Querzug- und Querdruckverstärkungen - Aktuelle Forschungsergebnisse

1 Allgemeines

Bei einer Zugbeanspruchung rechtwinklig zur Faserrichtung weist Holz nur eine sehr geringe Festigkeit auf. Der charakteristische Festigkeitswert von Vollholz bzw. Brettschichtholz bei Zugbeanspruchung rechtwinklig zur Faserrichtung beträgt nur etwa 1/20 bis 1/60 des entsprechenden Wertes parallel zur Faserrichtung. Holzkonstruktionen sollten daher so geplant werden, dass Zugspannungen rechtwinklig zur Faser vermieden werden oder nur möglichst geringe Werte annehmen. Beispiele für querzuggefährdete Bauteile sind Queranschlüsse, ausgeklinkte Trägerauflager und Trägerdurchbrüche. Als Verstärkungselemente wurden bisher ins Holz eingeklebte Stahlstäbe oder auf das Holz aufgeklebte Holzwerkstoffplatten verwendet. Eine Alternative zu den geklebten Querzugverstärkungen stellen bauaufsichtlich zugelassene selbstbohrende Vollgewindeschrauben dar. Selbstbohrende Vollgewindeschrauben können aber auch in querdruckgefährdeten Bauteilen eingesetzt werden. Bei einer Druckbeanspruchung rechtwinklig zur Faserrichtung weist das Holz ebenso eine geringe Festigkeit auf. Bei mit Hilfe von selbstbohrenden Vollgewindeschrauben verstärkten querdruckgefährdeten Bauteilen, wie z.B. Trägerauflagern, kann die Tragfähigkeit im Vergleich zu unverstärkten Bauteilen deutlich gesteigert werden.

Im Gegensatz zu den z.B. nach DIN 96, DIN 97 oder DIN 571 genormten Schrauben, die alle eine Gewindeform nach DIN 7998 aufweisen und in vorgebohrte Löcher eingedreht werden, werden bauaufsichtlich zugelassene selbstbohrende Holzschrauben nach dem Aufrollen des Gewindes gehärtet, um höhere Werte des Fließmomentes, der Torsionstragfähigkeit sowie insbesondere der Zugtragfähigkeit zu erreichen. Es sind Durchmesser bis zu 12 mm sowie Längen bis zu 600 mm verfügbar. Selbstbohrende Holzschrauben können als Teilgewindeschrauben oder als Vollgewindeschrauben mit durchgehendem Gewinde zwischen Schraubenkopf und Schraubenspitze hergestellt werden. Um das Einschraubdrehmoment sowie das Spalten des Holzes zu reduzieren, können selbstbohrende Holzschrauben mit einer Bohrspitze, einem Schneidegewinde oder einem Reibschaft zwischen dem Schaft- und dem Gewindebereich ausgestattet werden.

Nachfolgend werden für mit selbstbohrenden Vollgewindeschrauben verstärkte querzug- und querdruckgefährdete Bauteile Hinweise zur konstruktiven Ausfüh-

rung dieser Verstärkungselemente angegeben. Die Tragfähigkeitsnachweise für unverstärkte sowie verstärkte querzuggefährdete Bauteile können nach dem Bemessungskonzept der E DIN 1052 geführt werden. Für Trägerdurchbrüche sowie Querdruckverstärkungen werden ergänzende Berechnungshinweise angegeben, die im aktuellen Bemessungskonzept der E DIN 1052 bislang nicht enthalten sind.

Bild 1: Selbstbohrende Holzschrauben

2 Selbstbohrende Holzschrauben - Beanspruchung auf Herausziehen und Hineindrücken

Wegen der profilierten Ausbildung des Gewindebereiches können selbstbohrende Holzschrauben hohe Kräfte in Richtung ihrer Achse übertragen. Daher werden selbstbohrende Holzschrauben in auf Querzug- und auf Querdruck beanspruchten Bauteilen vorwiegend rechtwinklig zur Holzfaserrichtung eingedreht und somit in Richtung ihrer Achse auf Herausziehen bzw. Hineindrücken beansprucht. In E DIN 1052, Abschnitt 12.8.2 sind für auf Herausziehen beanspruchte Holzschrauben Bemessungsgleichungen angegeben. Diese gelten für eine Beanspruchung parallel zur Schraubenachse sowie für Einschraubwinkel zwischen Faserrichtung des Holzes und der Schraubenachse von $45^{\circ} \le \alpha \le 90^{\circ}$. Mit am Lehrstuhl für Ingenieurholzbau und Baukonstruktionen (Universität Karlsruhe) durchgeführten Versuchen zur Bestimmung des axialen Ausziehwiderstandes sowie des Widerstandes gegen Hineindrücken konnte gezeigt werden, dass der Widerstand gegen Hineindrücken von Schrauben ins Holz dem axialen Ausziehwiderstand entspricht.

Der charakteristische Wert des Ausziehwiderstandes sowie des Widerstandes gegen Hineindrücken ist in erster Linie vom charakteristischen Wert des Ausziehparameters **(Tabelle 1)** und somit insbesondere von der Tragfähigkeitsklasse (TFK) und vom charakteristischen Wert der Rohdichte des Holzes abhängig.

Ausziehpa	rameter	Kopfdurchziehparameter						
Tragfähigkeitsklasse	f _{1,k} in N/mm ²	Tragfähigkeitsklasse	f _{2,k} in N/mm ²					
1	$60~\cdot 10^{-6}~\cdot \rho_{k}^{2}$	A	60 \cdot 10 $^{-6}$ \cdot $\rho_{k}^{\ 2}$					
2	70 \cdot 10 $^{-6}$ $\cdot\rho_{k}^{\ 2}$	В	$80~\cdot 10^{-6}~\cdot {\rho_k}^2$					
3	80 \cdot 10 $^{-6}$ \cdot $\rho_k^{\ 2}$	С	100 \cdot 10 $^{-6}$ \cdot $\rho_k^{\ 2}$					
Charakteristische Rohdichte ρ_k in kg/m ³ , jedoch höchstens 500 kg/m ³								

Tabelle 1: Charakteristische Werte des Ausziehparameters bzw. des Kopfdurchziehparameters

Der charakteristische Wert der Zugtragfähigkeit ist von der Zugfestigkeit der Schraube abhängig. Für bauaufsichtlich zugelassene selbstbohrende Holzschrauben sind die Werte des Ausziehparameters bzw. der Tragfähigkeitsklasse sowie der Zugtragfähigkeit der entsprechenden Zulassung zu entnehmen. Für genormte Holzschrauben sind die Hinweise in E DIN 1052, Abschnitt 12.8.2 zu beachten.

Der charakteristische Wert des Ausziehwiderstandes bzw. des Widerstandes gegen Hineindrücken von Holzschrauben, die unter einem Winkel 45° $\leq \alpha \leq$ 90° zur Faserrichtung in das Holz eingeschraubt werden, darf somit wie folgt berechnet werden:

$$R_{ax,\alpha,k} = \min\left\{\frac{\frac{f_{1,k} \cdot d \cdot l_{ef}}{\sin^2 \alpha + \frac{4}{3} \cdot \cos^2 \alpha}}{R_{t,u,k}}\right\}$$
(1)

und 45 $\leq \alpha \leq$ 90°

Hierin bedeuten:

- *R*_{*t,u,k*} charakteristischer Wert der Zugtragfähigkeit der Schraube (gilt nur für auf Herausziehen beanspruchte Schrauben)
- $f_{1,k}$ charakteristischer Wert des Ausziehparameters in N/mm² nach **Tabelle 1**
- d Nenndurchmesser
- *l*ef kleinerer Wert der Gewindelänge im Holzteil 1 bzw. 2
- α Winkel zwischen Schraubenachse und Faserrichtung

Für Verbindungen mit axial beanspruchten selbstbohrenden Holzschrauben werden folgende Mindestabstände empfohlen (**Bild 2**). Diese Mindestabstände gelten ebenfalls für geneigt angeordnete, vorwiegend axial beanspruchte selbstbohrende Holzschrauben (**Bild 3**).

- $a_1 \quad \mbox{ Achsabstand der Schrauben untereinander in einer Ebene parallel zur Faserrichtung: } a_1 \geq 5 \cdot d$
- $a_2 \quad \mbox{ Achsabstand der Schrauben untereinander rechtwinklig zu einer Ebene parallel zur Faserrichtung:} \qquad a_2 \geq 2,5 \cdot d$

zusätzlich gilt:

 $a_1 \cdot a_2 \ge 25 \cdot d^2$

- $a_{1,c}$ Abstand des Schwerpunktes des im Holz eingedrehten Schaftteils von der
Hirnholzfläche (parallel zur Faser): $a_{1,c} \ge 5 \cdot d$
- $a_{2,c}$ Abstand des Schwerpunktes des im Holz eingedrehten Schaftteils von der
Seitenholzfläche (rechtwinklig zur Faser): $a_{2,c} \ge 4 \cdot d$

Bild 2 (links) und 3 (rechts): Mindestabstände von vorwiegend axial beanspruchten selbstbohrenden Holzschrauben

3 Querzugverstärkungen mit selbstbohrenden Holzschrauben

3.1 Verstärkte Queranschlüsse

Für durch eine Krafteinleitung rechtwinklig zur Holzfaserrichtung beanspruchte unverstärkte Bauteile mit Rechteckquerschnitt dürfen die dadurch verursachten Querzugspannungen nach E DIN 1052, Abschnitt 11.1.5 berechnet werden. Werden Queranschlüsse durch rechtwinklig zur Holzfaserrichtung eingedrehte selbstbohrende Holzschrauben verstärkt **(Bild 4)**, ist der Nachweis der Verstärkungselemente nach E DIN 1052, Abschnitt 11.4.2 zu führen. Dieser Nachweis basiert

auf der Annahme einer gerissenen Zugzone im Holz und somit auf der Übertragung der Kraftkomponente rechtwinklig zur Holzfaser allein durch die Verstärkungselemente. Daher kann bei nicht ausreichend verstärkten Queranschlüssen der Bemessungswert der Tragfähigkeit rechtwinklig zur Faserrichtung des Holzes R_{90,d} nach Abschnitt 11.4.2 kleiner sein als derjenige für unverstärkte Queranschlüsse. Für diesen Fall darf der Bemessungswert R_{90,d} wie für unverstärkte Queranschlüsse ermittelt werden.

Bild 4: Queranschluss

Können die Mindestabstände a₁ und a₂ eingehalten werden, sollten die Verstärkungsschrauben zwischen die Verbindungsmittel des Queranschlusses rechtwinklig zur Holzfaserrichtung sowie rechtwinklig zu den Verbindungsmitteln des Queranschlusses angeordnet werden **(Bild 5)**.

Bild 5: Schrauben mittig zwischen den Verbindungsmitteln des Queranschlusses (Schnitt A - A)

Anderenfalls können die Schrauben nur von außen (**Bild 6**) dicht an die Verbindungsmittel des Queranschlusses oder aber sowohl zwischen den Verbindungsmitteln als auch außerhalb eingedreht werden.

Bild 6: Schrauben außerhalb der Verbindungsmittel des Queranschlusses (Schnitt A - A)

Beispiel:

Als Beispiel wird ein verstärkter Queranschluss nach E DIN 1052 berechnet. An einen Träger aus Vollholz der Festigkeitsklasse C 24 mit einem Querschnitt h x b = 160 x 80 mm werden zwei außenliegende Stahlbleche mit Hilfe von zwei nebeneinander liegenden Bolzen (d_B = 16 mm) angeschlossen. Der Abstand der Bolzen von beanspruchten Rand beträgt a = 60 mm. Der Abstand der Bolzen untereinander in Faserrichtung beträgt a_r = 64 mm. Der Queranschluss wird mit Hilfe von vier rechtwinklig zur Holzfaserrichtung eingedrehten Vollgewindeschrauben 6,0 x 120 mm verstärkt. Die Anordnung der Vollgewindeschrauben entspricht der Schraubenanordnung in **Bild 5**. Das Gewinde der Vollgewindeschraube entspricht der Tragfähigkeitsklasse 2.

weitere Angaben:

NKL 2; KLED "kurz" \Rightarrow k_{mod} = 0,90

für Gewinde entsprechend der Tragfähigkeitsklasse 2 gilt:

$$f_{1,k} = 70 \cdot 10^{-6} \cdot \rho_k^2 = 8,58 \text{ N/mm}^2$$

für C 24 ist
$$\rho_k$$
 = 350 kg/m³

$$I_{ef} = min \{I_{ad,c}; I_{ad,t}\} = 60 mm$$

$$\mathsf{R}_{\mathsf{ax},\mathsf{k}} = \mathsf{min} \left\{ \frac{\mathsf{f}_{\mathsf{1},\mathsf{k}} \cdot \mathsf{d} \cdot \mathsf{I}_{\mathsf{ef}}}{\mathsf{sin}^2 \, \alpha + \frac{4}{3} \cdot \cos^2 \alpha} \\ \mathsf{f}_{\mathsf{2},\mathsf{k}} \cdot \mathsf{d_k}^2 \right\}$$

R_{ax,k} = 3089 N

Kopfdurchziehen ($f_{2,k} d_k^2$) ist bei Vollgewindeschrauben nicht maßgebend.

sowie für die Zugfestigkeit der Vollgewindeschraube:

$$\begin{split} &\mathsf{R}_{\mathsf{ax},\mathsf{k}} = 75 \cdot \pi \cdot (0,9 \cdot \mathsf{d})^2 = 6871 \mathsf{N} \\ &\mathsf{R}_{\mathsf{ax},\mathsf{d}} = \frac{\mathsf{k}_{\mathsf{mod}}}{\gamma_\mathsf{M}} \cdot \mathsf{R}_{\mathsf{ax},\mathsf{k}} = \frac{0,9}{1,3} \cdot 3,09 \,\mathsf{kN} = 2,14 \,\mathsf{kN} \\ &\mathsf{F}_{\mathsf{t},90,\mathsf{d}} \leq \mathsf{R}_{\mathsf{ax},\mathsf{d}} \\ &\mathsf{somit gilt:} \\ &\mathsf{n} \cdot \mathsf{R}_{\mathsf{ax},\mathsf{d}} \leq \left[1 - 3 \cdot \alpha^2 + 2 \cdot \alpha^3\right] \cdot \mathsf{F}_{\mathsf{90},\mathsf{d}} \\ &\mathsf{mit } \alpha = \mathsf{a} \ / \ \mathsf{h} \ \mathsf{sowie} \ \mathsf{n} = \mathsf{4} \ \mathsf{Schrauben folgt:} \end{split}$$

$$F_{90,d} \le 12,5 \, kN$$

Zum Vergleich kann der Bemessungswert der Kraftkomponente rechtwinklig zur Holzfaserrichtung $F_{90.d}$ für einen identischen unverstärkten Queranschluss nach E DIN 1052, Abschnitt 11.1.5 zu $F_{90.d} \leq 6,32$ kN berechnet werden.

Mindestabstände:

Bolzen:

 $a_{1,c,vorh} = 64 \ mm \geq a_{1,c,erf} = 4 \ d_B$

Vollgewindeschrauben:

Überprüfen, ob eine Anordnung zwischen den Bolzen möglich ist:

 $a_{1,max} = a_r - d_B - d = (64 - 16 - 6) mm$

a_{1,max} = 42 mm

gewählt: d = 6 mm

 $a_{1,vorh}$ = 40 mm $\ge a_{1,erf}$ = 5 d

 $a_{2,vorh}$ = 30 mm $\ge a_{2,erf}$ = 2,5 d

 $a_{2,c,vorh}$ = 25 mm $\ge a_{2,c,erf}$ = 4 d

 $a_1 a_2 = 40 \ 30 \ mm^2 \ge 25 \ d^2$

3.2 Verstärkte ausgeklinkte Trägerauflager

Bei unverstärkten Trägern mit Rechteckquerschnitt, die an den Enden ausgeklinkt sind, ist der Schubspannungsnachweis mit der Resthöhe h_e nach E DIN 1052, Abschnitt 11.2 zu führen. Für verstärkte ausgeklinkte Träger **(Bild 7)** gilt Abschnitt 11.4.3 der E DIN 1052. Bei nicht ausreichend verstärkten ausgeklinkten Trägerauflagern kann der Bemessungswert der aufnehmbaren Querkraft V_d nach Abschnitt 11.4.3 kleiner sein als der Bemessungswert der aufnehmbaren Querkraft für unverstärkte ausgeklinkte Trägerauflager. Für diesen Fall darf der Nachweis

der ausgeklinkten Ecke wie für unverstärkte ausgeklinkte Trägerauflager nach Abschnitt 11.2 geführt werden.

Bild 7: Ausklinkung

Die Verstärkungselemente sind stets unter 90° zur Holzfaserrichtung mit dem kleinst möglichen Abstand $a_{1,c}$ zur Ausklinkungsecke in die Träger einzudrehen. Weiterhin darf in Trägerlängsrichtung nur eine selbstbohrende Holzschraube in Rechnung gestellt werden. Der Bemessungswert der Zugkraft $F_{t,90,d}$ rechtwinklig zur Holzfaser muss kleiner sein als der Bemessungswert der axialen Tragfähigkeit der Schrauben. Für die Ermittlung der axialen Ausziehtragfähigkeit nach Abschnitt 12.8.2 der E DIN 1052 ist der kleinere Wert der Gewindelänge $I_{ad} = \min \{I_{ad,1}; I_{ad,2}\}$ anzunehmen.

Beispiel:

Als Beispiel wird eine verstärkte rechtwinklige Ausklinkung am Ende eines Trägers aus BSH der Festigkeitsklasse BS 28c nach E DIN 1052 berechnet. Die Trägerhöhe beträgt h = 300 mm, die Trägerbreite b = 80 mm. Die Resthöhe am ausgeklinkten Auflager beträgt h_e = 150 mm.

Die Ausklinkung wird mit Hilfe einer rechtwinklig zur Holzfaserrichtung eingedrehten Vollgewindeschraube 8,0 x 240 mm verstärkt. Die Anordnung der Vollgewindeschraube entspricht der Schraubenanordnung in **Bild 7**. Das Gewinde der Vollgewindeschraube entspricht der Tragfähigkeitsklasse 2.

weitere Angaben:

NKL 2; KLED "kurz" \Rightarrow k_{mod} = 0,90

Steigungswinkel des Anschnitts:

ε **= 90°**

Abstand zwischen Kraftwirkungslinie der Auflagerkraft und Ausklinkungsecke: c = 50 mm

für Gewinde entsprechend der Tragfähigkeitsklasse 2 gilt:

$$f_{1,k} = 70 \cdot 10^{-6} \cdot \rho_{k}^{2} = 11,8 \text{ N/mm}^{2}$$

für BS 28h ist $\rho_{k} = 410 \text{ kg/m}^{3}$
 $I_{ad,1} = h - h_{e} = 150 \text{ mm}$
 $I_{ad,2} = I_{S} - I_{ad,1} = 90 \text{ mm}$
 $I_{ef} = \min \left\{ I_{ad,1} ; I_{ad,2} \right\} = 90 \text{ mm}$
 $R_{ax,k} = \min \left\{ \frac{f_{1,k} \cdot d \cdot I_{ef}}{\sin^{2} \alpha + \frac{4}{3} \cdot \cos^{2} \alpha} \right\}$

R_{ax,k} = 8496 N

Kopfdurchziehen ($f_{2,k} d_k^2$) ist bei Vollgewindeschrauben nicht maßgebend.

sowie für die Zugfestigkeit der Vollgewindeschraube:

$$R_{ax,k} = 75 \cdot \pi \cdot (0,9 \cdot d)^2 = 12,2 \text{ kN}$$
$$R_{ax,d} = \frac{k_{mod}}{\gamma_M} \cdot R_{ax,k} = \frac{0,9}{1,3} \cdot 8,50 \text{ kN} = 5,89 \text{ kN}$$

 $F_{t,90,d} \leq R_{ax,d}$

somit gilt:

 $n \cdot R_{ax,d} \leq 1,3 \cdot V_d \cdot \left[3 \cdot \left(1 - \alpha\right)^2 - 2 \cdot \left(1 - \alpha\right)^3\right]$

mit α = h_e / h sowie n = 1 Schraube folgt:

$$V_d \le 9,06 \text{ kN}$$

Zum Vergleich kann der Bemessungswert der Querkraft V_d für eine identische unverstärkte Ausklinkung nach E DIN 1052, Abschnitt 11.2 zu V_d \leq 10,7 kN berechnet werden.

Der Bemessungswert der aufnehmbaren Querkraft für die unverstärkte Ausklinkung ist größer als derjenige für eine mit einer Vollgewindeschraube 8 x 240 mm verstärkte Ausklinkung. Entweder kann für die aufnehmbare Querkraft V_d der nach Abschnitt 11.2 berechnete Wert V_d = 10,7 kN angenommen werden oder der Verstärkungsgrad ist zu erhöhen.

Neuwahl der Verstärkung:

Vollgewindeschraube: 10 x 300 mm

Mindestabstände:

$$\begin{aligned} a_{2,c,vorh} &= 40 \text{ mm} \ge a_{2,c,erf} = 4 \cdot d \\ a_{1,c,vorh} &= 50 \text{ mm} \ge a_{2,c,erf} = 5 \cdot d \\ l_{ad,1} &= h - h_e = 150 \text{ mm} \\ l_{ad,2} &= l_S - l_{ad,1} = 150 \text{ mm} \\ l_{ef} &= \min\left\{l_{ad,1}; l_{ad,2}\right\} = 150 \text{ mm} \\ R_{ax,k} &= \min\left\{\frac{f_{1,k} \cdot d \cdot l_{ef}}{\sin^2 \alpha + \frac{4}{3} \cdot \cos^2 \alpha} \right\} \end{aligned}$$

R_{ax,k} = 17700 N

Kopfdurchziehen ($f_{2,k} d_k^2$) ist nicht maßgebend.

sowie für die Zugfestigkeit der Vollgewindeschraube:

$$R_{ax,k} = 75 \cdot \pi \cdot (0,9 \cdot d)^2 = 19,1 \text{ kN}$$
$$R_{ax,d} = \frac{k_{\text{mod}}}{\gamma_{\text{M}}} \cdot R_{ax,k} = \frac{0,9}{1,3} \cdot 19,1 \text{ kN} = 13,2 \text{ kN}$$

 $F_{t,90,d} \leq R_{ax,d}$

somit gilt:

$$\mathbf{n} \cdot \mathbf{R}_{ax,d} \leq 1, 3 \cdot \mathbf{V}_{d} \cdot \left[3 \cdot (1-\alpha)^{2} - 2 \cdot (1-\alpha)^{3} \right]$$

mit $\alpha = h_e / h$ sowie n = 1 Schraube folgt für die aufnehmbare Querkraft:

$$V_d \le 20,3 \text{ kN}$$

Zusätzlich muss der Nachweis der Schubspannung im reduzierten Querschnitt mit der Trägerhöhe h_e geführt werden.

$$f_{v,d} = \frac{k_{mod}}{\gamma_M} \cdot f_{v,k} = \frac{0.9}{1.3} \cdot 3.5 \frac{N}{mm^2} = 2.42 \frac{N}{mm^2}$$
$$V_d = \frac{2}{3} \cdot h_e \cdot b \cdot f_{v,d} = 19.4 \text{ kN}$$

3.3 Verstärkte Trägerdurchbrüche

Durchbrüche in Trägern mit Rechteckquerschnitt sind runde bzw. rechteckige Öffnungen mit den lichten Maßen d > 50 mm. Bei Trägerdurchbrüchen mit einer Beanspruchung infolge der Querkraft V_d und des Biegemomentes M_d entsteht eine Zugkraft F_{t,90,d} rechtwinklig zur Holzfaser. Der Nachweis für den Bemessungswert dieser Zugkraft rechtwinklig zur Holzfaser kann nach Abschnitt 11.3 der E DIN 1052 geführt werden. Für mit selbstbohrenden Vollgewindeschrauben verstärkte Trägerdurchbrüche (**Bild 8**) gilt Abschnitt 11.4.4. Hierbei ist die Zugkraft $F_{t,90,d}$ bei rechteckigen Durchbrüchen in der Höhe der querzugbeanspruchten Durchbruchsecke, bei kreisförmigen Durchbrüchen in der Höhe des querzugbeanspruchten Durchbruchrandes unter 45° zur Trägerachse vom Kreismittelpunkt angenommen durch selbstbohrende Vollgewindeschrauben aufzunehmen.

Bei nicht ausreichend verstärkten Trägerdurchbrüchen kann die aufnehmbare Zugkraft $F_{t,90,d}$ rechtwinklig zur Holzfaser kleiner sein als die aufnehmbare Zugkraft $F_{t,90,d}$ für unverstärkte Trägerdurchbrüche. Für diesen Fall darf analog zum Vorgehen bei Queranschlüssen und ausgeklinkten Trägerauflagern der Nachweis für verstärkte Trägerdurchbrüche wie für unverstärkte Trägerdurchbrüche nach Abschnitt 11.4.4 geführt werden.

Bild 8: Trägerdurchbruch

Für verstärkte Trägerdurchbrüche sind die Schrauben mit dem kleinst möglichen Abstand a_{1,c} zum Durchbruchsrand rechtwinklig zur Holzfaserrichtung einzudrehen. Für den Nachweis nach Abschnitt 11.4.4 darf je Durchbruchsseite in Trägerlängsrichtung nur eine Schraube in Rechnung gestellt werden.

Der Bemessungswert der Zugkraft $F_{t,90,d}$ rechtwinklig zur Holzfaser muss kleiner sein als der Bemessungswert der axialen Tragfähigkeit der Schrauben. Für die Ermittlung der axialen Tragfähigkeit nach Abschnitt 12.8.2 der E DIN 1052 ist der kleinere Wert der Gewindelänge $I_{ad} = min \{I_{ad,1}; I_{ad,2}\}$ anzunehmen.

Zusätzlich zu der Berechnung von unverstärkten sowie verstärkten Trägerdurchbrüchen nach E DIN 1052, Abschnitt 11.3 und 11.4.4 ist nach [1] ein Schubspannungsnachweis mit erhöhten Werten der Schubspannung in der Nähe eines Durchbruches zu führen.

Infolge der Umleitung des Schubflusses treten bei Trägern mit rechteckigen bzw. runden Durchbrüchen an den Durchbruchsecken sowie in einem zur Holzfaser parallelem Abstand zum Durchbruchsrand von etwa der Durchbruchshöhe h_d erhöhte Schubspannungen auf. In Abhängigkeit von der Durchbruchslänge a und der Durchbruchshöhe h_d können die an diesen Stellen auftretenden Schubspannung um bis zu drei mal höhere Werte annehmen als die Schubspannungen im Restquerschnitt oberhalb bzw. unterhalb des Durchbruches. In **Bild 9** sind die Schubspannungsverläufe über den Querschnitt an den vier maßgebenden Stellen eines Trägers mit Durchbruch qualitativ dargestellt.

Bild 9: Schubspannungsverläufe

Für $0,1 \le a/h \le 1,0$ und $0,1 \le h_d/h \le 0,4$ gilt bei konstanter Querkraft für die maximalen Werte der Schubspannungen:

$\tau_2 > \tau_3 > \tau_1 > \tau_4$

Der Höchstwert der Schubspannung kann nach [1] wie folgt ermittelt werden:

$$\tau_{\max} = \kappa_{\max} \cdot 1.5 \cdot \frac{V_d}{b \cdot (h - h_d)} \qquad \text{mit} \qquad \kappa_{\max} = 1.84 \cdot \left[1 + \frac{a}{h}\right] \cdot \left(\frac{h_d}{h}\right)^{0.2}$$
(2)

mit 0,1 \leq a/h \leq 1,0 und 0,1 \leq h_d/h \leq 0,4

Beispiel:

Als Beispiel wird ein 2000 mm langer Einfeldträger aus BSH der Festigkeitsklasse BS 28h (Trägerquerschnitt h x b = 200 x 80 mm²) mit einer Einzellast 2 V_d in Trägermitte sowie einem verstärkten rechteckigen Durchbruch nach E DIN 1052 betrachtet. Der Durchbruch mit einer Durchbruchshöhe h_d = 60 mm sowie einer Durchbruchslänge a = 100 mm wird in einem Abstand I_v = 200 mm zum Auflager angeordnet. Als Verstärkungselemente werden jeweils zwei Vollgewindeschrauben 6 x 120 mm links und rechts vom Durchbruch nebeneinander vorgesehen.

Die Anordnung der Vollgewindeschrauben entspricht dem Schraubenbild in **Bild 8**. Das Gewinde der Vollgewindeschraube entspricht der Tragfähigkeitsklasse 2.

weitere Angaben:

NKL 2; KLED "kurz" \Rightarrow k_{mod} = 0,90

für Gewinde entsprechend der Tragfähigkeitsklasse 2 gilt:

$$\begin{split} f_{1,k} &= 70 \cdot 10^{-6} \cdot \rho_{k}{}^{2} = 11,8 \text{ N/mm}^{2} \\ \text{für BS 28h ist } \rho_{k} &= 410 \text{ kg/m}^{3} \\ I_{ad,1} &= h_{r} = 70 \text{ mm} \\ I_{ad,2} &= I_{S} - I_{ad,1} = 50 \text{ mm} \\ I_{ef} &= \min\left\{I_{ad,1}{};I_{ad,2}\right\} = 50 \text{ mm} \\ R_{ax,k} &= \min\left\{\frac{f_{1,k} \cdot d \cdot I_{ef}}{\sin^{2} \alpha + \frac{4}{3} \cdot \cos^{2} \alpha} \right\} \\ R_{ax,k} &= 3540 \text{ N} \\ R_{ax,k} &= 75 \cdot \pi \cdot (0,9 \cdot d)^{2} = 6,87 \text{ kN} \\ R_{ax,d} &= \frac{k_{mod}}{\gamma_{M}} \cdot R_{ax,k} = \frac{0,9}{1,3} \cdot 3,54 \text{ kN} = 2,45 \text{ kN} \\ F_{t,90,d} &\leq R_{ax,d} \end{split}$$

somit gilt:

$$\frac{V_{d} \cdot h_{d}}{4 \cdot h} \cdot \left[3 - \frac{{h_{d}}^{2}}{h^{2}}\right] + 0,008 \cdot \frac{I_{x} \cdot V_{d}}{h_{r}} \le n \cdot R_{ax,d}$$

mit h_d / h = 0,3; a / h = 0,5; $h_r = 70$ mm; $I_x = I_v + a = 300$ mm sowie n = 2 Schrauben folgt:

$$V_d \le 19,4 \text{ kN}$$

Zum Vergleich kann der Bemessungswert der aufnehmbaren Querkraft V_d für einen identischen unverstärkten Trägerdurchbruch nach E DIN 1052, Abschnitt 11.3 zu V_d \leq 7,13 kN berechnet werden.

Weitere Nachweise:

Biegespannungsnachweis in Trägermitte:

$$f_{m,d} = \frac{k_{mod}}{\gamma_M} \cdot f_{m,k} = \frac{0.9}{1.3} \cdot 28 \frac{N}{mm^2} = 19.4 \frac{N}{mm^2}$$
$$V_d \le \frac{b \cdot h^2}{6 \cdot 1000 \text{ mm}} \cdot f_{m,d} = 10.3 \text{ kN}$$

Biegespannungsnachweis am Trägerdurchbruch:

$$V_{d} \leq \frac{2 \cdot I_{Netto}}{h \cdot I_{x}} \cdot f_{m,d}$$

$$I_{\text{Netto}} = 2 \cdot \left[\frac{b \cdot h_r^3}{12} + b \cdot h_r \cdot \left(\frac{h_d}{2} + \frac{h_r}{2} \right)^2 \right]$$

 $I_{\text{Netto}} = 5,1893 \ 10^7 \ \text{mm}^4$

 $V_{\text{d}} \leq 33,6 \ kN$

Schubspannungsnachweis am Trägerdurchbruch nach Gleichung (2):

$$f_{v,d} = \frac{k_{mod}}{\gamma_{M}} \cdot f_{v,k} = \frac{0.9}{1.3} \cdot 3.5 \frac{N}{mm^{2}} = 2.42 \frac{N}{mm^{2}}$$
$$\kappa_{max} = 1.84 \cdot \left[1 + \frac{a}{h}\right] \cdot \left(\frac{h_{d}}{h}\right)^{0.2} = 2.17$$
$$V_{d} \le \frac{2}{3} \cdot \frac{b \cdot (h - h_{d})}{\kappa_{max}} \cdot f_{v,d} = 8.34 \text{ kN}$$

 \Rightarrow Für den verstärkten Trägerdurchbruch ist der Nachweis der Schubspannung in der Nähe des Trägerdurchbruchs nach Gleichung (2) maßgebend.

Damit hätte auch eine Schraube pro Seite genügt.

Mindestabstände:

 $a_{2,c,vorh}$ = 30 mm $\ge a_{2,c,erf}$ = 4 d

 $a_{2,vorh}$ = 20 mm $\ge a_{2,erf}$ = 2,5 d

 $a_{1,c,vorh} = 30 \ mm \geq a_{2,c,erf} = 5 \ d$

4 Querdruckverstärkungen mit selbstbohrenden Holzschrauben

Bei unverstärkten Trägerauflagern ist der Nachweis der Druckspannung rechtwinklig zur Faserrichtung des Holzes nach E DIN 1052, Abschnitt 10.2.4 zu führen. Hierbei ist nachzuweisen, dass der Bemessungswert der wirksamen Druckspannung rechtwinklig zur Holzfaser $\sigma_{c,90,d}$ kleiner ist als der Bemessungswert der Querdruckfestigkeit unter Berücksichtigung der Teilflächenpressung k_{c,90} f_{c,90,d}. Kann der Nachweis der Auflagerpressung nicht eingehalten werden, besteht die Möglichkeit, Auflager mit rechtwinklig zur Holzfaserrichtung eingedrehten Vollgewindeschrauben zu verstärken (**siehe Bild 10**).

Bild 10: Auflager eines BSH-Trägers mit sechs Vollgewindeschrauben

Hierbei werden selbstbohrende Vollgewindeschrauben an der Stelle des querdruckbeanspruchten Trägerauflagers rechtwinklig zur Holzfaserrichtung eingedreht, so dass die Oberkante des Schraubenkopfes bündig mit der Holzoberfläche ist. Damit die Auflagerlast gleichmäßig über die Schrauben sowie über die Holzoberfläche ins Holz eingeleitet werden kann, sind die Schrauben gleichmäßig über die Auflagerfläche zu verteilen.

Die Tragfähigkeit eines mit selbstbohrenden Vollgewindeschrauben verstärkten Trägerauflagers ist von der Auflagerfläche und den Holzeigenschaften und insbesondere von der Geometrie und den Materialeigenschaften der Vollgewindeschrauben abhängig. In Abhängigkeit von diesen Parametern können beim Erreichen der Tragfähigkeit eines mit selbstbohrenden Vollgewindeschrauben verstärkten Trägerauflagers folgende drei Versagensmechanismen auftreten:

- Unter der Annahme einer Lastausbreitung unter 45° wird die Querdruckfestigkeit des Holzes oberhalb der Schraubenspitze erreicht. Dieser Versagensmechanismus kann insbesondere dann auftreten, wenn bei kleinen Auflagerflächen zu kurze Schrauben als Verstärkungselemente eingebaut werden.
- 2) Unter der Annahme eines Zusammenwirkens des Holzes auf Querdruck und der Schrauben auf Hineindrücken werden die Schrauben ins Holz hineingedrückt. Dieser Versagensmechanismus kann ebenfalls bei zu kurzen Schrauben als Auflagerverstärkung auftreten.
- 3) Unter der Annahme eines Zusammenwirkens des Holzes auf Querdruck und der Schrauben auf Hineindrücken knicken die Schrauben im Holz aus. Dieses Stabilitätsversagen tritt nur bei schlanken Schrauben auf. Hierbei können mit steigender Schraubenlänge die Traglasten nicht mehr gesteigert werden.

Für den Nachweis der Tragfähigkeit eines mit selbstbohrenden Vollgewindeschrauben verstärkten Trägerauflagers sind somit folgende Bedingungen einzuhalten:

Nachweis der Auflagerkraft $F_{c,90}$ unter der Annahme eines Zusammenwirkens der Schrauben auf Hineindrücken und des Holzes auf Querdruck:

 $F_{c,90,d} \le n \cdot R_{d} + k_{c,90} \cdot A_{ef,1} \cdot f_{c,90,d} \qquad \text{mit} \qquad A_{ef,1} = B \cdot I_{ef,1}$ (3)

Nachweis der Druckspannung rechtwinklig zur Holzfaser oberhalb der Schraubenspitze unter der Annahme einer Lastausbreitung unter 45° (siehe Bild 11):

$$\frac{F_{c,90,d}}{k_{c,90} \cdot A_{ef,2}} \le f_{c,90,d} \qquad \text{mit} \qquad A_{ef,2} = B \cdot I_{ef,2} = B \cdot \left(I_{ef,1} + I_{S}\right)$$
(4)

Bild 11: verstärktes Auflager

Hierin bedeuten:

F _{c,90,d}	Bemessungswert der Auflagerkraft rechtwinklig zur Holzfaser
n	Anzahl der Schrauben
k _{c,90}	Beiwert zur Berücksichtigung der Teilflächenpressung (E DIN 1052, Abschnitt 10.2.4)
f _{c,90,d}	Bemessungswert der Querdruckfestigkeit
В	Auflagerbreite
l _{ef}	Auflagerlänge parallel zur Holzfaser. Für die Ermittlung der wirksamen Querdruckfläche A _{ef,1} und A _{ef,2} darf die Auflagerlänge I an jedem Rand um bis zu $\Delta I = \min \{1; 30 \text{ mm}\}$ verlängert werden.
Is	Länge der Vollgewindeschraube bzw. die Gewindelänge
R _d	Bemessungswert der axialen Schraubentragfähigkeit

Der Bemessungswert der axialen Schraubentragfähigkeit R_d ist der kleinere Wert aus dem axialen Widerstand der Schraube auf Hineindrücken $R_{ax,d}$ und der Grenztragfähigkeit beim Ausknicken der Schraube im Holz $R_{c,d}$.

Es gilt:

$$\mathbf{R}_{d} = \min\left\{\mathbf{R}_{ax,d}; \mathbf{R}_{c,d}\right\}$$
(5)

mit

Rax,d nach E DIN 1052, Abschnitt 12.8.2

und

$$\boldsymbol{R}_{\text{c,d}} = \ \boldsymbol{\kappa}_{\text{c}} \cdot \boldsymbol{N}_{\text{pl,d}}$$

Der Bemessungswert der Grenztragfähigkeit beim Ausknicken $R_{c,d}$ ergibt sich aus dem charakteristischen Wert $R_{c,k}$ und dem Teilsicherheitsbeiwert γ_M = 1,1.

Für κ_c gilt:

$$\begin{split} \kappa_{c} &= 1 & \text{für } \overline{\lambda}_{k} \leq 0,2 \\ \kappa_{c} &= \frac{1}{k + \sqrt{k^{2} - \overline{\lambda}_{k}^{2}}} & \text{für } \overline{\lambda}_{k} > 0,2 \end{split}$$

mit

$$k = 0.5 \cdot \left[1 + 0.49 \cdot \left(\overline{\lambda}_{k} - 0.2\right) + \overline{\lambda}_{k}^{2}\right]$$

und einem bezogenen Schlankheitsgrad bei Druckbeanspruchung

$$\overline{\lambda}_{k} = \sqrt{\frac{N_{\text{pl,k}}}{N_{\text{ki,G/E,k}}}}$$

Hierin bedeuten:

*N*_{*pl,k*} charakteristischer Wert der Normalkraft im vollplastischen Zustand bezogen auf den Schraubenkern mit:

$$\mathsf{N}_{\mathsf{pl},\mathsf{k}} = \mathsf{A}_{\mathsf{Kern}} \cdot \mathsf{f}_{\mathsf{y},\mathsf{k}} = \pi \cdot \frac{(\mathsf{0},\!7 \cdot \mathsf{d})^2}{4} \cdot \mathsf{f}_{\mathsf{y},\mathsf{k}}$$

Sofern nichts Anderes angegeben ist, darf $f_{y,k}$ zu $f_{y,k}$ = 400 N/mm² angenommen werden.

- d Schraubennenndurchmesser
- $N_{ki,G/E,k}$ charakteristischer Wert der <u>kleinsten</u> Verzweigungslast nach Elastizitätstheorie in Abhängigkeit vom Schraubennenndurchmesser d, von der Schraubenlänge I_S, von der charakteristischen Rohdichte des Holzes ρ_k sowie von der Lagerungsart des Schraubenkopfes an

der Stelle der Lasteinleitung unter Berücksichtigung der elastischen Bettung des Holzes sowie einer dreieckförmigen Normalkraftverteilung in der Schraube.

Die Mindestabstände a_1 , $a_{1,c}$, a_2 und $a_{2,c}$ in **Bild 11** entsprechen den auf Herausziehen beanspruchten Schrauben (siehe Abschnitt 2).

Der charakteristische Wert der kleinsten Verzweigungslast N_{ki.G/E.k} nach Elastizitätstheorie kann entweder analytisch durch ein näherungsweises Lösen einer Differentialgleichung vierter Ordnung bzw. numerisch ermittelt werden. In Bild 12 ist das angenommene System einer knickgefährdeten, selbstbohrenden Vollgewindeschraube als Auflagerverstärkung dargestellt. Hierbei ist ch die elastische Bettung des Holzes und c_v die vertikale elastische Abstützung der Schraube beim Hineindrücken ins Holz. Der charakteristische Wert der elastischen Bettung des Holzes wurde aus 720 Versuchen zur Bestimmung der Lochleibungsfestigkeit des Holzes am Lehrstuhl für Ingenieurholzbau und Baukonstruktionen (Universität Karlsruhe) ermittelt und kann zu $c_{h,k} = 0,32 \cdot \rho_k$ angenommen werden. Der charakteristische Wert der vertikalen elastischen Abstützung der Schraube beim Hineindrücken ins Holz kann zu $c_{v,k}$ = 130 N/mm² angenommen werden. Da das Verhältnis der vertikalen elastischen Abstützung c_v zur Dehnsteifigkeit der Schraube E·As sehr klein ist, kann die Normalkraft in der Schraube realitätstreu als stufenförmig sowie tangententreu bzw. für den Fall einer kontinuierlichen Abstützung als dreieckförmig sowie tangententreu verteilt angenommen werden. Darüber hinaus ist die Verzweigungslast nach Elastizitätstheorie von der Größe der vertikalen elastischen Abstützung cv unabhängig. Die Verzweigungslast Nki.G/E.k wurde bei der numerischen Berechnung als richtungstreu angenommen.

Bild 12: System einer knickgefährdeten schlanken Schraube als Auflagerverstärkung

Der charakteristische Wert der kleinsten Verzweigungslast $N_{ki,G/E,k}$ sowie die Knickfigur sind weiterhin von der konstruktiven Ausführung der Stelle der Lasteinleitung am Auflager abhängig. Für den Fall der Ausführung einer Auflagerverstärkung mit Schrauben mit beliebigen Kopfformen ist für die Berechnung der kleinsten Verzweigungslast für die Drehfedersteifigkeit K an der Stelle der Lasteinleitung K = 0 anzunehmen (rechts in Bild 13). Werden als Auflagerverstärkung Schrauben mit einer Senkkopfform sowie einer ausgefrästen Stahlplatte nach Bild 14 verwendet, darf für die Berechnung der kleinsten Verzweigungslast die Drehfedersteifigkeit zu K = ∞ angenommen werden (links in Bild 13).

Bild 13: Lagerung der Lasteinleitungsstelle - links: Einspannung - rechts: Gelenk

Auflagerverstärkungen mit selbstbohrenden Vollgewindeschrauben mit beliebigen Kopfformen (K = 0) sind im Vergleich zu Auflagerverstärkungen mit selbstbohrenden Vollgewindeschrauben mit einer Senkkopfform sowie einer konisch ausgefrästen Stahlplatte nach **Bild 14** einfacher herstellen. Allerdings sind bei gleichen Geometrie- und Materialeigenschaften der Schrauben die kleinsten Verzweigungslasten N_{ki,G,k} für Vollgewindeschrauben mit beliebigen Kopfformen deutlich geringer als diejenigen Verzweigungslasten N_{ki,E,k} für Vollgewindeschrauben mit einer Senkkopfform sowie einer konisch ausgefrästen Stahlplatte.

In **Bild 15** sind für Knicksysteme mit einer Drehfedersteifigkeit K = 0 an der Stelle der Lasteinleitung (gilt für Auflager mit Schrauben mit beliebigen Kopfformen) mit unterschiedlichen Verhältnissen von Schraubenlänge I_S zu Gewindeaußendurchmesser d die Knickfiguren sowie die kleinsten Verzweigungslasten N_{ki,G,k} nach E-lastizitätstheorie dargestellt. Entsprechende Knickfiguren sowie Verzweigungslasten N_{ki,E,k} nach Elastizitätstheorie für Knicksysteme mit einer Drehfedersteifigkeit K = ∞ an der Stelle der Lasteinleitung (gilt für Auflager mit Schrauben mit einer Senkkopfform sowie einer konisch ausgefrästen Stahlplatte) sind in **Bild 16** dargestellt.

Bild 15: Knickfiguren und Verzweigungslasten $N_{ki,G,k}$ für K = 0 (für ρ_k = 310 kg/m³ und E_S = 210000 N/mm²; d = 6 mm)

Bild 16: Knickfiguren und Verzweigungslasten N_{ki,E,k} für K = ∞ (für ρ_k = 310 kg/m³ und E_S = 210000 N/mm²; d = 6 mm)

Für den Nachweis der Tragfähigkeit eines mit selbstbohrenden Vollgewindeschrauben verstärkten Trägerauflagers kann der charakteristische Wert der <u>kleinsten</u> Verzweigungslast N_{ki,G/E,k} nach Elastizitätstheorie in Abhängigkeit vom Schraubennenndurchmesser d, von der Schraubenlänge I_S, von der charakteristischen Rohdichte des Holzes ρ_k sowie von der konstruktiven Ausführung der Lasteinleitungsstelle unter Berücksichtigung der elastischen Bettung des Holzes sowie einer dreieckförmigen Normalkraftverteilung in der Schraube nach **Tabelle 2 bzw. 3** ermittelt werden. Die Werte in **Tabelle 2** gelten für Auflagerverstärkungen mit selbstbohrenden Vollgewindeschrauben mit beliebigen Kopfformen. Werden Auflagerverstärkungen mit selbstbohrenden Vollgewindeschrauben mit einer Senkkopfform sowie einer konisch ausgefrästen Stahlplatte unterhalb des Trägerauflagers nach **Bild 14** ausgeführt, sind die Werte der kleinsten Verzweigungslasten **Tabelle 3** zu entnehmen.

1	NHOK		ρ _k =	: 310 kg	g/m³			ρ _k =	380 kg	g/m³			ρ _k =	410 kg	g/m³			ρ _k =	450 kg	g/m³		
	KI,G,K		Durchn	nesser	in [mm]			Durchn	nesser	in [mm]			Durchn	nesser	in [mm]			Durchn	nesser	in [mm]		
II	ה [KN]	4	6	8	10	12	4	6	8	10	12	4	6	8	10	12	4	6	8	10	12	
	20	5,34	5,55	5,58	5,59	5,59	6,47	6,78	6,83	6,84	6,85	6,94	7,31	7,37	7,38	7,39	7,57	8,02	8,09	8,10	8,11	
ਵ	40	8,85	15,0	16,3	16,6	16,7	9,84	17,8	19,8	20,3	20,4	10,2	19,0	21,3	21,8	22,0	10,8	20,4	23,3	23,9	24,1	
Ē	60	8,77	18,4	26,8	29,4	30,1	9,76	20,6	31,5	35,6	36,8	10,2	21,5	33,4	38,2	39,6	10,7	22,6	35,8	41,6	43,3	
.⊑	80	8,71	18,5	30,6	40,3	43,9	9,69	20,7	34,4	47,3	53,0	10,1	21,6	36,0	50,1	56,7	10,6	22,7	37,9	53,6	61,7	
<u></u>	100		18,6	31,0	44,9	55,2		20,8	34,8	50,9	64,9		21,6	36,3	53,2	68,7		22,7	38,3	56,2	73,5	
зge	120] [31,4	45,8	60,8			35,2	51,7	69,4			36,8	54,0	72,7			38,7	57,0	77,0	
lär	140				31,7	46,6	62,6			35,4	52,5	70,8			36,9	54,8	74,1			38,8	57,9	78,4
Gen	160	60 80 8,67 18,6			47,3	63,7	9,64		53	53,1	72,1	10.0			55,4	75,4	10.5			58,4	79,7	
aut	180		18,6		47,6	64,8		20,8		53,4	73,2	10,0	21,6		55,7	76,5	10,5	22,7		58,7	80,8	
ų	200		31,8		65,7			35,5		73,9			37,0		77,2			38,9		81,5		
õ	220				47,9	66,2				53,6	74,5				55,9	77,7				58,9	81,9	
	>240					66,7					74,9					78,1	1				82,3	

Tabelle 2: charakteristischer Wert der kleinsten Verzweigungslast N_{ki,G,k} in [kN]

Hinweis: Zwischenwerte dürfen linear interpoliert werden

N	iek in		ρ _k =	310 kg	g/m³			ρ _k =	380 kg	g/m³			ρ _k =	410 kg	g/m³			ρ _k =	450 kg	g/m³	
	.I,⊑,K		Durchn	nesser	in [mm]			Durchn	nesser	in [mm]			Durchn	nesser	in [mm]			Durchn	nesser	in [mm]	
	[KN]	4	6	8	10	12	4	6	8	10	12	4	6	8	10	12	4	6	8	10	12
	20	15,2	20,8	20,8	20,8	20,8	16,8	25,5	25,5	25,5	25,5	17,5	27,6	27,6	27,6	27,6	18,4	30,2	30,2	30,2	30,2
ਵ	40	20,7	28,3	40,7	40,7	40,7	23,7	32,9	49,5	49,9	49,9	24,8	34,9	51,6	53,8	53,8	26,1	37,5	54,2	59,0	59,0
Ē	60	20,5	38,2	45,3	57,8	60,5	22,9	45,1	53,5	66,1	74,2	23,9	47,8	57,0	69,7	80,0	25,1	51,1	61,6	74,4	87,8
.⊑	80	20,2	41,3	57,1	63,8	74,6	22,4	46,4	68,2	75,9	86,8	23,3	48,5	72,8	81,0	92,0	24,4	51,2	78,7	87,8	98,9
<u>_s</u>	100		41,9	65,7	76,7	83,2		47,1	74,7	92,1	99,3		49,2	78,3	98,6	106		51,8	82,8	107	115
ge	120			66,9	89,4	96,7			76,0	105	116			79,7	110	125			84,5	118	136
lär	140		10.0	68,5	94,2	111			77,6 10	108	133		Ι Γ	81,2	113	141			85,7	120	152
Je.	160	160 10.0			96,5	121	22,1			111	141	22.0			116	148	24.0			123	158
aut	180 200	13,5	42,1		99,1	126		47,0	11	113	145	22,5	49,0		118	152	24,0	51,5		125	162
ų				69,4		129			78,1		149			81,6		157			86,0		167
Š	220				101	132				114	152				120	160				126	170
	>240					135					154					162	1				172

	Tabelle 3: charakteristischer	Wert der kleinsten	Verzweigungslast N _{ki F}	_k in [kN]
--	-------------------------------	--------------------	------------------------------------	----------------------

Hinweis: Zwischenwerte dürfen linear interpoliert werden

Wie man den **Tabellen 2 und 3** entnehmen kann, können die charakteristischen Werte der kleinsten Verzweigungslasten N_{ki,G/E,k} ab einer Schlankheit der Schrauben von etwa I_S / d > 20 nicht mehr gesteigert werden. Wird beim Nachweis der Tragfähigkeit eines verstärkten Trägerauflagers die Grenztragfähigkeit beim Ausknicken der Schraube im Holz R_{c,d} nach Gleichung (5) maßgebend, ist es nicht sinnvoll, selbstbohrende Vollgewindeschrauben mit einer Länge I_S > 20·d zu verwenden. Für diesen Fall kann die Tragfähigkeit eines verstärkten Trägerauflagers nicht mehr gesteigert werden.

Diese Erkenntnisse konnten durch am Lehrstuhl für Ingenieurholzbau und Baukonstruktionen (Universität Karlsruhe) durchgeführte Versuche mit verstärkten Trägerauflagern belegt werden. In **Bild 17** sind drei verstärkte Trägerauflager mit unterschiedlichen Schraubenlängen nach der Versuchsdurchführung dargestellt.

Bild 17: Aufgeschnittene verstärkte Trägerauflager

Wie berechnet, wurden bei der Versuchsreihe A die Schrauben bei einer mittleren Traglast von $R_{A,mittel}$ = 195 kN in das Holz hineingedrückt. Der charakteristische Wert der aufnehmbaren Druckbeanspruchung rechtwinklig zur Faser kann hierbei zu $F_{c,90,k}$ = 184 kN berechnet werden. Entsprechend konnten bei den Versuchsreihen B und C die Versagensarten sowie die Traglasten sehr gut hervorgesagt werden. Alle Prüfkörper aus der Versuchsreihe B und C versagten infolge Ausknicken der Schrauben im Holz, wobei sich gleiche Knickfiguren einstellten wie bei der numerischen Berechnung **(siehe Bild 16)**. Obwohl die Schraubenlängen mit I_S = 260 mm für die Versuchsreihe B und I_S = 400 mm für die Versuchsreihe C unterschiedlich waren, waren für beide Versuchsreihen die mittleren Traglasten mit $R_{B,mittel}$ = 230 kN und $R_{C,mittel}$ 241 kN fast gleich. Der charakteristische Wert der aufnehmbaren Druckbeanspruchung rechtwinklig zur Faser kann für beide Versuchsreihen zu $F_{c,90,k}$ = 193 kN berechnet werden. Zum Vergleich betrug die mittlere Traglast von unverstärkten Trägerauflagern R_{mittel} = 52 kN.

Beispiel:

Als Beispiel wird der Bemessungswert der aufnehmbaren Beanspruchung rechtwinklig zur Holzfaser $F_{c,90,d}$ eines verstärkten Trägerauflagers ermittelt. Das Auflager eines 600 mm hohen Trägers aus Brettschichtholz der Festigkeitsklasse BS 28h weist eine Auflagerfläche von B x I = 160 mm x 120 mm auf. Die Nutzungsklasse des Bauteils ist 2, die Klasse der Lasteinwirkungsdauer ist kurz. Als Verstärkung sollen selbstbohrende Vollgewindeschrauben \emptyset 12 mm bündig mit der Oberfläche des Holzes in den Träger eingedreht werden. Das durchgehende Gewinde entspricht der Tragfähigkeitsklasse 3. Der charakteristische Wert der Streckgrenze des gehärteten Stahls beträgt f_{y,k} = 1000 N/mm².

Für ein **unverstärktes Trägerauflager** kann der Bemessungswert der aufnehmbaren Kraftkomponente rechtwinklig zur Holzfaserrichtung $F_{c,90,d}$ nach E DIN 1052, Abschnitt 10.2.4 zu $F_{c,90,d}$ = 87,2 kN berechnet werden.

Nachweis eines verstärkten Trägerauflagers:

Anzahl n1 der Schrauben in Faserrichtung:

 $a_{1,c,erf} \geq 5 \ d = 60 \ mm$

Auflagerlänge parallel zur Faser I = 120 mm \Rightarrow n₁ = 1 Schraube

Anzahl n₂ der Schrauben rechtwinklig zur Faser:

 $a_{2,c,erf} \ge 4 d = 48 mm$

a_{2,erf} ≥ 2,5 d = 30 mm

Auflagerbreite rechtwinklig zur Faser b = 160 mm

$$\Rightarrow n_2 \le 1 + \frac{b - 2 \cdot a_{2,c,eff}}{a_{2,eff}}$$

 \Rightarrow n₂ = 3 Schrauben

Gesamtanzahl n der Schrauben:

 \Rightarrow n = n₁ n₂ = 3 Schrauben

gewählte Schraubenlänge:

Widerstand gegen Hineindrücken:

$$f_{1,k} = 80 \cdot 10^{-6} \cdot {\rho_k}^2 = 13.5 \frac{N}{mm^2}$$

mit ρ_k = 410 kg/m³

$$f_{1,d} = \frac{k_{mod}}{\gamma_{M}} \cdot f_{1,k} = \frac{0.9}{1.3} \cdot 13.5 = 9.31 \frac{N}{mm^{2}}$$

 $R_{ax,d} = f_{1,d} \cdot d \cdot I_S = 9,31 \cdot 12 \cdot 400 N$

$$\Rightarrow$$
 R_{ax,d} = 44,7 kN

Tragfähigkeit beim Ausknicken:

$$N_{pl,k} = A_{Kern} \cdot f_{y,k} = \pi \cdot \frac{(0,7 \cdot d)^2}{4} \cdot f_{y,k}$$
$$N_{pl,k} = \pi \cdot \frac{(0,7 \cdot 12)^2}{4} \cdot 1000 \text{ N} = 55,4 \text{ kN}$$

 $N_{ki,k}$ aus **Tabelle 2** mit ρ_k = 410 kg/m³ und d = 12 mm

$$\Rightarrow N_{ki,k} = 78,1 \text{ kN}$$

$$\overline{\lambda}_{k} = \sqrt{\frac{N_{pl,k}}{N_{ki,k}}} = \sqrt{\frac{55,4}{78,1}} = 0,842$$

$$k = 0,5 \cdot \left[1 + 0,49 \cdot (\overline{\lambda}_{k} - 0,2) + \overline{\lambda}_{k}^{2}\right]$$

$$k = 1,012$$

$$\Rightarrow \kappa_{c} = \frac{1}{k + \sqrt{k^{2} - \overline{\lambda}_{k}^{2}}} = 0,636$$

$$R_{c,d} = \kappa_{c} \cdot N_{pl,d} = 0,636 \cdot \frac{N_{pl,k}}{1,1}$$

$$\Rightarrow R_{c,d} = 32,0 \text{ kN}$$

 \Rightarrow R_d = min {R_{ax,d}; R_{c,d}} = 32,0 kN

 \Rightarrow maßgebend ist das Ausknicken der Vollgewindeschraube im Holz.

mit

 $k_{c.90} = 1,75$

für l = 120 mm < 400 mm

 $A_{ef,1} = B I_{ef,1} = B (I+30 \text{ mm}) = 24000 \text{ mm}^2$

$$f_{c,90,d} = \frac{k_{mod}}{\gamma_{M}} \cdot f_{c,90,k} = \frac{0,9}{1,3} \cdot 3,0 = 2,08 \frac{N}{mm^{2}}$$

folgt nach Gleichung (3):

 $F_{c,90,d} \le n \cdot R_d + k_{c,90} \cdot A_{ef,1} \cdot f_{c,90d} = 183 kN$

Nachweis nach Gleichung (4):

mit

 $k_{c,90} = 1,00$

für (l + I_S) = 520 mm > 400 mm

 $A_{ef,2} = B (I_{ef,1}+I_S) = B (I+I_S+30 \text{ mm}) = 88000 \text{ mm}^2$

$$f_{c,90,d} = \frac{k_{mod}}{\gamma_{M}} \cdot f_{c,90,k} = \frac{0,9}{1,3} \cdot 3,0 = 2,08 \frac{N}{mm^{2}}$$

folgt nach Gleichung (4):

 $F_{c,90,d} \le k_{c,90} \cdot A_{ef,2} \cdot f_{c,90,d} = 183 kN$

Die aufnehmbare Kraftkomponente rechtwinklig zur Holzfaser wurde für das verstärkte Trägerauflager zu $F_{c,90,d}$ = 183 kN ermittelt und ist somit mehr als doppelt so groß wie der Wert für ein unverstärktes Trägerauflager.

Hierbei ist die Tragfähigkeit des verstärkten Trägerauflagers durch das Erreichen der Querdruckfestigkeit des Holzes oberhalb der Schraubenspitze bzw. durch das Ausknicken der Schrauben im Holz begrenzt. Dadurch kann in diesem Beispiel die aufnehmbare Kraftkomponente rechtwinklig zur Holzfaser durch eine größere Schraubenlänge bzw. durch eine konstruktive Ausführung des Trägerauflagers mit Schrauben mit Senkkopfform sowie einer konisch ausgefrästen Stahlplatte nicht mehr gesteigert werden.

5 Zusammenfassung

In diesem Beitrag wurden Anwendungsmöglichkeiten von selbstbohrenden Holzschrauben mit Vollgewinde gezeigt. Selbstbohrende Vollgewindeschrauben können wie ins Holz eingeleimte Gewindestangen oder auf das Holz aufgeleimte Holzwerkstoffplatten als Verstärkungselemente in querzuggefährdeten Bauteilen eingesetzt und berechnet werden. Der Einsatz von selbstbohrenden Vollgewindeschrauben als Querdruckverstärkung in Trägerauflagern zeigt weitere Anwendungsmöglichkeiten dieser neuartigen Verbindungsmittel, die ohne Vorbohren ins Holz eingedreht werden. Durch diese einfache Montage wird ein problemloser Einsatz dieser Schrauben im Werk als auch auf der Baustelle ermöglicht.

Grundsätzlich können selbstbohrende Vollgewindeschrauben überall in Bauteilen eingesetzt werden, wo Zug- bzw. Druckkräfte übertragen werden müssen, die Tragfähigkeit des Holzes insbesondere rechtwinklig zur Faserrichtung jedoch nicht ausreichend ist. Dies eröffnet weitere Perspektiven für sinnvolle Anwendungen mit selbstbohrenden Vollgewindeschrauben im Ingenieurholzbau.

6 Literatur

- [1] Blaß, H.J.; Bejtka, I. "Querzugverstärkungen in gefährdeten Bereichen mit selbstbohrenden Holzschrauben" Forschungsbericht 2003. Versuchsanstalt für Stahl, Holz und Steine, Universität Karlsruhe
- [2] Blaß, H.J.; Ehlbeck, J.; Kreuzinger, H.; Steck, G.; "Entwurf, Berechnung und Bemessung von Holzbauwerken" Schlussentwurf Bemessungsnorm Holzbau BEKS - 2002 in Tagungsband 2002 - Ingenieurholzbau - Karlsruher Tage