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Abstract. The so-called penalty method in FE-calculation regularises the strong contact
conditions by introducing contact stiffnesses and damping in order to reduce the mathemati-
cal effort. The problem, however, lies in an appropriate choice of the values of parameters for
these artificially introduced springs and dampers. The principal problem of regularisation,
however, can be studied for simple rigid body systems. As an example, two neighbouring
physical pendulums with different natural frequencies are treated. During the motion sud-
den impacts and states of permanent contact interchange with states of separated motions
of the two pendulums.

The first step in the consideration comprises the calculation of a semi-analytical reference
to classify the properties of the motion with regard to the main features of the non-linear
system’s response. The results are verified by experimental investigations in the next step.
Finally, the system is regularised by the penalty method and integrated by NEWMARK’s
method. This procedure needs three unknown numbers, two regularisation parameters and
a time step. Their correct choice depends on detailed information from the experimental
results for each type of motion.
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1. Introduction

The presence of damage in sandwich materials, in particular delaminations between
adjacent laminae, degrade severely the mechanical behaviour of a structure. A vibration-
based non-destructive damage identification needs a suitable model to capture the
non-linear phenomena of the oscillation [3]. Experimental investigations show that
oscillations of delaminated structures are dominated by impacts [4]. They occur when
separated parts of the structure come into contact during the motion. Each contact
gives rise to an impact, which leads to energy dissipation. The actual available me-
chanical model with minimal DOF is based on an elastic beam with lumped masses
and a simple law of impact [3]. The integration of this non-smooth dynamic system
leads to a sequence of smooth systems, whose analytical solutions are known. They
must be patched together at those times when irregularities due to contact occur [6].
This simple model captures the main oscillation phenomena and allows a discussion
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in principle of the influence of the internal dissipation due to the impacts on the
non-linear system’s response and the evolution of the impacts near resonance.

An improvement of the mechanical description can be expected by the utilisation of
the finite element method. In order to reduce the numerical effort the regularisation
of the strong contact conditions is required. The penalty method introduces contact
stiffnesses and damping for regularisation [1]. Despite the fact that FE-calculations
lead to oscillations with multi-degrees of freedom, the fundamental problem of an
appropriate choice of the values for these artificially introduced springs and dampers
can be discussed for simple rigid body systems.

As an example the forced vibrations of two neighbouring pendulums will be con-
sidered. The first step comprises the consideration of a semi-analytical reference to
classify the properties of the oscillations with regard to the main features of the non-
linear system’s response. These results will be verified by experimental investigations
in the next step. Finally, the validity of two different mechanical models for the
contact, namely the classical theory of impact and the regularisation-technique for
impacts, is compared.

2. The investigated system and its semi-analytical description

As an example, let us consider two neighbouring physical pendulums with different
natural frequencies and different damping. The pendulums touch each other with a
vanishing contact force in the equilibrium state. Vibrations are induced by a harmonic
base excitation. This non-smooth dynamic system gives a first approximation for a
delaminated sandwich beam [4]. The mechanical description is based on the model

harmonic base
excitation
-

different spring T/j

and damping
constants

equal length,
different masses

Figure 1. Mechanical model

shown in Figure 1. It consists of two rigid bodies with different masses and different
elastic suspensions and dampers at the top.
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Firstly the semi-analytical procedure for integration of the non-smooth dynamic
system is considered. In this case, only the coefficient of restitution e has to be de-
termined from experiments. Exciting the system, discontinuities of the motion due
to impacts occur. This leads to sudden changes in the system’s behavior at unknown
separation times. The only numerical task is to find these separation times. Between
two successive separation times the system is a linear one and the solutions of the
equations of motion are known explicitly. Three different states must be considered

¥/

separated motion impact motion in contact
@4, Oy, dw dz € 3, d3

Figure 2. Possible states of motion

(see Figure 2). In the case of a separated motion, both pendulums move indepen-
dently of each other, characterised by the natural frequencies w1, wo and the damping
constants dy, do, respectively. When the two pendulums come into contact, an impact
occurs. In this second state the sudden impact is modelled by NEWTON’s assump-
tion with a coefficient of restitution e = 0.5. A third possible state is a motion in
permanent contact, where the two pendulums behave as a single one with a frequency
w3 and a damping constant d3. All constants can be found in Table 1. They came
from the real physical system under experimental investigation, considered later on.
The calculation procedure is described in [4]. A detailed discussion is therefore omit-
ted. For a better understanding only some hints are needed. All results are given
in a non-dimensional representation. The non-dimensional time 7 = wil is refers the
lowest natural frequency. The values &1 and &5 are non-dimensional displacements of
the end masses of the pendulums (a motion in permanent contact gives {1 = &3). The
corresponding velocities are &’ and &’. A transition from a separated motion to a
motion in permanent contact theoretically leads to a sequence of infinite numbers of
impacts with time intervals tending to zero. The beginning of a motion in permanent
contact is therefore defined by a small threshold &’ — &’ < 0.002 to avoid numeri-
cal problems. The frequency ratio n = w% indicates the frequency of excitation. In
the following only stationary system’s responses are considered. Depending on the
frequency of excitation 7 the system’s response shows a broad variety of bifurcated

motions. The POINCARE-section method is used to collect samples of stationary
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Natural frequency w; [1/s] | Damping d; [-]

Pendulum 1 (separate) w1 = 1.00 d, =0.0033
Pendulum 2 (separate) wy = 2.41 ds = 0.0120 Table
Two pendulums wsz = 1.80 ds = 0.0330

(fixed connection)

1. Parameters for natural frequencies and viscous damping

responses of the displacements &;, which can be assembled into a bifurcation diagram
(Figure 3). The typical feature of the bifurcation diagram is an alternation of regions
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Figure 3. Bifurcation diagram

of irregularity and windows of periodic responses. As an example, only four typical
kinds of motion will be considered (Figure 3, sections [A] - [D]) by their phase plots
in Figure 4. In the vicinity of the frequency n = 1.08 (case [A]) the oscillation is
non-bifurcated. As can be seen in Figure 4 [A], this type of motion contains multiple
impacts in one period and a phase of permanent contact. Section [B] (Figure 3 [B]),
taken at a frequency of excitation 7 = 1.70, shows a quasi-periodic motion. The case
of quasi-periodic motions can be seen in the bifurcation diagram (Figure 3, section
[B]) as widening of the lines to stripes of different widths. Increasing n to the range of
n = 2.76, the system’s response changes to a non-bifurcated one (Figure 3 [C]). The
corresponding phase plot (Figure 4 [C]) shows one impact in one period. Finally, in
the region of n = 3.25 (Figure 3, [D]) a period-doubling exists.
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Figure 4. Phase plots of four typical kinds of oscillations

Despite this broad variety of motions, the following treatment will be restricted from
now on to two typical kinds of oscillations, which are of major interest in the investi-
gation of a delaminated beam. These are a motion caused by an excitation n = 1.08
leading to multiple impacts and permanent contact (Figure 4 [A]) and a motion caused
by n = 2.76 leading to one sudden impact in one response period (Figure 4 [C]).

3. Experimental confirmation of the semi-analytical results

The experimental equipment is shown in Figure 5. It consists of two physical pendu-
lums of length 618 mm with the vibrational parameters given in Table 1. A shaker
induces vibrations as an adjustable harmonic base excitation. The amplitude of exci-
tation is kept constant at 1.07mm. The above mentioned excitations {2 = 1.08% and
Q = 2761 (Figure 4, [A] and [C]) are chosen for an experimental verification of the
semi-analytical results. Opto-electronical displacement sensors give the absolute posi-
tions x; characterising the response of the system. The frequency of excitation €2 can
be monitored. A contact sensor controls the opening and closing of an electric circuit
and gives information about contact or no contact. Considering the stationary sys-
tem’s response in form of time-displacement plots of about two excitation periods, the
chosen cases of the frequency of harmonic base excitation ( = 1.08 and n = 2.76) show
an excellent agreement between experimental and numerical results (Figure 6, upper
pictures). It must be noticed, however, that the experimental time-displacement
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Figure 5. Experimental equipment

EXPERIMENT CALCULATION
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Figure 6. Comparison of stationary displacement and contact force versus time from
experiment [Al], [B1] and calculation [A2], [B2]
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he numerical results in a non-dimensional form. In addition, the change of the contact
force in the same time domain (Figure 6, lower pictures) confirms the correctness of
all calculations. Here, the experiments only give information about contact and no
contact, whereas the numerical result shows the course of the contact force. The case
n = 1.08 clearly shows multiple impacts with decreasing time intervals leading to a
motion with permanent contact.

4. Penalty regularisation
Regularisation of the strong contact conditions leads to a smoothing of the points of

discontinuity. In contrast to the semi-analytical procedure the number of DOF does
not change in the regularized system in all partial states. This allows a fast numerical

I/ P

K
D } penalty

no contact contact
©, 0y, d1v dz [A] ©y, 0y du dzv K, D [B]
Figure 7. Mechanical systems of the different partial states
[A] no contact, [B] contact

As illustrated in Figure 7, only two states exist, namely a motion with or without
contact. The state of motion without contact (Figure 7 [A]) is kept unaltered (cp.
Figure 1) compared to the preceding system. In the case of contact, which means a
vanishing or negative relative displacement £; —&;, a contact spring with stiffness K is
added to the basic system (Figure 7 [B]). An additionally introduced viscous damper
D captures the dissipation of impact, comparable to the coefficient of restitution e.
Introducing the ratio k = i—’;‘, a non-dimensional representation of the equations of
motion for both states is given in Figure 8. Starting at the state without contact the
mathematical description consists of two non-coupled equations. If contact occurs,
the equations are linked by penalty stiffness K and damping D. It is obvious that
the non-linearity of the regularized system only consists on the mutual change of the
system from a free motion of both pendulums to a common motion in contact and
vice versa. In addition to the fact that the number of DOF is constant in time, the
second advantage is the simplification of the switching conditions. Only a control of
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the relative displacement decides about a transition from one state to the next. The
semi-analytical procedure controls the contact force in a state of common motion.
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Figure 8. Scheme for switching from one state to the other

The fundamental disadvantage, however, lies in an appropriate choice of the artificially
introduced constants K and D for a certain type of motion, because these values
do not represent real physical or mechanical parameters. As will be shown in the
following, a correct choice of K and D needs a reference. This can be achieved by
matching the input data with experimental information. In the present case, the
solutions of the semi-analytical procedure can be taken. In general, low values of
K give wrong results caused by the poorly satisfied contact condition, followed by a
strong penetration of the subsystems. The opposite case of a large contact stiffness K
gives rise to a stiff set of equations leading to problems of integration. Furthermore,
the choice of the parameters K and D depends on each other and requires a correct
adjustment.

The numerical integration needs a time step A7. NEWMARK’s method, commonly
used in FE-method, is applied taking a = % and g = %. Therefore, the time step
is constant. This fact can lead to severe errors and even totally wrong responses [5].
The reason lies in the inaccurate determination of the transition points. Therefore,
the time step should be as small as possible. In the following, two kinds of motions
with excitation n = 1.08 and n = 2.76 (Figure 6) will be investigated to show the

problems in choosing the three numbers K, D and Ar.
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4.1. Motion with a state of permanent contact: n = 1.08. The time step At
refers the non-dimensional periodical time T' = 2%. A time step At = ﬁ is taken
and kept constant. Now, only contact stiffness K and damping D can be chosen
freely. Figure 9 compares the phase plots, which are obtained by regularization using
the sets of parameters ([A] K = 2500, D = 8 and [B] K = 100 ,D = 50), with the
semi-analytical result [C]. As evident from Figure 9, the set of penalty parameters
in case [A] captures the phenomena of oscillation given by the exact solution (case
[C]). The choice of K = 100, D = 50 (case [B]) yields a completely different system
behavior, which is far from reality.

3 . . . . . . . . 3
n=1.08

K = 2500
2F D=8
At = T/2000

n =1.08

K =100
2r D =50
At =T/2000

velocity &/, &,
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&
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displacement &,, &,
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Figure 9. Comparison of numerical results gained by using different penalty
parameters [A], [B] and the correct (semi-analytical) result [C]

As a conclusion it is evident that detailed information is needed with regard to the
expected type of motion to determine the parameters K, D and Ar. The basic
conditions are the properties of the response (bifurcated / non-bifurcated, periodic
motion / quasiperiodic motion), number of impacts and instants of impacts in a
response period. Remembering the broad variety of different kinds of oscillations
shown in the bifurcation diagram (Figure 3), it must be emphasized here that the
solution in Figure 9 [B] could be considered the correct one, if no information existed.

4.2. Separated motion with one impact: n = 2.76. At the beginning of the in-
vestigation the same time step AT = ﬁ as before is taken. The simplest information
which is needed to determine K and D is the non-existence of bifurcations. The
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Figure 10. Examples of phase plots for bifurcated and non-bifurcated motions
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Figure 11. Parametric plane for sets K and D showing regions of bifurcated and
non-bifurcated oscillations

responses for three different sets of parameters are shown in Figure 10. Two of them
(Figure 10, [A] and [C]) exhibit a bifurcated motion. A systematical variation of
K and D excludes the sets of K and D leading to bifurcations. This allows us to
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construct a parametric plane, as can be seen in Figure 11. The dashed regions in
Figure 11 are out of interest. The examples of Figure 10 give three points [A], [B]
and [C].
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penalty damping D [-]

Figure 12. Updated parametric plane for sets K and D

Two examples are given in Figure 13. They correspond to the points [A] and [B] in
Figure 12.

/ \ / D =50
2L L Lac=T/2000

displacement &, &,

[A] i time t [B] s ‘ ‘ ‘ ‘ tim‘er
Figure 13. Time-displacement plots for responses with a [A] “sudden” impact and a
[B] state of permanent contact
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More detailed information is the knowledge about the number of impacts and the
states of permanent contact in a period. In the present example ( = 2.76) one sudden
impact occurs in one response period. The regularisation by the penalty method does
not allow the reproduction of sudden impacts. That means that sudden impacts are
modelled by a short interval of permanent contact. As an example, less than 30
time steps AT = ﬁ are assumed to describe a “sudden” impact. This assumption
diminishes the region of possible values K and D in an updated parametric plane
(Figure 12).
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semi-analytical result [E]

A further improvement of the values for K and D can be achieved by considera-
tion of the instant of impact during a response period. This procedure demands a
comparative work and is not executed here.

Finally, the problem of the choice of a sufficiently small step A7 for an orbital stable
solution [6] must be considered. Assuming now K = 12000.0 and D = 18.0 according
to the previous investigations, stationary phase plots are computed with different
time steps A7. Figure 14 contains the results for time steps A7 = ﬁ7 AT = ﬁ,
AT = 60TW and AT = ﬁ. In all cases 2050 excitation periods are calculated, but
only the last 50 are plotted. As predicted, the larger values of A7 cannot capture

the transition times with sufficient accuracy. Permanent numerical disturbances due
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to this systematic error give rise to quasi-periodic responses. As already mentioned,
such kinds of motion are possible when remembering the bifurcation diagram (Figure
3). Only the known reference solution qualify them to be wrong.

Summarizing the facts, the required three numbers for the regularization are given
by a penalty stiffness K = 12000.0, a penalty damping D = 18.0 and time steps

T
AT = 5555

5. Conclusions

The semi-analytical procedure for integration of non-smooth dynamic contact prob-
lems leads to a sequence of smooth systems, whose solutions must be patched together
at times when irregularities due to contact occur. In order to reduce the extensive
mathematical effort, the penalty method regularizes the strong contact conditions by
introducing contact stiffness and contact damping.

The regularized system keeps a constant number of DOF’s in all partial states and
allows a fast numerical integration by the usual methods. A smoothing of the points
of discontinuity is obtained. Additionally, the regularization by the penalty method
leads to a simplification of switching conditions for the transition to another state of
motion.

The problem, however, lies in the appropriate choice of the values for penalty
parameters K and D for each type of motion. For a correct determination of K and D
a reference is required, which is given in experimental investigations or semi-analytical
results. Without information about the expected motion, a decision is not possible,
whether the chosen numbers for K and D are right or wrong. The reference results
contain the information needed for the choice of the penalty parameters, which can
be obtained by consideration of the motion properties - bifurcated or non-bifurcated
motion, number and instant of impacts. Treating a new type of motion, a new
validation of the values K and D by the reference is required.

Recapitulating the results of the influence of time steps A7 shows that the choice
of K and D is not independent of steps A7. A high precision of the results needs an
immense numerical effort.
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