nicht fehlerfrei: 
sowohl die Teststatistiken (Ausreißer- oder Globaltests) als auch die Schätzungen selbst sind beeinflusst.  

Obwohl Korrelationen zwischen Beobachtungen empirisch nachgewiesen wurden, beruht die Beschreibung des 
stochastischen Modells fast ausschließlich auf einer diagonalen Varianz-Kovarianzmatrix, bei der die 
Korrelationen zwischen Beobachtungen nicht beachtet werden. Die Elevationsabhängigkeit der Varianz wird z.B. 
durch Sinus- oder Exponentialfunktionen modelliert. Darin benötigte Modellparameter müssen zusätzlich 
bestimmt werden. Korrelationen können durch rechnerisch anspruchsvolle Verfahren berücksichtigt werden, 
obwohl ihre Berücksichtigung durch eine geeignete Modellierung einfacher ist. Auf der Basis eines Modells für 
GPS-Phasen-Korrelationen aufgrund von Indexvariationen in der Troposphäre wird in dieser Arbeit eine 
physikalische Beschreibung der Korrelationsstruktur von GPS-Beobachtungen vorgeschlagen. Sie ermöglicht 
vollbesetzte Varianz-Kovarianzmatrizen (VCM) zu berechnen, die auf einer gewichteten Matérn-Kovarianz-
Funktion aufgebaut sind. Die Korrelationsstruktur wird durch zwei Parameter bestimmt, die variiert werden 
können. Durch diese Variation werden die Auswirkungen der fehlerhaft angenommenen Korrelationsstrukturen 
auf die Kleinste Quadrate-Lösung und die Teststatistiken untersucht. 

Es wird gezeigt, dass Korrelationen für eine realistische Lösung nicht vernachlässigt werden sollten. Wenn 
Ambiguitäten im Vorfeld der Ausgleichung oder während dieser auf eine ganze Zahl fixiert werden können, führt 
die Berücksichtigung von Korrelationen zu vernachlässigbar kleinen Verbesserungen für die Positionierung. Falls 
die Float-Ambiguität benutzt und zusammen mit der Position geschätzt wird, werden die Teststatistiken durch 
beispielsweise den aposteriori-Varianzfaktor und damit die Kleinste Quadrate-Lösung stark verbessert. Die 
Wirkung ist besonders für sehr kurze Beobachtungszeiten nachvollziehbar, wo vollbesetze VCM zusätzliche 
Parameter wie troposphärische Zenitlaufzeitverzögerungen auffangen, die aufgrund der kurzen 
Beobachtungszeit nicht mehr zuverlässig geschätzt werden können. Der Einfluss von VCM sollte unabhängig von 
der Sessionlänge nicht unterschätzt werden, da genauere und weniger verzerrte Teststatistiken zur Verbesserung 
der Wiederholbarkeit der Position und ihrer Präzision führen können. Dank eines äquivalenten Diagonalmodells 
kann die vollbesetzte VCM in eine Diagonalmatrix für GNSS-Positionierungsszenarien überführt werden. Dadurch 
wird die Rechenlast deutlich reduziert und trotzdem ein adäquates stochastisches Modell verwendet. 
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Preface 
 
This article-based cumulative thesis consists of 6 chapters including an introduction and a conclusion. It is 
associated with the following peer-reviewed publications which are given in the appendix: 
 
Kermarrec G, Schön S (2014) On the Matérn covariance family: a proposal for modelling temporal correlations 
based on turbulence theory. Journal of Geodesy 88(11):1061-1079 

Author’s contributions. The first author derived the simplification based on a model from the second author 
(Schön and Brunner 2008). She designed and carried out the numerical investigations, and wrote the manuscript 
for the article. The second author discussed the results and contributed to the improvement of the manuscript 
by suitable comments and corrections. 

Kermarrec G, Schön S (2016) Taking correlation in GPS Least-Squares adjustments into account with a diagonal 
covariance matrix. Journal of Geodesy 90(9):793-805 

Author’s contributions. The idea of the equivalent diagonal model is from the first author, based on the results 
of Luati and Proietti for the regression case. She applied these results to the GPS positioning cases and carried 
out numerical examples. The manuscript was written by the first author. The second author discussed the results 
and contributed to the improvement of the manuscript by suitable comments and corrections. 

Kermarrec G, Schön S (2017a) Apriori fully populated covariance matrices in Least-Squares adjustment – case 
study: GPS relative positioning. Journal of Geodesy 91(5):465-484 

Author’s contributions. The first author derived the function for elevation-dependent correlations. She carried 
out the simulations and the sensitivity analysis based on her methodology to study the impact of wrongly 
specifying the correlation structure. She applied the results to several baselines and wrote the manuscript. The 
second author discussed the results and contributed to the improvement of the manuscript by suitable 
comments and corrections. 

Kermarrec G, Schön S, Kreinovich V (2017b) Possible explanation of empirical values of the Matérn smoothness 
parameter for the temporal covariance of GPS measurements. Applied Mathematical Science 11(35):1733-
1737 

Author’s contributions. The first author discussed and debated results on the Matérn model with the third 
author who wrote the introduction and the conclusion. The first author wrote parts of the physical explanations 
and contributed to the improvement of the manuscript.  

Kermarrec G, Schön S (2017c) On modelling GPS phase correlations: a parametric model. Acta Geophysica et 
Geodaetica https://doi.org/10.1007/s40328-017-0209-5 

The first author derived the function for elevation-dependent correlations. She carried out the example to study 
the impact of fully populated matrices with respect to diagonal VCM. The second author discussed the results 
and contributed to the improvement of the manuscript by suitable comments and corrections. 

Kermarrec G, Schön S (2017d) Taking correlations into account: a diagonal correlation model. GPS solution 
21(4):1895-1906 

Author’s contributions. The first author derived the diagonal correlation model. She carried out the simulations 
and the case study to analyse the sensitivity analysis of the exponential factor on the Least-Squares results. She 
showed in which cases the model is an alternative to fully populated VCM and wrote the manuscript. The second 
author discussed the results and contributed to the improvement of the manuscript by suitable comments and 
corrections. 
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Kermarrec G, Schön S (2017e) Fully populated VCM or the hidden parameter. Journal of Geodetic Science 
7(1):151-161 

Author’s contributions. The first author derived the concept of the hidden parameter, made the simulations and 
the data analysis and wrote the paper. The second author discussed the results and contributed to the 
improvement of the manuscript by suitable comments and corrections. 
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1. Introduction 
 

 Motivation  

Estimates such as position, tropospheric or clock parameters are obtained from GNSS observations as part of the 
parameter estimation using a Least-Squares adjustment. These parameters and their associated precision are 
expected to be as accurate and trustworthy as possible. This statement holds true if the observations are free of 
errors and the model that describes the relationship between the observations and the estimates is perfect.  

However, while the functional model of GNSS observations can be considered as well-known, this is only partially 
true for the stochastic model which remains improvable. The variance-covariance matrices of the observations 
are usually reduced to a diagonal form, sometimes even taken to identity. Because of a lack of understanding of 
the impact of correlations, they remain neglected, leading to an untrustworthy Least-Squares solution as well as 
biased significance tests. Additional reasons for this misspecification are unsatisfactory descriptions of the 
covariance of GNSS observations, besides a computational problem due to the inversion of fully populated 
matrices. 

 Research objectives 

The three main objectives of this thesis can be summarized as follows: 

• To propose a covariance function that describes in a simple but physically plausible way the correlation 
structure of GNSS observations. This function must be easy to understand in order to motivate GNSS 
users to take correlations into account, while also being accurate and adaptive. 

• To give a solid understanding of the effects of misspecifying the stochastic model based on simulations 
and case studies. The description of the errors or biases includes quantities such as the aposteriori 
variance factor, the precision by means of the cofactor matrix of the estimates, as well as the float 
solution. 

• To derive a simplification of the fully populated VCM so that correlations can be resumed in a simple 
diagonal matrix. This way, a link between variance and covariance models can be built.  

By meeting these objectives, this work aims to give the reader arguments to decide whether taking correlation 
into account is meaningful or not in his/her specific application, i.e. an engineer perspective based on sensitivity 
analysis is adopted rather than trying to assess as accurately as possible the correlation structure of GNSS 
observations by means of data analysis. 

 Outline of this thesis 

The thesis is structured as follows: 

Chapter 2 summarizes the main concepts for stochastic modelling with a particular focus on how 
misspecifications impact some carefully chosen Least-Squares quantities. Chapter 3 proposes a detailed 
description of the variance and covariance models used in previous research. A classification is proposed to link 
the different models with each other. Based on the results of other research groups, the open questions about 
the impact of the stochastic model are hence raised. Chapter 4 describes the proposed correlation function for 
GNSS phase observations. The results of the implementation of the derived fully populated VCM in a positioning 
Least-Squares adjustment are analysed. Simulations are used to quantify the impact of an incorrect correlation 
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structure and a case study validates the conclusions of the sensitivity analysis. Chapter 5 provides a better 
understanding of how fully populated VCM act. A way to take correlations into account in a diagonal matrix is 
developed, allowing to draw a parallel between the commonly used exponential variance model and the 
proposed correlation model. Chapter 6 concludes this work by providing recommendations and perspectives for 
further research. The papers associated with this work are provided in the Appendix. 
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2. Stochastic modelling and impact of its 
misspecification in Least-Squares 
adjustments 

 

The domain of stochastic modelling is vast and covers many different applications from financial mathematics to 
call-center provisioning or disease treatment options. The focus of this thesis is on providing a more trustworthy 
positioning with GNSS observations. After a general introduction that explains the underlying concept of 
stochastic modelling, this chapter provides some important mathematical definitions. The principles of Least-
Squares are shortly presented, focusing on the quantification of the impact of a wrong specification of the 
variance-covariance matrix (VCM). Commonly used covariance functions are described. Finally, the equivalence 
between stochastic and augmented functional model is introduced. 

 Stochastic model 

The word "stochastic" derives from the Greek word to aim, to guess and means "random" or "chance". The 
antonym is "sure", "deterministic," or "certain" (Oxford dictionary 2016). The purpose of stochastic modelling is 
to predict outcomes that have a certain degree of unpredictability. On the contrary, in a deterministic model, 
the output is fully determined by the parameter values and the initial conditions. 

To be useful, a stochastic model must reflect nearly all relevant aspects of the process under study. In addition, 
it must be easily computable to allow the deduction of important implications about the phenomenon (Taylor 
and Karlin 1998). For a wide acceptance of the proposed model, the simplest mathematically and physically 
plausible description should be preferred. 

Stochastic modelling as applied to Global Navigation Satellite Systems (GNSS) observations means being able to 
describe the relationships between all different observations, whether code or phase measurements. The 
geometry, the satellite elevation, the atmospheric conditions, the receiver noise or multipath are possible factors 
that are to be taken into account. Getting a simple but accurate statistical description of GNSS observations aims 
thus to improve the derivation of computed quantities such as the position itself and its associated precision 
evaluated via Least-Squares estimation. The stochastic model can be summarized in the variance-covariance 
matrix (VCM) of the observations which is mathematically defined in the next paragraph. 

 Variance and covariance functions 
Let 1y  and 2y  be two realizations of a time dependent stochastic process Z  at time 1t  and 2t  respectively. The 

variance of 1y  is defined as  ( )( )2

1

2
1 1y E y E yσ = −    where ( )E ⋅  stands for expectation. It can be considered 

as the autocovariance or covariance of the vector with itself, ( )1 1,y yCov  whose general formulation reads

( ) ( )( ) ( )( ),1 2 1 1 2 2Cov y y E y E y y E y 
 = − − . It is thus a measure of similarity or dependence between the two 

realizations.  

As the knowledge of the underlying probability function of the process is difficult to obtain concretely (Gaspari 
and Cohn 1999), a second and equivalent definition of the covariance is used instead of the theoretical one 

(Loeve 1963 p.466-467). It states that ( )1 2,y yCov  is a covariance function if for each integer m and for each 
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choice of points 1 , ... my y  in the set where Cov  is defined (the Euclidian set for instance), the matrix W  with 

elements ( ){ }, ,
jii j yw Cov y=  is positive semidefinite. The correlation function is a normalized covariance 

function, i.e. ( ) ( )1
1 2 1 2

1 2
, ,

y y
Corr Covy y y yσ σ= .  

In the time domain, a stationary process depends only on the time increment, i.e. 1 2t tτ = − . In the following, 

only stationary time series are considered and the covariance function simplifies to ( )1 2 ( ),y yCov Cov τ= .  

Using this definition, as well as the Wiener-Khintchine theorem (Chatfield 1989), the covariance function can be 
linked with its spectral representation. This is particularly useful in spatial statistics or Kriging (Gelfand et al. 2010) 

as the power spectral density can be measured concretely using spectrum analysers. If ( )S s  is the amount of 

power allocated on average to 2 ise π τ  with frequency s  (Rasmussen and Williams 2006), the covariance is 

defined as ( ) ( ) 2 isCov S s e dsπ ττ = ∫ . 

 Mean Square differentiability of a process 

The stochastic process ( )Z t  is mean square differentiable if the limit of the covariance function of 
( ) ( )Z t h Z t

h
+ −

 

as 0h →  exists and is finite. This property is related to the limit of the covariance function at the origin and thus 

to the smoothness of the process (Adler 1981 ch.3, Stein 1999). If we suppose that there exists a ( ]0, 2β ∈  such 

that the covariance function ( )Cov t  can be approximated at the origin by ( )1 Cov t tβ− ≈  as 0t → , the 

corresponding process of dimension d  has a fractal dimension 21D d β= + − . The larger β  and D  (i.e. 22 β−  

for a time series), the smoother the realizations (Gelfand et al. 2010). The smoothness of a process is thus related 
to the behaviour of the spectral density at high frequencies.  

 Least-Squares adjustment, basic principles 

In case of GNSS positioning, the number of observations n  is larger than the number of unknown u  to be 
estimated so that the Least-Squares method is adequate to assess the variables of interest which are the position 
and eventually tropospheric or clock parameters. The mathematical relationship between the observations and 
the parameters to be estimated is linearized, and the term “linearized Least-Squares” is thus employed (Koch 
1999).  

In the following, the generalized linear functional model or observation equation model is defined by: 

= +y Ax v ,            (1) 

where y  is the n-dimensional observed minus computed vector, A  the non-stochastic ( )n u×  design matrix 

with full column ( )rank u=A , x  the u -dimensional parameter vector to be estimated. The n -dimensional 

vector called v  represents the unknown errors in the measurements. 

 Ordinary Least-Squares Estimator (OLSE) 
The Ordinary Least-Squares Estimator (OLSE) assumes homoscedasticity of the errors, i.e. equal variance. If the 
errors are further zero-mean and statistically independent, the minimization of the sum of squared residuals 

leads to the OLSE given by ( )ˆ =
-1T Tx A A A y . Under the previous assumptions, the expectation of the 

estimator is the same as the true parameter.  
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This estimator has three major properties: 

• Unbiasedness: the estimator is said to be unbiased when neither over- nor under-estimation of the truth 
occurs. Violation of this assumption can be due to a non-linearity of the model. 

• Efficiency: If the errors have equal variances, the OLSE has minimum variance of all unbiased estimators, 
i.e. it is the most efficient estimator referring to the accuracy of the estimates produced by the 
estimator.  

• Consistency: If the sample size increases, the estimator is consistent and converges to the true value of 
the parameter. 

The errors are assumed to be zero-mean. If this assumption does not hold true, the Least-Squares solution may 
be biased (Berk 2004). A possible correction is to add a constant term to the estimates. For normally distributed 
errors, the OLS is the most efficient of all unbiased estimators (Koch 1999). If this property is violated, hypothesis 
tests may not follow the assumed t- or F-distributions, particularly for small samples (Cohen et al. 2003). 
However, without the assumption of normality, the OLSE remains unbiased, consistent and the most efficient in 
the class of linear unbiased estimators. 

The situation changes if the homoscedasticity assumption is no longer valid and errors have different variances. 
As long as the errors remain independent, the OLSE will stay unbiased and consistent but not efficient anymore 
(Weisberg 2005). Several tests exist to confirm heteroscedasticity. We refer for example to the White Test (White 
1980). In case of GNSS observations, heteroscedasticity was empirically proven by Bischoff et al. (2005). 

 Generalized Least-Squares Estimator (GLSE) 
In case of heteroscedasticity and correlations between observations, the error vector can be described by 

( ) ( ) 2

00,  E E σ= =Tε εε W , where 0W  is a ( )n n×  positive definite, symmetric fully populated variance-cofactor 

matrix (VCM) of the observations, 2σ  the apriori variance factor. In this case, the Aitken Theorem (Aitken 1935, 
Rao and Toutenburg 1999, p105) states that:  

The Generalized Least-Squares Estimator (GLSE) is unbiased and is the best linear unbiased estimator (BLUE) for
x . It is given by  

( )0 0 0ˆ = =
-1T -1 T -1

0x A W A A W y K y          (2) 

where 0K  is the slope matrix that projects the observations to the estimate space. The cofactor matrix of the 

unknowns reads: 

( )ˆ ˆ0 0

-1T -1
xxW = A W A            (3) 

If 0 0ˆ=v y - Ax  is the ( )1n ×  residual vector, the following estimator for the covariance matrix of the unknowns 

is available, also called aposteriori estimator: 

( )2 2
ˆ ˆ ˆ ˆ0 0 0

ˆ ˆ ˆσ σ=
0 0

-1T -1
xx W W xxC = A W A W  

( ) ( )0 0 0 0 0 02 ˆ ˆ
ˆ

n u n u
σ = =

− −0

T -1 T -1

W

y - Ax W y - Ax v W v
        (4) 

These estimators are unbiased i.e., ( ) ( )2 2 2
ˆ ˆ ˆ ˆ0 0

ˆˆ ,  E Eσ σ σ= =
0W xx xxW W  (Koch 1999) if the assumptions hold 

true. 
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Feasible Least-Squares Estimator (FLSE) 

The VCM being unknown, the GLSE can never be reached, i.e. the variance and covariance are non-estimable. 

Indeed, the number of redundant observations in the stochastic model is ( )( )1
2 1n u n u− − + . However, the 

number of elements of the VCM to be estimated is ( )1
2 1n n + , thus not all components can be estimated (Koch 

1999, Xu et al. 2007). Therefore the FLSE (Greene 2003) is used in practice where 0W  is replaced by its estimate 

Ŵ .  

Transformation of the FLSE into OLSE 

The FGLSE can be transformed into an OLSE by computing a ( )n n×  transformation matrix mT  such as the 

covariance matrix of the observations is 2σ I  where I  is the identity matrix. This practice, also called whitening, 

makes use for instance of a Cholesky factorization of the Hermitian positive-definite covariance matrix Ŵ  (Koch 

1999) where ˆ
m m= TW T T  and mT  is a regular lower triangular matrix. By transforming m

T
whA = T A , 

m
T

why = T y  and m
T

whv = T v , an equivalent formulation to the GLSE can be obtained. The VCM of whv  is a 

diagonal matrix with equal weights. This procedure, as well as simplified decorrelation strategies in particular 
cases of autoregressive processes, was for instance proposed in Schuh et al. (2014). 

 Effect of misspecifying the stochastic model in the Least-Squares 
adjustment 

The knowledge of the VCM of the observations is a central point in FGLSE. The reasons for an incorrect 
specification of the VCM are manifold, from a need for a simplified computation to a simple lack of knowledge 
of the correlation structure. In the following section, we review the effect of an approximated VCM. 

The misspecification has an effect on the Least-Squares results, leading to a statistically incorrect solution. We 

call 0
ˆ = +P P ΔP  the new weight matrix, where 0P  is the original one, i.e. 0

ˆ ˆ,  = =-1 -1
0P W P W  and 

0
ˆ = +W W ΔW .  

• Aposteriori variance factor 

A misspecification of the covariance matrix leads to errors in the variance estimator. The corresponding bias is 
given by Rao and Toutenburg (1999) or Xu (2013): 

( ) ( )( ){ }
2

2 2 1 1
ˆ

ˆ ˆ ˆˆE tr
n u
σ

σ σ − −+ −
−

-1T -1 T
W = I W A A W A A W ΔW .     (5) 

For the regression case and assuming that the regression vector forms an orthonormal set (i.e. TA A = I ), 
Watson (1955) obtained bounds of the variance factor showing a strong dependence on the roots of the design 
matrix. 

• Parameters 

Following Kutterer (1999) the difference in the estimated parameter vector due to ΔW  writes: 

( )ˆˆ ˆ ˆ= +
-1T -1 T

0 0 0x = x - A W A A ΔPv x Δx         (6) 
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The error term Δx of Eq. (6) can be linearized. However, as it depends on the residuals and thus on the data sets 
used, a more general formulation of the error in the estimates cannot be given and only bounds are assessed.  

• Cofactor matrix of the parameters 

A formula for the difference of the cofactor matrix of the unknowns when the cofactor matrix is misspecified can 
be found in Kutterer (1999) or Strand (1974) and reads: 

( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0 0
ˆ ˆ− −

-1T -1
xx xx xx 0 xxW W = W A ΔP I +W ΔP AW        (7) 

Kutterer (1999) linearized Eq. (7). However, if ΔP  is assumed to be small, an accurate knowledge of the true 
VCM is necessary, making the bound of the error term hardly usable in practice.  

• Mean-Squared Errors (MSE) 

Calling ( )E =0 refx x , the Mean Squared Errors of the estimates, differences can be written as: 

0 0ˆ ˆ ˆref ref
MSE MSE MSE= −x-x x-x x -x  or  

( )( ) ( )( )2 1

ˆ 0 0
ˆ ˆ ˆ

ref
trMSE tr= − 

 
- --1 T -1 T -1 T -1

x-x W A A W A A W W A W A      (8) 

Strand (1974) proposed an estimation of the Mean Squared Error based on the Frobenius norm of ΔW  and the 

Rayleigh quotient. The ratio 
ˆ

ˆ0

MSE

MSE
ref

MSE
ref

R
−

=
x-x

x x
, also called relative efficiency of the estimator, reaches the 

null value for the true VCM and can thus be studied to quantify the effect of an incorrectly estimated VCM. By 
linking the MSE and the Root Mean-Square (RMS) of the estimate differences, a parallel between simulations 

involving a known 0W  approximated by different Ŵ  and results from data analysis can be drawn. 

Other effects of misspecifying Ŵ  were studied in a theoretical way from a geodetic perspective. We cite for 
example Linkwitz (1961) and Wolf (1961). Later Hahn and van Mierlo (1987) focused on statistical tests whereas 
other studies deal for instance with collocation (Xu 1991). The previously described effects of the apriori VCM on 
the Least-Squares results are summarized in Figure 1. 

 

 

F ig .1 Effect of  misspeci f icat ion of  the VCM on Least-Squares quanti ties,  induced errors  

Stochastic model:
VCM with known structure 

W0

Variance of unit 
weigth

►closed formula
Eq. (5)

MSE (loss of 
efficiency, ratio)
►closed formula

Eq. (8)

Estimates:
►no closed formula

Cofactor matrix of the 
estimates 

►closed formula Eq. 
(7)

Functional model

Approximate VCM 
(FGLSE) 

Error/biases 
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 Construction of fully populated VCM 

A comprehensive understanding of the stochastic model is a key point in FGLSE. Some procedures have been 
proposed to estimate the VCM from an iterative perspective by analysing the residuals of the Least-Squares 
adjustment. The second strategy consists in modelling the statistical relationship between the observations, i.e. 
developing a stochastic model. 

 Iterative procedures 
One possibility for estimating the VCM iteratively is to use variance component estimation (VCE) strategies such 
as MINQUE (Minimum Norm Quadratic Unbiased Estimation) for which only assumptions about the first and 
second order moments of the observables are to be made. BIQUE (Best Invariant Quadratic Unbiased Estimation, 
see Grafarend 1974, Grafarend and Awange 2014, Schaffrin 1983) which has been studied for normally 
distributed observations (Caspary 1987, Koch 1999), REML (Restricted Maximum Likelihood, Koch 1986, Hartley 
and Rao 1967) or LS-VCE (Least-Squares Variance Component Estimation, Schaffrin 1981, Teunissen and Amiri-
Simkooei 2008) are possible alternatives. 

Here, we briefly present two methods used in geodetic applications: MINQUE (Minimum Norm Quadratic 
Unbiased Estimation) as proposed in Wang et al. (1998), which is a particular case of the LS-VCE method 
popularized in GNSS applications by e.g. Amiri-Simkooei (2007). 

MINQUE 

The covariance matrix of the observations is expressed as a linear combination of k so-called accompanying 

matrices iT : 
1

ˆ
k

i
iθ

=

= ∑ iW T  where [ ,.... ]i kθ θ=θ  the estimated variance-covariance components of the  

measurements have to be estimated, i.e. ˆ ˆ ˆ[ ,.... ]i kθ θ=iθ  (Rao 1971). An iterative procedure gives 

( ) ( )ˆ ˆ ˆ , 1, 2,...j =j+1 -1 j jθ = S θ q θ  assuming an approximated value for ˆ 0
iθ  with 

( ) ( )ˆ ˆ ˆ,ij i j

i i

s tr

q

=

=

 
 

-1-1 T -1 T -1

T

RT RT R = W I - A A W A A W

y RT Ry
. 

When the convergence is given, the iteration is stopped as soon as ˆ ˆ δ<j+1 j
i iθ - θ  where δ  is the convergence 

tolerance.  

LS-VCE 

Similarly to the MINQUE procedure, the LS-VCE starts with the linear model of observations equations with the 

decomposition 
1

ˆ
k

i
iθ

=

= ∑ iW T . However, the unknown covariance components iθ  are estimated using LS and 

iθ = -1N l  where ( )1 1
2 2

ˆ ˆ ˆ ˆ,  T
ij in tr l= =-1 -1 T -1 -1 T

i j iT W P T W P y W PT W P y  are the elements of N  and I , 

respectively, and ( )ˆ ˆ=
-1T -1 T -1P I - A A W A A W  is an orthogonal projector. Iterations should be followed until 

the convergence tolerance is reached as for the MINQUE procedure. Once more, a starting (co)variance structure 
has to be assumed. The estimated VCM is then approximated as the inverse of N . 

The previously described methods are computationally demanding, the convergence being not obligatory given. 
Moreover, the positive definiteness of the VCM is rarely met so that the resulting matrices lose their physical 
meaning (Rao and Kleffe 1988). The model can be constrained by choosing a special structure for the VCM based 
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for instance on a Kronecker structure (Groeneveld 1994, Shaw and Geyer 1997). Alternatively, a triangular 
decomposition of the covariance matrix and a maximum likelihood function as the/an objective function can be 
used to guarantee the positive definiteness (Xu et al. 2007).  

 Modelling the covariance between observations 
A second possibility for constructing the covariance matrices without using iterative procedures is based on a 
stochastic modelling of the measurement errors. For this, families of positive definite covariance functions were 
defined (Yaglom 1987). They can be chosen based on model identification (Rasmusseum and Williams 2006) or 
some apriori knowledge given by physical assumptions. Another possibility is to fit predefined functions to the 
autocorrelation of the observations as done in Kriging (Cressie 1993, Cressie et al. 1999) or used in GNSS 
applications by El-Rabbany (1994), El-Rabbany and Kleusberg (2003), Howind et al. (1999). However, this last 
method is empirical and can show some limitations as the behaviour of the covariance function at the origin is 
hardly visually identifiable (Stein 1999). We here present a few commonly used covariance functions. We restrict 
ourselves to temporal correlations, i.e. GNSS observations being time dependent.  

Matérn family 

This two-parameters family (Matérn 1960) states that the correlation between ( )Z t  and ( )Z t τ+  decreases 

as τ  increases. It additionally takes into consideration that different processes may exhibit different degrees of 
smoothness. The covariance function reads: 

( ) ( ) ( )Cov Kν

ντ φ ατ ατ=           (9) 

where 0,  0ν α> >  are constant parameters. The scalar parameter 0φ >  is chosen so that the variance equals 

1; ν  is defined as the smoothness of the time series (Sec. 2.2). The constant α  is the inverse of the correlation 
length and indicates the rate of decay of the function with increasing time (Journel and Huijbregts 1978). The 

modified Bessel function of order ν  (Abramowitz and Stegun 1972) is denoted by Kν . 

Special cases arise when the smoothness factor ν  is taken to: 

• ½: exponential covariance function. This function is corresponding to an AR(1) process (autoregressive 
process of first order). The corresponding process is not mean-square differentiable. 

• 1: also called Markov process of first order. This process is often used in geodesy to analyze gravitational 
fields (Meier 1981, Grafarend 1976). 

• ∞: squared exponential covariance function. Time series having this covariance structure would be 
indefinitely differentiable and thus exactly predictable at all values (Stein 1999). As it is physically 
implausible, this covariance function should be employed with care (Stein 1999, Handcock and Wallis 
1994, see also Koivunen and Kostinski 1999).  

More details on this family can be found in Guttorp and Gneiting (2005) or Kermarrec and Schön (2014) with 
corresponding examples. Fuentes and Smith (2001) extended this function to account for non-stationarity. 

Alternatively, the powered exponential model (Diggle and Ribeiro 2007) can be used where 

( ) ( ]0, 2 ,  0 ,Cov e

γτ
θ γ θτ φ
 − 
  ∈ >=  being a scaling parameter a. 

The Cauchy family (Gneiting and Schlather 2004) has a similar parametrization with 

( ) ( )1 ,  0Cov
β αα

τ
θ

τ φ θ
−

 
 
 

= + >  and 0β >  a long memory parameter describing the correlation decay as 

τ → ∞ . 
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Other examples 

It may be useful to add some cosine function to the covariance function to describe hole effect, i.e. small negative 
correlations as τ  increases (Gerland et al. 2010, Chiles and Delfiner 1999). One example is the exponentially 

damped cosine function ( ) 1
tan

2
cos ,  

d
Cov e τ

θ

τη
θ

πηφτ
 
     

 
 

≥=
−

, d  being the dimension of the process. 

Covariance functions with compact support (Gneiting 2002), as for instance the spherical correlation function 

( )
33 1

2 21Cov τ τ
θ θ

τ  
 
 

= − +  for τ θ≤  and ( ) 0Cov τ =  for τ θ> , are popular in geological applications but only 

defined up to 3 dimensions. As the correlations become exactly 0, they are said to have computational 
advantages. Stein (1999) argues however that as this function is only once differentiable at τ θ= , the estimation 
of the parameters with likelihood methods may be problematic.  

Estimation of parameters via Maximum Likelihood 

The parameters of the proposed covariance function can be computed via Maximum Likelihood Estimation, 
provided that a first guess of the parameters is supplied (Stein 1999, Handcock and Wallis 1994). The log 
likelihood reads 

( ) ( ) ( )1 1
2 2

ˆ, logL θ θ θ= − − TZ W Z P Z          (10) 

where θ  represents a set of parameters. 

( ) ( ) ( ) ( )( ) ( )ˆ ˆ ˆ ˆθ θ θ θ θ= −
-1-1 -1 T -1 T -1P W W X X W X X W  and X  is the design matrix for trend regression. 

( ),L Zθ  has to be minimized with respect to the unknown parameters of the covariance function. Possible 

biases due to small samples can be avoided by using Restricted Maximum Likelihood (REML) estimation as 
described in Zimmerman and Zimmerman (1991). 

  Equivalence of stochastic and functional models  

Following Blewitt (1998), it can be shown that the estimation of extra parameters in the functional model (i.e. 
augmented functional model) is equivalent to changing the stochastic model of the observations. 

If Eq. (1) is augmented by extra parameters z , the corresponding Least-Squares problem reads 
y = Ax + Bz + v , where B  is the design matrix describing the mathematical relationship between z  and the 

observations. In case of GNSS adjustments this may be an estimation of tropospheric zenith wet delays 
(Hofmann-Wellenhof et al. 2001), clock parameters or ambiguities. Writing the previous equation in terms of 

partitioned matrices, it can be shown that ( ) ( )1 1 1 1
0 0 0 00ˆ ,  − − − −= =

-1T T T Tx A W PA A W Py P I - B B W B B W  

A reduced covariance matrix with inverse 1
0
−W P  can be therefore identified similar to the simple case of Sec. 

2.2. (Eq. (1)). However, this covariance matrix is singular and a regularization has to be carried out by treating 
the augmented part of the model as a process noise.  

The corresponding matrix 0
∗ = + T

yW W BW B  is defined where yW  is the apriori covariance matrix for the 

parameter z  with no apriori information on the variance of the process noise. The inverse can be expressed 
using the matrix inversion lemma as: 
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( ) 11 1 1 1 1 1
0 0 0 0

−∗− − − − − −= − +T T
yW W W B B W B W B W . 

Provided that yW  is sufficiently large, the functional and stochastic approaches are equivalent. This way, the 

data strength is said to be preserved which may not be the case by estimating an additional parameter. When 
using fully populated matrices accounting for correlations between observations in Least-Squares adjustment 
without augmented functional model, this equivalence is implicitly used. As a consequence, exemplarily, no 
tropospheric parameters are additionally estimated since their impact is considered to be included in the 
stochastic model of the LS adjustment. 
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3. Stochastic models for GNSS: state of the 
art 

 

As described in chapter 2, the knowledge of the stochastic model by means of the covariance matrix of the 
residuals is of primary importance for a trustworthy and efficient Least-Squares solution. In order to identify 
where the stochastic model for GNSS positioning can be improved, a review of the already proposed methods 
and their main results is carried out. It is deliberately chosen not to give the exact values found by the 
corresponding authors (for instance with respect to the standard deviations or rms) but only qualitative 
indications. Indeed, as results were found under different conditions, data quality, positioning strategies or 
baseline lengths, a direct comparison allows hardly for drawing general conclusions on the superiority of one 
model over the others. This holds particularly true for very specific functions. Moreover, elements such as the 
aposteriori variance factor or the precision which could have been used to analyse the trustworthiness of the 
solution, are often missing.  

Since the focus of this study is on the stochastic model of GPS observations, the functional model for GPS is not 
further described. The corresponding derivations can be found exemplarily in Hofmann-Wellenhof et al. (2001) 
or Misra and Enge (2012). Additionally, Kermarrec and Schön (2016) made a concrete comparison between 
design matrices corresponding to different positioning strategies. 

The following description of the stochastic models for GPS observations is divided into a first part related to the 
variance and a second one to the covariance models.  

 Variance models  

Two main families were identified to describe the variance of GPS observations: a mapping function approach 
and empirical functions. The identity variance model is here not considered independently.  

 Mapping function model 
Bischoff et al. (2005) proved heteroscedasticity of GPS carrier phase observations by checking the hypothesis of 
a non-variable variance thanks to statistical test. It was shown that the variance is strongly dependent on the 
elevation of the satellites, thus confirming what was already assumed in the earlier time of GPS adjustments. 
Indeed, if one considers the path of a GPS signal through the entire atmosphere to the receiver, assuming equal 
weights to all satellites seems intuitively overoptimistic. Goad (1987) and Langley (1997) showed that systematic 
effects caused by multipath, orbit errors or the atmosphere affect each satellite differently. By inspection of the 
residuals of GPS observations versus elevation, low elevation satellites were identified as more influenced by 
such effects than satellites having a higher elevation. Thus, the most natural model was to propose a sinus-like 
function for the variance, i.e.  

( )
2 1

2sini Eli
σ =            (11) 

where iEl  is the elevation of satellite i, with miniEl El>  and 2
iσ  the corresponding variance (Vermeer 1997, 

Rothacher et al. 1998). In the following, this variance model is called the ELEV model. It can be seen as a mapping 
or projection of the satellite path to the vertical, i.e. an obliquity factor accounting for the increased effective 
path lengths through the atmosphere as the elevation angle decreases. Being simple, this variance does not 
necessitate additional computation. It is widely used and implemented in software packages, e.g. in the Bernese 



23 
 

GNSS software (Dach et al. 2015). Alternatively the models ( )
2 1

sini Eli
σ =  or 

( )
2 1

2i Eli
σ =  were sometimes 

tested (da Silva et al. 2009, Wang et al. 1998).  

 Data-based models 
Alternatively to the mapping function approach, empirical models were proposed based on the analysis of the 
residuals. Two main families can be distinguished: the exponential model and quality indicator models. 

3.1.2.1. Exponential model 
Trying to fit more accurately the variance versus elevation, an exponential model was in some studies preferred 
to the ELEV model as presented in Euler and Goad (1991), Gerdan (1995), Han (1997), Jin (1996), Wang (1999), 
Barnes et al. (1998). Moreover, Li et al. (2014) or Amiri-Simkooei et al. (2007, 2009, 2016) used this model as a 
starting point for the LS-VCE estimation. It is stated that the variance can be fitted with high confidence as: 

0
1 2

iEl

i a a e θσ
−

= +
 
  

           (12) 

where 0θ  is a reference elevation angle valid for all satellites which has to be estimated together with 1a  and 2a  

using a non-linear Least-Squares procedure. This model can be considered as a sum of a white and an elevation 
dependent noise. Different values of these three parameters are obtained depending on the receiver, the 
frequency or observation types and the configuration (long or short baselines for instance). The variance is often 
fitted with the Least-Squares method for the particular case of a zero baseline and the parameters found are 
used per extension for longer baselines (Li et al. 2016).  

This variance model with 0 10θ = °  was shown in Wang et al. (1998) to give a slightly lower determinant of the 

ambiguity covariance matrix with respect to the ELEV model. This measure is used to estimate the apriori 
performance of the ambiguity resolution (Teunissen 1997). A better baseline repeatability was additionally 
obtained. Similar results were found by Özlüdemir (2004) for the standard deviation of the baseline solution 
compared with the identity model (equal weights). However, a concrete comparison between the two models 
with respect to the precision and the variance of unit weight is missing in these studies. Li et al. (2016) 
investigated the influence of the three models on the overall model test and outlier detection test and showed 
that the corresponding results with the exponential model for a zero-baseline scenario with single differenced 
observations were smaller than with the ELEV or equal weights model. The extent to which the value of the 

parameter 0θ  may influence the solution and its precision was not further investigated. The same comment holds 

true for Luo et al. (2014) who used a value of 40° derived from mean SNR-weighting values.  

3.1.2.2. C/N0 or SNR0 based models 
The C/N0 and SNR0 models are similarly based on a quality indicator recovered from the GPS receiver. The carrier 
to noise power density ratio C/N0 (Langley 1997) is defined as the ratio of the power level of the signal carrier to 
the noise power in a 1Hz bandwidth. The Signal to Noise Ratio (SNR) is the ratio of the signal power and noise 
power in a given bandwidth expressed as logarithm (Joseph 2010), SNR0 being equivalent to C/N0 (i.e. 
normalized to a 1Hz bandwidth). SNR0 or C/N0 measurements are e.g. depending on the antenna gain of the 
transmitting satellite, polarisation errors, variations in atmospheric propagation and receiver antenna gain 
patterns, or antenna cable (Misra and Enge 2012). 

• C/N0 weighting  

The first authors to use the C/N0 to weight GPS observations were Talbot (1988), Langley (1997) or Braasch and 
Van Dierendonck (1999). They approximated the variance of the carrier phase L1 or L2 as: 
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2i
B

cno
i

λ

π
σ =             (13) 

where B  is the carrier tracking loop bandwidth in Hz, λ  the wavelength of the carrier phase and 
0

1010
iCN

icno =  for 0iCN  expressed in dB-Hz. 

Collin and Langley (1997) compared the weighting scheme ELEV and a SNR-based variance model and deduced 
that they were consistent with each other with respect to the baseline repeatability and ambiguity resolution.  

This C/N0 weighting was extended by Brunner et al. (1999) and Hartinger and Brunner (1999) to develop the 
sigma-ε and sigma-Δ models. The variance is expressed more accurately than in Eq. (13) as  

02 1010
CN

i V Cσ
−

= +            (14) 

where ,V C  are receiver/antenna/frequency depending model parameters in [ ] [ ]2 2,m m Hz  respectively. A 

comparison of the ELEV and C/N0 based models is given e.g. in Luo (2012) where it is shown that low elevation 
satellites are more accurately weighted with C/N0 based improved weightings. 

The sigma-Δ model (Brunner et al. 1999, Wieser and Brunner 2000) is similar but accounts for signal distortion 
which may decrease the signal to noise ratio. This approach is said to be more powerful for kinematic 
applications. However, the main problem of the C/N0 models as pointed out in Wieser and Brunner (2000) or 
Satirapod and Wang (2000) yields in the biased solution due to too high weights introduced for observations 
under diffraction. It leads to a weakening of the geometry consecutive to low weights for observations when the 
signal path is close to the extremity of hindrances. Using the Danish method and information from the residuals 
(Krarup et al. 1980), a more robust estimation was possible, which is particularly meaningful for kinematic 
applications.  

Özlüdemir (2004) compared the standard deviations of the coordinates with the sigma-ε and the equal weighting 
model and highlighted the better repeatability of the solutions. However, ELEV and C/N0 weighting gave similar 
results. This is a common result of many studies on the stochastic model for GNSS observations when comparing 
elevation dependent variance functions and is mainly due to the unbiasedness of the LS estimator when the 
Gauss-Markov assumptions are fulfilled.  

• A Fuzzy based model 

Trying to overcome the weakness of the C/N0 weighting, Wieser and Brunner (2002) developed the sigma-F 
model using the Fuzzy strategy. The variance model is a product of an apriori variance and two variance inflations 
depending both on the signal quality via an adapted version of the C/N0 values comparable with the sigma-Δ 
model and on the predicted residuals. The input variables were chosen as the result of the outlier detection test 
and quantities derived from the C/N0. This iterative procedure was shown to be powerful in the case of kinematic 
processing when signal distortions affected only a small part of the observations. Thus, fuzzy logic is an 
interesting and intuitive alternative way to handle the different cases that may arise depending on the geometry 
and the C/N0 values. However, Wieser and Brunner (2002) concluded that such computationally demanding 
strategies are not preferable to other methods in usual positioning cases. 

• SNR0 weighting 

In the SNR0 based model, it is stated that the ratios of the signal and noise power of the modulated signal at the 
correlator output (i.e. SNR0) and at the receiving antenna (C/N0) are amplified by approximately the same factor 
(Luo 2002) and can be approximated by each other. 
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One of the first empirical based SNR weightings was developed by Mayer (2006). Luo (2012) improved this model 
by using the ratio between the minimum SNR0 value and the corresponding maximum where one additional 
parameter avoided singularity. The corresponding variance depends on the antenna-receiver combination and 
can be used for L1 or L2 observations. It reduces the downweighting of low elevation measurements and takes 
different factors into account such as multipath, site specific effects or meteorological conditions. A particular 
example with different baseline lengths showed an improvement by up to 10%-20% of Narrow Lane ambiguities 
success rate with respect to the ELEV model for baseline lengths of 50-200km with a cutoff angle of 3°. However, 
this weighting necessitates post-processing and remains computationally demanding. Therefore, Luo et al. (2014) 

proposed a simpler exponential-based weighting where the parameter 0θ  of Eq. (12) was empirically averaged 

to 40°. This simplification is comprehensible as the signal power values strongly depend on the elevation, the log 
function being nothing more than an exponential function.  

3.1.2.3. Alternative weighting strategies / GLONASS and Beidou signals 

Other proposals were made by for instance adding a ( )
1

2sin Eli
 factor to adapt Eq. (14) in order to account for 

multipath in an urban canyon (Tay and Marais 2013). To incorporate scintillation effects due to the ionosphere, 
an alternative tracking error variance at the output of the receiver Phase Look Lock for the GPS L1 carrier phase 
was developed leading to a C/N0 based weighting (da Silva et al. 2009, Aquino et al. 2009). 

In the case of GLONASS observations, Gaglione et al. (2011) fitted the variance of the residuals from pseudorange 
adjustment by an uncommon 4th order polynomial. However, the results were not employed in a Least-Squares 
adjustment. Using carrier phases of GPS and GLONASS single-frequency observations, Wang (2000) postfitted 
filtered residuals using a Kalman filter with an exponential based preset covariance matrix. An improvement of 
the ambiguity resolution performance was shown for a real-time kinematic example.  

Li (2016) first studied the stochastic properties of Beidou residuals, highlighting strong differences between the 
variances of MEO or GEO satellites. Using the strategy of Parkinson and Spilker (1996), a data dependent sinus 

based variance model was used: ( )( )( )2
2

sini El bi
aσ

+
= , ,a b  having to be estimated.  
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 Summary of the proposed variance models 
Table 1 presents a summary of the proposed variance models as described in the previous section. 

Name Model Variance model Particularity Main references  
Identity 1 Assuming homoscedasticity OLSE 
Mapping function 
based models 

   

 

( )( )2
1

sin El
 Commonly implemented in 

processing software 
(Bernese). Strong 
downweighting of 
observations from low 
elevation satellites. 
Not defined for 0° elevation. 

Parkinson and Spilker 
(1996) 
Vermeer (1997) 
Rothacher et al. (1998) 

 
( )

1
sin El   Wang et al. (1998) 

Da Silva et al. (2009) 
 1

El   Wang et al. (1998) 

Exponential 
0

2

1 2

iEl

a a e θ−
+

 
 
 

 
The exponential factor is 
determined empirically 
based on zero baseline tests. 
May weight low elevation 
satellites too strongly. 

Euler and Goad (1991) 

C/N0 2

2

B

cno
i

λ

π

 
 
 
 

 

( )20
1010

CN
V C −
+  

Sigma-ε, sigma-Δ model.  
antenna-receiver 
characteristic and site-
specific effects are taken 
into account. 
Main weakness: C/N0 values 
have to be extracted from 
RINEX files, possible 
weakening of the geometry. 
For strong signals. 

Langley (1997) 
Brunner et al. (1999) 
Wieser and Brunner 
(2000) 
Hartinger and Brunner 
(1999) 

SNR0 Similar function as C/N0 
models or based on 
min/max values 

Less dependent on how well 
the unknown loop 
bandwidth is specified. 
Not only for signals well 
above the tracking threshold 
of the receiver (strong 
signals). 

Mayer (1996) 
Luo (2012) 

Fuzzy Input variables: outlier 
detection and C/N0 
based values 

Sigma-F model for kinematic 
applications and punctual 
obstructions 

Wieser and Brunner 
(2001) 

Iono model Depending on phase or 
code processing 

In case of strong ionospheric 
scintillations, based on C/N0 
value 

Aquino et al. (2009) 

sinus model 

( )( )
2

sin i

a
El b+

 
 
 

 
 Li (2016) for Beidou, 

Parkinson and Spilker 
(1996) 

Tab.1 Summary of  the proposed var iance models  for GNSS observat ions  
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 Variance models for code observations, PPP 
Besides the traditional variance models, different strategies were additionally proposed to weight code-phase or 
PPP phase observations to account for their specificities.  

3.1.4.1. Variance of code-phase observations 
Using zero-baseline experiments, the code-phase observations variances were computed in Tiberius and 
Kenselaar (2003) or Amiri-Simkooei et al. (2009) using LS-VCE methods. These studies mainly agree on an 
elevation dependency, whereas the extent to which other weightings for code observations should be used was 
not directly addressed. Remembering that C/N0 values were initially developed for code phase observations, this 
may be the most appropriate choice.  

3.1.4.2. Variance of PPP phase observations 
Up to now, the carrier phase for a PPP (Precise Point Positioning) positioning strategy was mostly weighted either 
with an identity model or an elevation dependent ELEV model (Heßelbarth and Wanninger 2008). Satirapod and 
Luansang (2008) used MINQUE for static data processing with PPP and showed an improvement at the submm 
level after 30 minutes of observations compared with the ELEV or identity model. However, up to now and due 
to both the computational burden and associated processing difficulties, no attempt to further improve the 
variance model has been made. Indeed, code and phase weightings should be modelled independently. 

 Discussion 
All these studies comparing or using different weighting strategies remain dependent on the observations which 
may be affected by different atmospheric conditions or multipath, by the processing strategies, by the receivers 
used, or the length of the baselines. As a result, without bias or error analysis, it seems difficult to draw general 
conclusions on particular models. The main argument for using empirical weightings is that it offers a more 
accurate approximation of the variance for low elevation satellites which is an important criterion for estimating 
the Up component and tropospheric delays (Misra and Enge 2012). However, the authors focused mainly on the 
standard deviation of the solution or on the ambiguities resolution. Giving more weights to low elevation 
satellites or using different C/N0 weighting strategies may influence the aposteriori variance factor or the 
cofactor matrix of the estimates, i.e. the overall model test and the precision measures respectively. These 
quantities are usually not addressed although they represent a way to validate the trustworthiness of the 
solution by giving information about the efficiency of the Least-Squares solution. Thus, some empirical results 
are sometimes difficult to interpret. For example an improvement of the 3Drms by up to a few cm for long 
baselines is not always synonymous with a statistically correct solution; indeed sometimes the situation is just 
the opposite.  

 Covariance models 

Besides the mathematical correlations (Hofmann-Wellenhof et al. 2001, Beutler et al. 1987) that are depending 
on the processing strategy (e.g. single or double differences), GPS observations are physically temporally 
correlated. The first contribution to this problem dates from the 90’s (Craymer et al. 1990) where the 
overestimation due to the use of a diagonal VCM was raised. 

Two groups of correlations can be identified: 

I. The temporal correlations, i.e. time dependent correlations between the observations of one satellite 
with itself or with another one. Although effects should be considered as spatio-temporal, purely 
temporal correlations are easier to access in time series analysis. They are mainly due to the path of the 
GPS signal through the atmosphere. In this family, we also include correlations due to multipath or due 
to the receiver itself, often called channel correlation (Tiberius and Kenselaar 2003). 
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II. The correlations between observation types, i.e. phase and code or between frequencies (Teunissen et 
al. 1998, Jonkman 1998, Bona 2000). Such kinds of correlations are particularly important when dealing 
with combinations of measurements.  

Two strategies exist to account for correlations:  

I. Using iterative algorithms where the correlations are taken into account, often with a predefined 
structure, e.g. via Kronecker products. This procedure may be computationally demanding. 

II. Trying to model the temporal correlations apriori. 

 Apriori models for correlations 
In this section the three main strategies to describe the correlations of GPS phase measurements are reviewed. 
They include the exponential model (El-Rabbany 1994), the turbulence based model (Schön and Brunner 2008) 
as well as the ARMA (Auto Regressive Moving Average) model. 

3.2.1.1. Exponential model 
This is likely the most popular model. It was derived empirically by El-Rabbany (1994) and used by Howind et al. 
(1999) or later Radovanovic (2002) and is often the starting point for the estimation of the covariance component 
in LS-VCE (Zangeneh-Nejad et al. 2015). The autocorrelation of the residuals is fitted empirically to a function 
corresponding to an AR(1) process (first order autoregressive model) and can be expressed as: 

( ) TCorr ae
τ

τ
−

=            (15) 

where a  is scaling factor, τ  is the time increment and T  the correlation time (i.e. the so-called 1/e point). The 
parameter T  is empirically determined for different frequencies. El-Rabbany (1994) gave the values of 263s, 
270s and 169s for L1, L2 and L3 (ionosphere-free combination) double differenced observations respectively with 
no dependency of the correlation time on the baseline length. He made use of modified batch Least-Squares to 
simplify the handling of fully populated VCM. 

The main advantage of this model is its relative simplicity, i.e. an identical correlations structure is assumed for 
all satellites. However, the reality is slightly different as low elevation satellites may lead to higher correlation 
level due to e.g. the increased path length through the atmosphere (Amiri-Simkooei et al. 2009, 2013).  

The second advantage of this modelling comes from the inverse of the resulting fully populated VCM which can 
be mathematically expressed (Rao and Toutenbourg 1999, Kermarrec and Schön 2016), potentially reducing the 
computational burden due to the inversion in the Least-Squares method. This possibility was for instance used 
by Odijk and Teunissen (2007) to investigate the influence of taking correlations into account in the ADOP 
(Ambiguity Dilution factor) closed formula.  

However, the main weakness of the so-called exponential correlation model results from the equal variances 
that are given for all satellites as it does not account for heteroscedasticity.  

Other studies used Eq. (15) to model correlations due to multipath by fitting the residuals after having removed 
the effect of noise. Exemplarily, Radovanovic (2001), Radovanovic et al. (2000), Schwieger (2007) added different 
covariance matrices to include correlations due to thermal noise using the C/N0 weighting or receiver noise.  

3.2.1.2. Turbulence-based model 
Schön and Brunner (2008) developed a model to account for correlations of GNSS phase measurements due to 
tropospheric refractivities in the atmosphere. Built on results from the turbulence theory, this model is physically 
relevant. The covariance function between the phase ϕ  observed at stations A and B at t  and t τ+  reads: 
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where i and j are two satellites, Γ  the gamma function, d  the separation distance between two GPS rays. The 

turbulence parameters 2
0, , nCH κ  (tropospheric height, outer scale length and structure constant respectively) 

involved are described in detail in Schön and Kermarrec (2015). 

This model is based on a double integration where the variance is computed as a limit. Allowing for the 
consideration of spatio-temporal variability, the concept of separation distance is the major finding of this model 
with respect to the empirical model of El-Rabbany (1999). The covariance between phase observations from 
different satellites can be computed. Based on the ELEV variance model, it accounts moreover for 
heteroscedasticity. However, some numerical instabilities may occur when evaluating the double integral. A 
simplification of this model was carried out and presented in Kermarrec and Schön (2014) and is briefly outlined 
in Sec. 4.2. It is based on the powerful Matérn family presented in chapter 2. 

3.2.1.3. Modelling via ARMA processes 
Luo (2012) and Luo et al. (2011) showed that filtered and studentized residuals from short term relative 
positioning and long term PPP can be expressed as ARMA processes where the ARMA orders may depend on 
factors such as atmospheric conditions or multipath. Fully populated VCM could be therefore deduced thanks to 
the Yule Walker equations. The similarity between the ARMA modelling and the Matérn covariance family is 
addressed in Kermarrec and Schön (2017a). 

 Recursive models (Delft school) 
The second possibility to account for correlations in Least-Squares adjustment is to use a recursive procedure 
based on residuals or VCE as presented in Sec. 2.4.1. Although some simplifications have been proposed 
(Satirapod et al. 2002, Amiri-Simkooei et al. 2016, Xu et al. 2007), these methods remain computationally 
demanding and do not necessarily lead to positive definite matrices. 

The MINQUE model was mostly used e.g. by Wang et al. (1998, 2002), Satirapod et al. (2002,2003) and is valid 
for short observation periods and baselines, i.e. the temporal correlation coefficients and the variance are 
assumed to remain unchanged (Satirapod et al. 2003). A simplification procedure has been proposed by 
Satirapod (2001) based on data segmentation. Tiberius and Kenselaar (2000) investigated additionally the 
correlations between different observation types thanks to this strategy. 

The LS-VCE procedure was popularized by Teunissen and Amiri-Simkooei (2008), Amiri-Simkooei et al. (2009, 
2013) or used by Li et al. (2011). The variances of the observations are modelled depending on the observation 
types or frequencies. Moreover, cross correlations are taken into account and a satellite elevation dependence 
based on the exponential weighting model is assumed as a starting point of the procedure. Consecutively, the 

VCM of the observations is expressed thanks to a Kronecker product which reads ˆ ˆ ˆ ˆ= ⊗ ⊗C T EW W W W , where 

ˆ ˆ ˆ, ,C T EW W W  are the subsequent covariance matrices for cross correlation, temporal correlations and elevation 

dependent effects, respectively.  

The main weakness of these widely used iterative procedures (Wang et al. 1998, 2002, Li et al. 2015, Amiri-
Simkooei et al. 2016) is that the temporal correlations are not accounting for non-stationarity, i.e. the matrices 
ˆ

TW  are of Toeplitz type and are the same for all satellites. Moreover, the structure of time correlation and 

satellite elevation dependence is identical for code and phase observations which may not be the case in reality 
(Braasch and VanDierenonck 1999). The influence of the starting model and the extent to which it influences the 
final result was never addressed.  
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 Summary of the proposed covariance functions 
In Table 2, the proposed covariance functions are shortly described based on the previous classification. 

Model type Model name Particularity References 
(exemplarily) 

Empirical models    
 Exponential model Exponential covariance 

function with empirically 
determined correlation time 

El-Rabbany (1994) 

 ARMA Empirically determined 
ARMA orders 

Luo (2012) 

Physically based 
models 

   

 Turbulence based model, 
Schön and Brunner 
model 

Covariance function 
developed principally for 
modelling correlation due to 
tropospheric refractivities 

Schön and Brunner 
(2008) 

 Multipath model Exponential covariance 
function to model the 
correlation due to multipath 

Radovanovic (2001) 

Iterative model    
 LS-VCE  

MINQUE 
Models are necessary for 
simplification and to avoid 
negativeness of the VCM. No 
spatial temporal 
dependency. 
Computationally 
demanding. 

Teunissen and Amiri-
Simkooei (2008) 
Wang et al. (2002) 
Satirapod et al. (2002) 
Li et al. (2015) 

Elementary error 
model 

   

  Sum of different elementary 
errors functions 

Radovanovic (2001), 
Radovanovic et al. 
(2000), Schwieger 
(2007) 

Tab.2 Summary of  the proposed covar iance models  

 State of the art: impact of the stochastic model on LS results 

As mentioned previously, no concrete and precise values of standard deviation or rms were given in the 
comparison between existing models. Indeed, different data sets were used from different years with different 
quality and processing strategies applied making comparisons difficult. Moreover, the results of test statistics 
such as the overall model test which would have allowed for the identification of potential biases are rarely given. 
Nevertheless, some general conclusions on the impact of the stochastic model can be drawn from these previous 
studies which are summarized below. 

• Baseline component estimation 

As long as the stochastic models have an elevation-dependent weighting, the effects on positioning were shown 
to be similar for various stochastic models (Wang et al. 1998, Özlüdemir 2014). Consecutively, many authors 
compared the results provided by “their” empirical improved stochastic model with the one obtained with the 
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identity VCM (Amiri-Simkooei et al. 2016) to obtain stronger statements. Due to the unbiasedness of the LS 
estimator, they should be critically considered. 

Radovanovic (2001) showed that improving the stochastic model with a multipath-based model only leads to a 
difference at the mm-submm level for the baseline length compared with a diagonal variance model. Luo et al. 
(2014) found similar results for the baseline component estimation with the improved SNR based weighting.  

• Overestimation of the precision 

The overestimation of the precision is the main critical point addressed to a diagonal VCM only accounting for 
heteroscedasticity. Craymer et al. (1990) proposed to overcome this overestimation by using an apriori scale 
factor (see also Misra and Enge 2012). Indeed, when combining measurements of different sources (i.e. GPS and 
terrestrial), the wrongly overestimated weighting of GPS observations may lead to problems when forming 
control networks (Miller et al. 2012). Han and Rizos (1995) defined a data based scale factor for the VCM of the 
estimates which may be similar to the one found by inverting AR(1) VCM (Rao and Toutenburg 1999). Similarly, 
Jansson and Persson (2013) introduced the concept of effective number of observations to account for 
correlations. Using an iterative method for Beidou measurements, Li (2016) shows that the precision was 
improved and more realistic, i.e. it was possible to obtain a decrease of the overestimation using a more correct 
stochastic model.  

• Effect on ambiguity resolution  

O’Keefe et al. (2007) investigated the effect of temporal correlations with respect to the trustworthiness of the 
ambiguity resolution. Similar to the study of Odijk and Teunissen (2007) on ADOP, it was pointed out that 
neglecting correlations impacts the test statistics for ambiguity validation. Li and Wang (2012) made similar 
conclusions. The effect of an erroneous float ambiguity vector was proven by means of simulations in Joosten 
and Teunissen (2001), i.e. a biased ambiguity success rate. Amiri-Simkooei et al. (2016) showed that LS-VCE 
methods led to an improvement of the empirical success rate. However, as comparisons with the identity model 
(i.e. assuming homoscedasticity of the variance) were done although heteroscedasticity of GNSS observations 
was proven (Bischoff et al. 2005), it remains difficult from these contributions to make general conclusions with 
regard to other elevation dependent weightings.  

Using the empirical sinus model without taking correlation into account for the particular case of Beidou 
observations, Li (2016) showed an improvement of the ambiguity resolution efficiency with both larger success 
rate and smaller false alarm. Similarly, the SNR0 weighting (Luo 2012, Luo et al. 2014) led to significant 
improvement in the ambiguity resolution compared with the simple ELEV model when considering a lower cutoff 
of the observations (3°) as well as in case of multipath. However, the focus is more often on reducing such error 
effects (Verhagen and Odijk 2007) than studying the influence of the stochastic model on ambiguity resolution. 
As a consequence, the general effects of improved stochastic models on discriminant tests used for fixing the 
ambiguities to integers were -to the author’s knowledge- not addressed yet. 

• Effect on outlier detection and overall model test 

Using the exponential variance model in which parameters were determined for a zero-baseline, Li et al. (2016) 
compared the results given for the overall model test and outlier detection test with respect to the ELEV and 
identity variance model. A decrease of the false alarm rate was shown with the exponential variance model, 
however without studying a possible underestimation or bias of the quantity and mentioning the value of the 
apriori variance taken into consideration. The impact of correlations was moreover not addressed. 

• Effect on tropospheric parameter estimates 

Luo (2012) and Luo et al. (2014) studied the impact of the SNR0 weighting on the tropospheric parameter 
estimation. Differences with respect to the commonly used ELEV model in terms of standard deviations of up to 
a few cm were found. Moreover, a sensitivity to meteorological conditions could be shown. 
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 Issues and objectives 

In the previous section, the impact of the stochastic model on the Least-Squares solution as described in the 
literature was summarized, highlighting its importance to get a trustworthy Least-Squares positioning as well as 
an improved ambiguity resolution. However, as different observations or positioning strategies were used, an 
evaluation of the corresponding weightings and their performances is not straightforward.  

Focusing on modelling instead of iterative procedures, some important open questions on the effects of the VCM 
of GNSS observations remain thus to be treated. Their answers should lead to a better understanding of the 
impact of improving the stochastic model by taking correlation into account. 

• A need for a simple model of the correlation from GNSS (phase) observations 

Besides a particular function for tropospheric correlations (Schön and Brunner 2008), only one model (El-
Rabbany 1994) was suggested to account for correlations in LS adjustment. This proposal is empirical and states 
homoscedasticity of the variance. Moreover, it is based on fitting of the autocorrelation function of the residuals 
which was identified in Stein (1999) as being a sub-optimal strategy. Thus, correlations are neglected due to the 
lack of a general, easy to use and more realistic model, leading to a less trustworthy Least-Squares solution.  

• Impact of misspecification of the correlation structure up to neglecting correlations 

Omitting correlations impacts the test statistics, the ambiguity validation tests, the efficiency of the solution, as 
well as to some extent the estimates in particular cases (e.g. short batches of observations). However, a 
quantification of the errors on these Least-Squares quantities when the correlation structure is misspecified is 
missing. An important part concerns the biased float ambiguity solution and how it is linked to the validation 
procedure if correlations are present but neglected. Studying these impacts will lead to a characterization of the 
most adequate model to choose depending on the scenario (batch length, correlation structure, positioning 
scenario), i.e. answering the questions why and when neglecting correlations is adequate or not.  

• Reducing the fully populated VCM into a diagonal VCM and comparison with other diagonal strategies 

As an improved stochastic model is a necessary condition for reaching the minimum variance of the Least-
Squares solution, the last step is to further simplify the proposed correlation model to decrease the 
computational burden due to matrix inversion. This can be done by compacting the fully populated VCM into a 
diagonal matrix. It allows to build a bridge between the more conventional variance models described previously 
and the proposed correlation function, deepening the understanding of how weightings work. 
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4. Improving the stochastic model of GNSS 
phase observations 

 

In this chapter, the first two questions raised in Sec. 3.4 are answered. To this end, the methodology to analyse 
the impact of the stochastic model and its misspecification for both the simulations and the real case study is 
briefly summarized. In Sec. 4.2, the new model for correlations is presented, followed by the main results of 
integrating the corresponding fully populated VCM in a LS adjustment taken from the following publications: 

• Simplification of a model for correlations due to tropospheric refraction:  

Kermarrec G, Schön S (2014) On the Matérn covariance family: a proposal for modelling temporal 
correlations based on turbulence theory. Journal of Geodesy 88(11):1061-1079 

• Proposal for modelling GNSS phase correlations based on the Matérn covariance function, sensitivity 
analysis of the parameters, simulations and case study:  

Kermarrec G, Schön S (2017a) Apriori fully populated covariance matrices in Least-Squares adjustment – 
case study: GPS relative positioning. Journal of Geodesy 91(5):465-484 

• Possible physical explanation for the fixing of the parameters of the proposed covariance function: 

Kermarrec G, Schön S, Kreinovich V (2017b) Possible explanation of empirical values of the Matérn 
smoothness parameter for the temporal covariance of GPS measurements. Applied Mathematical Science 
11(35):1733-1737 

• Global analysis of the effects of fully populated VCM on the LS results: 

Kermarrec G, Schön S (2017c) On modelling GPS phase correlations: a parametric model. Acta Geophysica 
et Geodaetica https://doi.org/10.1007/s40328-017-0209- 

 Methodology 

In chapter 2, the influence of a misspecification of the VCM on various Least-Squares quantities was theoretically 
presented (Eqs. (5)-(8)) and summarized in Fig. 1. In real cases however, the true VCM is unknown and can only 
be estimated or generated. As a consequence, simulations are used to study the sensitivity of the LS results with 
respect to the stochastic model. The corresponding outcome allows to identify the needed accuracy for the 
determination of the model parameters of the covariance function. Additionally, a deeper understanding of the 
results from data analysis is gained. 

 Sensitivity analysis of the stochastic model: simulations 
The methodology used for the simulations follows the principle presented in Fig. 1. The impact of the correlations 
on the loss of efficiency, the test statistics, the estimates including the float or integer ambiguities are thus 
covered. Under a particular but general enough satellite geometry, the design matrix corresponding to relative 

positioning is entirely known. In a first step, the VCM 0W  of simulated observations is computed. Approximated 

VCM Ŵ  are built in a second step related to a covariance function whose parameters can be varied around the 

values of reference used to compute 0W . As a consequence, a sensitivity analysis can be easily carried out 

allowing a quantification of the impact of the FGLSE on the proposed Least-Squares quantities.  
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 Impact of misspecification of the stochastic model: real case study 
4.1.2.1. Methodology 
In real cases, the true VCM is unknown and estimated. Thus, strategies have to be found to identify if and when 
the Least-Squares solution is still efficient and trustworthy, i.e. its precision is realistic and coherent with the 
estimates. In this thesis, two main quantities were considered for data analysis: 

• aposteriori variance factor 

Thanks to the results of simulations, a parallel with the behaviour of the aposteriori variance factor and the 
relative efficiency of the LS estimator can be drawn when the stochastic model is misspecified. Moreover, the 
bias-behaviour is similar to other quantities such as for instance the one used in the outlier detection test 
(Teunissen 2000, Li et al. 2016). 

Thus, through the publications associated with this dissertation, the aposteriori variance factor has retained 
attention to decide whether a chosen stochastic model is adequate or not. This factor was chosen because of its 
accessibility and popularity in the GPS community. Under the general term “better test statistics” found in the 
following sections, it is understood that the value of the aposteriori variance factor is corresponding to the 
expected apriori value. Indeed, improving the stochastic model by correctly taking correlations into account leads 

to less biased significance tests. In this thesis, the overall model test was employed, i.e. ( )
2ˆ ˆ

2
0max

, , 0pF n u
σ

σ
> − ∞W  

where ( ), , 0pF n u− ∞  is a p-quantile of the central F-distribution having n-u and ∞ degrees of freedom. In 

addition, it is tested if ( )
2ˆ ˆ

2
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, , 0tF n u
σ

σ
< − ∞W  to avoid underestimation. 95% and 5% for p and t were chosen 

respectively. Except in particular cases specially mentioned, normal distribution of the residuals is assumed and 
the overall model test can be used based on the F-distribution. The range of acceptable values of the apriori 

value 0σ  for relative positioning with double differences was taken between 0 min 2mmσ =  and 0 max 4mmσ = , 

a flexibility being allowed depending on the data quality.  

• 3Drms 

Processing Observed Minus Computed (OMC) observations, the 3Drms of the solution is defined as 
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 where m is the number of batches of observations and 0x is the 0 vector when 

the coordinates are exactly known in advance. As a consequence and in ideal cases, the 3Drms is expected to be 
close to 0 as soon as m is large enough. A lower 3Drms with a given stochastic model is called in the following an 
“improved 3Drms solution.” The impact of the VCM on the North, East or Up components is not addressed 
independently in this work, i.e. a global indicator was chosen to test the impact of wrongly estimated models.  

Both the unbiasedness of the aposteriori variance factor detected on the basis of the overall model test and a 
low 3Drms are wished in real data analysis.  

4.1.2.2. Positioning scenario and data analysis 
Through all publications, a relative positioning scenario with double differences of observations from short and 
long baselines was considered. For consistency, the same EPN (European Network) stations were used, i.e. 
principally a 66 km long baseline between the stations KRAW and ZYWI in Poland, chosen arbitrarily. The data 
rate was 30s and an elevation cut-off angle of 3° was chosen. The randomly selected GPS day was DOY220 of 
year 2015. The starting time was chosen to be GPS-SOD 6000s and was shown not to impact the conclusions 
(Kermarrec and Schön 2017a, Appendix 2). All corresponding observations were not preprocessed in order to 
leave unmodelled effects such as troposphere, ionosphere or multipath correlating the measurements. The 
ambiguities were computed using the Lambda method of the Lambda toolbox of the Delft University (Verhagen 
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and Li 2012). For the short baseline case, the stations ZIMM and ZIM2 in Switzerland were chosen as well as 
multipath contaminated observations collected in Hanover (lower Saxony, Germany). Additionally, 1Hz 
observations between the EPN stations KRAW and CTRM (medium baseline) and KRAW and KRA1 (short baseline) 
were computed. Although the corresponding results from these baselines were not published yet, the general 
conclusions on model misspecification are comparable with the one drawn from the baseline KRAW-ZYWI. 
Indeed, the focus of this work is on analysing the sensitivity of the LS solution to the model parameters of the 
proposed covariance function, i.e. on understanding the general impact of taking correlations into account. 
Deduced from the outcome of the simulations, the conclusions drawn from the results of a real data analysis 
thus remains in all cases similar with the one presented in Kermarrec and Schön (2017a) and Kermarrec and 
Schön (2017c). The specific values of expected improvements depend on the observations or strategies used and 
are here not of interest.  

 Modelling correlations 

In this section, the new correlation function for GNSS phase observations is shortly presented, the physically 
derived model of Schön and Brunner (2008) for phase correlations due to turbulent tropospheric refractivity 
fluctuations being the starting point of the proposal. A simplification of this function allows to account more 
easily for correlations due to the troposphere in positioning adjustment whereas a generalization permits to 
model elevation-dependent correlations. The corresponding functions are described in: 

• Kermarrec and Schön (2014) for the tropospheric covariance function and  
• Kermarrec and Schön (2017a) for its extension.  

In the following section, only the main components of the models are described. Based on this both flexible and 
physically relevant proposal, it is possible to study the impact of a wrongly estimated correlation structure on 
the Least-Squares results following the methodology presented in Sec. 4.1.  

 Simplification of the model for tropospheric fluctuations  
Based on Wheelon (2001), the proposal of Schön and Brunner (2008) implies a double integration which was 
shown to be both computational intensive and numerically unstable, particularly for low elevation satellites or 
high sampling rates. As a consequence, a simplification was needed to allow an integration of the corresponding 
VCM in LS adjustment (Kermarrec and Schön 2014). 

4.2.1.1. Modelling temporal correlation: one satellite with itself 
From the concept of the turbulence theory, it is stated that correlations of phase measurements due to 
tropospheric refractivity fluctuations for GPS phase signals are mainly due to large and elongated eddies present 
in the -loosely called- free atmosphere. The turbulence at this attitude is anisotropic and the reorganization of 
the energy structures is less rapid. Using the von Karman spectrum adapted to account for anisotropy under the 
Taylor frozen hypothesis, the spectral density of the phase variations can be derived. It involves turbulence 

parameters such as the structure constant of the index of refractivity 2
nC , the outer scale length 0L , the 

tropospheric height H  or the wind velocity u . Due to the Wiener-Khintchine theorem, the corresponding 
covariance function (Kermarrec and Schön 2014) describing the correlations between the observations of one 
satellite with themselves, can be obtained:  
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where 0
2

0L
πκ =  the wavenumber, k  the electromagnetic wavenumber, a  and c  are scale parameters 

accounting for anisotropy. ( )iEl t  is the elevation of the satellite i at time t . 5
6

K  is the Bessel function with a 

smoothness parameter of 5
6ν =  and a Matérn correlation time 101 ,  0.008

u
a s

κ
α α −= ≈  in the free atmosphere. 

The positive definiteness of the function is given per definition. The variance is obtained as a limit and can be 
scaled so that it equals 1 for satellite at 90° elevation. 

In Eq. (17), a Matérn covariance function (Sec. 2.4.2) can be recognized, multiplied by a mapping function or 
obliquity factor. Thus spatio-temporal dependency is taken into account, i.e. each satellite is weighted differently 
in the covariance function depending on its elevation. Correspondingly, the VCM are not of Toeplitz type as 
shown in Fig.2. The structure depends on the satellite elevation, i.e. the correlation length may increase (Fig. 2 
middle) or decrease (Fig. 2 right). It is higher for low elevations (Fig. 2 left). 

 

F ig .2 VCM bui lt  f rom the proposed model (Eq.  (17)) for three satel l i tes  at  d if ferent elevations ( left:  15°,  middle;  
30°  decreasing,  r ight:  30°  ra is ing).  The spatio-temporal dependency is  highl ighted.  The batch has a  
length of 50  epochs (data rate 30s).  The unit are  [mm 2]  

4.2.1.2. Modelling temporal correlation: one satellite with other ones 
In order to model the correlations between observations of two different satellites, eventually from different 
stations, the concept of the separation distance introduced by Schön and Brunner (2008) was further simplified 
to avoid a double integration. Based on the large eddies assumption, the distance between two rays is computed 
at a given height and not integrated. This height corresponds to the limit between the free atmosphere and the 
boundary layer, i.e. where elongated eddies are present but the structure constant of the refractivity index 
remains at high values (Wheelon 2001). This simplification can be compared with the definition of a ionospheric 
single layer model, where the electron content is considered to be concentrated on a spherical layer.  

The outer scale length 0L  for the more energetic and stable large eddies that are impacting the correlations of 

GPS phase signals is fixed to 6000m. When the simplified separation distance d  is smaller than 0L , case 1 of  

Eq. (18) is applied corresponding to Fig.3(left). However, although rarer at this altitude, eddies up to a length of 
10km also coexist (Fig.3 middle). Thus, and in order not to set sharply the covariance function to 0 when the 
simplified separation distance is larger than 6000m, a physically plausible smooth transition was proposed which 
corresponds to case 2 in Eq. (18). Case 3 corresponds to Fig. 3(right) when tropospheric correlations between 
observations can be physically neglected. 
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Fig.3 S impl if ied concept of  separat ion d istance used in the proposal to  model phase correlations due to turbulent 
tropospher ic refractiv i ty f luctuat ions.  The e l l ipses  are a schematical  representat ion of the eddies 
in the atmosphere.  H is  the tropospheric height.  The d i fferent cases are corresponding to  Eq.  (18)  

The model easily allows for the generation of fully populated covariance matrices that can be used to model the 
tropospheric zenith wet delay (Vennebusch et al. 2010) or as stochastic model in Least-Squares adjustment, for 
instance for VLBI observations (Halsig et al. 2016) allowing a better baseline repeatability and improved 
aposteriori variance factor. Using the derivation of Blewitt (1998) stating equivalence between an augmented 
functional model and a stochastic model (Sec. 2.5) and considering the influence of the troposphere as a process 
noise, this function can model an additional tropospheric parameter for short sessions of observations when the 
VCM is made sufficiently large for the equivalence to hold.  

 Generalization of the covariance function 
The previous function necessitates the computation of a simplified separation distance and is only devoted to 
model phase correlations due to turbulent fluctuations of the index of refractivity. For this purpose, the 
smoothness and correlation parameters 1, αν  are fixed based on concepts from the turbulence theory. In order 

to account for other kinds of elevation-dependent correlation factors such as multipath, a more general function 
had to be proposed. The corresponding derivation is developed in Kermarrec and Schön (2017a). 

4.2.2.1. Covariance function for elevation-dependent factors 
Based on the analysis of the principal correlation factors (troposphere, ionosphere, multipath, eventually 
unmodelled phase center variations) and on the results of the previous studies presented in chapter 3, the main 
characteristics of this function for a wide acceptance were chosen to be: 
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• Elevation dependency, based on a commonly used and physically derived mapping function  
• Flexible covariance function whose parameters can be estimated by Maximum Likelihood (see Sec. 2.4.2 

or Handcock and Wallis 1994, Stein 1999). 

An expected good acceptance for this model in the GNSS community was an important criterion in the choice of 
the function, i.e. it had to be historically based, easy to use, and understandable. Its flexibility should allow to 
carry out a sensitivity analysis in order to understand the effect of correlations on the trustworthiness of the LS 
solution as well as the needed accuracy in the determination of the corresponding parameters.  

On purpose and for the sake of simplicity, no model selection from the observations was made (Williams and 
Rasmussen 2006). Moreover, an empirical fitting of LS residuals with a particular autocorrelation function was 
intentionally not investigated. First, a lack of generality would have been the consequence. Indeed, the 
smoothness is empirically often assumed to be ½ as in El-Rabbany (1994). The covariance function of the 
observations is thus not mean-squared differentiable at the origin which is a restrictive property particularly for 
observations from long baselines that are smoother than short baselines observations (Kermarrec et al. 2017b). 
Secondly, it is a non-accurate procedure for short observation sessions, being at the same time computationally 
demanding as a post processing is needed.  

As a consequence, the covariance function of Eq. (17) was adapted to: 

( ) ( )( )
( )( ) ( )( )

( ) ( ),
sin sin

elevi j
A B

i j

t t K
El t El t

Cov ν
ν

ρδ
ϕ ϕ τ ατ ατ

τ
+ =

+
     (19) 

where iEl  is the elevation of the satellite i. δ  is a positive factor so that the value of the covariance function is 

scaled to have a variance of 1 for a satellite at 90° elevation. The Matérn parameters [ ],α ν  (inverse of the 

correlation length and smoothness, respectively) are computed based on MLE (Sec. 2.4). In the following, the 
model is referred to as the FULLY model.  

Eq. (19) allows to build fully populated covariance matrices to model elevation-dependent correlations between 
all satellites of one station as well as between two stations due to the parameter ρ . From physical considerations 

based on the vertical profile of microwave values for refractive-index structure constant 2
nC  (Wheelon 2010), 

ρ  was fixed to 0.1 (Kermarrec and Schön 2017a). For the sake of simplicity as well as for numerical stability, it 

was assumed that correlations between stations could be neglected, the main impact in Least-Squares 
adjustment coming from the block diagonal VCM corresponding to correlations between observations from one 
satellite. The variance is obtained as a limit and is corresponding to the ELEV model (Schön and Brunner 2008) 

4.2.2.2. Main characteristics of the covariance function 
The main properties of the covariance model are outlined here briefly: 

• Link with AR model. From Luo et al. (2012), it is known that the correlation structure of filtered GPS 
residuals can be described by means of AR or ARMA processes of different orders depending on the 
chosen data. Since Eq. (19) is derived from a rational spectral density, it has some similarities with the 
ARMA processes (Stein 1999, see also Kermarrec and Schön 2017c).  

• Spatio-temporal dependency. For a GPS case, the covariance matrices built with Eq. (19) have no Toeplitz 
structure,  i.e. the weighting for each satellites combination is individual. Figure 2 shows an example of 
the covariance matrices for satellites with different time-dependent elevations. 

• Heteroscedasticity is taken into account due to the ELEV variance model 
• Different kinds of elevation dependent correlations. The model summarizes all kinds of elevation 

dependent correlations thanks to a data-driven estimation of the parameters [ ],α ν . It can thus be 
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adapted to take station- and frequency- dependent effects into account. The Matérn parameters are 
not fixed to a given value as for the turbulence model presented in Eq. (17) but are allowed to vary.  

While the model has some advantages over other methods, its shortcomings should also be addressed: 

• The mapping function which defines the variance model is physically derived (Wheelon 2001). However, 
some more complicated functions such as Niell or Marini mapping functions (Hoffmann-Wellenhof et 
al. 1999) that account for specific meteorological parameters may be more accurate.  

• The model is well suited for elevation dependent correlations which can be considered as the main class 
of correlations of GPS phase measurements. Other types of correlation can be modelled additionally 
with for instance elementary covariance functions as described in Sec. 3.2.3. or without the elevation 
dependent weighting factor of Eq. (19). 

• No additive noise (like e.g. receiver noise) is explicitly taken in consideration by adding a specific 
diagonal covariance matrix. However, due to the use of the Matérn covariance family and the non-
orthogonality of the parameters (Gelfand et al. 2010), it is implicitly allowed to model noise as long as 
it is not dominant in the total variance (Kermarrec and Schön 2017a). In the case study and for the sake 
of numerical stability (Tikhonov 1995), a scaled identity VCM was added with a factor 0.1 for the identity 
VCM and 0.9 for the fully populated VCM. 

• In a first approximation, the model is not developed for the modelling of code-phase correlations as 
needed for Precise Point Positioning (PPP) applications. 

 Estimating the Matérn parameters in real cases 
While in simulations the parameters [ ],α ν  can be varied freely, a methodology has to be proposed to fix the 

Matérn parameters in real cases. It is assumed that the estimates are deterministic (Caspary and Wichmann 
1994) and thus the Observed Minus Computed (OMC) observations are here used to compute the model 
parameters. For cases where the true coordinates are unknown and trends remain in the observations, the same 
procedure as proposed can be followed based on detrended observations or residuals.  

Due to the satellite-dependent weighting, only one parameter combination (smoothness and correlation length) 
is estimated for a given data set. This strategy represents a simplification in order to avoid computational burden 
and is based on the results of the sensitivity analysis of the parameters (Kermarrec and Schön 2017a). Depending 
on the processing strategies, three different cases were identified for fixing the Matérn parameters. The terms 
“long” or “short” sessions correspond to the batch length into which the observations time span is divided, 
independent of the data rate. Long sessions are batches longer than 100 epochs. This categorization is rough and 
subject to adaptation depending eventually on the results of test statistics. The same holds true for the term 
“short baseline”. 

• Long batches - Short baseline (<15 km)  

As Eq. (19) accounts for a geometrical satellite individual weighting, the computational burden induced by 

estimating the parameters for each satellite can be reduced to the estimation of one set of parameters [ ],α ν  

for a given satellite with a mean elevation of 40-60° observed during 1-2 hours. The correlation structure is thus 
depending on the observations and e.g. meteorological conditions at each station. Although from the results of 
simulations not mandatory, a higher accuracy in the parameter determination can be obtained by estimating 
satellite-dependent parameters. Both procedures allow for the computation of fully populated VCM at the two 
stations and can be further simplified by constraining the smoothness to 1 following the approximated structure 
of the tropospheric VCM (Eq. (17), smoothness 5/6) as mostly atmospheric effects lead to elevation-dependent 
correlations (Kermarrec et al. 2017). This way, only the correlation parameter has to be estimated. This 
simplification follows the results of Luo et al. (2012) who shows that AR processes of low orders accurately 
approximate the correlation structure of the stationary residuals. Moreover, taking a smoothness parameter 
larger than 1.3 leads to numerical instability. Fixing the smoothness, the property of the non-orthogonality of 
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the Matérn function is used (Diggle and Ribeiro 2007, Gerland et al. 2010). An empirical validity of 4 hours for 
the Matérn parameters set is proposed in order to account for changes of the geometry or atmospheric 
conditions at the stations (Kermarrec and Schön 2017a). It should be noted that for an accurate determination 
with MLE, the batch of observations chosen should be long enough (i.e. minimum 1 hour). 

• Long batches - Medium and Long baselines (>15km) 

For medium-long baselines (>15 km), the correlation structure of the double differences may not be reflected in 
the OMC observations of each station. Thus, the MLE values are not computed from the observations themselves 
but directly from the double differences. As previously, the smoothness can be fixed to 1. Eventually, if the overall 

model test fails, α  can be decreased or increased by steps of 0.005 so that ( )
2ˆ ˆ

2
0

, , 0pF n u
σ

σ
< − ∞W . 

• Short batches 

In this scenario, the effect of taking correlations into account becomes intuitively stronger as the correlation 
length and batch size have close values. In such cases, no tropospheric parameters are usually estimated in order 
not to weaken the data strength. Thus, when the covariance matrix is strongly fully populated, the equivalence 
stochastic-augmented functional model presented in Sec. 2.5 can be applied. The value of the smoothness can 
be fixed slightly higher than 1 following the physical explanations proposed in Kermarrec et al. (2017). It is close 
to the 5/6 value of the tropospheric model but allows a mean-square differentiability at the origin of the 
corresponding covariance function, this property being physically desirable considering GNSS observations as 
results of intensity/voltage measurements. The correlation length parameter can be taken empirically to 0.01s-1 
in a first approximation (Kermarrec and Schön 2014) and varied by steps of 0.005 depending for instance on the 
results of the overall model test. For numerical stability it is advantageous that the covariance function reaches 
the zero-value inside the batch, i.e. α  has to be approximated to fit this criterion (Stein 1999). Incorrect 
stochastic models and in particular, too high correlation lengths are detected by the overall model test, 
conservative parameters which lead to sparser VCM being always preferable. For very short sessions (<50 
epochs), the F-distribution may not hold anymore due to the violation of the normal distribution of the residuals. 
Alternatively, a student distribution could be used (Schön et al. 2018). 

 Impact of the covariance function on whitening the observations: an example 
The fully populated matrices with Matérn parameters estimated as previously described were shown to be able 
to whiten the double differenced GPS observations better than the corresponding diagonal matrices, particularly 

in the low frequency domain. A whitened time series whitey  is defined as ˆ -1
2

white Wy = y  where y  is the original 

time series and ˆ -1
2W  is the inverse of the square root of Ŵ . A typical challenging scenario is presented in Fig. 

4, where the double differenced time series correspond to the medium baseline (66 km length ZYWI-KRAW 

following Sec. 4.1.3). Using the FULLY matrix with [ ] [ ], 0.01,1α ν = , i.e. accounting for atmospheric-like 

correlations, the whitened observations are shown to correspond more to zero-mean white noise compared with 

the time series whitened both with the ELEV matrix (magenta line) or the FULLY matrix with [ ] [ ]1
2, 0.01,α ν =  

(green line), i.e. the exponential covariance function. This holds particularly true for observations related to low 
elevation satellites (PRN19,7).  
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F ig.4 r ight:  Whitening potent ial  of a FULLY matr ix (b lue and green l ines) with respect to  a diagonal ELEV model 
(red l ine).  The or ig inal t ime double d if ferenced time series corresponds to a medium baseline of 66  
km, the observat ions were not  preprocessed and sorted per  satel l i tes (30s data  rate,  100 epochs),  
r ight:  corresponding skyplot 

The analysis of the amplitude spectrum from a Fourier decomposition of the whitened double differences PRN5-
30 allows a more accurate comparison between the models. The satellites were observed during 100 epochs (i.e. 

approximately 1 hour of observations). The corresponding results found by varying the structure of Ŵ  
(correlation length and the smoothness) are presented in Fig.5. Other examples can be found in Kermarrec and 
Schön (2017c). 

Due to the elevation dependency of our model, the whitened double differenced time series are automatically 
studentized (Luo 2012). No further filtering of the data was applied, the study of the whitening potential of the 
proposed double differenced VCM being the focus of this short analysis, i.e. for instance the impact of a fully 
populated VCM on the presence of low frequencies coming from unmodelled effects. The exact values of the 
amplitudes are here not of interest, as soon as they remain comparable for each VCM which is the case thanks 
to the studentization. Using FULLY matrices, it can be seen that the amplitudes of the low frequency part of the 
spectrum are decreased whereas the high frequencies are stronger with respect to the ELEV model. Generally, 
the smoothness parameter acts on the high frequency part of the spectrum (green line with 1

2ν =  versus blue 
line with 1ν = ) whereas the correlation length has an effect on the low frequency part of the spectrum. This 
behaviour is directly related to the rational spectral density of a Matérn function (Stein 1999). However, it can 

be noted that the change of the correlation length from 0.007 to 0.01 1s−  has only a small influence at the 
amplitude level. It is furthermore confirmed that the exponential correlation model with 1

2ν =  is suboptimal 
to whiten the observations, particularly at high frequencies but to some extent also at low frequencies 
(Kermarrec and Schön, 2017c). 

 

Fig.5 Fourier decomposition of  di fferent whitened observat ions versus log-frequency (Hz),  Amplitude as log sca le.  
Whitened L1 double d if ferences by vary ing the correlat ion length and the smoothness parameter  of 
the VCM (100 epochs a 30s) Double di fferences PRN5-30 

  



42 
 

This case study is an example. However, other baselines with different lengths and satellites were computed 
without changing the previous conclusions on the spectrum. It is clearly not to be expected from an apriori 
covariance matrix that the observations will be perfectly whitened. Moreover, some factors cannot be “repaired” 
or taken into account in the stochastic model which remains anyway an approximation of the true but unknown 
VCM. 

 Simulations: sensitivity analysis of the parameters 

From Eq. (19), a VCM with a desired correlation structure can be built. In order to assess the effect of 
misspecifying the stochastic model on the Least-Squares results, simulations are necessary. This way, the 
structure of the true covariance matrix is exactly known and observations with the corresponding behaviour 
simulated. Following Sec. 4.2. and Fig. 1, the effects of varying the Matérn parameters can be quantified and 
compared e.g. with the results given with the corresponding ELEV diagonal model. The main results are 
presented in Kermarrec and Schön (2017a) and Kermarrec and Schön (2017c).  

The main focus is on the differences when correlations are taken into account (FULLY model), misspecified or 
neglected (ELEV model), i.e. the same diagonal variance model is used. This is a more realistic comparison than 
usually found in the literature.  

Dealing with phase observations that are inherently ambiguous, two cases were identified to be treated:  

1. Biases of the aposteriori variance factor and loss of efficiency due to the stochastic model when the 
ambiguities are fixed in advance and impact at the estimates level. 

2. Biases of discriminant validation tests, when the ambiguity vector is estimated together with the other 
parameters (i.e. the position) and eventually led to its float value.  

 Case 1: ambiguities fixed in advance 
Extended results are presented in Kermarrec and Schön (2017a). It includes the detailed effects of adding noise 
matrices, changing the batch lengths or the known correlation structure of the true VCM. Moreover, the impact 
of neglecting the correlations between observations from different satellites on the Least-Squares solution is 
addressed. For this study, the reference VCM was chosen to have a correlation structure corresponding to a 

Matérn parameter set [ ], [0.01,1]α ν =  which is a physically plausible correlation structure for double 

differenced observations from medium baselines. A relative positioning was adopted although no main change 
occurs by using other strategies. The reasons for these findings are developed in the next chapter based on the 
structure of the design matrix or in Kermarrec and Schön (2017a, Appendix 1). The VCM was sorted per satellites, 
i.e. a batch-based scenario was adopted. Following the methodology of Sec. 4.1., only the main results are 
summarized below:  

• Aposteriori variance factor 

Using the result of chapter 2, the error when misspecifying the stochastic model is expressed as a trace of a 
matrix product (Eq. (5)). It may have a minimum which is not corresponding to the correct solution. In the ideal 
case of simulations, a small bias of 0.1m2 for the chosen structure of reference was found when the diagonal 
ELEV model was wrongly used. Conservative parameters (i.e. low correlation length and low smoothness) were 
preferable to wrongly estimated higher correlation lengths than the reference that were associated with an 
exponential increase of the bias of the variance of unit weight. These results were consistent with Rao (1967). It 
is worth noticing that different sets of Matérn parameters yield the unbiased variance of unit weight solution 
which is explained by the non-orthogonality of the Matérn parameters. 
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• Relative efficiency / Mean Squared Error 

Studying the relative efficiency of an estimator (Eq. (8)) is a powerful tool to assess the extent to which the 
approximated estimated VCM impact the precision of the solution. It was shown that correlation lengths lower 
than the reference, particularly for higher smoothnesses (+0.3) than the original one, were responsible for a 
positive increase of the relative efficiency, i.e. the outcome follows the shape of the Frobenius norm of the matrix 
difference (true minus estimated). As for the bias of the aposteriori variance factor, higher correlation lengths 
than the true one led to a rapid increase of the relative efficiency. Taking wrongly a smoothness corresponding 

to the exponential correlation model ( 1
2ν = ) made the results being closer to the one given with the diagonal 

model ELEV, i.e. overoptimistic. However, the mean squared difference of the estimates obtained with FULLY 
and ELEV, for the assumed reference correlation structure moved at the submm level, which is negligible.  

• Apriori covariance matrix of the estimates 

Considering the example of the covariance matrix corresponding to an AR(1) process which inverse is obtained 
with a closed formula, the effects of fully populated VCM on the apriori covariance matrix of the estimates are 
presented in Appendix 2 of Kermarrec and Schön (2017a) or graphically in Kermarrec and Schön (2017c). 
Whereas the use of a fully populated VCM built with Eq. (19) only slightly changes the orientation of the 
corresponding error ellipsoid by a few degrees maximum with respect to the ELEV model, its volume is strongly 
affected. The overestimation of the precision with the diagonal model is corrected due to the fully populated 
VCM which acts as a scaling factor. This mathematical effect comes from the inverse of the VCM, its eigenvalues 
exhibiting higher values depending on the chosen correlation structure. Correspondingly, the scaling strategies 
presented in the literature and described in Sec. 3.3 can be better understood as a way to artificially increase the 
determinant of the cofactor matrix of the estimates. However, this procedure does not allow to get a statistically 
trustworthy solution which is only possible by using realistic fully populated VCM in the LS adjustment.  

 Case 2: ambiguities estimated as part of the solution 
Through the contributions associated with this thesis, the Lambda method (Teunissen 1995) was adopted to fix 
the float ambiguity vector to its integer values. Within this fixing strategy, the VCM of the observations is 
introduced in the cofactor matrix of the ambiguities. The focus being here on the impact of the stochastic model 
on the error of the float solution as well as on different discriminant tests such as the ratio test (Euler and 
Schaffrin 1991), other methods would have led to the same conclusions.  

• Discriminant tests, distance fixed-float ambiguity vector  

Following the methodology for the simulations explained in Sec. 4.1.1., the Matérn parameters of the estimated 
VCM were varied around the reference value. The true fixed ambiguity vector was entirely known. As a 
consequence, the impact on different validation tests such as the ratio test or R ratio, as well as the distance 
between the float and the fixed solution in the same metric could be studied. Since the discriminant tests are 
based on the observations, no general formulation of the biases under the wrong stochastic model can be 
developed and Monte Carlo simulations were used. 

From Fig. 6 right, a minimum of the ratio test is obtained when using the correct VCM, similar to the shape of 
the relative efficiency (Sec. 4.3.1.). The same conclusion hold true for the Euclidian distance between the float 
and the true integer ambiguity vector. Thus, neglecting correlations when they exist can be linked with a slight 
decrease of the probability of fixing the ambiguity vector to integer. However, the same fixed ambiguity vector 
is obtained with fully populated or diagonal models, except in case of overestimation of the correlation length, 
for which the overall model test also fails. This highlights the bias of the corresponding test statistics and the lack 
of trustworthiness of the LS solution. The non-uniqueness of the “nearly” best solution is furthermore 
highlighted, a given variability of the Matérn parameters being allowed without impacting strongly the results. 
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An error in the distance between the float and the integer ambiguity vector with the ELEV model can be further 
identified (Fig. 6 left). This error increases as the smoothness or the correlation parameter decreases, i.e. 
neglecting or overestimating the correlations. Thus compared with Sec. 4.3.1., it is expected that the more 
accurate float ambiguity solution plays a central role when the ambiguities cannot be fixed with enough 
confidence and are let floating.  

Although these simulations may seem to depend on the design matrix and thus be not reproducible, it is worth 
mentioning that only the behaviour of the quantities versus the Matérn set are of interest in this study. Thus, the 
corresponding shape of the presented curves does not change with other satellite constellations or batch lengths 
(Kermarrec and Schön 2017a).  

 

F ig .6 Impact of the est imated covariance matrices on the ambiguity  va l idat ion.  Left:  the d istance f loat-f ixed 
2*

1 ˆ
ID

d = fix floatx - x  between the correct integer vector  fixx  and the est imated f loat  ambiguity 

vector ˆ floatx  (Euclidian d istance).  R ight:  Rat io test.  The Matérn parameters  are var ied around the 

known structure of [ ] [ ]
0

, 0.01,1α ν =  corresponding to the b lue point (true solut ion).  For  th is  

Monte Carlo s imulat ion,  a standard GPS constellat ion with 8  satel l i tes was  taken as  well  as batches 
with  100 epochs  a 30s (F ig.3) 
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 Summary of the simulations 
Following the previous results, a two-step procedure is proposed in Fig. 7 to prevent the highlighted loss of 
efficiency of the LS estimator and biases of test statistics such as the overall model test or ambiguity discriminant 
tests, when a wrongly estimated stochastic model is used.  

In a first step, the float ambiguity vector is estimated as part of the LS solution. Based on the result of the Ratio 
test (a threshold of 0.5 is usually considered, Wei and Schwarz 1995), it is either let floating or fixed to an integer. 
In a second step, the overall model test is applied following the methodology of Sec. 4.1.2.1. to compare the 
aposteriori variance factor under the estimated VCM with a realistic and plausible apriori value. The chosen value 
depends on the processing strategy (e.g. relative or single positioning). The Matérn parameters may have to be 
adapted depending on the outcome of the overall model test, i.e. the correlation parameter α decreased by 
step of 0.005 if the test fails. Using this procedure, a model misspecification can be detected with a higher 
confidence. At the same time, a statistically trustworthy least-squares solution is expected with a minimum loss 
of efficiency allowing at the same time more ambiguities to be fixed to an integer due to more accurate test 
statistics. 

 

 

Fig.7 Summary of the results f rom s imulations  us ing a  fu l ly populated VCM: a proposal  to prevent erroneous 
solut ions when the correlat ions are unknown and estimated.  

  

Ratio test

•Decide if the ambiguities are let float or fixed to integer thanks to a user defined 
threshold value

•The float solution is more trustworthy when the correct stochastic model is used

Aposteriori 
variance factor
overall model 

test

•Ambiguities fixed: the aposteriori variance factor has to be computed taking the 
corrected degrees of freedom into account

•Ambiguities fixed or float: application of the overall model test, F-distribution 
preferably for long batches 

•A knowledge of the apriori variance factor depending on the processing strategy is 
necessary, at least a range of plausible values

•The Matérn parameters have eventually to be adapted after this step, mostly by 
acting on the correlation parameter

re
su

lts •statistically more trustworthy least-squares solution (precision/estimates)
•less biased significance test
•eventually impact on the positioning solution when the float ambiguity is 

used (short sessions)
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 Real data analysis 

The previous conclusions of the simulations (Sec. 4.3) on the impact of the stochastic model on the Least-Squares 
adjustment were confirmed for real case studies (Sec. 4.1.2.). Following the same methodology, a sensitivity 
analysis was carried out by varying the Matérn parameters in a physically plausible range. The corresponding 
results can be found in Kermarrec and Schön (2017c) for the case 1 (ambiguity fixed) and Kermarrec and Schön 
(2017e) for the case 2, i.e. estimating the float ambiguity vector as estimates together with the position. In this 
last contribution, the Matérn parameter set was computed based on the strategy described in Sec. 4.2.3. for the 
short batches case.  

 Case 1: ambiguity fixed  
Similarly to Sec. 4.3.1., the ambiguities were firstly considered to be resolved in advance, i.e. fixed to integer. 
From the simulations, modelling elevation-dependent correlations in case of fixed ambiguities was shown to lead 
to more trustworthy precision and aposteriori variance factor. The mean-squared errors of the estimates 
difference were at the submm level for the ideal simulated case corresponding to zero-mean observations having 
an exactly known correlation structure.  

Kermarrec and Schön (2017a,c) confirmed the results of simulations for real data analysis at the estimates level 
as only mm-submm differences were obtained between the results given under the FULLY or ELEV model for a 
baseline length of 66 km (KRAW-ZYWI, see Sec. 4.1.3.). This result, presented in Tab.3 by varying the correlation 
structure of the estimated FULLY VCM, is expected, the Least-Squares estimator being unbiased (Sec. 2.2.). 
However, using the overall model test, the ELEV solution was shown to be statistically incorrect, i.e. the value 

( )ˆWelevE σ  was up to a few mm higher than the values found under the FULLY model (9.7 mm). For long sessions, 

0σ  could be adjusted to ( )ˆWelevE σ , corresponding to the mean of ˆWelevσ  over all batches (Kermarrec and Schön 

2017c). Using this strategy, similar results as with FULLY VCM were reached, i.e. up to a few sub-mm differences. 

However, because a plausible apriori of 4mm for relative positioning 0σ  was only used for the FULLY case, this 

proposed “bias corrective procedure” remains statistically incorrect. From the simulations, high aposteriori 
variance factors are linked with a higher loss of efficiency and thus a biased and incorrect significance.  

Table 3 highlights further the already mentioned non-uniqueness of the best solution, i.e. different values of 

[ ],α ν  gives the same 3Drms. Moreover, the effect exaggerating the correlation length by decreasing α  for the 

same smoothness of 1 (e.g. [ ], [0.001,1]α ν = ) degrades the solution by up to 20 mm, less batches being used 

to compute the solution due to the higher ˆWfullyσ . Such cases were identified in the simulation as corresponding 

to a high loss of efficiency of the LS estimator. The exponential model corresponding to [ ] 1
2, [0.01, ]α ν =  is 

similarly suboptimal. The ID model disregards the heteroscedasticity of the observations and is detected as a 
model misspecification.  
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 [ ] [ ]0
, 0.012,1.1α ν =  [ ], [0.005,1]α ν =  [ ], [0.001,1]α ν =  

( )3E Drms  [mm] 55.9 63.4 75.0 

( )ˆˆE σW  [mm] 3.4 3.9 4.5 

 [ ] 1, [0.01, ]2α ν =  [ ] 1, [0.005, ]2α ν =  ELEV ID 

( )3E Drms  [mm] 56.1 55.9 57.0  

(adapted 0σ ) 

82.7 

(adapted 0σ ) 

( )ˆˆE σW  [mm] 3.8 3.4 9.7 22.8 

Tab.3 ( )ˆˆE σW  and the mean of  the 3Drms computed with est imated VCM. The FULLY model by vary ing [ ],α ν  is  

compared with the results g iven with  the ELEV and ID models,  i .e.  neglect ing correlations.  From 
Kermarrec  and Schön (2017c).   

Observations from short baselines or from the ionosphere-free linear combination (L3) led to similar conclusions. 
As many effects cancel out in such cases and the observations are ideal (zero-mean, Gaussian distribution), the 
impact of taking correlation into account follows even more closely the results of the simulations. At the 
estimates level, sub-mm differences are obtained when comparing different models. However, test statistics still 
remain less biased, particularly for short batches of observations (<1 hour). Thus, risky potential underestimation 
of the aposteriori variance factor can be avoided by taking correlation into account. This can impact positively 
the 3Drms due to a more realistic rejection of batches if the overall model test fails, what can be seen as a 
“snowball effect”. Multipath contaminated observations of short sessions can thus profit from improved 
stochastic model. However, a realistic apriori variance factor has to be considered. 

In Kermarrec and Schön (2017a,c), the impact of estimating or not a tropospheric parameter was not addressed, 
the batch length chosen being less than 1 hour, i.e. 100 epochs a 30s. For longer batches from long baselines, 
the use of a FULLY model does not avoid the estimation of an additional tropospheric parameter as the condition 
for the equivalence stochastic-functional are not fulfilled (see chapter 5 for more details).  

 Case 2: the float solution 
In this thesis, it is investigated in which cases and at which level taking correlations into account impacts the LS 
solution. Thus it is not aimed to fix the ambiguities to integers by all means. Following the results of simulations, 
the impact of the less erroneous float ambiguity when taking correlations into account was identified as an 
important quantity to test in real cases. Therefore, the global approach was adopted where parameters and 
ambiguities are estimated together in a Least-Squares adjustment. The ambiguities are fixed if the validation test 
(ratio test) is below a threshold value of 0.5, i.e. the computationally demanding Fixed Failure Rate Ambiguity 
Validation Method (Wang and Feng 2013) was not adopted. In that case and in the simulations, the improvement 
of the stochastic model was shown to lead to a more correct float ambiguity vector and a slightly lower ratio test 
value. In a real case scenario, this result turns out to be the main improvement that can be expected from taking 
correlations into account at the estimates level.  

The baseline ZYWI-KRAW (Sec. 4.4.1.) was retained for this study. The following results can be extended for other 
observations, such as those from short baselines with strong multipath or higher data rate (1 Hz). Three batch 
lengths were selected to show the influence of the stochastic model using the global approach. In order to 
average over different geometries and to study the float solution with more details, the total observation time 
span was subdivided into: 
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a) 20 batches with 200 epochs (session length 100 minutes) 
b) 40 batches with 100 epochs (session length 50 minutes) 
c) 80 batches with 50 epochs (session length 25 minutes) 

For short batches of observations, the fixing strategy of the Matérn parameters as presented in Sec. 4.2.3. could 
be adopted without additional ML estimation. Indeed, this case corresponds to an estimation of a tropospheric 
parameter by the stochastic model. No overall model test was applied due to the computation of short sessions 
for which the student distribution should be preferred (Schön et al. 2017).  

The results are shortly presented in Tab. 4. As the ratio test values are influenced by the chosen stochastic model, 
the FULLY model allowed slightly more batches to be fixed (5-10% in our case study). As a consequence, 
estimated 3Drms differences at the cm level for session length of up to 1 hour between the ELEV and FULLY 
models were reached. Thus, both the great potential of a more correct float solution and less biased test statistics 
is highlighted for very short sessions. These results were confirmed with 1 Hz observations and are thus 
independent of the data rate or the baseline length as soon as the fixing of the ambiguities to integer is 
challenging and the float ambiguity vector is used.  

For longer sessions of observations (i.e. from one hour), the 3Drms differences between the ELEV and FULLY 
models are less important. This has to be linked with the short correlation length compared with the batch length 
as well as the fact that ambiguities are fixed to integer with a higher confidence (Sec. 4.4.1.).  

The mean value of ˆσ̂W  presented in Tab. 4 is below 4 mm for the three cases with the FULLY model and remains 

closer to the apriori values for double differences. The less biased ˆσ̂W  with respect to the ELEV case highlights 

the previously mentioned higher confidence that can be put in the LS solution, i.e. a lower loss of efficiency. The 
float solution and its associated precision are thus more trustworthy (Sec. 4.3.).  

 

Ratio test: threshold 0.5 
 

FULLY ELEV 

3Drms (mean) [mm] 
a) 
b) 
c) 

 
28.5 
82.3 
184.0 

 
29.1 
84.2 
216.4 

Aposteriori variance factor [mm] 

ˆσ̂W  

a) 
b) 
c) 

 
4.1 
3.8 
3.1 

 
9.9 
8.0 
4.8 

Tab.4 Comparison of  the impact of  the batch length on the 3Drms for  3 particular scenarios:  a)  2 hours,  case b) 1 
hour  and case c)  30 minutes.  A threshold of  0.5 for the ratio test is  applied.  The aposterior i  
var iance factor is  g iven for the two models:  FULLY and ELEV.  The aprior i  var iance factor is  assumed 
between 2 and 4 mm (double dif ferences).  
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 Concluding remarks 

In this chapter, an innovative way to take correlations into account was proposed. Built with a Matérn covariance 
function weighted by an elevation-dependent factor, heteroscedasticity and spatio-temporal dependency of the 
observations are thus taken into account. Correlations between observations from one satellite or different 
satellites can be easily computed thanks to an additional factor that can be fixed apriori based on physical 
considerations. This proposal avoids thus the shortcoming of the previous empirical model based on a LS-fitting 
of the autocorrelation of the residuals with an exponential function. Derived from a model to account for 
correlations due to turbulent variations of the refractivity index in the atmosphere, the physical component of 
the extended function was highlighted. Two Matérn parameters called the smoothness and the correlation 
length of the observations can be either fixed or estimated, depending on the processing strategy and the 
baseline length. The most optimal whitening of double differenced observations was obtained for a smoothness 
parameter of at least 1 (Kermarrec and Schön 2017b). The correlation parameter impacts the low frequency part 
of the Fourier spectrum of the observations and has thus a stronger impact for short sessions and suboptimal 
data. 

This model allows to build realistic fully populated VCM that can be used in a LS-adjustment. Simulations have 
shown that neglecting correlations when the simulated observations are correlated led to a higher loss of 
efficiency of the LS estimator with a biased aposteriori variance factor. As a consequence, even if the solution 
remains unbiased by using different estimated VCM, a more trustworthy solution can be expected, i.e. an 
estimated precision that corresponds to the scatter of the coordinates (Kermarrec and Schön 2014). This 
overcomes thus the overoptimistic precision obtained with diagonal VCM. Due to the less biased validation test 
used for ambiguity resolution, a reliable fixing of the ambiguity vector to an integer is reached. Combined with a 
float solution with a smaller error, the 3Drms of the coordinates could be improved by up to 30 cm for a case 
study with 30 minutes-batches of observations.  
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5. Simplifying the stochastic model: why 
and how? 

 

In this chapter, the two last questions raised in Sec. 3.4. are answered. In a first section, the effect of correlations 
in the Least-Squares adjustment is explained using an intuitive approach. Then, the expected impact on the Least-
Squares solution when correlations are taken into account is summarized, introducing the concept of the “hidden 
parameter” for short batches of observations, giving an additional justification of the results from Sec. 4.4.2.. In 
a last section, the equivalent diagonal model is presented. This chapter follows the results of the publications: 

• Equivalent diagonal model: 

Kermarrec G, Schön S (2016) Taking correlation in GPS Least-Squares adjustments into account with a 
diagonal covariance matrix. Journal of Geodesy 90(9):793-805 

• Diagonal correlation model: 

Kermarrec G, Schön S (2017d) Taking correlations into account: a diagonal correlation model. GPS 
solution 21(4):1895-1906 

• The hidden parameter: 
Kermarrec G, Schön S (2017e) Fully populated VCM or the hidden parameter. Journal of Geodetic 
Science 7(1):151-161 

 About the impact of correlations  

In this section, an intuitive interpretation of the impact of correlations on the Least-Squares solution is proposed. 
It aims to understand why correlations -when present- should not be neglected. The low effect of the underlying 
geometry or positioning strategy is shortly developed. 

 Inverse of the covariance matrix 
Independently of the stochastic model used, the Least-Squares estimates remain unbiased. Thus, no strong 
differences between the ELEV and FULLY models are expected in an ideal positioning scenario as presented in 
chapter 4, i.e. mainly when the residuals are zero-mean. In this section, the structure of the inverse of the fully 
populated VCM is used to explain “visually” the effect of correlations on the solution and its precision. It aims to 
help understanding the results found for short batches of observations.  

For a didactical explanation, a fully populated VCM with a structure corresponding to a simple AR(1) process is 
here considered. As illustrated in Kermarrec and Schön (2017a) for the case with fixed ambiguities, the three 
eigenvalues of the cofactor matrix of the estimates are, up to a “correlation factor” which depends on the chosen 
correlation parameter α , similar with or without correlations, the eigenvectors being the same. This factor is 
the reason why the precision is not overestimated under the FULLY model (Kermarrec and Schön 2017c) and is 
related to the structure of the inverse of the fully populated VCM.  

Analysing the slope matrix (Eq. (2)) more closely in that particular case, it can be observed that the two first and 
last values of one line of the slope matrix for one particular satellite exhibit different values for the fully populated 
model than for the diagonal model (Fig. 8 left). In the middle of the batch, ELEV and FULLY leads nearly to the 

same slope (Fig. 8 right), i.e. the mean of the values of K  for one satellite should be similar due to the 
unbiasedness of the LS estimator. For less simple correlation structures, corresponding for instance to a Matérn 
model with higher smoothness (i.e. when the covariance function is mean square differentiable as defined in 
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Sec. 2.1. with 1ν > ), the number of values oscillating at the beginning and end of one batch for one satellite 
around the constant slope will be slightly more important by remaining small with respect to the number of 
epochs. Luati and Proietti (2011) showed e.g. that this number increases following the order of the AR process 
of consideration. The closed formula of the inverse of the AR(1) gives e.g. an explanation for this behaviour (Sec. 
5.4.1., see Kermarrec and Schön 2016). For long batches of observations, this shape has however only a small 
impact on the Least-Squares estimates as long as the beginning and ending observations are not outliers (i.e. 
unbiasedness of the LS estimator under the assumptions of Sec. 2.2). For a batch of 100 epochs per satellite, 
more than 98% of the observations are combined identically with the FULLY and ELEV model. 

 

F ig .8 Left:  F i rst l ine of the s lope matrix  for  the FULLY and ELEV VCM sorted per PRN corresponding to the North 
component.  The f irst  and last  epoch exhibit stronger values  (AR(1) case).  Right:  zoom 
corresponding to a part icu lar PRN (black box  in F ig.4 left)  

The previous conclusions on the slope matrix are similar for ( )1 1
2 2ˆ ˆ −
=

-1T -1 TK A W A A W . This matrix being 

multiplied by 
1

2ˆ −
W y , i.e. the whitened observations vector (Sec. 4.2.4.), the impact of the fully populated VCM 

is more important depending on how powerful the whitening is. As for short batches of observations, the ideal 
condition of the LS estimator are more often violated (zero-mean or normal distribution), the impact of taking 
correlation into account on the position increases, the whitening effect of the FULLY VCM having a stronger effect 
on the spectrum by decreasing the low frequencies content of the whitened vector of observations with respect 
to diagonal VCM. 

 Similarities with BLUP and impact of the positioning scenario 
In Kermarrec and Schön (2017a) Appendix 2, an interpretation of the small dependencies on the underlying 
geometry (i.e. the design matrix) was proposed. Considering the positioning as an interpolation, results from the 
BLUP (Best Linear Unbiased Predictor) can be applied, where the relative efficiency can be expressed as an 
integral of estimated and true spectral density. The corresponding figure by varying the Matérn parameters 
shows similarities with the one given for a GPS positioning scenario (Kermarrec and Schön 2017a), allowing to 
motivate the low impact of changing the design matrix on the results.  

Throughout our work and for the sake of homogeneity, the relative positioning scenario with double differences 
was chosen. The previous comment on the impact of the design matrix clarifies that changing the positioning 
scenario, e.g. PPP or single positioning, will not strongly change the conclusions of this work. 

 On neglecting correlations or not 

In the previous chapter, two scenarios were identified and treated: ambiguities fixed in advance or estimated 
together with the position in a global strategy. Whereas in the first case the main improvements with respect to 
the stochastic model were mostly related to the test statistics and by “domino effect” could eventually impact 
the averaged solution, in the second case, a stronger effect was highlighted for both quantities, particularly for 
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short batches of observations. Sec. 5.1.1. proposed a first interpretations of this result based on the slope matrix. 
Thus, neglecting correlations does influence the Least-Squares solution and should be avoided for more 
trustworthy results, test statistics and precision, i.e. a globally statistically correct solution. In this section, it is 
aimed to specify in which cases and for which purposes correlations should be considered or not in the LS 
adjustment. 

 Long sessions: ideal case 
Placing ourselves in the ideal case of observations corresponding for instance to short baselines without 
multipath (zero-mean, normal distribution of the residuals, high amount of high frequencies in the observations), 
the ambiguities are easily fixed to integers. As a consequence, the effect of taking correlations into account is 
small, i.e. the errors, biases and the loss of efficiency were shown in simulations to remain similar to the results 
with a diagonal VCM having the same ELEV variance. Using diagonal VCM is moreover a better alternative than 
a wrongly estimated correlation structure, i.e. particularly with too low correlation length when no overall model 
test is used. For long sessions of observations (> 1,5 hours), as long as the variance of unit weight remains 
statistically correct and a plausible apriori value is used, correlations could be neglected. Nevertheless, in order 
to increase the trustworthiness of the solution, it remains always possible to estimate the Matérn parameters 
by MLE following Sec. 4.2.3. However, as our proposal is based on an ELEV variance model which may be 
suboptimal when the geometry and data quality are enough averaged, an exponential variance function as 
proposed by Luo et al. (2014) is a better alternative in that case. Section 5.4. highlights how such variance models 
can be considered as improved “hidden” correlation models. 

 Short sessions: the hidden elevation-dependent parameter 
The impact of correlations increases with the correlation length or the amount of power at low frequencies, 
particularly for short batches and independently of the data rate, as the shape of the slope matrix (Fig. 8) 
highlighted. In such cases, the normal distribution of the errors as well as the zero-mean assumption is often 
questionable. Thus, using a more accurate stochastic model by means of fully populated matrices that whiten 
the residuals is an answer to these violations.  

If the global approach is used and float ambiguities are estimated together with the position without being fixed, 
the stronger impact of the FULLY model at the estimates level with respect to the ELEV model was highlighted. 
Taking correlation into account should be thus definitively preferred to a diagonal model. Moreover, in such 

cases, it could be shown that the Matérn parameters can be taken to fixed values ( [ ] [ ], 0.01,1α ν = , Sec. 4.2.3.) 

to make use of the equivalence between the improved stochastic model and the augmented functional model 
(Kermarrec and Schön 2017e). Indeed, the VCM computed with the Eq. (19) “models” for short batches of 
observations a non-estimable tropospheric parameter, which if estimated would have weakened the data 
strength and influenced negatively the Up parameter. Thus, in that particular case, a specific smoothness and 
correlation length can be taken into account for a trustworthy solution. However, and particularly for longer 
baselines, the correlation length still can be moved around the values used to model correlations due to the 
troposphere depending on the results of the overall model test. It is proposed to act mostly on the correlation 
length by steps of 0.005 by letting the smoothness slightly higher than 1 for physical reasons (Kermarrec et al. 
2017b). In order to avoid the negative impact of a wrong specification of the apriori correlation structure, the 
aposteriori variance factor should be controlled in order not to overestimate the correlation length. The 
knowledge of the apriori variance of unit weight value to which the aposteriori value has to be compared is thus 
necessary. Ranges of plausible values are however available (Sec. 4.1.2.).  

On micronumerosity….. 

Micronumerosity is defined as the impact of very small batches on the results of regression. This topic is often 
not addressed because no rule of thumb can be found to assess when the length of the batches may be 
problematic with respect to the decrease of precision (Goldenberg 1991, chapter 23). As the sample size 
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decreases, the impact of a correct stochastic model and its ability to eventually correct or whiten errors that are 
not exactly zero-mean becomes important. Fully populated matrices have this capacity, i.e. the low frequencies 
amplitudes of whitened double differenced observations are smaller with respect to diagonal models and thus 
drifts are reduced. This is the “hidden” parameter concept. Due to the use of the float solution, particularly for 
long baselines, the impact of correlations becomes automatically stronger. For small batches, student 
distribution instead of the F-distribution should be preferred for the overall model test (Williams et al. 2013). 
This change was not investigated in this work and remains an open question. 

 Which stochastic model for which effect: a summary 
Figure 8 proposes a summary of which stochastic model can be used for which expected effect. Thus, particularly 
for longer baselines and short observation sessions, the computation of fully populated VCM is of key importance 
for better precision, test statistics and estimates, i.e. a realistic and trustworthy solution.  

The covariance model developed in this thesis is a good answer to this challenging task by being both physically 
plausible and simple. Its main limitation was identified for long batches where improved variance models are a 
better alternative. However, it remains difficult or unwanted to compute fully populated VCM for some 
applications. As a consequence, a proposal was made to reduce such matrices into their diagonal equivalence. 
The results are presented in Kermarrec and Schön (2016) and Kermarrec and Schön (2017d). They allow to draw 
a parallel between an empirical exponential variance model and the proposed correlation model. Corresponding 
developments are presented in the next section but already included in Fig. 9 for the sake of readability. 
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F ig.9 Impact of the stochast ic model:  a summary 

  

Start
Dataset (if possible long sessions of 

observations)

Estimate the correlation by MLE for one 
satellite 40-60° elevation.

For simplicity, the smoothness can be 
fixed to 1 

Fixed Ambiguities 
in advance or with enough 

confidence

alternative: DCM for dataset >1 hour
►15 °<γ<20°, δ=0.3 
►underestimation of γ should be avoided 

FULLY model

►precision: realistic
►test statistics (overall model 
test, outlier test): less biased and 
more trustworthy
►position: small effect due to 
the unbiasedness of the 
estimator

Float/Fixed ambiguities
global approach: ratio test 

with threshold

FULLY model
►float solution: less error, better 
ambiguity fixing
►position: better repeatability (lower 
3Drms particularly for session <1hour)
►precision: realistic
►test statistics (overall model test, 
outlier test): less biased and more 
trustworthy

Adapt the Matérn parameters if necessary

►long BL: decrease α (step 0.005)
►short batch length (<1hour): the zero 
value of the covariance function should be 
reached inside the batch.
►avoid over or underestimation by 
controlling σ (overall model test)
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 The equivalent diagonal model 

Taking correlations into account in LS-adjustments was identified as useful for a trustworthy solution and should 
not be neglected. However, fully populated matrices are less easy to invert and handle than diagonal VCM. In 
this section, an equivalent diagonal model, further extended in a diagonal correlation model are presented. They 
allow to account for correlations in a simplified way, linking thus variance and covariance functions presented in 
Sec. 3.1. and 3.2. together. 

 Mathematical concept 
The following results are based on the work of Luati and Proietti (2011) for special cases of polynomial regression 
where an equivalence between diagonally weighted Least-Squares (DWLS) and the generalized Least-Squares 
(GLS) estimator was proven. The theorem on which the equivalence is based states that DWLS and GLS estimators 

are equivalent if and only if the ( )n u×  A  matrix ( )n u>  can be decomposed as  

*A = V M                                                                                                                                     (20) 

where the u columns of *V  are eigenvectors of 
1

FULLY EQUI

−W W  and M  is a non-singular matrix. ,FULLY EQUIW W  are 

the fully populated and equivalent matrices respectively. In the following the model corresponding to the 

equivalent diagonal EQUIW  is called EQUI. 

For the mean estimator case, the necessary and sufficient condition for the equivalence between GLS and DWLS 

can be simplified so that each element of the diagonal matrix 
1

EQUI

−W , is the sum of the row elements of the inverse 

of the fully populated covariance matrix 
1

FULLY

−W  (Luati and Proietti 2011). This result was extended empirically 

for GNSS positioning and the corresponding procedure to compute the equivalent matrix is resumed in Fig. 10 
following Kermarrec and Schön (2016). 

 

 

 

 

F ig .10 Computat ion of the equiva lent diagonal  matr ix  

The equivalence holds true for the estimates of the parameters and the apriori cofactor matrices of the 
estimates. It was extended to GPS positioning strategies due to the slowly varying GPS constellation, i.e. the 
values of the columns of the design matrix sorted per satellite vary nearly linearly.  

 How to take advantage of the equivalent diagonal model 
The two main weaknesses of this proposal are the need to invert a fully populated VCM, as well as the 
underestimated aposteriori variance factor when the equivalent diagonal model is used in a Least-Squares 
adjustment. In this section, we briefly suggest solutions for dealing with this inconvenience.  

• Inverse of the VCM 

In Kermarrec and Schön (2016), it was proposed to invert the VCM outside the software package. A second 
possibility makes use of the non-orthogonality of the Matérn parameters of the covariance function (Eq. (19)), 
in forcing the MLE to correspond to an AR(1) process. In that case, the inverse of the VCM is explicitly known and 
no inversion has to be carried out. It therefore becomes an attractive alternative to fully populated VCM for 

Estimation of the fully 

populated  based on 

models / data 
Computation of  

Sum of elements of the 

lines of  saved in 

a vector  
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undifferenced positioning, particularly when used in a Kalman Filter. However, the price to pay is the suboptimal 
sharp decrease of the covariance function near the origin and thus results closer to the ELEV model. Moreover, 
when making use of the equivalence between the stochastic model and an augmented functional model, this 
approximation is strong and should be avoided.  

• Aposteriori variance factor 

The second weakness of this proposal consists in the systematic underestimation of the aposteriori variance 
factor. As it was shown to be a key parameter in deciding whether or not a given stochastic model is optimal, 
this question has to be addressed.  

Two solutions to this issue can be proposed: the first one is simple and considers that if correlations are present, 
Eq. (19) is an adequate model. It can thus be adopted with high confidence. Eventually and in order to prevent 
from strong biases that occur if the correlation length is misspecified, taking systematically a slightly larger α  
value than the MLE estimation or the atmospheric correlation length (α  between 0.008 and 0.01s-1) prevents 
from resulting biases and eventually a wrong fixing of the ambiguities to an integer. Another strategy is to adapt 

the apriori variance factor to ( )ˆ0
ˆEσ σ= Wequi , i.e. the mean of the aposteriori variance factor over all batches 

following the proposal of Sec. 4.4.1. for the ELEV model. This way, solutions computed with wrongly estimated 
correlation parameters for a given batch can be excluded. 

An empirical correction of the aposteriori variance factor is nearly impossible to obtain. Indeed, this could only 
be done by means of Monte Carlo simulations and necessitates that all combinations of smoothnesses and 
correlation lengths are taken into account for each geometry. This is computationally demanding and far from 
easy. As all these solutions remain unsatisfactory, a “diagonal correlation model” was proposed as a better 
alternative to face this challenge.  

 An alternative to the equivalent diagonal model 
 The Diagonal Correlation Model (DCM) 

Detailed explanations and derivations of this model are developed in Kermarrec and Schön (2017d). In order to 
derive the alternative “diagonal correlation model”, called DCM, the AR(1) model for which the inverse of the 
VCM is known was used for didactic reasons. In that particular case, and following the results for the equivalent 
diagonal model, the FULLY VCM for one satellite can be reduced to a diagonal matrix with elements: 

• First and last epoch at which satellite i is present: 
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• All other diagonal values: 
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assuming slow variations of the satellite elevation, i.e. allowing a factorization of the elevation-dependent factor. 

ARρ  is the correlation factor as defined in Kermarrec and Schön (2016). Thus it can be seen that taking 

correlation into account is similar to giving a variance higher than 1 for satellites at 90° elevation. This is the 
reason why the aposteriori variance factor using the equivalent model is not comparable with the one found 
with commonly used functions, i.e. it is always underestimated. Trying to find an alternative variance model that 
would have approximately the same effects as the equivalent model without this weakness, the exponential 
variance function - called DCM for Diagonal Correlation Model - was found to be an interesting alternative. This 
model is defined as: 



57 
 

( ) ( )
( )

2 2
0 90

exp

exp
1

iEl t

DCM DCM DCMt
γ

γ
σ σ δ δ

−

−
= − +

 
 
 
 

.      (22) 

where γ  [ °] is a positive factor called exponential factor. The cofactor is scaled to 1 for a satellite at 90 ° 

elevation, corresponding to the ELEV model, iEl  is the elevation of the satellite i at time t. [ ]0,1DCMδ ∈  is a 

factor that allows to take non elevation-dependent noise into account. 

This model provides an interesting flexibility through the exponential factor which can be adapted freely. Its main 

property leads to the fact that it is always possible to find for a fix ARρ  a value of γ  so that the mean of both 

functions DCM and EQUI over all elevations is similar, i.e. the DCM can be considered as a “hidden” correlation 

model. DCMδ  acts as adding a scaled identity matrix (i.e. a white noise VCM) to the equivalent matrix.  

In Fig. 11, the three models DCM, EQUI and ELEV are compared for a particular batch with 8 satellites observed 
during 100 epochs a 30s corresponding to the case of Fig. 2. It can be seen that the blue line corresponding to 
the DCM model with an exponential factor of 15° is similar to the red one, which represents an AR(1) equivalent 

diagonal model with a correlation factor of 0.8. A value of 0.3DCMδ =  was used.  

Comments 

This proposal is not a usual variance model and should not be directly compared with the models proposed in 
chapter 2. Although tempting, a direct comparison of the obtained variance plotted versus elevation with the 
commonly used variance models is not meaningful. The DCM should be described and considered as a diagonal 
correlation model. Thus, it can be used in the presence or not of correlations by adapting the parameters when 
fully populated matrices cannot be computed. Exemplarily, increasing the value of γ  is similar to neglecting 

more and more correlations.  

The DCM model is moreover not trying to fit the EQUI model exactly. Much more, it proposes a way to correct 
its main weakness and is thus an alternative without claiming to replace it. Its main advantage comes from the 
possibility to use test statistics such as the overall model test which is not valid for the EQUI model. Moreover, 
the variability of the exponential factor allows to model different correlation lengths.  

The weakness of the proposal is identified for shorter observation sessions (<30 minutes) where the FULLY model 
that whitened observations remains a better alternative than the DCM. It is thus preferable to use the DCM as 
soon as the geometry is enough averaged due to the weighting of high elevation satellites that may be otherwise 
exaggerated (Kermarrec and Schön 2017d). 

 
F ig.11 Exponentia l  var iance model versus  equivalent  model.  Comparison between EQUI,  DCM and ELEV models  
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 Sensitivity of the LS solution to the parameters of the DCM 
In order to assess how the exponential factor influences the LS results, simulations similar to those explained in 
Sec. 4.3. were carried out. The results, presented in Kermarrec and Schön (2017d) highlighted that values of the 
exponential factor smaller than 12° lead to a strong underestimation of the aposteriori variance factor, i.e. a 
negative bias compared with the correct value. Taking larger values of γ  than the reference value into account 

were shown to be less risky in terms of loss of efficiency, leading moreover to a positive bias of the aposteriori 
variance factor. Thus, the corresponding batches of observations can be easily excluded from the solution using 
the overall model test.  

These results were confirmed by a case study with unpreprocessed observations following the methodology of 
Sec. 4.1.3. However, as for the FULLY model, a good knowledge of the apriori variance factor is necessary to avoid 
an underestimation which may lead to a wrongly improved 3Drms and high loss of efficiency.  

The DCM model was shown to provide more realistic test statistics and estimates with respect to the ELEV model. 
Moreover, comparable results with the FULLY model for the 3Drms and aposteriori variance factor were 
empirically found for 15γ °=  which correspond to a correlation length close to the “atmospheric-like 

correlation length”, i.e. 0.85ARρ =  with an AR(1) model. Thus, the potential of using the DCM to take 

correlations into account was confirmed. Moreover, choosing values of γ  close to 30-40° was identified as 

corresponding to neglecting correlations, i.e. 3Drms differences compared with the ELEV model of maximum 2-
3mm for a 66 km baseline and submm level for short baselines. These results held true for long sessions of 
observations (>1 hour) where averaging of both the geometry and the data quality happen and are corresponding 
to Luo (2012).  

 A proposal to fix the parameters of the DCM 
A simple proposal to fix the exponential factor could be derived in Kermarrec and Schön (2017d) based on the 
results of the simulations and the case study. An explanation in which cases the DCM should be replaced by the 
correlation model was further proposed. The results are summarized in Fig.12. In a first step, the correlation 

coefficient ARρ  of the double differences is estimated for a given satellite at mean elevation (40-60°) using a 

simple routine. A noise factor is either empirically fixed or estimated from the observations. The corresponding 

γ  can be derived by plotting the mean of the equivalent variance over all elevations versus ARρ  and the mean 

of the DCM versus γ  for a given noise factor. For the case min 12γ γ °< =  which was identified as critical in 

terms of loss of efficiency in case of misspecification, it is advised to fix ARρ  to 0.85 to account for atmospheric-

like correlations, i.e. a correlation length of 600 s (Kermarrec and Schön 2017a). Independent of the baseline 
length, the DCM should be used with care for short batches when the geometry is not enough averaged. In such 
cases, a high sensitivity of the 3Drms to variations of γ  was identified and the FULLY model should be preferred. 

Although from the results of simulations not mandatory to have a trustworthy LS solution, it always remains 
possible to complicate the estimation of the exponential parameter by making it satellite dependent. 
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F ig.12 Est imation of the parameters  of the DCM model:  summary (re lative pos it ioning scenar io)  

 Concluding remarks 

Neglecting correlations leads to an overoptimistic precision of the LS solution, i.e. a less efficient estimator. If for 
long sessions of observations no main differences are expected at the parameters level because of the 
unbiasedness of the LS estimator, for shorter sessions and longer baselines, correlations should not be 
disregarded. Indeed, besides the fact that more ambiguities can be fixed to an integer with a higher confidence, 
the float solution contains less error. In order to simplify the computational burden induced with fully populated 
VCM, an equivalent diagonal model was proposed that summarized the information contained in the FULLY 
matrices. The shortcomings of the simplification were overcome by approximating the equivalent variance with 
an exponential function, allowing thus test statistics based on the aposteriori variance factor to be used. A simple 
procedure to fix the exponential factor showed how the proposed correlation model and the widely used 
empirical variance models based on an exponential function can be linked together, i.e. the exponential variance 
function being able to take correlations into consideration by varying accordingly its parameters, principally the 
exponential factor. 

Observations
Sessions > 50 epochs

Approximate γ
If γ<12°, take γ=15°

build a VCM
same γ for all satellites 

Control the aposteriori
variance factor, 

eventually adapt γ

Expected: more 
trustworthy precision, 
test statistics, better

repeatability

Estimate ρ for a given
satellite (40-60 °

elevation)
Estimate or fix

δ
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6. Conclusions and outlook 
 

An accurate knowledge of the stochastic model of GNSS observations is of key importance for a trustworthy 
Least-Squares solution. Any misspecification leads to an incorrect estimation of the precision, and possibly to 
wrong decisions due to biased test statistics such as e.g. the validation test in the ambiguity validation procedure, 
the overall model test, or the outlier detection test.  

In order to obtain an improved stochastic model of GNSS phase measurements, three main directions were 
followed in previous studies: (i) better description of the elevation-dependent variance model, i.e. 
heteroscedasticity, (ii) modelling or empirical estimation of a temporal covariance function to describe the 
correlations between observations, (iii) iterative procedure for variance-covariance estimation. Such 
computational demanding strategies were not investigated in this thesis, the emphasis being on stochastic 
modelling.  

The accurate description of the variance has gained a strong interest in the literature as the corresponding VCM 
of the observations are diagonal and thus easy to invert and handle. Data-based models such as SNR, fuzzy or 
exponential models were proposed besides simple models based on a sinus mapping function which disregard 
data quality indicators or station dependent effects. Correlations between measurements are usually not taken 
into account. On the one hand the existing models - empirical and improvable - only describe approximately the 
truth of the correlation structure of the observations. On the other hand, the effect of neglecting correlations 
when observations are correlated remains unstudied. In order to overcome this weakness and adopting a GNSS 
user perspective, the first objective of this thesis was to develop a physically derived description of the 
correlation structure of GNSS phase observations with as less computational burden as possible. The underlying 
intention was to refine in an understandable way the stochastic model by taking correlations into account to lead 
to a trustworthy Least-Squares solution. 

1. A correlation model for GNSS phase observations 

To this aim, a simplified version of a function describing the correlations due to turbulent tropospheric 
refractivity fluctuations based on turbulence theory was developed. This new model includes both the 
heteroscedasticity (i.e. elevation dependency) of the variance as well as a Matérn covariance function. Fully 
populated covariance matrices describing the observation dependencies can be computed and integrated in the 
Least-Squares positioning adjustment. Two parameters were shown to play a major role to whiten the 
observations: the smoothness related to the mean-square differentiability of the covariance function at the 
origin and the correlation length. Estimated by MLE, these two Matérn parameters are observation-dependent 
which permits a great variability in the description of the correlation structure. For short batches, it was shown 
that an empirical fixing is possible to make use of the equivalence between the augmented functional model and 
the augmented stochastic model and implicitly takes a non-estimated elevation dependent (for instance 
tropospheric) parameter into account in the LS adjustment.  

2. Impact of correlations on the LS adjustment: sensitivity analysis of the correlation model 

The second objective of this work was to quantify the effect of misspecification of the correlation structure on 
the trustworthiness of the LS solution. Because of the flexibility of the proposed correlation function, a sensitivity 
analysis on its parameters could be carried out. The methodology was based on the analysis of the bias of the 
aposteriori variance factor which could be linked to the loss of efficiency of the estimator by means of 
simulations. It was shown that conservative parameters corresponding to sparse variance-covariance matrix 
were preferable than an overestimated smoothness and correlation length in case of uncertainties in the 
estimation of the model parameters. The correlation model proved its superiority over diagonal variance models 
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when used concretely for real data analysis in a relative positioning scenario. Both a more realistic precision and 
less biased test statistics, including ambiguity discriminant tests, were obtained. The main improvements were 
achieved for short batches of observations, when the ambiguities could not be fixed due to poor validation tests. 
Such cases correspond to the estimation of a “hidden tropospheric parameter”. This concept could be concretely 
applied. 

3. Simplification of the correlation model 

The third and last objective of this thesis was to propose a way to take correlations into account without 
additional computation burden. Thus a method for reducing fully populated variance covariance matrices into 
their diagonal form for GNSS positioning cases was developed. An unexpected side effect of this proposal was 
the development of an alternative diagonal correlation model to counterbalance the systematic underestimation 
of the aposteriori variance factor with the equivalent model. Based on an exponential function with freely varied 
parameters, this new diagonal correlation model has allowed linking commonly used variance models with the 
correlation function. 

 

The results of this thesis were based on relative positioning scenarios. However, it is not expected that they are 
strongly influenced or totally different for other positioning strategies. This statement remains to be tested in 
practice; particularly the impact of taking correlation into account in Precise Point Positioning (PPP) demands 
further testing. The effect of the float ambiguity solution on the convergence time could be an interesting follow-
on research topic, although the use of an ionospheric-free linear combination may decrease the impact of fully 
populated VCM. The equivalent diagonal model proposed in this thesis as a way to take correlations into account 
easily could be concretely applied in a Kalman Filter to model the observation noise and thus find applications 
beyond the scope of GNSS correlation modelling. The extent to which our model can be also used for code or 
code/phase correlations remains furthermore an open question. For cross correlations e.g., another weighting 
of the Matérn covariance function would be worth studying.  

The model developed in this work allows for modelling elevation-dependent correlations of GNSS phase 
observations. By means of simulations and case studies, it was shown to give trustworthy positioning results 
using Least-Squares adjustment, allowing even to model the effect of a non-estimable tropospheric parameter. 
The proposed description is neither the most general nor the unique one. The topic of stochastic modelling is a 
lively area of research and subject to many interpretations. 
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Abstract Current variance models for GPS carrier phases
that take correlation due to tropospheric turbulence into
account are mathematically difficult to handle due to numeri-
cal integrations. In this paper, a new model for temporal cor-
relations of GPS phase measurements based on turbulence
theory is proposed that overcomes this issue. Moreover, we
show that the obtained model belongs to the Mátern covari-
ance family with a smoothness of 5/6 as well as a correla-
tion time between 125–175 s. For this purpose, the concept
of separation distance between two lines-of-sight introduced
by Schön and Brunner (J Geod 1:47–57, 2008a) is extended.
The approximations made are highlighted as well as the tur-
bulence parameters that should be taken into account in our
modeling. Subsequently, fully populated covariance matri-
ces are easily computed and integrated in the weighted least-
squares model. Batch solutions of coordinates are derived to
show the impact of fully populated covariance matrices on
the least-squares adjustments as well as to study the influence
of the smoothness and correlation time. Results for a spe-
cially designed network with weak multipath are presented
by means of the coordinate scatter and the a posteriori coor-
dinate precision. It is shown that the known overestimation of
the coordinate precision is significantly reduced and the coor-
dinate scatter slightly improved in the sub-millimeter level
compared to solutions obtained with diagonal, elevation-
dependent covariance matrices. Even if the variations are
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e-mail: gael.kermarrec@web.de

S. Schön
e-mail: schoen@ife.uni-hannover.de

small, turbulence-based values for the smoothness and cor-
relation time yield best results for the coordinate scatter.

Keywords GPS · Physical correlations · Temporal
correlations · Turbulence theory · Mátern covariance family

1 Introduction

The use of diagonal covariance matrices in which tem-
poral correlations between GPS phase measurements are
ignored leads to unreliable positioning results and an over-
estimation of the precision (El-Rabbany 1994; Wang et al.
2002; Satirapod et al. 2003). Being mainly computed with
elevation-dependent models (Euler and Goad 1991), C/N0
models (Hartinger and Brunner 1999; Brunner et al. 1999;
Wieser and Brunner 2000), or SNR models (Luo et al.
2011), diagonal covariance matrices are however easy to
handle in weighted least-squares models since no compu-
tational issue due to matrix inversions occurs (Howind et
al. 1999; Beutler et al. 1987). Leading to fully populated
variance–covariance matrices (VCM), temporal correlations
can depend on receiver type, occur between channels and
observation types (Borre and Tiberius 2000) or come from
multipath (Radovanovic 2001). However, the main tempo-
ral correlations are known to come from the GNSS signal
propagation through the atmosphere, considered as a random
medium.

Up to now, few propositions have been done to specify
time-dependent correlations. El-Rabbany (1994) proposed
an empirical modeling based on the study of autocorrelation
functions of phase residuals which leads to a simple exponen-
tial function with an empirically determined correlation time.
Howind et al. (1999) used the results of El-Rabbany to build
covariance matrices. They principally showed that the coor-
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dinate estimates are not much improved; nevertheless, the a
posteriori accuracy of the least-squares solution is much more
realistic. Wang et al. (2002) and Satirapod et al. (2003) used a
recursive whitening procedure based on residuals. They high-
lighted that the determination of ambiguities was strongly
improved. In the last few years, some authors have also
made used of ARMA processes at the least-squares residuals’
level to study temporal correlations of GPS measurements
(Luo et al. 2012; Wang et al. 2002).

Based on Kolmogorov turbulence theory and the con-
cept of eddies, Schön and Brunner (2008a) developed the
SIGMA-C model. This model, as the Treuhaft and Lanyi
(1987) one, is involving a double integration, making its con-
crete use time consuming. Thus, until yet, there is a lack of
a simple, physically derived and easy to handle model for
temporal GPS phase correlations.

Thanks to the equations of electromagnetic propagation
and geometrical approximations as well as the Kolmogorov
turbulence theory, we develop a new covariance model,
based on the flexible Mátern covariance family. Using the
results of Schön and Brunner (2008a), it is possible to esti-
mate covariances between phase observations for all relevant
cases, i.e.

• a given satellite observed at one station with itself,
• one satellite at one station with another one at the same

station,
• one satellite at a given station with another one at another

station.

Thanks to the specially designed “Seewinkel Network”
(Schön and Brunner 2008b), first promising results, both for
the quadratic deviation of the computed batch coordinates
as well as for the a posteriori variance of the unknowns
validate the feasibility and the utility of taking tempo-
ral correlations into account with the Mátern covariance
family.

The paper is organized as follow: in a first part, a new
way to model GPS phase temporal correlations based on
models using turbulence (Schön and Brunner 2008a) will
be presented. The second part is devoted to the comparison
with other models as well as the study of the model para-
meter dependencies. In a last part, a concrete case based
on the Seewinkel Network, designed to study the effect of
the tropospheric fluctuations on GPS phase signals (Schön
and Brunner 2008b) is presented. The flexibility of the
Mátern family will be highlighted as well as the possibility
to improve in a manageable way the reliability and standard
deviation of least-squares coordinate estimations by taking
temporal correlations into account. Finally, an appendix gives
necessary mathematical background on the Mátern covari-
ance functions.

2 Physical background: atmospheric transmission
and turbulence theory

2.1 Basic concepts—overview

The atmosphere can be considered as a medium varying ran-
domly in time and space (Ishimaru 1997, chapter 17). Thus,
GPS satellite signals that propagate through the atmosphere
have to be described by statistical methods. The troposphere
(a layer between approximatively 0–10 km of altitude) and
the ionosphere (85–500 km of altitude) are the most impor-
tant parts of the atmosphere to be considered for GPS trans-
mission (Wheelon 2001, chapter 2). Frequency-dependent
ionospheric effects due to the ionization by solar radiation can
mainly be canceled via ionosphere-free linear combination.
However, the troposphere being a non-dispersive medium,
whether double differencing neither linear combination of
observations eliminate its refractive effects on GPS phase
measurements.

Turbulence, particularly in the boundary layer between 0–
2 km height, is a fundamental phenomena in the troposphere
and remains an actual research field. As examples, we cite
here the wavelet approach by Khujadze et al. (2013), Farge
(1992) or the large Eddy simulation (2008). From the point
of view of GNSS signals, turbulence causes variations of the
refractive index, that act on phase measurements, causing
tropospheric slant delay fluctuations.

The turbulent troposphere can be modelized as a super-
position of eddies or “swirl of motion” of different sizes,
from the millimeter to the kilometer level depending on the
altitude (Stull 2009; Wheelon 2001; Coulman and Vernin
1991); eddies and the surrounding atmosphere having dif-
ferent refractive indices. Thus, with this model in mind,
we can motivate sources of correlations for GNSS obser-
vations using a geometric optics model: rays that are closer
(temporally or spatially) encounter nearly identical eddies
and are correlated together. Figure 1 proposes a schematic
representation of the troposphere where eddies of differ-
ent size and energy coexist, from small and isotropic in
the boundary layer, the so-called 3D turbulence, to elon-
gated, anisotropic in the loosely called free troposphere
(Stull 2009).

In the boundary layer characterized by a high Reynolds
number, strong turbulence occurs due to the influence of the
Earth and the water vapor content; changes in the refractive
index are rapid and eddies are small and isotropic (Coulman
and Vernin 1991; Hunt and Morrison 2000). The energy cas-
cade ( Kolmogorov 1941) models the transfer and associated
breakdown of eddies at a constant rate. Above the boundary
layer, in the loosely called free atmosphere (H > 1,000 m)
the turbulence is more 2D-like and the validity of the energy
cascade which represents eddies breaking from large to small
scales is questionable (Gage 1979).
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Fig. 1 Schematic
representation of the
troposphere seen from a satellite
signal (adapted from Wheelon
(2001, p83) based on
measurements of the outer scale)

up to 6km Elongated eddies: loosely 

called free atmosphere 

H>1000m

Isotropic eddies: boundary layer

H<1000m

t1 t2

a few mm 

An important parameter for tropospheric turbulences is
the structure constant C2

n , which is a kind of measure of the
intensity of turbulence; see for example Nilsson and Haas
(Nilsson and Haas 2010) for a description of how this para-
meter can be evaluated. A typical profile for microwave C2

n in
the troposphere (Wheelon 2001, p68) shows a decrease with
height from approximately 10−14 m−2/3 at 1,000 m altitude
to 10−17 m−2/3 at 7,000 m. However, the values are remain-
ing in a range of 5.10−14−10−15 m−2/3 between 1,000–
3,000 m. Thus and following Wheelon (2001, chapter 2), for
a GPS ray that propagates through the whole atmosphere,
the free troposphere from 1,000 m up to 3,000 m will play
a much more important role than the boundary layer below
1,000 m in creating correlations between phase GPS mea-
surements. The intensity of turbulence is large enough and
at the same time the reorganization is slower than at a lower
altitude making the medium more stable.

This intuitive result can also be explained by consider-
ing the weak fluctuation mathematical approximation (Ishi-
maru 1997, chapter 17). The dielectric constant ε of the
troposphere depends on the position r and time t and is
expressed in a first-order approximation: ε (r, t) = n2 (r, t),
where n is the refractive index. Under this approximation,
the covariance function for phase at a plane x = L can
be expressed by means of a filter function (Ishimaru 1997,
p352):

Cϕ (L , r) = 2π2k2L

∞∫

0

κdκ J0 (κr) fφ (κ)�n (κ), (1)

with J0 the ordinary Bessel function of 0th order, �n (κ)

the 3D power spectrum of refractivity fluctuations for an
homogenous medium independent of the location, κ = 2π

L
the wavenumber, L the scale length and finally k the electro-
magnetic wavenumber. The function

fϕ (κ) = 1 + sin(κ2L/k)

κ2L/k
(2)

can be considered as a filter function of the spectrum (Fig. 2).

Fig. 2 Filter function fϕ (x) versus log (x). For x < 1, the filter func-
tion is having nearly constant values close to 2

The region κ <
√

2π√
λL

is strongly emphasized, meaning that
larger eddies are more affecting the phase measurements than
smaller ones. Since for GNSS signals λ ≈ 20 cm, we will

have
L2

0
λ

≈ 109 >> H , where L0 is the correlation length (in
the free troposphere, i.e. the outer scale length L0 ≈ 6,000 m
for horizontal direction, L0 ≈ 70 m for vertical direction)
and H is approximately the height of the troposphere (5,000–
10,000 m).

The covariance function for phase measurement can be
further simplified to:

C (L , r) = 4π2k2L

∞∫

0

κdκ J0 (κr)�n (κ). (3)

However, a further integration is not possible without knowl-
edge of the power spectrum of the atmospheric fluctuations,
which is a weighting function of the wavenumber κ .

From dimensional analysis, Kolmogorov (1941) has
shown that the energy spectrum of turbulence should follow
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a power law. The related velocity power spectrum as well as
the power spectrum of passive scalars such as temperature
or refractive index (Monin and Yaglom 1975) can be written
as:

�n (κ) = 0.033 C2
n

(κ2
x + κ2

y + κ2
z )11/6 , (4)

where C2
n is the structure constant. C2

n differs for optical
and microwave measurements; microwave being more influ-
enced by water vapor content and optical frequencies by
temperature fluctuations. The vector of 3D wavenumbers is
κ = [ κx κy κz ]T. This model is valid in the inertial range for
homogeneous and isotropic turbulence, where 2π

L0
≤ κ ≤ 2π

l0
with L0, l0 being the outer and inner scale length of turbu-
lence that bounds the inertial range, respectively.

However, this model yields infinite values for some quan-
tities such as the mean square fluctuations of the refractive
index 〈(δn)2〉. As a consequence, the empirical Von Karman
Model is often preferred:

�n (κ) = 0.033 C2
n

(κ2
x + κ2

y + κ2
z + κ2

0 )11/6
, κ0 = 2π

L0
. (5)

Please refer to Voitsekhovich (1995) or Wheelon (2001,
chapter 2) for a presentation of further models such as the
Greenwood model or the exponential model.

Although only developed for the inertial range and
isotropic turbulence, the Von Karman power law model has
shown to be valid beyond these limits, particularly for 2D tur-
bulence (Wheelon 2001; Kraichnan 1974). We will therefore
make use of it.

2.2 Anisotropy, inhomogeneity

Isotropy and homogeneity are the main assumptions of the
Kolmogorov model. However, GNSS phase measurements
are especially affected by the propagation through the free
atmosphere where eddies are mainly elongated. Inhomo-
geneity as well as anisotropy have to be taken into account
in the power spectrum model.

Inhomogeneity
The troposphere can be considered in a first approxima-

tion as a locally inhomogeneous field with smoothly varying
mean characteristics. Inhomogeneity can be expressed by a
product of a slowly varying function which describes the
spectral distribution of turbulent fluctuations for the whole
medium �n,0 (κ) and a term with faster variations C2

n

( r1+r2
2

)
describing the intensity of the fluctuations for the refractive
index in a given region of the medium where r1 and r2 denote
two different position vectors (Tatarskii 1971, p36). Thus, for
different regions separated beyond the outer scale length, the
power spectrum reads:

0zL  

0 0x yL L=

Fig. 3 Elongation of eddy

�n

(
κ,

r1+r2

2

)
= C2

n

(
r1+r2

2

)
�n,0 (κ) . (6)

Anisotropy
As seen in Fig.1, horizontal elongated eddies of the free

atmosphere are impacting the phase measurements. Fol-
lowing Wheelon (2001), the wavenumber spectrum can be
expressed by:

�n(κ) = abc�n

(√
a2κ2

x + b2κ2
y + c2κ2

z

)
, (7)

where a,b,c are stretching factors describing the elongation
of the eddies in the three dimensions, i.e. L0x = aL0, L0y =
bL0, L0z = cL0. L0x = L0y are the horizontal elongations
and L0z the vertical one.

Figure 3 is a schematic representation of an horizon-
tal elongated eddy corresponding to the layered turbulence
above the planetary boundary layer, in the loosely called free
troposphere where the effects of the Earth’s surface friction
on the air motion are becoming negligible. The outer scale
length’s value is between 6,000 and 10,000 m (please refer
to Wheelon 2001, chapter 2 for results of experiments of the
Global Atmospheric Sampling Program). The vertical elon-
gation is 100 times smaller and between 10 and 70 m, the
higher values being measured at an altitude around 1,000 m
(five years campaign New Mexico, Wheelon 2001 p83).

2.3 Taylor’s frozen hypothesis

To access to the temporal covariance of phase measurements
C (t) = 〈ϕ (t) , ϕ (t + τ)〉, τ being a time increment, the
Taylor’s frozen hypothesis (Taylor 1938) is assumed. It pos-
tulates that the phase covariance between two instants sep-
arated by τ is identical to the spatial covariance of phase
measurement at two stations separated by a vector r = uτ ,
where u is the mean wind vector. Thus, the atmosphere is
said to be “frozen” during the measurement, eddies are only
moved by the mean wind u. A value of ‖u‖ = 8 ms-1 seems
relevant (Stull 2009).

This approximation performs better as the mean wind
speed increases. In the case of GPS phase covariance at
synoptic scales, the geostrophic wind which blows paral-
lel to the isobar can be chosen (Wheelon 2001, chapter 6).
Thus, the covariance (Eq. 3) can be written as C (τ ) =
4π2k2L

∫∞
0 κdκ J0 (κτu)�n (κ)where it is assumed that the

wind vector does not change with time and position and the
satellite geometry varies slowly with time.
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3 Formulation of the new covariance model

3.1 Formulation of the temporal covariance via spectral
density

Following Wheelon (2001) and using the previous approxi-
mations as well as the von Karman spectrum for the refractiv-
ity fluctuations expressed in stretched coordinates, the spec-
trum of phase measurements Wϕi (ω) can be obtained by
integrating along the lines-of-sight:

Wϕi (ω) = 2.192H
k2C2

n ca−5/3u5/3

sin2 (Eli )

1[
ω2 + (

κ0u
a

)2]4/3 , (8)

where Eli is the elevation of the satellite i , H the tropospheric
deep or height, a = b and cthe horizontal and vertical
stretched parameters for the outer scale length, ω is the angu-
lar frequency and u the wind velocity.

A rational spectral density can be recognized. The consid-
ered process being 1D (only a time dependency), the previous
formula can be reformulated, introducing the dimensionality
D = 1:

Wϕ (ω) = 2.192H
k2C2

n ca−5/3u5/3

sin2(El)

1

[ω2 + α2]5/6+1/2
, (9)

where α = κ0u
a and ν = 5

6

(
ν + D

2 = 4
3 , D = 1

)
. Using the

equivalence of Appendix A (Rasmussen and Williams 2006)
and the Wiener–Khinchin theorem, the covariance is a so-
called Mátern covariance function which reads:

Cϕi (t, t + τ) = 0.7772
k2 HC2

n cκ−5/3
0

sin (Eli (t)) sin (Eli (t + τ))

×
(κ0uτ

a

)5/6
K5/6

(κ0uτ

a

)
, (10)

with a smoothness parameter of ν = 5/6 and a Mátern cor-
relation time 1/α, α = κ0u

a . Equation (10) is a closed for-
mula and thus free of integrals. Moreover, the identification as
Mátern covariance opens up new interpretations (cf. Appen-
dix A). Due to the use of the von Karman power spectrum,
the continuity at the origin is not given. A formulation of the
variance can be found in Wheelon (2001, p164) or using the
limit of the Bessel function (Abramowitz and Segun 1972):

lim
τ−>0

K5/6 (τ ) = 1

2
�

(
5

6

)(
2

τ

) 5
6
(

1 − τ
5
3

�
( 1

6

)
�
( 11

6

) ....
)

yielding

Cϕi (t, t) = 0.782
k2 HC2

n cκ−5/3
0

sin2 (Eli (t))
. (11)

Approximations
Until now, following approximations were made to express

the covariance structure of GPS phase signals propagating
through the turbulent free troposphere:

• No dependency of the structure constant with height is
taken into account. The constant value of 5.10−14 m−2/3

was taken. Following Treuhaft and Lany (1987), for sim-
plification and homogeneity, a constant value should be
enough as proposed by Schön and Brunner (2008a),
Wheelon (2001). If more accuracy is needed, profiles
of the structure constant for microwave could be used
as well as a layered model (Kleijer 2004; Gradinarsky
2002).

• No dependency of the outer scale length with height is
assumed. It is very difficult to access the structure of the
horizontal outer scale length. Range of values between
6,000 and 10,000 m has been experimentally determined
in the free atmosphere, cf. Wheelon (2001).

• Following Wheelon (2001, chapter 4), only the turbu-
lence in the free atmosphere and not in the boundary
layer is taken into account. However, by changing the
outer scale length to L0 = 100−600 m and the value of
H and the structure constant C2

n accordingly, our model
can be extended to the boundary layer. In this case, the
Mátern correlation time is more than 10 times smaller
than for the free atmosphere case.

• The wind speed is taken constant which is a good approx-
imation above 1,000 m under normal meteorological con-
dition; cf. Wheelon (Wheelon 2001, chapter 6) for wind
fluctuations.

• Taylor’s Frozen Hypothesis is assumed. This approxima-
tion should be valid as long as the GPS lines-of-sight are
not too far from each other. Thus, the model for comput-
ing the phase covariance between two different satellites
should be carefully used if the distance between two rays
at approximately H = 1,000−2,000 m is larger than
10 km (the maximal outer scale length in the atmosphere,
Wheelon 2001) since the turbulence at such scales is not
a priori having a Kolmogorov behavior.

• This model assumes a flat atmosphere using a 1
sin(El) map-

ping which is a good approximation for high elevation
angles. However, for lower elevation angles (below 10◦),
more elaborated tropospheric mapping functions should
be used for more accuracy (Böhm and Schuh 2013).

3.2 Dependencies and parameter sensitivity

3.2.1 General remarks

Several tropospheric parameters are involved in the proposed
model. Thus, in a next step, the physical dependencies are
studied, leading to a proposal for modeling the phase corre-
lations between GPS signals of two different satellites.

Four parameters coming from the turbulence theory have
a scaling effect on the variance and covariance: the tro-
pospheric height H, the structure constant C2

n , the vertical
elongation parameter cof the stretched coordinates, and the
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Fig. 4 Covariance (a) and correlation function (b) by varying the outer scale length from 6,000 to 25,000 m. A satellite at low elevation (15◦) was
taken for the simulation as well as c = 0.01, C2

n = 5.10−14 m−2/3, u = 8 ms−1

outer scale length κ0 = 2π
L0

. In addition, both the wind
velocity and the outer scale length are also acting on the
Mátern correlation time (CT) via α = κ0u

a [s−1], which we
reduce to α = κ0u by taking a = 1 and an horizontal
elongation of L0 = 6,000 m. Thus, since a/c = 1/c >

100 can be assumed in the free troposphere, c will be set
to 0.01.

If a geostropic wind value between 8–10 ms−1is taken as
well as an outer scale length of 6,000–10,000 m, the typi-
cal range of values of α should be 0.005−0.01 s−1, i.e. the
correlation time as defined in El-Rabbany (1994) is between
100–200 s.

In the following, the impact of different values of the para-
meter (outer scale length and wind velocity) on the covari-
ance is exemplary studied.

3.2.2 Changing the outer scale length L0

In Fig. 4, the outer scale length parameter was changed from
25 km (very elongated eddies, synoptic scales) to 6 km, which
should be considered as a reference value (Wheelon 2001) for
the GPS temporal phase covariance. For a better comparison,
the same value of the structure constant was used for the three
cases.

A large value of the outer scale length (red 25 km) leads
to a longer Mátern correlation time (CT) and larger values of
the covariance. A standard value of 6 km results in a shorter
Mátern CT as well as smaller covariance. Acting on both
the correlation time and the variance, the outer scale length
determines the behavior of the spectrum at low frequencies.

3.2.3 Changing the wind velocity

In Fig. 5, we changed the wind velocity from 4 to 10 ms−1.
The variance does not depend on this parameter, thus only the
Mátern correlation time 1/α[s] will change. For large values
of the wind speed, the Mátern CT is shorter than for small
values (here 4 ms−1) for which the spectral energy is shifted
at low frequencies. Values between 8 and 10 ms−1 should be
physically most relevant (blue and green line) corresponding
to the approximate value of the geostropic wind (Stull 2009).
Moreover, working under Taylor’s hypothesis, higher values
of the wind speed are preferable.

3.3 Extended formulation of the covariance—case two
satellites—one or two stations

We propose to extend the “one satellite-one station” covari-
ance model to the case when the covariance between two
phase measurements of different satellites i and j at differ-
ent stations A and B is needed. The case “two satellites, one
station” is given by taking A = B in the following formula.
Our development is based on the observations that the cor-
relations times of GPS phase measurements are typically 3–
7 min (Schön and Kutterer 2006). During that time, the satel-
lite geometry is only little varying and a decomposition into
a temporary fixed satellite geometry at a time t and temporal
variations seems adequate. Consequently, both temporal and
spatial correlations are taken into account.

At a given height H = 1,000 m (tropospheric height), and
for one epoch when satellite i and j are present, the paths of
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Fig. 5 Covariance functions by varying the wind velocity from 4 to
12 ms−1. c = 0.01, C2

n = 5.10−14 m−2/3, L0 = 6,000 m and a satellite
at low elevation (15◦) were taken for the simulation

Satellite j, station B at t Satellite i, station A at t 

Separation distance d 

Station A Station B 

H=1000m 

Fig. 6 Simplified version of the concept of separation distance at t
(Schön and Brunner 2008a)

satellite i and j are separated by a distance called the “sepa-
ration distance” dt,H=1,000 m which depends on the geome-
try (elevation, azimuth) of the two satellites at a given time
(Schön and Brunner 2008a). The following figure (Fig. 6)
illustrates in a simple way the concept of separation distance.
More details can be found in Schön and Brunner (2008a).

No influence of the wind vector with time on the separation
distance (Schön and Brunner 2007) is here taken into account
since the separation distance is computed at one epoch. A spe-
cial case occurs for separation distance larger than the max-
imum outer scale length of the troposphere (approximately
10 km, Wheelon 2001, p82). Indeed, neither the Kolmogorov
law nor the Taylor’s frozen hypothesis should be applied. For
this particular case, correlations due to tropospheric turbu-
lences can be neglected since the rays are considered too far
away from each other. Thus, the procedure can be summa-
rized as follow:
First step: Compute the separation distance dt,H=1,000 m

Second step: If dt,H=1,000 m < 6,000 m, set L0 = 6,000 m.

If 6,000 m < dt,H=1,000 m < 10,000 m, the outer scale
length is taken to L0 = dt,H=1,000 m. The vertical elonga-
tion is 100 times smaller than the horizontal one (Wheelon
2001, chapter 2). Thus, for high values of the separation dis-
tance, the correlations between microwave phase measure-
ments will come from longer eddies, that appear at higher alti-
tudes in the free troposphere. The structure constant should
be taken accordingly smaller than for the case “one satellite”.
Following the previous mentioned structure constant profile
(Wheelon 2001, chapter 2) we propose to take approximately
the structure constant by a factor 10 lower as for the previous
case C2

n = 5.10−15 m−2/3.
As a consequence, the covariance between two phase mea-

surements of two different satellites (i, j) is given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if d < 6,000 m :〈ϕi
A (t) , ϕ

j
B (t + τ)〉

= . . . 0.7772 k2 HC2
n c

sin(ElA
i (t)) sin(ElB

j (t+τ))

(
2π
L0

)−5/3

(
2πuτ
L0a

)5/6
K5/6

(
2πuτ
L0a

)

if 6,000 < d < 10,000m :〈ϕi
A (t) , ϕ

j
B (t + τ)〉

= . . . 0.7772 k2 HC2
n c

sin(ElA
i (t)) sin(ElB

j (t+τ))

(
2π

dt,H=1,000 m

)−5/3

(
2πuτ

dt,H=1,000 ma

)5/6
K5/6

(
2πuτ

dt,H=1,000 ma

)

if d > 10,000 m :〈ϕi
A (t) , ϕ

j
B (t + τ)〉 = 0

(12)

As previously, the wind speed u is taken to its geostropic
value. For longer observation spans, different time t may be
used.

As the separation distance is replacing the outer scale
length in this new model, the behavior of the covariance
versus time is the same as in Fig. 4. Typical values of the
separation distance at H = 1,000 m depends on the satel-
lite geometry (azimuth and elevation) and are between a few
hundred meters to 10,000 m or more.

The rational spectral density of phase measurements
allowed us to propose a new and simple model for the compu-
tation of GPS phase covariance based on the Mátern covari-
ance family. Inhomogeneity as well as anisotropy and non-
stationarity were taken into account and reflect the physi-
cal effects of the atmosphere on GPS signals. Moreover, by
allowing a great flexibility through the smoothness and the
correlation time parameters which can be changed if needed
and estimated via likelihood estimation (Stein 1999; Hand-
cock and Wallis 1994), such covariance functions are quite
promising for modeling temporal correlations, not only tro-
pospheric correlations as proposed in the paper but also mul-
tipath or receiver-related internal correlations.

Amplitudes fluctuations, which are affected by small
eddies, do not allow the geometrical–optical approximations
valid for microwave signals and diffraction theory has to be
used (Ishimaru 1997, chapter 17). As a consequence, the pro-
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posed model is not adequate for modeling the tropospheric
temporal correlation of amplitude measurements.

3.4 Comparison with other covariance models

Other models for GPS temporal correlations have been pro-
posed in the past such as the exponential model, the Treuhaft
and Lanyi model (1987) or the Schön and Brunner (2008a)
model. In this section, the differences and similarities of these
models are shortly described.

3.4.1 Exponential model

Proposed by El-Rabbany (1994), the exponential model was
concretely used exemplary by Howind et al. (1999) and
Radovanovic (2001) to describe temporal correlations. A
direct link to tropospheric correlations is not explicitly given.
However, it is a special case of the Mátern family with a
smoothness parameter of 1/2 (see Appendix A for more
details). Consequently, this model is close to our proposal
with ν = 5/6 ≈ 0.833. Moreover, the correlation time as
defined by Howind et al. (1999) was taken constant between
100–300 s, empirically chosen by data analysis. In our pro-
posal, the Mátern correlation time, although not directly cor-
responding to the correlation time, varies approximately in
the same range. Moreover, it depends on atmospheric con-
ditions (wind, outer scale length) allowing the computation
of the covariance for phase measurements of two different
satellites.

3.4.2 ARIMA processes

In geodesy (see exemplary Grafarend 1976), the so-called
first autoregressive Markov model is often used to model
correlations. It corresponds to a smoothness parameter of 1,
which is also close to the ν = 5/6 ≈ 0.833 given by turbu-
lence theory. Jansson and Persson (2013) fitted a covariance
function with this smoothness factor of 1 to GPS observa-
tions.

Continuous ARIMA processes have a rational spectral
density (Rasmussen and Williams 2006). Luo et al. (2012)
made use of ARIMA(p, q) procedure to decorrelate least-
squares residuals. They showed that some values of p and
q perform better than others depending on the stations (for
instance on the influence of multipath). Such models are how-
ever empirical and the corresponding covariance functions
are mathematically more complicated to express than the
Mátern one (see exemplary Jones and Vecchia 1993).

3.4.3 Treuhaft and Lany model

Treuhaft and Lany (1987) (TL) proposed a turbulence-based
VCM for tropospheric delays in VLBI. This model is used by

Nilsson and Haas (2010), Pany et al. (2011) or Romero-Wolf
et al. (2012) for simulations or real data analysis of VLBI
measurements.

The covariance between two tropospheric slant delays
t1, t2 reads:

Cϕ (t1, t2)

= 1

sin (El1) sin (El2)

⎛
⎝H2σ 2 − 1

2

H∫

0

H∫

0

dzdz′

×Dn

(∣∣s1 (z)−s2
(
z′)− 〈u〉 �t

∣∣
sin (El)

))
, (13)

where 〈u〉 is the mean wind velocity, s1 and s2 denote the
line-of-sight vectors, σ 2 the variance of the wet refractivity
fluctuations which is assumed independent of s. It can be
expressed by σ 2 = 1

2 Dn (r) as r → ∞, assuming that the
troposphere parameters are completely uncorrelated. Built
on a modified version of the Kolmogorov structure function
for the refractive index, Dn (r) = C2

n
r2/3

1+( r
L )

2/3 , this covari-

ance model leads to a double integral which must be solved
numerically. Furthermore, Eq. (13) is based on the relation
Cϕ(t, t + τ) = 1

2 (Dϕ(∞)−Dϕ(τ )) valid only for a station-
ary process, where Dϕ is the phase structure function com-
puted by directly integrating the modified version of the Kol-
mogorov structure function of the refractive index along the
lines-of-sight. The parameter L , chosen in physically reason-
able range, was taken to 3,000 km, a value at which empirical
structure functions, for VLBI data saturate for large values
of r .

In the TL proposal, neither anisotropy nor inhomogene-
ity was taken into account. Moreover, this model is based
on a double integral which can only be solved numerically,
necessitating a large computational effort.

3.4.4 Schön and Brunner covariance model

Schön and Brunner (2008a) developed a covariance model
based on the time-dependent integrated separation distance
d:

〈ϕi
A (t) , ϕ

j
B (t + τ)〉

= 12

5

0.033

�
(

5
6

)
√

π3κ
−2/3
0 2−1/3

sin ElA
i sin ElB

j

C2
n

H∫

0

H∫

0

(κd
0 )1/3 K1/3(κ

d
0 )dz1dz2

= 21/3

3�
( 2

3

) κ
−2/3
0

sin ElA
i sin ElB

j

C2
n

H∫

0

H∫

0

(κd
0 )1/3 K1/3(κ

d
0 )dz1dz2

(14)

The parameters H, κ0, c are the same as previously described.
Not only the wind velocity but also the wind orientation
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(wind vector) is involved in the computation of the sepa-
ration distance d, and the model can therefore be considered
as a 2D one. A double integrated Mátern kernel with ν = 1

3
is obtained. However, for the case “one satellite” where the
geometries are slowly varying with time, it will lead as in
our previous formulation to a spectral density with a power
law dependence of 4

3 since ν + D
2 = 4

3 with ν = 1
3 , D = 2,

D being the dimensionality (Appendix A). Thus the two for-
mulations (Eqs. 14, 10) are equivalent for the GPS phase
covariance for one satellite.

Schön and Brunner (2008a) proposed a direct integration
for the variance which reads:

〈ϕ2〉 = 12

5

0.033

�
(

5
6

)
√

π3κ
−2/3
0 2−1/3

(sin El)2 C2
n H2

×
{

π21/3

√
3 �

( 2
3

) 2 F3

([
1

2
, 1

]
,

[
2

3
,

3

2
, 2

]
,

z2

4

)

− 27

80
22/3�

(
2

3

)
z2/3

1 F2

([
5

6

]
,

[
11

6
,

7

3

]
,

z2

4

)}
,

(15)

where F denotes the hypergeometric function (Abramowitz
and Segun 1972). The dimensionless argument z is given
by z = pκ0 H

sin El , where the factor p describes the impact of
anisotropy on the variance. For small values of c, the vari-
ance should be replaced using the small argument approach
(Eq. 11)., since the hypergeometric function (Eq. 15) takes
rapidly high values, leading to computational issues by tak-
ing the difference of the two hypergeometric functions.

Schön and Brunner (2008a) computed the separation dis-
tance for a more general case by allowing a time dependency
through the wind vector. As a consequence, this model is
more general than our proposal. However, no dependency
of the outer scale length with the separation distance or of
the structure constant with the outer scale length is pro-
posed. Moreover, for some satellite geometry, the maximum
of covariance is not at the first epoch but “delayed”. Such a
behavior is physically difficult to understand when consid-
ering the rapid reorganization of the troposphere. The cor-
responding covariance matrices may be not positive definite
anymore. Moreover, considering anisotropy for the turbu-
lence parameters of interest (c = 0, 01, L0 = 6,000 m) some
numerical instabilities due to the double integral occur.

Thus our simplification for the case two satellites-one or
two stations, allowing both a rapid computation and a phys-
ical interpretation, should be preferred.

4 Case study

In the following part, the influence of our model on the coor-
dinate estimates in least-squares adjustments as well as the

influence of Mátern parameters (smoothness and Mátern cor-
relation time) will be studied. We aim to validate the physi-
cally derived smoothness factor and Mátern correlation time
presented in Sect. 3.1. Fully populated covariance matrices
are computed with the previous formulas and implemented
in a weighted least-squares model. After a short presentation
of the methodology used, the results for the repeatability as
well as for the quadratic deviation of the batch coordinates
will be discussed.

4.1 Least-squares solution

We use the Seewinkel Network (Schön and Brunner 2008b)
specially designed to study the temporal correlations due to
turbulence on GPS measurements. It consists of six exactly
aligned stations P0, P1, P2, P4, P8, and P16 with separation of
approximately 1, 2, 4, 8, and 16 km, respectively. It was mea-
sured on April, 15th 2003 during 8h (5:45–13:45 GPS time)
using identical equipment, a 1Hz data rate, and a cutoff-angle
of 3◦. Multipath is weak, thus the correlations are assumed
to come principally from tropospheric fluctuations.

The coordinates of the first station P0 were held fixed
and double differences were formed. Ambiguities were pre-
computed. The North, East and Up (N, E, U) components
of P1 and P8, respectively, were estimated for the baseline:
P0P1 (1,000 m) as well as the longer baseline P0P8 (8,000 m).

Since the observations can be assumed to be uncorrelated
after 600s (Schön and Kutterer 2006), the whole observation
period of 8 h is split into nonoverlapping batches of 600s. To
analyze the impact of the stochastic model on the coordinate
repeatability, two sampling rates are used: overall 45 batches
à 20 epochs, 1 epoch = 30 s and 45 batches a 600 epochs,
1epoch = 1 s were computed in a weighted least-squares
adjustment. No tropospheric parameters were estimated and
the CODE reprocessing orbits and clocks were used (Dach et
al. 2009). An apriori standard deviation of 1 mm was assumed
for the L1 carrier phase measurements.

For each batch b, the coordinates are computed:

x̂b=[ Nb Eb Ub ]T = (ATPA)−1ATPy, with P = Q−1
DD,

(16)

QDD is the cofactor matrix of the double difference observa-
tions, thus QDD = MTQM, M is the matrix of the mathemat-
ical correlation (Beutler et al. 1987), Q the positive-definite
cofactor matrix of the undifferenced observations. A is the
design matrix of each batch, y the vector of double differ-
ences.

The diagonal elements of the matrix
�

�apost,b

= �
σ

2

0(A
TPA)−1,

�
σ

2

0 = vTQ−1
DDv

nb−3 (nb number of double differ-

ences for the batch b) are
�
σ

2

b = [ �
σ

2

N ,b
�
σ

2

E,b
�
σ

2

U,b
]T. They
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represent the a posteriori variances of the unknowns. v is the
residual vector of the least-square solution for the batch b.

The mean over all batches is computed leading to:

σ̂i,apost = 1

m

m∑
b=1

σ̂i,b, (17)

where i = {N , E, U } and m is the number of batches.
The quadratic deviation of the coordinates in [mm] reads

δi =
√

1

m

∑m

b=1
�x̂2

i,b, i = {N , E, U } , (18)

�x̂i,b is the parameter deviation for the batch b of the
estimated coordinates N̂ , Ê, Û and the reference values
N0, E0, U0 obtained from static positioning over the whole
8-h observation window.

For all coordinate components, their quadratic deviation
δi is compared to the a posteriori variance σ̂i,apost. The ratio

Ri = σ̂i,apost
δi

is formed. It should be as close as possible to 1,
meaning that no overestimation occurs (Rao and Toutenburg
1999). Both σ̂i,apost and δi are independent of the a priori
variance factor (Kutterer 1999). Thus the cofactor matrices
and not the covariance matrices will be used.

4.2 Methodology

For different cofactor matrices, the three parameters
δi , σ̂i,apost, Ri are determined. We compare our model to
the results given by other smoothness and correlation time
factors as well as to the typically used elevation-dependent
weighting. In the following, we will call:

• EPS model, the elevation depending model with Q = Qε

Qε (i, i) = diag

(
1

sin2 (Eli )

)
with Qε (i, i)

= 1 when Eli = 90◦ (19)

• CORR model. In this case, the global cofactor matrix
before mathematical correlations is given by

Q = (1 − β) Qtemp + βQε, (20)

where 0 ≤ β ≤ 1, called noise factor, is a positive para-
meter depending on the observations noise. Following
Jansson and Persson (2013), β is defined as the ratio
β = nugget

sill of the structure function of the double differ-
ence observations. We found a mean value of β = 0.3
for double differences with low elevation satellites for the
baseline length P0P1 and β = 0.05 for P0P8, meaning
that relatively more high-frequency noise remains in the
time series.

The temporal cofactor matrices Qtemp are computed
thanks to the Mátern covariance functions with a given
smoothness factor and Mátern correlation time and scaled
as Eq. 19. To check the influence of the variation of the
Mátern parameters on the least-squares solutions, they
were varied from 1/6 to 4/3 for the smoothness ν and
[10−3−10−2]s-1 forα(inverse of the Mátern CT), respec-
tively. The case ν = 1/2 corresponds to the exponential
case, while ν = 1 is the AR(1) model (Appendix A).
First values of the cofactor matrices were computed using
the limit of the Bessel function (Abramowitz and Segun
1972) as shown in Eq. 11.
It follows that the two cofactor matrices Q and Qε have
the same diagonal elements. Thus, the temporal cofactor
matrices are not “underweighted” as long as the obser-
vation noise is not close to 1.

Note Other noise effects such as thermal noise (Radovanovic
2001; Schön and Brunner 2008b), are modeled in a first
approximation by adding an elevation-dependent matrix to
the Mátern temporal cofactor matrix Qtemp. A positive quan-
tity added to the diagonal elements of the fully populated
covariance matrix represents measurement errors or the so-
called “nugget” effect in kriging (Cressie 1993). Moreover,
this matrix yields a stabilization of the covariance matri-
ces (Tikhonov et al. 1995). Although exemplary, Williams
et al. (2004) modeled the covariance of GPS observations
by adding a white noise covariance matrix (power spectrum
of 0 corresponding to the identity covariance matrix) and a
flicker noise matrix (e.g. power spectrum with a power law
of −1), we chose not to add an identity matrix but to model
the observations noise as elevation-dependent.

As we do not intend to compare the influence of different
covariance models but only the influence of temporal cor-
relations that gives an optimal quadratic deviation, the case
where Q = I which leads to poorer coordinate scatter and
ratio than elevation-dependent models was not analyzed here.

4.3 Building the fully populated covariance matrices

Without loss of generality, we assume a satellite-by-satellite
ordering scheme of the undifferenced GPS carrier phase
observations. As a consequence, for one station A, the covari-
ance matrix is built as follow:

Ci, j
A =

⎡
⎢⎢⎢⎣

σ
j1

i1 σ
j2

i1 σ
j3

i1 ... σ
ju

i1

σ
j1

i2 σ
j2

i2 σ
j3

i2 σ
ju

i2
. . . . . .

σ
j1

ik σ
ju

ik

⎤
⎥⎥⎥⎦

where σ in
ik is the covariance between the satellite i at epoch k

and satellite i at epoch n. The size of the covariance matrices
for two different satellites is depending on the size of the
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Fig. 7 a Example of the structure of the covariance matrix CA for one station (log covariance values were plotted for more readability) and b the
corresponding skyplot

elevation vectors: here for satellite i: k epochs and for satellite
j: u epochs. It follows that the covariance matrix for the first
station is given by:

C=
A

⎡
⎢⎢⎢⎣

C1,1
A C1,2

A C1,3
A . . . C1,n

A
C2,2

A C2,3
A C2,n

A
. . . C3,3

A
Cn,n

A

⎤
⎥⎥⎥⎦

CA is a symmetric positive-definite covariance matrix. The
diagonal blocks Ci, j

A of CA are also symmetric but not exactly
Toeplitz due to the small non-stationarity of the model. For
two stations, the global covariance matrix reads:

�temp=
[

CA CA,B

CA,B CB

]
and Qtemp = γ�temp,

γ being computed so that Qtemp(El = 90◦)
= 1 (cofactor matrix).

Figure 7a shows an example of the structure of such a
covariance matrix and Fig. 7b the corresponding skyplot.
The smoothness parameter were taken to ν = 5/6 and the
inverse of the Mátern correlation time is α = 0.006 s−1.

Figure 7a highlights that the fully populated covariance
matrices have a block diagonal structure; each sub matrices
showing globally a “Toeplitz” like form. This property could
be used in future to accelerate the inversion algorithm (Meu-
rant 1992). The computation of such fully populated covari-
ance matrices—one per batch—took only a few second for
the whole observation time and is faster than the Schön and
Brunner or Treuhaft and Lany model as no integration must
be performed.

4.4 Results

In the following plots, black stars correspond to results with
Qε called the EPS model, whereas blue or green circles are
obtained with the fully populated cofactor matrices Q called
CORR.

4.4.1 Baseline P0P1 of 1,000 m

Varying the smoothness factor
Figure 8 shows the ratio Ri (b) as well as the quadratic

deviation (a) of the batch coordinates when changing the
value of the smoothness parameter ν from 1/6 to 3/2 by
keeping α constant, α = 0.006 s−1. This value corresponds
to a physical relevant Mátern correlation time by taking
L0 = 6000m and u = 8−10 ms−1 (see also Schön and
Brunner 2008a). We plotted the results for two different val-
ues of the noise factor: β = 0.3 (blue circle) and β = 0
(green circle, no observation noise). Since the EPS model
(black stars) does not depend on the smoothness factor, the
results are not varying with ν and are only plotted for an
easier visual comparison.

For the CORR model, the ratio Ri is close to 1 for nearly
all values of ν by taking β = 0.3. The case β = 0 gives a
ratio Ri >> 1. As expected, the EPS model is showing an
overestimation of the precision, i.e. the standard deviation is
smaller than the coordinate scatter.

With a noise factor β = 0.3 and for the value of inter-
est ν = 5/6, the Up and East component have a smaller
quadratic deviation with the CORR model (but only at
the sub-millimeter level), whereas the N component devi-
ation giving a not significantly higher than the EPS model
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Fig. 8 Mean coordinate scatter δi (a) and ratio Ri (b) of the batch
solutions are plotted for the N , E and U component versus smoothness
factor ν for α = 0.006s−1. The values δi (ν = 3/2) are higher than the

other cases and not plotted for more readability. Green circles represent
the CORR model with β = 0, blue circles β = 0.3 and stars the EPS
model. c Zoom of a. d Zoom of b. Short baseline P0P1 (1,000 m)

(1.45 mm with EPS or 1.5 mm with CORR for ν = 5/6).
Higher values of the noise factor will lead to coordinate scat-
ters that are comparable with the EPS model. The value of
β = 0.3 gives the lowest quadratic deviation together with
ratios of 1, which is coherent with the definition β = nugget

sill of
the structure function of the double differenced observations
for the Seewinkel Network.

We can note moreover that the model with ν = 5/6 is
nearly equivalently performing than ν = 1/2 (exponen-
tial model); ν = 1 (AR(1) model) giving a lightly and
not significant higher standard deviation for the E and N
component. However, it should be noticed that the exponen-
tial model is giving a ratio Ri smaller than 1 for a com-
parable quadratic deviation, provided that the correlation

length is taken accordingly. Thus, we should prefer the tur-
bulence value of the smoothness parameter ν = 5/6 which
seems more reliable. Moreover, the physical interpretation is
easier and allows an accurate estimation of the correlation
time.

Varying the correlation time
In Fig. 9a, b, we varied the parameter α = κ0u

a for ν = 5/6.
It can be seen that value in the range [6e−3, 1e−2] s−1 are giv-
ing ratio close to 1 for β = 0.3 as well as a lower quadratic
deviation compared to the EPS model and the CORR model
with β = 0. High values of α, i.e. small temporal correla-
tions are leading asymptotically to the same result as the EPS
model.
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Fig. 9 Mean coordinate scatter δi (a) and ratio Ri (b) of the batch solu-
tions are plotted for the N , E and U component versus α for ν = 5/6.
The values δi (ν = 3/2) are higher than the other cases and not plot-

ted for more readability. Green circles represent the CORR model with
β = 0, blue circles β = 0.3 and stars the EPS model. c Zoom of a. d
Zoom of b. Short baseline P0P1 (1,000 m)

From the study of the least-squares results (Ri and δi ) for
the baseline length 1,000 m, the values of ν = 5/6 and α =
0, 006s−1 seems to give accurate and relevant results. These
values are coherent with values found by El-Rabbany (1994),
Radovanovic (2001) or more recently Jansson and Persson
(2013). It should be highlighted however that the differences
between the different models are not very important as long
as the Mátern parameters are taken in a reasonable interval.

1 s data rate
The results for the short baseline P0P1 at high data rate

(1 s) were also estimated with 45 batches à 600 epochs.

As before, the values of the smoothness parameters were
changed as well as the value of the correlation time. It was
found that the ratio Ri is close to 1 for ν = 5/6. However, in
this case, the noise factor was taken to 0.5, a slightly higher
value as for the 30 s data rate. The coordinate scatter δi is
smaller than those obtained with the EPS model, particularly
for the Up and East components, although only in the sub-
millimeter range. Once more, it was shown that varying the
smoothness parameter in a reasonable range does not influ-
ence the results significantly.

The conclusions are the same as for the 30s rate: taking
temporal correlations into account principally influence the
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Fig. 10 Mean coordinate scatter δi (a) and ratio Ri (b) of the batch solution are plotted for the N , E and U component versus α for ν = 5/6.
Green circles represent the C O R R model with β = 0.05, blue circles β = 0.3 and stars the EPS model. Long baseline P0P8 (8,000 m)

Fig. 11 Mean coordinate scatter δi (a) and ratio Ri (b) of the batch solution are plotted for the N , E and U component versus ν for α = 0.006s−1.
Green circles represent the CORR model with β = 0.05, blue circles β = 0.3 and stars the EPS model. Long baseline P0P8 (8,000 m)

a posteriori variance. The spatial repartition of the parame-
ter deviation (scatter) is not changing much as long as the
Mátern parameters are not too far from 1. However, the a
posteriori precision is more relevant and more accurate than
with elevation-dependent diagonal covariance matrices.

4.4.2 Baseline P0P8 of 8,000m

The same analysis was performed for the baseline P0P8
(8,000 m) with the same methodology. For a long baseline,
other noise processes interact and the correlations are not
only due to tropospheric fluctuations. Thus, in this part, we
aim to show the impact of changing the Mátern covariance

parameters α, ν on the least-squares adjustments. The results
are presented in Figs. 11 and 10. As for the previous base-
line P0P1, the value of the smoothness parameter (Fig. 11)
ν = 5/6 gives good results in term of ratio Ri and quadratic
deviation δi which is smaller than with the EPS model. It
should be mentioned that the noise factor of 0.05 gives the
best results and not β = 0.3 as previously for the short base-
line. It would mean that the nugget effect is close to 0, thus
the cofactor of the observation noise is much smaller than for
the short baseline of the Seewinkel Network.

The value of ν = 1 provides lower values of δi , however
with a light underestimation of the precision since Ri > 1.
This is in agreement with the intuitive results that double
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Fig. 12 a 8 h (30,000 s) of double differences for the 1,000 m baseline P0P1 and b 8 h (30,000 s) double differences for the 8,000 m baseline
P0P8. Each satellite pair is color coded, the sampling rate is 30 s

differences from long baseline (Fig. 12b) are less smooth
(Fig. 12a) than for shorter baseline since not all effects are
canceled by double differencing, like, i.g. ionospheric propa-
gation effects. This difference in term of standard deviation is
however not very important (sub-millimeter level) and should
be carefully interpreted by analyzing at the same time the val-
ues of Ri . This effect will be studied in the future for longer
baselines.

Figure 10 presents the results of the least-squares adjust-
ment when α is varied. As for the variation of the smoothness
factor, β should be set close to 0. The value of α = 0.006 s−1

gives at the same time an improved coordinate scatter com-
pared with the EPS model as well as a ratio of 1 for all three
components. Smaller values of α (0.002−0.004 s−1) gives
also small values of δi , however, as with higher values of ν,
with Ri >> 1.

The improvement of the CORR model withβ = 0.05, ν =
5/6, α = 0.006 s−1 is at the millimeter level for all three
components in comparison with the EPS model, the ratio
being at the same time more than 3 times better than with the
standard model which remains a great improvement.

5 Conclusion

Temporal correlations of GNSS phase measurements due to
tropospheric fluctuations are not taken in consideration in
the currently used weighted least-squares models. The result
is an overestimation of the a posteriori precision by up to a
factor 10. Results of the Kolmogorov turbulence theory were
used to develop a new and simplified model for the temporal

correlations thanks to the Mátern covariance family which
best suits to model both the temporal correlations for one
satellite and for two satellites observed at one or two sep-
arated stations. The concepts of separation distance as well
as inhomogeneity and anisotropy were taken in considera-
tion. Using Taylor’s frozen hypothesis, it was shown that a
smoothness parameter of 5/6 as well as a Mátern correlation
time between 125 and 200 s, in accordance with previous
studies, should correctly model temporal correlations due to
the tropospheric propagation. Moreover, it was stressed that
all other parameters such as the structure constant, the depth
or height of the troposphere as well as the vertical elongated
parameter or the outer scale length should be carefully cho-
sen.

In a case study, we used the data of the Seewinkel Network,
specially designed for research on the effect of tropospheric
fluctuations on GPS phase measurements, with weak mul-
tipath. Fully populated cofactor matrices were computed
and compared with diagonal matrices of type 1

sin2(El)
which

are widely used in current processing softwares. To model
other noise effects, an elevation-dependent diagonal matrix
was added to the temporal cofactor matrices. It was shown
that for the short baseline, fully populated cofactor matrices
improves the quadratic deviation of the coordinates at the
sub-millimeter level for short baseline and at the millimeter
level for long baseline) compared with elevation dependant
models. However, the a posteriori precision is more reliable
than with diagonal matrices, i.e. no overestimation occurs.
The results were similar for longer baseline (8,000 m) as
well as for higher data rate (1 s), although for long baseline
a higher smoothness factor than 5/6 could be taken in con-
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sideration. The new model leads globally to a slightly better
and physically more relevant results in terms of quadratic
deviation of the coordinates and a posteriori variance of the
unknowns than the exponential and AR(1) model. Thus the
proposed formula with a smoothness factor of ν = 5/6 is
promising, particularly for short baselines. As no double inte-
grations are performed such as in other models (Treuhaft and
Lany, Schön and Brunner) the computational time remains
manageable. Some simplifications due to the Toeplitz like
form of the covariance matrices could moreover lead to a
faster implementation.

Modeling temporal correlations with the turbulence theory
and Mátern cofactor function has lead to improved results in
the least-squares solution, being at the same time technically
feasible. In a next work, the impact on ambiguity resolutions
will be shown as well as the influence of outliers on the para-
meters. Depending on the baseline length the choosing of the
Mátern parameters could be moreover studied by minimum
likelihood estimation.
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Appendix: The Mátern covariance functions

A short introduction to the Mátern covariance family, also
called Whittle Mátern covariance family, von Karman model
(oceanography), Markov processes (geodesy) or autoregres-
sive models (meteorology) is presented here, giving the prin-
cipal features, vocabulary as well as dependencies. More
details can be exemplarily found in Stein (1999), Mátern
(1960), Guttorp and Gneiting (2005), Grafarend and Awange
(2012). Mátern covariance functions have been concretely
used by Handcock and Wallis (1994) to model meteorologi-
cal fields. Fuentes (2002) also derived a non stationary family
for the determination of air quality models.

A 2D autoregressive continuous process AR(1) called
Z (x, y) can be described by the stochastic differential equa-
tion:
(

∂

∂x2

2

+ ∂

∂y2

2

− α2
)

Z (x, y) = ε (x, y) , (21)

where ε (x, y) is white noise and α a constant. The corre-
sponding spectral density is given by

W (ω) ∝ 1

(ω2 + α2)2 , (22)

with ω2 = ω2
1 + ω2

2 for the 2D case (Whittle 1954). The sta-
tionary covariance between two points x, x′ for this process
is:

C(x, x′) = C (r) = (αr) K1 (αr) , (23)

where K1 is the modified Bessel function of 1st order,
r = ∥∥x − x′∥∥ for the isotropic case (‖.‖ being the norm
of the vector). Whittle (1954) presented such a covariance
function as a “natural spatial covariance” for the 2D case,
as the exponential-based covariance functions are for one-
dimensional processes.

Mátern (1960) used Whittle’s result and derived for any
dimension d a family of covariance functions based on an
isotropic spectral density:

W (ω) = 2ν−1φ � (ν + d/2) α2ν

πd/2(ω2 + α2)ν+d/2 , (24)

where ω2 = ω2
1 + ω2

2 + ... + ω2
d is the angular frequency,

� the Gamma function (Abramowitz and Segun 1972) and
ν > 0, α > 0, φ > 0 are constant parameters, d the dimen-
sion. The corresponding Mátern class of covariance functions
is positive definite and reads:

C (r) = φ (αr)ν Kν (αr) . (25)

The parameter ν can be seen as a measure of the differ-
entiability of the field (Stein 1999) thus “its smoothness”.
The constant α indicates how the correlations decay with
increasing distance. Its inverse is usually called the correla-
tion length in Kriging.

Smoothness parameter ν

Figure 13 highlights the influence of the smoothness para-
meter ν and the correlation length by simulating a random
field/time series corresponding to the covariance function
(Cressie 1993) using the eigenvalue decomposition of the
corresponding Toeplitz covariance matrix (Vennebusch et al.
2010). The same random vector was used for each simulation.

The smoothness parameter ν was varied from 1/6 to 3. As
ν increases, the time series are becoming less noisy for high
frequency, the long periodic variations are predominating.
The variance is decreasing with the smoothness parameter.

Correlation time
Figure 14 shows the influence of the parameter α. It was

varied from 0.25 to 1 by keeping ν constant to 1 to simulate
short and long correlation times.

Using the previous parametrization of the Mátern covari-
ance family, the variance is not varying with the correlation
time. The simulations of time series (Fig. 14b) highlight that
changes of the correlation time are not acting on the smooth-
ness of the field.

Other parametrizations
In the literature, further formulation of these covariance

family functions are given (Handcock and Wallis 1994)
where the parameter ρ, ρ > 0 is nearly independent of ν:
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Fig. 13 a Covariance function (Màtern family) with α = 1 by varying ν and b corresponding time series. The x axis was discretized of 200 equally
spaced points. c Corresponding correlation function

C (r) = 21−ν

� (ν)

(√
2νr

ρ

)ν

Kν

(√
2νr

ρ

)
,

with a spectral density of the form:

W (ω) = 2dπd/2� (ν + d/2) (2ν)ν

� (ν) ρ2ν

(
2ν

ρ2 + ω2
)−(ν+d/2)

.

This parametrization is said to be more stable when estimat-
ing the parameters ν, α with the maximum likelihood method
(Stein 1999). We made use of it to develop our model for GPS
phase correlations.

Shkarofsky (1968) presented a more general form of the
Mátern model by introducing a shape parameter δ > 0. The
corresponding correlation function reads:

C (r) = 1

δν Kν (δ)

(
r2

L2 + δ2
)ν/2

Kν

⎛
⎝
√

r2

L2 + δ2

⎞
⎠ .

Thus with δ = 0, the Mátern family is obtained.
If is half-integer, the covariance can be expressed in term

of a product of an exponential and a polynomial of order
p (Rasmussen and Williams 2006): for ν = 1/2, the expo-
nential model is obtained whereas for ν = 3/2, C (r) =(

1 +
√

3r
ρ

)
e−

√
3r
ρ , which corresponds to a Markov process

of second order and for ν = 5/2, a Markov process of third
order.

Advantage of the Mátern family
The advantages of the Mátern covariance functions’ fam-

ily for spatial interpolation are multiple, as developed in Stein
(1999). Its flexibility to model the smoothness of physical
processes (thus the rate of decay of the spectral density at high
frequencies) is particularly useful, as well as the possibility to
include non-stationarity or anisotropy (Fuentes 2002; Spöck
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Fig. 14 a Covariance function (Mátern family) with ν = 1 by varying α and b the corresponding time series. The x axis was discretized of 200
equally spaced points

and Pilz 2008). The degree of smoothness can be estimated
a priori or being fixed in advance and the number of parame-
ters to manage stays reasonable. The exponential (ν = 1

2 ) and
Gaussian case (ν = ∞) are two particular cases of this fam-
ily although the last one that represents an infinitely differen-
tiable field is concretely rarely found (Stein 1999; Handcock
and Wallis 1994).
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Abstract Based on the results of Luati and Proietti (Ann
Inst StatMath 63:673–686, 2011) on an equivalence for a cer-
tain class of polynomial regressions between the diagonally
weighted least squares (DWLS) and the generalized least
squares (GLS) estimator, an alternative way to take correla-
tions into account thanks to a diagonal covariance matrix is
presented. The equivalent covariancematrix ismuch easier to
compute than a diagonalization of the covariance matrix via
eigenvalue decomposition which also implies a change of the
least squares equations. This condensedmatrix, for use in the
least squares adjustment, can be seen as a diagonal or reduced
version of the original matrix, its elements being simply the
sums of the rows elements of the weighting matrix. The least
squares results obtained with the equivalent diagonal matri-
ces and those given by the fully populated covariance matrix
are mathematically strictly equivalent for the mean estima-
tor in terms of estimate and its a priori cofactor matrix. It is
shown that this equivalence can be empirically extended to
further classes of design matrices such as those used in GPS
positioning (single point positioning, precise point position-
ing or relative positioningwith double differences).Applying
this new model to simulated time series of correlated obser-
vations, a significant reduction of the coordinate differences
compared with the solutions computed with the commonly
used diagonal elevation-dependent model was reached for
the GPS relative positioning with double differences, single
point positioning as well as precise point positioning cases.
The estimate differences between the equivalent and classical
modelwith fully populated covariancematrixwere below the
mm for all simulated GPS cases and below the sub-mm for

B Gaël Kermarrec
gael.kermarrec@web.de

1 Institut für Erdmessung (IfE), Leibniz Universität Hannover,
Schneiderberg 50, 30167 Hannover, Germany

the relative positioningwith double differences. These results
were confirmed by analyzing real data. Consequently, the
equivalent diagonal covariance matrices, compared with the
often used elevation-dependent diagonal covariancematrix is
appropriate to take correlations in GPS least squares adjust-
ment into account, yielding more accurate cofactor matrices
of the unknown.

Keywords GPS · Correlations · Weighted least squares ·
Equivalent kernel · Mátern covariance family

1 Introduction

The functional model of the least squares adjustment in
GPS positioning which links the GPS observables and the
unknown model parameters is generally well described
(Teunissen and Kleusberg 1998), while the currently used
stochastic models remain improvable, resulting in over-
optimistic parameter results, i.e., the formal variances of the
estimated coordinates are too small compared to the actual
coordinate scatter (El-Rabbany 1994; Radovanovic 2001).
Current variance models assume either homoscedasticity
(same variance for all observations) or heteroscedasticity
(different variances but uncorrelated observations) using
elevation-dependent models (Euler and Goad 1991; Dach
et al. 2009), C/N0 (e.g., Wieser and Brunner 2000) or SNR-
based models (Luo 2012a).

Physical correlations between GPS phase measurements
are challenging to model and generally neglected whereas
mathematical correlations for single or double differences
are well studied and implemented in software (Beutler et al.
1986; Santos et al. 1997). Indeed, physical correlations
depend on the receivers used (Borre and Tiberius 2000; Bona
2000) or on the environment through which GPS signals
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propagate. Especially, multipath (Luo 2012b) and turbulent
refractivity fluctuations (Schön and Brunner 2008) are cor-
relating GPS phase measurements. However, resulting fully
populated variance–covariance matrices (VCM) for GPS
double differences were empirically computed and used in
least squares adjustments for different baseline lengths and
data sets (Howind et al. 1999; Radovanovic 2001; Wang
et al. 2002; Leandro et al. 2005; Satirapod et al. 2003; Jin
et al. 2010). As inverting fully populated matrices is compu-
tationally demanding, different strategies were proposed by
Howind et al. (1999) with an LU factorization of the inverse
of the covariancematrix,Wang et al. (2002) who used an iter-
ative procedure or Satirapod et al. (2003) with stochastic seg-
mentedmethods. Klees andBroersen (2002) handled colored
noise in least squares adjustments thanks to pre-conditioning
techniques. However, a main issue is that normal equation
stacking techniques are no longer feasible with fully popu-
lated VCM, i.e., standard scientific and commercial GNSS
software packages rarely accept such matrices. Furthermore,
quality control based on outlier rejection is more difficult.

Thus, in a first approach, physical correlations are often
neglected and diagonal covariance matrices used for the
raw observations. A consequence of this mis-modeling is
an overestimation of the precision and sub-optimal parame-
ter estimates. This situation could be improved by applying
equivalent diagonal covariance matrices.

Based on statistical equivalence between least squares
models (Rao and Toutenburg 1999; Krämer 1986), and the
works of Luati and Proietti (2011), an equivalent diagonal
covariance matrix that gives identical results as a fully popu-
lated VCM for the mean estimator case will be exposed. We
will show that these results can be empirically extended to
GPS adjustments thanks to the particular form of the design
matrix. Subsequently, temporal and physical correlations can
be taken into account assuming that an adequate covariance
model is known.

The remainder of this paper is structured as follows: in
Sect. 2, the mathematical equivalence between different least
squares models in terms of estimates and variance estimators
is shortly addressed.Next, using themean estimator example,
the computation of equivalent diagonal covariance matrices
is explained in details. In Sect. 3, simulations studies are car-
ried out to extend step by step the results to GPS positioning
and check the feasibility of using the equivalence kernel.

2 Equivalences of least squares models

2.1 Mathematical background

Let

y = Ax + ε (1)

be the linear functional model, where y is the n × 1 obser-
vation vector, A the non-stochastic n × u design matrix with
full column rank (rk(A) = u), x the u × 1 parameter vector
to be estimated, ε the n × 1 observation error vector with
E(ε) = 0, E(εεT) = σ 2W, where W is a n × n positive
definite fully populated cofactor matrix of the observations,
σ 2 the a priori variance factor, and E(.) denotes the mathe-
matical expectation.

The Aitken theorem (Rao and Toutenburg 1999, p.105)
states that the generalized least squares estimator (GLSE) is
the best linear unbiased estimator (BLUE) for x:

x̂ = (ATW−1A)−1ATW−1y, (2)

and the covariance matrix V (·) of the unknowns (a priori
estimator) is given by

V (x̂) = σ 2(ATW−1A)−1 = σ 2S−1, (3)

with S = ATW−1A and v = y − Ax̂ being the n×1 residual
vector.

V̂ (x̂) = σ̂ 2
0 S

−1 (4)

is the estimator for the parameter covariance matrix, where
σ̂ 2
0 is called the a posteriori variance factor of the observa-

tions:

σ̂ 2
0 = (y − Ax̂)TW−1(y − Ax̂)

n − u
= vTW−1v

n − u
. (5)

These estimators are unbiased, i.e., E(σ̂ 2
0 ) = σ 2, E(V̂ (x̂)) =

σ 2S−1 (Koch 1999; Rao and Toutenburg 1999) when the
correct weight matrixW−1 is used.

The ordinary least squares estimator (OLSE) is obtained
by takingW = I, thus identical variances for all observations
(homoscedasticity) and no correlation between observations
are assumed. For the GLSE,W = WF is the fully populated
cofactor matrix of the observations.

Geodetic readers will refer to GLSE as “the classical
least squares” and for OLSE, the least squares with identical
weight. In the following, we will make use of both termi-
nologies.

The GLSE can be transformed into OLSE by a whitening
procedure (Koch 1999, p. 154; Schuh et al. 2014) using a
Cholesky factorization of the cofactor matrix whereW−1 =
GTG, G being a regular lower triangular matrix. Using the
transformations Aw = GTA, yw = GTy, εw = GTε,

Eq. 1 can be written: yw = Awx + εw, with E(εwεTw) =
σ 2I.

Where I is the identitymatrix. Thus, the observations have
been transformed to be uncorrelated with equal variance,
corresponding to the OLSE. For a concrete example of the
use of whitening via Cholesky factorization, see exemplary
Alkhatib and Schuh (2007). Following the same procedure,
an eigenvalue decomposition of W−1 can alternatively be
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used. However, whitening is not always an optimal pro-
cedure, leading to inaccuracy for ill-conditioned Gaussian
autocorrelation function (Koivunen and Kostinski 1999).
Moreover, both the Cholesky and the eigenvalue decomposi-
tion are computational demanding (0(n3),Trefethen and Bau
1997), particularly for large matrix.

In both cases (whitened or not), an a priori knowledge
of the covariance matrix is needed, or at least an estimation
based for instance on the residuals. For more details on GLS,
interested readers are referred exemplarily to Krämer (1986);
Krämer and Donninger (1987), Baksalary (1988), works of
Puntanen (1987), Puntanen and Styan (1989), Koch (1999),
Rao and Toutenburg (1999), Niemeier (2008) or Grafarend
and Awange (2012).

2.2 Equivalence between diagonally weighted least
squares (DWLS) and general least squares (GLS)

In the next section,WF denotes the fully populated cofactor
matrix of full rank andWE the equivalent diagonal cofactor
matrix. The conditions underwhich the least squares estimate
with WE is identical to the one given by WF are given in
Luati and Proietti (2011) who showed that:

DWLS and GLS estimators are equivalent if and only if the
n × u A matrix (u < n) can be decomposed as

A = V∗M (6)

where the u columns ofV∗ are eigenvectors ofWFW
−1
E and

M is a non singular matrix.
This theorem can be seen as a generalization of Zyskind

(1967) results for the equivalence between OLS and GLS.
The diagonally weighted least squares can, therefore, be

equivalent to the classical least squares if there are p-linear
combinations of the columns of the design matrix that are
eigenvectors of WFK, where K is a diagonal matrix which
elements provide the optimal kernel weights corresponding
toWF .

A necessary and sufficient condition of equivalence
between the GLS estimator and the DWLS estimator is that
WEW

−1
F H = HWEW

−1
F where H is a projection matrix

onto the column space of A along the nullspace of ATW−1
E .

In the next section, we will concentrate on particular cases
of this theorem that could be applied to GPS positioning and
assume the cofactor matrixWF to be known.

3 Equivalence DWLS–GLS: particular cases and
simulations

3.1 Computation of the equivalence matrix WE

In the general case of linear regression, Luati and Proietti
(2011) showed that the previously defined matrix M can be
chosen to be a sparse upper triangular matrix. Consequently,

the linear combinations of the columns of the design matrix
are provided by AM−1.

In the case of the mean estimator, the degree of the fitting
polynomial is 0 and the particular designmatrixA = 1which
allows to choose a scalar matrix M. Consequently, in this
case, a necessary and sufficient condition for the equivalence
betweenGLS andDWLS is that each element of the diagonal
matrixW−1

E is the sum of the row elements of the inverse of
the fully populated cofactor matrix W−1

F (Luati and Proietti
2011).

It should be pointed out that in amore general case of local
polynomial regression, where only the first row of A is the
vector 1, a necessary condition for WE to yield equivalent
results compared to the GLS is W−1

E 1 ∝ W−1
F 1, i.e., the

diagonal elements ofW−1
E are proportional to the sum of the

row elements ofW−1
F (Luati and Proietti 2011).

Figure 1 highlights graphically how to compute the equiv-
alent cofactor matrix for the mean estimator case. Compared
with the whitening procedure presented in 2.1, the use of an
equivalent diagonal matrix, which can be seen as a reduced
version ofWF valid in the least squares adjustment, implies
neither a change of the least squares model nor a Cholesky
transformation to obtain the correct estimates. The proce-
dure is, therefore, more simple as the equivalent matrix gives
mathematically the same estimate for the case A = 1 com-
pared with WF . However, it should be pointed out that the
equivalent matrix will not whiten the observations.

Due to this equivalence, the estimates, their cofactor
matrix as well as the residual vector are identical. How-
ever, the results are not identical for the estimator of the a
posteriori variance factor of the observations σ̂ 2

0 = vTW−1v
n−u

since the two cofactor matrices WE and WF have different

structures. Indeed,
vTW−1

F v
n−u = vTW−1

E v
n−u would be only valid if

vTW−1
F = vTW−1

E . The latter equation cannot be proven for
an arbitrary residuals vector vT.

Closed form for the inversion of some covariancematrices

AR(1) process
Ashighlighted byFig. 1, the inverse of the cofactormatrix has
to be computed to determine the equivalent matrix. For some
particular cases, such as the autoregressive process of order 1,
an explicit inverseW−1

AR(1) exists (Rao and Toutenburg 1999;
Bierman 1977), provided that the autocorrelation coefficient
ρ is known or estimated.

W−1
AR(1) = 1

1 − ρ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −ρ 0 ... 0 0

−ρ 1 + ρ2 −ρ
. . . 0 0

0 −ρ 1 + ρ2
. . . 0 0

.

.

.
. . .

. . .
. . .

. . . 0

0 0 0
. . . 1 + ρ2 −ρ

0 0 0 ... −ρ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)
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Fig. 1 Computation of WE
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This greatly simplifies the computation of the equivalence
matrix since the sumof the elements canbedirectly computed
leading to:

W−1
AR(1)_EQUI = 1

1 − ρ2
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ρ 0 0 ... 0 0

0 (1 − ρ)2 0
. . . 0 0

0 0 (1 − ρ)2
. . . 0 0

...
. . .

. . .
. . .

. . . 0

0 0 0
. . . (1 − ρ)2 0

0 0 0 ... 0 1 − ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Toeplitz matrices
Toeplitz matrices (Gray 2006) arise in the theory of weakly
stationary processes where the main challenge is often to
solve linear systems by inverting large matrices. Thus, since
1960,many authors have proposed twomainways to improve
the classical Gaussian elimination methods or Cholesky
decomposition which involves 0(n3) operations by comput-
ing either the inverse of theToeplitzmatrix or its factorization
(Levinson 1947; Durbin 1960; Trench 1964) or by factoriz-
ing the Toeplitz matrix directly (Barciss 1969). Algorithms
using the fast Fourier transformbelong to both classes anduse
only 0(n2) (Brent et al. 1980) or more recently 0(n(logn)2)
operations (Ammar and Gragg 1988). Other references and
detailed procedure on inversion algorithms of Toeplitz matri-
ces can be found in the study by Brent (1989).

In geodesy, such matrices are found exemplarily to com-
pute the anomalous potential (Moritz 1980). Bottoni and
Barzaghi (1993) proposed an algorithm based on the fast
Fourier transform and the preconditioned conjugate gradient
method. Thus, possibilities exist to speed up the inversion of
Toeplitz matrices and can be used to compute the equivalent
matrices in less operations.

For all other types of VCMmatrices, we propose to invert
and sum the VCM outside the program package and to rein-
troduce the diagonal weight matrix.

3.2 Case study: mean estimator with a Toeplitz
covariance matrix

To have a better understanding of the equivalent model and
its implication, an illustrative example was simulated. A 1-
vector design matrix is chosen to explain the general results

of Luati and Proietti (2011) selecting a Toeplitz covariance
matrix and a corresponding correlated observation vector.
Using different weight matrices in the least squares adjust-
ment, the equivalence is shown.

Stochastic model
The computation of the elements of the covariance matrix is
based on the very general Mátern covariance family (Appen-
dix) and reads

WF (i, j) = φ(α |i − j |)νKν(α |i − j |), (8)

where ν > 0, α > 0 are constant parameters. The scalar para-
meter φ > 0 is chosen so that the variance equals 1; ν can be
seen as a measure of the differentiability of the field (Stein
1999) and is defined as “its smoothness”. The constant α is
the inverse of theMátern correlation time (ICT) and indicates
how the correlations decay with increasing distance or time
(Journel and Huifbregts 1978). The modified Bessel func-
tion of order ν (Abramowitz and Segun 1972) is denoted
by Kν . Although no explicit formula for the inversion of
Mátern covariance matrices is known, this covariance family
was chosen because of its flexibility and concrete applica-
tion in GPS computation as shown by Kermarrec and Schön
(2014). The simulated covariance matrices are scaled to have
all diagonal elements equal 1.

Functional model
The design matrix is A = 1, thus a so-called “mean estima-
tor”. However, it is worth being aware that the result of the
least squares procedure is the mean of the time series only
for the homoscedasticity case, thus W = I.

Observations
Aneigenvalue decompositionWF = USUT ofWF was used
to generate the observation time series

y(t) = U
√
Sn(t) (9)

where n(t) = N (0, I) is a random vector of zero mean and
with a standard deviation of 1. The i th column vector of
U corresponds to the i th eigenvector of WF and the diag-
onal element of the diagonal matrix S to the corresponding
eigenvalues (Cressie 1993; Vennebusch et al. 2010). 10,000
simulations were run for a stationary time series having the
Toeplitz covariance matrix of size n = 1000, the Mátern
parameters used being [α0, ν0] = [0.05, 1]. It should be
pointed out that due to the correlation structure, the simu-
lated times series (as for instance depicted in Fig. 2a) are
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Fig. 2 a Correlated time series used for the mean estimator. The
Mátern parameters are [α0, ν0] = [0.05, 1]. b The corresponding 400
first values of the line of the Toeplitz covariance matrix

neither zero mean nor have a standard deviation of 1. Only
the underlying random vector has this property. Figure 2a,
b presents, respectively, the time series used for the simula-
tion which results are given in Table 1, as well as the first
400 values of the a line of the Toeplitz covariance matrix
(Eq. 8).

Least squares estimation
Three kinds of least-squares cofactor matrices W are com-
pared to study their influence on the least squares results:

• COV: the correct fully populated cofactor matrix WF ,
which was used for the computation of the time series

• EQUI: the equivalent diagonal kernel matrixWE as pre-
sented in Sect. 3.1, see also Fig. 1

• IDEN: the identity covariance matrix

Table 1 Comparison of different covariance matrices models for the
mean estimator with correlated data [α0, ν0] = [0.05, 1]

x̂ V (x̂) σ̂0

COV −0.3412 0.0593 0.9990

EQUI −0.3412 0.0593 0.1256

IDEN −0.3278 0.001 0.9921

Following estimators are compared:

• The estimate itself, i.e., the least-squares solution:
x̂ = (ATW−1A)−1ATW−1y,

• The a priori variance covariance matrix of the unknowns,
V (x̂) = σ 2(ATW−1A)−1,

• The a posteriori variance factor σ̂ 2
0 = (y−Ax̂)TW−1(y−Ax̂)

n−1

= vTW−1v
n−1 .

To highlight how the EQUI matrices are built, we define
two simple 3 × 3 covariance matrices which elements are
given by:

W−1
F =

⎡
⎣
pF11 pF12 pF13

pF12 pF22 pF23

pF13 pF23 pF33

⎤
⎦

and W−1
E =

⎡
⎣
pE11 0 0
0 pE22 0
0 0 pE33

⎤
⎦, where W−1

E and W−1
F are

the inverses of the equivalent matrix EQUI and COV, respec-
tively.

The estimate equality we want to achieve reads:
x̂ = (ATW−1

F A)−1ATW−1
F y

=(ATW−1
E A)−1ATW−1

E y
,

which is true if ATW−1
F = ATW−1

E .
For the mean estimator, this can be further written as:

[1 1 1]
⎡
⎣

pF11 pF12 pF13

pF12 pF22 pF23

pF13 pF23 pF33

⎤
⎦ = [1 1 1]

⎡
⎣

pE11 0 0
0 pE22 0
0 0 pE33

⎤
⎦ .

Thus, the elements ofW−1
E are simply:

pE11 = pF11 + pF12 + pF13 ,

pE22 = pF12 + pF22 + pF23,

pE33 = pF13 + pF23 + pF33

which show concretely how

the EQUI matrices are formed.
Results

The results of the simulations are presented in Table 1.
As expected from the results of Luati and Proietti (2011),

the values of V (x̂) (Table 1—second column) and x̂ (Table
1—first column) are exactly identical for the EQUI and COV
models, whereas the values obtained with IDEN, which cor-
respond to the arithmetic mean value of the times series, are
different.
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As can be seen in Table 1—third column, the a posteriori
variance factor for theEQUI case ismuch lower than theCOV
case although the estimate and variance of the unknown are
identical in both models.

As our interest is in the potential empirical application of
the equivalent model in GPS, no further developments are
carried out to correct the a posteriori variance factor in the
mean estimator case since no mathematical formulation of
the inverses in the general case can be given.

4 Empirical extensions of the mean estimator
results to further classes of design matrices

4.1 Motivation

As shown in Sect. 3, the mathematical equivalence is mainly
based on the special structure of the design matrix A = 1,
themean estimator case. Additional simulations were carried
out with the same time series as presented in Fig. 2 using a
design matrix filled with random numbers. As expected no
equivalence for the estimatewas given anymore, highlighting
the requisite property of the design matrix (unit vector) for
the mathematical equivalence.

For the particular case ofGPS least squares adjustment and
thanks to the slowly varying GPS constellation, the values of
the columns of the design matrix sorted per satellite vary lin-
early for short observation spans of up to 600 s. Absolute
values of the slope are between 5e−3 for low-elevation
satellites and 5e−2 for high-elevation satellites (Schön and
Kutterer 2006). Thus, the condition of the design matrix for
the equivalence presented in Sect. 3 is quite well approxi-
mated. Let

Ai =

⎡
⎢⎢⎣

−�x t0
ρi t0

−�y t0
ρi t0

−�z t0
ρi t0

...
...

...

−�x tn
ρi tn

−�y tn
ρi tn

−�z tn
ρi tn

⎤
⎥⎥⎦ (10)

denotes the designmatrix of the i th satellite sorted by epochs,
where �x,�y,�z are coordinate differences between the
unknown ECEF coordinates of the observing site and the
satellite i and ρi the geometric distance between the satellite
i at epochs between t0 and tn . The whole designmatrix reads:

A =

⎡
⎢⎢⎢⎣

A1

...

Ai

Am

⎤
⎥⎥⎥⎦ where m is the number of visible satellites.

Since the strict equivalence as in Sect. 3.1. cannot be
proven for GPS design matrices, simulations are used to
motivate that the equivalent covariance matrices can also be
applied for this type ofmatrices, givingmore adequate results
for absolute positioning than diagonal elevation-dependent
covariance matrices. We start with simple cases and add step

by stepmore elaborated designmatrices. For illustration pur-
poses, here, the minimum configuration with 4 satellites per
epoch is considered for 1000 s with 1Hz data rate.

4.2 Simulations methodology

Design matrices
Adesignmatrix (Eq. 10) for point positioningwith 4 satellites
is simulated, corresponding to typical short static position-
ing scenarios. Figure 3a shows the columns of the resulting
designmatrix of size (4× 1000)× 3, sorted per satellite. The
corresponding skyplot is presented in Fig. 3b. The design
matrix corresponding to the geometry of the first station
reads:

A1 =

⎡
⎢⎢⎢⎢⎣

A1
1

A2
1

A3
1

A4
1

⎤
⎥⎥⎥⎥⎦

.

Using this particular design matrix, the resulting estimates of
the least squares adjustment are corresponding to Earth Cen-
ter Earth Fixed (ECEF) coordinates (Hoffmann-Wellenhof
et al. 2001, chapter 8).

The feasibility of using the EQUI model (see Fig. 1 for
how to build the corresponding matrix) is tested by changing
the positioning mode resulting in different design matrices.
Thus, to check the equivalence, five GPS positioning scenar-
ios are simulated, the designmatrix being gradually changed.
Each time a slightly different matrix than the simple slope
design matrices of Eq. 10 by adding tropospheric parameter
estimation or clock estimation as well as double differencing
is obtained.

Single point positioning (SP)
Besides the classic static single point positioningwith epoch-
wise clock estimation (SPEC), two other simulation cases are
studied resulting from different clock modeling (Weinbach
2012):

• Single point positioningwithout clockparameter (SPWC)
• Single point positioningwith one clockparameter (SP1C)
for the observation interval

The design matrix is changed accordingly by adding an iden-
tity vector (SP1C) or identity matrices (SPEC) in the last
columns, respectively.

• for the SPWC case:ASPWC = [A1]
• for the SPEC case: ASPEC = [A1 MISPEC], where

MISPEC =

⎡
⎢⎢⎣
I
I
I
I

⎤
⎥⎥⎦ and I the identity matrix of size n × n,
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Fig. 3 a 3 columns (blue 1st column, green 2nd column and red 3rd
column of the design matrix for the 3 coordinates, b the corresponding
skyplot

with n = 1000, all satellites being present for the n
epochs.

• for the SP1C case: ASP1C = [A1 MISP1C], where

MISPEC =

⎡
⎢⎢⎣
1
1
1
1

⎤
⎥⎥⎦ and 1 the ones vector of size n × 1

Precise point positioning (PPP)
The precise point positioning case is simulated using code
and carrier phase measurements. The design matrix is
adapted as follows: for the phase design matrix, a tro-
pospheric parameter based on a simple mapping function

1
sin(El(t)) where El(t) the elevation of the satellite varying
with time t is estimated as well as epoch-wise clock para-
meters and one ambiguity per satellite. For the code design
matrix, no ambiguity parameter has to be taken into account

and only an epoch-wise clock and tropospheric parameters
are computed.

Following the previous notation, the design matrix reads:

• for the PPP case: APPP =
[
Aphase

Acode

]
, with

Aphase =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1
1

A2
1

A3
1

A4
1

T1
1

T2
1

T3
1

T4
1

︷ ︸︸ ︷
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1︸ ︷︷ ︸
Ambiguity

︷︸︸︷
I

I

I

I︸︷︷︸
clock

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,Acode =

⎡
⎢⎢⎢⎢⎢⎣

A1
1

A2
1

A3
1

A4
1

T1
1

T2
1

T3
1

T4
1

0 0 0 0 I

0 0 0 0 I

0 0 0 0 I

0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎦

Ti
1 being the partial derivatives with respect to the tro-

pospheric vector parameter for satellite i.

Double difference case (DD)
The design matrix is mathematically double differenced
(Beutler et al. 1986) using the fourth satellite PRN6 as the
reference satellite—the one having the highest elevation over
the considered time period—no ambiguities were considered
here.

• for the DD caseADD =

⎡
⎢⎢⎣
A1
1−A4

1

A2
1−A4

1

A3
1−A4

1

⎤
⎥⎥⎦, holding the coordi-

nate of station 2 fixed.

Cofactor matrix WF

For this simulation, we used the result of Kermarrec and
Schön (2014),which is an easy and physically relevantway to
compute temporal correlations for GPS. The model is based
on the Mátern covariance family (Appendix), scaled with
an elevation-dependent factor. The covariance function C
between two observations at time t and t + τ reads:

Cit+τ
i t = δ

sin(Eli (t)) sin(Eli (t + τ))
(ατ)5/6K5/6(ατ) (11)

where Eli is the elevation of the satellite i ,α and δ parameters
derived from turbulence theory. The smoothness factor is
taken to ν = 5/6. For this example, a Mátern ICT of α =
0.05 s−1 is chosen. Please refer to Kermarrec and Schön
(2014) formore details on thismodel.No correlation between
different satellites is taken into account, thus the resulting
covariance matrix has a block diagonal structure. Since a
scaling is not influencing the least squares results (Kutterer
1999), the cofactor matrix is computed.

Figure 4a is a representation of the covariance matrix used
for the simulations. The elements are sorted per satellite and
based on actual elevation.

123



800 G. Kermarrec, S. Schön

PRN5 PRN24 PRN25 PRN6

PRN5

PRN24

PRN25

PRN6 10

20

30

40

50

60

0 PRN5 1000 PRN24 2000 PRN25 3000 PRN6 4000
-2

-1

0

1

2
simulated code time series 

[m
]

0 PRN5 1000 PRN24 2000 PRN25 3000 PRN6 4000
-0.05

0

0.05

[m
]

simulated phase time series

(a)

(b)

Fig. 4 a Cofactor matrix sorted per satellite (mm2) computed with
Eq. 12. The elements are based on the model by Kermarrec and Schön
(2014). b Corresponding code and phase time series [m], sorted per
satellites. 1000 epochs per satellite are generated

To be more realistic, an elevation-dependent noise matrix
is added to the fully populated cofactormatrix, thus the global
cofactor matrix of this model reads:

WF = f (θWmatern + β�), (12)

where Wmatern is the cofactor matrix which elements are
computed with Eq. 11 and � the diagonal elevation-
dependent cofactor matrix which elements are γ i i =

1
sin2(El(i))

. β, θ are positive factors taken as β = 0.2, θ = 0.8
for these simulations. The factor f is taken as fphase = 2
for phase measurements and fcode = 2000 for code mea-
surement simulations. Subsequently, the variation of the
magnitude of observations corresponds to typical values of
code or phase residuals, respectively. It should be noted that
the results for the empirical equivalence are not depending
on these values.

For all thefive scenarios, the cofactormatrix of the original
observations for station 1 reads:

WF1 = f

⎛
⎜⎜⎜⎝θ

⎡
⎢⎢⎢⎣

C1,1
1 0 0 0
0 C2,2

1 0 0
0 0 C3,3

1 0
0 0 0 C4,4

1

⎤
⎥⎥⎥⎦ + β�

⎞
⎟⎟⎟⎠, with

Ci, j
1 =

⎡
⎢⎢⎢⎣

C j1
i1 C j2

i1 C j3
i1 ... C jn

i1

C j1
i2 C j2

i2 C j3
i2 C jn

i2
... ...

C j1
in C jn

in

⎤
⎥⎥⎥⎦ , computed with Eq. (11).

WF1 can be either WF1,code corresponding to f = fcode
or WF1,phase computed with f = fphase.

Single point positioning (SP)

For the three single point positioning cases, WF,SP =
WF1,code is the cofactor matrix of the undifferenced code
observations.

Precise point positioning (PPP)

For the PPP case, WF,PPP=
[
WF1,phase 0

0 WF1,code

]
.

Double difference case (DD)

For the double difference positioning case, WFDD is com-
puted using the double difference operator:

WF,DD = D
[
WF1,phase 0

0 WF2,phase

]
DT, where WF2,phase

is the cofactor matrix of the undifferenced phase observa-
tions of station 2. The correlations between two different
satellites as well as between two stations are neglected. For
our scenario

D =
⎡
⎣
I 0
0 I
0 0

0 −I
0 −I
I −I

−I 0
0 −I
0 0

0 I
0 I

−I I

⎤
⎦ .

Simulating time series
As in Sect. 3.2, an eigenvalue decomposition of theVCMwas
used to generate the corresponding observation time series
presented in Fig. 4b, top panel for the code andFig 4b, bottom
panel for the phase observations, respectively. For all simu-
lations, the same time series were used and only the design
matrixwas adjusted to the different cases. TheDD time series
are corresponding to phasemeasurements, whereas SP corre-
sponds to code and PP use both code and phase simulations.

As can be seen in Eq. 12, in the covariance function, the
factor 1

sin2(El(t))
where El(t) is the elevation of the satellite is

varying with time t. As a consequence, the resulting covari-
ance matrix is not having a Toeplitz structure as seen in Fig.
4a and the covariancematrix has to be factorized. TheMátern
kernel of Eq. (11) leading to a Toeplitz covariancematrix, the
cofactor matrix can be rewritten as WF = (�1/2)T (�1/2)
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where � is the diagonal matrix containing the elevation
dependency and T a Toeplitz matrix. A way to invert effi-
ciently such block diagonal Toeplitz matrices is described
exemplarily in Ataike (1973).

In Sect. 3.2, the impact of three kinds of covariance matrices,
namely COV, EQUI, and IDEN were analyzed. In this sec-
tion, the feasibility of using the EQUI model instead of the
COV model in other cases than the mean estimation is our
main objective. For sake of completeness, the results with the
often used elevation-dependent diagonal covariance matrix
are additionally indicated (model ELEV). Here, the diagonal
elements of the covariance matrix correspond to the COV
matrix.

4.3 Simulations results

The results of the simulation are presented in Table 2 for the
Single Point Positioning as well as for PPP and relative posi-
tions with DD. The differences of the estimates x̂ − x̂COV ,
where x̂ are the estimates computed with the covariance
matrix EQUI or ELEV are presented. The nominal values
of the estimates are obtained with the COV model which
corresponds to the least squares with fully populated VCM.
Thus, the coordinates themselves are not given here since we
focus on quantifying the empirical equivalence.

Table 2 (first part) highlights the feasibility of taking the
EQUI model instead of the COV model in the least square
adjustment for the Single Point Positioning cases with differ-
ent clock modeling. Although the design matrix is gradually
deviating from the simple slope case, differences between the
EQUI and COVmodels below 0.2 mm are obtained for the X
and Y components and below 1mm for the Z component (cf.
SP1C and SPEC cases). A slight increase of the deviations
with more complex models such as SPEC can be stated (dif-

ference of −1.19 mm for the Z component compared with
the −0.10 mm value of the SPWC model).

On the contrary, it should be pointed out that the differ-
ences between the ELEV and COV models are larger than
10 cm for the Z component for the SP1C and SPEC mod-
els; smaller differences of 9 mm for the X component being
obtained for the SPWC model. The values are all below
the typical noise of the code observations of 30 cm−1 m.
These results underline the necessity to take correlations into
account to have estimates closer to the nominal values, which
can be achieved when using the EQUI model.

Table 2 (secondpart) shows the results for positioningwith
carrier phase observations, namely PPP and relative posi-
tioning with DD. The performance of the equivalence model
EQUI is high; the coordinate differences are smaller than 1
mm for PPP. The relative positioning with DD yields differ-
ences of the estimates below the sub-mm level although the
complexity of the design matrix is increasing. These results
are not comparable with the values obtained with the ELEV
case which are reaching up to 11 mm (X value of the PPP
case) ormore than 2mmfor theDDcase for theZ component.

As a consequence, both the feasibility of using the EQUI
model in least squares adjustment corresponding to GPS sce-
narios as well as its superiority of the EQUI model with
respect to the ELEV model are pointed out for all five simu-
lation studies.

The presented results depend not only on the covariance
model used but also on the simulated time series which is
governed by the random vector (cf. Eq. 9). To validate the
previous results, Monte Carlo simulations with 1000 runs
with different random vectors and thus different observa-
tion time series with the same correlation structure were
carried out. From this, the same order of agreement was
found.

Table 2 Differences of the
estimates (mm) for the EQUI
model and ELEV model w.r.t
the nominal solution obtained
with the COV model, reference
set α0, ν0 = [0.05, 5/6]

SPWC SP1C SPEC

EQUI ELEV EQUI ELEV EQUI ELEV

Differences of the estimates (mm) 0.17 −18.13 −0.06 −10.03 0.03 −8.98

−0.07 −32.53 −0.25 −18.91 −0.17 −16.21

−0.10 27.41 −1.12 107.52 −1.19 107.30

PPP DD

EQUI ELEV EQUI ELEV

Differences of the estimates (mm) 0.66 11.18 −0.00 0.10

0.11 −6.36 −0.01 1.21

−0.30 −8026 −0.06 2.00

Single point positioning with 4 satellites, precise point positioning and relative positioning with double
difference for 4 satellites
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Table 3 Standard deviation [m]
of the estimates—COV, EQUI
and ELEV models

Standard deviation of the estimates (m) SPWC SP1C SPEC PPP DD
Case 4 satellites

COV

X 0.10 0.11 0.11 0.07 0.0044

Y 0.13 0.15 0.15 0.10 0.0058

Z 0.10 0.48 0.48 0.07 0.0187

EQUI

X 0.10 0.11 0.11 0.07 0.0044

Y 0.13 0.15 0.15 0.10 0.0058

Z 0.10 0.48 0.48 0.07 0.0188

ELEV

X 0.01 0.02 0.02 0.01 0.0006

Y 0.02 0.02 0.02 0.01 0.0008

Z 0.01 0.07 0.07 0.01 0.0026

The reference set α0, ν0 = [0.05, 5/6] was used. The minimum constellation with four satellites is
considered

Cofactor matrices of the estimates
Table 3 gives the standard deviations of the estimates in [m]
for the COV, EQUI and ELEV model for the three single
point positioning cases, the PPP and relative positioningwith
DD. In all cases, the ELEV model yields approximately one
order of magnitude smaller standard deviation than the mod-
els taking correlations into account. It highlights the known
over-optimistic precision of the ELEV model (El-Rabbany
1994; Radovanovic 2001). A factor up to 10 between the
ELEV and the COVmodels corresponds to previous findings
with real case studies (Dach et al. 2007). It should be under-
lined that the COV and EQUI models give quasi-identical
results for all simulated cases, the values being only differ-
ent at the sub-mm level. Please note that other combination
of the covariance matrices (Eq. 11) would have given differ-
ent numerical values, however, without changing the basic
statement on the empirical equivalence. This is also true for
the coordinate differences.

Discussion
Further simulations were carried out with up to eight vis-
ible satellites as well as different satellites constellations
and longer/shorter time spans. The results again reinforce
the conclusions on the empirical equivalence between the
EQUI and COV models. In addition, the Mátern parame-
ters were successfully changed by simulating strong or weak
observation correlations, without impacting the empirical
equivalence. However, time spans have to be chosen in such
way that the correlation function reaches the zero value
inside the batch, otherwise no equivalence can be given any-
more.

The results of all these simulations highlight that theEQUI
model is empirically a good approximation of the correct
estimates computedwith the COV referencemodel, although
no mathematical equivalence exists. Thus, using a diagonal

matrix that takes correlations into account in a GPS least
square adjustment is feasible. In the next part, a short case
study with real data will confirm this statement.

4.4 Case study with EPN data

For the case study with real data, we assume that the esti-
mated covariance matrices COV correspond to Eqs. 11 and
12 with a Mátern ICT of α = 0.05 s−1. Based on physi-
cal considerations, this model is a good approximation of
the correlation structure of GPS observations (i.e., the obser-
vations are assumed to be uncorrelated after approximately
600 s following Schön and Brunner 2007), being at the same
time easily computable.We do not aimhere to study the influ-
ence on least squares results of different covariance matrices
taking correlation into account.

Data from the EPN network (Bruyninx et al. 2012) are
used to confirm the quasi-equivalence of the EQUI with the
COV model for relative positioning with double differences.
Two stations Zimmerwald 1 and 2 (ZIMM and ZIM2) in
Switzerland, close to each other are chosen. The data are
having a 30 s rate, applying a cutoff of 5◦. No ionospheric
anomaly during the observation period were found. Some
multipath is present which appears not to be problematic for
our comparison. The ambiguities are assumed to be solved in
advance and the reference values of the coordinates of the sta-
tions are from theRINEXfile valueswhich are in this case the
long-term station coordinates. No tropospheric parameters
are estimated and the CODE reprocessed orbits and clocks
are used (Dach et al. 2009). An a priori standard deviation of
2 mm was assumed for the L1 carrier phase measurements.

The estimates are computed with double differences for
1000 batches with maximum 100 observations per satellite
and per batch on GPS day 50 of 2015.
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Table 4 Mean and standard deviation of the difference of the estimates
�x̂EQUI– COV = x̂EQUI − x̂COV and �x̂ELEV– COV = x̂ELEV−x̂COV (mm)
computed with double differences

DD real case Mean Standard deviation Min/max

�x̂EQUI−COV

X 0.0046 0.0286 −0.1103/0.0592

Y −0.0050 0.0050 −0.438/0.0425

Z −0.0201 0.1409 −0.0976/0.2542

�x̂ELEV−COV

X 0.0292 0.3442 −1.1912/1.1450

Y 0.0134 0.2127 0.5332/0.7009

Z 0.0564 0.6636 −1.2653/4.0437

Real data from the EPN network. The reference set for COV is α0, ν0 =
[0.05, 5/6]

Table 5 Standard deviation (mm) of the estimates for the last batch—
COV, EQUI and ELEV models

DD real case Standard deviation
of the estimates

COV

X 1.9692

Y 1.0568

Z 1.8408

EQUI

X 1.9722

Y 1.0577

Z 1.8495

ELEV

X 0.6390

Y 0.3419

Z 0.5966

Real data from the EPN Network computed with double differences.
The reference set for COV is α0, ν0 = [0.05, 5/6]

The mean, the standard deviation as well as min–max
values (mm) of the estimates difference �x̂EQUI– COV =
x̂EQUI−x̂COV and �x̂ELEV– COV = x̂ELEV−x̂COV computed over
all the batches are presented in Table 4. The typical standard
deviation of the estimates (mm) is given for the last batch as
example in Table 5. As expected from the previous simula-
tions, the mean of �x̂EQUI−COV is 6 times, 2.7, and 2 times
smaller than for �x̂ELEV−COV for the X, Y, and Z component,
respectively. It highlights that the equivalence is not only
valid for a simple case with four satellites as assumed for the
simulations but also for more complex design matrices cor-
responding to a full geometry with different elevations and
lengths. The standard deviation is 12, 42 and 5 times smaller
for �x̂EQUI– COV than for �x̂ELEV– COV .

Moreover, Table 5 shows once more the overestimation of
the ELEV model, the values being more than 3 times higher

than theCOVmodel. The nearly perfect equivalence between
EQUI and COV models is confirmed, the differences being
below 0.01mm.

The analysis of real data with a relative GPS positioning
using double differences has shown that the EQUImodel can
be used instead of the COV model for computing both the
coordinates and the co factor matrix of the estimates in a least
squares adjustment.

5 Conclusion

Neglecting correlations between GPS phase measurements
leads to an over-optimistic precision, for instance for theGPS
least squares coordinate solution. Due to the difficulty to
estimate or model correlations, diagonal covariance matrices
with an elevation dependency are widely preferred. Indeed,
the use of fully populated matrices yields computational
burden due to inversion or restriction in algorithmic imple-
mentation.

An equivalent diagonal covariance matrix based on the
work of Luati and Proietti (2011) for the mean estimator is
presented as a way to take correlations into account without
using fully populated VCM in the GPS least squares pro-
cedure. The model gives mathematically identical results in
terms of parameter estimates as well as a priori variance esti-
mator for themean estimator.An empirical extension of these
findings to classes of design matrices with linearly varying
column values was successfully proposed. Prominent exam-
ples are the design matrices such as used in GPS adjustments
for absolute positioning (SPP, PPP), and relative positioning
with single or double differences. Although no mathematical
equivalence is given anymore, we showed that, thanks to the
particular structure of the GPS design matrices, the estimates
obtained with the equivalent diagonal covariance matrices
approximate those obtained by the fully populated covari-
ance matrices. From our simulations with four satellites for
periods of up to 20 min, the errors are below 1mm for the
Single Point Positioning cases and PPP. Relative positioning
with double differences case yields nearly exact estimates,
below the sub-mm level. These solutions outperform results
with the commonlyused elevation-dependent diagonalmatri-
ces, which was confirmed by the study of EPN network
data. Furthermore, the over-optimistic parameter variances
are remedied, yielding adequate values that reflect the actual
parameter scatter. Since the proposed equivalent model can
be implemented in GPS software packages, taking correla-
tions into account should not be avoided in future. Further
studies will concentrate on sensitivity analysis of the Mátern
parameters with real data.

Acknowledgments Parts of the work were funded by the DFG under
the label SCHO1314/1-2, this is gratefully acknowledged by the
authors. The European Permanent Network and contributing agencies

123



804 G. Kermarrec, S. Schön

are thanked for providing freelyGNSSdata andproducts.Valuable com-
ments of three anonymous reviewers helped us improve significantly the
manuscript.

Appendix: Mátern covariance family

First introduced by Mátern (1960), the covariance function
reads:

C(r) = φ(αr)νKν(αr). (13)

Other parameterizations are possible as mentioned by Stein
(1999), Shkarofsky (1968). Special cases arise when the
smoothness factor is taken to:

• 1/2 :exponential covariance function
• 1: AR(1) process: autoregressive process of first order
also called Markov process of first order. This process is
often used in the field of geodesy to analyze gravitational
fields (Meier 1981; Grafarend 1976) as well as to fit GPS
covariance functions (Jansson and Persson 2013; Wang
et al. 2002).

• infinity: squared exponential covariance function. Due
to its indefinitely differentiability which is difficult to
explain physically, this covariance function (Stein 1999;
Handcock and Wallis 1994) should be avoided. Some
examples of problems that can arise using this smooth-
ness are shown in Stein (1999).

Because of its flexibility as well as the possibility to esti-
mate the parameters via maximum likelihood (Stein 1999;
Handcock and Wallis 1994 for meteorological data field),
we adopted this covariance function for all our computation
of covariance matrices used in GPS least squares procedure.

Kermarrec and Schön (2014) proposed to compute the
elements of theGPScovariancematrices thanks to a close for-
mula: σ

i(t+τ)
i t = δ

sin(Eli (t)) sin(Eli (t+τ))
(ατ)1Kν(ατ), where

Eli (t) is the elevation of satellite i at t and Eli (t+τ) at t+τ .
Other weightings than elevation-dependent model could be
chosen. The ranges α ∈ [0.005 − 0.025], ν ∈ [

1/4−1
]
were

proposed for GPS time series.
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Abstract In this contribution, using the example of the
Mátern covariance matrices, we study systematically the
effect of apriori fully populated variance covariance matri-
ces (VCM) in the Gauss–Markov model, by varying both
the smoothness and the correlation length of the covariance
function. Based on simulations where we consider a GPS rel-
ative positioning scenario with double differences, the true
VCM is exactly known. Thus, an accurate study of para-
meters deviations with respect to the correlation structure
is possible. By means of the mean-square error difference
of the estimates obtained with the correct and the assumed
VCM, the loss of efficiency when the correlation structure
is missspecified is considered. The bias of the variance of
unit weight is moreover analysed. By acting independently
on the correlation length, the smoothness, the batch length,
the noise level, or the design matrix, simulations allow to
draw conclusions on the influence of these different factors
on the least-squares results. Thanks to an adapted version
of the Kermarrec–Schön model, fully populated VCM for
GPS phase observations are computed where different cor-
relation factors are resumed in a global covariance model
with an elevation dependent weighting. Based on the data of
the EPN network, two studies for different baseline lengths
validate the conclusions of the simulations on the influence
of the Mátern covariance parameters. A precise insight into
the impact of apriori correlation structures when the VCM is
entirely unknown highlights that both the correlation length
and the smoothness defined in the Mátern model are impor-
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tant to get a lower loss of efficiency as well as a better
estimation of the variance of unit weight. Consecutively, cor-
relations, if present, should not be neglected for accurate test
statistics. Therefore, a proposal is made to determine a mean
value of the correlation structure based on a rough estimation
of the Mátern parameters via maximum likelihood estima-
tion for some chosen time series of observations. Variations
around these mean values show to have little impact on the
least-squares results. At the estimates level, the effect of vary-
ing the parameters of the fully populated VCM around these
approximated values was confirmed to be nearly negligible
(i.e. a mm level for strong correlations and a submm level
otherwise).

Keywords Mátern covariance family · Correlations,
smoothness · GPS · Double difference · Design matrix ·
Loss of efficiency · Mean-square errors · Variance of unit
weight

1 Introduction

The functional part of the least-squares adjustment is tradi-
tionally considered as deterministic and can be mathemat-
ically formulated. On the contrary, the stochastic model is
usually unknown and simplified to diagonal matrices. Corre-
lations between observations are therefore neglected due to
the lack of knowledge of an approximate covariance model
for the observations or the necessity to invert fully populated
covariance matrices (Howind et al. 1999).

The effect of incorrect weights has been investigated in the
statistical literature (we cite exemplary Rao and Toutenburg
1999; Watson 1967), particularly when the apriori covari-
ance matrix is equal to the identity matrix (Puntanen and
Styan 1986). The impact of incorrect covariance matrices on
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the least-squares estimates, cofactor matrices, mean-squared
errors (MSE), outlier tests and the corresponding redundancy
numbers or the variance of unit weight have been mathemat-
ically expressed by (Wolf 1961; Rao and Toutenburg 1999;
Koch 1999; Kutterer 1999; Xu 1991, 2013; Hahn and Van
Mierlo 1987). Kutterer (1999) proposed to use intervals and
linearization to bound the difference of parameters estimated
with perturbated covariance matrices. Xu (2013) investigated
the effect of incorrect covariance matrices on the variance of
unit weight, showing the dependency of the resulting bias.
For the particular case of least-squares collocation, Xu (1991)
analysed how incorrect prior weight matrices of the sig-
nals influence the mean square errors. Hahn and Van Mierlo
(1987) studied the sensitivity of adjustment results when the
precision of one observation is changed with special attention
to the corresponding redundancy number or reliability. The
derived formulas, particularly for the estimates, depend on
the residuals—thus on the underlying data—making general
conclusions on the impact of taking correlations into account
in least-squares adjustment not straightforward.

Restricting ourselves in this study to the influence of
approximate covariance matrices for the global positioning
system (GPS) positioning case, El-Rabbany (1994), Wang
et al. (1998), Bona (2000) and Tiberius and Kenselaar (2003)
can be cited exemplarily for an overview of the previ-
ous work on temporal or physical correlations of the GPS
observations. Luo (2012) or Luo et al. (2012) made use of
the ARIMA or ARMA models to describe the correlation
structure of the studentized and filtered residuals of posi-
tioning adjustment. Interesting dependencies with multipath
or atmospheric conditions were shown. Different procedures
based on the analysis of the residuals were also developed to
compute the covariance matrices of GPS observations (Han-
nan 1970; Wang et al. 2002, 2005; Satirapod et al. 2003
for real-time kinematic positioning). Least-squares variance
component estimation was used by Teunissen and Amiri-
Simkooei (2008) and Amiri-Simkooei et al. (2009). However,
this procedure is to some extend computational demand-
ing and in the GPS positioning strategies often replaced
by simpler model using for instance exponential functions
(El-Rabbany 1994; Howind et al. 1999). Another possi-
bility is to propose an apriori model based on physical
considerations (Radovanovic 2001 for multipath; Schön and
Brunner 2008; Kermarrec and Schön 2014 for tropospheric
refraction).

The study of GPS observations heterosceadasticity
(Bischoff et al. 2005) showed that the error variances of GPS
observations are inhomogeneous. The variance component
estimation (VCE) has been used to improve the stochas-
tic model of GPS observations (Li et al. 2011; Tiberius
and Kenselaar 2003; Amiri-Simkooei 2007; Amiri-Simkooei
et al. 2016). Elevation dependent models (Vermeer 1997;
Euler and Goad 1991; Dach et al. 2007), C/N0 (Wieser and

Brunner 2000) or SNR-based models (Luo et al. 2013) have
also been proposed.

Through all these studies, the goal of improving the sto-
chastic model, by changing either the diagonal weighting
or the correlation structure, is mainly to have a more accu-
rate parameter estimation (i.e. lower root mean-square of
the coordinates), more reliable test statistics and eventu-
ally better ambiguity resolution. However, a more concrete
analysis that explains the mathematically derived formulas
when changing the structure of the approximated covari-
ance functions is missing for a GPS positioning case. Based
on simulations where the underlying covariance model is
exactly known, more general conclusions on the influence of
varying the correlation structure of fully populated VCM on
the least-squares results can be drawn to propose a simplified
but accurate stochastic model for GPS observations.

In this contribution, we will systematically study the
impact of changing the apriori covariance matrices on the
mean-square error (MSE) of the estimates difference using
the developments of Strand (1974). Moreover, the formula
of Xu (2013) for the bias of the variance of unit weight will
be more concretely investigated to quantify the impact of
correlations on this parameter used for test statistics pur-
pose (Teunissen 2000). We will restrict ourselves to the
comparison of matrices with the same diagonal weighting.
Following cases are particularly investigated: errors in the
model (i.e. wrong correlation structure), simplifications by
using only block diagonal structure or diagonal VCM (eleva-
tion dependent or identity). The Mátern model for describing
correlations (Mátern 1960; Whittle 1954; Stein 1999) acts
both on the smoothness and the correlation length of the time
series. It was previously successfully applied by Kermarrec
and Schön (2014) for modelling tropospheric refractivities
and will consecutively be extended to describe in a general
way temporal correlations and non-stationarity of GPS phase
observations.

The choice of a Mátern function is suggested by anal-
ogy with the work of Luo (2012) on ARIMA models which
were shown to fit the residuals of positioning adjustment, i.e.
the differential equations of the corresponding underlying
processes have some similarities (Rasmussen and Williams
2006). It should be pointed out that a precise description
of the correlation structure for GPS data based on residuals
analysis for particular cases is not our goal. Many different
factors can create correlations (between observation types, or
temporal for instance) and estimated from the observations
(Amiri-Simkooei et al. 2013). In this contribution, a more
general description of the correlations is here deliberately
chosen in order to simplify and democratize the use of VCM
in least-squares adjustment by applying a global covariance
function. We follow there to some extend the work on kriging
of Stein (1999). Thus, the corresponding covariance parame-
ters will be varied in a physically plausible range.
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The remainder of this paper is structured as follows: in a
first part, we will define the mathematical notation and gives
the general formulation of the MSE of the estimates differ-
ence as well as the bias of the variance of unit weight. In
a second part, these formulas will be used for simulations
where the true covariance matrix is known but approximated
in different ways in the least-squares adjustment. A design
matrix corresponding to GPS relative positioning with dou-
ble differences will be used. Results for different batch sizes,
different correlation structures and design matrices are pre-
sented. A parallel with the results of Hannan (1970) for the
BLUP will be drawn in “Appendix 2” to explain some of the
dependencies found in the simulations. In a third step, a real
GPS data analysis for a short and long baseline positioning
scenario will be presented validating the results of the simu-
lations. Some propositions on how to choose the covariance
matrices will conclude this contribution.

2 Mathematical background

In this section, the general notations as well as the main
concept of linear weighted least-squares adjustment and
of estimator comparison by means of Mean-Squared Error
are summarized. Interested readers should refer to Rao and
Toutenburg (1999), Koch (1999) and Grafarend and Awange
(2012) for more details. As an elegant way to describe corre-
lations, the Mátern covariance function is shortly presented.

2.1 Ordinary, general and feasible least square
estimator

We assume a linear or linearized functional model

y = Ax + ε, (1)

y is the n × 1 observation vector, A the non-stochastic n × u
design matrix with full column rank (rk (A) = u), x the
u × 1 parameter vector to be estimated, ε the n × 1 observa-
tion error vector. The error term has zero mean and a normal
distribution with E

(
ε εT

) = σ 2W0, where W0 is a n × n
positive definite fully populated cofactor matrix of the obser-
vations, σ 2 the apriori variance factor, and E (.) denotes the
mathematical expectation.

The generalized least squares estimator (GLSE) reads:

x̂0 =
(

ATW−1
0 A

)−1
ATW−1

0 y, (2)

and the cofactor matrix W0x̂x̂ of the unknows (apriori esti-
mator) is given by:

W0x̂x̂ =
(

ATW−1
0 A

)−1
, (3)

Calling v0 = y − Ax̂0 the n × 1 residual vector, the apos-
teriori variance factor of the observations, also called the
estimate of the variance of unit weight (Xu 2013; Koch 1999)
is, therefore, given by:

σ̂ 2
W0

=
(
y − Ax̂0

)T W−1
0

(
y − Ax̂0

)
n − u

= vT
0 W−1

0 v0

n − u
. (4)

This estimator is unbiased when the correct weight matrix

W−1
0 is used, i.e. E

(
σ̂ 2

W0

)
= σ 2, where σ 2 is the apriori

variance factor of the observations, Koch (1999) and Rao
and Toutenburg (1999).

However, the GLSE is not a feasible estimator since the
elements of the cofactor matrix W0 are unknown. Thus,
the so-called Feasible Generalized Least Squares Estima-
tor (FGLSE) is used in practise, where the true W0 is
replaced by its estimate or assumption Ŵ (Greene 2003).
This terminology seems to be mostly used in econometrics,
however, it allows a more accurate distinction of the dif-
ferent least-squares results when the covariance is unknown
and estimated or totally known and will be used for the mean-
squared error study.

There are 1
2 n (n + 1) unknowns and only 1

2
(n − u) (n − u + 1) observations in the stochastic model.
As 1

2 n (n + 1) > 1
2 (n − u) (n − u + 1) not all compo-

nents can be estimated (Amiri-Simkooei 2007). A way to
treat this problem is for instance to use an approximated
model for the (co)variance of the observations by fitting
exponential or polynomial functions (see exemplary Koch
et al. 2010), as well as ARMA or ARIMA models (Luo
et al. 2012) to the residuals; the covariance structure can
be also found iteratively from the residuals (Wang et al.
2002).

The FGLSE can be transformed into an homosceaticitic
model (identical variances for all observations and no corre-
lation) by computing a n × n transformation matrix T such
as the covariance matrix of the observations is σ 2I where I
is the identity matrix. In practice, a Cholesky factorization
of the covariance matrix Ŵ is used (Koch 1999).

2.2 Misspecification of the covariance matrix

For different apriori covariance matrices, the least-squares
results as defined in Sect. 2.1. will correspondingly change.
In this section, we will shortly present the awaited bias
by missspecifying the stochastic model in a least-squares
model.

Let Ŵ = W0 + �W represents the apriori or assumed
cofactor matrix, where �W is the difference between the
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assumed and the true cofactor matrix W0. The corresponding
estimators are x̂, x̂0, respectively.

A posteriori variance factor

Misspecification of the covariance matrix leads to errors in
the a posteriori variance estimator (Watson 1955; Rao and
Toutenburg 1999). It can be shown that:

E
(
σ̂ 2

Ŵ

)
(n − u) = σ 2tr

(
W0−A

(
ATŴ

−1
A
)−1

ATŴ
−1

)
+ ...

...tr

⎛
⎜⎝ σ 2A

(
ATŴ

−1
A
)−1

ATŴ
−1

(I − 2W0) +...

σ 2A
(

ATŴ
−1

A
)−1

ATŴ
−1

W0Ŵ
−1

A
(

ATŴ
−1

A
)−1

AT

⎞
⎟⎠

where tr denotes the trace of the matrix and I the identity
matrix.

For the regression case and assuming that the regression
vector forms an orthonormal set (i.e. ATA = I), Watson
(1955) obtained bounds of the variance factor showing a
strong dependence with the roots of the design matrix. Fol-
lowing Xu (2013), the bias of the variance of unit weight
due to the incorrect weights on the estimate can be further
expressed as:

E
(
σ̂ 2

Ŵ

)
= σ 2 + tr

{(
I − Ŵ

−1
A
(

ATŴ
−1

A
)−1

AT
)

Ŵ
−1

�W
}

σ 2

n − u
= σ 2 (1 + T R) (5)

Thus, when using an approximated cofactor matrix, a bias
TR depending on �W occurs, leading to either smaller or
larger variances (Dufour 1989).

Influence on the estimated parameters

Kutterer (1999) derived the difference in the estimated para-
meter vector due to �W:

x̂ = x̂0 −
(

ATŴ
−1

A
)−1

AT�Pv0 = x̂0 + �x (6)

where �P = P0−P̂, P̂ = Ŵ
−1

, P0 = W−1
0 . This differ-

ence can be further linearized and expressed as sum of a
first order term and a corresponding so called “error term”
for small �P. Consecutively, bounds of the norms can be
obtained. However, such bounds are rough, except for small
variations around the original covariance matrices and imply
an already accurate knowledge of the VCM. Such conditions
are rarely reached, particularly when comparing OLS with
FGLS estimator. Moreover, the differences x̂ − x̂0 depends
on the residuals, and thus on the data sets used making
this formula not adequate for a more general quantification
on the estimates of the effect of changing the covariance
matrices.

Mean-squared error MSE

Based on Xu (1991), Rao and Toutenburg (1999) or Strand
(1974), we will here use the mean-squared error (MSE) to
compare the estimators obtained with approximated VCM.
As the mean-squared error is related to traces of matrices, for
the next sections, the natural norm used will be the Frobe-
nius norm defined for any square matrix as ‖�W‖F =
tr
(
�WT �W

)
.

MSE is defined as the function E
[(

x̂ − x̂0
)T (

x̂ − x̂0
)]

or the average squared difference between the estimator x̂
and the parameter x̂0. It can be interpreted as the sum of
the variability of the estimator (or precision) and its bias
(or accuracy). For the case of unbiased estimator such as
the general least squares estimator, the MSE and its variance
have the same values. The mean-squared error of an estimator
(Wackerly et al. 2008) measures its performance: a MSE
close to 0 means that the estimator predicts the parameter with
perfect accuracy. MSE should only be used for comparative
purposes, otherwise they are meaningless.

The loss of efficiency in estimating x̂ instead of x̂0 is
given by the nonnegative definite matrix (Rao and Touten-
burg 1999, p 107; Strand 1974):

Wx̂x̂−W0x̂x̂ =
(

ATŴ
−1

A
)−1

ATŴ
−1

W0Ŵ
−1

A
(

ATŴ
−1

A
)−1 −

(
ATW−1

0 A
)−1

. (7)

Equation (7) represents the difference of the cofactor
matrices of the unknowns between the FGLS and the GLS
estimator.

If we call E (x0) = xref , using the unbiasness of the least
squares estimator and by taking trace, Eq. (7) can be written
as:

E
[(

x̂ − xref
)T (

x̂ − xref
)] = E

[(
x̂ − x0

)T (
x̂ − x0

)]

−E
[
(xref−x0)

T (xref−x0)
]
,

or alternatively MSEx̂−xref
= MSEx̂−x0

− MSEx̂ref−x0
.

The trace operator being commutative, we obtain

MSEx̂−xref
= tr

([
Ŵ

−1
A
(

ATŴ
−1

A
)−2

ATŴ
−1

]
W0

)

−tr

((
ATW−1

0 A
)−1

)
(8)

This expression can be simply written as

MSEx̂−xref
= tr (P1W0)

−tr

((
ATŴ

−1
0 A

)−1
)

, (9)
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where P1 =
[

Ŵ
−1

A
(

ATŴ
−1

A
)−2

ATŴ
−1

]
is a known

matrix of size (n × n). Equation (8) highlights that the
MSEx̂−xref

is the difference of two unknown quantities and
cannot be used easily without an exact knowledge of W0.
However, using simple trace equality, Strand (1974) proved
that Eq. (9) can be approximated. Moreover, based on the
Rayleigh quotient, Strand (1974) developed a bound of this
equation with known quantities (design matrix, ‖�W‖F as
well as the estimated covariance matrix) valid for small
‖�W‖F which won’t be developed here.

The main advantage of the MSE formulation is its non-
dependency on the dataset allowing still a quantification of
the mean-squared differences of the estimated parameters
when covariance matrices are changed (i.e. for instance diag-
onal with fully populated VCM). For a more straightforward
comparison of the estimators, ratios should be, however,
formed (see also Stein 1999).

MSE differences and aposteriori variance factor ratios

In the case of simulation studies, W0 is known, thus the ratio

RMSE = MSEx̂−xref

MSExref−x̂0

=
tr

([
Ŵ

−1
A
(

ATŴ
−1

A
)−2

ATŴ
−1

]
W0

)

tr

((
ATW−1

0 A
)−1

) −1

(10)

allows to analyse the influence of changes in the structure of
the estimated covariance matrices; a minimum of the ratio
being searched, deviations from it give some indications on
the global qualities of the corresponding estimator.

The bias of the variance of unit weight can be further
computed; an unbiaised σ̂ 2

Ŵ
corresponding to TR close to 0

being preferred. Correspondingly to Eq. (10), the ratio Rσ̂ =
E
(
σ̂ 2

Ŵ

)
σ 2 = 1 + TR is formed. For test statistics we use the

overall model test (Teunissen 2000) which reads:

σ̂ 2
Ŵ

σ 2 > Fp (m − n,∞, 0) (11)

where Fp (m − n,∞, 0) is the central F-distribution having
n − u and ∞ degrees of freedom, and a probability p.

In case of real data study, as for instance by computing
coordinates with least-squares adjustment from a GPS rel-
ative positioning scenario with double differences, W0 is
unknown. Thus, as soon as neither �W nor ‖�W‖F are
accessible, MSE values are not computable to quantify the
loss of efficiency.

However, it is possible to compare two estimators by com-
puting the root Mean-Squared of the parameters difference:

3drmsX1−X2 =
√

trace
(
(X1−X2)

T(X1−X2)
)

m
, (12)

where X1, X2 are the time series of coordinate of size
m ×3 computed with two different apriori cofactor matrices,
Ŵ1, Ŵ2, respectively, but the same design matrix.

2.3 The Mátern covariance functions

In the following section, the Mátern covariance function used
in this contribution to compute Ŵ for GPS observations is
shortly presented. Derived from an inverse polynomial spec-
tral density function, Mátern covariance functions can model
many physical processes (Mátern 1960; Guttorp and Gneit-
ing 2005; Meier 1981) and can be extended to anisotropy and
nonstationarity (Fuentes 2002; Spöck and Pilz 2008).

The isotropic and stationary covariance function can be
parametrized as follows:

C (r) = φ (αr)ν Kν (αr) , r = ‖x − y‖ (13)

r is the Euclidean distance where x, y ∈ R
n are two points

(Yaglom 1987). The corresponding spectral density, related
to the covariance function via the Wiener-Khintchine theo-
rem (Chatfield 1989) is given by:

S (ω) = φ2ν−1� (ν + 1/2) α2ν

√
π
(
α2 + ω2

)ν+1/2 (14)

where ν > 0, α > 0 are constant parameters, ω the angu-
lar frequency. The scalar parameter φ > 0 is chosen so
that the variance equals 1; ν is a measure of the Mean-
Squared differentiability of the field (Stein 1999), defined
as “its smoothness”. The constant α is the inverse of the
Mátern correlation time or length (ICT) and indicates how the
correlations decay with increasing distance or time (Journel
and Huifbregts 1978). A correspondence between correla-
tion length and α is shortly given in Table 1. The modified
Bessel function of order ν (Abramowitz and Segun 1972) is
denoted by Kν . When ν is half-integer, (i.e. ν = l + 1

2 , where
l is a non-negative integer), the Mátern covariance functions
are easy to express as a product of an exponential and a poly-
nomial of order l. For instance:

Table 1 Approximate correspondence between correlation length or
time for different Mátern parameter sets

α = 0.01 α = 0.03 α = 0.05 α = 0.1 α = 0.2

Correlation
time (s)
(approxi-
mately)

600 300 180 120 60
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Fig. 1 Correlation functions for different Mátern parameter sets

• ν = 1/2 corresponds to the exponential covariance func-
tion,

• ν = 1 to the Markov process of first order,
• ν = ∞ is the squared exponential covariance function.

Although popular, this function corresponds to an infi-
nitely differentiable random field at the origin and is thus
said to be physically less plausible than other parame-
trization. Some examples of the problems that can arise
by using this smoothness in least-squares or predictions
are shown in Stein (1999) or Koivunen and Kostinski
(1999).

Figure 1 shows the different correlation functions obtained
by varying the Mátern parameters set [α, ν]. As can be seen,
the differences between the correlation functions for different
smoothness parameters are not visually obvious. However,
the smoothness of the time series controls the rate of decay of
the spectral density at high frequencies and plays an impor-
tant role in interpolation problems. It should be chosen with
care to avoid missspecification of the covariance structure,
particularly at high frequencies. Consequences could be for
instance a poor decorrelation of the observations and corre-
spondingly residuals that are not white noise when used in
a least-squares adjustment. Further examples of time series
simulated with the Mátern covariance model can be found in
Kermarrec and Schön (2014).

The elements of the corresponding cofactor matrices are
given by:

Ŵ (r1, r2) = (
α
∣∣r−

1 r2
∣∣)ν Kν

(
α
∣∣r−

1 r2
∣∣) , (15)

where (r1, r2) are two indices. The true cofactor matrix
W0 is a (n × n) fully populated known matrix defined by
W0 (r1, r2) = (α0 |r1 − r2|)ν0 Kν0 (α0 |r1 − r2|).

In the next section, cofactor matrices built on Eq. (15)
are used in a least-squares adjustments (FGLSE) where the

design matrix corresponds to a relative GPS positioning sce-
nario. The Mátern parameters [α, ν] of the Ŵ are varied to
show their concrete influence on the ratios as defined in Sect.
2.1.

3 Simulations using GPS positioning scenario

3.1 Stochastic and functional models

3.1.1 Stochastic model

The influence of changing the estimated covariance matri-
ces in the least-squares adjustment is studied for a relative
positioning scenario with double differences where we first
assume the covariance matrix of the observations to be
known. A first step explains the construction of the different
fully populated covariance matrices whereas a second step
describes the results for the MSE, variance of unit weight and
ratios when changing the estimated VCM. General knowl-
edge on positioning strategies with double differences can be
found in Hoffmann-Wellenhof et al. (2001).

Based on the work of Kermarrec and Schön (2014) which
proposed a modelization of tropospheric correlations for the
GPS signals traveling the atmosphere, a Mátern function is
taken to build the covariance matrices.

The covariance function C between 2 observations at time
t and t + τ for one satellite i reads:

Ci,i (t, t + τ) = δ

sin (Eli (t)) sin (Eli (t + τ))
(ατ)ν Kν (ατ)

(16)

where Eli is the elevation of the satellite i . δ is a positiv factor
so that the value of the covariance function is scaled to have
a variance of 1 for a satellite at 90◦ elevation. For modelling
correlations due to the travel of the GPS signals through the
troposphere, the original model fixed [α, ν] = [0.008, 5/6]
based on turbulence theory.

We further extend the model by introducing a weighting
factor ρ to model the covariance between different satellites
i.e.

Ci, j (t, t + τ) = ρδ

sin (Eli (t)) sin
(
El j (t + τ)

) (ατ)ν Kν(ατ), i �= j,

(17)
where El j is the elevation of the satellite j.

Building the covariance matrix

The corresponding covariance matrix for a given station Ci, j

is built with Eq. (15). ρ is taken to 0.1 which corresponds
to a value that fits the model proposed by Kermarrec and
Schön (2014) (i.e. correlations between different satellites 5–
10 times lower than the covariance of one satellite with itself).
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The fully populated VCM Ŵ has a block structure. For a
station A and s satellites, we have:

ŴA =

⎡
⎢⎢⎢⎣

C1,1
A C1,2

A C1,3
A ... C1,s

A
C2,2

A C2,3
A C2,s

A
... C3,3

A
Cs,s

A

⎤
⎥⎥⎥⎦ .

For two stations A and B, the global covariance matrix for
undifferenced observations reads:

ŴUD =
[

ŴA ŴA,.B

ŴA,.B ŴB

]
.

For sake of simplicity and because the correlations between
observations of 2 different stations are much smaller than
between the observations at one station only (Schön and
Brunner 2008), we assume ŴA,B = 0. ŴUD is a cofac-
tor matrix of the undifferenced observations that does not
account for mathematical correlations (Santos et al. 1997).
Using the variance covariance propagation law (Beutler et al.
1987), the cofactor matrix for a relative positioning scenario
with double differences reads finally:

Ŵ = W = M
T

ŴUDM, where M is the matrix operator
of double differencing.

In the same way, the true cofactor matrix of the observa-
tions is defined as W0 = MTW0UDM where W0UD is the
true cofactor matrix of the undifferenced observations.

Choice of the model

Equations (16) and (17) allow to build sub-covariance matri-
ces for all different satellites pair combination. It is based
on a physical derived model (Wheelon 2001), generalized to
become a “global” covariance model.

• The variance model chosen accounts for an elevation
dependency which is the commonly used 1/sin2 (El)
model (Vermeer 1997).

• The Mátern covariance function describes temporal cor-
relations via the time difference τ generated by different
factors. Here, we let [α, ν] varying freely. The 1/sin2 (El)
weighting factor is different for all satellite combinations
and changes for each entry of the covariance matrix to
model a small non-stationarity. This factor varies slowly
as the elevation of the satellites.

This general model for correlation is built on models for tro-
pospheric refractivities (ν = 5/6) or multipath (ν = 1/2
without elevation dependency) but takes advantage of the
great flexibility of the Mátern model through the variations
of the parameters ν and α in a physically plausible range.

Thus, long or short correlations, as well as different smooth-
ness can be simulated or modelled, i.e. the novelty being that
all correlating factors are not described separately but mixed
in a global model. Stein (1999) stressed the fact that hav-
ing both parameters [α, ν] allows a description of the high
and low frequencies behaviour of the time series (or fields).
Thus, better test statistics can be achieved compared with
covariance functions having only one dependency. We cite
exemplarily the spherical model or the squared exponential
model, see Rasmussen and Williams (2006). Particularly the
rate of decay of the spectral density at high frequency gov-
erned by ν is important for smooth processes as GPS carrier
phase observations from long baselines (Sect. 4).

An estimation of the values of the parameters [α, ν] can be
done directly from the data using maximum likelihood esti-
mation (MLE) or restricted MLE (RMLE)—see exemplarily
Handcock and Wallis (1994). In the following work, we aim
to study the impact of varying [α, ν] around some “guessed”
or roughly estimated values on the ratios presented in Sect.
2. It allows to make a proposal for an apriori variance covari-
ance model based on a flexible covariance function. New
insights on the works of Xu (1991, 2013) or Kutterer (1999)
are consecutively given.

Although not exactly similar due to the differences
between the underlying differential equations, the Mátern
covariance family can be linked to the AR processes based
on a comparison of the spectral density (Rasmussen and
Williams 2006). Previously, Luo (2012), Luo et al. (2012)
showed that AR models can fit the correlation structure of the
residuals for GPS observations, the AR(1) model being insuf-
ficient for noise characterisation particularly if multipath is
present. This motivates our modelization of the correlation of
GPS observations with a Mátern family by varying the corre-
sponding parameters. Moreover, in his work, Luo made use
of a studentization of the residuals, the 1/sin2 (El) weighting
used in Eq. (16) can be considered to have the same effect.
However, thanks to our model that accounts for different
physical effects in a global and flexible way, the covariance
doesn’t need to be estimated each time from the data. This
allows the use without many computational burden of fully
populated VCM in least-squares adjustment and a concrete
study of the impact on the ratios defined in Sect. 2. The phi-
losophy behind this modelization is clearly different to the
one used with iterative residual-based analysis.

Assumptions

In the resulting covariance matrices, all satellites are assumed
to have the same correlation structure. Generally, in a posi-
tioning scenario, at least 6, but more often 8 or more satellites
are present, with a relatively homogeneous sky distribution.
Thus, we believe that an averaged value for [α, ν] describe
with sufficient accuracy the correlation structure of the GPS
observations for all satellites of one session as an elevation
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Fig. 2 Structure of the reference cofactor matrix (Mátern model with
reference set [α0, ν0] = [0.01, 1] and ρ = 0.05) sorted per satellite

dependency is already taken into account [Eq. (16)]. Similar
argumentation is often employed for the exponential variance
model (see exemplarily Luo et al. 2013).

As our case study focuses on L1 GPS observations, the
description of correlations between different observation
types (Teunissen et al. 1998) is not directly addressed. How-
ever, a global covariance model for L3 observations may
also be resumed in a Matern covariance family. The vari-
ance model could, however, be adapted using for instance
an exponential with elevation dependency (Euler and Goad
1991). This analysis is let to further study.

Parameter used for the simulations

For the simulations, a common apriori variance factor of 1
is assumed. The Mátern parameters set for W0UD are first
chosen to [α0, ν0] = [0.01, 1] corresponding to a physically
plausible correlation length for GPS observations (Schön and
Brunner 2008). This set remains unchanged for the computa-
tion of all covariance matrices, i.e. also sub matrices Ci, j

A or

Ci, j
B . Figure 2b is a qualitative representation of the structure

of the undifferenced cofactor matrix. Taking stronger corre-
lations as well as higher smoothness (α < 10−4 and ν > 3)

would lead to instabilities in the least-squares computation
due to high condition number (up to 1010) of the assumed
covariance matrix.

Functional model

The design matrix is corresponding to a short baseline
(<1 km). We took a maximum observation span per satel-
lite of 100 epochs to avoid small sample size problems (i.e.
the correlation function does not reach the 0 value inside the
batch leading to instabilities).

3.2 Methodology

As we are searching for the behaviour of the loss of effi-
ciency by missspecifying the correlation structure of the
estimated covariance matrices or by neglecting correlations
when W0UD is exactly known, the ratio RMSE and the bias of
the variance of unit weight are computed by mean of Eqs. (10)
and (5), respectively. The relationship between the bias TR
and Rσ̂ is here Rσ̂ = 1 + T R.

Following to some extend the methodology of Koch et al.
(2010), four scenarios for the computation of the estimated
covariance matrices ŴUD are chosen:

1. The correlation structure of ŴUD is known (i.e. [α, ν] =
[α0, ν0]), only the parameter ρ is varied.

2. ρ is taken to 0, and thus ŴUD has a block diagonal
structure (no correlation between different satellites). The
Mátern parameters used to compute the block diagonal
submatrices are changed around the reference values so
that for every block diagonal sub-matrices, the same set
[α] ∈ [0.001...0.1] , [ν] ∈ [1/4....3/2] is used. The cor-
responding covariance matrices are called Ŵblockdiag.

3. Diagonal VCM: The first possibility is ŴUD = ŴELEV

which is corresponding to the commonly used elevation
model for GPS data, neglecting correlations. The second
case is ŴUD = I, the identity matrix, when no correlation
and equal variances are assumed.

4. A noise matrix is wrongly added to the apriori fully
populated covariance matrix i.e. ŴUD = λŴblockdiag +
(1 − λ) ŴELEV, 0 ≤ λ ≤ 1.

The influence of changing the true matrix by choosing
another reference Mátern parameter set [α0, ν0] or adding a
noise covariance matrix are separately treated. The impact of
the sample length and the design matrix are shortly addressed.

3.3 Results

3.3.1 Case 1: varying ρ

Figure 3 shows the variations of Rσ̂ (top) and RMSE (bottom)
for two ρ0, 0.05 (right) and 0.1 (left).

The loss of efficiency when the weighting parameter is
misspecified is more important when ρ > ρ0 = 0.05 than
when ρ < ρ0 as can be seen in Fig. 3d. If ρ = 0, the

value RMSE and
√∣∣MSEx̂−xref

∣∣ reaches 0.006 and 0.11 mm,
respectively, highlighting that the errors done by neglecting
the correlations between different satellites is low.

When the weighting factor ρ0 = 0.1 is considered,
RMSE = 0.025 if the apriori weighting factor is 0 which cor-

responds to
√∣∣MSEx̂−xref

∣∣ = 0.25 mm. Similarly to the first
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Fig. 3 Variations of the ratios with respect to changing ρ a Rσ̂ versus ρ b RMSE versus ρ for ρ0 = 0.1 c Rσ̂ versus ρ d RMSE versus ρ for
ρ0 = 0.05. The Mátern parameters are [α, ν] = [α0, ν0]

case, if ρ > ρ0, the loss of efficiency is quickly increasing

and values up to RMSE = 0.2 and
√∣∣MSEx̂−xref

∣∣ = 0.5 mm
are found for ρ = 0.15. Moreover, instabilities—not repre-
sented here for sake of readability—occur for higher ρ (i.e.√∣∣MSEx̂−xref

∣∣ = 2 mm for ρ = 0.17).
The top-plot of Fig. 3 shows the variations of Rσ̂ with

ρ. Here a more linear behaviour can be found. Neglecting
correlations yields smaller values and thus statistical tests
would pass, while too strong correlations yields higher values
than 1, leading more easily to a rejection of the overall model
test. An underestimated σ̂ by using block diagonal VCM
(Sect. 3.2, case 2) in the least-squares adjustment could be
an indication that ρ �= 0.

From these simulations, it follows that setting ρ = 0 and
considering that ŴUD = Ŵblockdiag where only block diago-
nal matrices are computed with the reference Mátern set is a
satisfactory approximation both for the RMSE and Rσ̂ . It will
be shown to remain valid also for higher correlation length
(Sect. 3.3.5). Moreover, if the weighting factor is overesti-
mated, the loss of efficiency is quickly increasing, leading to
a higher inaccuracy at the estimates level as well as poten-
tially instabilities due to the use of fully populated matrices
with high condition number in the least-squares adjustment.

3.3.2 Case 2: block diagonal matrices: varying the
estimated set [α, ν]

The variation of RMSE, Rσ̂ as well as ‖�W‖F are pre-
sented in Fig. 4 when the Mátern sets [α, ν] is varied, the
reference set values being fixed to [α0, ν0] = [0.01, 1] and
ρ0 = 0.05. Following 3.3.1, the block diagonal approxi-
mation is adopted. Figure 4a indicates that for high ν (i.e.
ν > 0.8), a rather exponential decrease of RMSE with α is
obtained, while for low ν, a small linear increase can be seen.

Figure 4b shows, however, that Rσ̂ is exponentially decreas-
ing for all ν, the maximum values are obtained for low α (i.e.
high correlation length). Thus, the overall model test is more
easily rejected if erroneously correlations are considered.

Missspecifying [α, ν]

If the smoothness is correctly estimated (ν = ν0) but α

missspecified, the ratio RMSE is increasing more strongly
for lower value of α (RMSE = 0.02 for α = 0.008) than
for higher values (i.e. RMSE = 0.012 for α = 0.016). The

values of
√∣∣MSEx̂−xref

∣∣ for these particular cases decrease
from 0.26 to 0.21 mm, correspondingly.

The ratio Rσ̂ is quickly increasing for α < α0, higher
values of the parameter (i.e. α > α0) leading to a ratio close
to the one given for ν < 1/2.

Assuming that the correlation length is exactly known
(α = α0), a missspecification of the smoothness parame-
ter in a range [0.4–1.3] can lead to a RMSE two times higher
(0.02) compared with the minimum value. For this case we

found
√∣∣MSEx̂−xref

∣∣ ∈ [0.14–0.2 mm]. The maximum is
reached for small smoothness, thus for estimated matrices
which covariance function at the origin is quickly decreas-
ing (Eq. 13).

At the same time, the bias of the variance of unit weight
is positive and increases strongly for ν > ν0. However, the
overall model test would reject such solutions. It should be
noted that is ν < ν0 the bias is negative, thus the quality
of the solution is overestimated. Such a behaviour cannot be
so clearly seen in the RMSE highlighting the importance of
studying both ratios.

In the GPS literature, the exponential model correspond-
ing to ν = 1/2 is quite popular [we cite exemplary
El-Rabbany (1994)]. It is used to empirically fit the data
for the computation of the correlation length. However, if
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Fig. 4 a RMSE versus α for different ν b bias TR of the variance of unit weight, the blue line is corresponding to TR = 0 c Frobenius norm of the
matrix difference. The parameters [α, ν] of Ŵblockdiag are changed. The reference values are [α0, ν0] = [0.01, 1]

the data have a higher smoothness (i.e. ν = 1), the loss of
efficiency will be up to two times higher if at the same time
α > α0 (i.e. RMSE = 0.02 for α = 0.015). The most impor-
tant differences is highlighted by the behaviour of the bias of
the variance of unit weight which is negative whichever α is
taken in consideration. It points out that both the smoothness
factor (behaviour of the covariance function at the origin) and
the correlation length are playing an important role. How-
ever, when the covariance structure is absolutely unknown,
a conservative set should be preferred (ν < 1 and α > 0.05
-i.e. less correlation), the bias of the variance of unit weight
growing quickly if ν is too high. The same remark is pointed
out in Rao (1967) for autoregressive processes.

Minimum of RMSE

Figure 4a highlights that the minimum of RMSE is reaching
0.01 for [α, ν] = [α0, ν0]. However, other Mátern sets would
lead to a ratio RMSE close to this minimum value. Figure 4b
shows that for these same sets, the ratio Rσ̂ would be 1 (i.e. no

bias) and at the same time, the Frobenius norm of the matrices
differences is minimal (Fig. 4c). Thus, for a given correlation
structure, more than one Mátern set leads to optimal results
in term of loss of efficiency and bias of the variance of unit
weight.

3.3.3 Case 3 and 4: diagonal apriori VCM

Table 2 highlights that a higher loss of efficiency is obtained
when changing the diagonal structure of the undifferenced
covariance matrix. Indeed, with the identity covariance
matrix RMSE is more than 30 times higher than with an
elevation dependent diagonal model. The solution would be
moreover rejected by the overall model test since Rσ̂ = 11.
A comparison of the diagonal elevation dependent model
(ELEV) with block diagonal models shows that the bias of
the variance of unit weight remains comparable, the loss of
efficiency with ŴELEV being, however, 8 times higher than
with Ŵblockdiag.
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Table 2 RMSE, ‖�W‖F and
Rσ̂ for diagonal estimated
covariance matrices, short
baseline scenario. Reference set
[α0, ν0] = [0.01, 1]. The values
for Ŵblockdiag are given for
comparison

Batch size 100 epochs/satellite
[α0, ν0] = [0.01, 1]

ŴELEV I Ŵblockdiag
[α0, ν0] = [0.01, 1]ρ = 0

RMSE 0.0493 1.9137 0.0066

‖�W‖F 3.4535e + 03 3.7785e + 03 227.6539

Rσ̂ 0.9373 11.2989 0.9642

Following Sect. 2.2, a comparison between the ELEV and
block diagonal model with the correct correlation structure
can be done by building the difference√∣∣MSEx̂BLOCKDIAG−xref

− MSEx̂ELEV−xref

∣∣ which reaches a
value of 0.23 mm, thus a difference between the 2 models at
the submm level for this Mátern parameters set.

3.3.4 Case 5: influence of noise matrices

It is possible to add a diagonal covariance matrix to the
apriori or assumed covariance matrices to simulate an
elevation dependent noise, i.e. Ŵnoise = λŴblockdiag +
(1 − λ) ŴELEV, 0 ≤ λ ≤ 1, which is often found in the
analyses of measurements. If the true VCM is, however, free
from noise (λ0 = 1), the differences between the RMSE with
ŴELEV and Ŵblockdiag are smaller than for case 4. RM SE

reached a value of 0.0492 if λ0 = 1 with Ŵ = ŴELEV and
0.0066 with Ŵ = Ŵblockdiag. However, if Ŵ = Ŵnoise with
λ = 0.4 is used, RMSE = 0.0179 (i.e. more weight is given
to the diagonal and the solution becomes close to the one
obtained with the ELEV model).

If the correct VCM is accounting for an elevation depen-
dent noise as follows: Ŵ0 = λ0Ŵblockdiag + (1 − λ0) ŴELEV,

0 ≤ λ0 ≤ 1, a ratio RMSE = 0.3128 for λ0 = 0.2 was found
by taking Ŵ = Ŵblockdiag (λ = 1), and a bias of the variance
of unit weight of 12.9386, which is a strong indication for
a model missspecification. On the contrary, if Ŵ = ŴELEV

(λ = 0), the RMSE = 0.0112 is 4 times lower than for the
previous case, the bias of the variance of unit weight reach-
ing −0.0125, thus close to 0. In this case, neglecting the
noise matrix in the apriori VCM will lead to a higher loss
of efficiency and bias than if only an elevation dependent
diagonal matrix was set up, the block diagonal model being
rejected by statistical tests of the variance of unit weight.
However, a value of 0.40mm was computed for the difference√∣∣∣MSEx̂BLOCKDIAG−xre f

− MSEx̂ELEV−xre f

∣∣∣, highlighting that

the error done at the estimate level remains anyway small.
Thus, if there is an indication of a high noise level in the
observations (i.e. λ > 0.5), taking Ŵ = ŴELEV is probably
a better solution in term of loss of efficiency than trying to
take correlation into account additionally.

3.3.5 Change of the reference parameter set [α0, ν0]

A higher loss of efficiency is reached if the reference set
is changed to simulate longer correlations with [α0, ν0] =
[0.005, 1]. Such a correlation structure could be a good
modelization for longer baselines (i.e. >100 km), where
non-modelled systematic effects such as the impact of
the ionosphere, troposphere or multipath remain in the
time series. For more clarity, we restrict ourselves to a
comparison between the ELEV and some block diagonal
model obtained by varying the Mátern parameter set of
the block diagonal matrices. A low correlation scenario is
also presented where [α0, ν0] = [0.05, 1/2]. The corre-
sponding results for the two [α0, ν0] are presented in Table
3.

As expected, changes of the reference Mátern parame-
ter set [α0, ν0] appears to act more strongly on the loss of
efficiency RMSE if [α0, ν0] = [0.005, 1] than in the previ-
ous case, i.e. [α0, ν0] = [0.01, 1]. RMSE is between 2 and
3 times higher than previously with [α0, ν0] = [0.01, 1] for
the two models Ŵblockdiag and ŴELEV. Moreover, the bias
of the variance of unit weight is higher when the covariance
matrices is misspecified. As mentioned previously, taking
lower ν and higher α than the reference values is leading to
results close to the one given by the elevation dependent diag-
onal model, too low α leading to a higher loss of efficiency.

The value of
√∣∣MSEx̂BLOCKDIAG−xref

− MSEx̂ELEV−xref

∣∣ is
approximately 0.5 mm if α is not overestimated which
is approximately 2 times higher than with [α0, ν0] =
[0.01, 1]. However, underestimating α may lead to an erro-
neous MSE estimates difference of 2 mm with [α, ν] =
[0.001, 1].

For the low correlation scenario [α0, ν0] = [0.05, 1/2],
the loss of efficiency by missspecifying the covariance matri-
ces is negligible (approximately 0.005 for the exemplary
estimated covariance matrices). The MSE difference is at the
same time much lower for this low correlation scenario (0.03
and 0.05 mm for the two relevant simulated cases). Thus, if
the data are not strongly correlated, the estimates difference
between a diagonal covariance model and a fully popu-
lated one (with a similar diagonal) will not exceed a submm
level.
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Table 3 RMSE, Rσ̂ and
√∣∣MSEx̂BLOCKDIAG−xref

− MSEx̂ELEV−xref

∣∣ by changing the Mátern parameter set of reference for two correlation structures
(low and high scenario). 100 epochs pro batch per satellite. The same design matrix was used as in Table 2

Batch size ŴE L EV Ŵblockdiag Ŵblockdiag Ŵblockdiag
100 epochs/satellite
[α0, ν0] = [0.005, 1] [α, ν] = [0.005, 1] [α, ν] = [0.01, 1] [α, ν] = [0.001, 1]

ρ = 0 ρ = 0 ρ = 0

RMSE 0.1112 0.0223 0.0478 1.1847

Rσ̂ 0.9104 0.9647 0.3462 20.7275√∣∣∣MSEx̂BL OC K DI AG−xre f
− MSEx̂ELEV−xref

∣∣∣ xx 0.5486 0.4635 1.9072

Batch size ŴELEV Ŵblockdiag Ŵblockdiag Ŵblockdiag

100 epochs/satellite

[α0, ν0] = [0.05, 1/2] [α, ν] = [0.05, 1/2] [α, ν] = [0.05, 1] [α, ν] = [0.01, 1/2]
ρ = 0 ρ = 0 ρ = 0

RMSE 0.0051 0.0041 0.0053 0.0753

Rσ̂ 0.9623 0.9640 0.9640 2.5920√∣∣∣MSEx̂BLOCKDIAG−xre f
− MSEx̂ELEV−xref

∣∣∣ xxx 0.0316 0.0592 0.1345

3.3.6 Influence of the sample length and the design matrix

Influence of the sample length

The influence of the sample length is comparable with the
effect of taking a lower correlation length (higher α) or a
lower smoothness factor (lower ν) into account.Simulations
with batch size of up to 200 epochs a 30 s (i.e. 1.5 h of
observations) were carried out showing that for all scenar-
ios, the RMSE is decreasing by increasing the batch length.
For 200 epochs, RMSE for Ŵblockdiag and ŴELEV was 3 and
2.5 times smaller, respectively, than with 100 epochs, the
bias of the variance of unit weight being slightly smaller
than for short batch length, particularly for Ŵblockdiag. The

ratios with either Ŵblockdiag or ŴELEV are becoming similar
with longer batch size (asymptotic behaviour). The differ-

ence
√∣∣MSEx̂BLOCKDIAG−xref

− MSEx̂ELEV−xref

∣∣ was found to
be 0.1 mm lower than with a batchsize of 100 epochs for the
correct correlation structure.

Impact of changing the design matrix

The same simulations were carried out for different design
matrices corresponding to different geometries or baseline
lengths, leading to the same order of magnitude of the
RMSE for the Mátern parameter set of reference [α0, ν0] =
[0.01, 1]. The corresponding results are not presented here
for sake of shortness. The design matrix is not playing
an important role in the loss of efficiency as long as
approximated smoothness and correlation length values are
known. Other scenarios were also tested, corresponding to
single point positioning with or without clock estimation
(Hoffmann-Wellenhof et al. 2001) leading to the same con-

clusions. The only way to have much higher RMSE is to
act artificially on the design matrix by letting for instance
one column having random values. Please refer to “Appen-
dix 2” for an interpretation of this “non-dependency”. For
the different types of design matrices which were simulated,

the difference
√∣∣MSEx̂BLOCKDIAG−xref

− MSEx̂ELEV−xref

∣∣ var-
ied between 0.2 and 0.8 mm for the Mátern parameter set
of reference [α0, ν0] = [0.01, 1], the higher results corre-
sponding here to a 100 km baseline-length, highlighting the
smallness of the MSE of the estimates differences between
an elevation dependent diagonal model and fully populated
models with the same diagonal. These important results give
weight to the possibility of approximating the correlation
structure of a dataset by estimating it for one batch and gen-
eralizing the value for the rest of the observations.

The next section is devoted to a case study with real data
to confirm the conclusions of our simulations. W0 is from
now on unknown, however, valuable assumptions about its
structure are possible, based on known models or Maximum
Likelihood Estimations of the Mátern parameters.

4 Case study GPS relative positioning

4.1 Case study short baseline

Methodology

L1 GPS data from the European Permanent Network EPN
(Bruyninx et al. 2012) from two stations Zimmerwald 1 and 2
(ZIMM and ZIM2) in Switzerland are chosen as example for
a short baseline positioning scenario. The distance is reach-
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ing a few meters so that distortions and specific problems due
to long baselines (ambiguities resolution, ionosphere or tro-
posphere) are mainly avoided. The observations have a 30s
rate and a cutoff of 5◦ was taken. No ionospheric anomaly
during the observation period was found. Some multipath is
present which appears not to be problematic for our study
since we are not searching for the “best” data, i.e. testing
the influence of the covariance matrix on the results is the
topic of our research. The North East Up (NEU) coordinates
are computed for 51 consecutive GPS days -DOY100 until
DOY150 of 2015. Batches of 100 epochs were computed
starting at time GPS-SOD 10:10:10, shifted every follow-
ing day of −3′56′′ to have nearly the same geometry (i.e.
the same design matrix). No change of the reference satel-
lite occurs and the ambiguities are solved in advance. The
design matrix corresponds to the previous simulations. The
reference values are the long term station coordinates from
the EPN solution.

The correct covariance structure of the observations is
unknown and filled based on apriori knowledge, allowing
a comparison of different matrices with different parameters
following 3.2.2. The apriori variance factor is assessed to
2 mm. A critical value of 1.185 corresponding to the central
F-distribution with p = 0.1 (i.e. 10%) is chosen (Teunissen
2000, p. 128). It should be pointed out that for these partic-
ular batches, the GLS estimates (i.e. the truth estimates) are
unknown. Only values coming from the Feasible GLS with
estimated covariance matrices are computable. NEU coor-
dinates differences close to 0 are not obligatory correct for
that particular dataset. For that reason, it is only possible to
compare two estimated models with each other. Following
Sect. 2.2, the root mean-squared of the coordinate difference
between the ELEV and the block diagonal model is formed:

3drmsXblockdiag−XELEV

=
√

trace
(
(Xblockdiag−XELEV)T(Xblockdiag−XELEV)

)
m

,

where Xblockdiag, XELEV are two time series of NEU esti-
mates of length m = 51 obtained with the same design
matrix but different datasets as well as different estimated
covariance matrices, i.e. Ŵblockdiag and ŴELEV, respectively.
The 3drmsXblockdiag−XELEV value is expressed in [mm] and
a natural comparator for a positioning case. We chose not
to add a noise VCM, the M SE values and by analogy the
3drmsXblockdiag−XELEV having shown to remain similar up to a
few submm with or without noise VCM. Model missspeci-
fications are anyway indicated by the overall model test as
shown in Sect. 3.3.4.

As previously, the Ŵblockdiag are changed by varying the
Mátern parameter set in a plausible range, depending on the
assumed correlation structure for GPS data (Schön and Brun-

ner 2008). To confirm the small influence of the design matrix
on the results, a second start time (GPS SOD 19:00:00) was
computed with the same methodology. The results and con-
clusions being identical to the first time start, they are not
presented for the sake of shortness.

Results

The corresponding results are presented in Fig. 5. The
3drmsXblockdiag−XELEV versus ν for different α is plotted in
Fig. 5a. It highlights how the differences between the two
models behave with the apriori Mátern parameters. The ratio

Rσ̂ = E
(
σ̂ 2

Ŵ

)
σ 2 is shown in Fig. 5b with Ŵ = Ŵblockdiag,

where E
(
σ̂ 2

Ŵ

)
is corresponding to the mean value of σ̂ 2

Ŵ
over

the 51 days. The blue line corresponds to the critical value
1.185 of the central F-distribution with p = 0.1. Figure 5c
shows additionally the 3drmsXblockdiag when the Mátern para-
meters are changed as well as the corresponding 3drmsXELEV .

The order of magnitude of 3drmsXblockdiag−XELEV is below
0.1 mm when the Mátern parameter set is varied in a range
of 0.5–1.2 for the smoothness ν and 0.025–0.1 s−1 for
α. By comparing with the previous simulations (Table 3),
this gives weight to a correlation structure corresponding to
α ≈ 0.05 s−1 (i.e. low correlation scenario). The value of
3drmsXblockdiag−XELEV being extremely small, a rough estima-
tion of α should be sufficient to improve both the estimates
as well as the variance of unit weight (Fig. 5b). However,
σ̂ŴELEV

reaching already the apriori value of σ , it is ques-
tionable if taking correlations apriori into account for this
short baseline, where the underlying data are very slightly
correlated is necessary. Indeed, Fig. 5c points out that the
difference between 3drmsXblockdiag and 3drmsXELEV is less
than 0.05 mm and can be considered as negligible for most
applications.

Nevertheless, some general remarks can be drawn from
the subfigures: similarly to the simulations, Fig. 5a highlights
that as ν becomes smaller, the value 3drmsXblockdiag−XELEV

tends to 0. Particularly for smaller α, the ELEV and block
diagonal model are giving similar results. Thus, the choice of
the smoothness parameter is as important as the correlation
length (Stein 1999), particularly for observations with high
frequencies. For this short baseline scenario, the ratio Rσ̂

obtained by varying Ŵblockdiag is below the critical value for
a wide range of α if ν is smaller than 0.8. Thus, a smoothness
parameter between ν = 1/2 and ν = 1 is reasonable together
with a roughly estimated correlation length, the value of
3drmsXblockdiag−XELEV being below the submm level. Higher
ν by too small α (for instance ν > 1 and α < 0.04) leads to
a rejection of the Mátern parameter sets (i.e. more “conserv-
ative” values should be preferred if the correlation structure
is unknown as previously mentioned). Thus, approximated

123



478 G. Kermarrec, S. Schön

Fig. 5 a 3drmsXblockdiag−XELEV (mm) versus ν, for different α b Rσ̂ c 3drmsXblockdiag (mm) versus ν for different α. The blue line is corresponding to
3drmsXELEV , the black dotted line to the critical value of the central F-distribution with p = 0.10. Case short baseline

[α, ν] for the global VCM are sufficient to have a slightly
improved variance of unit weight with respect to the ELEV
model.

Consecutively, a maximum likelihood estimation of [α, ν]
(Handcock and Wallis 1994; Stein 1999; Mardia and Watkins
1989) was computed exemplarily for one batch of 100 epochs
and all 8 satellites present and gave approximate values
between 0.1 and 0.05 s−1 for α and 1 and 1.05 for ν, thus in
good agreement with the previous mentioned values.

4.2 Case study long baseline

Methodology

For this second case study, a longer baseline (approximately
80 km) between the EPN stations KRAW and ZYWI in
Poland was computed. 51 days starting at GPS DOY200 of
2015 were chosen. An apriori variance factor of 8 mm is
assumed. The results are presented in Fig. 6.

Results
From Fig. 6a it can be seen that the 3drmsXblockdiag−XELEV

value is linearly increasing with ν and approximately 3 times
higher than for the short baseline length case for the same
Mátern parameter set of [0.02, 1]. Following the results of the
simulations, this gives weight to a higher correlation length
than previously. Moreover, the effect of changing [α, ν] on
3drmsXblockdiag−XELEV and Rσ̂ is more important than in the
first case. The differences between the diagonal and the fully
populated model are remaining, however, below the mm
level.

Figure 6b shows clearly that Rσ̂ is reaching a minimum,
corresponding to a minimum of the bias. However, we sug-
gest to reject Mátern sets on the left of the minimum, since
it seems more logical that with increasing α and decreas-
ing ν, Rσ̂ tends to the value given with the ELEV model,
as shown in the simulations. The set [α, ν] = [0.015, 0.9]
gives a 3drmsXblockdiag−XELEV of approximately 0.8 mm with
at the same time a minimum of Rσ̂ of 1. This set is close to
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Fig. 6 a 3drmsXblockdiag−XELEV (mm) versus ν , for different α b Rσ̂ c 3drmsXblockdiag (mm) versus ν for different α. The blue line is corresponding
to 3drmsXELEV , the black dotted line to the critical value of the central F-distribution with p = 0.10. Case long baseline

the approximate mean values [α, ν] = [0.018, 1] given by a
maximum likelihood estimation for 8 time series of observa-
tions corresponding to satellites at different elevations from
the first batch of observations. The corresponding value of
3drmsXblockdiag−XELEV is 0.75 mm and is thus close to the
guessed value. It should be noted that the elevation dependent
diagonal model would have been rejected with the overall
test for the assumed apriori variance of unit weight although
the differences between the 3drmsXblockdiag−XELEV are approx-
imately 0.8 mm. Thus, taking correlation into account for
longer baseline is valuable both in terms of loss of efficiency
(i.e. the cofactor matrix of the estimates) and test statistics
but not obligatory in terms of 3drms.

4.3 Proposal of how to choose the Mátern parameters of
the estimated covariance matrix

The two case studies have shown that the differences in terms
of estimates when different covariance matrices from fully

populated (i.e. block diagonal) to diagonal are used do not
exceed the mm to submm level. This holds true for a case cor-
responding to a 80 km baseline length where the observations
were correlated. However, it would be too easy to conclude
that taking correlations into account in least-squares adjust-
ments for GPS positioning can be neglected, fully populated
covariance matrices with correct Mátern parameters being
important to obtain both a smaller loss of efficiency (i.e. a
better covariance matrices of the estimates) as well as a bet-
ter estimation of the variance of unit weight, as shown in the
simulations and the case studies.

We recommend using the Mátern covariance family which
includes smoothness and correlation length parameters and
describe more accurately the behaviour of the observa-
tions at high and low frequencies. An elevation dependent
weighting was added to model non-stationarity. Block diag-
onal matrices that do not account for correlations between
different satellites lead to a negligible loss of efficiency
compared with fully populated matrices. Moreover, the risk
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taken by missspecifying the weighting factor between dif-
ferent satellites is high and is avoided thanks to block
diagonal VCM. However, for special cases of near orbit-
ing satellite, a corresponding subcovariance matrix could
be eventually computed for more accuracy. A good indi-
cation for this necessity being an underestimated ratio
Rσ̂ .

For GPS observations, a smoothness value of 0.8 indepen-
dent of the baseline length seems to be a good compromise.
It is at the same time close to the value proposed by Ker-
marrec and Schön (2014). For short baselines, the data are
nearly white noise and the correlation length small. From
the simulations, approximated values around α = 0.05 give
a good estimation of both the a posteriori variance factor
and the estimates. More exact values are unnecessary con-
sidering their impact at the estimates level as well as for the
variance of unit weight. For longer baselines, -or as soon as
relevant low frequencies can be proven in the double differ-
enced observations- lower α should be preferred. Values of
0.008 ≤ α ≤ 0.015 are a compromise between stability of
the least-squares adjustment and a more realistic VCM of the
estimates (i.e. a smaller loss of efficiency and a more realistic
variance of unit weight). In our long baseline scenario, the
3drms of the estimates difference when using the fully pop-
ulated model and the diagonal elevation model was reaching
0.75–1.4 mm for this range of values. For more accuracy, a
computation of the test statistic for the variance of unit weight
by slightly varying the correlation length could be interest-
ing, a value as close as possible to 1 for the overall test being
searched.

For less computational burden, we propose to estimate
the mean of the Mátern parameters corresponding to obser-
vations of satellites at different elevations for one batch via
Maximum Likelihood. This is an easy way to obtain a suf-
ficient approximation of [α, ν] for a given dataset. A noise
matrix should be eventually added to avoid an underesti-
mated variance of unit weight with fully populated VCM.
The amount of noise can be estimated from the observations
and averaged. It should be noted that a neglection of such
noise factor has only small impact on the estimates and on
the loss of efficiency. For noisy datasets, it is preferable to
use diagonal VCM.

Following our results, the smoothness of 1/2 used in the
popular exponential covariance function is sub-optimal and
yields results close to the one given by the diagonal eleva-
tion dependent model. Moreover, the estimated value of the
smoothness with MLE are close to 1 with an uncertainty of
+/0.05 in the two datasets used in this contribution. The a
posteriori variance of unit weight was underestimated with
an exponential model with respect to a higher smoothness
and the correct correlation length, highlighting a high loss of
efficiency although the differences was small (i.e. 0.2 mm)
at the estimates level.

The w-statistics test (Teunissen 2000) which allows to
detect outliers was also computed for both baselines. As
shown in Li et al. (2016), an improved stochastic model
leads to a lower false alarm of the w-statistics. Such results
are related to the eigenvalues decomposition of the cofactor
matrix of the estimates and a short explanation with a case
study is presented in “Appendix 2”. Similarly, the ambiguity
resolution success rate will be improved (Amiri-Simkooei
et al. 2016; Wang et al. 2000). Further contributions will
concentrate on mathematical developments of these results
as well as the impact of an improved diagonal weighting.

It should be mentioned that our study is based on trace
of matrices and is giving a global indication of the loss of
efficiency and the root mean-squared of the estimates dif-
ferences. For these estimators, the design matrix was shown
to play a minor role in the variations. The results for single
parameters were not the aim of our contribution. Our results,
particularly for the simulations, are general and not depend-
ing on the frequency. Therefore, they can be for instance
extended to L2 or L3-measurements taking care of the cho-
sen variance model.

5 Conclusion

The influence of changing fully populated covariance matri-
ces in least-squares adjustments have been studied for both
simulations and real cases corresponding to relative GPS
positioning with double differences. The target parameters
were the MSE, the 3drms as well as the aposteriori vari-
ance factor. Based on previous studies (Kermarrec and Schön
2014; Luo 2012), the Mátern family with an elevation depen-
dent weighting was chosen to simulate fully populated VCM
by varying the smoothness and the correlation length as well
as the cross correlation factor. We used simulations with a
reference set and showed the behaviour of the mean-squared
errors of the difference of the estimates as well as the bias of
the variance of unit weight for different scenarios. The results
were compared with the one given with the commonly used
1/sin2 diagonal variance model and are independent of the
underlying dataset.

It was shown that neglecting the correlations between
different satellites (i.e. block diagonal VCM) leads for our
simulation scenario to a loss of efficiency close to 0. Com-
pared with the values obtained when the cross correlation
factor is two times higher than the reference value, the block
diagonal approximation can be considered as less risky than
wrong estimated Mátern parameters and should be, therefore,
preferred.

By letting the Mátern parameters sets varying around the
reference value, the minimum of loss of efficiency was shown
not to be unique, corresponding to the bias of the variance
of unit weight being minimal or close to zero. A parallel
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with the minimum of the Frobenius norm of the difference
of the covariance matrices could be drawn. The influence
of changing both the smoothness and the correlation length
was studied. The behaviour of the ratio of the variance of unit
weight was an important criterion to exclude some sets. The
underlying geometry of the design matrix was not influencing
the loss of efficiency. However, increasing the batch length
or adding a noise matrix leaded to results closer to the one
given by the corresponding elevation dependent model. The
main loss of efficiency was obtained for strong correlated data
when the estimates VCM is missspecified. In such cases, the
root mean-squared of the coordinate difference could reach
values between 0.5–1 mm, compared with values lower than
0.01 mm for low correlation scenarios.

Two real analyses with GPS data from the EPN network,
with the same design matrix but different time series, con-
firmed the results of the simulations. The importance of the
smoothness parameters was clearly shown, particularly for
the long baseline scenario. Concluding the simulations and
the real case study, we proposed an easy and simple way to
determine the correlation structure of the GPS-observations
for a use in a least-squares adjustment. It is based on the com-
putation of a mean value of the Mátern parameter set for the
observations of all satellites during one batch and all satel-
lites. This value is integrated in a powerful covariance model
developed for GPS observations. Even being a modelization,
it allows to catch with enough accuracy the correlation struc-
ture and to benefit from their impact on the loss of efficiency.
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Appendix 1: BLUE and BLUP: on the only slight
dependency of the ratios with the design matrix: an
interpretation

Although not exactly similar, a parallel can be drawn between
the results obtained with the best linear unbiased estimator
(BLUE)—corresponding to our simulations using least-
squares—and best linear unbiased predictor (BLUP). This
parallel helps to explain the small dependencies of our results
on the structure of the design matrix for relative GPS dou-
ble difference positioning design for a given batch size and
correlation structure.

GPS positioning strategies could be interpreted as a “coor-
dinates interpolation”. For the double differenced case, the
position of the satellites is known. A parallel to kriging could
be seen where interpolated values of the station can be mod-
eled by a Gaussian process governed by prior covariances
(Cressie 1993). It is clearly not exactly the case, prediction

and estimation being two different statistical procedures—an
estimator is using data to guess a parameter while a predic-
tor uses the data to guess at some random values that are
not part of the dataset. Moreover, in a relative positioning
case with double differences, the resulting global covariance
matrices are also mathematically correlated, thus the spec-
tral density are not corresponding to simple Mátern cases.
However, drawing this parallel having in mind its limitation
allows a better understanding of the previous results.

Following Stein (1999) and Hannan (1970), a formula
modelling the prediction error under wrong spectral density
S1 (ω) can be obtained for the BLP (Best Linear Predictor)
case. The MSE of the pseudo BLP reads:

MSEx̂−xref
= 4π2

∫ π

−π
S0 (ω)/[S1 (ω)]2dω{∫ π

−π
[S1 (ω)]−1dω

}2

where S0 (ω) is the correct spectral density. MSEx̂−xref
is the

expected value of the BLP under the spectral density S0 and
S1 the estimated spectral density.

If one assume a Mátern spectral density as in Eq. (14)
with [α0, ν0] = [0.01, 1], Fig. 7 highlights that the same
shape as in Fig. 3a can be obtained by varying the Mátern
parameters around the reference set. The prediction error is
varying +/−0.01 around the value obtained with the ref-
erence Mátern parameter set. It should be noted that the
nominal values obtained for MSE x̂−xref

are not directly trans-
ferable to the previous GPS simulations since their meaning
as well as the scaling of the spectral density are not exactly
comparable. The prediction error can also be computed by
taking a constant spectral density, i.e. simulating a white
noise approximation. In both cases, the value MSEx̂−xref

was
found to be approximately 5 times the reference value of
MSEx̂0−xref

which is corresponding to our previous results
with the GPS double differenced design matrices for that
Mátern parameters set.

Fig. 7 Theoretical MSEx̂−xref
versus α, ν for the Mátern parameter set

(a) [α0, ν0] = [0.01, 1]
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Appendix 2: cofactor matrix of the estimates and
correlations

To explain the results found for the statistical tests as well as
for the 3drms of the estimates differences and its small impact
with respect to the baseline length, a study of the eigenvalue
decomposition of the involved matrices is here exemplarily
done. For the short baseline scenario the correlation length
were shown to be small or even negligible. Therefore, we
concentrate on the long baseline scenario. The last batch cor-
responding to the last GPS DOY of our data set is here taken
as an example to have a better insight on the effect of taking
correlations into account in least-squares adjustment.

Following notations are used:

x̂ = K1/2Ŵ
−1/2

y = K1/2ywhite

where K1/2 =
(

ATŴ
−1

A
)−1

ATŴ
−1/2

ywhite is the whitened observations vector, using either
ŴELEV or Ŵblockdiag, where the matrices account for double
differences and correlations.

Figure 8b represents the eigenvalue repartitions of the
square root of the two cofactor matrices. It can be seen that
the eigenvalues of the block diagonal matrix that takes cor-
relation into account have higher values than those of the
elevation dependent diagonal matrix which explains mostly
the differences seen when representing the whitened obser-
vation vectors ywhite (Fig. 8a).

Figure 9 highlights the similarity between the

Qx̂x̂ =
(

ATŴ
−1

A
)−1

matrices. As can be seen, these matri-

ces share the same eigenvectors, only the eigenvalues being
different. Moreover, for a simple case with an AR(1) cofac-
tor matrix, it can be seen that the structure of the GPS design
matrices, which have a nearly linear behaviour (Kermarrec

Fig. 8 a Whitened time series sorted per satellite (100 epochs maxi-

mum per satellite) b eigenvalues repartition of Ŵ
−1/2

(log plot)

Fig. 9 a Eigenvalues of Qx̂x̂ for block diagonal matrices (BD) and b
corresponding three eigenvectors

and Schön 2016) is responsible for this similarity, tests with
purely random design matrices have shown that the eigen-
vectors are not similar anymore for such extreme cases.

At the estimate level, the differences will mainly come
from the way the observations are whitened thanks to the
estimated covariance matrix (Fig. 8a). Strong differences are
not expected due to the similarity of the K1/2 matrices, and
subsequently of the Qx̂x̂ matrices.
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Abstract
The measurement errors of GPS measurements are largely due to

the atmosphere, and the unpredictable part of these errors are due
to the unpredictable (random) atmospheric phenomena, i.e., to tur-
bulence. Turbulence-generated measurement errors should correspond
to the smoothness parameter ν = 5/6 in the Matérn covariance model.
Because of this, we expected the empirical values of this smoothness
parameter to be close to 5/6. When we estimated ν based on measure-
ment results, we indeed got values close to 5/6, but interestingly, all our
estimates were actually close to 1 (and slightly larger than 1). In this
paper, we provide a possible explanation for this empirical phenomenon.
This explanation is based on the fact that in the sensors, the quantity
of interest is usually transformed into a current, and in electric circuits,
current is a smooth function of time.
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1 Formulation of the Problem: An Empirical

Fact That May Need Explaining

Temporal covariance: general idea. In many practical situations, we
perform repeated measurements of the corresponding quantity (or quantities)
at different moments of time.

Often, in data processing, measurement errors of different measurement
results are assumed to be independent; see, e.g., [2]. In many cases, this
assumption makes sense, since during the time between the two measurements
the factors affecting the measurement change in a random way. However, when
we make multiple repeated measurements, the time interval between the two
consequent measurements is so small that at least some of these factors do not
have time to change. As a result, there is a significant correlation between the
measurement errors of two consequent measurements.

To properly process the results of the corresponding measurements, we
need to know the covariance between measurement results obtained at different
moments of time.

According to [3], in many practical applications, the covariance C(T ) be-
tween the measurements separated by time T is often well described by the
following Matérn model:

C(T ) = ϕ · (α · T )ν ·Kν(α · T ), (1)

for appropriate parameters:

• α (whose meaning is that it is the inverse of the correlation time) and

• ν (that describes the smoothness of the resulting process).

Here, Kν(x) is the modified Bessel function of the second type of order ν. In
general, the Bessel function Jα(x) is defined as the solution to the differential
equation

x2 · d
2y

dx2
+ x · dy

dx
+ (x2 − α2) · y = 0

for which y(0) = 0. Then, we define Iα(x)
def
= i−α · Jα(i · x), where i

def
=
√
−1,

and

Kα(x)
def
=
π

2
· I−α(x)− Iα(x)

sin(α · x)
.



Temporal covariance of GPS measurements 1735

The Matérn covariance function can also be characterized by its Fourier trans-
form – spectral density

S(ω) =
ϕ · 2ν−1 · Γ(ν + 1/2) · α2ν

√
π · (α2 + ω2)ν+1/2

,

where Γ(x) is the gamma-function.

Temporal correlation of GPS measurements: what we expected. For
GPS measurements, the measurement error mostly comes from the uncertainty
of atmospheric propagation, and this uncertainty, in its turns, is caused by
turbulence. For turbulence, we expect the power spectrum to have asymptotics
S(ω) ∼ ω−8/3 which corresponds to ν = 5/6 ≈ 0.83; see, e.g., [1].

Of course, there are other factors affecting the measurement error, factors
which are described by different smoothness values. Thus, we expected the
empirical value of the smoothness parameter ν to be not necessarily equal to
ν = 5/6, but close to this value.

Temporal correlation of GPS measurements: what we actually ob-
served. In our analysis of the results of GPS measurements, we did indeed
get values close to 5/6 – in the sense that the value 5/6 was always within the
confidence interval for ν. However, interestingly, all our Maximum Likelihood
estimations of ν led to values between 1 and 1.05; see [1].

Again, as we have mentioned, this does not mean that there is any contra-
dictions with the turbulence idea – the value 5/6 is still within the confidence
interval for ν – but the fact that in all the cases, we get values close to 1 and
always larger than 1 may need explaining.

2 A Possible Explanation

Sensors usually transform a value of a quantity into an electric cur-
rent. Most sensors – whether they are photo-sensors, temperature sensors,
piezoelectric sensors – transform the quantity that we want to measure into
an electric current. Then, based on the value of the current, we estimate the
value of the desired physical quantity.

The current smoothly depends on time. In the linear approximation, any
system that processes electric circuits can be viewed as consisting of resistors,
capacitors, and inductors, the basic elements of all possible electric circuits.
Here:

• the voltage of the resistor is proportional to the current I,

• the voltage of the capacitor is proportional to the electric charge – i.e.,
to the integral of the current, and
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• the voltage of the inductor is proportional to the time derivative
dI

dt
of

the current.

Since voltage has to be always finite, this implies that the derivative of the
current is always finite – i.e., that the dependence of the current on time is
always differentiable.

This implies that the dependence of the measured value on time is
also differentiable. Since the measured value of the quantity is determined
based on the value of the corresponding current, this implies that the measured
quantity should also be a differentiable function of time.

How is this related to the smoothness parameter ν? It is known (see,
e.g., [3], Section 2.4), that a random process described differentiable functions
if and only if

∫
ω2 · S(ω) dω < +∞.

For the Matérn covariance function, we have S(ω) ∼ ω−(2ν+1) for large ν,
so

∫
ω2 · S(ω) dω ∼

∫
ω−(2ν−1) dω. For ω → ∞, this integral is infinite when

2ν − 1 ≤ 1:

• when 2ν − 1 < 1, this integral is proportional to ω−(2ν−2) →∞, and

• when 2ν − 1 = 1, this integral is proportional to ln(ω)→∞.

The integral is finite when 2ν − 1 > 1, i.e., when ν > 1.
Thus, the fact that the dependence of the measured value on time is dif-

ferentiable means that we should have ν > 1.

So what value ν should we expect? The actual value ν should be close
to 5/6. We want our measurements to be as accurate as possible, so we would
like to have the value of the smoothness ν to be as close to 5/6 as possible.
On the other hand, as we have mentioned, we will always have values of the
smoothness parameter larger than 1.

Out of the values larger than 1, the smaller the value ν – i.e., the closer it
is to 1 – the closer it is to 5/6.

So, for accurate measurements, we expect the corresponding value ν to be
very close to 1 (but still larger than 1).

So, we have an explanation. This is exactly what we observe – we observe
values ν which are close to 1 and larger than 1. Thus, we indeed get a possible
explanation for the observed phenomenon.
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Abstract Least-squares estimates are unbiased with minimal variance if the correct

stochastic model is used. However, due to computational burden, diagonal variance

covariance matrices (VCM) are often preferred where only the elevation dependency of the

variance of GPS observations is described. This simplification that neglects correlations

between measurements leads to a less efficient least-squares solution. In this contribution,

an improved stochastic model based on a simple parametric function to model correlations

between GPS phase observations is presented. Built on an adapted and flexible Mátern

function accounting for spatiotemporal variabilities, its parameters are fixed thanks to

maximum likelihood estimation. Consecutively, fully populated VCM can be computed

that both model the correlations of one satellite with itself as well as the correlations

between one satellite and other ones. The whitening of the observations thanks to such

matrices is particularly effective, allowing a more homogeneous Fourier amplitude spec-

trum with respect to the one obtained by using diagonal VCM. Wrong Mátern parame-

ters—as for instance too long correlation or too low smoothness—are shown to skew the

least-squares solution impacting principally results of test statistics such as the apriori

cofactor matrix of the estimates or the aposteriori variance factor. The effects at the

estimates level are minimal as long as the correlation structure is not strongly wrongly

estimated. Thus, taking correlations into account in least-squares adjustment for posi-

tioning leads to a more realistic precision and better distributed test statistics such as the

overall model test and should not be neglected. Our simple proposal shows an improve-

ment in that direction with respect to often empirical used model.
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stochastic model

1 Introduction

Compared with the well-described functional model for GPS positioning, the stochastic

model of GPS phase observations still remains improvable. A first approach to face this

challenge and assess the unknown variance–covariance matrix (VCM) of the observations

is to use variance–covariance estimation (VCE) techniques. We cite exemplarily Teunissen

and Amiri-Simkooei (2008), Tiberius and Kenselaar (2000), Amiri-Simkooei et al.

(2009, 2016), Bona (2000), Li et al. (2008, 2016). Iterative procedures have also been

developed based on the whitening of the least-squares (LS) residuals (Wang et al. 2002;

Satirapod et al. 2003; Leandro et al. 2005; Jin et al. 2010). Besides this somehow com-

putational demanding approach, a second one is based on modelling the co-variance of

GPS phase observations or residuals. If heteroscedasticity is widely assumed (Bischoff

et al. 2005) and taken into account thanks to an elevation dependent function for the

variance -mostly cosine or exponential variance, correlations are mostly disregarded due to

a lack of knowledge of the correlation structure. The corresponding Variance Covariance

Matrices (VCM) are thus diagonal and easier to handle in processing software. The main

disadvantage of this simplification is the biased least squares solution (Koch 1999; Gra-

farend and Awange 2012). The proposals to model correlations of GPS phase observations

are often limited to an exponential function (El-Rabbany 1994; Howind et al. 1999). The

approximated correlation length is estimated by fitting the autocorrelation function of LS

residuals with least-squares which was shown to be a non-optimal method to assess an

accurate correlation structure (Stein 1999). In Radovanovic (2001), a linear combination of

VCM accounting for correlations due to multipath described with an exponential function

and a noise matrix was proposed. Correlations due to tropospheric refractivities were

treated by Schön and Brunner (2008) and Kermarrec and Schön (2014) whereas the

physical modelization of temporal correlations of GPS observations due to the ionosphere

was empirical estimated by e.g. Wild et al. (1989). The noise of high frequency, short

duration GPS observations is addressed in Moschas and Stiros (2013). From all these

studies, it becomes evident that trying to model independently all correlation factors is not

a straightforward task. Thus, a simple and understandable correlation model should be an

useful tool to popularize the use of fully populated VCM in order to impact positively the

LS solution.

In this contribution, we propose an innovative way to model elevation dependent cor-

relations of GPS phase observations thanks to only one parametric covariance function.

Using Maximum Likelihood Estimation (MLE) to determine its parameters, a wide range

of correlations can be modelled without expressing them independently. Moreover, a

spatiotemporal dependency allows an individual weighting of the covariance function for

each satellite. Consecutively, fully populated VCM can be integrated in the weighted least-

squares positioning adjustment. Besides whitening the observations, they lead to an

improvement of the precision of the LS solution which becomes more realistic. The

corresponding effects of this new stochastic model will be detailed thanks to a particular

case study of a 80 km baseline for L1 and L3 observations, the ambiguities being fixed in

advance. The conclusions will be extended to other baseline lengths.

The remainder of this papier is structured as follows: the first section provides a brief

summary of the mathematical concepts of least-squares and physical correlations,
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introducing the Mátern model. The second section describes our proposal for GPS phase

correlations. A case study concludes the contribution in a third section, giving an insight on

what can be achieved thanks to this new model.

2 Mathematical concepts

2.1 Least-squares principles

When estimating a position with Global Positioning System (GPS) observations, unknown

parameters such as coordinates or integer ambiguities are computed using a linearized

weighted least-squares model. The corresponding functional model reads

l ¼ Axþ v; ð1Þ

where l corresponds to the n� 1 observation vector (i.e. Observed Minus Computed

vector), A the non-stochastic n� u design matrix with full column rank (rk Að Þ ¼ u), x the

u� 1 parameter vector to be estimated. When ambiguities are estimated, A and x are

partitioned into a coordinates and ambiguities part, i.e. A ¼ ½Ac;Aamb� and x ¼ ½xc; xamb�,
respectively. v is the n� 1 vector of the random errors. We let E vð Þ ¼ 0; E vvTð Þ ¼ r2

0W,

where W is a n� n positive definite fully populated cofactor matrix, r2
0 the apriori variance

factor and E :ð Þ denotes the mathematical expectation.

To solve for Eq. (1), the cost function vk k2
W¼ l� Axð ÞTW l� Axð Þ ¼ l� Axð Þk k2

W is

minimized (Koch 1999, Misra and Enge 2012) and under the previous assumptions, the

estimates of the unknown x̂ are obtained by:

x̂ ¼ ATW�1A
� ��1

ATW�1l ð2Þ

The apriori cofactor matrix of the estimated vector is given by

Qx̂¼ ATW�1A
� ��1 ð3Þ

Furthermore the aposteriori variance factor of the observations r̂2
0 is expressed as

r̂2
0 ¼ l� Ax̂ð ÞTW�1 l� Ax̂ð Þ

n� u
¼ vTW�1v

n� u
: ð4Þ

These estimators are unbiased when the correct weight matrix W�1 is used. Unfortu-

nately, this matrix is in most cases unknown. As a consequence, the so-called feasible

weighted least-squares (Greene 2003) is used and W is replaced by its estimates Ŵ which

we call in the following the apriori cofactor matrix of the observations.

2.2 Mathematical correlations

In order to eliminate nuisance parameters such as the receiver clock bias, the vector of

double differenced carrier phase observations between 2 stations is formed (Seeber 2003).

Thus, mathematical correlations have to be taken into account during differencing and the

final cofactor matrix of the observations reads (Santos et al. 1997)
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Ŵ ¼ MŴUDM
T ð5Þ

where M is the matrix operator of double differencing and ŴUD the undifferenced cofactor

matrix of the observations.

For two stations A and B, the global cofactor matrix reads

ŴUD¼ ŴA ŴAB

ŴBA ŴB

� �
ð6Þ

where ŴA and ŴB are the cofactor matrices of the observations corresponding to station A

and B, respectively, ŴAB and ŴBA the correlations matrices between observations of the 2

stations. Following Schön and Brunner (2008), we let in this contribution

ŴAB ¼ ŴBA ¼ 0. However, the proposed model for correlations (Sect. 3) is general

enough to allow for the computation of these two matrices.

Additionally, the ionospheric-free linear combination of the carrier phase measurements

can be formed by linear combination of the carrier phase observations of L1 and L2 (Misra

and Enge 2012). Besides the fact that L3 ambiguities are no longer integers, the noise is

increased by a factor of 3 with respect to L1 and L2 observations.

2.3 Temporal correlations

Mathematical correlations from double differencing can be easily modelled. However,

temporal correlations coming from multipath, ionospheric or tropospheric variations as

well as the receivers themselves have to be taken into account in ŴUD. For sake of

simplicity, we skip in the following the subscript UD and Ŵ designs the undifferenced

cofactor matrix of the observations which can be computed thanks to a covariance func-

tion. A necessary and sufficient condition for a family of functions to be a class of

covariance functions is the positive definiteness (Yaglom 1987). However, this condition is

not easy to check directly and for this reason, a range of standard families, positive definite

and flexible enough to be used widely have been identified. In the following, we introduce

shortly a general covariance family called the Mátern covariance function (Mátern 1960;

Stein 1999; Gelfand et al. 2010).

Empirically, the temporal correlation function C tð Þ of stationary processes decreases as

the time t increases. In addition, different applications may exhibit different degrees of

smoothness, this parameter being related to the behaviour of the correlation function at the

origin (Stein 1999). The popular Mátern family meets the requirement of flexibility and is

defined as

C tð Þ ¼ c atð ÞmKm atð Þ: ð7Þ

where c is a scalar. m is called the smoothness of the time series. The inverse of the Mátern

correlation time a indicates how the correlations decay with increasing time (Journel and

Huifbregts 1978). The modified Bessel function of order m (Abramowitz and Segun 1972)

is denoted by Km.

The corresponding spectral density is given by

S xð Þ ¼
2m�1c C mþ d=2

� �
a2m

pd=2 x2 þ a2
� �mþd=2 ð8Þ
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where x2 ¼ x2
1 þ x2

2 þ � � � þ x2
d is the angular frequency, C the Gamma function

(Abramowitz and Segun 1972). The dimension of the field d is 1 in case of time series of

observations.

From Eq. (8), the behaviour of S xð Þ by letting x ! 0 is both influenced by the

smoothness m and the correlation parameter a. For high frequencies, i.e. x ! 1, the role

of m is more important. Figure 1 shows for different parameter sets a; m½ � the corresponding

covariance function (top) and its realization (bottom). The time series are simulated thanks

to an eigenvalue decomposition of the Toeplitz covariance matrix built using Eq. (7).

Smooth time series are corresponding to high m (Fig. 1 left). A visual determination of the

smoothness of the corresponding time series is difficult to assess from the correlation

function itself. On the other hand, a is related to the correlation length as highlighted in

Fig. 1 (right), i.e. as a increases, the correlation length decreases.

The Mátern parameters can be estimated from the data via Maximum Likelihood

Estimation (Handcock and Wallis 1994), or fixed aprori (Stein 1999) which was implicitly

done by Howind et al. (1999), El-Rabbany (1994) when using an exponential function to

model carrier phase correlations of GPS observations. Indeed, particular cases corre-

sponding to a smoothness of 1=2; 1;1 are known in geodesy as the exponential covariance

function, the first order Markov or the Gaussian model respectively (Whittle 1954; Gra-

farend and Awange 2012; Meier 1981). Other parametrizations of the Mátern covariance

function presented in Eq. (7) exist as well as covariance functions that model hole effects

or small negative correlations based on exponentially damped cosine functions (Zastavnyi

1993). Such functions will not be used here as the correlation length and smoothness are

Fig. 1 Example of Mátern covariance functions by varying the parameter set a; m½ �. Top: correlation
function for a ¼ 0:1 by varying m (left) and correlation function for m ¼ 1 by varying a (right). Bottom:
corresponding time series
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more important parameters than trying to take small cosine variations in consideration that

may not be physically plausible. A simple, realistic and easy to use modelling of the

correlations is our goal, the corresponding covariance matrices being further processed in

weighted least-squares adjustments.

3 A model for correlations of GPS phase observations

3.1 Introduction

The proposed function is based on the Mátern covariance family and is directly inspired

from Wheelon (2001) and Kermarrec and Schön (2014) who derived a function for cor-

relations between satellite measurements due to turbulent fluctuations of the index of

refractivity. It can be seen as an extension of this model to other kind of elevation

dependent correlation factors. We note moreover that Luo (2012) showed that the corre-

lation structure of pre-processed residuals from GPS positioning adjustment can be

modelled thanks to AR or ARIMA processes. Although not exactly corresponding (Ras-

mussen and Williams 2006), the underlying differential equations of ARIMA and Mátern

processes exhibits similarities as the spectral densities are for both cases rational and

polynomial. Exemplarily, the AR(2) model can be expressed with a Mátern covariance

function.

3.2 Proposal for modelling phase correlations

The proposed covariance function C between 2 observations of satellites i and j at time t

and t þ s reads:

C
jtþs
it ¼ qd

sin Eli tð Þð Þ sin Elj t þ sð Þ
� � asð ÞmKm asð Þ ð9Þ

where Eli and Elj are the elevations of the satellite i and j respectively. d is a scaling

parameter so that the variance equals 1 for satellites at 90� elevation using small argument

approximations (Schön and Brunner 2008). q is a weighting factor which models the

covariance between different satellites. We take here q ¼ 1 for i = j and q ¼ 0:1 else, see

Kermarrec and Schön 2014, 2017 for more details. A possible effect of underestimating q
for i = j in LS adjustments was shown to be a smaller aposteriori variance factor with

respect to the apriori value.

This covariance function is derived from a spectral density function and remains

therefore positive definite as long as the elevation is not 0�.
The variance of our model is based on the commonly used 1

�
sin2 Elð Þ function. In order

to account for non-stationarity of the covariance (i.e. spatiotemporal dependency), a

weighting factor 1
�
sin Eli tð Þð Þ sin Elj t þ sð Þ

� �
is used to compute inter-satellites correla-

tions. This factor is derived from GPS path signals through the atmosphere (Wheelon

2001).
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3.3 Building fully populated VCM

Apriori fully populated covariance matrices accounting for correlations of one satellite

with itself or with other one at one station can be built thanks to Eq. (9). The resulting

cofactor matrix for station A as defined in Eq. (5) is given by:

ŴA ¼

C1;1
A C1;2

A C1;3
A � � � C1;s

A

C2;2
A C2;3

A C2;s
A

� � � C3;3
A

Cs;s
A

2

6664

3

7775
ð10Þ

where the subscript A stays for station A and the matrices Ci;j
A are computed thanks to

Eq. (9).

For a better visualization, Fig. 2 (left) presents an example of the obtained structure of

the resulting fully populated covariance matrices sorted per PRN. It corresponds to a

standard GPS constellation (Fig. 2 right) with 10 satellites, one batch having 100 obser-

vations and a data rate of 30 s. Depending on the processing strategy of the observations,

double differenced matrices should be formed following Eq. (5).

3.4 Estimating the parameters of the covariance function
from the observations

Usually, the parameters a; m½ � are estimated by Maximum Likelihood (Stein 1999). Due to

the complexity of the fully populated VCM for GPS observations, we propose two ways of

estimating a; m½ �

• Estimation of one set of parameters a; m½ � for each satellite by MLE for a batch of 1 h of

observations. This set is kept and has an estimated validity of 4–6 h depending on the

variations of atmospheric conditions and satellite geometry.

Fig. 2 An example of a fully populated covariance matrix computed with the proposed model (left). The
matrix is composed of different non Toeplitz block matrices sorted per satellites. The block diagonal VCM
corresponds to the temporal correlations for one satellite with itself whereas the submatrices describe the
correlations between one satellite and all other ones. For this example we used a; m½ � ¼ 0:01; 1½ �. The last
block matrix is corresponding to the VCM of the reference satellite PRN5. The corresponding sky
distribution is presented on the right
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• An alternative and less computation demanding procedure is only based on the

computation of the Mátern parameters by MLE for the satellite of reference. The

corresponding values found were shown to be closer to a diagonal model (i.e. lower

correlation length) than the previous solution and thus a can be decreased by 0.005 s-1

to account for this effect.

As we empirically found that values of m[ 2 may lead to some computational problems,

we propose not to allow the estimated smoothness parameter to be greater than 3/2. Due to

the non-orthogonality of the Mátern parameters, this is similar to taking a smaller a, i.e. a

longer correlation length.

For medium and long baselines, the double differenced observations may contain

unmodelled effects. Thus, instead of computing the correlation structure based on the

observations at one station, we suggest to directly estimate a; m½ � from the double differ-

enced observations.

In order to account for additive noise, a more general form of the covariance matrix for

a station A can be used, i.e. Ŵ
0 ¼ anoiseŴA þ 1 � anoiseð ÞŴnoise; with anoise having to be

estimated with a; m½ � by MLE. For elevation dependent noise, Ŵnoise ¼ ŴELEV;A (called the

ELEV matrix) represents the elevation dependent diagonal covariance matrix corre-

sponding to a 1
�
sin2 Elð Þ variance model. Depending on the noise structure that one wish to

model Ŵnoise can also be replaced by the identity matrix. Intuitively, adding noise matrices

will act on stabilizing the fully populated covariance matrices, similarly to a Tikhonov

regularization (Tikhonov et al. 1995). It also impact the least-squares results, i.e. they

become closer to the one given if only the corresponding diagonal VCM would have been

used (Kermarrec and Schön 2017). Due to the non-orthogonality of the Mátern parameters

(Gelfand et al. 2010), estimating a noise matrix will moreover lead in a shift of the

corresponding set. Thus, if noise is wrongly taken into account, it will result in a smaller

correlation length with noise matrix by same smoothness.

3.5 Comments on the proposed model

Our model is flexible and accounts for many factors (non-stationarity, elevation depen-

dency, smoothness, correlation length), modelling implicitly many causes of correlations

without expressing them individually. However, as every model, it remains a simplification

of the correct but unknown correlation structure. It may be pointed out that also with LS-

VCE procedures, simplifications are often necessary to have positive definite VCM by

assuming for instance Toeplitz covariance matrices. In order to assess how the Mátern

parameters influence the least-squares results, interested readers can consult the results of a

sensitivity analysis based on simulations and two case studies for long and short baselines

in Kermarrec and Schön (2017).

In the next section, we will focus on the effect of this new model both at the obser-

vations level and on some least-squares quantities such as the cofactor matrix of the

estimates (Eq. 3) corresponding to the error ellipsoid, the aposteriori variance factor

(Eq. 4) and the estimates (Eq. 2). A real positioning scenario is studied, the true covariance

matrix of the observations being from now unknown.
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4 Using the correlation model in a least-squares adjustment: a case study

4.1 Description of the data set

GPS L1 data from the European Permanent Network EPN (Bruyninx et al. 2012) from two

stations KRAW and ZYWI are chosen as example for a medium baseline (80 km) posi-

tioning scenario. The observations have a 30 s rate, a cutoff of 3� was applied. The North

East Up (NEU) coordinates are computed with double differences for 20 consecutive

batches starting at GPS day DOY220, GPS-SOD 6000 s. Each batch represents 100 epochs

(i.e. 3000 s). This number of epochs was chosen for two reasons. Firstly, it ensures that the

correlation reaches the 0-value inside the batch so that the inversion of the VCM is

accurate. Secondly, the correlation structure of small batches of observations is more

difficult to assess and the values found may vary more strongly from batch to batch.

The ambiguities are solved in advance thanks to the Lambda method. The results of the

case study are not impacted by the integer fixing method. Please note that they are not

comparable with those found in Kermarrec and Schön (2017) for the same baseline, the

methodology being different (i.e. same design matrix, different days).

The reference values for the station coordinates are the long term values from the EPN

solution. The ionosphere-free linear combination L3 was additionally computed. The data

were not sophistically filtered (i.e. for instance against multipath effects) in order to keep

low frequencies variations in the measurements to study the whitening potential of our

fully populated VCM. Because the batch length is shorter than 1 h, no tropospheric

parameter was estimated. Nevertheless, estimating this parameter additionally was shown

not to influence strongly the conclusions of our case study.

A realistic apriori variance factor r0 for double differenced observations of 4 mm was

taken into account. A critical value of 4.7 mm corresponding to the Central F-distribution

with p = 0.1 was chosen for the overall model test (Teunissen 2000). We assume that the

GPS phase observations are normally distributed (Luo et al. 2011).

The correct covariance structure of the observations is unknown and computed fol-

lowing the methodology presented in Sect. 3. The results from three stochastic models are

compared: the ID model corresponding to an identity VCM, the ELEV model where

correlations are disregarded and the variance corresponds to a 1
�
sin2 Elð Þ variance model

and the proposed correlation model with different parameter sets a; m½ �. This strategy aims

to study the impact of a misspecification of the stochastic model.

The following quantities are analysed: E r̂0ð Þ, i.e. the mean of the aposteriori variance of

unit weight over all m batches, the mean of the 3Drms of the estimates defined for one

batch as 3Drms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace x̂Tx̂ð Þ

3

q
. The behaviour of Qx̂c and r̂0Qx̂c are added exemplarily for

one batch.

As the variations of a; m½ � for the 20 batches of interest were below � 0:005; 0:1½ � leading

to negligible variations of the estimated parameters following Kermarrec and Schön

(2017), the correlation structure estimated by MLE was fixed to a; m½ �0¼ 0:012; 1:1½ � for the

entire time span. The noise factor was set to 0, making use of the non-orthogonality of the

Mátern parameters (Gelfand et al. 2010).
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4.2 Impact on the observations

When taking correlation into account in the least-squares adjustment, the effect on the

whitening of the residuals is an important criterion (Wang et al. 2002).

The fully populated matrices obtained with our model can be shown to be able to whiten

the double differenced GPS observations better than the corresponding diagonal matrices,

particularly in the low frequency domain. We define a whitened time series lwhite as

lwhite¼ Ŵ
�1=2

l where l is the original time series. Ŵ is the estimated double differenced

VCM corresponding to the ID, ELEV or correlation models.

In order to have an insight on how VCM act on correlated observations, the amplitude

Fourier spectra of two whitened Double Differenced time series are presented in Fig. 3.

The case study from the last section (Fig. 2) is carried out. Figure 3 (left) corresponds to

double differences using a low elevation satellite (10� elevation) whereas Fig. 3 (right) is

using a satellite at 50� elevation. Both were observed during 200 epochs which corresponds

to approximately 2 h of observations. Due to the elevation dependency of our model, the

whitened double differenced time series are studentized (Luo 2012) allowing comparisons

between ELEV and correlation models. Thus, the decomposition of the original—non

studentized-time series is only given exemplarily. An exact explanation of why particular

frequencies are present or not (i.e. multipath, site specific effects) is here on purpose not

proposed.

4.2.1 Impact of the smoothness m

From Fig. 3, the impact of the smoothness factor m on the whitening can be seen, i.e. the

noise at high frequencies is strongly increased with fully populated VCM with respect to

the ELEV model (pink line). A VCM with a smoothness of � corresponding to an

exponential correlation model with an elevation dependent variance is less able to whiten

the time series than when a smoothness of 1 is considered (blue versus red lines). This

result is coherent with the values found by MLE (Sect. 4.1) and particularly visible for the

low elevation satellite (Fig. 3 left). Indeed, for the same a ¼ 0:005, a more efficient

Fig. 3 Fourier decompositions of different whitened double differenced observations versus log-frequency
(Hz). (Left) corresponds to a satellite starting at 10� elevation and (right) at 50� elevation. The amplitude is
given as log scale. Different correlation lengths and smoothnesses were used to compute the VCM. The
decomposition obtained with the diagonal VCM ELEV as well as the one of the original time series are
given additionally. The length of the time series used is 200 epochs a 30 s
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filtering of the low frequencies is obtained with m ¼ 1 (red line) than with m ¼ 1=2 (blue

line).

4.2.2 Impact of the correlation parameter a

Following Eq. (8), the parameter a plays a more important role at low frequencies. This

becomes evident in Fig. 3 (right) by comparing the two red lines (a ¼ 0:005 and a ¼ 0:01)

corresponding to a common smoothness of 1. However, the smoothness still impacts the

frequency content of the whitened time series at low frequencies [see Fig. 3 (left), blue and

red lines].

Compared with the whitening obtained with the ELEV model, it can be concluded that

the fully populated VCM act both on filtering the low frequencies and increasing the high

frequencies content. A lower smoothness of � is suboptimal for both cases. Adding a noise

matrix to the VCM (not shown) would have given a higher amplitude for the low fre-

quencies part of the spectrum, following the results given with the ELEV model.

This case study is an example. However, other batches of observations with different

lengths and geometries were computed without changing the previous conclusions on the

effect of a; m½ �. An exact white noise time series should not be expected and will never be

obtained as the apriori VCM are not corresponding exactly to the true VCM of the

observations.

4.3 Impact on the least-squares results

4.3.1 Cofactor matrix of the estimates

In this section, the impact of the fully populated covariance matrices of the observations on

the cofactor matrix of the estimates is considered. One batch corresponding to a standard

geometry is taken as example. In Fig. 4 (left), the 3D apriori error ellipsoids are plotted for

different covariance matrices. The corresponding volumes are given in Fig. 4 (right) for Qx̂

and r̂2Qx̂.

Fig. 4 Impact of varying the VCM on the Point error ellipsoid of the estimate (left) and (right) on the
volume of the corresponding apriori and aposteriori ellipsoids
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From Fig. 4 (right) and (left) the well-known underestimation of the apriori precision

using diagonal VCM is highlighted, the volume of the ellipsoid being up to 40 times

smaller than for the fully populated case with a; m½ �0. Using a low a ¼ 0:005 leads to an

overestimation of the precision with a volume 100 times higher than for a; m½ �0. This effect

is related to the inverse of the covariance matrices and can be easily proven if an AR(1)

process is considered (Appendix, see also Rao and Toutenburg 1999). It is thus important

when using apriori VCM to control the validity of the solution by using exemplarily an

overall model test.

We note that the volume of the apriori ellipsoid can be artificially decreased by adding a

noise matrix [Fig. 4 (left) right bottom] by a factor two compared with a; m½ � ¼ ½0:005; 1�,
no noise. Thus the non-unicity of the parameters is highlighted as different sets may lead to

the same results for this quantity. This effect does not mean that one set should not be

preferred as mentioned in Sect. 4.2, the whitening of the observations being strongly

impacted by a; m½ � as well as the noise factor. The orientations in space of all the ellipsoids

are similar by\ 1� as long as the same cosine variance model is used. Taking an identity

model changes the orientation of the axis. However, the volume of the error ellipsoid is

underestimated by more than a factor 1000 in both apriori and aposteriori case.

From Fig. 4 (right), the aposteriori ellipsoid with the ELEV model seems to be a better

estimation of the precision and nearly corresponding to the reference value of 44.38.

However, this higher volume has to be linked with a higher r̂ (Sect. 4.4) and the corre-

sponding solution should be excluded with an overall model test. Thus the least-squares

results should always be critically considered to avoid a model misspecification and

generally if correlations are present, they should not be neglected for coherence and

reliability of the solution.

4.3.2 Impact on the aposteriori variance factor and the estimates

A poorly estimated apriori VCM leads to a biased least-squares solution. The biases of the

aposteriori variance factor and the estimates can be expressed literally, see Xu (2013) and

Kutterer (1999). However, these formulas necessitate the knowledge of the true VCM and

are essentially useful for simulations purpose (Kermarrec and Schön 2017). In real case,

the global validity of the solution can be checked thanks to the overall model test. In our

case moreover, the true coordinates are known. Thus, we consider that the more accurate

solution corresponds to the smallest 3Drms.

Following the methodology of 3.3.1., Table 1 presents the results obtained by using

different Mátern parameter sets.

The first line of Table 1 highlights the effect of a small a (i.e. a too long correlation

length). It can be seen that both the 3Drms and the aposteriori variance factor will be

impacted by such a misspecification. For instance, the 3Drms increases from 35% with

a; m½ � ¼ ½0:001; 1� compared with the reference set. At the same time, E r̂
Ŵ

� 	
is over the

apriori value decreasing the number of batches available for computing the solution. Thus,

we point out the importance of avoiding an underestimation of the parameter a as men-

tioned in 3.3.1. The effect of increasing a is not presented for sake of shortness. It leads

however to a solution which becomes closer to the one given with the ELEV model.

In the second line of Table 1, the smoothness is decreased to � corresponding to an

exponential model. A negligible increase of the 3Drms can be seen when a ¼ a0 by at the

same time an increase of E r̂
Ŵ

� 	
by 0.35 mm (10%). When a ¼ 0:005, the results are
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similar with the one of a; m½ �0, pointing out the non-unicity of the best solution. Thus, the

effect of taking a smoothness of � can be compensated by decreasing a. We highlight

however that the whitening of the observations will not be similar, particularly at high

frequencies (Sect. 4.1).

If the correlations are disregarded, we note a strong increase of E r̂
Ŵ

� 	
to 9.5 mm with

the ELEV model and 22 mm using the ID model. Thus without adapting the apriori

variance factor, no solution could be computed. However, if we increase artificially r0 to

reach the E r̂
Ŵ

� 	
, the 3Drms with the ELEV model gets similar to the value found with

fully populated VCM. This solution remains statistically incorrect and fully populated

models should be preferred due to the realistic E r̂
Ŵ

� 	
. For the ID model, a model

misspecification can be guessed as E r̂
Ŵ

� 	
reaches 22 mm and the 3Drms is 27 mm over

the ELEV value.

4.4 L3 dataset and short baselines

In order to assess to which extend fully populated VCM would impact observations from

the ionosphere-free linear combination, the Fourier amplitude spectrum of the double

differenced time series with a satellite at 25� elevation is analysed in Fig. 5. L1 mea-

surements exhibit stronger low frequency between 0.0005 and 0.004 Hz than L3 obser-

vations (i.e. between 2 and 10 times higher for L1 than for L3) due to the remaining

unmodelled ionospheric effects. The high frequencies content is however similar for L1

and L3.

Consecutively, the impact of fully populated VCM on the whitening of L3 observations

will be less important as a ML estimation of a; m½ � � 0:028; 1½ � highlights. Due to the low

correlation level, the effect on the least-squares results will not be as important as for L1

observations. Indeed, using the same data set and methodology as previously, the apos-

teriori variance factor was found to be 2.8 mm for the fully populated case and 3.3 mm for

the ELEV case. Correspondingly, the 3Drms showed an improvement at the submm level:

from 2.17 mm with the diagonal to 2.15 mm with the correlation model.

Table 1 E r̂
Ŵ

� 	
and the mean of the 3Drms are computed with VCM corresponding to different parameter

sets a; m½ �. The results obtained for diagonal VCM (ELEV and ID) are given additionally. An overall model
test was applied

a; m½ �0¼ 0:012; 1:1½ � a; m½ � ¼ ½0:005; 1� a; m½ � ¼ ½0:001; 1�

E 3Drmsð Þ [mm] 55.95 63.42 75.00

E r̂
Ŵ

� 	
[mm] 3.43 3.91 4.52

a; m½ � ¼ ½0:01; 1=2� a; m½ � ¼ ½0:005; 1=2� ELEV ID

E 3Drmsð Þ [mm] 56.07 55.90 57.07 (adapted r0) 82.71 (adapted r0)

E r̂
Ŵ

� 	
[mm] 3.79 3.38 9.73 22.79

Bold corresponds to the Matern parameter set found by MLE whereas italic means that anadapted r0 was
used to compute the solution
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These variations can be considered as negligible. Thus, the filtering effect of fully

populated VCM is less important than for the corresponding L1 observations. Results with

short baselines are similar, the frequency content being, expect in extreme cases when for

instance multipath is present, homogeneous and close to a white noise. However, this does

not mean that correlations should be neglected. In case of multipath, the more realistic

aposteriori variance factor obtained with fully populated VCM can influence positively the

3Drms when the overall model test is applied, particularly when batches of less than 1 h

are computed.

5 Conclusions: on taking correlations into account

Because it remains easier to use diagonal covariance matrices in a least-squares adjustment

for relative positioning, correlations of GPS phase observations are generally neglected. In

this contribution, an innovative model based on the flexible and easy to use Mátern

covariance family adapted to GPS observations was presented. Both the smoothness and

the correlation length are allowed to vary in a physically plausible range. These parameters

are determined by MLE either for all satellites independently or only for the reference

satellite. Fully populated variance covariance matrices can be built and integrated in the

least-squares adjustment.

Thanks to a particular case study corresponding to a 80 km long baseline, the model

was shown to give a better whitening of the observations. If the smoothness impacts more

strongly the high frequency content, the correlation parameter allows a down weighting of

the low frequencies that come from unmodelled effects. Moreover, a more realistic pre-

cision together with reliable results from test statistics such as the overall model test could

be obtained, the impact at the estimates level being negligible compared with results found

with the cosine variance model that disregards correlations. The risks of underestimating

the correlation parameter were pointed out as leading to a higher aposteriori variance factor

and voluminous error ellipsoid, whereas a low smoothness gave results close to the

diagonal model.

Thanks to the parametric formulation, the proposed model can be adapted to various

datasets without having to use LS-VCE procedures which are computational demanding.

Although in our experience a smoothness of 1 is preferable, the 3Drms under an

Fig. 5 Fourier amplitude
spectrum for L1 and L3 double
differenced observations. A
satellite at 25� elevation was
chosen
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exponential model is comparable as long as the correlation parameter is decreased

accordingly by approximately 0.005. In that case, the VCM becomes invertible thanks to a

close formula. As a consequence, the equivalent diagonal model proposed by Kermarrec

and Schön (2016) can be easily use, allowing more reliable least-squares results by less

computational burden.
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Appendix: On the inverse of the covariance matrix

Studying the inverse of the fully populated covariance matrix is interesting to gain a better

insight on the way correlations act on the previous results, particularly on the apriori

cofactor matrix of the estimates and by extension of the ambiguities.

However, except in particular cases, VCM based on Mátern model do not have an

explicit formulation of their inverse. We will therefore first present the particular case of an

AR(1) process and in a second step take an example of the matrices used in this article.

AR(1) and Mátern matrices

In this case, the inverse of the covariance matrix reads

W�1
ARð1Þ ¼

1

1 � q2

1 �q 0 . . . 0 0

�q 1 þ q2 �q . .
.

0 0

0 �q 1 þ q2 . .
.

0 0

..

. . .
. . .

. . .
. . .

.
0

0 0 0 . .
.

1 þ q2 �q
0 0 0 . . . �q 1

2

6666666664

3

7777777775

where q is the autocorrelation function.

Thus, from a fully populated WARð1Þ, only a sparse matrix remains which lines have 2

different values (1) the diagonal elements and (2) a negative value on the off-diagonal. A

scaling factor 1
1�q2 depending on the correlation length can be further identified. This

structure can be extended for Mátern covariance matrices, i.e. a factor depending on the

Mátern parameter set chosen is mainly responsible for the scaling of apriori cofactor

matrices of the estimates as shown in Sect. 4. The error ellipsoid may thus be artificially

too voluminous if a wrong correlation structure is taken into account.

Taking noise matrix into account

In order to see how noise matrices are impacting the inverse of the covariance matrices, a

particular case is chosen to compute the covariance function as defined in Eq. (9) corre-

sponding to a satellite at 45� elevation. Only the first 100 epochs of the block diagonal

matrix are analysed.
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Fig. 6 (left) shows the corresponding line of the covariance matrix for different cor-

relation structures. For a; m½ � ¼ ½0:0025; 1� and due to the smoothness of 1, the first values

of the covariance decreases slowly with time

The corresponding line of the inverse of the covariance matrix for the different cases are

depicted in Fig. 6 (right). The signature of the inverse of a fully populated VCM is clearly

seen when no noise matrix is taken in consideration, i.e. small oscillations around the 0–

value. The amplitude of the variations increases as a decreases. If a noise matrix is added

only the first oscillation remains, the other ones being replaced by a ramp, thus damping

the effect of the correlations. This was highlighted by studying the whitening of the

residuals and this is the reason why the results given with or without noise matrix are

similar up to a given value of a and m where the equivalence between the smoothed and the

original curve is getting too high.
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Abstract The true covariance matrix of the GPS phase

observations is unknown and has to be assumed or esti-

mated. The variance of the least-squares residuals was

empirically shown to have an elevation dependency and is

often expressed as a sum of a constant and an exponential

function. Disregarding correlations that are for instance due

to atmospheric effects, the variance covariance matrices

are diagonal. This simplification leads to errors in the

estimates, including the float ambiguity vector, as well as

to an overoptimistic precision. Thus, results of test statis-

tics such as the outlier or the overall model test are

impacted. For the particular case of GPS positioning, an

innovative proposal was made to take correlations into

account easily, condensed in an equivalent diagonal matrix.

However, the a posteriori variance factor obtained with this

simplification is strongly underestimated and in most cases

the inversion of fully populated matrices has anyway to be

carried out. In this contribution, we propose an alternative

diagonal correlation model based on a simple exponential

function to approximate the developed equivalent model.

This way, correlations can be included in a diagonal vari-

ance covariance matrix without computation burden. A

case study with an 80-km baseline where the ambiguities

are estimated together with the coordinates in the least-

squares adjustment demonstrates the potential of the

model. It leads to a proposal based on the autocorrelation

coefficient for fixing its parameters.

Keywords Variance model � Weighting � GPS � Least-
squares � Exponential model

Introduction

As soon as a high-precision positioning is required, an

improved stochastic model that better reflects the true

(co)variance of the observations is necessary. As taking

correlations into account in least-squares adjustments leads

to fully populated variance covariance matrices (VCM),

they are often neglected and improving the stochastic

model is principally synonymous with modeling the vari-

ance more accurately.

The most commonly used variance model is the eleva-

tion-dependent weighting based on the cosecant function

called in the following ELEV. It was introduced by Ver-

meer (1997) or Collins and Langley (1999) and is imple-

mented in many software packages, e.g., Dach et al.

(2007). This model is simple and only based on the ele-

vation of the satellites as it represents an obliquity factor.

However, by giving an excessive low weight to satellites

below 15�, elevation information that may be useful for

better parameter estimation such as the up component is

taken away. Alternatively, elevation-dependent exponen-

tial functions were proposed to fit the residuals variance,

starting with Euler and Goad (1991). Later, Gerdan (1995)

compared this exponential weighting with other strategies

for the case of double differenced observations, whereas

Han (1997) focused on its impact on ambiguity resolution.

More recently, Li et al. (2016) used the exponential

weighting function to analyze its impact on test statistics.

Until now, the way to estimate the parameters has mainly

been empirical, i.e., mostly by least-squares fitting of the

variance. Other similar variance models are using SNR
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(Talbot 1988, Luo et al. 2014) or CN0 values (Wieser and

Brunner 2000) accounting for receiver, antenna, as well as

signal quality. Exemplarily, the sigma-epsilon variance

model as introduced by Hartinger and Brunner (1999)

depends on the receiver antenna combination, while the

sigma-delta model (Brunner et al. 1999) corrects for

additional signal distortion. The goal of including station

dependencies and data quality indicators is to fit or model

the variance more accurately. Improved ambiguity resolu-

tion could be exemplarily achieved with a simplified ver-

sion of the SNR weighting (Luo et al. 2014). Comparable

results were obtained by using least-squares variance–co-

variance estimation (LS-VCE, Amiri-Simkooei et al. 2016)

or MINQUE procedures (Wang et al. 2002). Moreover,

results from test statistics such as outlier detection or

overall model tests could be considered as more accurate

(Li et al. 2016).

Temporal correlations between measurements are

mostly empirically considered by fitting an exponential

function to the autocorrelation of the least-squares residu-

als (Howind et al. 1999, El-Rabbany and Kleusberg 2003).

Different correlation lengths were found depending on the

satellites geometry or frequencies used. Alternatively, LS-

VCE can take correlations into account (Teunissen and

Amiri-Simkooei 2008). However, because of associated

computational burden, correlations that may not only be

due to atmospheric propagation but also depend on the

receiver in case of high sampling rates are mainly disre-

garded. As a consequence, an overestimated precision of

the results and potentially wrong test statistics and ambi-

guity resolution are risked. In their contribution, Kermarrec

and Schön (2016) proposed a way to take correlations into

account thanks to an equivalent model (EQUI) that

resumes fully populated VCM called FULLY, in a diagonal

matrix. However, this powerful proposal underestimates

the a posteriori variance factor. As it plays an important

role in testing the validity of the least-squares solution

(Teunissen and Kleusberg 1998), an alternative should be

found to cope with this issue. Besides allowing to take

correlations easily into account and improving corre-

spondingly the least-squares solution, comparisons with

results from some purely diagonal variance models would

be made possible.

In this contribution, a ‘‘diagonal correlation model’’

(DCM) for GNSS phase observations is proposed to face

this challenge. It allows to account for correlations in the

least-squares adjustment without computing and inverting

fully populated matrices. To derive the EQUI or FULLY

VCM, we will make use of the physically relevant proposal

of Kermarrec and Schön (2017) to model the covariance of

GPS phase measurements and briefly presented in

‘‘Appendix’’.

We first summarize the principal concepts of least-

squares estimations as well as ambiguity resolution. The

equivalence model called EQUI and the proposed DCM are

presented. Results of simulations used both to validate the

model and to understand its link with other variance

models are described in a second part where a sensitivity

analysis by varying the two DCM parameters is carried out.

In the last section, results from a detailed data analysis are

presented by varying the session lengths for correlated

observations from a medium baseline. We conclude with a

discussion and a proposal for fixing the DCM parameters to

account for correlations.

Least-squares adjustment

Due to the redundant observations, positioning with global

navigation satellite system (GNSS) is done thanks to a

least-squares adjustment. The corresponding linearized

functional model reads

y ¼ Ax þ e ð1Þ

We call y the n� 1 observation vector, A the deter-

ministic n� u design matrix with full column rank

(rk Að Þ ¼ u). In a relative positioning case, the number of

double differences is n and the number of double differ-

enced ambiguities is namb. The u� 1 parameter vector to be

estimated is x and e the n� 1 observation error vector.

When float ambiguities and positions are estimated, A and

x are partitioned, i.e., A ¼ ½AC AA � and

x ¼ ½ xC xA;float �T. The n� 3 matrix AC and the n� namb
matrix AA are the design matrices of the coordinates and

ambiguities, respectively. xC corresponds to the vector of

coordinates and xA;float to the float ambiguity vector.

Additionally, a tropospheric parameter can be estimated

and the design matrix has to be adapted accordingly. We

assume further that E eeTð Þ ¼ r20W0, where W0 is a n� n

positive definite fully populated cofactor matrix of the

residuals, r20 the a priori variance factor. The mathematical

expectation is denoted by E :ð Þ.
From Koch (1999), the solution of (1) reads

x̂0 ¼ ATW�1
0 A

� ��1
ATW�1

0 y. x̂ is the solution computed

with the a priori guessed VCM Ŵ, i.e.,

x̂ ¼ ATŴ
�1

A
� ��1

ATŴ
�1

y. The slope matrix K which

projects the observations into the parameter space is

defined as ^x ¼ Ky with

K ¼ ATŴ
�1

A
� ��1

ATŴ
�1 ð2Þ

We note Ŵ ¼ W0 þ DW where DW is the difference

between the assumed and the true cofactor matrix W0. The
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variance factor is unbiased under W0 and given by r̂2W0
¼

y�Ax̂0ð ÞTW�1
0 y�Ax̂0ð Þ

n�u
, whereas using the approximated VCM,

we obtain r̂2
Ŵ

¼ y�Ax̂Tð ÞŴ
�1

y�Ax̂ð Þ
n�u

. Although the least-

squares estimator remains unbiased under the use of Ŵ, an

incorrect specification of the VCM leads to errors. We

shortly review the corresponding effects on characteristic

quantities, following Kermarrec and Schön (2017):

• Impact on the a posteriori variance factor

From Xu (2013) or Koch (1999), E r̂2
Ŵ

� �
can be

expressed as

E r̂2
Ŵ

� �
¼ r̂2W0

þ tr I � Ŵ
�1

A ATŴ
�1

A
� ��1

AT

� �
Ŵ

�1
DW

� 	
r̂2W0

n� u

ð3Þ

The trace term tr represents the bias due to the esti-

mated VCM.

• Loss of efficiency

The following ratio can be used to analyze the loss of

efficiency when using Ŵ instead of W0 (Stein 1999):

RMSE ¼ MSEx̂�x

MSEx�x̂0

¼
tr Ŵ

�1
A ATŴ

�1
A

� ��2

ATŴ
�1


 �
W0

� �

tr ATW�1
0 A

� ��1
� � � 1

ð4Þ

• Mean square error (MSE) and root-mean-square (RMS)

The value MSEx̂�x0 ¼ tr Ŵ
�1

A ATŴ
�1

A
� ��2


��

ATŴ
�1�W0Þ � tr ATW�1

0 A
� ��1
� �

Þ1=2 allows getting

an order of magnitude in (mm) of the theoretical

differences between correct and incorrect estimates for

a particular design matrix (Strand 1974). In the case of

data analysis, the true VCM is unknown, and the root-

mean-square of the estimates called 3DRMS is used,

i.e., 3DRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tr x̂Tx̂ð Þ

3

q
:

Please note that through this contribution, we understand

as ‘‘coordinate precision’’ the sum of the three first values

of the diagonal of the cofactor matrix of the estimates

ATŴ
�1

A
� ��1

corresponding to the coordinate’s part.

Ambiguities fixing and validation strategy

We use the Lambda method (Teunissen 1995) to fix the

float ambiguity to an integer vector. The results are two

vectors of integer candidates x̂1
A;fix; x̂2

A;fix, which correspond

to the two smallest values of the distance between the float

and the fixed ambiguity vector, i.e.,

x̂1
A;fix�x̂A;float










QA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x̂1
A;fix�x̂A;float

� �T
Q�1

A x̂1
A;fix�x̂A;float

� �r

¼ d1

x̂2
A;fix�x̂A;float










QA

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x̂2A;fix�x̂A;float

� �T
Q�1

A x̂2
A;fix�x̂A;float

� �r

¼ d2

ð5Þ

We have d1 � d2. For the sake of comparison of the

results given with different VCM, we introduce addition-

ally the Euclidian distance between the fixed and the float

ambiguity vector as

d�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x̂1
A;fix�x̂A;float

� �T
x̂1

A;fix�x̂A;float

� �r ,

namb
ð6Þ

To avoid a fixing to an incorrect integer, different strate-

gies or tests were proposed. In this contribution, and because

of its popularity, the discriminant test called the ratio test or

R-ratio (Euler and Schaffrin 1991) is retained. The R-ratio

d1=d2 is compared to an empirical threshold value which is

often assumed to be l ¼ 0:5 (Wei and Schwarz 1995) or 1/3

(Leick et al. 2015). If the R-ratio is smaller than l, the float
solution is taken into consideration instead of a possibly

wrongly fixed ambiguity vector. If the ambiguities can be

fixed to integers, the corrected estimate x̂C;fixed reads

x̂C;fixed¼x̂ � QCAQ�1
A x̂A;float�x̂A;fixed

� �
. Interested readers

may refer to Wang et al. (2000) for a comparison of the

different validation procedures.

Stochastic model

The stochastic model plays an important role in obtaining an

optimal solution of the least-squares problem (1), particu-

larly when the functional relationship is not completely

known. Exemplarily, the mean behavior of atmospheric

refraction can be well modeled, e.g., by estimating an addi-

tional tropospheric zenith wet delay. However, only insuf-

ficient knowledge about turbulent refractivity variations is

available. Thus, these parts can be adequately taken into

account in the stochastic model. In the following section, we

present the concept of the equivalent diagonal or EQUI

model (Kermarrec and Schön 2016) as well as the diagonal

correlation variance model that overcomes the weakness of

the EQUI model. Through this contribution, we make use of

the covariance function as shortly presented in ‘‘Appendix.’’

The equivalent diagonal model

Based on the work of Luati and Proietti (2011), the

equivalence between diagonally weighted least-squares
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(DWLS) and the generalized least-squares (GLS) estimator

could be empirically applied to GNSS adjustments. One

condition for the equivalence to hold states that each ele-

ment of the diagonal matrix Ŵ
�1

EQUI is the sum of the row

elements of the inverse of the fully populated cofactor

matrix Ŵ
�1

FULLY.

To further understand the concept behind the EQUI

model, we adopt an AR(1) model to describe the correla-

tion structure of GPS phase measurements. This model will

be further used to derive the DCM and corresponds to a

smoothness of � in the proposal of ‘‘Appendix.’’ It is a

crude model simplification, particularly when correlations

are due to atmospheric effects (Kermarrec and Schön 2014,

see also Luo et al. 2012 for ARIMA process). It is here

introduced for the didactic purpose. Indeed, the inverse of

the corresponding VCM can be exactly expressed thanks to

the autocorrelation coefficient q (Rao and Toutenburg

1999). Assuming without loss of generality low variations

of the satellite elevation, the elevation-dependent factor of

the cofactor matrix can be factorized and the elements of

the corresponding equivalent diagonal VCM for one

satellite are:

•

t ¼ tfirst;i; t ¼ tlast;i :
1

sin Eli tð Þð Þ2
1� q2

1� q

� �

¼ 1

sin Eli tð Þð Þ2
1þ qð Þ

•

otherwise :
1

sin Eli tð Þð Þ2
1� q2

1� qð Þ2

 !

¼ 1

sin Eli tð Þð Þ2
1þ q
1� q

� �
ð7Þ

We call tfirst;i and tlast;i the first and last epoch at which

the satellite i is present. The effect of correlations can be

interpreted from (7) as giving a strong weight to the

observations of the first and last epochs at which a satellite

is present. A smaller weight, proportional to the ELEV

variance model, is associated with all other values inside

the batch. As for long batches of observations (n � 2

epochs), the impact of the extreme values on the results

becomes negligible, Fig. 1 (top) presents only the central

diagonal elements when the q is varied from 0 (no corre-

lation) to 1 (full correlations). In this figure, we simulated,

moreover, the addition of an identity noise matrix. We

define ŴEQUI;noise ¼ dEQUIŴEQUI þ 1� dEQUIð ÞI where

dEQUI is varied from 0 (ŴEQUI;noise ¼ I the identity matrix)

to 1 (ŴEQUI;noise ¼ ŴEQUI). The identity matrix acts both

as VCM accounting for white noise added to the matrix of

correlations and as a regularization matrix when the

FULLY model is used. From Fig. 1 (top), we see that

adding a noise matrix is similar to decreasing the effect of

the equivalent matrix, i.e., as decreasing q (dotted green

lines). Thus, different parameter combinations will lead

nearly to the same equivalent variance, which we call the

non-unicity of q; dEQUI½ �.

A diagonal correlation model

The equivalence holds true for the estimates and their a

priori cofactor matrices. Unfortunately, r̂ŴEQUI is system-

atically underestimated (i.e., too small) since the equivalent

variance is larger than 1 for the variance of satellites at 90�
elevation (Fig. 1 top, blue lines) so that no overall model

test can be applied to validate the least-squares solution

(Teunissen 2000). In order to overcome this weakness, an

easy-to-use alternative diagonal correlation model (DCM)

is proposed. Based on this consideration, the proposal was

chosen to have following properties:

• Approximate the behavior of the equivalent model, i.e.,

a downweighting of the variance model for all

elevations

• Be based on a known and approved function to model

the variance, following Euler and Goad (1991)

• Avoid the underestimation of r̂ŴEQUI. A simple

empirical scaling to fit r̂ŴFULLY is nearly impossible

to obtain because of the infinity of cases to treat

depending on the correlation structure

• Have a cofactor of 1 for satellite at 90� elevation to

make comparisons possible

To summarize, this model should allow to take corre-

lations into account in an ‘‘hidden way’’ in order to

improve the reliability of the least-squares solution. From

these criteria, an exponential function was selected for this

contribution. The so-called DCM is thus defined as:

r2DCM tð Þ ¼ r20 1� dDCMð Þ þ dDCM
exp�Eli tð Þ=c

exp�90=c

 !

ð8Þ

We call the positive factor c ð	Þ the exponential factor.

The elevation of the satellite i at time t is denoted Eli. The

additional parameter dDCM models a scaled identity noise

matrix as in the previous section. This proposal provides

thus a great flexibility through the two parameters that can

be varied to model different equivalent correlation struc-

tures. Although a comparison can be tempting, the DCM is

not a usual variance model such as proposed by Euler and

Goad (1991), Li et al. (2016) or Luo et al. (2014). It should

be thought as a ‘‘diagonal correlation model’’ and is
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intentionally not called ‘‘variance model.’’ A traditional

fitting of the variance residuals will not give this structure.

In Fig. 1 (middle), the cofactor
r2
DCM

tð Þ
r2
0

is plotted for

different values of dDCM and c where the elevation is varied

from 5� to 90�. The blue line corresponds to the EQUI

model for q; dEQUI½ � ¼ 0:6; 0½ �, the red lines to the DCM

with c; dDCM½ � ¼ 10	 � 40	; 0½ �, and the green lines to

c; dDCM½ � ¼ 20	; 0� 0:9½ �. The differences between the two

models become here more visible as the DCM model is not

based on a cosine function. Similar to Fig. 1 (top), an

increase of dDCM corresponds approximately to a decrease

of c. It is thus possible to find nearly the same variance

shape for different parameter sets, i.e., our ‘‘non-unicity.’’

We note here additionally that the signature of the corre-

lations inside a batch for a given satellite, i.e., beginning

and end values differing from the one of the rest of the

batch, gets lost with the DCM model, affecting possibly the

estimates for very short batches.

Nonetheless, the DCM does not intend to fit exactly

the equivalent correlation function but to approach it in

mean over all elevations. Figure 1 (bottom) shows that it

is always possible to find a c; dDCM½ � corresponding to

the AR(1) equivalent model defined by

q; dDCM ¼ dEQUI½ �. The value q ¼ 0:85 corresponds

exemplarily to c ¼ 15	, whereas q ¼ 0:4 corresponds to

c ¼ 22	 with dDCM ¼ dEQUI ¼ 0:3. Thus, different corre-

lation lengths can be modeled by varying the parameter

c. From (8), common exponential variance models can

be derived by varying the parameters c; dDCM½ � accord-

ingly. Interested readers can verify that this corresponds

to increasing both dDCM and c for the proposal of Luo

et al. (2014).

Matrix comparisons

To make our proposal more tangible for a GPS case, a

visual comparison of the diagonal values of the VCM

computed with different models is proposed. To that end, a

representative constellation of 9 satellites corresponding to

the skyplot drawn in Fig. 2 (bottom) is considered. The

VCM are built using a batch approach, i.e., one submatrix

is computed for each satellite observed during 100 epochs.

In Fig. 2 (top), the DCM is compared with the EQUI and

ELEV models. An AR(1) is assumed with q ¼ 0:85 for the

EQUI model and dDCM ¼ dEQUI ¼ 0:3. The similarities

(see Fig. 1, bottom) between the DCM with c ¼ 15	 and

the equivalent model are visually confirmed. Interestingly,

the variances of high elevation satellites (PRN13, 28, 30)

differ which was expected from the results of Fig. 1

(middle). As a consequence, a deeper study of the sensi-

tivity of the least-squares results to the variables of the

DCM seems necessary. It should assess the extent to which

Fig. 1 Comparisons of the cofactor from the EQUI model and DCM

for different set of parameters (no unit). Top the values of the

equivalent diagonal model are plotted by varying q from 0 (lowest

blue line) to 0.9 (highest blue line) by steps of 0.1 (logarithm scale).

The green dotted lines are corresponding to the addition of an identity

noise matrix for q ¼ 0:6. Middle the DCM with c varied by steps of

5� from 10� to 40� for dDCM ¼ 0 (red lines). The green dotted lines

correspond to c ¼ 20	 and different values of dDCM. The EQUI model

with q ¼ 0:6 corresponds to the blue line. Bottom the mean of the

variance over all elevations is computed by varying c and q with

dDCM ¼ 0:3
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a misspecification impacts the solution and validates the

DCM as a model that accounts for correlations. Two cases

were correspondingly identified: (1) the true VCM is cor-

responding to a DCM and (2) the true VCM is taking

atmospheric-like correlations in consideration. We inten-

tionally focus on modeling such correlations that are

known to be the most important for GPS phase observa-

tions. An extension to other kind of correlations is pro-

posed in the last section of this contribution. A relative

positioning is up to now taken into consideration.

Sensitivity analysis of the DCM model

In a first step, simulations are carried out by varying the

parameters set of the estimated DCM ŴDCM around the

reference values c; dDCM½ �0¼ 20; 0:3½ � used to build

W0DCM. For the sake of simplicity, we skip the subscript

noise. Time series with the reference structure are

computed by means of Cholesky decomposition. A

known integer vector is added to simulate ambiguities.

The cutoff was taken to 5�, the sampling rate to 30 s.

The satellite sky distribution of the two stations sepa-

rated by 80 km corresponds approximately to Fig. 2

(bottom). We quantify the effects of misspecifications on

quantities such as the loss of efficiency (4), the bias of

r̂Ŵ (3). Monte Carlo simulations were carried out for the

distance float-fix (6).

Results of simulations

The results of the sensitivity analysis on the quantities

defined previously are summarized in Fig. 3. As expected,

a minimum is reached when ŴDCM corresponds to the

structure of reference. However, we note that all presented

quantities increase strongly when the c is smaller than c0.
Thus, underestimation of the parameter should be avoided,

particularly c� 12	. This is further associated with a wrong

fixing of the ambiguity to integer due to the error in the

float ambiguity vector. This error can be non-optimally

corrected by increasing artificially dDCM, the loss of effi-

ciency reaching 0.15 (Fig. 1 top, green line). Thus, as

previously mentioned and similarly to the correlation

structure, solutions that approximate the correct one are

non-unique (Kermarrec and Schön 2017) but some of them

are still preferable, particularly in terms of loss of effi-

ciency and precision.

As c increases, which corresponds to neglecting more

and more correlations, RMSE remains small with respect to

the reference case, compared with the same decrease of c.
For c; dDCM½ � ¼ c0 þ 20	; 0:3½ �, we note a negligible

increase of 0.01 for the loss of efficiency. However, for

c; dDCM½ � ¼ c0 � 10	; 0:3½ �, the RMSE is twice higher than

with c0. For small variations around the reference, i.e.,

c ¼ c0þ=�5	, a difference of maximum a few submm at the

parameter level is expected from the MSE and d�1. This

result holds also when dDCM ¼ 0. However, if c ¼ c0 but

dDCM ¼ 0:6 is taken into consideration, a positive bias of

r̂ŴDCM by up to 2 mm with respect to the case dDCM ¼ 0 is

obtained, RMSE remaining minimal. In real case, a rejection

of the solution with the overall model test would be pos-

sible. Thus, neglecting correlations (Fig. 1 middle) by

increasing both c; dDCM½ � can be considered as less risky

than overestimating the correlation length, i.e., decreasing

c; dDCM½ �.
In a second step, the reference VCM is changed and

assumed to be of type W0FULLY with a; m½ �0¼ 0:01; 1½ �. As
mentioned, these values were chosen to model approxi-

mately the structure of atmospheric correlations (Kermar-

rec and Schön 2014). The smoothness of 1 can be shown to

Fig. 2 Top comparison in log scale of the variances (ELEV) or

equivalent variance (DCM, EQUI). One batch corresponds to 100

epochs, data rate 30 s. For the DCM (green line), c ¼ 15	 and for

EQUI (red line) q ¼ 0:85 (AR(1) model). The blue line corresponds

to ELEV, d ¼ 0:3. Bottom corresponding skyplot
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be physically relevant (Kermarrec et al. 2017), and the

correlation length can be linked to q ¼ 0:85 for an AR(1)

model. As in this contribution we are neither willing to

approximate exactly the equivalent model nor wanting to

describe exactly the correlation structure, we allow our-

selves to disregard the impact of the smoothness on the

results by using an AR(1) structure. A noise matrix with

dFULLY ¼ dDCM ¼ 0:3 is taken into consideration and the

same methodology as previously is used. From the shape of

the loss of efficiency (Fig. 3 bottom), we point out once

more the risk of taking c\12	. It is essential to mention the

clear minimum of RMSE for 15	\c\20	. This minimum is

evidently not 0 as for the previous simulations where the

reference matrix was corresponding to W0DCM. However,

its existence gives weight to the possibility of modeling

elevation-dependent correlations of FULLY type thanks to

the DCM. Moreover, making a parallel with the results of

Fig. 1 (bottom), the range of values of c for the minimum

corresponds to the approximated correlated structure with

an AR(1) model and q ¼ 0:85. We note additionally that

increasing c and thus neglecting more and more correla-

tions lead to a higher RMSE than the minimum. This high-

lights the importance of taking correlations into account for

a more reliable precision. We will come back to this result

in the last section when making a proposal to fix the

parameters of the DCM.

K matrix

In order to further compare the DCM with respect to the

ELEV model, a short study of K (2) is proposed. The

FULLY or EQUI cases are not depicted, i.e., the first and

last values of the batches being much higher that the

middle values. Figure 4 presents exemplarily the third

column of K sorted per PRN (Up component). The

behavior is similar to the two other columns (north and east

components). The previous example, corresponding to the

skyplot of Fig. 2 (bottom), is carried on.

For the value dDCM ¼ 0:3 (Fig. 4 top), we notice that

the slopes of K are getting similar for the DCM and the

ELEV model as c increases (i.e., c ¼ 40	) for satellites

from 30� elevation (PRN 13, 15, 20 28, 30). This

behavior validates our intuition, i.e., such high values of c
correspond to neglecting correlations. The non-unicity of

the parameter combination is further highlighted in Fig. 4

(bottom) since the slopes for c; dDCM½ � ¼ 15; 0½ � and

c; dDCM½ � ¼ 10; 0:3½ � have strong similarities (PRN13).

Moreover, the K values for dDCM ¼ 0:6 and dDCM ¼ 0:3

are nearly identical. Thus, a certain variability is allowed,

provided that the overall model test does not fail as

mentioned previously (Fig. 3 top). Following the results

of the previous simulations, we propose to fix a limit for c
to cmin ¼ 12	 due to the hardly explainable slopes for

c ¼ 10	 (PRN13). An increase of dDCM for cmin\12	 in

that particular case did not seem optimal in terms of loss

of efficiency (Fig. 3 top).

Fig. 3 Results from simulations. Top RMSE, MSE and bias of r̂ŴDCM.

The structure of the estimated DCM VCM is varied around the

reference set c; dDCM½ �0¼ 20; 0:3½ �. Middle d�1 is given in (m). Bottom

the RMSE by varying the c for a reference matrix of FULLY type with

a; m½ �0¼ 0:01; 1½ �, dDCM ¼ dFULLY ¼ 0:3
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Conclusions of the simulations

The simulations have confirmed the similarities between

the FULLY model and DCM for a given reference struc-

ture. We dissuaded using values of c under 12� and pointed

out the non-unicity of the best parameter combinations

under this restriction. For the sake of stability, dDCM should

not be taken to 0, a value of 0.3 being a good compromise.

The importance of validating the solution by using for

instance the overall model test was highlighted. As a

conclusion from the analysis of K, we advise using the

DCM when the geometry is enough averaged in order to

compensate for a hardly explainable weighting from par-

ticular satellites. The similarities between the EQUI model

[AR(1)] and DCM were indeed shown to hold in mean over

all elevations (Fig. 1 bottom).

The conclusions of the simulations were derived for

given reference structures but could be easily generalized

for other sets, i.e., also for those corresponding to non-

correlated cases by shifting the curves. The design matrix

corresponds here to a realistic positioning case and was

shown not to influence the previous conclusions on the

DCM.

Case study

On the light of the previous simulations, a case study is

proposed where the impact of the diagonal correlation

model on quantities such as the 3DRMS and r̂Ŵ is studied.

The factor c is varied in a range from 10� to 40� for

dDCM ¼ 0:3. Although this value seems empirical, it was

chosen based on the results of the simulations, making use

of the non-unicity of the best set. Thus, for the sake of

coherence and numerical stability for short batches, this

plausible value was kept through the whole contribution.

Real case study

A relative positioning situation with a baseline of 80 km is

chosen. L1GPS data having a 30-s data rate from two

stations from the European Permanent Network (EPN,

Bruyninx et al. 2012) KRAW and ZYWI were used

(Kermarrec and Schön 2017). The corresponding double

differences observations were shown to be correlated with

previous contributions of the authors. The correlation

structure could be mostly related to atmospheric effects

( a; m½ � 
 0:01; 1½ �). The reference values are the long-term

station coordinates from EPN solution so that in mean a

lower 3DRMS is corresponding to a more accurate and

reliable positioning. The 3DRMS is chosen as a global

indicator. In order to allow general conclusions on the

impact of the stochastic model, the north, east, or up

components are not given as they strongly depend on the

underlying geometry and are thus less representative than

the 3DRMS.

The GPS days DOY 201 of 2015 was chosen arbitrarily

as well as the starting time GPS-SOD 6000 s. We aim in

this section to validate under which conditions the FULLY

or EQUI model can be replaced by the DCM for a given

(and approximately known) correlation structure by

studying the behavior of the least-squares results when c is
varied. Thus, other starting times would lead to similar

shapes and conclusions due to the well averaged GPS

constellation. No change in the reference satellite occurs

during the session, and outliers were pre-eliminated. A

cutoff of 5� was taken. The ambiguities were estimated as

float together with the position. We used the ratio test with

Fig. 4 Third column of the K matrix for different variance models

(ELEV and DCM) is shown. Top: dDCM ¼ 0:3 and c is varied, bottom
c ¼ 15	 for different values of dDCM. The batch length is 100 epochs

with data rate 30 s. The label ‘‘PRN’’ corresponds to the PRN-

reference satellite (PRN5) double differences
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a threshold of 0.5 as validation test to fix the ambiguities to

an integer using the Lambda method. Otherwise, the

ambiguities were let float. The observations session is

divided into batches of different lengths: 10 batches of 200

epochs, 20 batches of 100 epochs, 40 batches of 50 epochs,

and 100 batches of 20 epochs, the same satellites being

visible. Using this strategy, the impact of the less erroneous

float or fix ambiguity vector can be assessed (Fig. 3

middle).

The mean values over the number of batches were

computed. r0 was assessed to 3 mm with regard to the data

quality and processing strategy. For batches shorter than 50

epochs, the residuals may not be normal distributed any-

more. Thus, the overall model test may not correspond to

the F-distribution (Williams et al. 2013) and was not

applied for the 20-epoch case. The results given with the

FULLY and ELEV models are presented. The EQUI model

corresponds exactly to the FULLY case except for r̂ŴEQUI

is not included. Following the simulations, no tropospheric

parameter was estimated. For batches shorter than 1 h, the

risk of estimating an additional parameter is to be unable to

separate the up component from the tropospheric parame-

ter. For the sake of homogeneity, we decided not to esti-

mate a tropospheric parameter for long batches.

Nevertheless, estimating an additional parameter or not

would not have changed the general conclusions of this

contribution which are based on comparing results from

different stochastic models by varying their parameters.

This assumption is from Fig. 1 (bottom), we expect a

value of c ¼ 15	 to be optimal as soon as the geometry is

enough averaged.

Results

From Fig. 5 (top left, 20 epochs case), a high variability of

the 3DRMS by varying c can be seen, which we interpret as
the effect of a non-averaged geometry (Fig. 4). For very

short batches (real-time kinematic like processing), the

DCM model performs ‘‘between’’ the FULLY and ELEV

models. As the ambiguities could not be fixed, the 3DRMS

under the FULLY model outperforms by more than 6 cm

the results from the DCM and ELEV model, the mean of

r̂ŴFULLY being 3.1 mm. The FULLY solution can be thus

considered as the most correct one statistically.

As the batch length increases, the similarities between

the FULLY model and the DCM for c ¼ 15	 become

apparent for both the mean of r̂Ŵ and the 3DRMS. The

corresponding results may not obligatory lead to the lowest

attainable 3DRMS (case 50 and 200 epochs) which is

reached for a lower c of 10�. However, the slightly

underestimated r̂ŴDCM of less than 2.2 mm makes us take

this optimistic result with care. Although the value stays in

an accepted range, it corresponds, following the simula-

tions, to a strong loss of efficiency (underestimated preci-

sion) and should be excluded. On the contrary, as c
increases (200-epochs case, Fig. 6 bottom right), the results

given under the ELEV and the DCM models are getting

similar, i.e., only a submm difference for an 80-km base-

line is found. This has to be linked with the shape of the

weightings and the linear combination of the observations

(Figs. 1, 4) and is coherent with the results found in Luo

et al. (2014).

The fixing of ambiguities was improved by approxi-

mately 5% for both the FULLY model and DCM with

c ¼ 15	 for the 4 batch lengths. Increasing c tends to

decrease this percentage as the model is getting closer to

the ELEV weighting. Obviously, the impact of the less

erroneous float ambiguity vector is stronger for short bat-

ches and decreases with increasing batch lengths.

Test statistics and precision remain in all cases more

reliable which can be seen by comparing the a priori pre-

cision Q given by the sum of the diagonal values of the a

priori cofactor matrix of the coordinates for the different

models. Exemplarily, and without loss of generality, the

50-epoch case was chosen. Whereas Q reaches 441 and 352

for the FULLY model and the DCM with c ¼ 15	, the a

priori precision with the ELEV model is strongly under-

estimated (Q ¼ 64) and corresponds to the values found for

the DCM with c ¼ 40	. This short analysis confirms thus

our previous conclusions.

Short baselines

For medium and long baselines, atmospheric effects are not

canceled out by double differencing and correlate the

observations. In such cases, the DCM with c ¼ 15	 is a

good alternative to the FULLY or equivalently EQUI

models. However, this model should be avoided for shorter

batches and the FULLY or EQUI models preferred.

For short baselines, the impact of taking correlations

into account is correspondingly smaller. On the one hand,

the correlation length is shorter, i.e., atmospheric effects

cancel out in most cases. On the other hand, the data

quality and the ambiguity fixing are often better than for

longer baselines. Thus, the results given under the models

FULLY and by extension EQUI, DCM, and ELEV are

nearly identical. However, less biased test statistics can still

impact the positioning positively by excluding with a

higher reliability batches with the overall model test, par-

ticularly when multipath is present. A decrease in the false

alarm for more reliable outlier detection is also expected

(Li et al. 2016). As a consequence, the DCM can still be

used to model correlations for shorter baselines by adapting

the parameters accordingly as proposed in the next section.
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A proposal to fix the DCM parameters

Following the previous conclusions, Fig. 6 describes a

simple strategy to fix the parameters of the DCM. The main

reasons why and when this model should be preferred are

summarized in the box called ‘‘expected.’’ We here only

shortly present the methodology.

In a first step, the correlation coefficient q of the double

differences is estimated for a given satellite at mean ele-

vation (40�–60�) using a simple MATLAB routine. A noise

factor is either empirically fixed or estimated from the

observations (Li et al. 2016). We propose for the sake of

simplicity to use the empirical value of 0.3. Following

Fig. 1 (bottom), the corresponding c can be derived. Used

for long baselines, this procedure may lead numerically to

q[ 0:95 due to the AR(1) approximation and corresponds

to c\ cmin. As a consequence, and because correlations in

that case are mainly due to atmospheric effects, we advise

to fix it to 0.85. It should be clear that an accurate

description of correlations should depend on time and

location. Interested readers are advised to consult results in

Kermarrec and Schön (2017) of a sensitivity analysis of the

parameters of the correlation function presented in ‘‘Ap-

pendix’’. This discussion is, however, beyond the scope of

the paper, a stochastic model being in essence always an

approximation of the unknown truth.

Independent of the baseline length, the DCM should be

used with care for short batches when the geometry is not

enough averaged. However, considered as a hidden corre-

lation model based on an exponential function, it can

replace the commonly used variance models in all other

cases.

Fig. 5 Comparison of the

impact of stochastic models on

the mean of the 3DRMS (mm)

and r̂Ŵ (mm) by varying c. The
batch lengths are: top left 20

epochs, top right 50 epochs,

bottom left 100 epochs, bottom

right 200 epochs. Red, blue, and

green lines correspond to the

DCM, FULLY, and ELEV

model, respectively

Fig. 6 How to use the DCM model: a summary
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Conclusions

In this contribution, a proposal to approximate the equiv-

alent diagonal model EQUI that summarizes fully popu-

lated VCM built thanks to the model proposed by

Kermarrec and Schön (2017) into diagonal matrices for

GNSS positioning was presented. This model called diag-

onal correlation model (DCM) is based on a simple

exponential function where the modeling of an additional

white noise is let to a scaled identity VCM. It is thought

and designed as an alternative to the EQUI model. As no

inversion of a fully populated matrix is needed, one of the

main weakness of the EQUI model is overcome. Moreover,

the diagonal value reaches 1 for satellites at 90� of eleva-
tion so that no underestimation of the a posteriori variance

factor occurs, making comparison obtained with traditional

variance models possible.

Simulations allowed to assess the sensibility of some

chosen least-squares quantities to variations of the param-

eters of the DCM VCM. Whereas an underestimation of the

exponential factor is riskier in terms of loss of efficiency

than an overestimation, the noise factor impacts less

strongly the results. A link in mean over all elevations

between the DCM parameters and the correlation structure

was further highlighted. A real case study using observa-

tions from a medium baseline where unmodeled or atmo-

spheric effects were not eliminated validates the

conclusions of the simulations. For batches shorter than 50

epochs, the 3DRMS with the DCM was sensitive to vari-

ations of the exponential factor due to a reduced averaging

of the geometry and challenging data quality. However,

from 50 epochs, the a posteriori variance factor under the

DCM model with c ¼ 15	 was similar to the FULLY

model in terms of 3DRMS, the differences getting smaller

as the batch lengths increased. Thus, more reliable test

statistics, improved ambiguity resolution and precision are

in all cases expected from the DCM, FULLY or EQUI

models with respect to the ELEV model, independently of

the baseline length or processing strategy. The corre-

sponding VCM remains, however, diagonal and does not

replace FULLY matrices which can whiten the observa-

tions and should be preferred for short sessions.
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Appendix: a model for GNSS phase correlations

The FULLY model is shortly presented (Kermarrec and

Schön 2017). The covariance function is derived from a

model for phase covariance due to turbulent tropospheric

refractivity variations (Schön and Brunner 2008). The

covariance function C between 2 observations of satellites i

and j at the time t and t þ s reads:

C
jtþs
it ¼ bd

sin Eli tð Þð Þ sin Elj t þ sð Þ
� � asð ÞmKm asð Þ

Eli and Elj are the elevations of the satellite i and j,

respectively. d is a scaling parameter so that the variance

equals 1 for satellites at 90� elevation using small argument

approximations (Schön and Brunner 2008). Km is the

modified Bessel function of order m. b is a weighting factor

modeling the covariance between different satellites. m is

called the smoothness; a describes the decay of the

covariance function with time.
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Abstract: Least-squares estimates are trustworthy with
minimal variance if the correct stochastic model is used.
Due to computational burden, diagonal models that ne-
glect correlations are preferred to describe the elevation5
dependency of the variance of GPS observations. In this
contribution, an improved stochastic model based on a
parametric function to take correlations between GPS
phase observations into account is presented. Built on
an adapted and �exible Mátern function accounting for10
spatiotemporal variabilities, its parameters can be �xed
thanks toMaximumLikelihood Estimation or chosen apri-
ori to model turbulent tropospheric refractivity �uctua-
tions. In this contribution, we will show in which cases
and under which conditions corresponding fully popu-15
lated variance covariance matrices (VCM) replace the es-
timation of a tropospheric parameter. For this equiva-
lence “augmented functional versus augmented stochas-
tic model” to hold, the VCM should be made su�ciently
largewhich corresponds to computing small batches of ob-20
servations. A case study with observations from amedium
baseline of 80 km divided into batches of 600 shows im-
provement of up to 100 mm for the 3Drms when fully pop-
ulated VCM are used compared with an elevation depen-
dent diagonal model. It con�rms the strong potential of25
such matrices to improve the least-squares solution, par-
ticularly when ambiguities are let �oat.

Keywords: correlations, equivalence stochastic functional
model, GNSS phase measurement, hidden tropospheric
parameter, least-squares, Mátern covariance function,30
stochastic model

1 Introduction
Because of an overdetermined system of equations with
more observations than unknowns, GNSS measurements
are often processed with least-squares estimation meth-35
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ods. The functional model which describes the relation-
ship between the observations and the parameters to be
estimated is well-known (Hofmann-Wellenhof et al. 2001);
the samecannot be said for the stochasticmodel.However,
the correct modelling of non-deterministic e�ects can be 40
considered as a prerequisite in order to reach a minimum
variance of the estimates. Heteroscedasticity of GPS resid-
uals (Bischo� et al. 2005) is widely assumed and the ele-
vation dependency of the variance of GNSS observations
is described thanks to cosine, exponential or CNO/SNR 45
based functions, see exemplarily Vermeer (1997), Wang et
al. (1998) or Luo et al. (2014). Even if many factors act
on correlating the observations, such as the atmosphere
(Schön and Brunner 2008), or the receiver itself (Bona
2000, Amiri-Simkooei and Tiberius 2007), correlations re- 50
mainmostly disregarded. Besides computational demand-
ing iterative procedures on the residuals (Koch 1999, Te-
unissen and Amiri-Simkooei 2008), empirical models for
correlations between GNSSmeasurements have been con-
cretely used (El-Rabbany 1994, Howind et al. 1999). How- 55
ever, due to a lack of an accurate and plausible descrip-
tion, correlations are often neglected. Additionally, diag-
onal variance covariance matrices (VCM) are less di�cult
to handle than fully populated VCM accounting for corre-
lations. Since the least-squares solution remains unbiased 60
even with approximated stochastic models as long as the
residuals are zero-mean, nomain di�erences are expected
at the estimates level in ideal cases. This was con�rmed
for example by Radovanovic (2001). However, when corre-
lations are neglected, the least-squares estimator is less ef- 65
�cient and signi�cance tests biased (Williams et al. 2003).
The consequences are for example an overoptimistic pre-
cision, aworthier ambiguity resolution or outlier detection
(Kermarrec and Schön 2017, Amiri-Simkooei et al. 2016, Li
et al. 2017 for Beidou). The development of a better and re- 70
alistic stochastic model is a way to face this issue (Tralli
and Lichten 1990).

Based on a Mátern covariance function and physical
considerations, Kermarrec and Schön (2017) proposed a
new approach to describe elevation dependent correla- 75
tions in an understandable manner. This function has two
main parameters: the smoothness and a correlation pa-
rameter and thus allows a greater �exibility with respect
to simpler non elevation dependent functions, such as the
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�rst order Gauss Markov model (AR(1)) proposed by El-
Rabbany (1994). Tomodel atmospheric e�ects, the param-
eters can be �xed to given values following Kermarrec and
Schön (2014).

In this contribution,wemathematically derive how in-5
tegrating fully populated VCM built with this function in
the least-squares adjustment can impact the least-squares
solution. Indeed, in someparticular cases, not only the test
statistics become more trustworthy and less biased under
such an improved stochastic model but also the estimates10
themselves can be impacted. Thus, the structure of the pa-
per is as follows: in the �rst part, we will describe shortly
the proposed correlation model. The second part explains
the concept of the “hidden elevation dependent parame-
ter” to present when such a function can replace a non-15
estimable tropospheric parameter. In the third part and
thanks to an example, we will more concretely highlight
the impact on the solution of non-diagonal VCMbuildwith
the proposal. The appendix deals with the problem of pre-
cision and ambiguity resolution.20

2 Stochastic model: a proposal for
correlations

2.1 Mathematical background

The point positioning problem is usually solved by �rst
linearizing the observation equations w.r.t. the unknown25
parameters. Based on approximate parameter values, the
so-called linearized functional model is obtained that de-
scribes the mathematical relationship between the esti-
mates and the observations. After rearranging, the Ob-
served Minus Computed (OMC) term can be computed30
which is the di�erence between actual observations and
modelled observations. The corresponding equation is:

y = A∆x + ε (1)

In this contribution, we assume a relative positioning
scenario with GNSS phase observations.We call y the n×1
vector of Observed-Minus-Computed (OMC) double di�er-35
ences, ε the n×1 error vector.Weassume that the error term
has zeromean and a normal distribution, E

(
εεT
)
= σ2W0

where W0 is the positive de�nite and fully populated co-
factor matrix of the double di�erences and E the mathe-
matical expectation. σ2 is the apriori variance factor. Deal-40
ing with phase measurements is inherently ambiguous,
the ambiguities are estimated in a �rst step as �oat, i.e.
part of the functional model. The design matrix for GNSS
positioning can be thus partitioned as A = [ AC AA ].

The (n, 3) matrix AC and the (n, namb) matrix AA describe 45
the designmatrices of the coordinates and ambiguities, re-
spectively, where n and namb are the number of double dif-
ferences and the number of double di�erenced ambigui-
ties, respectively. If a tropospheric parameter has to be es-
timated, the design matrix is extended accordingly, as de- 50
scribed for example in Kermarrec and Schön (2016). Simi-
larly to the design matrix, the correction vector for the un-
known parameters ∆x = [ ∆xC xA ] is divided into a cor-
rection on the estimated coordinates and the �oat ambigu-
ity. 55

TheGeneralized Least Squares Estimator (GLSE) reads
∆x̂0 =

(
ATW0

−1A
)−1

ATW0
−1y (Koch 1999). In practise,

W0 is unknown and replaced by an assumption or apri-
ori variance covariance matrix (VCM) which we call Ŵ. As
a consequence, the feasible generalized least-squares so- 60
lution (FGLSE) is given by:

∆x̂ =
(
ATŴ−1A

)−1
ATŴ−1y (2)

The apriori cofactor matrix of the estimated parame-
ter ∆x̂ is Qx̂=

(
ATŴ−1A

)−1
, partitioned as follows into an

ambiguity and coordinates part:

Qx̂ =
[
QC QCA
QCA QA

]
(3)

Calling v the vector of residuals and n − u the degree
of freedom, the aposteriori variance factor for the FGLSE is
given by

σ̂2W =
(
y − A∆x̂

)TŴ−1 (y − A∆x̂)
n − u = vTŴ−1v

n − u (4)

The least-squares estimator is unbiased, consistent 65
and e�cient if the least-squares assumptions are not vio-
lated, particularly if the residuals are 0-mean and the cor-
rect stochasticmodel is used (Williams et al. 2003). In case
of GNSS positioning, heteroscedasticity should be taken
into account in the modelling as well as correlations be- 70
tween measurements, when needed. It is thus of central
importance for a trustworthy positioning to avoidmisspec-
i�cations of the stochastic model and describe the tempo-
ral relationship between observations.
Fixing the ambiguities to integer 75

For a high accuracy of the solution, the �oat ambi-
guity vector should be �xed to integer. Various strategies
can be used from a simple rounding to more complicated
methods such as the FARA (Erickson 1992) or the Lambda
method (Teunissen 1995). To prevent from a wrong �xing 80
to integer, the �xed ambiguity vector has to be validated.
This can be done for example thanks to discriminant tests
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suchas the ratio test (VerhagenandTeunissen 2013). Even-
tually, a FixedFailure-rateRatio Test (WangandFeng 2013)
or look-up tables (Teunissen and Verhagen 2009) can be
used. When not otherwise mentioned, we made use of the
Lambda method to �x the ambiguity and use a simple ra-5
tio test with a threshold of 0.5 (Wei and Schwarz 1995). As
will be shown, the results of this contribution are not im-
pacted by the �xing or validation method. For the sake of
completeness however, a short analysis of the impact of
correlations on the ratio test is proposed in the appendix.10

2.1.1 A proposal to model temporal correlations

An adapted version of the model developed by Kermarrec
and Schön (2014) is chosen to describe temporal elevation
dependent correlations of GNSSphasemeasurements. The
reader is referred to Kermarrec and Schön (2017) for more15
details on the choice of this function as well as a compar-
ison with existing strategies such as the model from El-
Rabbany (1994) or empirical ARMA processes (Luo et al.
2012).

The covariance C between two observations of satel-20
lites with PRN i and j at time t and t + τ reads:

Cjt+τit =
ρweightδ

sin (Eli (t)) sin
(
Elj (t + τ)

) (ατ)νKν (ατ) (5)

Eli and Elj are the elevations of the satellite with PRN i
and j respectively, ρweight is a weighting factor modelling
the covariance between di�erent satellites. In this contri-
bution, we choose to �x ρweight = 1 for correlations be-25
tween observations from one satellite with itself (i.e. i=j)
and disregard correlations between di�erent satellites, i.e.
ρweight = 0 if i ̸=j. Although ourmodel allows to account for
cross-correlations based on physical considerations (Ker-
marrec and Schön 2014), it is unnecessary to account for30
them for the following derivation about the augmented
stochastic model. δ is a scaling parameter so that the vari-
ance equals 1 for satellites at 90◦ elevation. α is called
the correlation parameter

[
s−1
]
and ν the smoothness. The

modi�ed Bessel function of order ν (Abramowitz and Ste-35
gun 1972) is denoted by Kν. Through this contribution, we
will refer to the set [α, ν]as the “Mátern parameters set”.
This covariance function is derived froma rational spectral
density function (Kermarrec and Schön 2014) and thus the
corresponding VCM ŴUD,corr of undi�erenced phase ob-40
servations are positive de�nite (Mátern 1960).

The spectral density of theMátern covariance function
is given by:

S (ω) =
2ν−1γΓ

(
ν + d/2

)
α2ν

πd/2
(
ω2 + α2

)ν+d/2 (6)

where ω2 = ω2
1 + ω2

2 + . . . + ω2
d is the angular frequency,

Γ the Gamma function (Abramowitz and Segun 1972). The 45
dimension of the �eld d is 1 in case of time series of obser-
vations. From Eq. (6), it can be seen that the behaviour of
S (ω)by letting ω → 0 is both in�uenced by the smooth-
ness ν and the correlation parameters α, whereas ν plays
a more important role in �ltering high frequencies (i.e. as 50
ω →∞).

Since the Mátern covariance function in Eq. (5) is
weighted by an elevation dependent factor, the covariance
is di�erent for each satellite or satellite pairs. The Mátern
parameters can be computed by Maximum Likelihood Es- 55
timation (Kermarrec andSchön 2017) andare thusdepend-
ing on the observations (L1, L2, eventually P1 or P2) or al-
ternatively �xed. The value ν = 1/2 corresponds for in-
stance to a �rst order Gauss Markov process, i.e. an expo-
nential function as proposed by El-Rabbany (1994). The 60
values of [α, ν] = [0.008, 5/6] following Kermarrec and
Schön (2014) and Wheelon (2001) were shown to model
tropospheric correlations due to the turbulent variations
of the refractivity index.

Through this contribution, we will make use of the set 65
[α, ν] = [0.01, 1.05] to model elevation dependent corre-
lations due to atmospheric e�ects. The reasons of this par-
ticular choice are shortly highlighted:
– The mean-square di�erentiability of the �eld is en-

sured (Stein 1999) which is for physical reasons an in- 70
teresting property of the covariance function. Indeed,
seeing a GPS unit as a combination of resistors, ca-
pacitors and inductors, the di�erentiability of the cur-
rent intensity on time and so the measured quantity
has to be given. The voltage of the inductor is for in- 75
stance proportional to the time derivative of the cur-
rent which may thus be �nite (Kermarrec et al. 2017).

– By taking a slightly higher smoothness than 5/6 (i.e.
the “tropospheric” value), the correlation parameter α
has tobe reducedmakinguseof thenon-orthogonality 80
property of theMátern covariance function (Gelfand et
al. 2011). This result was con�rmed by Kermarrec and
Schön (2017).

Both for the sake of numerical stability when invert-
ing fully populated matrices and for modeling additional
white noise, the undi�erenced VCM ŴUD,fully are built as
a linear combination of ŴUD,corr and the identity matrix I
modelling white noise as follows:

ŴUD,fully = (1 − β)ŴUD,corr − βI (7)

β is a positive noise factor between 0 and 1 which can
be estimated from the OMC or �xed apriori. This pro- 85
posal corresponds to an elementary model as proposed by
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Schwieger (2007). Undi�erencedmatrices ŴUD,fully can be
built for each satellite with Eq. (7) for a chosen number of
epochs ηepoch where the satellite is visible, i.e. the batch
length. The whole matrix is referred to as the FULLY VCM.
The corresponding diagonal VCM ŴUD,elev where only het-5
eroscedasticity is taken into account is called the ELEV
model. Its elements are corresponding to the diagonal of
ŴUD,corr, i.e. the commonly used cosine model. Subse-
quently, the cofactor matrix for a relative positioning sce-
nario with double di�erences reads Ŵ = MTŴUDM, where10
M is the matrix operator of double di�erencing.

3 The hidden parameter
Dealingwith OMC, we assume that the ionosphere and the
troposphere are �rstly modelled with enough accuracy in
the pre-processing step (Ho�mann and Wellenhof 1999).15
In some cases, e.g. for medium-long baselines from ap-
proximately 20 km length, tropospheric e�ects do not can-
cel out by double di�erencing. Thus a di�erential tropo-
spheric parameter is estimated as part of the functional
model. Due to its small variations between epochs, one20
value is computed per satellite for session from 1 hour of
observations, i.e. one batch of observations. As the tempo-
ral resolution is restricted as a consequence of the lack of
separability between parameters, particularly with the Up
component, usually no additional parameter is estimated25
for shorter sessions. Unfortunately, the e�ect of the tro-
posphere still impacts the coordinates for sessions shorter
than one hour.

In this section, we will show how a fully populated
VCM computed with Eq. (7) can replace the estimation of a30
tropospheric parameter for sessions shorter than one hour
in an elegant way. The mathematical derivation proposed
by Blewitt (1998) is presented and extended to the partic-
ular case of GPS.

3.1 Augmented functional model versus35

augmented stochastic model

Augmented functional model
In order to improve the solution of Eq. (1), an addi-

tional parameter ∆z can be taken into account. For theGPS
case, we can consider ∆z to be a di�erential tropospheric
parameter. In that case the augmented model reads:

y = A∆x + B∆z + ϵ (8)

B is the design matrix with dimension ηsat × ηepoch corre-
sponding to ∆z where ηsat is the number of visible satel-
lites. If Eq. (8) is written in terms of partitioned matri- 40
ces, it can be shown by applying the lemma on matrix
inversions for symmetric matrices that the solution ∆x̂
is given by ∆x̂ = (ATŴ−1PA)−1Ŵ−1Py with P = I −
B(BTŴ−1B)−1BTŴ−1 being a projection operator.

We can thus de�ne a reduced weight matrix as

Ŵ−1
red = Ŵ−1P = Ŵ−1 − Ŵ−1B(BTŴ−1B)−1BTŴ−1 (9)

If the estimates are expressed as ∆x̂ = (ATŴ−1
redA)

−1Ŵ−1
redy, 45

a parallel with Eq. (2) can be drawn. With the knowledge
of Ŵred, it is thus possible to compute ∆x̂ without having
to compute ∆ẑ. This is exactly what we aim to achieve in
the GPS case for short sessions, due to the lack of separa-
bility between the tropospheric andUp parameters. Unfor- 50
tunately, the reduced weight matrix Ŵ−1

red is singular. As a
consequence, assessing the stochasticmodelwhichwould
lead to such a VCM and allows for the direct computation
of Ŵred is impossible.
Augmented stochastic model 55

This di�culty can be overcome by seeing the aug-
mented parameter ∆z as a source of noise, i.e. a “pro-
cess noise”, similarly to what is done in Kalman �lter-
ing. Concretely, we de�ne ϵred as an augmented noise, i.e.
ϵred = B∆z+ ϵ. As a consequence, the augmented stochas-
tic model reads

Ŵ*
red =E(ϵredϵ

T
red)

=E((B∆z + ϵ)(B∆z + ϵ)T)

=E(ϵϵT) + BE(∆z∆zT)BT

=Ŵ + BŴzBT (10)

where Ŵz is the apriori covariancematrix of the additional
parameter. To make a parallel with Eq. (9), Ŵ*

red can be
inverted so that

Ŵ*−1
red = (Ŵ + BŴzBT)−1

= (Ŵ−1 − Ŵ−1B(BTŴ−1B + Ŵ−1
z )−1BTŴ−1) (11)

It can be seen from Eq. (11) that the equivalence be-
tween Ŵ*−1

red and Ŵ−1
red holds only if Ŵ−1

z is made small or
alternatively if Ŵz dominates in Eq. (10). Moreover, Ŵz
should not contain apriori information on the variance of
theprocess noise (Blewitt 1998)which is already taken into 60
account in B.
The “hidden” tropospheric parameter

In this section, we aim to present didactically howma-
trices built with Eq. (7) are corresponding to an augmented
stochastic model, i.e. a “hidden” estimation of a tropo- 65
spheric parameter. This highlights how taking correlations



Fully populated VCM or the hidden parameter | 155

into account for short batches can replace the estimation
of this additional “non-estimable” parameter.

To this end, we �rst note that thematrixB is �lledwith
the squared root of the elements of ŴUD,elev (Kermarrec
and Schön 2016). Furthermore, in Eq. (10), wemake the as-5
sumption that E

(
εεT
)
= I and assume homoscedasticity

of the errors de�ned in Eq. (1).We build E(∆z∆zT) based on
a simpli�ed version of Eq. (5), i.e. Ct+τt = δ(ατ)νKν(ατ) and
choose the Mátern parameters corresponding to a tropo-
spheric modelling with [α, nu] = [0.01, 1.05], thus identi-10
cal for all satellites (Kermarrec and Schön 2014). We inten-
tionally disregard the elevation dependency. Therefore Ŵz
is ful�lled under the aforementioned condition to account
for correlations introduced by the data’s dependence on
the process noise with “no prior information on the vari-15
ance of the process noise” (Blewitt 1999).

Returning shortly to section 2, we notice that the el-
evation dependent factor in Eq. (5) is based on a cosine
function whose square root is also used to �ll B. Therefore
we can write ŴUD,fully = BŴzBT and express the VCM of
the augmented noise as

Ŵ*
red = I + ŴUD,fully (12)

Condition for the equivalence
We have seen that for the equivalence to hold, hatWz

should be built to account for correlations, so that the pro-
cess noise dominates in Eq. (11). This can be seen starting20
for example from the equivalent diagonalmodel presented
the appendix, where correlations appear to act similarly
to a large weighting factor of the corresponding diagonal
matrix, in this case the identity matrix. If correlations are
neglected, Ŵz = I. Thus the equivalence is much weaker,25
besides the fact that it does not correspond anymore to
a covariance matrix for the tropospheric parameter. Sim-
ilarly, if the correlation length is much smaller than the
batch length, the corresponding fully populated VCM are
sparse and nearly correspond to a diagonal VCM, i.e. the30
0-value of the covariance is rapidly reached with respect
to the batch length.

Using the proposed Mátern parameter set [α, ν] =
[0.01, 1.05], the corresponding correlation length is ap-
proximately 600 s. As a consequence, we propose to de-35
�ne a batch-size limit for the equivalence to hold �xed to
3600 s (1 hour of observations). This is also the often as-
sumed condition whether to estimate a tropospheric pa-
rameter, independently of the data rate. Eventually, it is
possible to decrease α or increase ν to �ll the matrix more40
strongly. Besides the fact that it deviates strongly from a
tropospheric correlation model, it has the disadvantage of
impacting also the aposteriori variance factor (Kermarrec

and Schön 2017) and can thus only be used under the con-
trol that no overestimation occurs which will correspond 45
to an underestimation of the precision (Appendix).
From the reduced matrix to a VCM for GPS phase measure-
ments

We note that in Eq. (12) Ŵ*
red is not corresponding to

a cofactor matrix for GPS, i.e. a value of 1 for the vari- 50
ance for a satellite at 90◦ is not given anymore. Hence, al-
though the estimates will not be in�uenced by the scaling
(Kutterer 1999), the results of statistical tests such as the
overall model test cannot be compared anymore with the
usually used ELEV model. Thus we use instead a scaled 55
matrix so that the reduced matrix reads Ŵ*

red = βredI +
(1−βred)ŴUD,fully, βred being a noise parameter between 0
and 1. By doing so, we slightly weaken the equivalence by
decreasing the impact of ŴUD,fully (Kermarrec and Schön
2017). This is unproblematic using the proposed Mátern 60
parameter set and mentioned batch length limit. Eventu-
ally the weakening could be compensated by decreasing
α from 0.005, using the non-orthogonality of [α, ν] (Stein
1999).

The circle is now complete as the same expression is 65
obtained as in Eq. (7). As a consequence, when correla-
tions are taken into account with the proposed model of
Eq. (5), we account for a tropospheric parameter without
estimating it explicitly, a “hidden” parameter.

Note that we could have taken E(ϵϵT) = ŴUD,elev 70
in Eq. (10), which would have corresponded to an eleva-
tion dependent noise following Radovanovic (2001). This
choice is left to the reader. The authors have a preference
for an identity noise matrix to make a parallel with the
Tikhonov regularization. 75

3.2 An additional interpretation of fully
populated VCM

In the previous section, we have explained how using
fully populated VCM can replace the estimation of a tro-
pospheric parameter, the equivalence being valid as long 80
as the VCM ismade su�ciently large, i.e. for short batches.

It is worth additionally mentioning that in case of
short batches in GPS positioning, the ideal assumption for
the least-squares estimator to be unbiased are often not
reached (Rao and Toutenburg 1999, Koch 1999). For ex- 85
ample, non-normal errors of the residuals may signi�cate
that F-distributions cannot be assumed for the aposteriori
variance factor but either student distribution (Williams
et al. 2013). Moreover, the condition that the residuals are
zero-mean may not be ful�lled, particularly for long base- 90
lines when observations have drifts due to unmodelled re-



156 | G. Kermarrec and S. Schön

maining e�ects. Fortunately, when fully populated matri-
ces build with Eq. (5) are taken into account in the least-
squares adjustment, a �ltering of such unwanted e�ects
is obtained. This can be seen thanks to Eq. (6), e.g. the
smoothness and the correlation parameter impact the fre-5
quency content of the observations. As a consequence, us-
ing FGLSE with the FULLY model instead of the purely di-
agonal ELEV model, a decrease of the bias of the least-
squares solution is obtained corresponding to a lower loss
of e�ciency. This leads to amore trustworthypositionwith10
an associated non overoptimistic precision and better test
statistics such as overall model, outlier detection tests or
ambiguity validation tests. (see appendix formoredetails).

3.3 Ambiguity �xed

Through thedevelopment of the equivalence,wehave con-15
sidered a global model and assumed that the ambiguity is
estimated as �oat together with the position and not �xed
in advance (Eq. (1)). If the integer ambiguities are known
in advance, the equivalence still holds. As it is not used
for the less biased �oat ambiguity under a more correct20
stochastic model particularly for short batches, the solu-
tion (i.e. coordinates) obtained with di�erent VCM will be
less di�erent.

4 A case study
The concept of the hidden parameter is not straightfor-25
ward to validate. Indeed as its name indicates, it corre-
sponds to cases where no parameter can be estimated. In
order to overcome this issue, a methodology is proposed
based on decreasing the batch length and comparing the
solution found under fully populated VCM with respect to30
a diagonal VCM in cases where the true position is known.

4.1 Observations

Data from the European Permanent Network EPN (Bruyn-
inx et al. 2012) from two stations KRAW and ZYWI are cho-
sen as example for a medium baseline (80km) positioning35
scenario. OMC observations are computed with 30s rate
observations and a cut-o� of 3◦. The ionospheric and tro-
pospheric delays are partially estimated in a preprocess-
ing step with the Klobuchar and Hop�eld models, respec-
tively. A relative positioning scenario is considered and the40
North East Up (NEU) coordinates are estimated at GPS day
DOY220, year 2015. The starting time is GPS-SOD 6000s

and was taken arbitrarily. It was shown not to impact the
conclusions, i.e. the geometry playing a minor role in the
results of our comparison (Kermarrec and Schön 2017, Ap- 45
pendix 2). The reference values are the long term station
coordinates from the EPN solution.

4.2 Methodology

We compute the least-squares results given by the FULLY
VCM described in section 3 and the diagonal ELEV ma- 50
trices. We place ourselves in a case where it is assumed
that no tropospheric parameter can be estimated so that
batches have a length of maximum 100 epochs at 30 s. In
case of longer batches, an additional tropospheric param-
eter should be taken into consideration as the equivalence 55
does not hold anymore, i.e. the FULLY model does not re-
place the tropospheric parameter. Five batch lengths were
selected to show the in�uence of the fully populated VCM
on the �oat solution when no tropospheric parameter is
estimated: 60
1. 20 batches with 100 epochs (100-epochs-case,

60000 s)
2. 25 batches with 80 epochs (80-epochs-case, 60000 s)
3. 33 batches with 60 epochs (60-epochs-case, 59400 s)
4. 50 batches with 40 epochs (40-epochs-case, 60000 s) 65
5. 100 batcheswith 20 epochs (20-epochs-case, 60000 s)

As previouslymentioned, a batch approach is retained, i.e.
one solution is computed for each batch. The aim of this
methodology is to show how decreasing the batch length,
i.e. strengthening the equivalence augmented stochastic 70
versus functional model, will impact the positioning.

To this end, a global estimator of the least-squares so-
lution is retained. The reference being in our case the 0
vector since the position was known exactly, the 3Drms is
computed for each batch and averaged over all batches for 75
both stochastic models of consideration. The 3Drms dif-
ference between the ELEV and FULLY is then formed, i.e.∑m

i=1(3DrmsFULLY (i))−
∑m

i=1(3DrmsELEV (i))wherem is the
number of batches corresponding to case 1-5. As the esti-
mation of a tropospheric parameter mainly in�uences the 80
height component, we similarly compute the rms di�er-
ence for the height component only. For short batches, the
F-distribution of the ratio σ̂2Ŵ

σ20
may not be given anymore

(Williams et al. 2003, Kermarrec et al. 2017). Thus we only
compute the mean of the aposteriori variance factor over 85
all batches and compare it with the assumed apriori value
to assess roughly the trustworthiness of the solution. We
took σ0 = 4mm, i.e. a relevant andplausible value for dou-
ble di�erences observations.
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We choose to let the ambiguities �oat in order to have
a “global” functional model and make use of the better
estimated �oat ambiguities when improving the stochas-
tic model. Moreover, a comparison of the results with dif-
ferent stochastic models is easier to follow as the �xing5
to the correct ambiguities strongly improve the �nal so-
lution. Fixing the ambiguities in advance in a prepro-
cessing step leads to less high di�erences between ELEV
and FULLY model following the results of Kermarrec and
Schön (2017). Nevertheless, using fully populated VCM,10
more batches can be �xed with respect to the ELEV model
as described in the appendix. As a consequence, the con-
clusions of the case study will not be impacted by this
choice.

For the sakeof completeness andalthoughunrealistic,15
we add the results given when an additional tropospheric
parameter is estimated with the ELEV model for the 40-
epochs case.

4.3 Results

The results of the case study are presented in Table 1.20
Impact of decreasing the batch length

The least-squares estimator being unbiased, the im-
pact of the stochastic model on the positioning decreases
for longer batches. For the 100-epochs-case for example,
a 3Drms di�erence of 0.1 mm is obtained which grows to25
106 mm for the 20-epochs-case, highlighting the strong
impact of the FULLY populated VCM. If the di�erence
increases,

∑m
i=1(3DrmsFULLY (i)) decreases and becomes

closer to the 0 value. As mentioned in section 3, this re-
sult gives weight to the equivalence augmented stochas-30
tic – functional model as soon as the FULLY VCM are
“full”. Additionally and for case 1 for example, the value
of E

(
σ̂WFULLY

)
= 4.1mm is close to the chosen σ0 = 4mm

so that the solution can be considered as trustworthy. This
is not the case for the ELEV VCM where E

(
σ̂WELEV

)
=35

6.5 mm highlights a model misspeci�cation due to the
biased aposteriori variance factor. The same conclusions
hold true for the other cases, although the di�erences be-
tween ELEV and FULLY decreased as expected. Improving
the stochastic model by means of correlations is thus of40
main importance to obtain both less biased test statistics
and a better positioning.

Using the equivalence and without weakening the
data strength, the Up component is strongly improved by
up to 37 mm for the 20-epochs-case. This highlights the45
main importance of using fully populated matrices for
short batches. This di�erence decreases to 10 mm for the
60-epochs-case and is nearly 0 for the 100-epochs case,

i.e. for longer batches the use of fully populated model do
not replace the estimation of an additional parameter. 50
Estimating a tropospheric parameter for short batches

In case an additional tropospheric parameter is nev-
ertheless estimated - for case 4 for example -, as done
for longer batches, we note that E(σ̂WELEV ) = 7.1 mm.
Thus a model misspeci�cation is guessed using the ELEV 55
VCM which is con�rmed by the di�erence between the
3Drms FULLY-ELEV which is up to 90 mm higher than
without estimating a parameter. As a consequence, the
FULLY model is without a doubt a better alternative than
the ELEV model. 60
Fixing the ambiguities to integer

If the ambiguities are �xed in advance in a preprocess-
ing step, the di�erences between themodels decrease. For
the case 1 for example, a 3Drms di�erence of only 7 mm is
obtained. Thus the e�ect of the FULLY model still impacts 65
the solution but at a lower level. If the ambiguities are es-
timated as �oat and �xed for each batch using the ratio
test with a threshold of 0.5 (Wei and Schwarz 1995), the
�xing to integer can be improved by 5-10% following the
results of the simulation presented in the appendix. As a 70
consequence, improving the stochastic model will have a
“snowball e�ect” on the 3Drms, the results of test statistics
(ambiguity, outlier detection test, overallmodel test) being
less biased as shown in the appendix for the ambiguity val-
idation test (see also Li et al. 2016). Thus we de�nitively 75
advice using such models, independently of the strategy
used and particularly for short batches when the tropo-
sphere is expected to in�uence the results.

5 Conclusion
In this contribution, we made use of a weighted Mátern 80
covariance function to describe the elevation dependent
correlations of GNSS phase observations. For correlations
due to turbulent tropospheric variations of the index of re-
fractivity, the Mátern parameters (smoothness and corre-
lation length) can be �xed apriori based on physical con- 85
siderations. This function was mathematically shown to
correspond to taking an additional tropospheric parame-
ter into account without having to estimate it separately.
This equivalence augmented stochastic model-functional
model can be used as soon as the separability between the 90
tropospheric parameter and the Up component is not en-
sured in the least-squares adjustment. It is thus particu-
larly interesting for estimating the Up component with a
higher trustworthiness in case of short batches of obser-
vations. 95
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Table 1: 3Drms di�erences (FULLY-ELEV) model and rms di�erences for the Up component. Five di�erent batch lengths are computed. The
ambiguities are let float.

No trop. Case 1 Case 2 Case 3 Case 4 Case 5
3Drms di�erence
FULLY-ELEV [mm] 0.1 16.9 23.0 32.9 106.0
rms di�erence
Up component
FULLY-ELEV [mm]

−0.4 5 23.1 14.4 37.4

trop. Case 4
3Drms di�erence
FULLY-ELEV [mm] 113.1
rms di�erence
Up component
FULLY-ELEV [mm]

69.6

In a case study using double di�erenced observations
from a 80 km baseline, this equivalence leads to an im-
provement of up to 10 cm for observations divided in
batches of 20 epochs at 30 s with respect to an elevation
dependent diagonal VCM when using the �oat ambigui-5
ties. Taking correlations into account lead thus in a no-
ticeable way to an improvement of the positioning solu-
tion for short batches, particularly when the ambiguities
cannot be �xed to integer with enough reliability and let
�oat. The impact decreases for longer batches and if the10
ambiguities are �xed. However, less biased test statistics
and a less overoptimistic precision is still obtainedwith re-
spect to the purely diagonal model. The equivalence holds
as soon as the covariance is made su�ciently large. This
conditionwas translated for the GPS case and shown to be15
plausible for batches up to 3600 s length.

Acknowledgement: The authors gratefully acknowledge
the EPN network and corresponding agencies for provid-
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A Appendix 1
The equivalent diagonal model

In this appendix, some insights on how correlations
act on the apriori cofactor of the estimates (called the
precision) and the ratio test are given. For didactic pur-25
poses, we use an AR(1) model for GPS phase correlations
which corresponds to a smoothness of 1/2 in our proposal.
In that particular case, the inverse of the corresponding
VCM can be exactly expressed thanks to the known or es-
timated autocorrelation coe�cient ρAR (Rao and Touten-30
burg 1999). In Kermarrec and Schön (2016), it is explained

how correlations can be taken into account thanks to a re-
duced diagonal VCM.

The inverse of the equivalent VCM for the VCM from an
AR(1) process reads:

W−1
AR(1)_EQUI =

1
1 − ρ2AR



1 − ρAR 0 0 · · · 0 0

0 (1 − ρAR)2 0
. . . 0 0

0 0 (1 − ρAR)2
. . . 0 0

...
. . .

. . .
. . .

. . . 0

0 0 0
. . . (1 − ρAR)2 0

0 0 0 · · · 0 1 − ρAR


To derive the inverse of the FULLY VCM, we assume low
variations of the satellite elevation. Thus the elevation de- 35
pendent factor of the covariance matrix derived thanks to
the proposed model can be factorized. As a consequence,
the elements of the corresponding equivalent diagonal
VCM sorted per epochs for one satellite are:
– First and last diagonal values: 1

sin(Eli(t))2
(1 + ρAR) 40

– All other diagonal values: 1
sin(Eli(t))2

(
1+ρAR
1−ρAR

)
)

As highlighted in Luati and Proietti (2011), the equivalent
VCM thus has two diagonal values -at the beginning and
the end of a batch of observations- that are lower than the
middle diagonal values, all elements being simply propor- 45
tional to the ELEV model, i.e. corresponding to a higher
weighting as

(
1+ρAR
1−ρAR

)
> 1.

Precision of the least-squares results using FULLY
This particularity of the equivalentVCM (or its inverse)

has the consequence that when correlations are taken into 50
account, the impact of the extreme values on the results
is getting negligible for long batches. Thus the matrix
Qx̂FULLY = (ATŴ−1

FULLYA)−1 and Qx̂ELEV = (ATŴ−1
ELEVA)−1

are only linked by a scaling factor depending on the cor-
relation length. This result is derived for an AR(1) model 55
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andmay be slightly di�erent for higher smoothness where
more diagonal entries than only the 2 �rst values are dif-
ferent than the middles values. Luatti and Proietti (2011)
show for example that for an AR(3) model 3 �rst values
were di�erent. Thus, even for short batches, a scaling fac-5
tor can linkwith agoodapproximationQx̂FULLY andQx̂ELEV
when our proposed model is used. As a consequence, the
error ellipsoids will have slightly the same orientation in
space and the precision with a FULLY model will be more
realistic, i.e. no overestimation as for diagonal VCM will10
occur. The least-squares solution is therefore more trust-
worthy.
Impact on ambiguity resolution of FULLY

The second consequence of this result can be shownat
the ambiguity �xing level. Indeed, when using the Fixed15
Failure Rate Ratio Test (FFRT) with a FULLY model to es-
timate an accurate threshold (Wang and Feng 2013), it is
expected that the same value as with an ELEV VCMwill be
found.

Independently of the chosen threshold, the impact of20
misspecifying the stochastic model up to neglecting cor-
relations on the ratio test de�ned as R = ||x̂

1
A,�x−x̂A,�oat||QA

||x̂2A,�x−x̂A,�oat||QA
=

d1
d2 ≤ µR (Euler and Scha�rin 1991) can be assessed.We call
x̂1A,�x, x̂

2
A,�x the two vectors of integer candidates that are

corresponding to the two smallest values of the distance25
between the �oat and two �xed ambiguity vectors in the
metric of the covariance matrix.

To assess the impact of the FULLY model on the
ambiguity �xing, we make use of Monte Carlo simula-
tions where time series corresponding to a true VCM with30
[α, nu] = [0.01, 1] are computed. In order to assess the
sensitivity of the model, the parameters [α, ν] are varied
around the true set where it can be shown from Eq. (6) that
increasing corresponds to neglecting correlations. A con-
stellation of 8 satellites observed during 3000s was taken35
in consideration and a relative positioning strategy used.
To the 10000 simulated time series corresponding to the
correlation structure of reference, the same but arbitrary
ambiguity vector was added. The following results are in-
dependent of the constellations or the batch length (Ker-40
marrec and Schön 2017 Appendix 2).

FromFig. 1, it canbe clearly seen that neglecting corre-
lations corresponds to a small increase of the ratio test by
0.1 and thus to a slight decrease of the probability to �x the
ambiguities for a given similar threshold. This fact may be45
ampli�ed in real cases when the least-squares assumption
are slightly violated. This e�ect is emphasized when the
correlation parameter is smaller than the reference, high-
lighting the importance of non-underestimating . In the
ideal case of simulations, the ambiguities were �xed cor-50

Figure 1: Results of the Monte Carlo simulations study with 10000
iterations per Mátern parameters set. Simulated observations are
correlated with [α, v]0 = [0.01, 1] (blue point), the Mátern parame-
ters of the estimated VCM are varied. The mean value of the ratio R
is presented.

rectly with the Lambda method whether correlations are
correctly taken in consideration or neglected. Thismaynot
be the case for real cases, particularly for small batches
and thus correlations when present should not be disre-
garded as developed previously. As a consequence, it is ex- 55
pected that taking correlations into account leads to less
biased ambiguity validation tests and thus allows an in-
crease of the ambiguity success rate with respect to using
a diagonal VCM for an assumed �x threshold.
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