
Should we use Programmer Pairs or Single Developers for the next Project ?

Matthias M. Müller
Fakultät für Informatik
Universität Karlsruhe

Am Fasanengarten 5, 76 128 Karlsruhe, Germany
muellerm@ipd.uka.de

Abstract

Todays project leaders are unsettled. Should they use pro-
grammer pairs or should they rely on single developers for
the next project ? So far, empirical software engineering
research gives no clear advice. One study reports on a dou-
bled personnel cost when using programmer pairs instead
of single developers while another study reports on a sub-
stantial increase of development speed and program quality.
But, what would be if project leaders add a separate review
phase to single programmers’ development ? Then things
change in terms of development cost and program quality.
Two experiments conducted at the Universität Karlsruhe
revealed that there is almost no difference in cost if both
programmer pairs and single developers with reviews are
forced to develop programs with comparable quality.

1. Introduction

Pair programming has become a valid alternative to con-
ventional programming in the last years. Single developers
learn from their partners, share ideas, and when they pair off
they find solutions which none of them would have found
alone. A team of developer pairs shares responsibilities, de-
nies specialization and thus, reduces the risk of a project
failure caused by personal change-over. And last but not
least, the expected fun when pair programming should not
be underestimated. However, programmers felicity is not
untroubled. The nearly doubled personnel cost is the main
disadvantage of pair programming. The monetary impact
keeps project leaders from introducing pair programming in
their projects. Wasting resources is the ubiquitous argument
of the management when facing a project leader who tries to
justify the usage of pair programming. Other arguments in
favor of pair programming increase the probability that the
project leader succeeds in this debate. Pair programming is
said to accelerate development speed while at the same time
increasing the quality of the developed programs. But in the

end, the debate finishes with a draw (which quite naturally
implies that the project leader had lost), if the management
is aware of the state of the art in empirical software engi-
neering research (ESER).
Current results in ESER depict a highly diversified picture
on the advantages and disadvantages of pair programming.
There is the study of Williams [13] stating a productivity
increase of 42.5 percent1 when developer pairs are com-
pared to single developers. The pairs also produced 15
percent fewer errors than single programmers. Nosek [9]
reports more moderate figures. In his study, the pairs fin-
ished 29 percent earlier than single programmers. And fi-
nally, Nawrocki [8] found no difference at all in develop-
ment time. This diversified picture motivated several stud-
ies to look at the economic tradeoff when using pair pro-
gramming [2, 12, 10]. Unfortunately, there is no easy an-
swer, so far.
This study follows another approach than the other em-
pirical studies mentioned so far. Two experiments were
conducted to compare programmer pairs to single devel-
opers who were assisted by an additional anonymous re-
view phase. The motivation was to find a technique which
improves the performance of single developers such that
they produce programs with the same quality as program-
mer pairs do, but with lower cost. The two experiments
took place in the summer semester 2002 and 2003 at the
Universität Karlsruhe. They are referred to as Exp02 and
Exp03, respectively. Participants were 38 computer science
students.
This paper reports about the results of these two experi-
ments. If the programmer pairs and the single developers
are forced to produce programs with comparable quality,
the single developers are 7 percent cheaper than the pairs.
However, this difference is too small to be seen in practice.
If same quality is not an issue, pairs cost 13 percent more
and produce 29 percent more reliable programs than single
developers with a separate review phase do. But the second

150 percent faster means that the pairs are twice as fast as single devel-
opers.

result is confounded by the individual attitude to quality the
pairs and single developers had. Thus, this result does not
depend on the used programming method alone.
The author published the results of Exp02 in [7] (also re-
ferred to as previous study). This paper presents the replica-
tion of Exp02 and the results of the combined data-set. The
replication of Exp02 was necessary because it addresses
two weaknesses of Exp02. First, the replication increases
the size of the data-samples and therefore the possibility of
revealing an effect. And second, the replication removes a
threat to internal validity the first experiment suffered from.
In Exp02 each subject of a pair had to implement a task
on its own and had to perform a review on the same task
also. Thus, it was possible to get hints from the foreign pro-
gram which could have been used for subsequent individual
development. As this was actually the case for three sub-
jects in Exp02, the according data-points had been deleted
from the data-set used throughout this paper. Consequently,
the experiment plan for Exp03 was altered such that from
each pair, only one subject performed the implementation
and the other one did the review. This halved the number
of the data-points for the review group for Exp03, however,
this change was necessary to obtain a higher internal va-
lidity of the experiment. According to the terminology on
replications introduced by Basili [1, p. 469], the second ex-
periment is a replication that does not vary any research
hypothesis. To be more precise, Exp03 is no strict replica-
tion, but rather a replication that varies the manner in which
the experiment is run.
As the design of Exp03 is nearly identical to that of Exp02
their descriptions vary only in small parts. To avoid too
much repetition, the author repeated and modified the parts
of [7] which are essential for understanding the design of
the experiments, the results, and the underlying reasoning.
For example, the description of Exp02’s design was copied
and extended (Section 2) to keep track of the changes and to
ensure that this paper is understandable without knowledge
of the previous work. All other parts that are not related
directly to the repetition were removed, e.g. the detailed
discussion of related work fell in this category.

2. The Study

Both experiments had a counterbalanced design and were
held during the summer lectures 2002 and 2003, respec-
tively, at the Universität Karlsruhe.

2.1. Environment

The experiments were part of an extreme programming
course which in both cases took place in the summer
semester. The course consisted of four short sessions (in-
troducing pair programming, test-first, refactoring, and the

planning game) and a whole week of project work. The
experiments took place from May to June between the in-
troductory sessions and the project week. The subjects sub-
scribed voluntarily to the course and they knew from the
very first course announcement that they had to take part in
an experiment in order to get their course credits. All sub-
jects were computer science undergraduate students who
were on average in their fourth year of study. Java was the
programming language for both the experiment and the lab
course.

2.2. Methods and Tasks

Both studies compared the following methods:

Pair programming Two persons sit in front of a worksta-
tion and work together on the same task. Both devel-
opers share ideas in order to get a solution to the actual
programming task.

Review One developer implements a solution to a problem
and fixes all compilation errors. Then, he hands in his
program for anonymous review. After the review, the
developer gets back the program source together with a
short description of the marked errors and finally, starts
testing.

In both studies, subjects were introduced to pair program-
ming and reviews. Each course took about 1.5 hours. Pair
programming was taught by Extreme Programming (XP)
professionals. Reviews were presented in the following
week by the author. The subjects were forced to use only
these two development methods. All the other techniques
of XP were not part of this study.

The subjects had two solve two different tasks, each with
another method:

Polynomial Find the zero positions of an arbitrary poly-
nomial of third degree. The subjects had to imple-
ment the method findZeroPosition of a given
polynomial-class.

Shuffle-Puzzle Find the solution of a given shuffle-puzzle
within a given number of steps and list them if a
solution exists. The subjects had to add a method
findMoves to the basic class ShufflePuzzle.

The classes Polynomial and ShufflePuzzle con-
tained constructors and methods for I/O to facilitate imple-
mentation and final testing.
The polynomial-task description contained a hint for a pos-
sible numeric solution to the problem. However, the stu-
dents were not forced to use a special method to solve
the problem. In fact, they could use the method they
thought most suitable for this particular problem. For most

students, solving the task involved implementing the sug-
gested method as well as thinking about special cases. The
shuffle-puzzle task implied solving a backtracking prob-
lem to which the students knew the solution from their
very first computer-sciences courses. Overall, the students
were assumed skilled enough in both areas to overcome any
problem-domain specific difficulties.

2.3. Plan

The procedures of the review and the pair programming task
is outlined in Figure 1. Both procedures are divided into an
implementation and a quality-assurance (QA) phase. As the
experiment plan of Exp03 contains a slight modification of
Exp02’s plan, the Exp02 plan is described first. A discus-
sion of the internal threat imposed by Exp02’s plan follows.
Finally, the plan of Exp03 is presented as it deletes the threat
Exp02 suffered from.
Review Procedure of Exp02
For the description of the review task procedure we refer
you to the upper half of Figure 1. Implementation is split
into coding, review, and testing. During coding, the subjects
had to implement the task until they thought they are done.
During this part of the procedure, the subjects could only
compile but not execute their programs. This constraint was
guaranteed by the experiment environment. Thereafter, the
program was printed out on paper and handed in for review
to the subject’s pair programming partner. As the review
was anonymous, both the author and the reviewer of the
code did not know each other.
The task of the unknown reviewer was to find errors accord-
ing to a checklist. Design flaws, violations of any sort of
convention, and suggestions for a better solution were of no
concern to the review. The review process started only after
both subjects finished coding. The review time was lower-
bounded to at least 100 lines of code per hour. After the
review had completed, the subjects got back the reviewed
code and entered testing. Now, the subjects were allowed to
compile and execute their programs appropriately. Subjects
left testing when they claimed to be done.
At this point, they entered the quality assurance (QA) phase
where their programs had to pass 95 out of 100 test cases
of the acceptance-test. If the programs did not reach the
required 95% reliability, subjects got the output of the failed
tests and had to fix the errors. The acceptance-test and the
subsequent rework repeated as long as the program passed
less than 95 tests. Otherwise, the subjects concluded their
work.
Discussion of Review Procedure
The review procedure did not allow the subjects to exe-
cute the code before review. This might not seem intu-
itive because, normally, the code is executed and tested very
carefully before it is reviewed. However, as motivated by

Humphrey [5, pp. 267-268], the author chose not to permit
the execution of the code before the review because of the
following two reasons. First, reviewing code that has not
been executed changes the attitude of the reviewers. They
know that the program was not executed and tested and thus,
it is far from being correct. Therefore, it is worth a review.
Second, the author of the program does not want the re-
viewer to find any errors. Thus, he develops his program
carefully and does quite naturally a separate code-review
of his own. Consequently, the program passes two reviews:
the review of the program owner and the anonymous review.
This would not have been the case, if the programs had been
reviewed after the testing phase.
The lower bound for the review time of 100 lines of code
per hour is based on figures shown by Gilb and Graham [4,
p. 154]. Gilb and Graham suggest a review speed of one
page (non-commentary, 600 words) per hour. Their check-
ing rate is due to cross-checking against several documents:
rule sets, checklists, role checklists, and source documents.
As both tasks and their specifications are rather small, dou-
bling the review velocity seemed reasonable.
The main incentive of the quality assurance phase was to
ensure high and comparable quality of developed programs,
such that the programming effort depends only on one inde-
pendent variable: the method used for implementation (re-
view or pair programming). The individual attitude to test-
ing or program quality, which differs from pair to pair and
developer to developer, is factored out. Thus, the compari-
son of both methods bases solely on the effort imposed on a
development task and not on subjective decisions. However,
the exit criterion of the quality assurance phase still leaves
some room for variation in reliability. But this variation is
expected to be too small to be statistically detectable.

Pair Programming Procedure of Exp02
As opposed to the review procedure, the pair programming
procedure was straight forward. During implementation,
the pairs could compile and execute their programs from the
very beginning. They worked on the programs until they
claimed to be done. Then, they entered the quality assur-
ance phase which also iterated, as described above, between
running the acceptance-test and rework. And again, the exit
criterion was to pass at least 95 out of the 100 test cases of
the acceptance-test.

Threats of Exp02’s plan
The major threat of Exp02’s plan was the possibility that
subjects could get hints from the foreign program for their
own development. This actually occurred as it was pointed
out in Section 3.7 of [7]. Three subjects admitted in the
post-test questionnaire that they found suggestions for pro-
gram improvement.

Experiment plan of Exp03
To remove this threat in Exp03, only one partner of a pair (as
opposed to both in Exp02) prepared the task while the other

Pair Programming

exchangeCode

ReviewCoding

1. Acceptance Test last Acceptance Test

Testing

Implementation

Coding + Testing

Procedure

Procedure

Review

Quality Assurance

Figure 1. Procedure for the review and pair programming task.

partner performed the review. Remove the dashed line in the
review part of Figure 1 to obtain the modified experiment
plan of Exp03. Actually, this slight modification removes
any effects caused by this threat. The pair programming
procedure was not altered in Exp03.

Realisation of both experiments
The pair programming procedure could be done in one ses-
sion, while the review procedure involved at least two dif-
ferent sessions: one for coding and another one for review,
testing, and quality assurance. For each session and each
task, both the pairs and single programmers made an ap-
pointment with the experimenter. If the task could not be
finished in the first run, a subsequent appointment had to be
made.

2.4. Selection of Groups

Table 1 shows the groups and the assigned task order for
each group. The group numbers of Table 1 are referenced
by the Tables 2 and 3.

Table 1. Task order for the groups (PP=pair
programming, Re=review, Shu=shuffle-
puzzle, Pol=polynomial).

1. Task 2. Task
Group Method, Problem Method, Problem

1 PP, Shu Re, Pol
2 PP, Pol Re, Shu
3 Re, Shu PP, Pol
4 Re, Pol PP, Shu

Table 2 lists the groups’ overall programming and Java ex-
perience in years as well as in lines of code. The students
had on average more than 6.5 years of programming experi-

ence and developed in that time frame on average more than
27,000 lines of code.

Table 2. Mean programming experience for
each group.

Overall Exp. Java Exp.
Group Years LOC Years LOC

Exp02
1 7.0 30,000 3.8 45,333
2 6.5 25,000 2.0 3,700
3 6.3 28,833 3.0 11,583
4 5.9 23,500 2.9 11,550

Total Exp02 6.5 27,297 2.9 15,963
Exp03

1 7.8 32,500 3.0 3,050
2 7.9 23,250 2.7 5,175
3 4.0 25,000 2.0 2,000
4 5.6 25,000 1.7 5,400

Total Exp03 7.0 27,819 2.3 5,155
Overall 6.7 27,448 2.7 12,834

The division of subjects into groups for both experiments
was done according to their overall programming experi-
ence, independent of the programming language. The aim
was to even out the general experience level. Within each
group, the most skilled subject had to pair off with the low-
est skilled subject, the second best skilled subject with the
second lowest skilled subject, and so on. The data used
for the division was obtained from the pre-test question-
naire the subjects had to fill out prior to the experiment.
In both experiments the overall-experience in lines of code
was chosen to be the decisive factor. However, the Java-
specific experience could have been used also, but in the
following project weeks after the experiments, it showed

that the overall experience represented the individual skill-
level better than the Java-specific experience. The pre-test
questionnaire revealed also, that in Exp02 (Exp03) six (one)
subjects had some experience in reviews, two (six) subjects
used pair programming, and one (no) subject had used both
reviews and pair programming prior to the experiment.

Table 3. Number of available data-points per
group.

Exp02 Exp03
Group Size PP Re Size PP Re

1 6 3 4 4 2 2
2 4 2 2 4 2 2
3 6 3 5 4 2 2
4 4 2 3 6 3 3

Overall 20 10 14 18 9 9

Table 3 lists the group sizes and the number of data-points
available for analysis. In Exp02 three subjects did not finish
the review task. They belonged to the groups 2, 3, and 4,
respectively. Additionally, two data-points of group 1 and
one data-point of group 2 had to be deleted to avoid the pre-
vious discussed internal threat. Thus, there were 10 data-
points in the pair programming group and 14 data-points in
the review group of Exp02. In Exp03 all data-points could
be used, leading to 9 data-points for either group. Over-
all, there were 38 participants yielding 19 pair programming
and 23 review data-points.

2.5. Data

Data collection and analysis was performed identically for
both experiments.
Reliability
The reliability of two different versions of the developed
programs was measured: the version after the implementa-
tion (Imp) and the version after the quality assurance phase.
Two tests were created for each task: the large-test and the
acceptance-test. The large-test consisted of 700,000 test-
cases for the polynomial task and of 15,000 test-cases for
the shuffle-puzzle task. Each test-case was randomly gen-
erated. Each acceptance-test consisted of 100 test-cases
randomly selected from the large-test. Both acceptance-
tests were generated once, before the experiment, and never
changed afterwards. The test-cases for the polynomial-task
consisted of a list of coefficients (starting from x0), fol-
lowed by the number of zero positions, and the zero posi-
tions itself. The test-framework read a test-case, initialized
the implementation-under-test (IUT), executed it, and com-
pared the results. If a deviation was detected, the test-case
counted as failed. The polynomial coefficients for the test-
cases were calculated from randomly generated zero posi-
tions. The test-cases for the shuffle-puzzle task were struc-

tured and executed the same way. The shuffle-puzzles used
in the test-cases were randomly created with an upper bound
for the number of steps. The number of steps used to create
the shuffle-puzzle was later on decreased or increased by
one to reduce or enlarge the search space for the IUT.

Apart from the fact that the acceptance-test was used to
ensure comparable program quality between the subjects’
programs, the usage of the acceptance-test stemmed from
another reason also. When the acceptance-test was used
during the quality assurance phase, the subjects got almost
immediately feedback about the quality of their program.
If the large-test had been used instead, the subjects would
have been waiting for hours for the test results in the worst
case. Thus, the delay incurred by the large-test would have
been an unacceptable disruption of subjects’ work flow. The
results from the acceptance-test were available for analysis,
though, the data was not used for evaluation purposes, as
the large-test is expected to test a subjects’ implementation
more thoroughly. Consequently, reliability was evaluated
with the large-test only.

The reliability r of a program was measured for two dif-
ferent program versions. The first version was the program
right after the implementation phase. The reliability of this
program version is denoted with rImp. The final program
represented the second version. It was the version after
quality assurance. The reliability of the final program is
denoted with rTask.

The reliability of a program version is the fraction of the
number of passed tests divided by the number of all tests:

r =
|{passed tests}|
|{all tests}|

The different program versions were gathered non-
intrusively by the experimental environment without no-
tice to the subjects. Each time a subject compiled its Java-
code, the source-code was archived. At runtime, the exper-
imental environment performed three operations: archiving
the actual program version, logging the results, and writ-
ing the log to standard output. The subject triggered the
data-collection mechanism implicitly by invoking the Java-
compiler or the Java virtual-machine.

Cost

To study the cost, we compare the cost cmethod
phase for

method method ∈ {Pair,Review} and phase phase ∈
{Imp,QA, Task}. The cost is measured in man minutes
(mm). The cost of the two procedures consists of the time
spent for reading the problem description TRead, the time
spent for implementation TImp, the review time TRev , and
the time spent for quality assurance TQA.

cPair
Task = 2 · (TRead + TImp + TQA)

cReview
Task = TRead + TImp + TRev + TQA

cPair
Imp = 2 · (TRead + TImp)

cReview
Imp = TRead + TImp + TRev

cPair
QA = 2 · TQA

cReview
QA = TQA

TQA consists of the rework time only and does not include
the execution time of the acceptance-test. The review cost
cReview does not account for any additional waiting time,
for example, the review synchronisation overhead.
The data were gathered with the pplog-mode, a major mode
for Emacs which supports logging of work-time and inter-
rupts [11]. Time logging was started and stopped by the
experimenter.

2.6. Hypotheses

Both studies aimed to verify the following hypotheses and
alternatives. In regard to the quality of the delivered pro-
grams, we assume for the null-hypotheses, that the mean
reliability of the programs developed by the subjects of the
pair programming group is not higher than the mean relia-
bility of the programs developed by the subjects of the re-
view group:

H
Rel
0

: µ r(Pair Programming) ≤ µ r(Review)

H
Rel
Alt : µ r(Pair Programming) > µ r(Review).

With respect to the cost, we investigate the following null-
hypotheses, according to which the average effort in man-
minutes to complete a programming assignment is not
higher for the pair programming group than for the review
group:

H
Cost
0

: µ c(Pair Programming) ≤ µ c(Review)

H
Cost
Alt : µ c(Pair Programming) > µ c(Review).

We consider the cost for the whole task, the implementation,
and the quality assurance phase.

2.7. Power Analysis

The power of the one-sided t-test is 81%. From the al-
ternative hypotheses perspective, we have a true chance of
81% to detect a difference between both groups, if any. But
since the data-sets are rather small, we use the Wilcoxon-
Mann-Whitney-test (up to now referred to as the Wilcoxon-
test) and not the t-test. However, the Wilcoxon-test has an
asymptotic efficiency of 95% of the t-test, which reduces

the actual power down to 77%. The power of the t-test
was calculated with R [6] using two samples, the harmonic
mean of both group sizes n = 20.8, an effect size of 0.8,
and a significance level of α = 0.05. According to Cohen
[3], the combination of both experiments has a quite good
chance of revealing an effect, though, this effect has to be
large. An effect size of 0.8 is equivalent to the mean dif-
ference in height between 13- and 18-year old girls [3, p.
27]. If we had chosen the interesting effect size to be equal
to 0.5, which is equivalent to the mean difference in height
between 14- and 18-year old girls [3, p. 26], then the power
of the Wilcoxon-test would have been 45.2%. In any case,
if the Wilcoxon-test does not reveal a significant difference
between data-sets then there are two possibilities. Either the
effect is too small to see and, therefore, our sample size is
still too small or there is no defect to detect.

2.8. Internal threat

Two perils threat the internal validity of both experiments.
First, different persons teaching the lectures on pair pro-
gramming (professionals) and reviews (the author) could
cause differences in skill and motivation among the groups.
The other possibility would have been, that only one per-
son would have taught both courses. However, the author
judged the risk of skews in skill and motivation to be higher
in the one teacher scenario than in the two teacher scenario.
This judgement is due to the fact that subjects could have
been biased by the teachers assumptions if he had taught
both topics instead of only one topic. Thus, it was quite
reasonable to let each lecture be taught by another teacher.
The second threat concerns the possibility, that a subject did
not apply the process it was told to follow. This threat can be
ignored safely because of the strict process definition. The
experimentator enforced the process rigorously and left the
subjects with no posibility for variation.

2.9. External threat

Several threats may have an impact on the generalisabil-
ity of the study. One threat concerns both subjects’ pair
programming and review experience. This threat exists be-
cause the subjects did not meet before the pair program-
ming task and because none of the subjects had performed
reviews prior to the experiment to that extent that it could
be referred to as a professional. But since either group is
affected by one of these threats, the effect is considered to
be balanced. Another threat originates from the algorithmic
structure of the polynomial and shuffle-puzzle task, because
both tasks are more complex than every-day development
tasks. But the high complexity balances the longer dura-
tion of the ordinary development tasks. Consequently, both
tasks are not assumed to have any negative impact on the
generalisability of the study.

3. Results

We use box plots to show the results of the measurements.
The boxes within a plot contain 50% of the data points. The
left (right) border of the box marks the 25% (75%) quan-
tile. The left (right) t-bar marks the most extreme data point
which is no more than 1.5 times the length of the box away
from the left (right) side of the box. Outliers from the above
scheme are visualized with circles. The median is marked
with a thin line. The M associated with the dashes on each
side marks the mean value within a range of one standard
deviation on each side. Evaluation bases on the one-sided
Wilcoxon-Mann-Whitney two-sample test. Significance is
set to a p-level of 0.05. In tables, the abbreviations x, s,
and x̃ are used for the mean, the standard deviation, and the
median of the data-samples, respectively. Exp02 (Pair02,
Rev02), Exp03 (Pair03, Rev03), and Both (Pair, Rev) rep-
resent the (pair programming, review) data-sets of the first,
the second, and the combination of both experiments, re-
spectively. Different figures between this evaluation and
the one shown in [7] are caused by the three removed data-
points.

3.1. Reliability

Table 4 lists the reliability measures rTask and rImp of the
final and intermediate program versions. For the final pro-

Table 4. Reliability per method (in percent)
exp PairProg Review

x s x̃ x s x̃

rTask

Exp02 97 4 99 98 2 98
Exp03 97 4 99 97 3 97
Both 97 4 99 97 3 98

rImp

Exp02 54 38 33 38 33 30
Exp03 56 27 70 49 32 37
Both 54 32 50 42 32 32

grams, the reliability rTask differs only slightly, if at all,
and the overall reliability is high. These two observations
are caused by the quality assurance phase. However, there
is still some variation among the data-sets, see Figure 2.
The data-points falling below the 95% exit criteria of the
quality assurance phase are explained by the fact that the
data-points of the large-test and not the acceptance-test are
shown. The figures change for the reliability rImp of the
program versions after the implementation phase, see lower
part of Table 4 and Figure 3. On average, the pairs pro-
duce 64 (Exp02), 27 (Exp03), and 29 percent (Both) more
reliable programs than single developers. Comparing the

90 92 94 96 98 100

P
ai

r0
2

R
ev

02
P

ai
r0

3
R

ev
03

P
ai

r
R

ev

90 92 94 96 98 100

Reliability [%]

M

M

M

M

M

M

Figure 2. Reliability for Task rTask

0 20 40 60 80 100

P
ai

r0
2

R
ev

02
P

ai
r0

3
R

ev
03

P
ai

r
R

ev

0 20 40 60 80 100

Reliability [%]

M

M

M

M

M

M

Figure 3. Reliability for Imp rImp

medians of the data-sets, the programs of the pairs perform
10, 89, and 56 percent better, respectively. However, none
of the differences in location is statistically significant on
the 5 percent level which is caused by the large variability
within the data-sets.
In summary, if both experiments are combined, the pairs
produce 29 percent more reliable programs after the imple-
mentation phase than the single developers with reviews.
For the final program versions, there is no difference in re-
liability.

3.2. Cost

Table 5 lists the cost for the whole task cTask, the imple-
mentation phase cImp, and the quality assurance phase cQA.
First, the cost for the whole task is examined, see upper-

third of Table 5 and Figure 4. The pairs are on average 1,
10, and 7 percent more expensive than single developers.
To be more precise, if the pairs and single programmers are
forced to develop programs with equal reliability, there is al-
most no difference in terms of development effort between
both groups. Even, the observed difference is too small as
it could be seen in practice.

Table 5. Cost per method (in man minutes)
exp PairProg Review

x s x̃ x s x̃

cTask

Exp02 490 114 471 487 258 452
Exp03 610 238 678 550 257 488
Both 547 188 512 512 253 458

cImp

Exp02 409 118 409 365 141 316
Exp03 474 166 400 427 150 445
Both 440 142 400 389 145 330

cQA

Exp02 81 99 31 122 153 74
Exp03 136 113 82 123 153 43
Both 107 106 68 123 149 64

400 600 800 1000 1200

P
ai

r0
2

R
ev

02
P

ai
r0

3
R

ev
03

P
ai

r
R

ev

400 600 800 1000 1200

Cost [man minutes]

M

M

M

M

M

M

Figure 4. Cost for Task cTask

The difference in cost increases if the cost for the implemen-
tation phase cImp is compared, see middle-third of Table 5
and Figure 5. Now, the pairs are on average 12, 11, and 13
percent more expensive than single developers. The pairs
develop 29 percent more reliable programs while bringing
about 13 percent more cost than single developers with re-
views. But this result is confounded by the attitude to qual-
ity or testing each pair or individual developer possesses.
Thus, this result is not caused by the different development
methods alone.

200 300 400 500 600 700

P
ai

r0
2

R
ev

02
P

ai
r0

3
R

ev
03

P
ai

r
R

ev

200 300 400 500 600 700

Cost [man minutes]

M

M

M

M

M

M

Figure 5. Cost for Imp cImp

0 100 200 300 400 500 600

P
ai

r0
2

R
ev

02
P

ai
r0

3
R

ev
03

P
ai

r
R

ev

0 100 200 300 400 500 600

Cost [man minutes]

M

M

M

M

M

M

Figure 6. Cost for QA cQA

As single developers are cheaper during implementation,
these savings are lost during quality assurance, see lower-
third of Table 5 and Figure 6. On average, the pairs are
cheaper during quality assurance except for Exp03. This re-
sult is not surprising because single developers had to make
up for a higher reliability difference than the pairs.
To conclude, if comparable quality is forced, the pairs are
a bit more expensive than single developers, though, this
difference is too small to be seen in practice.

3.3. Sequence analysis

Sequence analysis aims at revealing effects that have their
roots in the consecutive treatment of the two development
tasks. The focus lies on the order of the assignments ig-
noring the specific method and the specific problem. The

sequence analysis of the previous study showed a learning
effect from the first to the second assignment. Thus, it is
demanding to repeat the sequence analysis on the Exp03
and Both data-sets. All data-sets of Table 6 show a general
tendency, though, the Wilcoxon-test revealed no statistical
significance on any of it.

Table 6. Differences between first and second
assignment averaged over groups and tasks.

data-set 1. assignment 2. assignment
x s x̃ x s x̃

rTask

Exp02 98.2 2.4 99.6 96.4 3.7 97.1
Exp03 97.3 3.0 99.0 95.8 4.0 96.7
Both 97.9 2.5 99.4 96.1 3.9 96.9

rImp

Exp02 38.9 33.2 29.6 52.2 38.4 52.4
Exp03 48.4 35.0 37.3 56.7 22.0 63.9
Both 42.8 33.6 32.9 54.3 31.1 63.9

cTask

Exp02 547.0 240.9 512.0 419.1 137.3 398.0
Exp03 627.1 218.0 595.0 532.6 268.0 446.0
Both 579.8 230.0 536.0 470.1 208.8 414.0

cImp

Exp02 431.0 134.5 419.0 326.7 106.8 302.0
Exp03 475.9 141.0 463.0 425.1 173.0 386.0
Both 449.4 135.7 450.5 371.0 145.5 348.0

Concerning reliability, there is a somewhat divergent pic-
ture. The final reliability rTask decreases while the reli-
ability rImp of the program versions after the implemen-
tation phase increases from the first to the second assign-
ment. This observation is valid for all three data-sets Exp02,
Exp03 and Both. Although this effect could be seen also in
the previous study, the reason for this counterintuitive be-
havior is still unclear. However, there is a unique trend to
cost reduction as the means and medians of the cTask and
cImp data-sets decrease from the first to the second assign-
ment.
In summary, even though the final reliability decreased dur-
ing the experiment, the other measures indicate a learning
effect from the first to the second assignment.

3.4. Additional Results

The reviews lasted on average 63 minutes or about 12 per-
cent of the development time of the single developers. The
average size of reviewed programs was 124 lines of code
and the average review speed was 118 lines of code per
hour.
Table 7 lists the number of acceptance-tests, the devel-
oped code size, and the cost for a quality assurance cycle

Table 7. Comparison of number of
acceptance-tests, size of written code,
and QAC cost.

category PairProg Reviews
x s x̃ x s x̃

number of acceptance-tests
Exp02 3.0 2.3 2.5 4.6 5.0 3.0
Exp03 3.7 1.4 4.0 5.3 5.1 4.0
Both 3.3 1.9 3.0 4.9 4.9 3.0

code size in LOC
Exp02 156 34.7 148 150 31.3 140
Exp03 130 33.6 140 175 67.3 140
Both 144 35.8 144 160 48.8 140

QAC cost in man minutes per cycle
Exp02 20.0 25.5 8.6 25.6 15.4 24.8
Both 27.6 26.5 20.5 23.6 21.8 20.0

(QAC). A QAC consists of one acceptance-test and its sub-
sequent rework phase, if necessary. The execution time
of the acceptance-test is not included. The QAC is ob-
tained by dividing cQA with the number of acceptance-tests.
However, in order to perform this division, both data-sets
must have a strong (linear) correlation. Correlation analysis
for Exp02, Exp03, and Both revealed a correlation coeffi-
cient r2 of 0.78, 0.28, and 0.54, respectively. According to
Humphrey [5, p. 513], the calculation of QAC is allowed
only for Exp02 and Both as r2 is larger than 0.5 for these
both data-sets. Consequently, the QAC figures for Exp03
have been omitted from Table 7. Anyway, the calculated
values for QAC have to be treated with caution.
For Exp02, the average QAC cost for pairs is lower than
that for single developers. This observation was interpreted
in [7] as a more than twofold increase in productivity during
quality assurance when switching from single programmers
to programmer pairs. However, this figure does not hold
anymore if the combined data-set Both is observed.

4. Conclusions

This paper presented two empirical studies concerning the
comparison of developer pairs with single programmers.
The latter were assisted by a separate review phase. Two
effects of the comparison could be observed:

1. Single developers cost 7 percent fewer than developer
pairs, if both developer pairs and single programmers
are forced to produce programs of equal quality. While
the experiment data revealed the 7 percent cost sav-
ings, it is questionable if this cost advantage of the sin-
gle developers can be seen in practice, too.

2. Programmer pairs are 13 percent more expensive while
producing 29 percent more reliable programs than sin-
gle developers with reviews. However, this result is
not caused by the different implementation techniques
alone. In fact, the individual attitude to quality of the
pairs and the single developers is another independent
variable.

Even though the reported numbers seem to quantify the
difference between pairs and single developers, none of
the differences among the data-sets is statistical significant.
Consequently, the reported numbers have to be treated cau-
tiously.
Two reasons could explain the absence of any statistical sig-
nificance. Either there is no effect to detect or the effect is
too small to detect. Despite the fact that this study did not
detect any effect even though it had a chance of nearly 80
percent to reveal a large one, the author is still convinced
that there is a cost difference, though, this difference is too
costly to detect.2

The main incentive of this study was the comparison of pro-
grammer pairs with single developers in terms of personnel
cost. The result of this study is clear: if equal quality is an
issue, programmer pairs and single developers become in-
terchangeable. This result sounds good news for conserva-
tive management seeking an equilibrium in the used devel-
opment techniques. Arguments against this conclusion are
the open questions that still remain. For example, what im-
pact has the information flow during pair programming on
the productivity and the skill level of the individual devel-
opers ? Or, to what extend does pair programming mitigate
staff turn-over, if it does at all ? But these questions address
long-term issues of pair programming for which different
kind of studies have to be conducted.

5. Acknowledgments

The author would like to thank Marcel Modes for supervis-
ing the second experiment and Vlad Olaru for proof reading
a previous version of this article.

References

[1] V. Basili, F. Shull, and F. Lanubile. Building knowledge
through families of experiments. IEEE Transactions on Soft-
ware Engineering, 25(4):456–473, July/Aug. 1999.

[2] A. Cockburn and L. Williams. The costs and benefits of pair
programming. In eXtreme Programming and Flexible Pro-
cesses in Software Engineering (XP2000), Cagliari, Italy,
June 2000.

2For example, the sample-size required for a one-sided two-sample t-
test detecting the effect-size of this study of (547 − 512)/224.4 ≈ 0.16
with a power of 80 percent is 484 data-points per group. As two developers
are needed for one data-point, 484 · 2 · 2 = 1936 developers have to be
engaged.

[3] J. Cohen. Statistical Power Analysis for the Behavioral Sci-
ences. Academic Press, 1988.

[4] T. Gilb and D. Graham. Software Inspection. Addison-
Wesley, 1993.

[5] W. Humphrey. A Discipline for Software Engineering.
Addison-Wesley, 1995.

[6] R. Ihaka and R. Gentleman. R: A language for data analy-
sis and graphics. Journal of Computational and Graphical
Statistics, 5(3):299–314, 1996.

[7] M. Müller. Are reviews an alternative to pair Programming ?
In Conference on Empirical Assessment In Software Engi-
neering (EASE), pages 3–12, Keele, UK, Apr. 2003.

[8] J. Nawrocki and A. Wojciechowski. Experimental evalua-
tion of pair programming. In European Software Control
and Metrics (Escom), London, UK, 2001.

[9] J. Nosek. The case for collaborative programming. Commu-
nications of the ACM, 41(3):105–108, Mar. 1998.

[10] F. Padberg and M. Müller. Analyzing the cost and benefit of
pair programming. In International Symposium on Software
Metrics (Metrics), Sydney, Australia, Sept. 2003.

[11] PSP resources page. http://www.ipd.uka.de/PSP/.
[12] L. Williams and H. Erdogmus. On the economic fea-

sibility of pair programming. In International Work-
shop on Economics-Driven Software Engineering Research
(EDSER), Orlando, Florida, USA, May 2002.

[13] L. Williams, R. Kessler, W. Cunningham, and R. Jeffries.
Strengthening the case for pair-programming. IEEE Soft-
ware, pages 19–25, July/Aug. 2000.

