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Abstract The computation of structures moving in central force fields generally requires
long-time integration including geometrically nonlinear behavior (large rotations) as such, e.g.
satellite structures move for a long time. To achieve a numerically stable computation the energy
momentum method which fulfills linear and angular momentum as well as energy conservation
within the time step is chosen for the time integration. The focus in the contribution is on
Hamiltonian systems. A formulation for the gravitational force in a central force field as external
force on a rigid or flexible satellite is given. The presented formulation enables the computation of
the exact spatial distribution of the gravitational forces acting on a structure using the
FE-discretization which is necessary to analyze, e.g. the orientation of a satellite in a gravitational
field. The fulfillment of the conservation laws within the time step is proved. The necessity for
considering the spatial distribution of the gravitational forces is discussed based on numerical
examples.

1. Introduction
The computation of structures moving in central force fields such as satellites
generally requires long-time integration taking the geometrically nonlinear behavior
(large rotations) into account as a large overall long duration motion has to be
considered. Therefore, the major requirements concerning the time integration scheme
are energy conservation as well as high numerical stability. Among the time
integration schemes actually discussed in the literature (Betsch and Steinmann, 2000a,
b; Kuhl and Crisfield, 1999; Kuhl and Ramm, 1996) the focus will be on the so-called
one-step schemes. Based on their high numerical stability for structural dynamics, both
the implicit midpoint rule and the energy momentum method (Simo and Tarnow, 1992;
Gonzalez, 2000) appear to be well suited for the solution. However, due to the
symplectic behavior of the implicit midpoint rule, the method is not energy conserving.
Thus our focus will be mainly on the energy momentum method with its property of
conserving linear and angular momentum as well as energy within the time step. The
method was originally proposed by Simo and Tarnow (1992) for flexible structures.
Rigid bodies can be considered using an algorithm proposed by Simo and Wong (1991)
for the midpoint rule or the energy momentum method. A general extension
considering holonomic constraints on mechanical systems is given by Gonzalez (1999).

For gravitational fields based on the Kepler potential, Gonzalez and Simo (1996)
compared both methods with respect to their numerical stability. Greenspan (1995)
proposed an energy-conserving formulation according to the energy momentum
method for the computation of N-body systems within potential fields caused by these
bodies.
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The focus of the current contribution is on the correct consideration of the
gravitational force as an external position dependent force acting on a satellite, thus
only Hamiltonian systems are considered. It is assumed that the structure itself does
not have an influence on the central force field. Of special interest is the consideration
of the spatial extension of the body, such that the orientation of the body within space
can be analyzed. Therefore, a formulation is presented that enables the computation of
the exact spatial distribution of gravitational forces acting on structures using a
FE-discretization.

First a special definition of central force fields related to the chosen time integration
scheme is proposed. Then the proof of the conservation laws is given followed by the
discussion of the spatial discretization and the influence of the time integration scheme
on the matrix form. Finally numerical examples with emphasis on the necessity of a
spatial discretization of the satellite are presented followed by some concluding
remarks.

2. Definition of a central force field
The considered central force field is stationary and is not affected by, e.g. a
satellite occurring in this field. With a given value of the gravitational acceleration
gref in a reference distance rref, the vector of the gravitational acceleration acting on
a point i inside the field is described by – as it is well known for such central
force fields:

g i ¼ gref

r2
ref

r2
i

er
i with er

i ¼
r i

ri

: ð1Þ

According to Figure 1 the vector from point i to the center of attraction Z of the
field is given by the expression

ri ¼ XZ 2 X i 2 ui ¼ XZ 2 xi: ð2Þ

X is the position vector in the reference configuration and x ¼ X þ u is the
position vector in the actual configuration with the displacement vector u. With the
density r and assuming a constant vector of gravitational acceleration g em within
a time step, gravitation leads to the volume force p ¼ @ gem: In order to achieve
energy and momentum conservation, a special interpolation for the gravitational
acceleration within a time step is needed for the energy momentum method.

The weak form of an otherwise unloaded structure within a central force field for
the time step tn! tn+1 takes the form

dP ¼ dPM þ dPE 2

Z
V

@ gem · du dV ¼ 0; ð3Þ

Figure 1.
Definition of position

vectors
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with the two other parts of virtual work dPM and dPE caused by inertia of rigid and
flexible parts, respectively, strains of elastic structural parts. As central force fields on
mechanical structures can be derived from a potential, for the energy momentum
method as well as for the implicit midpoint rule the expression for the velocities u̇ and
displacements u

_unþ1
2
¼

1

2
ð _un þ _unþ1Þ ¼

unþ1 2 un

Dtn
with Dtn ¼ tnþ1 2 tn ð4Þ

holds within the time step with n and n+1 being the index marking the beginning,
respectively, end of the time step. Thus the velocity _unþ1

2
is assumed to be constant

within the time step.
For the average gravitational acceleration g em within the time step the following

special interpolation is introduced:

gem ¼ gref

r2
ref

rnrnþ1

rn þ rnþ1

rn þ rnþ1
: ð5Þ

The major difference to equation (1) is in the expression in the denominator (rn+rn+1)
which is due to the conservation conditions as it will be proven later in this paper.

It is clear that the gravitational acceleration vector is a function of the actual
position of the structure and thus the displacements. The effects of the chosen
approach concerning the exact simulation of stationary central force fields will be
discussed in the following sections.

3. Verification of the conservation laws
It is obvious from Newtonian mechanics that within a central force field for the
considered Hamiltonian systems energy conservation as well as linear and angular
momentum conservation must hold. On the other hand, it is also well known that using
the energy momentum method as time integration scheme, conservation of linear and
angular momentum as well as energy within a time step according to equation (3) holds
for rigid and flexible systems outside of a central force field. Formulations for flexible
structural parts are given by Simo and Tarnow (1992), for rigid bodies see Simo and
Wong (1991). The coupling of flexible and rigid parts within the energy momentum
method is discussed by Chen (1998), Ibrahimbegovic et al. (2000) and Ibrahimbegovic
and Mamouri (2000). Two very general derivations are given by Gonzalez (1999, 2000).

Concerning the virtual work of the gravitational forces in equation (3), the following
conditions have to be fulfilled for a verification of the conservation laws. This approach
is preferred over the derivation from a potential, as it allows to compare the
EM-scheme with the midpoint rule.

3.1 Conservation of angular momentum with respect to the center of attraction
Conservation of angular momentum with respect to the center of the gravitational field
leads on the basis of a constant velocity within the time step to the conditionZ

V

rnþ1
2
£ @ gem dV ¼ 0 ð6Þ

with
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rnþ1
2
¼

1

2
ðrn þ rnþ1Þ: ð7Þ

Equation (6) is obviously fulfilled, as the vectors g em (5) and rnþ1
2

(7) are per definition
in parallel as it is also shown in Figure 2.

It should be noted that a formulation using the midpoint approximation

gnþ1
2
¼ gref

r2
ref

r2
nþ1

2

rnþ1
2

rnþ1
2

is also in parallel and also conserves angular momentum.

3.2 Energy conservation
The work of the gravitational forces within the time step is given as

WDt
ext ¼ Dt

Z
V

@ gem · _unþ1
2
dV : ð8Þ

Equations (4) and (5) lead to

g em · _unþ1
2
¼ gref

r2
ref

Dt

ðrn þ rnþ1Þ · ðrn 2 rnþ1Þ

ðrn þ rnþ1Þrnrnþ1

¼ gref

r2
ref

Dt

r2
n 2 r2

nþ1

ðrn þ rnþ1Þrnrnþ1

¼ gref

r2
ref

Dt

rn 2 rnþ1

rnrnþ1
:

ð9Þ

As gravitational forces can be considered as general external forces on the system,
energy conservation within the time step is not a direct property of equation (3),
though – as is well known – a potential exists. Thus it has to be proven, that the work
Wext of the gravitational forces within the time step is identical to the loss of potential
Wa in the central force field.

Inserting (9) into (8) gives

WDt
ext ¼

Z
V

@ grefr
2
ref

rn 2 rnþ1

rnrnþ1
dV ¼ g refr

2
ref

Z
V

@
rn 2 rnþ1

rnrnþ1
dV : ð10Þ

The difference in the potential between the beginning and the end of the time step is

Figure 2.
Vectors in the central

gravitational field
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WDt
a ¼

Z
B0

@ ðgnþ1 · rnþ1 2 gn · rnÞ dV

¼

Z
B0

grefr
2
ref @

er
nþ1

r2
nþ1

· er
nþ1rnþ1

� �
2

er
n

r2
n

· er
nrn

� �" #
dV with ð1Þ

¼ gref r2
ref

Z
B0

@
1

rnþ1
2

1

rn

� �
dV

¼ gref r2
ref

Z
V

@
rn 2 rnþ1

rnrnþ1
dV ) WDt

a ¼ WDt
ext:

ð11Þ

It again has to be pointed out that only with the specific expression in equation (5) for
the average acceleration the satisfaction of both conservation laws is guaranteed,
whereas in contrast the midpoint approximation does not show energy conservation.

4. FE-discretization in space
Using displacement based elements with the matrix of shape functions as Ne ¼
½I3£3 N 1; . . .; I3£3 Nnen�; the virtual displacements within the element are given by the
standard expression

due ¼ Nedd e; ð12Þ

with the nodal displacement vector d e. The residual of the volume forces f e results
from the weak form equation (3)

fe · dd e ¼

Z
V e

@ gT
emðrÞN

T
e dV · dd e: ð13Þ

The linearization within a Newton Raphson scheme for the solution leads to
nonsymmetric so-called “load parts” for the effective stiffness matrix according to

Ke ¼

Z
V e

@NT
e K lNe dV ð14Þ

with a non-symmetric kernel K l

K l ¼ gref r2
ref

1

rnr2
nþ1

þ Cr

 !
e*

emeT
nþ1 2 CrI3£3

" #
ð15Þ

Cr ¼
1

rnrnþ1ðrn þ rnþ1Þ
; e*

em ¼
rn þ rnþ1

rn þ rnþ1
: ð16Þ

Although the underlying problem is conservative, which normally leads to symmetric
matrices (Bufler, 1984; Schweizerhof and Ramm, 1984), the special definition of the
gravitational acceleration within the energy momentum approach results in an
nonsymmetric load part for the effective stiffness matrix. This is a typical effect of the
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energy momentum method proposed by Simo and Tarnow (1992) known from
applications to elastic systems. However, with physically realistic gravitational fields,
thus large radii, and time step sizes which are adapted to the time of circulation, these
nonsymmetric terms are very small compared to the other terms in the effective
stiffness matrix of the algorithm and can normally be neglected in the solution scheme.
This has been tested on various numerical examples and convergence was not affected.

An alternative for an effective algorithm, the symmetrization of K l by averaging the
nonsymmetric part

e*
emeT

nþ1 with
1

2
e*

emeT
nþ1 þ e*

nþ1e
T
em

� �
did not have any effect on the convergence for the examples considered. This is
certainly entirely different for small distances as may occur in electric fields.

For the calculation of the gravitational forces the rigid bodies are discretized by
“FE-like” parts. Using such a discretization, mass, center of mass and the inertia tensor
of such structures can be easily computed for the reference configuration. It is
recommended to select the center of mass as reference point for the translational and
rotational degrees of freedom.

To compute the orientation of a satellite in a central force field and not only the
position of its center of mass, the volume integration of the gravitational forces in the
actual configuration is absolutely mandatory for the satellites independently, if they
are considered as flexible or rigid.

When satellites are simplified as rigid bodies, all nodal forces resulting from the
volume integration have also to be transformed to the six dofs of the center of mass,
using constraint conditions. In an exact computation the resulting load parts to the
stiffness matrix (equation 14) have also to be transformed with these constrained
conditions to the effective stiffness matrix of the dofs of the rigid body. As mentioned
earlier, these parts can normally be neglected to improve the efficiency for examples
with large radii.

With a sufficiently fine spatial discretization the approximation of equation (13) by

fe · dde ¼
�

Ml
e ĝem

�
· dde; ð17Þ

with a diagonal matrix consisting of the lumped mass terms times the corresponding
nodal values of the gravitational acceleration ĝ em leads to negligible errors, but to a
large reduction of the computational effort.

5. Numerical example: rigid body in circular orbit in radial position
The goal is to simulate the motion of a satellite with a rectangular shape on a circular
orbit within the gravitation field of the earth. The satellite is assumed as a rigid body
and the gravitational field is simplified as a central force field. As the orientation of the
satellite is of interest, the action of the gravitational force is not modelled by resultant
forces acting on the center of mass, but the real distribution over the continuum is
taken into account. This distribution is computed by evaluation of equation (13). The
gradient of the force within the structure is rather small. As a consequence the load
terms in the effective stiffness matrix can be neglected in order to increase
computational efficiency. However, it has to be pointed out that this small gradient has
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to be considered for the force vector correctly in order to compute the correct
orientation of the satellite.

The gravitation field is defined by the reference acceleration of gref ¼ 9:8100 m=s2

on the earth’s surface ðrref ¼ 6; 370 kmÞ: The satellite is assumed to move on a
physically realistic circular orbit 400 km above the surface. It has constant mass
density and hexahedral geometry with l ¼ 2:0 m and a cross section of 0:2 m £ 0:2 m:
In the starting position ðt ¼ 0Þ; the longitudinal axis of the satellite points to the center
of gravitation as shown in Figure 3. The starting velocities referring to the center of
mass

v0 ¼ 0:0; 0:0; 2
2rsp

T


 �T

v0 ¼ 0:0;
2p

T
; 0:0


 �T

ð18Þ

lead to a stable motion on the circular orbit in radial position. A time step size of
Dt ¼ 20 s is taken, while the duration of one circulation is T ¼ 5547:4 s: The position
during the first circulation is shown in Figure 4. As this motion is stable, the
orientation of the satellite should not be affected by small disturbances, for example
occurring from numerical errors within the computation. This has been checked
numerically in a long time control simulation of about 1,000 circulations with Dt ¼
10 s: The reason for the stable motion is the fact, that once a nonaligned position is
assumed the larger gravitational forces close to the center of gravitation cause a

Figure 3.
Starting conditions for the
satellite (rigid body) on a
circular orbit

Figure 4.
Orientation of the satellite
in the first circulation with
starting conditions as
described in equation (18)
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moment that acts against the perturbation. As energy is conserved, small
perturbations lead only to a pendulum type motion around the ideal radial orientation.

To analyze the effect of major perturbations, the starting conditions are modified
considerably by setting the angular velocity to zero.

v0 ¼ 0:0; 0:0;2
2rsp

T


 �T

v0 ¼ ½0:0; 0:0; 0:0�T: ð19Þ

The numerical simulation with the same time step size as above shows that the missing
angular velocity around the y-axis leads to a harmonic pendulum motion. The
orientation of the satellite during the first circulation is shown in Figure 5. The
harmonic rotation with respect to the y-axis during the first five circulations is given in
Figure 6.

It is clearly visible that the correct consideration of the gradient of the gravitational
force as well as the full shape of the satellite is necessary to compute its real position. In
addition, neglecting the nonsymmetric terms in the effective stiffness matrix due to the
EM-scheme did not affect the quadratic convergence in the examples considered.

6. Conclusions
Focusing on Hamiltonian systems a formulation is given for the correct algorithmic
consideration of a stationary central force field acting as external forces on a satellite.
With the energy momentum method as time integration scheme all effects of the
modelling of such a gravitational field are shown for rigid and flexible continua.
Of special interest is the computation of the orientation of satellites within a central
force field.

The numerical examples are restricted to rigid bodies, because a significant relation
between deformation and attraction forces would only occur for satellites with
extremely large deformations or for satellites that are very close to the center of the

Figure 5.
Orientation of the satellite
in the first circulation with

starting conditions as
described in equation (19)
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force field. In addition, in such situations the numerical simulation of flexible
structures requires very small time steps and high numerical effort; the latter in
particular due to the nonsymmetric effective matrices arising from the time integration
scheme for energy and momentum conservation. Thus for the satellites with rather
large distances to the center of gravitation it can be recommended to reduce the model
to a rigid body concerning the effects of the gravitational forces. The presented
formulation is based on the high numerical stability of the underlying energy
momentum method, which is well suited for long duration simulations.
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