
Transaction Protocols
for Self-Organizing Systems

of Autonomous Entities

Philipp Obreiter, Ioana Nistoreanu

obreiter@ipd.uni-karlsruhe.de, Iona.Nistoreanu@insa-lyon.fr

July 23, 2004

Technical Report Nr. 2004-11

University of Karlsruhe
Faculty of Informatics

Institute for Program Structures and Data Organization
D-76128 Karlsruhe, Germany

Abstract

Self-organizing systems of autonomous entities have gained wide-spread attention in the re-
search community. The most difficult problem of such systems is that autonomous entities may
choose between cooperation and defection in the transactions they participate. In internet based
eCommerce, transaction protocols are applied for this purpose. Yet, it has been repeatedly con-
jectured that such protocols are not applicable to self-organizing systems. Distributed reputation
systems have been proposed as a means of compensating for such lack of applicability. Still, there
is no analysis of the applicability of transaction protocols and their relationship with distributed
reputation systems.

Therefore, in this report, we identify the characteristics of the internet based transaction
protocols and show that they are only partly applicable to self-organizing systems. We discuss
conventional and evidence-aware distributed reputation systems and point out their pivotal role
in facilitating self-organizing punishment of defective behavior. This leads us to regard on trans-
action protocols as a means to complement distributed reputation systems by preempting and
perceiving defective behavior. Based on this observation, we conceive five transaction protocols
that comply with these demands and find different tradeoffs. The key properties of the proto-
cols are illustrated and discussed by a schematic visualization technique. Finally, we allow for a
circumstance-dependent choice of the most appropriate transaction protocol by quantifying the
tradeoffs of each protocol and illustrating the protocols’ dominance structure.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 1

2 System Model 3
2.1 Model of Entities and Cooperation . 3
2.2 Item Model . 4

3 Transaction Protocols in the Internet 9
3.1 Setting . 9
3.2 Characteristics of Transaction Protocols . 9
3.3 Instances of Transaction Protocols . 13
3.4 Applicability to the System Model . 20

4 Self-organized Systems and Transaction Protocols 23
4.1 Conventional Distributed Reputation Systems . 23
4.2 Evidence-Aware Distributed Reputation Systems 24
4.3 The Role of Transaction Protocols . 24

5 Conception of Transaction Protocols for Self-organizing Systems 27
5.1 Characteristics of Transaction Protocols . 27
5.2 Proposed Transaction Protocols . 28
5.3 Schematic Visualization of Transaction Protocols 28
5.4 Interrelation with Internet based Protocols . 33

6 The Tradeoffs of the Transaction Protocols 35
6.1 Benefit and Cost Categories . 35
6.2 Tradeoff-aware Choice of Transaction Protocols . 38

7 Conclusion 41
7.1 Summary . 41
7.2 Future Work . 42

Acknowledgement 43

Bibliography 44

I

A Implementation and Use of Transaction Protocols 46
A.1 The Pre-transaction Phase: Agreement on the Terms of the Transaction 46
A.2 Algorithms of the Proposed Transaction Protocols 46
A.3 Diagrams of the Proposed Transaction Protocols 49

B Glossary 65

II

Chapter 1

Introduction

We start this report with a motivating scenario of self-organizing systems of autonomous entities.
This motivates the system model of Chapter 2. We conclude this chapter by providing an outline
of this report.

1.1 Motivation

The Diane project [1] aims at developing concepts for ad hoc networks, which enable the efficient
discovery, description and processing of information services. This kind of services allow the
access to and the transaction of information through electronic means.

An ad hoc network is formed of a set of mobile, autonomous devices, which communicate with
each other without relying on an existing infrastructure. The lack of a communication backbone
requires constant cooperation from devices, i.e., each device has to fulfill services in the benefit
of the other devices. For instance, a basic requirement is the execution of networking services:
two nodes can communicate only if the intermediate nodes agree to forward the packets. But,
as resources are limited, the mobile devices often tend to reduce their cooperation, mostly in the
purpose of saving these resources.

Let’s take the example of a student, X, connected to an ad hoc network, who wants to gather
C programming notes, which are spread across the network. His service requirement leads to
valuable resources losses (eg. energy, processing power) for the devices executing this service.
Due to the high costs, few participants will agree to fulfill the service for X, unless he gives
something in return. In other words, he should provide at his turn a service for the notes’ owners,
as a compensation for their resource losses.

The transactions appear to be a simple process if we assume that every device executes the
service it has been asked for. But if we consider that the gained utility is higher for the user that
does not execute the service, the defection tends to be preferred to the cooperation. This could
lead to heavy negative effects for the performance of the network.

We conclude that cooperation enforcement is crucial for the DIANE network.

1.2 Outline

In Chapter 2, we abstract from the scenario and present its underlying system model. In Chap-
ter 3, we identify the characteristics of internet based transaction protocols and describe their

1

most common instances. Furthermore, we compare the setting of the internet with the one of self-
organizing systems. In Chapter 4, we discuss both conventional and evidence-aware distributed
reputation systems and point out the role of transaction protocols in self-organizing systems.
This leads us to conceive transaction protocols for such systems in Chapter 5. In this context, we
illustrate and discuss the key properties of the protocols with a schematic visualization technique.
In Chapter 6, we solve to the problem of choosing the transaction protocol that is most appro-
priate for the given circumstances of a transaction. Furthermore, we illustrate the principles of
tradeoff-aware choice by providing dominance graphs for the proposed transaction protocols and
roles. Finally, in Chapter 7, we summarize the report and point out future work.

In the appendix, we provide a glossary (Appendix B) and the implementation details of the
protocols (Appendix A).

2

Chapter 2

System Model

The motivating scenario of the last chapter exemplifies the problem domain of this report. In this
chapter, we provide a model of the problem domain in order to identify the key characteristics
of the problem. The system model includes a model of the participating entities and their
cooperation. Subsequently, we propose models for the items that the entities may exchange
in the course of a transaction. Finally, we take a closer look at actions since they are the core
ingredient of cooperation.

2.1 Model of Entities and Cooperation

We assume a system as it is described in [2, 3]. Figure 2.1 illustrates the key properties of the
system model.

In the following, we introduce the key notions of the model:

• Entities: An entity is a component of the system. In the context of the scenario of
Section 1.1, an entity is a user agent that resides on the PDA or laptop of its human
principal.

• Cooperation, transactions and protocols: A pair of entities may cooperate by taking
part in a transaction. The pair of entities (transaction peers) exchange one or several
items that are mutually beneficial for them. In the scenario, a transaction consists of the
proliferation of the programming notes by entity Y and a service in return by student X. A
transaction protocol defines the steps that are processed in order to perform a transaction.

• Reachability: An entity may enter or leave the system at any time. Furthermore, parti-
tioning may occur at any time.

• Autonomy: Each entity is autonomous. This means that an entity is free to cooperate or
defect in the course of a transaction. Defection refers to the premature abandonment of the
transaction protocol. In the scenario, take for example two PDAs that agree on exchanging
a pair of files. After having received the file of the transaction partner, a transaction peer
may defect by refusing to transmit the promised file.

• Self-organization: There is no available infrastructural entity. The system’s organization
is emergent because the entities have to assume infrastructural tasks. As a result, they
organize themselves. The ad hoc network of the scenario inherently does not offer any

3

Entity A Entity B
transactions

autonomy

Figure 2.1: The system model

infrastructure. The means of self-organization is apparent on the network layer: Each
entity has to route packets of other entities in order to enable inter-entity communication.

• Identities and security: Each entity has an identity1 and is able to perform crypto-
graphic operations. With respect to security, this means that (1) entities communicate
over confidential channels that cannot be overheard by other entities and (2) entities may
authenticate and issue non-repudiable tokens.

2.2 Item Model

An item is an action or a token that is exchanged in the course of a transaction. In this section,
we classify items according to their characteristics. Based on the classification, we show which
types of items are part of the system model.

2.2.1 Item Classes

In the following, we propose several classes of items and classify them in a taxonomy. Except for
deliverable items, the item classes have been introduced in [4].

2.2.1.1 Deliverable Items

The terminology of exchanges and items suggests that items are exchanged in messages. However,
there are actions that do not consist of their return values. Such actions are executed locally and,
due to their non-perceptibility, the peers cannot verify the effectiveness of the execution2.

A deliverable item is an item the effectiveness of which may be checked upon receival. In this
regard, an item is effective if it complies with its specification.

An action that consists of side-effects in the real world is no deliverable item. For example,
it is imperceptible for the user agent whether a document is printed. Even actions that remain
within the information system might be unobservable, e.g., forwarding packets in the absence
of observation and receipts [5]. Furthermore, the verification of an action’s compliance to its
specification is often daunting. For instance, even for a document service, it is difficult to check
automatically whether it complies with its specification.

2.2.1.2 Forwardable Items

In the context of failure resolution, exchange protocols might demand for passing on an item
several times. Therefore, the benefits and costs that arise from passing on an item should not

1Identities either are initially distributed by a third party or each entity provides itself with an identity.
2For example, an action may consist of storing a service advertisement. However, the advertising entity cannot

perceive whether its advertisement is really stored or not [5].

4

depend on how many times it has been passed on. This calls for a specialization of deliverable
items.

A forwardable item is a deliverable item that is idempotent with respect to the number of its
receptions. This means that it does not matter whether it is received once or several times.

As a prerequisite for the forwardability criterion, the overhead of passing on a deliverable item
has to be negligible. This is not the case for actions that mainly consist of sending a message. For
example, in the context of a document service, most resources might be consumed for transmitting
the respective document.

2.2.1.3 Commitment Items

In the course of a transaction protocol, the peers might have to issue commitments in order to
coordinate their behavior.

A commitment item is an item that contains a non-repudiable commitment.
Commitment items are an important subclass of forwardable items3. For instance, contracts

are commitment items since they represent a commitment to the processing of a transaction.

2.2.1.4 Generatable Items and Permits

Let us consider an entity that issues a commitment item but fails to comply with its commitment.
We assume that its commitment is about promising the passing of a specific item. It might be
desirable to enforce that the promised item may be derived from the commitment item.

A generatable item is a deliverable item that may be derived from a commitment item4. Such
commitment item is a commitment to the delivery of the generatable item and is called permit.
An entity that is able to derive a generatable item is called a generator.

In this context, generation of an item refers to signing a commitment item or executing an
action. The class of generatable items is defined as a subclass of deliverable items. Otherwise, a
generator does not know whether it has to generate the item.

The generation might be intransparent to the recipient of the generatable item. This means
that the generatable item leaks the information whether it has been passed on by the issuer of
the permit or whether it has been generated by the generator. Such intransparent generation is
called invasive. Invasiveness is mandatory if the fact that an item is generated has to be deducible
from the item itself.

Generatability is easily achieved for forwardable items if the permit contains the encryption
of the generatable item. The encryption is such that only the generators are able to decrypt it.
However, unless it is a generator, a peer that receives a permit is not able to verify whether the
item that is generatable from the permit comes up with its expectations. This problem is partly
solvable if the permit contains a description of the generatable item that is intelligible to both the
generators and the non-generators. If generators recognize a discrepancy between the description
and the generated item, they may disrecommend the misbehaving peer.

The problem of permit verification is fully solvable if, in addition, the generators are able
to generate the item based on its description. This means that the permit only contains the
description of the generatable item but not the item itself. For example, let us assume that the
generatable item is the action of forwarding a packet to a destination. In this context, a generator

3The deliverability and forwardability criterion are both fulfilled for commitment items.
4The procedure of deriving a generatable item from a commitment item is called generation.

5

generates the item by forwarding the packet to the destination. The permit only has to contain
the packet’s content and the destination.

2.2.1.5 Revocable Items

A defector typically fails to pass on its item after having acquired its peers’ items. There are two
methods of countering defection. Generatability introduces a means of enforcing the passing of
the defector’s item. Alternatively, it might be possible to revoke the items that a defector has
acquired.

A deliverable5 item is revocable if it may be rendered useless after it has been acquired by an
entity.

An item is revoked by the issuance a revocation certificate. An entity that possesses a revo-
cation certificate for a given revocable item is called revocation holder.

At first glance, revocability requires that an effect of an item can be undone later on. Such
items are called undoable items. There are few items that fulfill the undoability condition. An
example for such items are checks [2]. If the agent acquires a check without executing its action,
the principal might be able to gather evidence of the agent’s defection. Upon delivery of such
evidence to the bank, the check is tagged as invalid. If the agent’s already has been credited, the
transaction is undone.

The second subclass of revocable items are invalidatable items. The validity of a invalidatable
item has to be thoroughly verified since its effect cannot be undone later on. Hence, reasoning
about invalidatable items has to occur before the item is rendered effective. Consequently, such
reasoning is contrary to reasoning about undoable items. The acquirer of the invalidatable item
brings in the claim that the item is valid. The acquirer renders the invalidatable item effective if
it validates the claim. Such reasoning is challenging since it does not suffice to base its decision
upon the item itself. In addition, the potential revocation holders have to be contacted in order
to get known whether the item has been revoked.

2.2.1.6 Divisible Items

Some exchange protocols are based on the interleaved exchange of items. This means that an
item does not have to be completely passed on.

A deliverable item is divisible if it is composed of subitems and, for each subitem, its recipient
has a positive gain from obtaining it.

The notion of subitems only makes sense for deliverable items. Therefore, the definition of
divisible items is built on deliverable items.

An item that may be represented as bitarray is not necessarily a divisible item. For example,
a contract is only valuable as a whole and every prefix of its bitarray representation is useless.
Consequently, a contract is not a divisible item. The same consideration also holds for bonds [2].
In this regard, the difference of divisibility and granularity [6] becomes obvious. For example,
checks offer fine granularity while being indivisible.

2.2.1.7 Interrelationship of Item Classes

We conclude the discussion of item classes with the illustration of their interrelationship in Fig-
ure 2.2. The arrows depict to the subsumption of item classes.

5The restriction of revocable items to deliverable items is made since revocable non-deliverable items are not
significant.

6

item

deliverable item

forwardable item

commitment item

permit

generatable itemrevocable item

undoable item invalidatable item

divisible item

Figure 2.2: The subsumption of item classes

2.2.2 Restriction of Item Classes

For the remainder of this report, we consider the following types of items.

Contracts and receipts. Both contracts and receipts are commitment items. The semantics
of these items is as follows: A transaction peer that issues a contract agrees to the terms of the
transaction. If a peer issues a receipt, it acknowledges that its transaction partner has complied
with its commitment.

Actions. We assume that an action is a deliverable item that is neither generatable nor revo-
cable nor divisible. This assumption is justified as follows:

• Deliverability: Programming notes constitute a deliverable item since they can be checked
upon receival. For the forwarding of packets, the active receipt mechanism of [5] is assumed.

• Non-generatability: Non-generatability means that, even if entity X commits to an ac-
tion, the action cannot be executed by any other en lieu of entity X itself. This assumption
makes sense since (1) an action like routing is inherently bound to the entity that commits
to it and (2), even if the effects of an action like the programming notes may be extracted
from the commitment6, it is not clear how a transaction peer is able to check whether the
desired action has actually been executed7.

• Non-revocability: In the scenario, actions cannot be invalidated since they are executed
and rendered effective immediately during the transaction. Therefore, non-revocability
means that the effects of executing an action cannot be undone. This assumption holds for
the handover of programming notes or the forwarding of a packet.

6In such a case, the commitment contains an encryption of the action’s effects. Only a dedicated entity is able
to decrypt them.

7The transaction peer cannot decrypt the action’s effects and, thus, has no idea whether its transaction partner
defected or not.

7

Table 2.1: Cost tendencies for executing and losing control of various items
Item Costs of Execution Costs of Lost Control
Handover of a note1 ↓ ↑
Issuance and handover of a contract or re-
ceipt

↓ ↑

Provision of an existing document2 ↓ ↑
Provision of an existing and commonly
known document

↓ ↓

Provision of a non-existing document3 ↑ ↑
Provision of personalized service4 ↑ ↓
Forwarding a packet ↑ ↓

1 A note is a non-repudiable promise of some later action [2]. The handover of a note is
inexpensive with respect to execution since it only comprises a sign operation. However, losing
control of a note means that oneself has committed to provide a later action.
2 The execution costs only comprise the recall of the document. Still, the provision of the
document incurs opportunity costs since the document may be further distributed by the
transaction partner, thus yielding monopoly costs.
3 The non-existing document has to be generated first. This usually incurs work by the user
which is costly.
4 A mailbox management service exemplifies this category. It corresponds to the provision of
a non-existing document. However, there are no monopoly costs since the service will never be
requested (with the same parameters) afterwards by another entity.

• Non-divisibility: Non-divisibility means that the execution of an action cannot be decom-
posed into meaningful parts. In the scenario, only the forwarding of a full network packet
or the proliferation of a full programming note8 yield benefits to the transaction partner.

2.2.3 Utility of Exchanging Items

In the following, we provide a utility-based model of exchanging an item. It consists of two states:

• Execution of an item: If the item is a contract or a receipt, the execution of an item
means the contract or receipt is issued. Such issuance consists of cryptographically signing
the commitment. This operation incurs relatively few costs. If the item is an action, the
execution costs may vary.

• Losing control of an item: The incidence that the transaction partner acquires the item
and may make use of it.

In Table 2.1, we exemplify the costs of executing and losing control of various items. It appears
that they are not directly correlated.

8We assume here that a programming note is the smallest unit of consistency. For example, a programming
note may consist of the documentation of a structure. In general, such note is only useful if the full text of the
structure documentation is available.

8

Chapter 3

Transaction Protocols in the Internet

Nowadays, transaction protocols are applied for internet based eCommerce. In this chapter, we
take a closer look at the setting of the internet since it differs from our system model. Subse-
quently, we identify the characteristics of internet based transaction protocols and describe the
their most common instances. Finally, we examine whether and to which degree these transac-
tion protocols can be applied to the self-organizing system that we have described in our system
model.

3.1 Setting

The setting of the internet is described in [4]. It differs from the system model of Chapter 2. In
the following, we highlight the differences:

• Infrastructure: In the internet, transaction peers may turn to dedicated infrastructural
entities. There are two types of such entities:

– Trusted third parties: These are entities of the information system. They are both
commonly known and trusted. Furthermore, they may take an arbitration role during
transactions.

– Law enforcement: The entities that enforce law reside outside of the information
system. They ensure that identifiable misbehavior becomes punished. Ultimately, they
are necessary in order to guarantee high defection costs.

• Transaction peers: In several settings, there are more than just two transaction peers.

• Item model: Actions may be generatable, divisible, or revocable. This applies to some
types of actions, e.g., eCash.

• Reachability: If communication breaks up in the internet, entities are certain that they
are eventually able to re-establish their communication. However, this assumption does not
hold for ad hoc networks.

3.2 Characteristics of Transaction Protocols

In this section, we identify the characteristics of internet based transaction protocols. This will
provide a starting point for developing transaction protocols for the system model of Chapter 2.

9

In the literature, transaction protocols are often referred to as exchange protocols [4]. The two
terms are generally interchangeable. Still, transaction protocols refer to the exchange of actions
and, optionally, of the exchange of contracts and receipts. In this regard, they are more specific
than exchange protocols. In the following discussion of characteristics, we keep to the notion of
exchange protocols.

3.2.1 General Considerations

Exchange protocols aim at minimizing the benefits or losses that arise from defections. There are
two approaches for such minimization:

• Direct minimization: The exchange protocol itself ensures that the effects of defections
are minimized.

• Evidence based minimization: The exchange protocol allows for the collection of evi-
dences [3], i.e., non-repudiable tokens. By this means, defective behavior becomes identifi-
able.

Regardless of which approach is pursued, exchange protocols have to consider information
asymmetry with regard to the benefits and losses that arise from defections. This means that an
entity does not know its peers’ assessments of benefits and costs that ensue from a defection. They
depend on the assessment of the exchanged items’ values, the costs of processing the transaction,
and the detriments that arise from the retaliation for the defection.

The analysis of exchange protocols is typically restricted to the exchange of deliverable items.
This stems from the need for verifying the validity of items upon receipt. Hence, the following
examination of exchange protocols is focussed on such exchanges.

3.2.2 Gradual Exchange Protocols vs. Third Party Exchange Protocols

We discern two types of exchange protocols that allow for the minimization of the benefits and
losses that arise from defection. On the one hand, gradual exchange protocols call for an inter-
leaved exchange of the items. If an entity defects, the ensuing benefits and losses are restricted to
those of a subitem. On the other hand, third party exchange protocols make use of an additional
entity that prevents or handles defections.

Gradual exchange protocols. By definition, gradual exchange protocols require divisible
items for the interleaved exchange. In case of a defection, a peer might only have obtained parts
of the desired item. The definition of divisible items ensures that the possession of such parts is
profitable to such a peer.

In some environments, the peers are able to recover from premature failure of the exchange
protocol. Then, each peer computes the remaining parts of the obtained subitems. Apparently,
such protocols introduce asymmetric defection costs if the peers possess differing computation
power.

Third party exchange protocols. An exchange protocol may utilize a third party, i.e., an
entity that is not a transaction peer. Such a third party is able to prevent or handle the defection
of transaction peers. Third parties are predestined to assume the role of the generator and the
role of the issuer of revocation certificates.

There are two problems that arise from the use of third parties:

10

• Trustworthiness: The transaction peers have to rely on the exhibition of a pre-defined
behavior by the third party. For the peers, the means of monitoring the behavior of the
third party are usually restricted.

• Reciprocation: The prevention or handling of defections might not be profitable for the
third party. Therefore, an entity only assumes the role of the third party if it is reciprocated.
In a broader sense, the prevention or handling of defection represent the execution of an
action so that the peers have to reciprocate the third party in the context of an transaction.
Yet, such transaction may not be based on a further third party1. Apparently, the third
party’s reciprocation should be implicit2 so that a further exchange of deliverable items
becomes unnecessary.

The two problems show that the use of an infrastructural entity for the assumption of the
third party role is not necessary but desirable.

Comparison of the two types of exchange protocols. Third party exchange protocols
provide a better foundation for the evidence based minimization of the benefits and losses that
arise from defections. However, third party exchange protocols demand for trust in the third
party and for its reciprocation. These demands are not made by gradual exchange protocols.
However, they need divisible items and generally introduce a larger overhead by the division of
items into subitems and their interleaved exchange.

3.2.3 General Properties of Exchange Protocols

In the following, the properties of exchange protocols are examined. For this purpose, we introduce
several terms that enable a concise discussion of the exchange protocol’s properties.

Fairness. There are two notions of fairness [4].

• Weak Fairness: A correctly behaving entity cannot suffer any disadvantages from a de-
fecting peer. In this regard, after handing over its item, the correctly behaving entity either
receives the peer’s item or it is able to gather evidence of the peer’s defection.

• Strong Fairness: In addition to weak fairness, it is guaranteed that, if an entity hands
over its item, its peer’s item is acquired.

By definition, fairness does not consider when the correctly behaving entity acquires the
evidence or the item. Yet, in some environments, the time of such acquisition is not negligible.

Rationality. In analogy to fairness, there are also two notions of rationality [7]:

• Weak Rationality: An entity cannot gain any advantage from defecting.

• Strong Rationality: A defecting entity suffers a disadvantage. Therefore, it is profitable
to exhibit cooperative behavior.

The difference of weak and strong rationality ensues from situations in which defection is as
beneficial as the exhibition of cooperative behavior.

1The recursion of third party exchange protocols is limited by the available resources.
2Implicit reciprocation is provided by the community pattern [2].

11

Network model. Each exchange protocol is based on one of three network models. A network
model captures the ability of entities to communicate. In the context of the network models, we
refer to the elementary constituents of communication as messages3. Hence, the communication is
composed of a sequence of message transmissions. Each transmission is directed from the sender
to the recipient. We propose three generic network models that are distinguishable with regard
to the types of time guarantees they give:

• Synchronous network model: There is a time bound within which the delivery of every
message is guaranteed. Therefore, protocol steps do not only depict logical time but they
also coupled with the real time. Consequently, protocols for the synchronous network model
are often modelled in rounds in lieu of steps. In this regard, each round lasts as long as
specified by the message delivery time bound plus the maximal time for executing a protocol
step.

• Asynchronous network model: Each message is eventually delivered. This means that
there may not be one time bound within which the delivery of every message can be guaran-
teed. Consequently, protocols cannot be modelled in rounds of fixed length. Therefore, the
concept of rounds is only applicable by lifting the foreseeable interrelation between logical
time and real time. As a result, the remainder of this report adheres to the term step and
uses the term round only if the synchronous network model is assumed.

• Network model without guarantees: It is not guaranteed that a message is eventually
delivered. In general, this means that the recipient of the message has left the network or
that the network is perpetually partitioned.

Participants. In general, several peers may participate in an exchange. Such exchange pro-
tocols are called multilateral exchange protocols. However, an important subset of exchange
protocols presumes that exactly two peers participate in the exchange. Such exchange protocols
are bilateral exchange protocols.

Complexity. The overhead of an exchange protocol is captured by this property. It consists
of the quantification of the steps and the messages that the exchange protocol requires in the
absence of failures. This means that the complexity of failure recovery is not considered.

3.2.4 Properties of Third Party Exchange Protocols

The introduction of a third party yields several properties that are specific to third party exchange
protocols.

Trust in the third party. Some exchange protocols assume that the third party is uncondi-
tionally trustworthy. Such trusted third parties (TTP) always behave as specified by the protocol
and, thus, are not autonomous. However, other exchange protocols assert that the third party’s
behavior is verifiable up to a certain degree. Then, the third party only has to be trusted condi-
tionally.

3Again, the term has to be treated in a broad sense. On the link layer and network layer, a message is a packet.

12

Optimism. This property describes the involvement of the third party. It may be needed
either for every protocol run or only in case of some failure4. Such exchange protocols are called
pessimistic and optimistic respectively.

For example, a simple optimistic exchange protocol is as follows. One peer optimistically
hands over its item. If the other peer defects by refusing to deliver its item, the defected entity
contacts the third party.

3.2.5 Properties of Exchange Protocols that Make Use of Claims

For some items, the benefits that arise from their possession depend on other entities’ estimation
of their validity. For example, a peer that has acquired a check has to convince its bank of its
validity. In this regard, the peer that possesses the item brings in the claim and the bank is the
arbiter.

Item verification. The validity of the exchanged items may or may not be verifiable locally,
i.e., only with the involvement of the entity that brings in the claim and the verifier. If not,
verification includes three parties since the potential revocation holder has to be contacted in
order to get known whether the item has been revoked. Exchange protocols for three party
verification are only required for revocable items.

Abortion verification. The third party might issue a certificate of the abortion of the ex-
change. In most exchange protocols, the third party subsequently sticks to its decision to abort
the exchange. For such protocols, it suffices to present an abortion certificate in order to prove
that the exchange was aborted. Hence, the abortion of an exchange can be verified locally. Still,
in some exchange protocols, the third party is able to override such abortion certificate if it
figures out that the abortion certificate was handed out to a defecting peer. Consequently, the
verification of an exchange’s abortion might include three parties since the potential affidavit5

holder has to be contacted.

3.2.6 Overview of the Properties of Exchange Protocols

We have proposed a set of properties of exchange protocols. Table 3.1 gives an overview of these
properties and their values. For enumerable values, the table introduces capital letters.

Some properties are given a priori by the transaction environment. Such properties are the
network model, the item properties, and the number of participants. The remaining properties
only depend on the preferences of the transaction peers. These properties may be regarded as
the peers’ preferences with regard to the properties of the exchange protocol. For example, a risk
averse entity might demand for a fair processing protocol.

3.3 Instances of Transaction Protocols

In the following, we take a closer look at the most common instances of transaction protocols. In
order to use a terminology that is consistent with the literature, we refer to the protocols again
as exchange protocols.

4Except from defection, a failure might occur in the context of the asynchronous network model due to timeouts.
5Affidavits are introduced in [3]. The affidavit that is referred to here is an overriding affidavit.

13

Table 3.1: Overview of the properties of exchange protocols

Property Values Type
Fairness none (N), weak (W), strong (S) Preferences
Rationality none (N), weak (W), strong (S) Preferences
Network model synchronous (S), asynchronous (A), with-

out guarantees (W)
Environment

Participants multilateral (M), bilateral (B) Environment
Complexity number of steps and messages Preferences
Trust in the third party conditional (C), unconditional (U) Preferences
Optimism optimistic (O), pessimistic (P) Preferences
Item verification local (L), three-party (T) Preferences
Abortion verification local (L), three-party (T) Preferences

3.3.1 Asokan’s Exchange Protocol

An optimistic exchange protocol for forwardable items is proposed in [4]. The asynchronous net-
work model is assumed. The exchange protocol fulfills the weak fairness criterion. Furthermore,
the validity of the items is locally verifiable.

In order to achieve weak fairness, a trusted third party may have to issue an attestation
affidavit of the peer’s defection. The exchange protocol is optimistic since the third party is only
contacted in case of defection.

For generatable items, the exchange protocol is extended in order to enforce strong fairness.
In the following, the ensuing exchange protocol is called Asokan’s exchange protocol. In a nutshell,
the trusted third party is able to generate the item by using the permit and, thus, does not have
to issue the attestation affidavit. The protocol steps are as follows:

1. Peer A passes on a permit of its own item a to peer B.

2. Peer B passes on a permit of its own item b to peer A.

3. Peer A hands over item a to peer B.

4. Peer B hands over item b to peer A.

Let us consider the case that peer B omits step (2). It directly turns to the third party in
order to acquire item a. Yet, the exchange protocol specifies that the third party only generates
items if it has got the permits of both items. Hence, B has to give the permit of item b to the
third party in order to acquire item a. After having waited for the message of step (2) for a
certain time, peer A turns to the third party. Since peer B already possesses item a, peer A has
to acquire item b in order to enforce strong fairness. The third party has a permit of item b.
Thus, it generates item b and hands it over to peer A. On the other hand, if peer A contacts
the third party before peer B, the exchange is aborted. In this regard, the third party does not
generate item a even if peer B presents both permits. Consequently, Asokan’s exchange protocol
calls for a state keeping6 third party.

6A more detailed discussion of the requirement that the third party keeps the state of an exchange is given
in [8].

14

3.3.2 Optimal Strongly Fair Exchange Protocols

A survey of strongly fair contract signing protocols that make use of a third party is given in [8].
Since contracts are forwardable and potentially generatable items, the suggested protocols might
be regarded as exchange protocols for such items. The following discussion of the proposed
protocols takes such a generic view.

The proposed protocols terminate and are strongly fair. The authors identify different settings
with regard to the network model (synchronous vs. asynchronous), optimism (pessimistic vs.
optimistic), and item verifiability (local vs. three parties). In the following, we structure the
triples that define the setting as (network model, optimism, item verification). For each setting,
the authors propose a protocol and prove its best case optimality with respect to the messages
sent or the involved steps. In this context, the term best case refers to a protocol run during
which no failure arises. The protocols for the most important settings are as follows7:

• (A,P,L): Each peer hands over its item to the third party. Only if it received both items,
the third party passes on the items to their destined peer. The protocol requires at best
four messages and two steps.

• (A,O,L):

– Message optimal protocol: The message optimal protocol requires four messages
in as many steps. It is identical to Asokan’s exchange protocol [4] described before.

– Step optimal Protocol: The step optimal protocol requires at best three steps and
six messages. The steps are as follows:

1. Each peer sends the permit of its item.
2. Each peer commits to the successfulness of the exchange by signing both permits

together. Thus, each peer gives up the right to turn to the third party and demand
the abortion of the exchange.

3. Each peer hands over its item.

The third party generates an item only on presentation of its permit and the item
owner’s abandonment of the right to abort the exchange. The need for step (2) arises
from the following consideration. Peer A might refuse to hand over its item a in
step (3). Yet, it might still receive peer B’s item b. Then, peer A turns to the
third party in order to abort the exchange and pretends that it has not received any
message from peer B in the preceding steps. If the third party has not been contacted
by peer B before, it issues an abortion certificate. Therefore, peer A possesses item b
and the abortion certificate of the exchange. In order to recover strong fairness by the
means of generatability, peer B has to acquire item a and an overriding affidavit when
contacting the third party. Apparently, this exchange protocol calls for three party
verification of abortion certificates.

• (S,O,L):

– Message optimal protocol: The message optimal protocol requires at best three
messages in as many rounds. The protocol corresponds to the steps (2)-(4) of Asokan’s
exchange protocol:

7For clarity reasons, the triples use the initial letters of the properties, as they are introduced in Table 3.1.

15

1. Peer A passes on a permit of its own item a to peer B.
2. Peer B hands over item b to peer A.
3. Peer A hands over item a to peer B.

Since peer A acquires item b in step (2), it is not allowed to abort the exchange.
Otherwise, strong fairness cannot be asserted any more. Instead of that, peer A makes
use of the synchronous network model in order to recognize when the transaction is
aborted. As a prerequisite, the third party resolves failures differently. If peer B has
not received item a in round (4), it shows to the third party item a’s permit and
item b. The third party generates item a and hands it over to peer B. In addition,
the third party proactively hands over item b to peer A. If peer A has not received
item b until round (5), it knows that peer B has not obtained item a and, thus,
that the exchange is not successful, i.e., it has been aborted. Apparently, the protocol
requires the synchronous network model. On the one hand, the third party may only
generate item a before round (5). On the other hand, peer A knows whether the
transaction is successful after round (5). As a result, the protocol is not applicable to
the asynchronous network model.

– Round optimal Protocol: The round optimal protocol requires at best two rounds
and four messages. In the first round, each peer sends a permit of its item. The
second round consists of handing over the item. Therefore, the second round of the
corresponding protocol for the asynchronous network model is omitted. In analogy to
the message optimal exchange protocol, this is facilitated by eliminating the need for
the abortion of the exchange by the third party.

• (S,O,T): The round and message optimal protocol requires at best two messages in one
round. The peers exchange their items in the first round. If a peer A has not received
the item b, it contacts the third party in order to acquire a certificate of its own item a’s
revocation. The third party first tries to obtain item b from peer B. If peer B hands it
over, the third party passes it on to peer A. In other words, the third party gives a second
chance to B to hand over item b. This is necessary since A might have falsely claimed
that it did not receive item b. However, if peer B refuses to hand over item b to the
third party, a revocation certificate for item a is issued by the third party. Apparently,
the protocol requires the synchronous network model. Otherwise, the third party cannot
perceive whether peer B will answer to its request. Furthermore, a peer knows that the
acquired item is valid if it is not contacted by the third party in round (3).

• (A,O,T): The message optimal protocol requires at best three messages. The protocol’s
steps are identical to the message optimal protocol for the (S,O,A) setting. However,
the third party handles failure resolution as specified in Asokan’s exchange protocol. The
only remaining problem is how to deal with peer A’s request for abortion after it has
received item b and before peer B contacted the third party for exchange resolution. For
this purpose, the third party issues a revocation certificate of item b if peer A requests
for exchange abortion. Since peer B’s request for exchange resolution will be eventually
obtained by the third party, peer B is able to acquire the revocation certificate.

3.3.3 Asokan’s Multilateral Exchange Protocol

An optimistic third party exchange protocol for multiple peers is proposed in [9]. The protocol
allows for the most general item exchange since every pair of participating peers may exchange

16

items. Strong fairness is only asserted if the items are generatable or revocable. Otherwise, only
weak fairness is enforced. In any case, the protocol assume that items are forwardable. The
exchange protocol consists of two rounds8:

1. Each peer A sends to every other peer B the commitment token of item ab.

2. For every peer B, each peer A hands over item ab.

Apparently, the exchange protocol extends the round optimal bilateral (S,O,L) exchange
protocol. The assumption of the synchronous network model is crucial for the protocol. The
third party is able to resolve failures by contacting certain peers. This is not possible in the
asynchronous network model9. Furthermore, fairness may only established within a predefined
time interval. Exchange abortion or resolution by the third party has to be completed in this
time interval. Consequently, the peers and the third party possess synchronized clocks and the
messages they interchange are delivered within specific time bounds.

3.3.4 Buttyan’s Protocol

A bilateral protocol for checks is proposed in [7]. In the following, it is called Buttyan’s protocol.
The assertion of rationality is based on the following concept. The agent determines the amount
that is withdrawn from the principal’s account, whereas the principal decides about the amount
that is added to the agent’s account. In this regard, each peer cannot decide whether its account
is credited/charged.

For clarity reasons, the following description of the protocol assumes that the accounts are
jointly managed by a bank10:

1. The principal hands over a deposit check11 to the agent.

2. The agent executes the action.

3. The principal hands over an ordinary check that corresponds to the deposit check.

4. The agent presents this check and its account is credited.

The protocol is pessimistic since the bank constitutes a third party. The involvement of the
bank ensues from the application of checks as the remuneration type [2].

If the execution of the transaction protocol does not incur any costs, e.g., for the communi-
cation, it is shown that the proposed protocol is rational. However, we have to note that it is
not strongly rational. In order to show this, we take a closer look at step (3). The principal has
no incentive to hand over the check since the action has already been executed and the check’s
value equals the one of the deposit check.

It might be argued that the value of the deposit check should be increased in order to make
the processing of step (3) beneficial for the principal. However, this implicates that step (3)

8In [9], the authors describe three rounds. Their first rounds deals with achieving a global view of which items
will be exchanged. However, the protocol descriptions of this section assume that each party knows about this
from the beginning.

9For the asynchronous network model, it has been shown [8] that recovery from protocol failure may only include
the third party and the peer that contacted it. This restriction does not hold for the synchronous network model
since the third party is able to recognize whether the second peer is willing to respond.

10The protocol is only based on the assumption that the banks are able to communicate.
11A deposit check assumes the role of a deposit since the agent cannot cash the check at the bank. Upon

presentation of the deposit check, the bank would only debit the principal’s account.

17

is processed regardless of the effectiveness of step (2). Then, the processing of step (2) is not
beneficial for the agent. Therefore, increasing the deposit check’s value renders the processing
protocol even irrational.

In this regard, the assumption of protocol execution without incurring costs becomes critical.
Even if the costs of each step are infinitesimal, the protocol ceases to be rational. As it becomes
clear from the upper discussion of achieving a strongly rational protocol, even an increase of the
deposit check’s value cannot restore the property of rationality.

Generally speaking, deposits increase the defection costs so that transactions are processed to
the end. However, in such settings, the agent and the principal tend to declare every transaction
successful in order to get back the deposit.

3.3.5 Syverson’s Protocol

Syverson’s protocol of [10] applies weakly secret bit commitment. The protocol relies on the
following assumptions:

• The action solely consists of returning a value v. In this regard, the action is forwardable.

• There exists a well-known temporarily secret bit commitment function w.

• If the principal acquires w(v), it is not induced to compute v. Therefore, the principal
valuates the remuneration that it has to hand over less than the timely receipt of the return
value or the costs for computing it.

• After having disclosed w(v) to the principal, the agent does not have any disadvantage
from disclosing v to the principal.

• The processing of protocol steps does not incur any costs.

Based on these assumptions, the processing protocol is presented. It consists of three steps:

1. The agent executes the action and, thus, obtains the return value. It hands over w(v) to
the principal.

2. The principal hands over the remuneration.

3. The agent discloses the return value to the principal.

The need for the principal’s valuation of time or computation becomes obvious in step (2).
The principal processes this step only if the assumption holds. In [7], it is proved that Syverson’s
processing protocol is weakly rational. Apparently, it is not strongly rational. For instance, the
agent has no incentive to execute step (3). In analogy to the discussion for Buttyan’s processing
protocol, it can be shown that Syverson’s processing protocol ceases to be rational if the processing
of protocol steps incurs costs.

3.3.6 Classification

The discussion of the exchange protocols is summarized in Table 3.2. The characteristics that
apply to the protocols are marked by an x. The protocols’ properties are indicated by the initial
letters, as they were introduced in Table 3.1.

18

Table 3.2: Comparison and classification of existing exchange protocols

COL
L/

T 1
A-

weak/

strong 1
-

-/

x1

-/

x1
x44

Message optimal

(A,O,L) (Asokan)

---LAweak 4----x33
Syverson's

processing prot .

COL
L/

T 1A-strong--xx44
Asokan's contract

signing

UP-LAweak 4----
-/

x 3
44

Buttyan's

processing prot .

UOLTA-strong-xxx33
Message optimal

(A,O,T)

UOLTS-strong-x-x21
Message & round

optimal (S,O,T)

UOLLS-strong--xx42
Round optimal

(S,O,L)

UOLLS-strong--xx33
Message optimal

(S,O,L)

UPLLA-strong---x42Optimal (A,P,L)

UOTLA-strong-xxx63
Round optimal

(A,O,L)

COL
L/

T 1
S-

weak/

strong 1
-

-/

x1

-/

x1
x

2*n*

(n-1)
3

Asokan's multi -

party exch. prot .

fairn
ess

Assertions

ratio
n
ality

M
essag

es

S
tep

s

o
p
tim

ism

tru
st in

 T
P

ab
o
rt.

v
erif

.

n
etw

. m
o
d
el

Further properties

item
 v

erif
.

d
iv

isab
le

fo
rw

ard
ab

le

rev
o
cab

le

g
en

eratab
le

Items
Com -

plexity

Protocol

COL
L/

T 1
A-

weak/

strong 1
-

-/

x1

-/

x1
x44

Message optimal

(A,O,L) (Asokan)

---LAweak 4----x33
Syverson's

processing prot .

COL
L/

T 1A-strong--xx44
Asokan's contract

signing

UP-LAweak 4----
-/

x 3
44

Buttyan's

processing prot .

UOLTA-strong-xxx33
Message optimal

(A,O,T)

UOLTS-strong-x-x21
Message & round

optimal (S,O,T)

UOLLS-strong--xx42
Round optimal

(S,O,L)

UOLLS-strong--xx33
Message optimal

(S,O,L)

UPLLA-strong---x42Optimal (A,P,L)

UOTLA-strong-xxx63
Round optimal

(A,O,L)

COL
L/

T 1
S-

weak/

strong 1
-

-/

x1

-/

x1
x

2*n*

(n-1)
3

Asokan's multi -

party exch. prot .

fairn
ess

Assertions

ratio
n
ality

M
essag

es

S
tep

s

o
p
tim

ism

tru
st in

 T
P

ab
o
rt.

v
erif

.

n
etw

. m
o
d
el

Further properties

item
 v

erif
.

d
iv

isab
le

fo
rw

ard
ab

le

rev
o
cab

le

g
en

eratab
le

Items
Com -

plexity

Protocol

1 Strong fairness is asserted if the items are generatable or revocable. If the third party is allowed to
revoke items, the validity of items involves three parties.
2 The account manager (bank) constitutes the third party. The protocol assumes that the bank cannot
verify the validity of the agent’s item, i.e., effectiveness of the action.
3 The check has to be forwardable.
4 Only if the costs of sending messages are negligible.

19

3.4 Applicability to the System Model

In the previous section, we have discussed several internet based protocols for performing trans-
actions. To which degree are they applicable to our setting of Chapter 2? In order to answer this
question, we have to revisit the relationship between our setting and the setting of internet based
eCommerce.

According to Section 3.1, there four differences between the settings. In the following, we
discuss their impact on the applicability of internet based transaction protocols.

Infrastructure. In a self-organizing system, there are neither law enforcing entities nor third
parties that are commonly known or trusted. This yields the following consequences:

• Self-organizing punishment: In the absence of law enforcing entities, we need a means
of punishing defections in a self-organizing manner. Ultimately, this means has to be es-
tablished in order to ensure sufficiently high defection costs.

• Self-organized choice of third parties: If transaction protocols are still to be based on
third parties, the third party has to be chosen among the set of potentially equal entities.
The transaction peers may choose the third party as they like to.

• Coping with untrustworthy third parties: We need a new means of dealing with
potentially untrustworthy third parties. Even if the transaction peers choose an entity that
seems reasonably trustworthy to both of them, full trustworthiness cannot be guaranteed.
In this context, the approaches towards conditional trust of Section 3.3 are not useful since
they are only applicable to generatable items12.

It seems promising to punish misbehaving third parties in a manner that is in line with
the means of self-organizing punishment for defecting transaction peers. In such a case, the
behavior of third parties would not have to be considered separately.

• Reciprocation of third parties: Since third parties are chosen among the potentially
equal entities of the system, we are able to solve the problem of reciprocation. More
specifically, a third party X may be reciprocated as follows: The transaction peers promise
to act as a third party in subsequent transactions in which the entity X acts as a transaction
peer. If such promise is non-repudiable, it corresponds the incentive pattern of notes [2].

In systems with dedicated third parties, such reciprocation would not be applicable. This
is because such dedicated third parties never take part in transactions in the role of a
transaction peer.

• Applicability of deposits: Buttyan’s protocol is built on the assumption that an action
allows for the use of a deposit check. However, the notion of deposit checks is tightly bound
to third parties: Let us assume that an entity X wanted to hand over a note to entity Y.
The meaning of a deposit note would be as follows: Entity X is committed to execute the
promised action in return on demand. However, entity Y is not allowed to request such
action before it acquires the note itself. Therefore, the question arises who should be able
to demand for the honoring of the deposit note. Such a role would have to be assumed by
a third party. It is unclear what happens if an arbitrary third party assumes this role.

12The conditionality of trust arises from the invasiveness of generating items [4].

20

Transaction peers. Since our system model assumes bilateral transactions, we ignore multi-
lateral transaction protocols in the following. It is noteworthy that research of internet based
eCommerce has laid the same stress on bilateral transactions.

Item model. According to our setting of Chapter 2, items are neither divisible nor generatable
nor revocable. The consequences are as follows:

• Fairness: Most protocols require either generatability or revocability in order to assert
strong fairness. Otherwise, only weak fairness can be guaranteed13. Still, such weak fairness
is based on the capability of a trusted third party to issue effectual affidavits. Hence, the
absence of trusted third parties implies that even weak fairness cannot be guaranteed.

• Interpretation of permits: If items are non-generatable, the internet based protocols
propose a different role for permits. A permit becomes a mere commitment item and is, de
facto, a contract. More specifically, it is a non-repudiable commitment of its issuer that he
agrees to the terms of the transaction.

• Optimistic protocols: Optimistic protocols cease to be useful if items are neither gener-
atable nor revocable.

There is a further reason for turning to pessimistic transaction protocols. In contrast to
dedicated third parties, the arbitrarily chosen third parties are close to the transaction
peers so that communication with them is as costly as among the peers. Furthermore, third
parties do not represent a bottleneck any more since they are arbitrarily chosen.

Reachability. Internet based protocols assume that the network model is at least the asyn-
chronous one. However, our system model presumes the absence of any guarantee regarding
reachability, which corresponds to the network model without guarantees. Hence, the termina-
tion of the proposed transaction protocols can only be achieved by the means of timeouts. In
turn, this means that the protocols may produce reports of defections even if the transaction
peers behave well but become unreachable. In the following, we call such reports false positives.
This principle is illustrated in Figure 3.1. The problem corresponds to the one of assessing venial
(i.e., non voluntary) noncooperation if an entity’s will is imperceptible [6].

cooperation defectionBehavior

cooperation defectionPerception

Figure 3.1: Restricted reachability implies a biased discrepancy between behavior and its percep-
tion

How may protocols cope with the noisy perception of transactional behavior? Actually, they
cannot do anything about it. The means of distributed punishment has to take into account that
negative reports may actually not be linked to defective behavior14.

13Actually, weak fairness can only be guaranteed under such circumstances if each transaction peer can be forced
to eventually hand over an item, regardless of whether it is the item it committed to or not [4].

14The problem of more forgiving punishment has been thoroughly analyzed in game theory [11].

21

Summary. There are several differences between the setting of internet based eCommerce and
our setting of Chapter 2. Most importantly, it appears that transaction protocols cease to be
sufficient in order to curb defections. Hence, transaction protocols have to be complemented by
a means of self-organizing punishment. We discuss such means and its interrelationship with
transaction protocols in the next chapter.

The differences of the settings imply that we will have to propose different transaction proto-
cols for self-organizing systems. In Section 5.4, we will compare these protocols with the internet
based protocols of this chapter.

22

Chapter 4

Self-organized Systems and
Transaction Protocols

As we have seen, the absence of infrastructure implies that defective transactional behavior has
to be punished in a self-organizing manner. Only if such a self-organizing punishment exists, the
identification of misbehavior (by the means of transaction protocols) makes sense.

In this chapter, we take a closer look at distributed reputation systems that allow for self-
organizing punishment. More specifically, we discuss conventional distributed reputation systems
that are based on plausibility and an evidence-aware extension of such conventional systems.
Finally, we stress the role of transaction protocols for evidence-aware distributed reputation
systems.

4.1 Conventional Distributed Reputation Systems

A reputation system keeps track of defections in order to caution the entities about the defectors.
In the absence of any central component, the reputation system is distributed to the entities
themselves. More specifically, each entity runs a local instance of the reputation system. These
instances may cooperate by exchanging recommendations. By this means, the reputation system
provides a means for self-organizing punishment. The considered system is illustrated for two
entities in Figure 4.1.

The issuer of a recommendation (recommender) communicates the trustworthiness of a certain
agent to the recipient of the recommendation. Recommendations may be untruthful. Therefore,
the recipient has to assess the truthfulness of the recommendation before taking it into account.

The existing approaches for distributed reputation systems (e.g., [12, 13]) make use of plau-
sibility considerations in order to provide for such assessment. This means that the impact of a
recommendation is contingent upon its plausibility which, in turn, depends on its compatibility

recommendations

Entity A

Local Instance

of Reputation

System

Entity B

Local Instance

of Reputation

System

transactions

Figure 4.1: Model of a distributed reputation system

23

Undocumented

actual behavior

Gathered

evidences
Verification

Plausibility

considerations

coupling coupling

no coupling

Behavior Evidences Assessment

Actual behavior that

is documented by

evidences

Figure 4.2: Evidences as a means of coupling the assessment of recommendations with the actual
underlying behavior

with prior beliefs. More specifically, the considerations comprise two parts. On the one hand, a
recommendation is assessed as rather trustworthy if it is compatible to the first hand experiences
made by the assessor itself. On the other hand, the more the recommender is trusted the more
the recommendation is regarded as truthful. In [3, 14], the limitations of plausibility consider-
ations are identified and discussed. In the next section, we examine an extension that applies
non-repudiable tokens in order to overcome most of the limitations.

4.2 Evidence-Aware Distributed Reputation Systems

In [3], it is proposed to make use of evidences in order to overcome the limitations of plausibility
considerations. An evidence is a non-repudiable token that may be arbitrarily transferred1. In
contrast to plausibility considerations, the application of evidences achieves a coupling between
the actual behavior and the assessment of recommendations about it. This is illustrated in
Figure 4.2.

As a prerequisite for the application of evidence-aware distributed reputation systems, evi-
dences have to be collected in the course of transactions. According to [3], the two most impor-
tant transactional evidences are receipts and contracts. After having agreed on the terms of the
transaction, the transaction peers may commit to the terms by mutually issuing non-repudiable
commitments (contracts). A receipt is an evidence that confirms that the transaction partner has
actually executed the action it committed to.

4.3 The Role of Transaction Protocols

It has been conjectured [3] that the application of evidences increases the effectiveness of self-
organizing punishment. In this regard, the question arises which role remains for transaction
protocols.

Architectural overview. In Figure 4.3, we perceive that an entity is decomposed as follows:
The decision maker decides with whom to transact under which circumstances. The component
that applies transaction protocols processes the transaction and gathers knowledge and evidences
of the transaction partner’s behavior. This provides the local instance of the reputation system
with the track record from which the trustworthiness of other entities.

The architectural overview allows for the identification of the roles of transaction protocols.

1The term evidence has been used differently in reputation systems. In [15, 13], it depicts witnessed circum-
stances, i.e., first hand experiences and recommendations.

24

Decision

Maker

Reputation System

Transaction Protocol

trust

assessment

evidence/knowledge

of behavior

transaction

partner

Figure 4.3: Architectural overview of an entity

Role 1: Preemption.
The first role of transaction protocols consists of making some sorts of de-
fection impossible2. This is achieved by coupling the transaction steps of
the peers. For example, the subsequent execution of actions by the peers
implies that only the second peer is able to uni-laterally defect. The benefits
of such preemption seem to be marginal. Nevertheless, they should not be
underestimated since only the second peer has to be trustworthy.

Pre-transactional and transactional phases. In order to describe the second role of trans-
action protocols, we discuss the pre-transactional and transactional phases.

After having decided on the transaction partner, an entity processes four phases, as it is shown
in Figure 4.4(a):

1. Agreement on transaction terms: The entity that has a transaction opportunity
chooses a transaction peer and its proposed terms are agreed on (or refused) by the po-
tential transaction peer. This is a pre-phase for the transaction in the sense that the later
phases are only processed in case of an agreement. In such a case, the peers mutually know
that they are committed to the transaction. Furthermore, this phase is not part of the
transaction protocol.

2. Exchange of contracts: Each transaction peer signs the agreement and hands over the
ensuing contract.

3. Exchange of actions: Each transaction peer executes the action it agreed to execute and
hands it over. In this regard, the transaction peers comply with their commitment.

4. Exchange of receipts: Each transaction peer hands over a non-repudiable receipt that
the respective parter has complied with its commitment.

Without the use of evidences (contracts and receipts), participation in transaction only en-
compasses two phases, as shown in Figure 4.4(b).

From the figures, it appears that evidences provide a means of extending the scope of knowl-
edge: After phase one and three, only the transaction peers know about their respective partner’s
behavior (i.e., their commitment or compliance). We refer to this situation as mutual knowl-
edge. After phase two and four, the respective knowledge has become globally accessible and
comprehensible (due to the transferability of evidences). This kind of knowledge is called global
knowledge.

2This role corresponds to the approach of direct minimization, as it is described in Section 3.2.

25

mutual knowledge

of compliance

Exchange of Contracts

Exchange of Actions

Exchange of Receipts

Agreement on

Transaction Terms

T
ra

n
s

a
c

ti
o

n

global knowledge

of compliance

global knowledge

of commitment

mutual knowledge

of commitment

mutual knowledge

of compliance

Exchange of Actions

Agreement on

Transaction Terms

T
ra

n
s

a
c

ti
o

n

mutual knowledge

of commitment

Figure 4.4: The phases of participating in a transaction (a) with and (b) without evidences.

Role 2: Perception.
The transactional phases of exchanging contracts and receipts enable that
mutual knowledge becomes global knowledge3. In this regard, the set of
entities that are able to perceive transactional behavior is extended from
the transaction peers to every entity of the system. Therefore, the second
role of transaction protocols is to ensure the perceptibility of transactional
behavior. Such perceptibility may leverage the lack of trust between the
peers. In addition, perceptibility builds the foundation of achieving weak
fairness4.

We conclude that transaction protocols complement the distributed reputation system since per-
ceptibility of behavior is a prerequisite for self-organizing punishment.

3This role of transaction protocols corresponds to the approach of evidence-based minimization, as it is described
in Section 3.2.

4Ultimately, weak fairness is achieved by the social control of distributed reputation systems.

26

Chapter 5

Conception of Transaction Protocols
for Self-organizing Systems

In the previous chapter, we have explained the role that transaction protocols play in self-
organizing systems. They have to preempt defections by coupling transaction steps of the peers.
In addition, transaction protocols have furnish evidences of the peers’ behavior in order to assert
that their behavior is perceptible.

In this chapter, we conceive transaction protocols that comply with these demands. For
this purpose, we identify the characteristics of the transaction protocols and, by this means,
the design space of transaction protocols. Based on that, we propose five transaction protocols.
Subsequently, the key properties of the protocols are illustrated and discussed by a schematic
visualization technique. Finally, we interrelate the proposed protocols and their properties with
the internet based protocols of Chapter 3.

5.1 Characteristics of Transaction Protocols

Before conceiving transaction protocols, we identify their characteristics. By this means, we
are able to capture the design space of transaction protocols. In the following, we discuss four
characteristics that have dialectic parameter values.

Bilateral vs. Multilateral. This characteristic captures whether there is a pair of transaction
peers (bilateral) or whether multiple parties participate in the transaction (multilateral). Accord-
ing to the system model of Chapter 2, pairwise transactions are assumed. Therefore, we will only
consider bilateral transaction protocols.

Direct vs. Indirect. The communication between the transaction peers may be mediated by
a third party. In general, it has no incentive to defect since it is not interested in the exchanged
items1. We call third party protocols indirect transaction protocols2. If the protocol is not
mediated by a third party, it is called direct transaction protocol.

Global vs. Mutual. Figure 4.4 illustrates that the phases for the exchange of contracts and
receipts are optional. If they are omitted, the knowledge about commitments and compliance

1This line of argument corresponds to the weak rationality criterion of Section 3.2.
2In the terminology of Chapter 3, indirect transaction protocols are pessimistic third party protocols.

27

BDGA
(4-way)

BIGS
(TP-6-way)

BIMS
(TP-2-way)

BDGS
(6-way)

BDMS
(2-way)

Bilateral (2 transaction peers)

Transaction

Protocols

Direct exchange

(w/o third party)
I nd irect exchange

(with third party)

G lobal knowledge

(with evidences)

M utual knowledge

(w/o evidences)

Symmetric steps
Asymmetric

steps

Symmetric

steps

G lobal knowledge

(with evidences)

M utual knowledge

(w/o evidences)

Symmetric steps

Figure 5.1: Taxonomic classification of the proposed transaction protocols

remains mutual. Otherwise, knowledge becomes global. Consequently, this characteristic captures
whether the transaction protocol stipulates the exchange of contracts and receipts or not.

Symmetric vs. Asymmetric. A transaction protocol is symmetric if the transaction peers
subsequently process the same protocol steps. In contrast, asymmetric transaction protocols
contain steps that are not processed by every peer. The nuances of this characteristic are made
more obvious by the schematic visualization technique of Section 5.3.

5.2 Proposed Transaction Protocols

According to the design space of transaction protocols, we may anticipate that there exist 8
instances of bilateral transaction protocols. Instead, it appears that only 5 instances make sense.
This is because asymmetry does not fit to most parameter values of the other characteristics:
(1) Mutual transaction protocols solely consist of the exchange of actions. Hence, each peer
only processes one protocol step, i.e., the execution and handover of the action. As a result,
the transaction protocol cannot be asymmetric. (2) Indirect transaction protocols are mediated
by a third party. The aim of the third party is to synchronize the peers’ protocol steps. Each
synchronization restores fairness among the transaction peers. Consequently, each step of the
peers has to be symmetric. This rules out asymmetric indirect transaction protocols.

The remaining five instances are taxonomically classified in Figure 5.1. The Appendix A.3
illustrates the protocol diagrams for these protocols. In Section 5.4, we will discuss the interrela-
tionship of the proposed protocols with the internet based transaction protocols.

5.3 Schematic Visualization of Transaction Protocols

In this section, we propose a means of clarifying the characteristics of the transaction protocols.
For this purpose, a schematic visualization technique is suggested.

28

Begin
execute lostContr.

Contract

execute lostContr.

Action

execute lostContr.

Receipt

Initiator

Responder

Begin

execute

Receipt

lostControl

Receipt

execute

Action

lostControl

Action

execute

Contract

lostControl

Contract

vulnerability rectangle

(responder may be disrecommended)

vulnerability rectangle

(initiator may be disrecommended)

unfair for

initiator

unfair for

responder

fairness point:

action

fairness point:

contract

fairness point:

receipt

protocol line

fairness line

fairness segment:

perilous action

execution

protocol

step

Figure 5.2: A schematic visualization of bilateral transaction protocols with annotation

5.3.1 The Schematic Visualization

Figure 5.2 illustrates the schematic visualization of bilateral transactions protocols. For better
intelligibility, the parts of the visualization are annotated. In the following, we discuss each part.

Axes. The x-axis shows the activity of the transaction peer that processes the first step of the
transaction (initiator). The activity of the other transaction peer (responder) is illustrated by
the y-axis. For each phase of the exchange, we distinguish between two steps: In the first step,
the item is executed. This means that the contract or the receipt is cryptographically signed or
that the action is executed. In the second step, the transaction partner acquires the item so that
the peer loses its control. For direct protocols, the handover of the item coincides with losing
its control. However, for indirect protocols, the control of an item is only lost if the third party
forwards it to the transaction partner.

Protocol line. The processing steps of a transaction protocol is shown by a zigzag line between
(Begin,Begin) and (lostControlReceipt,lostControlReceipt). In the figure, the protocol line of the
BDGS protocol is shown. Note that, due to the peers’ autonomy, the zigzag line may interrupted
at any point. This means that an unsuccessful protocol run produces a prefix of the shown zigzag
line.

Each segment of the line is either horizontal (protocol steps of the initiator) or vertical (pro-

29

tocol steps of the responder). Hence, the number of horizontal (vertical) segments corresponds
to the number of protocol steps that the initiator (responder) has to process. For the BDGS
protocol, each transaction peer has to process three protocol steps.

In case of an indirect transaction protocol, we assume a well-behaving third party for drawing
the line. This makes sense since, in the 2-dimensional visualization, we focus on the protocol steps
of the transaction peers. For indirect protocols, the processing order of the transaction peers is
not defined. Hence, both possible orders are illustrated. Figure 5.3(b) shows the visualization of
an indirect protocol.

Fairness line. The fairness line shows at which points the initiator and the responder have
processed the same steps. This means that the situation is fair whenever the protocol line
intersects with the fairness line. The more the protocol line deviates from the fairness line in
the lower right (upper left) direction the more the situation is unfair for the initiator (responder).
Therefore, a comparison of the protocol line and the fairness line shows which peer is in an unfair
position to which degree and at which steps.

Fairness points. There are three characteristic points on the fairness line. They mark a
situation in which both transaction peers are about to lose control of their contracts, actions or
receipts respectively. The comparison of the fairness points with the protocol line shows which
peer loses the control of its item first. If the protocol line passes the fairness point on the right
side, the initiator is disadvantaged, whereas the responder is disadvantaged if the fairness point
is passed on the left side. Apparently, the BDGS-protocol line always passes on the right side of
the fairness points. Hence, it disadvantages the initiator with respect to the contract, the action
and the receipt.

Fairness segment (perilous action execution). The execution of an action is perilous if the
executing transaction peer is not guaranteed to gain control of the transaction partner’s action.
Since the execution of actions is inherently locally, it is impossible to make the action executions
of both peers non-perilous. Therefore, the action execution is either unilaterally perilous or
mutually perilous. From a fairness point of view, mutual perilousness is desirable. If the protocol
line intersect the fairness segment (of perilous action execution), the action execution is indeed
mutually perilous. If the protocol line passes the segment on the right (on the left), only the
action execution of the initiator (of the responder) is perilous. The BDGS-protocol line passes
the segment on the right. Hence, the execution of the initiator’s action is perilous, whereas the
responder does not experience such perilousness.

Vulnerability rectangles. An important property of transaction protocols is at which protocol
steps which transaction peer is vulnerable to disrecommendations by its transaction partner.
According to the norms of the evidence-aware distributed reputation system [3], an entity may
only be disrecommended if it has issued a contract. However, after having received the peer’s
receipt, a transaction peer may refute the disrecommendation. Therefore, a transaction peer can
only be effectively disrecommended after having issued the contract and before gaining control of
the peer’s receipt. In the figure, the areas of vulnerability are illustrated for the initiator and the
responder. They are rectangles. The intersection of the rectangles indicates situations in which
both peers may be disrecommended. Yet, there are areas in which only one transaction peer can
be disrecommended.

30

Begin
execute lostContr.

Contract

execute lostContr.

Action

execute lostContr.

Receipt

Initiator

Responder

Begin

execute

Receipt

lostControl

Receipt

execute

Action

lostControl

Action

execute

Contract

lostControl

Contract

Begin
execute lostContr.

Contract

execute lostContr.

Action

execute lostContr.

Receipt

Initiator

Responder

Begin

execute

Receipt

lostControl

Receipt

execute

Action

lostControl

Action

execute

Contract

lostControl

Contract

Figure 5.3: A schematic visualization of (a) the BDGA protocol and (b) the BIGS protocol

5.3.2 Discussion of the Protocols’ Visualizations

In Figure 5.2 and Figure 5.3, the schematic visualizations of the BDGS protocol, the BDGA
protocol and the BIGS protocol are shown. The visualization of mutual transaction protocols is
omitted since it is easily derived from their global counterparts3. In the following, we stress the
key properties of the visualized protocols:

Protocol steps. For the BDGS protocol and BDGA protocol, each transaction peer has to
process three and two protocol steps4 respectively. Since the diagonal segments of the BIGS
protocol line are third party steps, there are also three segments and, thus, three protocol steps
for each transaction peer in the BIGS protocol.

Fairness line, fairness points, and fairness segment. In the BDGS protocol, only the ini-
tiator is burdened with unfairness. The responder may wait until gaining control of the initiator’s
item before executing its own item.

For the BDGA protocol, the situation is mixed. Although the initiator still has to precede
with the contract and the receipt, the responder bears the unfairness of losing control of its action
first. This is shown in the visualization since the protocol line passes the fairness points on the
right and, subsequently, on the left and, lastly, on the right. Not only the action fairness point
is passed on the left. The same applies to the fairness segment of perilous action execution.
Therefore, only the execution of the responder’s action is perilous.

The visualization of the BIGS protocol illustrates the desirable properties of indirect protocols
if a well-behaving third party is available. Each fairness point is passed simultaneously. This is
because the third party is supposed to forward either both items simultaneously or none of them.
Furthermore, the protocol line intersects with the fairness segment of perilous action execution.
This means that the actions of both the initiator and the responder are executed perilously. As

3The visualizations for the BIMS protocol and the BDMS protocol are the action specific portions of the BIGS
protocol and BDGS protocol respectively.

4In contrast to the notion of steps of Section 3.2 that includes every transaction peer, we refer to protocol steps
as the steps that one transaction peer has to perform.

31

13123Protocol Steps per Peer

-none-initiatorinitiatorUnfairness of Receipts for

-init./ resp .-initiatorinitiatorFirst to enter the Vulnerability Box

init./ resp.init./ resp .initiatorresponderinitiatorPerilous Action Execution for

nonenoneinitiatorresponderinitiatorUnfairness of Actions for

-none-initiatorinitiatorUnfairness of Contracts for

initiator

BDGA

Asymmetric

Steps

-

BIMS

Symmetric

Steps

Mutual

Knowledge

-

BDMS

Symmetric

Steps

Mutual

Knowledge

Symmetric

Steps

Symmetric

Steps

Global

Knowledge
Global Knowledge

Indirect ExchangeDirect Exchange

initiator

BDGS

Bilateral Transaction Protocols

init./ resp .Last to leave the Vulnerability Box

BIGSProtocol Name

Transaction Protocols

Key Properties

13123Protocol Steps per Peer

-none-initiatorinitiatorUnfairness of Receipts for

-init./ resp .-initiatorinitiatorFirst to enter the Vulnerability Box

init./ resp.init./ resp .initiatorresponderinitiatorPerilous Action Execution for

nonenoneinitiatorresponderinitiatorUnfairness of Actions for

-none-initiatorinitiatorUnfairness of Contracts for

initiator

BDGA

Asymmetric

Steps

-

BIMS

Symmetric

Steps

Mutual

Knowledge

-

BDMS

Symmetric

Steps

Mutual

Knowledge

Symmetric

Steps

Symmetric

Steps

Global

Knowledge
Global Knowledge

Indirect ExchangeDirect Exchange

initiator

BDGS

Bilateral Transaction Protocols

init./ resp .Last to leave the Vulnerability Box

BIGSProtocol Name

Transaction Protocols

Key Properties

Table 5.1: Summary of the key properties of the transaction protocols

a result, unfairness may arise if a peer executes its action, whereas the other peer refrains from
the execution of its action. Although this is harmful for the compliant peer, the defecting peer
does not gain any advantage from such behavior since it is denied the control of the action of the
compliant peer5.

Vulnerability rectangles. The visualization emphases that, with regard to the vulnerability
to disrecommendations, the properties of the BDGS protocol and the BDGA protocol are the
same. In both protocols, the initiator enters the vulnerability box as the first and leaves it as
the last. For the BIGS protocol, the visualization illustrates that the transaction peers enter and
leave the vulnerability rectangle at the same time. Therefore, the transaction protocol ensures
fairness with regard to vulnerability, as long as the third party behaves well.

Summary. In Table 5.3.2, the key properties of the transaction protocols are summarized. The
values of the table are directly derived from the discussion of the protocols’ schematic visualiza-
tion. The key properties of mutual transaction protocols are included in the table even though
we do not present and discuss their visualization. This is possible since mutual and global trans-
action protocols have a corresponding visualization and, thus, corresponding key properties with
regard to the exchange of actions.

5.3.3 Visualization of the Symmetry of a Transaction Protocol

A side-effect of the schematic visualization is that the characteristic of symmetry versus asym-
metry becomes clearer. For a symmetric protocol, the protocol line consists of an alteration of
horizontal and vertical segments that stand for equivalent protocol steps. In Figure 5.2 and Fig-
ure 5.3, the protocol lines of both the BDGS protocol and the BIGS protocol comply with this

5This line of argument is based on the criterion of weak rationality. We have used such argumentation before
in order to answer the question why the third party should forward the items it receives. Apparently, third party
protocols are tightly bound to the criterion of weak rationality.

32

demand. In contrast, the protocol line of asymmetric protocols consists of vertical (horizontal)
segments that are not matched by corresponding horizontal (vertical) segments. For example,
in the BDGA protocol, the responder’s step from generating the contract to losing control of its
action has no correspondence for the initiator.

5.4 Interrelation with Internet based Protocols

In the previous sections, we have proposed and discussed several protocols for self-organizing
systems. In the following, we discuss their interrelationship with the internet based protocols.
The discussion is structured with respect to several aspects. It is more specific than the setting-
based discussion of Section 3.4.

Item verification. The verification of items can always be performed locally. For contracts
and receipts, this stems from the properties of their non-repudiability. Actions are always verified
locally due to the assumption of deliverability, as introduced in Section 2.2.

Abortion verification. The proposed protocols do not consider the use of third party state-
ments regarding the outcome of the transaction. The use of affidavits for this purpose has been
proposed in [3]. The inclusion of this approach into the indirect transaction protocols is future
work. Nevertheless, affidavits are less effective in self-organizing systems since we cannot rely on
the trustworthiness of the third party.

Combination of global and indirect protocols. For internet based eCommerce, it does not
make sense to make use of the BIGS protocol that is both global and indirect. This is evinced
by the fact that the (A,P,L) protocol of Section 3.3 does not make use of contracts and receipts.
The reason is that, in the presence of a trusted third party, global knowledge can be achieved by
the issuance of affidavits.

Relevance of the trivial protocol. The BIMS protocol represents the trivial transaction pro-
tocol since the transaction peers exchange their actions directly and only with mutual knowledge.
The protocol is not considered in academic work on internet based eCommerce. This is because
the suggested internet based protocols aim at asserting fairness or rationality. Neither criterion
can be fulfilled by the BIMS protocol.

However, the BIMS protocol makes sense for the setting of this report because some entities
may be highly overhead-averse or certain about their partner’s trustworthiness.

The use of receipts. In internet based eCommerce, receipts do not play such an important
role as contracts6. Yet, in self-organizing systems, the use of receipts is crucial since they except
a transaction peer from being punished. The other way round, receipts are used in order to
self-recommend by making one’s own good behavior perceptible.

6Still, a receipt-based extension of Asokan’s protocol has been proposed in [4]. In a fifth protocol step, peer A
hands over a receipt. Yet, peer B is not supposed to hand over a receipt because it is assumed that its action serves
as receipt.

33

Protocol correspondences. If we abstract from some protocol steps or re-interpret them,
we are able to identify correspondences between the proposed protocols and the internet based
protocols. In the following, we do so and clarify the necessary abstractions and re-interpretations:

• BDGS protocol and Asokan’s protocol: If we abstract from the exchange of receipts
and interpret permits as mere contracts7.

• BDGA protocol and the (S,O,L) protocol: The same abstraction and re-interpretation
as above. The correspondence with a protocol that assumes the synchronous network model
is unproblematic. This is because the synchronousness is only required for generatability.
Hence, the BDGA protocol is not bound to the synchronous network model.

• BIMS protocol and the (A,P,L) protocol: The protocols are identical.

Rational protocols. Apparently, the proposed protocols are neither based on Buttyan’s nor
on Syverson’s protocol. This stems from our incertitude regarding the appropriateness of deposits
and weakly secret bit commitment. For Buttyan’s protocol, it is unclear whether deposit notes
should benefit an arbitrary third party. For Syverson’s protocol, the difficulty of computing the
actual return value has to be adjusted to the transaction peers’ utility structure.

7Apart from being non-repudiable, a permit ensures the generatability of an item. This is not the case for
contracts.

34

Chapter 6

The Tradeoffs of the Transaction
Protocols

In the previous chapter, we have identified and analyzed several transaction protocols for self-
organizing systems. The problem that remains to be resolved is the following: Given the cir-
cumstances of a transaction, which transaction protocol and which role allocation is the most
appropriate one?

In this chapter, we solve this problem in two steps. First, we categorize the properties of
transaction protocols. The categories either indicate the benefits or the costs of transaction
protocols. Second, the protocols’ key properties are captured by quantifying to which degree
the respective protocol is associated to each category. As a result, it becomes possible to assign
benefits, costs, and a residual utility to a transaction protocol for a specific set of circumstances.
Consequently, the transaction peers may choose the transaction protocol that has the highest
residual utility. Finally, we illustrate the principles of tradeoff-aware choice. For this purpose, we
show the dominance graphs for the proposed transaction protocols and roles.

6.1 Benefit and Cost Categories

In order to choose transaction protocols with respect to a specific transaction environment, we
have to develop the notion of appropriateness for transaction protocols. In Section 5.3, the key
properties of the transaction protocols have been identified. In the following, we associate these
key properties to benefit categories and cost categories. By this means, we valuate the significance
of the key properties both qualitatively and quantitatively.

6.1.1 Benefit Categories

The benefits of a transaction protocol consist of its assertions. Based on the numerous key prop-
erties that are identified in Section 5.3, we propose an aggregation to three categories regarding
such assertions. It is clear that the quantification of these categories depends on the role of the
respective transaction peer.

Furthermore, we have to take into account the trustworthiness of the third party for the
quantification of the categories. The trustworthiness is denoted as tTP and is defined as the
probability that the third party behaves correctly. There are two kinds of misbehavior by a third
party: (1) It may retain an item or the pair of items. (2) It may forward an item even though
the other item has not been received.

35

In the following, we introduce the three benefit categories.

Sufficiency of own action execution.

• Definition: If a transaction peer executes its own action, is it certain to gain control of
the action of the transaction partner? In such a case, the execution of one’s own action is
sufficient in order to gain such control.

• Quantification: Full sufficiency is quantified as 1, whereas full absence of sufficiency is
quantified as 0. According to the schematic visualization, sufficiency exists if and only if
the execution of one’s own action is not perilous.

Sufficiency of losing control of one’s own action.

• Definition: If a transaction peer loses control of its own action, is it certain to gain control
of the action of the transaction partner? In such a case, losing control of one’s own action
is sufficient in order to gain control of the partner’s action.

• Quantification: Full sufficiency is quantified as 1, whereas full absence of sufficiency is
quantified as 0. According to the schematic visualization, sufficiency exists if and only if
one’s own role does not suffer unfairness with respect to the actions. For indirect proto-
cols, the additional condition of well-behavior by the third party has to be fulfilled. Since
the fairness point of actions is always traversed for indirect transaction protocols, their
quantification of this category is tTP .

Deterrence.

• Definition: If a transaction peer is defected, to which degree may it take revenge based
on self-organized punishment? We distinguish between two types of deterrence that are
quantified separately.

– Knowledge by a third party: Is a third party able to fully perceive the defection?

– Ability to recommend: May the defector be disrecommended?

• Quantification: We propose the following weighting1:

– Knowledge by a third party: If fully yes 0.3, otherwise 0. This means that the
quantification is 0.3*tTP for indirect protocols.

– Ability to recommend: If fully yes 0.7, otherwise 0. The quantity is the sum of
the following:

∗ Disrecommendation for defection on action: If the transaction partner does
not provide its action, oneself may have a contract that allows for disrecommend-
ing it. This holds for global protocols (quantification 0.5), whereas, for mutual
protocols, disrecommendations are not possible (quantification 0).

1The weights are set rather arbitrarily. A thorough quantification of the weights is interesting yet future work.

36

∗ Untruthful disrecommendation: If the transaction partner got one’s own con-
tract without losing control of its own contract, only the transaction partner could
disrecommend oneself. According to the schematic visualization, this holds for an
unfair position regarding contracts. In such a case, the quantification is 0. If one
also has the contract of the transaction partner, the quantification is 0.1. For
indirect protocols, the quantification is 0.1*tTP since they are fair if the third
party is well-behaving.

∗ Disrecommendation for defection on receipts: If the transaction partner got
one’s own receipt without losing control of its receipt, only the transaction partner
cannot be disrecommended any more. According to the schematic visualization,
this holds for an unfair position regarding receipts. In such a case, the quantifica-
tion is 0. If one also has the receipt of the transaction partner, the quantification
is 0.1. For indirect protocols, the quantification is 0.1*tTP since they are fair if
the third party is well-behaving.

6.1.2 Cost Categories

The cost categories capture which kinds of costs the processing of the transaction protocol incurs
on the transaction peers. We distinguish between three cost categories; all of them are bound to
transaction roles:

Number of messages.

• Definition: How many messages does a transaction peer have to send2?

• Quantification: If the transaction peer is the initiator (responder), this number corre-
sponds to the number of horizontal (vertical) segments of the protocol line of Section 5.3.

Number of sign operations.

• Definition: How many times does a transaction peer have to issue an evidence and, thus,
execute a sign operation?

• Quantification: In mutual transaction protocols, no evidences are issued. In global trans-
action protocols, each peer issues exactly two evidences, i.e., a contract and a receipt.

Number of unsign operations.

• Definition: How many times does a transaction peer have to check the content of an
evidence and, thus, execute an unsign operation?

• Quantification: In mutual transaction protocols, no evidences are issued nor checked. In
global transaction protocols, each peer has to check exactly two evidences, i.e., a contract
and a receipt.

2This category corresponds to the complexity category of Section 3.2. The number of rounds is not considered
explicitly since it is proportional to the number of messages that an entity has to send. This means that, for the
assessment of the quantification of this category, one does not only have to take the costs of sending a message into
account. In addition, the delay in getting control of the desired action has also to be considered.

37

02022Sign Operations

13123Messages Sent

0.3* tTP0.5+0.5* tTP00.50.5Deterrence

tTPtTP010Sufficiency of Lost Control

2

1

BDGA/P I

Asymmetric

Steps

0

0

BIMS/P

Symmetric

Steps

Mutual

Knowledge

0

0

BDMS/P I

Symmetric

Steps

Mutual

Knowledge

Symmetric

Steps

Symmetric

Steps

Global

Knowledge
Global Knowledge

Indirect ExchangeDirect Exchange

2

0

BDGS/P I

Bilateral Transaction Protocols

0Sufficiency of Execution

2Unsign Operations

BIGS/PRole Name

Initiator Roles

Characteristics

02022Sign Operations

13123Messages Sent

0.3* tTP0.5+0.5* tTP00.50.5Deterrence

tTPtTP010Sufficiency of Lost Control

2

1

BDGA/P I

Asymmetric

Steps

0

0

BIMS/P

Symmetric

Steps

Mutual

Knowledge

0

0

BDMS/P I

Symmetric

Steps

Mutual

Knowledge

Symmetric

Steps

Symmetric

Steps

Global

Knowledge
Global Knowledge

Indirect ExchangeDirect Exchange

2

0

BDGS/P I

Bilateral Transaction Protocols

0Sufficiency of Execution

2Unsign Operations

BIGS/PRole Name

Initiator Roles

Characteristics

02022Sign Operations

13123Messages Sent

0.3* tTP0.5+0.5* tTP00.70.7Deterrence

tTPtTP101Sufficiency of Lost Control

2

0

BDGA/P R

Asymmetric

Steps

0

0

BIMS/P

Symmetric

Steps

Mutual

Knowledge

0

1

BDMS/P R

Symmetric

Steps

Mutual

Knowledge

Symmetric

Steps

Symmetric

Steps

Global

Knowledge
Global Knowledge

Indirect ExchangeDirect Exchange

2

1

BDGS/P R

Bilateral Transaction Protocols

0Sufficiency of Execution

2Unsign Operations

BIGS/PRole Name

Responder Roles

Characteristics

02022Sign Operations

13123Messages Sent

0.3* tTP0.5+0.5* tTP00.70.7Deterrence

tTPtTP101Sufficiency of Lost Control

2

0

BDGA/P R

Asymmetric

Steps

0

0

BIMS/P

Symmetric

Steps

Mutual

Knowledge

0

1

BDMS/P R

Symmetric

Steps

Mutual

Knowledge

Symmetric

Steps

Symmetric

Steps

Global

Knowledge
Global Knowledge

Indirect ExchangeDirect Exchange

2

1

BDGS/P R

Bilateral Transaction Protocols

0Sufficiency of Execution

2Unsign Operations

BIGS/PRole Name

Responder Roles

Characteristics

Table 6.1: Quantification of the benefits and costs of the proposed transaction protocols for the
initiator and responder role

6.1.3 Quantification for the Respective Transaction Protocols

The quantification of the benefit and cost categories is directly related to the protocols’ key
properties that are summarized in Section 5.3. Therefore, the categories’ quantification for the
respective protocols is straightforward. It is shown in Figure 6.1.3 for the initiator and responder
roles.

6.2 Tradeoff-aware Choice of Transaction Protocols

The categoric quantification of the protocols’ benefits and costs provides a guideline of which
transaction protocol suits best to the circumstances of a transaction. The decision making com-
ponent of an entity (see Figure 4.3) only has to decide how it valuates the quantification of the
benefits and costs. For example, a PDA that lack resources could want to minimize costs by
choosing mutual protocols. On the other hand, a notebook that is about to perform a crucial
transaction could aim at maximizing security by laying stress on the sufficiency and deterrence

38

BDGS/P
R

BDGA/P
R

BIMS/P

BIGS/P

BDMS/P
I

BDMS/P
R

BDGS/P
I

BDGA/P
I

Figure 6.1: The dominance graph with respect to the benefits of the transaction roles

categories.
Apparently, the choice depends on the entity’s preferences. Still, some protocol roles dominate

other protocol roles with respect to several or all categories. This means that some or all quantities
of the dominating protocol role are superior3.

In the following, we illustrate such dominance by providing several dominance graphs. They
give a rough estimation of the tradeoff-driven choice of transaction protocols.

Dominance regarding benefits. Figure 6.1 shows the dominance graphs with respect to the
benefit categories.

For the integration of indirect protocols, the following rule is applied: (1) The role of an
indirect protocol dominates another role if, regardless of the trustworthiness of the third party,
its quantities are superior. (2) The role of an indirect protocol is dominated by another role if,
regardless of the trustworthiness of the third party, its quantities are inferior.

The dominance graph may be interpreted as follows: Dominance induces the preference order
of an entity that is not concerned about the costs of a transaction protocol.

Dominance regarding costs. Figure 6.2 illustrates the dominance graph with respect to the
cost categories. Several roles share the same quantities. Hence, the figure shows that there are
three equivalence classes with respect to costs.

The dominance graph may be interpreted as follows: Dominance induces the preference order
of an entity that is not concerned about the benefits of a transaction protocol. This may be an
entity that is fully convinced of the trustworthiness of its transaction partner.

Overall dominance. Figure 6.3 shows the overall dominance graph that results from the su-
perposition of the benefit and cost dominance graphs respectively. Hence, the graph shows the
preference order that every entity has regardless of its cost/benefit preferences.

We observe that, even though some roles are dominated, there is no transaction protocol that
has all of its roles dominated. Hence, no transaction protocol is superfluous and could be chosen
by the transaction peers.

3For benefit categories, a quantity is superior if it is higher. For cost categories, a quantity is superior if it is
lower.

39

BDGS/P
R

BDGA/P
R

BIMS/P BIGS/P

BDMS/P
I

BDMS/P
R

BDGS/P
I

BDGA/P
I

Figure 6.2: The dominance graph with respect to the costs of the transaction roles

BDGS/P
R

BDGA/P
R

BIMS/PBIGS/P

BDMS/P
I

BDMS/P
R

BDGS/P
I

BDGA/P
I

Figure 6.3: The dominance graph with respect to the residual utility of the transaction roles

40

Chapter 7

Conclusion

7.1 Summary

Self-organizing systems of autonomous entities have gained wide-spread attention in the research
community. The most difficult problem of such systems is that autonomous entities may choose
between cooperation and defection in the transactions they participate.

In internet based eCommerce, transaction protocols are applied for this purpose. In this
report, we have identified the characteristics of internet based transaction protocols and have
described their most common instances. However, we have shown that the setting of the internet
differs from the one of self-organizing systems. Therefore, these transaction protocols can only be
applied to a certain degree to self-organizing systems. The absence of infrastructure implies that
defective transactional behavior has to be punished in a self-organizing manner. Only if such a
self-organizing punishment exists, the identification of misbehavior (by the means of transaction
protocols) makes sense.

We have discussed both conventional and evidence-aware distributed reputation systems since
they allow for self-organizing punishment. This led us to stress the role of transaction protocols in
a self-organizing system. The protocols have to preempt defections by coupling the transactional
steps of the peers. In addition, transaction protocols have furnish evidences of the peers’ behavior
in order to make behavior perceptible.

Based on this observation, we have conceived transaction protocols that comply with these
demands. For this purpose, we have identified the characteristics of the transaction protocols.
Based on that, we have proposed five transaction protocols. The key properties of the proto-
cols have been illustrated and discussed by a schematic visualization technique. The proposed
protocols have been compared to the internet based protocols.

To this point, the problem that remained to be resolved was the following: Given the cir-
cumstances of a transaction, which transaction protocol and which role allocation is the most
appropriate one? We have solved this problem in two steps. First, we have categorized the
circumstances of transactions. The categories either indicate the benefits or the costs of trans-
action protocols. Second, the protocols’ key properties have been captured by quantifying to
which degree the respective protocol is associated to each category. As a result, it has become
possible to assign benefits, costs, and a residual utility to a transaction protocol for a specific
set of circumstances. Consequently, the transaction peers may choose the transaction protocol
that has the highest residual utility. We have illustrated the principles of tradeoff-aware choice
by providing dominance graphs for the proposed transaction protocols and roles.

41

7.2 Future Work

Evaluation. This report proposes transaction protocols for self-organizing systems and makes
their tradeoffs explicit. Still, the ultimate aim of this work is to curb defective behavior in the
course of transactions. This aim can only be attained if an evidence-aware distributed reputation
system is available. Therefore, we plan to develop such a system so that we can measure the
effects of the transaction protocols on the entities’ behavior. In this regard, we will evaluate
which protocols are chosen under which circumstances. Furthermore, we will measure the impact
of the availability or non-availability of certain transaction protocols.

Affidavits. In addition, the set of proposed transaction protocols could be expanded by devel-
oping indirect protocols that make use of affidavits. This would entail the availability of a further
type of evidence which, in turn, influences the deliberation processes of the reputation system.

Deposits and weakly secret bit commitment. The inclusion of Buttyan’s and Syverson’s
protocols is a further promising idea that could be followed in the future. For Buttyan’s protocol,
we would have to evaluate whether it makes sense to apply deposit notes that benefit an arbitrary
third party. For Syverson’s protocol, the difficulty of computing the actual return value has to
be adjusted to the transaction peers’ utility structure.

Multilateral transaction protocols. Another line of future work is to examine what happens
if we relax some of the assumptions of our system model. For example, it could be researched
which kinds of multilateral transaction protocols fit to self-organizing systems.

Revisiting the deterrence category. In this report, the weights of the benefit category of
deterrence are set rather arbitrarily. In the future, it might make sense to revisit the deterrence
category and propose a more thorough weighting.

42

Acknowledgement

The work done for this report is partially sponsored by the German Research Community (DFG)
in the context of the priority programs (SPP) no. 1140.

43

44

Bibliography

[1] Institute for Program Structures and Data Organization, Universität Karlsruhe: DIANE
Project. http://www.ipd.uni-karlsruhe.de/DIANE/en (2003)

[2] Obreiter, P., Nimis, J.: A taxonomy of incentive patterns - the design space of incentives for
cooperation. In: Second Intl. Workshop on Agents and Peer-to-Peer Computing (AP2PC’03),
Springer LNCS 2872, Melbourne, Australia (2003)

[3] Obreiter, P.: A case for evidence-aware distributed reputation systems. In: Second Inter-
national Conference on Trust Management (iTrust’04), Oxford, UK, Springer LNCS 2995
(2004) 33–47

[4] Asokan, N.: Fairness in Electronic Commerce. PhD thesis, University of Waterloo (1998)

[5] Obreiter, P., König-Ries, B., Papadopoulos, G.: Engineering incentive schemes for ad hoc
networks - a case study for the lanes overlay. In: First EDBT-Workshop on Pervasive
Information Management, To appear in post-proceedings, Greece (2004)

[6] Obreiter, P., König-Ries, B., Klein, M.: Stimulating cooperative behavior of autonomous
devices - an analysis of requirements and existing approaches. In: Proceedings of the Second
International Workshop on Wireless Information Systems (WIS2003), Angers, France (2003)
71–82

[7] Buttyan, L.: Building Blocks for Secure Services: Authenticated Key Transport and Rational
Exchange Protocols. PhD thesis, EPFL (2001)

[8] Pfitzmann, B., Schunter, M., Waidner, M.: Optimal efficiency of optimistic contract signing.
In: Proceedings of the 7th Annual ACM Symposium on Principles of Distributed Computing
(PODC), Puerto Vallarta, Mexico (1998) 113–122

[9] Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for multi-party fair exchange.
Technical Report RZ 2892 (# 90840) (1996)

[10] Syverson, P.: Weakly secret bit commitment: Applications to lotteries and fair exchange.
In: Proceedings of the IEEE Computer Security Foundations Workshop. (1998) 1–13

[11] Wu, J., Axelrod, R.: How to cope with noise in the iterated prisoner’s dilemma. Journal of
Conflict Resolution 39 (1995) 183–189

[12] Kinateder, M., Rothermel, K.: Architecture and algorithms for a distributed reputation
system. In Nixon, P., Terzis, S., eds.: Proc. Of the First Intl. Conf. On Trust Management
(iTrust), Heraklion, Greece, Springer LNCS 2692 (2003) 1–16

45

[13] Yu, B., Singh, M.P.: An evidential model of distributed reputation management. In: Pro-
ceedings of the First International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’02), Bologna, Italy (2002) 294–301

[14] Obreiter, P., Fähnrich, S., Nimis, J.: How social structure improves distributed reputation
systems - three hypotheses. In: Third Intl. Workshop on Agents and Peer-to-Peer Computing
(AP2PC’04), To appear in post-proceedings, New York (2004)

[15] English, C., Wagealla, W., Nixon, P., Terzis, S., Lowe, H., McGettrick, A.: Trusting collab-
oration in global computing systems. In: Proc. of the First Intl. Conf. on Trust Management
(iTrust), Heraklion, Crete, Greece (2003) 136–149

46

Appendix A

Implementation and Use of
Transaction Protocols

A.1 The Pre-transaction Phase: Agreement on the Terms of the
Transaction

Up to now, the implementation assumes that the entity that has a transaction opportunity
(proposer) coincides with the initiator. Furthermore, the agreement on the terms is implemented
as a proposal-acceptance/rejection process. In Figure A.1, the agreement phase is visualized in
a sequence diagram. Note that the initiator and the responder assume the same role for third
party protocols.

Initiator Responder

proposeTransaction

transactionOpportunity

confirmTransaction

Transaction

Initiator Responder

proposeTransaction

transactionOpportunity

confirmTransaction

Transaction

ThirdParty

proposeTransaction

confirmTransaction

Transaction

Figure A.1: (Left) without third party; (right) with third party

A.2 Algorithms of the Proposed Transaction Protocols

We only present the algorithm of the BDGS protocol since it contains every complexity that is
found for the other transaction protocols.

47

A.2.1 BDGS (6-way)

Procedure performTransaction − BDGS/Pi

(peerID, context, myAction, peerActionDescription)

1: myTID ← newTransactionID
2: handover(issueEvidence(contract(peerID, myTID, context)))
3: receivedContract ← receive(peerID)
4: if (timeoutWithoutContract ‖ receivedContract �= (peerID, myID, ?, context, ?) then
5: reportTransaction(peerID, context, DEFECTED)
6: QUIT
7: end if
8: addEvidence(receivedContract)
9: if (V aluatorManager(”DoAction”, (context, peerID, RISK POSITION)) ≥ 0) then

10: handover(myAction)
11: end if
12: receivedAction ← receive(peerID)
13: if (timeoutWithoutAction ‖ ¬ receivedAction.match(peerActionDescription)) then
14: addKnowledge(noAction(peerID, receivedContract.peerTID))
15: reportTransaction(peerID, context, DEFECTED)
16: QUIT
17: end if
18: if (V aluatorManager(”DoReceipt”, (context, peerID,RISK POSITION)) ≥ 0) then
19: handover(issueEvidence(receipt(peerID, receivedContract.peerTID)))
20: end if
21: receivedReceipt ← receive(peerID)
22: if (timeoutWithoutReceipt ‖ receivedReceipt �= (peerID,myID,myTID)) then
23: reportTransaction(peerID, context, DEFECTED)
24: else
25: addEvidence(receivedReceipt)
26: reportTransaction(peerID, context, GOOD)
27: end if

48

Procedure performTransaction − BDGS/Pr

(peerID, context, myAction, peerActionDescription)

1: receivedContract ← receive(peerID)
2: if (timeoutWithoutContract ‖ receivedContract �= (peerID, myID, ?, context, ?)) then
3: QUIT
4: end if
5: addEvidence(receivedContract)
6: myTID ← newTransactionID
7: if (V aluatorManager(”DoContract”, (context, peerID, SAFE POSITION)) ≥ 0) then
8: handover(issueEvidence(contract(peerID,myTID, context)))
9: end if

10: receivedAction ← receive(peerID)
11: if (timeoutWithoutAction ‖ ¬ receivedAction.match(peerActionDescription)) then
12: addKnowledge(noAction(peerID, receivedContract.peerTID))
13: reportTransaction(peerID, context, DEFECTED)
14: QUIT
15: end if
16: if (V aluatorManager(”DoAction”, (context, peerID, SAFE POSITION)) ≥ 0) then
17: handover(myAction)
18: end if
19: receivedReceipt ← receive(peerID)
20: if (timeoutWithoutReceipt ‖ receivedReceipt �= (peerID,myID,myTID)) then
21: addKnowledge(noAction(peerID, receivedContract.peerTID))
22: reportTransaction(peerID, context, DEFECTED)
23: else
24: addEvidence(receivedReceipt)
25: if (V aluatorManager(”DoReceipt”, (context, peerID, SAFE POSITION)) ≥ 0) then
26: handover(issueEvidence(receipt(peerID, receivedContract.peerTID)))
27: reportTransaction(peerID, context, GOOD)
28: else
29: addKnowledge(noAction(peerID, receivedContract.peerTID))
30: reportTransaction(peerID, context, DEFECTED)
31: end if
32: end if

49

A.3 Diagrams of the Proposed Transaction Protocols

The notations used for various functions and objects in the protocol diagrams are the following:

Entities.

• I: Initiator

• R : Responder

• T : Third Party

Items.

• ContractI/R The contract of the Initiator, Responder respectively.

• ActionI/R The action of the Initiator,Responder respectively.

• ReceiptI/R The receipt of the Initiator, Responder respectively.

Valuators.

• DoContract/DoAction/DoReceipt(name of the peer to receive) : Functions evalu-
ating whether the contract or action or receipt of the peer calling the respective function are
to be sent to the partner peer. For example, DoContract(R)=true or DoAction(R)=true or
DoReceipt(R)=true by the Initiator leads to the handover of Initiator’s contract or action
or receipt to the Responder. On the other hand, a false evaluation of one of these functions
(DoContract(R)=false or DoAction(R)=false or DoReceipt(R)=false) causes a defection
on Initiator’s side, i.e. the Initiator fails to send his contract or action or receipt to the
Responder.

• DoForward(name of the peer to receive) : Function called exclusively by the entity
assuming the role of third party. If this function evaluates to true (DoForward(R)=true),
then the third party forwards the respective evidence or action to the receiving peer(in this
example, the Responder). The defection on the third party side is caused by a false evalu-
ation (DoForward(R)=false). In this case the third party fails in forwarding the evidence
or action (in our example, fails to forward to the Responder).

Verificators.

• TestContract/TestAction/TestReceipt(name of the peer having sent) : Functions
called in the purpose of verifying the received contract or action or receipt. For example,
TestContract(I) is called by the Responder for the verification of the Initiator’s contract.
Respectively, TestContract(R) is called by the Initiator for the verification of the Respon-
der’s contract. On the Initiator’s side TestAction(I) compares the received Responder’s
action with the action description in the possession of the Initiator. Finally, TestReceipt()
verifies the received receipt.

50

Reputation system.

• ReportTransaction(name of the partner peer or of the third party, transaction
general conclusion) In case of a complete transaction, i.e. the partner peer or the peer
itself correctly fulfilled each required protocol step, the general conclusion is positive(true).
For example, if the Responder ends a successful transaction with the Initiator, the function
becomes ResportTransaction(I,true). If the partner peer committed defection or if the peer
itself wants to throw the guilt of a defected transaction on another peer, the transaction is
concluded as being false. In our example, ReportTransaction(I, false).

• AddNoActionKnowledge(name of the partner peer) This function is used to add
knowledge to the evidence repository about the assumed misbehavior of the partner peer.
Knowledge is added only when the peer, let’s say the Initiator has received the Responder’s
contract but did not receive the Responder’s action. In this case, the function becomes
AddNoActionKnowledge(R) on the Initiator’s side.

51

A.3.1 BDGS (6-way)

performTransaction performTransaction

ContractI

 6 Way Protocol

--Bilateral Direct Global Symetric--

(BDGS)

TestContract(I) = true

DoContract(R) = true

Responder

BDGS - P
r

Initiator
BDGS - P

i

ReportTransaction(R, true)

TestContract(R) = true

DoContract(I) = true

ContractR

DoAction(R) = true

ActionI

TestAction(I) = true

DoAuction(I) = true

ActionR

TestAction(R) = true

DoReceipt(R) = true

ReceiptI
TestReceipt(I) = true

DoReceipt(I) = true

ReceiptR
ReportTransaction(I, true)

TestReceipt(R) = true

Figure A.2: Sequence diagram of the BDGS transaction protocol without defection

52

performTransaction performTransaction

ContractI

 6 Way Protocol

Bilateral Direct Global Symetric

(BDGS)

--with Initiator defection--

TestContract(I) = true

DoContract(R) = true

Responder
BDGS - P

r

ReportTransaction(R, false)

TestContract(R) = true

DoContract(I) = true

ContractR

DoAction(R) = false

TestAction(I) = false

ReportTransaction(I, false)

Initiator
BDGS - P

i

AddNoActionKnowledge(I)

AddNoActionKnowledge(R)

Figure A.3: Sequence diagram of the BDGS transaction protocol with defecting initiator

53

performTransaction performTransaction

ContractI

TestContract(I) = true

DoContract(R) = true

Initiator
BDGS - P

i

DoContract(I) = false

ReportTransaction(I, false)

AddNoActionKnowledge(I)

ReportTransaction(R, false)

TestContract(R) = false

Responder
BDGS - P

r

 6 Way Protocol

Bilateral Direct Global Symetric

(BDGS)

--with Responder defection--

Figure A.4: Sequence diagram of the BDGS transaction protocol with defecting responder

54

A.3.2 BDGA (4-way)

performTransaction performTransaction

ContractI

4 Way Protocol

--Bilateral Direct Global Asymetric

(BDGA)

TestContract(I) = true

DoContract(R) = true

Responder
BDGA - P

r

Initiator
BDGA - P

i

ReportTransaction(R, true)

TestContract(R) = true

DoContrat(I) = true

ContractRActionR

DoAction(I) = true

TestAction(R) = true

DoAction(R) = true

DoReceipt(R) = true

ActionIReceiptI
TestAction(I) = true

TestReceipt(I) = true

DoReceipt(I) = true

ReceiptR

TestReceipt(R) = true
ReportTransaction(I, true)

Figure A.5: Sequence diagram of the BDGA transaction protocol without defection

55

performTransaction performTransaction

ContractI

4 Way Protocol

Bilateral Direct Global Asymetric

(BDGA)

--with Responder defection--

TestContract(I) = true

DoContract(R) = true

Initiator
BDGA - P

i

ReportTransaction(R, false)

TestContract(R) = true

DoContrat(I) = true

ContractRActionR

DoAction(I) = true

TestAction(R) = true

DoAction(R) = true

DoReceipt(R) = true

ActionIReceiptI
TestAction(I) = true

TestReceipt(I) = true

DoReceipt(I) = false

TestReceipt(R) = false
ReportTransaction(I, false)

Responder
BDGA - P

r

Figure A.6: Sequence diagram of the BDGA transaction protocol with defecting responder

56

performTransaction performTransaction

ContractI

4 Way Protocol

Bilateral Direct Global Asymetric

(BDGA)

--with Initiator defection--

TestContract(I) = true

DoContract(R) = true

Responder
BDGA - P

r

ReportTransaction(R, false)

TestContract(R) = true

DoContrat(I) = true

ContractRActionR

DoAction(I) = true

TestAction(R) = true

DoAction(R) = false

DoReceipt(R) = false

TestAction(I) = false

ReportTransaction(I, false)

Initiator
BDGA - P

i

AddNoActionKnowledge(I)

AddNoActionKnowledge(R)

Figure A.7: Sequence diagram of the BDGA transaction protocol with defecting initiator

57

A.3.3 BDMS (2-way)

performTransaction performTransaction

ActionI

2 Way Protocol

--Bilateral Direct Mutual Symetric--

(BDMS)

TestAction(I) = true

DoAction(R) = true

Responder
(BDMS - P

r
)

Initiator
(BDMS - P

i
)

ReportTransaction(R, true)

TestAction(R) = true

DoAction(I) = true

ActionR

ReportTransaction(I, true)

Figure A.8: Sequence diagram of the BDMS transaction protocol without defection

58

performTransaction

2 Way Protocol

Bilateral Direct Mutual Symetric

(BDMS)

--with Responder Defection--

ActionI

DoAction(R) = true

performTransaction

Responder
(BDMS - P

r
)

Initiator
(BDMS - P

i
)

TestAction(I) = true

DoAction(I) = false

ReportTransaction(R,false)

TestAction(R) = false

ReportTransaction(I,false)

Figure A.9: Sequence diagram of the BDMS transaction protocol with defecting responder

59

A.3.4 BIGS (tp-6-way)

performTransaction performTransaction

Responder
BIGS - P

Initiator
BIGS - P

ThirdParty
BIGS - T

DoContract(R) = true

ContractI

TestContract(R) = true

DoContract(I) = true

ContractR

TestContract(I) = true

ForwardContract(I,R) = true

ContractR

ForwardContract(R,I) = true

ContractI

TestContract(R) = true TestContract(I) = true

6 Way Protocol with Third Party

--Bilateral Indirect Global Symetric

(BIGS)

DoAction(R) = true

ActionI

DoAction(I) = true

ActionR

TestAction(I) = true

ForwardAction(I,R) = true

ActionR

performTransaction

TestAction(R) = true

ForwardAuction(R,I) = true

TestAction(I) = true

ActionI

TestAction(I) = true

ReportTransaction(I, true)

ReportTransaction(TP, true)

DoReceipt(R) = true

ReceiptI

DoReceipt(I) = true

ReceiptR

TestReceipt(I) = true

ForwardReceipt(I,R) = true
ReceiptI

TestAction(I) = true

TestReceipt(R) = true

ForwardReceipt(R,I) = true

ReceiptR

TestReceipt(I) = true

ReportTransaction(R, true)

ReportTransaction(TP, true)

ReportTransaction(I, true)

ReportTransaction(R, true)

Figure A.10: Sequence diagram of the BIGS transaction protocol without defection

60

performTransaction performTransaction

Responder
BIGS - P

ThirdParty
BIGS - T

DoContract(R) = true

ContractI

TestContract(R) = true

DoContract(I) = true

ContractR

TestContract(I) = true

ForwardContract(I,R) = true

ContractR

ForwardContract(R,I) = true

ContractI

TestContract(R) = true

TestContract(I) = true

6 Way Protocol with Third Party

Bilateral Indirect Global Symetric

(BIGS)

--with Peer defection--

DoAction(R) = false

DoAction(I) = true

ActionR

TestAction(I) = false

performTransaction

TestAction(R) = true

AddNoActionKnowledge(I)

ReportTransaction(I, false)

ReportTransaction(R, true)

TestAction(I) = false

ReportTransaction(I, false)

ReportTransaction(TP, false)

ReportTransaction(R, false)

ReportTransaction(TP, false)

Initiator
BIGS - P

AddNoActionKnowledge(R)

Figure A.11: Sequence diagram of the BIGS transaction protocol with defecting peer

61

performTransaction performTransaction

Responder
BIGS - P

Initiator
BIGS - P

DoContract(R) = true

ContractI

TestContract(R) = true

DoContract(I) = true

ContractR

TestContract(I) = true

ForwardContract(I,R) = true

ForwardContract(R,I) = false

ContractI

TestContract(R) = false

TestContract(I) = true

6 Way Protocol with Third Party

Bilateral Indirect Global Symetric

(BIGS)

--with Third Party Defection--

DoAction(I) = true

ActionR

performTransaction

TestAction(R) = true

Third Party
BIGS - T

ReportTransaction(R, false)

ReportTransaction(TP, false)

ReportTransaction(I, false)

ReportTransaction(R, true) ReportTransaction(I, false)

ReportTransaction(TP, false)

AddNoActionKnowledge(I)

TestAction(I) = false

Figure A.12: Sequence diagram of the BIGS transaction protocol with defecting third party

62

A.3.5 BIMS (tp-2-way)

performTransaction performTransaction performTransaction

Responder
BIMS - P

Initiator
BIMS - P

ThirdParty
BIMS - T

DoAction(R) = true

ActionI

TestAction(R) = true

DoAction(I) = true

ActionR

TestAction(I) = true

ActionR

TestAction(R) = true

ReportTransaction(R, true)

ReportTransaction(TP, true)

TestAction(I) = true

ReportTransaction(I, true)

ReportTransaction(TP, true)

2 Way Protocol with Third Party

--Bilateral Indirect Mutual Symetric--

(BIMS)

ForwardAction(I,R) = true

ForwardAction(R,I) = true

ActionI

ReportTransaction(I,true)

ReportTransaction(R,true)

Figure A.13: Sequence diagram of the BIMS transaction protocol without defection

63

performTransaction performTransaction performTransaction

Initiator
BIMS - P

ThirdParty
BIMS - T

DoAction(R) = true

ActionI

TestAction(R) = false

DoAction(I) = false

TestAction(I) = true

ReportTransaction(I,true)

ReportTransaction(R,false)

TestAction(R) = false

ReportTransaction(R, false)

ReportTransaction(TP, false)

ReportTransaction(I, false)

ReportTransaction(TP, false)

2 Way Protocol with Third Party

Bilateral Indirect Mutual Symetric

(BIMS)

--with Responder defection--

Responder
BIMS - P

Figure A.14: Sequence diagram of the BIMS transaction protocol with defecting peer

64

performTransaction performTransaction performTransaction

Responder
BIMS - P

Initiator
BIMS - P

DoAction(R) = true

ActionI

TestAction(R) = true

DoAction(I) = true

ActionR

TestAction(I) = true

ForwardAction(I,R) = true

ForwardAction(R,I) = false

ActionI

ReportTransaction(I,false)

ReportTransaction(R,true)

TestAction(R) = false

ReportTransaction(R, false)

ReportTransaction(TP, false)

TestAction(I) = true

ReportTransaction(I, true)

ReportTransaction(TP, true)

2 Way Protocol with Third Party

Bilateral Indirect Mutual Symetric

(BIMS)

--with Third Party Defection--

ThirdParty
BIMS - T

Figure A.15: Sequence diagram of the BIMS transaction protocol with defecting third party

65

Appendix B

Glossary

Action: (Aktion) A resource consuming activity which is beneficial for another entity.

Autonomy: (Autonomie) Each entity is autonomous. This means that an entity is free to
cooperate or defect in the course of a transaction. Defection refers to the premature abandonment
of a transaction.

Entity: (Einheit) A component of the system. It consumes resources in order to attain a goal.
Typically, this involves transactions with other entities.

Evidence: (Beweismittel) An non-repudiable token about a specific aspect of another entity’s
behavior.

Exchange Protocols: (Austauschprotokoll) A protocol that defines the exchange of items.
The procedure of item exchange is often described in subsequent protocol steps.

Execution of an item: (Gegenstandsausführung) Depending on whether the item is an action,
a contract or a receipt, the execution of an item means the generation of a contract or receipt or
the execution of an action.

Initiator (role): (Initiator) The entity that processes the first step of the transaction protocol.

Item: (Gegenstand) An abstract term for referring to a contract, an action or a receipt.

Lost control of an item: (Verlorene Kontrolle eines Gegenstandes) The incidence that the
transaction partner acquires the item. For direct protocols, this coincides with the handover of
the item. However, for indirect protocols, the control of an item is only lost if the third party
forwards it to the transaction partner.

Responder (role): (Antwortender) The entity that does not process the first step of the trans-
action protocol.

66

Self-organization: (Selbstorganisation) The system’s emergent organization if no infrastruc-
tural entity is available. In such a case, the entities have to assume infrastructural tasks. As a
result, they organize themselves.

Third party (role): (Dritter) An entity that assists the transaction peers in performing the
transaction.

Transaction: (Transaktion) In a transaction, a pair of entities (transaction peers) execute
actions that are mutually beneficial for them.

Transaction peer: (Transaktionsteilnehmer) An entity that participates in a transaction in
order to have an action executed by another entity.

Transaction protocol: (Transaktionsprotokoll) A protocol for performing transactions. It
consists of the exchange of actions and, optionally, of the exchange of contracts and receipts. In
this regard, a transaction protocol is more specific than the notion of exchange protocols.

Transaction role: (Transaktionsrolle) The role that an entity exhibits in a specific transaction
protocol. For direct transaction protocols, this is either the initiator role or the responder role.
For indirect transaction protocols, the initiator role and responder roles coincide. A further role
for such indirect transaction protocols is the third party role.

67

