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SUMMARY

Deformation-dependent pressure loading on solid structures is created by the interaction of gas with
the deformable surface of a structure. Such fairly simple load models are valid for static and quasi-
static analyses and they are a very e�cient tool to represent the in�uence of gas on the behaviour
of structures. Completing previous studies on the deformation dependence of the loading with the
assumption of in�nite gas volumes, the current contribution is focusing on the in�uence of modi�cations
of the size and shape of a �nite volume containing the gas in particular on the stability of structures.
The linearization of the corresponding virtual work expression necessary for a Newton-type solution
leads to additional terms for the volume dependence. Investigating these terms the conservativeness
of the problem can be proven by the symmetry of the linearized form. The discretization with �nite
elements leads to standard sti�ness matrix forms plus the so-called load sti�ness matrices and a rank-
one update for each enclosed volume part, if the loaded surface segments are identical with element
surfaces. Some numerical examples show �rst the e�ectiveness of the approach and the necessity to take
the corresponding terms in the variational expression and in the following linearization into account, and
second the particular in�uence of this term on the stability of structures is shown with some speci�c
examples. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: deformation-dependent pressure loading; volume dependence; large deformations; stability

1. INTRODUCTION

Pressure loading on structures usually originating from gas, from �uids or from wind action
is mostly considered as static and uniform concerning deformation dependence within the
considered processes. However, it is well known that this may be a rather dangerous view
concerning the safety of structures even when only small deformations are considered. The
most signi�cant example is the stability load of cylinders under external pressure, where the
stability load is reduced by a quarter even when considering small deformations only, if it is
taken into account that the pressure remains normal to the surface [1]. For large deformations
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212 T. RUMPEL AND K. SCHWEIZERHOF

further e�ects appear such as the extension of pressure loaded surfaces and their motion
within a loading �eld such as in water, see References [2, 3] and the papers based on them
[4–7]. Then it is rather important to consider the current position of the loaded part with
respect to the water surface to get the correct loading. In addition for static considerations the
mechanical e�ects of contents in silos can be represented via deformation dependent loading
similar to unilateral contact, see [8].
If enclosed volumes are considered such as tires or airbags then the volume change within

the loading process has a major e�ect on the local pressure. Similar problems occur if the
structures show large deformations and contain �uids [5, 6] or gases [9, 10] and are otherwise
loaded, such as water bags or tubes. The latter is of greater interest, if pneumatic structures
are taken to achieve a local closure for structural parts as gas or pipe lines. In general volume
e�ects are rather important for membrane-type structures as analysed by Oden et al. [11], and
Gruttman et al. [12], where the focus is on the large deformation behaviour of hyperelastic
membranes. For FE analyses of gas in�ated structures and a good review we refer to Riches
and Gosling [13, 14]. A large number of other applications in practice show how important it is
to have complete control over the pressure loading and its e�ects on the surrounding structures.
Besides the recent study by Bonet et al. [15] with a strong focus on the hyperelastic large
deformation behaviour of membranes, volume e�ects have been mainly taken into account in
�uid structure analysis with complete FE models for �uid and structure parts and in airbag and
hydroforming analysis. The latter applications are performed since several years with explicit
FE programs as LS-DYNA [16] by the so-called control volumes considering the volume
e�ect in a similar fashion as presented here. There only dynamic and accordingly quasi-
static processes taking the inertia of the structures into account can be simulated; however,
with very small time steps. Owing to the nature of the time integration algorithm—central
di�erences—no information is available about stability, as no tangent matrices are set up.
Within the following our focus is on gas loading and on the corresponding derivations

for static, respectively, implicit solution schemes to allow stability and large deformation FE
analyses. Speci�cally, the conditions for conservativeness of the problems are also investigated.

2. THE GOVERNING EQUATIONS

The problem is prescribed by the external virtual work of a pressure load for the structure
part and Poisson’s law for the gas part considering a given initial volume.

2.1. External virtual work of pressure loads resulting form gas acting on a given volume

The deformation-dependent deformation of a pressurized structural part—containing a gas
volume—can be described within the framework of virtual work via the external virtual work
of a pressure load. The pressure p is then dependent on the current volume v(x) and thus on
the current position x of all surface points of the structure. The external virtual work becomes:

��press =
∫
a
pn · �u da (1)

with the normal n=x; � ×x; �=|x; � ×x; �|, the surface element da= |x; � ×x; �| d� d�
and the pressure p=p(v(x)). The surface vector x(�; �) depends on local co-ordinates �, �,
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VOLUME-DEPENDENT PRESSURE LOADING 213

Figure 1. Surface under pressure loading.

see Figure 1.

��press =
∫
�

∫
�
p(x; � ×x; �) · �u d� d�=

∫
�

∫
�
pn∗ · �u d� d� (2)

Thus the pressure is acting perpendicular to the surface of the structure; the surface may
be modi�ed under loading in size da and in direction represented by n. In the general case
the volume considered may consist out of one or more seperate but closed chambers �lled
with gas at di�erent pressure. To simplify matters a non-normalized form n∗=x; � ×x; � of the
normal vector n is introduced.

2.2. Constitutive equation of the gas in a closed chamber

The physical behaviour of the gas is speci�ed by Poisson’s law; � as isentropy constant, Pi,
Vi as initial pressure and volume for each closed chamber i:

piv�i =PiV �
i =const (3)

For �=1 the adiabatic change is simpli�ed to Boyle’s law, which is discussed in References
[15]. The interesting aspect is the computation of the actual volume of the various enclosed
chambers. Each volume vi is described by its corresponding surface and is computed via:

vi=
1
3

∫
�

∫
�
x · n∗ d� d� (4)

3. LINEARIZATION OF THE GOVERNING EQUATIONS

If we consider a description of the structure with shell, volume or beam element surfaces
and non-linear behaviour, the system of non-linear equations resulting from the variational
expression must be linearized for the solution with a Newton-type scheme. Then the lin-
earization at state t is performed before the discretization with e.g., �nite elements and within
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Figure 2. Newton scheme for volume-dependent pressure loading.

an incremental iterative procedure. The necessary quantities are X, V , P as initial position,
volume and pressure, xt =X+ ut , vt = vt(xt), pt =pt(P; V; vt) as known position, volume and
pressure at state t and therefore x=xt+�u, v, p=pt+�p as position, volume and pressure
at the current state. Within the chain rule the di�erent contributions have to be linearized
separately, see Figure 2.

3.1. Linearization of the virtual work expression

The expression for the external virtual work of one chamber i including the linear part of the
changes of the volume and the normal can be written as

��lini;press = ��press; t + ���p
press; t + ���n

press; t (5)

��lini;press =
∫
�

∫
�
(ptn∗t · �u+�pn∗t · �u+ pt�n∗ · �u) d� d� (6)

with
�n∗=�u; � ×xt; � −�u; � ×xt; � (7)

for the non-normalized linearized normal vector.

3.2. Linearization of Poisson’s law

As the gas law indicates that the product of its components remains constant, the change of
the product is zero:

�(pv�) = 0 (8)

�pv�t +�(v
�)pt =0 (9)

whereby �(v�) = �
v�t
vt
�v (10)

with �v=
1
3

∫
�

∫
�
[�u · n∗t + x t ·�n∗] d� d� (11)

≡�v�u +�v�n (12)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:211–238



VOLUME-DEPENDENT PRESSURE LOADING 215

Finally the linearized expression for the adiabatic change needed in Equation (6) results in

�p+
�pt

vt
�v=0 (13)

4. CONSERVATIVENESS AND SYMMETRIC MATRICES

It is known that the discussion of the conservativeness of the considered problem taking into
account large deformations can be reduced to the discussion of the symmetry of the lin-
earized expression concerning the displacements and the virtual displacements, see References
[1, 17, 18] for uniform pressure, [2, 3] for non-uniform pressure �elds and [4] for a summary
based on Reference [2]. Within the following, we extend these considerations to chambers
�lled with gas, see also Reference [9, 10]. If partial integration is used in a special fashion the
linearized expression of the external virtual work and Poisson’s law especially the enclosed
volumes can be rewritten.

4.1. Partial integration of the external virtual work—considering the change of the normal

Our focus on the partial integration of the external virtual work is here restricted to the virtual
work expression ���n

press; t , see Equations (5) and (6), which is a function of the linearized
non-normalized normal vector �n∗. Introducing the covariant base vectors g�=x t; �, g�=x t; �,
which denote the components of the boundary normal ns

t , see Figure 3, leads for the virtual
work expression to:

���n
press; t =pt

∫
�

∫
�
�n∗ · �u d� d� (14)

=pt

∫
�

∫
�
(g� × �u) ·�u; � − (g� × �u) ·�u; � d� d� (15)

Figure 3. Con�guration of the normal vector ns
t and the tangent vector tst at the boundary s.
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=pt

∫
s
(ns

�g� × �u − ns
�g� × �u) ·�u ds

−pt

∫
�

∫
�

[
@
@�
(g� × �u)− @

@�
(g� × �u)

]
·�u d� d� (16)

Assuming for illustration purpose a cartesian co-ordinates system at the boundary s the normal
vector ns

t and the tangent vector tst can be written as(
ns

t

tst

)
=

[
ns
� ns

�

−ns
� ns

�

](
g�

g�

)
(17)

The relevant part of the external virtual work can then be written as

���n
press; t =pt

∫
s
(�u× tst ) · �u ds

−pt

∫
�

∫
�
(g� × �u; � − g� × �u; �) ·�u d� d� (18)

As already shown in References [2, 3, 8–10] the boundary integral vanishes—the �rst term in
Equation (18)—if one of the following four conditions is valid:

C1 No loading p on complete boundary s: p=0|s. (Only valid for �uid loading!)
C2 (a) Only displacements parallel to the boundary s are allowed: �u ‖ tst →�u× tst = 0.

This is physically clear as tst is perpendicular to pn∗ and the virtual work expression
vanishes.
(b) One boundary displacement component perpendicular to the tangent vector is �xed.
This corrects the statements given in References [2, 3, 8, 9] and by others.

C3 There is no boundary, thus only completely closed chambers �lled with gas or �uid
are considered [9, 10].

C4 The boundary integral vanishes as a whole which is hard to interprete physically, if
there are no distinct boundary conditions.

For further conversions see References [2, 3, 8] contravariant base vectors g�, g � are intro-
duced:

−g�= n∗ × g �; g�= n∗ × g�; n∗= g� × g� (19)

The relevant part of the external virtual work expression becomes:

���n
press; t =−pt

∫
�

∫
�
(�u× n∗ × g�) · �u; � − (�u× g � × n∗) · �u; � d� d� (20)

=−pt

∫
�

∫
�
(n∗ ⊗ g� − g� ⊗ n∗)�u · �u; � + (n∗ ⊗g � − g � ⊗n∗)�u · �u; � d� d�

(21)
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For simplicity skew symmetric tensors W�, W� are introduced, see also [8].

���n
press; t =−pt

∫
�

∫
�
W��u · �u; � +W��u · �u; � d� d� (22)

=pt

∫
�

∫
�
W�T�u · �u; � +W�T�u · �u; � d� d� (23)

Following the proposal given in References [2, 3] the relevant part of the virtual work ex-
pression given in Equation (14) can also be expressed in a slightly di�erent manner:

���n
press; t =pt

∫
�

∫
�
(�u; � × n∗ × g� −�u; � × g � × n∗) · �u d� d� (24)

=pt

∫
�

∫
�
[(n∗ ⊗g� − g� ⊗n∗)�u; � + (n∗ ⊗g � − g � ⊗n∗)�u; �] · �u d� d� (25)

=pt

∫
�

∫
�
[W��u; � +W

��u; �] · �u d� d� (26)

As the virtual work given by Equations (23) and (26) is identical, the considered part of the
virtual work expression can now be rewritten in a symmetric form

���n
press; t =

1
2 ‘Equation (23)’ +

1
2 ‘Equation (26)’

=
pt

2

∫
�

∫
�




�u

�u; �

�u; �


 ·



0 W� W�

W�T 0 0

W�T 0 0





�u

�u; �

�u; �


 d� d� (27)

4.2. Partial integration of Poisson’s law—considering the change of the normal

In analogy to Section 4.1 the partial integration of the gas law, see Equations (11)–(13), is
restricted to the change of the normal �n∗ in the volume computation, see also the transfor-
mations given in Equations (14)–(18).

�v�n =
1
3

∫
�

∫
�
x t ·�n∗ d� d� (28)

=
1
3

∫
s
(�u× tst ) · x t ds+

2
3

∫
�

∫
�
n∗t ·�u d� d� (29)

The �rst term in Equation (29) vanishes per de�nition for closed volumes and those with
sliding boundary conditions which also lead to closed volumes. The adiabatic change of
enclosed volumes can be rewritten as

�p+ �
pt

vt

∫
�

∫
�
n∗t ·�u d� d�=0 (30)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:211–238
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Introducing Equation (30) into the external virtual work expression leads for the relevant part
���p

press; t , see Equation (5) and (6), to

���p
press; t =−

�pt

vt

∫
�

∫
�
n∗t ·�u d� d�

∫
�

∫
�
n∗t · �u d� d� (31)

4.3. Symmetric tangent matrices and mixed formulation

Considering the complete linearization, we sum up the separately considered parts in Sections
4.1 and 4.2.

��lini;press = 0 (32)

���p
press; t + ���n

press; t =−��press; t (33)

For each enclosed chamber i we get:

−�pt; i

vt; i

∫
�

∫
�
�u · n∗t d� d�

∫
�

∫
�
n∗t ·�u d� d� (volume change)

+
pt; i

2

∫
�

∫
�




�u

�u; �

�u; �


 ·



0 W� W�

W�T 0 0

W�T 0 0





�u

�u; �

�u; �


 d� d� (load sti�ness matrix)

=−pt; i

∫
�

∫
�
n∗t · �u d� d� (load vector) (34)

Thus as expected the conservativeness is con�rmed by the symmetric form obtained for each
part separately. The �rst part for the volume change clearly leads to a rank-one update of the
sti�ness matrix.
As an alternative a mixed formulation is presented in the following with the pressure change

�p as a separate unknown, here written for one chamber only. Thus, we have one equation
for the gas law, see Equation (35) and the standard set of equations with additional terms for
�p, see Equation (36).

�p+ �
pt

vt

∫
�

∫
�
n∗t ·�u d� d�=0 (35)

�p
∫
�

∫
�
n∗t · �u d� d�

+
pt

2

∫
�

∫
�




�u

�u; �

�u; �


 ·



0 W� W�

W�T 0 0

W�T 0 0





�u

�u; �

�u; �


 d� d�
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=−pt

∫
�

∫
�
n∗t · �u d� d� (36)

If this form is taken, it allows a di�erent development concerning the symmetry of the ex-
pression, which becomes more visible after the discretization shown in the following.

5. FE-DISCRETIZATION

The variation of the potential energy W with V as the elastic potential of the structure and
�� as the virtual work of the external forces vanishes, see also Section 4.3, thus

�W = �V − ��=0 (37)

Linearizing by means of a Taylor series expansion, we embed the non-linear formulation in
a Newton-type scheme as discussed above.

�W (x t +�u)= �W (x t) +D�W (x t)�u=0 (38)

Equation (38) allows to establish a piecewise linear system of equations:

D[�V (x t)− ��(x t)]�u=− [�V (x t)− ��(x t)] (39)

If an isoparametric representation is taken for the FE-discretization

x t =Nx; �u=Nd and �u=N�d (40)

then the global sti�ness matrix and the load vector become

[V;xx −�;xx]d=− (V;x −�;x) (41)

The coupled problem for the deformation including the volume change is then written in the
case of one chamber i as follows, if the alternative formulation is used, see also Equations (35)
and (36): [

KT −Kpress; i −ai
aTi b−1i

](
d

�p

)
=

(
fext + fpress; i − fint

0

)
(42)

After elimination of �p the symmetric form of the pure displacement formulation becomes
again obvious, see also Equation (34).

[KT −Kpress; i + biai ⊗ ai]d= fext + fpress; i − fint (43)

Kpress; i =
pt; i

2
∑
e

∫
�

∫
�



N

N�

N�



T 

0 W� W�

W�T 0 0

W�T 0 0





N

N�

N�


 d�d� (44)

ai =
∑
e

∫
�

∫
�
NTn∗t d� d� (45)
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fpress; i =pt; i;
∑
e

∫
�

∫
�
NTn∗t d� d� (46)

bi = �
pt; i

vt; i
(47)

e = number of surface elements describing the chamber i (48)

The global sti�ness matrix and the global load vector are obtained by adding the load sti�ness
matrix Kpress; i and the load vector fpress; i to the element sti�ness matrix KT containing linear
and non-linear terms and to the residuum vector fint and the vector of the external forces
fext [9, 10]. The volume dependence leads to a rank-one update of the global sti�ness matrix
for each closed chamber i thus linking of all variables describing the surface of chamber i
as already obtained by Bonet et al. [15]. If a structure consists of j chambers, then we get
pressure matrices for each chamber i and due to the volume changes j rank-one updates have
to be taken into account.[

KT −
j∑

i=1
(Kpress; i − biai ⊗ ai)

]
d= fext +

j∑
i=1
fpress; i − fint (49)

6. SOLUTION ALGORITHM

As already shown by Bonet et al. [15] without restriction of any kind Equation (43) can be
rewritten for one chamber as follows:

[K∗ + ba⊗ a]d=F (50)

with K∗=KT −Kpress and F= fext + fpress − fint.
According to Sherman–Morrison [19] the solution of such a problem can be achieved by:

d=K∗−1F− �r⊗ rF (51)

with �uI =K∗−1F (52)

r=K∗−1a≡�uII (53)

and �=
b

1 + ba · r (54)

Introducing Equations (52)–(54) into Equation (51) the solution vector d can be obtained
by one additional forward-backward substitution for each chamber plus two scalar products
within the solution process using a direct solver.

d=�uI − b�uII · F
1 + ba ·�uII �uII (55)

It must be noted that in the input phase a speci�cation of all loaded surface segments, their
relation to closed volumes and their normal direction is necessary. Within the algorithm the
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Figure 4. Set-up of sti�ness matrices and residuum vectors for one chamber �lled
with gas within a Newton-type scheme

actual volume of each chamber has to be computed in order to get the corresponding pressure
in the chamber which is a constant in the terms for the load sti�ness matrix and the load
vector, see Figure 4.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:211–238
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Figure 5. Piston controlled chamber with two springs supporting the walls.

7. VOLUME EFFECTS ON THE STABILITY OF STRUCTURES

It is physically obvious, that the linkage of all variables by the thermodynamic gas equation
leads to a stabilization of the system, indicated by a higher value of the determinant and a
higher �rst eigenvalue � of the sti�ness matrix, illustrated by a simple example, see Figure 5.
A rigid chamber with two springs supporting the walls (spring sti�nesses c1; c2; surface of
the walls A) is pressurized by a piston controlled motion x, thus a controlled volume. For the
global sti�ness matrix, the determinant and the eigenvalues become:

K∗ =

[
c1 0

0 c2

]
+ �

pt

vt

(
A

A

)
(A; A) (56)

detK∗ = c1c2 + �
pt

vt
A2(c1 + c2) (57)

�1;2 =
1
2


c1 + c2 + 2�

pt

vt
A2 ±

√
(c1 − c2)2 +

(
2�

pt

vt
A2
)2 (58)

In the case c1 = c2 = c this simpli�es to

detK∗ = c 2 + 2�
pt

vt
A2c (59)

�1 = c; �2 = c+ 2�
pt

vt
A2 (60)

8. NON-LINEAR ANALYSIS USING ARC-LENGTH PROCEDURES

Two special cases are investigated following the methods developed in References [2, 20–23]
in order to distinguish between two major technically important cases, which have
some implications on the solution process. In the �rst case the focus is on geometrically
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non-linear structures with closed chambers loaded by an external loading, controlled by arc-
length procedures. In addition for each chamber Poisson’s law is satis�ed.
In the second case an arc-length controlled external displacement e.g. a piston motion

modi�es an initial volume resulting in a pressure change of a closed structure. For both
cases the necessary equations for an implementation of arc-length methods in connection with
volume-dependent pressure loadings are prepared and illustrated by simple examples.

8.1. Arc-length controlled loading on pressurized closed structures

The expression for the external virtual work of an external force fext with the control quantity
� and a pressure load can be written as

��ext = �fext · �u+
∫
�

∫
�
pn · �u d� d� (61)

The physical behaviour of the enclosed gas is speci�ed by Poisson’s law

pv�=PV� (62)

Introducing a path following algorithm an arbitrary function of displacement and load level
is needed as control law

g(x; �)=0 (63)

After the discretization of the potential energy �W = �V−�� with the virtual work expression
�� of Equation (61) and the additional Equations (62), (63) the linearization at state t for
an incremental iterative procedure with the load level � as an additional unknown yields:


KT −Kpress −a −fext

aT b−1 0

zT 0 �






d

�p

��


=




�fext + fpress − fint
0

−g


 (64)

With the abbreviations for the directional derivatives:

z=
d
d�

g(x t + ��u; �t)|�=0 (65)

�=
d
d�

g(x t ; �t + ���)|�=0 (66)

Via the elimination of �p the system of equations can be reduced[
K∗ + ba⊗ a −P

zT �

](
d

��

)
=

(
R+ �P

−g

)
(67)

For simplicity R= fpress− fint as residuum of the internal forces and P= fext as external force
is introduced. After a further elimination of �� the problem is once again reduced into a
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pure displacement formulation[
K∗ + ba⊗ a+ 1

�
P⊗ z

]
d=F− g

�
P (68)

It is obvious that the global sti�ness matrix K∗ is �nally updated by two rank-one matrices.
The right-hand side F=R+�P shows a modi�cation due to the residual of the constraint equa-
tion. Applying the Sherman–Morrison formula four times the solution of the modi�ed system
of equations can be performed in the following fashion. First d is splitted into two parts via:

d=��d I + d II (69)

with

d I = [K∗ + ba⊗ a]−1P (70)

d II = [K∗ + ba⊗ a]−1F (71)

��=−g+ z · d II
�+ z · d I (72)

The interim solution vectors d I and d II are computed via:

d I = uI − buII · P
1 + ba · uII uII (73)

d II = uIII − buII · F
1 + ba · uII uII (74)

whereby

uI =K∗−1P (75)

uII =K∗−1a (76)

uIII =K∗−1F (77)

As it can be seen, the solution vector d requires three forward–backward substitutions within
one step of the iterative solution process.

8.1.1. Non-linear mechanism with gas chamber and arc-length controlled external loading.
For illustration purposes a simple example is chosen. An external force �f is applied via a
slider plunger mechanism on a gas chamber, see Figure 6. The virtual work and the gas law
of the system are formulated in the independent variables, angle ’ and load level �:

�W =− ��=[(P − p)sl sin’+ �fl cos’]�’=0 (78)

p[V − sl(cos’− cos’0)]� = PV� (79)
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Figure 6. Non-linear slider-plunger mechanism with gas chamber and arc-length controlled loading.

Introducing a non-dimensional formulation with

 =
p
P
; �=

f
Ps

; 	=
sl
V
=

l
lp

(80)

leads to:

(1−  ) sin’+ ��cos’=0 (81)

 [1− 	(cos’− cos’0)]� =1 (82)

As control law an iteration on normal surfaces [23] with t as tangent vector on the load
de�ection curve is chosen

g= tt · (t − tt) (83)

=’t(’− ’t) + �t�2(�− �t) (84)

After linearizing the equations for an iterative procedure the necessary coe�cients according
to Section 8.1 are:

K∗=(1−  t) cos’t − �t�sin’t; a= sin’t; z=’t

P=−�cos’t; b=
� t	

1− 	(cos’t − cos’0) �=�2�t

R=(1−  t) sin’t

Following the known algorithm with predictor and corrector steps the load-’ curve in Figure 7
can be computed.

8.2. Arc-length controlled displacement loading on pressurized closed structures

Several technical applications e.g. in pneumatic systems demand a �nite volume change.
A genuine rendition requires an arc-length controlled displacement. Then the expression for
the virtual work expression remains unaltered

��ext =
∫
�

∫
�
pn · �u d� d� (85)
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Figure 7. Non-linear slider-plunger mechanism with gas chamber and arc-length controlled loading;
load-’ curve; − : exact solution, � : iterative solution; 	=2, ’0 =	=4, �=1, �=1.

Figure 8. Volume computation; displacement controlled loading.

However, Poisson’s law especially the volume computation is modi�ed by the controlled
displacement

pv(�)�=PV� (86)

whereby the volume v(�) of the whole structure is decomposed into a deformable part and
into a rigid part, see Figure 8. As a consequence the volume computation is separated into
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two terms, the deformable structure vstruct and the rigid structure, the piston volume vpiston.

v(�) = vstruct + �vpiston (87)

v(�) =
1
3

∫
�

∫
�
(x − x0) · n∗ d� d�+ spiston�uext (88)

As in the preceeding sections the additional constraint for the control of the load level � and
the displacement uext is

g(x; �)=0 (89)

After the linearization of the potential energy �W = �V−��, and of Poisson’s law in Equation
(86) and of the constraint Equation (89) a discretization leads to the following set of equations,
following Equation (64):


KT −Kpress −a 0

aT b−1(�) c

zT 0 �






d

�p

��


=



fpress − fint

0

−g


 (90)

whereby

b(�) =
�pt

vt(�)
(91)

c= vpiston = spistonuext (92)

with vt(�) =
1
3
∑
e

∫
�

∫
�
(x t − x0) · n∗t d� d�+ �tvpiston (93)

Reducing the system of equations by eliminating �p, the standard set of equations for an
arc-length method is once again obtained, with R= fpress − fint as residuum of the internal
forces and P(�)=− b(�)ca as vector of the external forces.[

K∗ + b(�)a⊗ a −P(�)
zT �

](
d

��

)
=

(
R

−g

)
(94)

It should be noted that the vector of the external forces P(�) is not linear concerning the
control quantity �. Finally, a further reduction of the system as shown in Equation (68) leads
to the pure displacement formulation[

K∗ + b(�)a⊗ a+ 1
�
P(�)⊗ z

]
d=R − g

�
P(�) (95)

Computing the solution vector d via

d=��d I + d II (96)
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Figure 9. Non-linear slider-plunger mechanism with gas chamber and arc-length controlled displacement.

with

d I = [K∗ + ba⊗ a]−1P != −bc[K∗ + ba⊗ a]−1a (97)

d II = [K∗ + ba⊗ a]−1R (98)

��=−g+ z · d II
�+ z · d I (99)

it can be seen that only two forward–backward substitutions within the iterative solution
process are necessary. Then the interim solution vectors are

d I =−bc+ 2b2ca · uII
1 + ba · uII uII (100)

d II = uIII − buII ·R
1 + ba · uII uII (101)

with

uII =K∗−1a (102)

uIII =K∗−1R (103)

8.2.1. Nonlinear slider-plunger mechanism with gas chamber and arc-length controlled dis-
placement. For the illustration a very simple example is chosen. An arc-length controlled
piston motion acts on a spring supported (spring sti�ness c) slider-plunger mechanism via a
gas chamber, see Figure 9. The virtual work of the system and the gas law are formulated in
the independent variables, angle ’ and load level �:

�W = �V − ��=[−cl2(cos’− cos’0) sin’+ (P − p)sl cos’]�’=0 (104)

p[V − sl(sin’0 − sin’) + �suext]� = PV� (105)
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Introducing a non-dimensional formulation with

 =
p
P
; �=

uext
l

; 	=
sl
V
=

l
lp

; 
=
cl
Ps

(106)

leads to:


(cos’− cos’0) sin’+ (1−  ) cos’=0 (107)

 [1− 	(sin’0 − sin’) + �	�]�=1 (108)

Like in the preceeding example in Section 8.1.1 an iteration on normal surfaces with t as
tangent vector on the load de�ection curve is chosen as constraint equation.

g= tt · (t − tt) (109)

=’t(’− ’t) + �t�2(�− �t) (110)

After linearizing the equations for an iterative procedure the necessary coe�cients according
to Section 8.2 become:

K∗= 
 sin’2t − 
(cos’t − cos’0) cos’t − (1−  t) sin’t; P=− bca

R=(1−  t) cos’t − 
(cos’t − cos’0) sin’t; a= cos’t

b=
� t	

1− 	(sin’0 − cos’t) + �	�
; c= �

z=’t; �= �2�t

Following the known algorithm with predictor and corrector steps the load-’ curve shown in
Figure 10 can be computed. The snap-through type of behaviour is clearly visible.

9. NUMERICAL EXAMPLES

9.1. In�ation of a tube with partially folded walls

The example is chosen to show the e�ect of the volume change on the pressure-deformation
behaviour. An elastic tube with partially folded walls (elastic modulus E=2:5× 105 N=cm2,
Poisson’s ratio 
=0:3, wall thickness t=0:05cm), connected to a rigid cylinder, is loaded by
a displacement controlled piston, see Figure 11 (volume controlled problem). By a downward
motion of the piston in the rigid part thus reducing the volume, the pressure increases from
1 to 11 bar, the temperature computed by Poisson’s law from 10 to 290◦C and the complete
volume decreases from 6:5× 103 to 1:1× 103cm3, see Figure 12. The volume contained by the
elastic part of the system is deformed and increased by means of the increased pressure, see
Figure 11. The structure undergoes large deformations, which entail a geometrically non-linear
approach. Poisson’s law used for the temperature–volume computation is

Tv�−1 = const (111)
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Figure 10. Non-linear slider-plunger mechanism with gas chamber and arc-length controlled displace-
ment; load-’ curve; −: exact solution, �: iterative solution; 
=1, �=1, 	=0:2, ’0 =	=4.

Figure 11. In�ation of a tube with partially folded walls; loading process (left); undeformed and
deformed states (right); a=15 cm, b=75 cm, di=5 cm, de=10 cm.

9.2. Double chamber structure with di�erent internal pressure loaded by torsion

This example is chosen to show the e�ect of the volume consideration �rst on the inter-
action between two pressurized chambers and second the sti�ening e�ect of a pressurized

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:211–238



VOLUME-DEPENDENT PRESSURE LOADING 231

Figure 12. In�ation of a tube with partially folded walls; pressure—volume deformation curve;
temperature—volume deformation curve.

Figure 13. Two chamber system with elastic walls and di�erent internal pressure; loaded by torsion;
a=10 cm, b=2 cm, ’=45◦, pl0 = 0:01 bar, pr0 = 1 bar.

chamber. The structure consisting of two chambers which are �rst loaded with di�erent in-
ternal pressure—left with pl0 = 0:01 bar and right with pr0 = 1 bar, (elastic modulus E=
2:4× 104 N=cm2, Possion’s ratio 
=0:3, wall thickness t=0:1 cm) see Figures 13–15—is
�nally externally loaded by torsion, with a prescribed rotation of the ends. The uniform FE
mesh consists of 2300 solid shell elements [24]. The left chamber with the low pressure is de-
forming heavily, whereas the right chamber with the high pressure shows almost a rigid-body
rotation only. The sti�ening due to the higher pressure is clearly visible. The pressure defor-
mation curves for both chambers under torsional loading show the in�uence of the volume
consideration directly. The left chamber pressure is continuously increasing with the defor-
mations reducing the volume, whereas the curve for the right chamber shows—indicated by
arrows—�rst some unloading thus decreasing pressure and with increasing torsion and as a
consequence a slightly decreasing volume an increasing pressure.

9.3. Clamped shell under arc-length controlled loading

The upper shell of a closed container is loaded by a non-concentric single load (elastic
modulus E=1:0× 105N=cm2, Possion’s ratio 
=0:3, shell thickness t=0:1cm), see Figure 16.
The loaded shell is clamped on the two straight sides whereas the other sides are allowed
to slide in vertical direction. The other walls of the container are assumed as rigid. The
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Figure 14. Two chamber system with elastic walls and di�erent internal pressure; external loading by
torsion; pressure–volume deformation curves, left chamber (left), right chamber (right).

Figure 15. Two chamber system with elastic walls and di�erent internal pres-
sure; external loading by torsion; deformed system with internal pressure (left),
undeformed system (centre), deformed system with no internal pressure (right).

external load is algorithmically controlled via the arc-length procedure described in Section 8.1.
Owing to the deformation of the upper shell the internal pressure of the container increases,
leading to an increase of the critical load of the structure, see Figure 17. A typical snap-
through behaviour is obtained. For comparison only a shell without internal pressure was
also computed. Figure 17 shows that the critical loads of the shell with internal pressure
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Figure 16. Closed container with clamped shell under single load; a=10cm, b=5cm, c=5cm, r=7cm,
e=2:5 cm, f=600 N, � load factor, �p overpressure; deformed and undeformed shell (right).

Figure 17. Closed container with clamped shell under controlled loading; −: �p(�u) load–de�ection
curve with internal pressure, −−: �(�u) load–de�ection curve without internal pressure, −·− �p(�p)

load–overpressure curve, �u de�ection of point of application.

(stabilized) and the shell without internal pressure are almost at the same critical de�ection,
however the internal pressure provides some further resistance.

9.4. Clamped shell with imperfect geometry under arc-length controlled loading via the
motion of a piston

The bottom shell (elastic modulus E=1:0× 104N=cm2, Possion’s ratio 
=0:3, shell thickness
t=0:1cm) of a closed container is loaded by pressure, created by a downward piston motion of
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Figure 18. Clamped shell with imperfect geometry under piston loading; a=10 cm,
b=5cm, c=20cm, r=7cm, e=2:5cm, �uext controlled piston motion, � imperfection;

deformed and undeformed shell (right).

the top of the container, see Figure 18. At the bottom shell a small imperfection is introduced
to create a unique snap-through behaviour. The two straight sides of the loaded shell are
clamped; the centre of the shell contains a small imperfection. Two nodes at both sides of
the shell can only slide in vertical direction leading to a somehow symmetric problem. Only
the bottom shell is assumed as elastic, the piston and the other walls are assumed as rigid.
The solution algorithm is described in Section 8.2. The motion of the piston is controlled
directly via the arc-length procedure using an iteration on a normal plane. In Figure 19 the
load–displacement curve and the overpressure–displacement curve are shown. It must be noted,
however, that the solution could be alternatively performed in two steps by a standard pressure
controlled loading again combined with an arc-length procedure. Then after computing the
volume change due to the deformation the corresponding piston position can be determined
using the gas law.

9.5. Cylindrical shell with imperfect geometry loaded by vacuum

The cylinder with imperfect geometry taken from Reference [25] in Figure 20 with a top and a
bottom closure is loaded by vacuum which is created by vertical piston motion of the top (elas-
tic modulus E=2:1× 105 N=mm2, Possion’s ratio 
=0:3, density �=7:85× 10−6kg=mm3).
In order to achieve rather large deformations the boundary conditions at both ends are
almost identical. Both boundary nodes are �xed in in-plane direction, whereas the axial
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Figure 19. Clamped shell with imperfect geometry under piston loading; −−: �uext(�u)
controlled piston motion–displacement curve, −: �p(�u) overpressure–displacement curve,

�u: displacement of point of imperfection.

Figure 20. Imperfect cylinder loaded by vacuum created by piston motion of top; loading process;
d=1250 mm, h=966 mm, t=0:56 mm.

motion—warping—is permitted. Three points at the bottom are �xed in axial direction to
provide a non-kinematical system. As the geometry of the cylinder is not perfect the load
deformation curve should depict a snap-through type behaviour. This is also computed, how-
ever the pressure-motion curve of the top part is almost linear up to the snap-through point,
see Figure 21. Further static analyses of the postbuckling path beyond the snap-through point
with the piston motion as controlled quantity show serious convergence problems without an
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Figure 21. Imperfect cylinder loaded by vacuum created by piston motion of top; side and top view;
deformation state at buckling (left); postbuckling state (right).

arc-length scheme. The transient behaviour of the structure is considered—as discussed in Ref-
erences [25, 26] for axial loading—leading to a clear pressure deformation path without conver-
gence problems; the corresponding deformed cylinder is shown in Figure 21. Further studies in
Reference [27] using LS-DYNA [16] show for an ideal gas with an isentropy constant �=1:0
(Boyle’s law) that taking the volume change due to wall deformation into account is important
for the postbuckling behaviour up to a rather large piston volume. Only for a very large initial
piston volume or alternatively the length H the snap-through-behaviour, see Figure 22, changes
to a large deformation behaviour with purely increasing pressure–piston-motion curve.

10. CONCLUSIONS

The derivations for deformation-dependent loading show that the conservativeness of a struc-
tural problem can be proven also when taking the volume of enclosed chambers �lled with
gas into account by checking the symmetry of the linearized weak form of equilibrium. The
particular boundary conditions have been worked out. The discretization with FE leads for
each closed chamber to a rank-one update of the sti�ness terms. This special structure can
be directly used to achieve a very e�cient solution scheme, see also Reference [15]. It was
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Figure 22. Vacuum vs relative volumetric deformation of the cylinder; variation
of initial volume of cylinder and piston.

shown that the consideration of the volume dependence increases the sti�ness of a structure
including such a closed volume. Within a non-linear analysis and a Newton-type scheme us-
ing �nite elements the consistent linearization of the deformation-dependent terms leads to
quadratic convergence. In combination with arc-length schemes the particular form of the
sti�ness matrix can be used to achieve a very e�cient solution scheme. A very important
result of the derivation is that no speci�c elements are needed to investigate any pneumatic
e�ect.
The numerical examples as e.g. the interaction between two neighbouring chambers under

pressure show the necessity of taking the deformation dependence for all terms, in particular,
the volume change due to the loading into account. Without these terms correct results cannot
be obtained. The stability of the structures increases with the satisfaction of Poisson’s law as
a further constrained is imposed for each chamber under internal pressure.
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