Bayesian network models for
inferring cancer pathogenetic and
gene regulatory pathways

Zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften
von der Fakultat fur Informatik
der Universitat Karlsruhe

genehmigte Dissertation
von
Svetlana Bulashevska
aus Karlsruhe

Tag der mundlichen Prufung: 14 Juli 2004
Erster Gutachter: Prof. Dr. Roland Vollmar
Zweiter Gutachter: Dr. Roland Eils






Contents

Abstract 11

1 Introduction 13

2 Reconstructing cancer pathogenetic pathways with Bayesian

networks 17
2.1 Biological motivation . . . . . .. ... Lo 17
2.2 Bayesian Networks. Foundations. . . . . . .. .. .. ... .. 19
2.3 Bayesian modelling . . . . . ... o000 25
2.4 Bayesian Network learning . . . . . . .. ... ... ... ... 28
2.5 The method of reconstructing the flow of progression of genetic
abnormalities using Bayesian network . . . . . .. . ... .. 31
2.6 Applying Bayesian network analysis to the allelotyping data
(LOH) . . . 35
2.6.1 The data of losses of heterozygosity. Previous studies
of urothelial cancer. . . . . . . ... ... L. 35
2.6.2 Induction of the Bayesian network from LOH data of
urothelial cancer . . . . ... ... ... ... ..... 36
2.6.3 Results of the application of Bayesian network analysis
to the LOH data of urothelial cancer . . . . . . . . .. 37
2.6.4 Discussion of the application of Bayesian network anal-
ysis to the LOH data of urothelial cancer . . . . . . .. 45
2.7 Futurework . . . ... ..o 47
2.7.1 Applying Bayesian network analysis to the compara-
tive genome hybridization data (CGH) . . . ... ... 47
3 Inferring genetic regulatory pathways from expression data 49
3.1 Biological motivation . . . . . . ... ... oL 49
3.2 Microarray technology and expression data analysis . . . . . . 50
3.3 'Transcriptional regulation . . . . . ... ... ... ... .. 54
3.4 Previous approaches for modelling genetic regulatory interac-
tions . . . . .. e 57
3.5 The model of genetic interactions . . . . . .. ... ... ... 60

3



3.6 Bayesian model selection . . . . .. ... ... ... ..
3.6.1 Markov Chain Monte Carlo . . . .. ... ...
3.6.2 Gibbssampling . . .. ... ... ...
3.6.3 Gibbs Variable Selection . . . . ... ... ...

3.6.4 Monitoring convergence of the Markov chain

3.6.5 Bayesian model checking . . . . . .. ... ...
3.7 Inferring the interactions of the cell cycle regulated genes
S. cerevisiae . . . .. ..o
3.8 Discussion . . . . ... .. Lo

4 Conclusions and future perspectives
Publications

Acknowledgements

Bibliography

A Microsatellite loci

B BUGS code

Zusammenfassung

95

97

105

107

109



Abbreviations

BUGS - Bayesian Updating with Gibbs Sampling
CAP - catabolite activator protein

CDK - cyclin-dependent kinase

cDNA - complementary DNA

CGH - comparative genomic hybridization

CPT - conditional probability table

DAG - directed acyclic graph

DKFZ - Deutsches Krebsforschungszentrum

DNA - deoxyribonucleic acid

FISH - fluorescence in situ hybridization

GIST - gastrointestinal stromal tumor

GVS - Gibbs Variable Selection

ISCN - International System for Human Cytogenetic Nomenclature
LOH - loss of heterozygosity

Mb - million base pairs

MCMC - Markov Chain Monte Carlo

MFISH - multicolor fluorescence in situ hybridization
mRNA - messenger RNA

NIPT - number of imbalances per tumor

PCA - principal component analysis

PCR - polymerase chain reaction

PDAG - partially directed acyclic graph

REVEAL - reverse engineering algorithm

RFLP - Restriction Fragment Length Polymorphism
RNA - ribonucleic acid

SSVS - Stochastic Search Variable Selection

UC - urothelial carcinoma






List of Figures

2.1

2.2

2.3

24

2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

A directed graph representing the conditional independence of
the variables X' and Y given Z. . . . . . . .. ... .. .. ...
A directed graph representing that variables X and Y are in-
dependent but not conditionally independent given Z. . . . . .
An example of a simple Bayesian network. The network struc-
ture implies that the joint probability distribution has the
product form P(A, B, C, D, E) = P(A)P(B)P(C | A, B)P(D
| C)P(E | B). The network structure also implies the follow-
ing conditional independence statements: I(A; B,E), I(B;A),
I[(C;E | B,A), (D;ABE | C), (E;A,CD |B). . ........
Analysis of genetic abnormalities data with Bayesian network
model. . . . . L
Bayesian network induced from LOH data of urothelial carci-
nomas. The width of the arc represents the strength of the
probabilistic dependencies between genetic losses. Full arcs
represent ”positive” connections, dashed arcs represent ”neg-
ative” connections. . . . . . .. .. ..o

Hierarchical clusters of the gene expression profiles (Blader et
al. 2001). . ..
Hierarchical clusters of the gene expression profiles (Spellman
et al. 1998). . . . . L
Transcriptional regulation of the genes lacZ, Y and A in F.coli
by the set of activators and the repressor. . . . . . . ... ...
Genetic regulatory functions represented as logic gates. . . . .
Model of the gene interactions, F - Boolean function. . . . . .
Complex model of gene regulatory interactions with activators
and inhibitors ("OR-NOR” regulation). . . . . . . . ... ...
Example of the trace of the MCMC sampled values and density
estimate for the parameter v;. . . . . ... ... ... ...
Example of the trace of the MCMC sampled values and density
estimate for the parameter 6;. . . . . . ... ... ... ... .
Method for inferring the model of gene interactions from ex-
pression data. . . . . ... .o Lo

7

23

74

74

78



3.10 Gene regulatory interactions inferred for 20 genes of S. cerevisiae.
The full arcs represent activatory regulation, the dashed arcs
represent inhibitory regulation. The relationship between genes
influencing one common gene is described by ”OR”-function. . 84

4.1 Systematic approach to hypotheses testing and knowledge dis-
covery in biology. . . . .. ... L oo oL 89



List of Tables

2.1

2.2

2.3

24
2.5

2.6

2.7

3.1
3.2
3.3
3.4

3.5

3.6

The conditional probability table defines the conditional prob-
ability of the variable C given the combinations of its parents’
values. . . . . . ..
Percentage of generated Bayesian networks containing the undi-
rected edge defined by two leftmost columns, and the degree
of confidence of the edge as obtained by bootstrap method. . .
Predictive accuracy of the model for each of the variables ob-
tained by batch prediction and cross-validation methods. . . .
Example of the conditonal probability table for the variable 2q.
Example of the distribution variancies for the conditional prob-
ability distribution of the variable 2q. . . . . . . . .. ... ..
Conditional probability table representing the probability dis-
tribution of the loss of heterozygosity of 17p conditional on
the losses of 9q and 8p. The value 0 (1) indicates loss (no loss).
Posterior probability distributions of the LOH of chromosome
regions conditional on the evidence presented in the leftmost
column. The first line presents the marginal distributions of
losses. For each loss the highest probabilities to occur condi-
tional on the evidence are highlighted in bold. . . . . . . ...

Conditional probability table of regulatee Y, ” AND”-regulation
Conditional probability table of regulatee Y, " OR”-regulation
Conditional probability table of regulatee Y, ”NOR”-regulation
Regulators of the genes found by learning "OR” and "NOR”
models fromdata. . . . . .. ..o L0000
Regulators of the genes found by learning ”OR-NOR” and
"OR-NAND” models from data. . . . . . ... ... ......
Final result: possible activators and inhibitors of the genes. . .

A.1 Microsatellite loci analysed with LOH . . . . . .. ... .. ..

23

38

40
40

41

41

44

62
62
62

79

80
81



10



Abstract

The present thesis is a result of an interdisciplinary work conducted in the
German Cancer Research Center (DKFZ). The major goal of this research
institution is the development of molecular genetics methods allowing to
gain insight into mechanisms underlying the tumor pathogenesis. Functional
genome research and understanding the process of genetic regulation play an
important role in this goal. The experimental molecular genetics techniques
produce a huge amount of data which must be analysed by computational
methods. Novel model-based approaches are required capable to capture bi-
ological processes, to extract new patterns between biological entities and to
provide new hypotheses and predictions.

The biological processes are stochastic in their nature, and the experimental
measurements are noisy. Hence, modelling approaches and learning models
from data must be based on statistics.

The present thesis focuses on probabilistic graphical models. These models
represent probabilistic dependencies between variables. Learning the struc-
ture and parameters of the models from data is facilitated by the Bayesian
methodology which is a modern Bayesian statistics approach.

The first part of this thesis concerns the analysis of data about chromosomal
abnormalities in tumor cells (in particular, allelic losses). The challenge was
to reconstruct from the data the possible flow of progression of genetic ab-
normalities during the development of tumor. I employed the probabilistic
graphical model Bayesian network and used Bayesian network learning. This
approach allowed to discover patterns of allelic losses in urothelial cancer and
to suggest primary and secondary genetic events in the tumor pathogenesis.
The second part of this thesis deals with the gene expression data obtained
with microarray experiments. The challenge was to infer the gene regulatory
interactions from the data that enable to get insight into the mechanisms of
genetic regulation. I proposed a model for the gene regulatory interactions
which is a probabilistic graphical model, hence being able to confront noisy
biological process and data. I have developed an approach for learning the
model from data based on Bayesian approach. The method utilizes Markov
Chain Monte Carlo simulation techniques, in particular Gibbs sampling. I
tested the method with previously published data of the S.cerevisiae cell cy-

11



cle and inferred relations between genes consistent with biological knowledge.
Both methods presented in this thesis contribute to further development of
the field bioinformatics.
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Chapter 1

Introduction

The present thesis is a result of an interdisciplinary work conducted in the
German Cancer Research Center in the field of bioinformatics.
Bioinformatics, originally used for the analysis and storage of the genome se-
quence data, after the completion of the Human Genome Project, has shifted
its focus on the data of another quality. The recent advent of new efficient
molecular genetics technologies allow to gain insight into the function of the
genome. These techniques produce a huge amount of experimental data,
which must be analysed by new computational methods. Hence, bioinfor-
matics experiences a shift from the ”genomic era”, where the emphasis was
on database construction and the analysis of DNA sequence data, to the
”post-genomic era”, where the focus is on knowledge discovery or data min-
ing.

The recently developed high-throughput microarray technology (cDNA chip)
allows to measure expression levels of thousands of genes simultaneously, as
they change over time and react to external stimuli. A great challenge for
bioinformatics is to develop computational methods for inferring gene reg-
ulatory pathways from gene expression data and to reconstruct the genetic
regulatory network. The microarray technology makes it possible to profile
the gene expression in tumor genomes and to gain insight into the molecular
mechanisms underlying such complex diseases like cancer.

The recent advancements of cytogenetics has made it possible to screen the
whole genome for chromosomal abnormalities by means of one experiment.
These methods include comparative genomic hybridization (CGH), array-
based comparative genomic hybridization (matrix-CGH), methods for de-
tection of allelic instabilities like loss of heterozygosity (LOH), and various
in situ hybridization techniques, such as fluorescence in situ hybridization
(FISH) and multicolor fluorescence in situ hybridization (MFISH). It was
shown that chromosomal abnormalities are related to the initiation and pro-
gression of tumor. The cytogenetic methods provide the researchers with
experimental data to infer hypotheses on the tumor pathogenetic pathways.
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Novel exploratory data analysis methods (also called data mining methods)
are required to meet the new biological data. The techniques being in use
include unsupervised methods like clustering, supervised classification meth-
ods, techniques for modelling and simulation. The data analysis attempts to
extract new patterns, new relations between the biological entities, to con-
struct models capturing the biological processes and thus capable to provide
useful biological insights and predictions.

The characteristical feature of the bioinformatics problem space is that the
biological processes are stochastic, and experimental measurements are noisy.
The modelling systems must be robust against noise and possess high infer-
ential power. For these reasons bioinformatics approaches have to speak the
language of probability theory and statistics.

The models, required in bioinformatics, are often much more complex than
”classical” statistical models. They have a great number of parameters which
often cannot be derived with classical statistical methods like maximum-
likelihood estimation.

The present thesis focuses on probabilistic graphical models that represent
probabilistic dependencies (independencies) between variables. The mod-
els have a graphical component, which is an important property for knowl-
edge representation, especially in an interdisciplinary field like bioinformatics.
Learning such models from data enables to uncover multivariate probabilistic
dependencies between variables. For learning the structure and parameters
of the model from data, I employed Bayesian learning, which is a modern
Bayesian statistics approach. Bayesian approach treats the uncertainty on
model structure and parameters in a unified fashion, defining the priors on
these quantities, and performs the probabilistic inference based on Bayes’
theorem. Bayesian approach allows for flexibility by dealing with complex
models with many parameters due to the possibility of hierarchical formula-
tion of the model: the prior on model parameters can be defined with the
help of further parameters. Unlike classical model estimation methods such
as maximum likelihood, Bayesian methods are free from the assumptions of
asymptotic normality, and therefore are more appropriate for learning from
sparse datasets, as the biological datasets are.

In Chapter 2 I employ the probabilistic graphical model Bayesian Network.
Bayesian Network represents the multivariate probabilistic dependencies be-
tween variables. I provide an introduction into the Bayesian network model
and principles of probabilistic reasoning in Section 2.2. Bayesian network
model can be learned from empirical data as described in Section 2.4. 1
introduce my approach for reconstructing the possible flow of progression of
genetic abnormalities with Bayesian network in Section 2.5. I applied this
approach to the allelotyping data (LOH). This allowed to discover patterns
of allelic losses in urothelial cancer and to suggest primary and secondary
genetic events in tumor pathogenesis (Section 2.6).
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In Chapter 3 I deal with inferring genetic regulatory interactions from mi-
croarray data. I propose a model for the genetic regulatory interactions
which is also a probabilistic graphical model, hence being able to confront
noisy biological process and data. In Section 3.5 I introduce the model
which originates from the field of probabilistic graphical models. T have de-
veloped an approach for learning the structure and parameters of the model
from gene expression data. I employed the methodology of Bayesian learn-
ing (Bayesian model selection). The general introduction into this approach
is given in Section 2.3. In Section 3.6 I present the application of this
approach for learning my model. I tested my approach on a previously pub-
lished dataset of budding yeast cell cycle and present the results in Section
3.7.

In Chapter 4 I present an outlook of my work for biological and bioinfor-
matics research.
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Chapter 2

Reconstructing cancer
pathogenetic pathways with
Bayesian networks

2.1 Biological motivation

During the last few decades of cancer research it was shown that initiation
and progression of tumor is related to chromosomal abnormalities. A number
of recurrent translocations were found to be characteristically associated with
different forms of leukemia, lymphoma and soft tissue tumors. It was shown
that deletions (losses of chromosomal material) can lead to inactivation or
loss of the functionality of the so called ”tumor supressor genes”, which are
involved in the maintenance of normal cell growth and differentiation. Am-
plifications (gains, i.e. multiple copies of the same chromosomal region) can
lead to the abnormal activation or overexpression of ”oncogenes” responsi-
ble for the abnormal cell growth. The genes responsible for regulation in
the cell (transcription factors, growth factors, receptors of growth factors,
etc.) become deregulated in consequence of abnormality and contribute to
the pathological phenotype. Hence, specific chromosomal aberrations have
been shown to be significant markers of tumor progression.

Solid tumors appear to have a much larger and heterogeneous set of chromo-
somal aberrations. Genetic changes accumulate during tumor progression.
Many of the genetic changes might be random due to the general genomic
instability in tumor, but there must be certain significant genetic events and
certain significant dependencies among the events relevant to the formation
of tumor. The interplay of genetic changes disrupt the normal cell cycle, pro-
moting other genetic changes, - the cell ”goes out of control”. While relating
the accumulation of genetic alterations to tumor progression, it is important
to indicate which events tend to occur early in tumor progression and which
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events tend to occur together, possibly identifying a tumor subclass.

One of the first attempts to describe the tumor pathogenetic process as the
accumulation of multiple genetic alterations was the work of Fearon and Vo-
gelstein (1990), who had shown that at least four different genetic changes
are needed to transform a normal cell into a malignant cell corresponding to
different stages in progression of colorectal cancer. This model represented
the genetic changes as a single path going from normal cell to advanced tu-
mor.

Many types of cancer are too heterogeneous in their causes to be described
with such simple path models.

The advances of molecular genetics enable to screen the whole genome for
chromosomal abnormalities. The methods like LOH (loss of heterozygosity),
CGH (comparative genomic hybridization), matrix-CGH provide researchers
with experimental data to infer hypothesis about tumor pathogenesis. The
challenge of this work was to introduce a computational method enabling to
reconstruct the possible flow of progression of genetic abnormalities (cancer
pathogenetic pathways) from the single ”snapshot” of abnormalities provided
by the cytogenetic experiments.

The first attempt to employ mathematical models to infer the order of ge-
netic changes from cytogenetic data was made by R. Desper (see Desper et
al. 1999, 2000). They described the progression of alterations as a tree with
a root, representing the normal cell and used two different tree models. In
a distance-based tree leaf nodes represent genetic aberrations. The distance
function between the nodes in the tree was defined based on probabilities of
the co-occurrence of genetic aberrations. A distance-based phylogenetic tree-
building algorithm was used to infer the tree structure that fits the pairwise
distances at best. Alternatively, a maximum weight branching algorithm
was used to reconstruct a tree, in which both internal nodes and leaf nodes
correspond to aberrations. A major limitation of these models is that they
describe the progression of genetic events as trees, whereas the biological
intuition suggests that this is a more complex process and does not neces-
sarily evolve as a tree structure. Pathways of genetic events might occur in
parallel and converge in one or more common events. Tree models postu-
late that there is only one path from the root of the tree passing through a
particular genetic event. Accordingly, a tree model would not detect alterna-
tive pathways of genetic events that converge in a certain aberration pattern
characterizing particular tumor subtypes.

In the present work I employ a more general mathematical model, i.e. a
Bayesian network model. Bayesian network model can be learned from data
due to its statistical foundations. This enables to uncover the probabilistic
dependencies between genetic abnormalities. In the following I will give an
introduction into the Bayesian networks formalism and Bayesian networks
learning. Then I will present my approach for reconstructing the flow of pro-
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gression of genetic abnormalities with the help of Bayesian network model.

2.2 Bayesian Networks. Foundations

Bayesian networks (Cowell 1999, Heckerman 1998, Jensen 1996, Pearl 1998)
are probabilistic models that use probability as a measure of uncertainty.
In their original concept Bayesian networks were designed to represent the
qualitative knowledge in expert systems and to provide the mechanism for
reasoning under uncertainty. There are also other techniques to represent un-
certainty like e.g. certainty factors used in the medical expert system MY CIN
(Shortliffe 1976), fuzzy logic (Zadeh 1983) and belief functions (Dempster
1967, Shafer 1976). However, probability theory has a long history in rep-
resenting uncertainty and provide a good theoretical basis for the uncertain
inference. Heckerman (1986) established a connection of certainty factors to
the probability theory by redefining the interpretation of certainty factors as
monotone functions of likelihood ratios.

In contrast to the rule-based expert systems, the Bayesian networks describe
the relationships among objects (variables) with the help of a joint probabil-
ity distribution.

Let {X1,...,X,} be a set of random variables and {z1,...,z,} be a set of
their possible instantiations. The joint probability distribution of the vari-
ables in X is

P(z1,...,2n) = P(X1 =21,..., X = Zy).

Unfortunately, the direct specification of the joint probability distribution
involves a huge number of parameters. The joint probability distribution
over n binary variables has 2" parameters (the probabilities P(x1,...,x,)
for every possible realization z1,...,z, of the variables). This was one of
the early criticisms of using probability in expert systems. In most domains,
however, many subsets of variables can be independent or conditionally inde-
pendent. Simplification of the joint probability distribution can be obtained
by exploiting the independence structure among the variables.
Let X and Y be two random variables with joint probability distribution
P(X,Y). We say that variables X and Y are independent if for all possible
values x,y of X and YV

P(z,y) = P(z)P(y).
Otherwise, the variables are dependent. Since

P(z,y) P(z,y)
the condition for the independence between two variables can be equivalently
formulated as: P(z]y) = P(z) or P(y|z) = P(y). When X and Y are inde-
pendent, learning the value of Y gives us no information about X, and vice
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versa. Note that the relation is symmetric. We can represent the depen-
dencies between variables using a graph, in which each variable is denoted
by a node. When two variables are dependent, there is an undirected edge
between them. Missing an edge between two variables in a directed graph
implies the independence of these variables.

Consider a relation involving three random variables. We say that X and Y
are conditionally independent given Z, when for all possible values z, vy, z of
X,Y and Z

P(zly, z) = P(zlz). (%)

We denote this as I(X;Y|Z) and refer to as conditional independence state-
ment. The definition of conditional independence conveys the idea that once
Z is known, knowing Y can no longer influence the probability of X. The
dependency between X and Y is mediated through Z.
An alternative but equivalent definition of conditional independence is given
by:
P(z,y|z) = P(x|z) P(y|2).

Proof:
Ple,y,z) _ Plzly, 2)P(y, 2)

P(z) P(z) '

P(z,ylz) =

Since
P(y,z) = P(y|z)P(z)

and using (x):
P(z,y|2) = P(z[2)P(y|2).

The conditional independence between variables X and Y given Z can be
represented with the help of a directed graph as in Figure 2.1 by missing
an edge between X and Y, although there is a path between X and Y go-
ing through Z. The conditional (in)dependency cannot be represented in an
undirected graph; two independent variables will be connected if there exists
some other variable that depends on both. The undirected graphs are not
able to represent nontransitive dependencies. The directed graph in Figure
2.2 represents that variables X and Y are independent (they are not con-
nected with an edge), but not conditionally independent.

The definition of conditional independence can be generalized to sets of
variables. Denoting by boldface capital letters the sets of variables X, Y
and Z, I(X;Y|Z) means that the set X is independent on Y conditioned on
Z. Two nodes in the graph have no common edge if and only if they are
conditionally independent given the set of all other variables in the graph.
Probabilistic graphical models based on undirected graphs are called Markov
networks (Lauritzen 1996).

Bayesian networks are probabilistic models based on directed graphs which
represent conditional independencies between variables. A Bayesian Network
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Figure 2.1: A directed graph representing the conditional independence of
the variables X and Y given Z.

(0

@/

Figure 2.2: A directed graph representing that variables X and Y are inde-
pendent but not conditionally independent given Z.
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model consists of two components. The first is a directed acyclic graph G,
whose vertices correspond to variables Xi,...,X,. The graph G encodes
conditional independencies between the variables: each variable X; is inde-
pendent of its non-descendants, given its parents in G. Bayesian Network is
a representation of a joint probability distribution over a set of random vari-
ables Xi,...,X,,. Due to conditional independencies, the joint probability
distribution of the variables can be decomposed in the product form:

P(Xy,...,X,) = [[ P(Xi|Pay),

=1

where Pa; is the set of parents of X; in G. Conditional probabilities appear-
ing in the product form describe the conditional probability distribution for
each variable given its parents in the graph G. This is the second component
of the Bayesian network. The conditional probability distributions are nor-
mally stored in conditional probability tables (CPTs). Figure 2.3 shows a

Figure 2.3: An example of a simple Bayesian network. The network structure
implies that the joint probability distribution has the product form P(A, B,
C, D, E) =P(A)P(B)P(C | A, B)P(D | C)P(E | B). The network structure
also implies the following conditional independence statements: I(A; B,E),
I(B;A), I(CE | B,A), [(D;ABE | C), I(E;A,C,D | B).

simple example of a Bayesian network and the set of independencies it en-
codes. Table 2.1 presents the conditional probability table for the variable
C.

An interesting feature of the variables in Bayesian networks is their Markov
relations, i.e. whether the variable Y is in the Markov blanket of X. The
Markov blanket of a node is the set of its parents, children and parents of
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C
A|IB| 0 1
0]101]0.8|0.2
010604
110]07]0.3
11110109

Table 2.1: The conditional probability table defines the conditional proba-
bility of the variable C given the combinations of its parents’ values.

the children. It is the minimal set of variables that ”shields” X from the rest
of the variables in the network. Given its Markov blanket, X is independent
from the remaining variables. Nodes from one Markov blanket probably in-
dicate some common process modelled by the variables.

Bayesian networks provide the mechanism for probabilistic inference (proba-
bilistic reasoning). One can solve problems such as ”What is the probability
of X; = z; given observation of some of the other variables?”. For each node
in a Bayesian network a marginal probability distribution is computed from
the joint probability distribution P(z1,...,z,):

P(X; =) = > P(zy,...,2,).

T1yee3Ti—15T5415-+9Tn

This is an initial (prior) probability distribution computed before any ev-
idence is available. (Note that for continuous variables the summation is
replaced with integration.) Knowledge about the value of a variable in the
network can modify the probabilities of other variables. When a particular
variable in the network is observed to have a certain value, this evidence will
be propagated through the network causing updating the probability distribu-
tions of other variables in the network (belief updating). This will lead to the
marginal posterior distributions of the nodes that incorporate the evidence:

P(X; = z;|X; =e), i # 7,

which is the conditional distribution. Propagation of evidence in Bayesian
networks exploit the convenient factorized representation of the joint prob-
ability distribution. J. Pearl showed that evidence propagation in Bayesian
networks can be transformed into the local computations on the graphical
structure of the Bayesian network (see Pear] 1988, also Castillo 1997, Neapoli-
tan 1990).

A Bayesian Network structure implies a set of independence statements.
More than one graph can imply exactly the same set of independencies.
These graphs are called independence equivalent. Equivalent graphs have the
same underlying undirected graph but might disagree on the direction of some
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of the edges. Pearl and Verma (1991) showed that DAGs are independence
equivalent iff they have:

e the same underlying undirected graphs and

e the same v-structures, i.e. a DAG on triplet of nodes X, Y, Z with
edges X — Y and Z — Y, where X and Z are not adjacent.

Chickering (1996 b) showed that an equivalence class of network structures
can be uniquely represented by a partially directed acyclic graph (PDAG),
which contains all the edges from the underlying directed graph G. The edges
are directed in the PDAG, if in graph G they are part of a v-structure or
could participate in a v-structure by reversal. The other edges are undirected
in the PDAG and might be reversible in equivalent directed graphs, so that
some members of the class contain the edge X — Y, while others contain
the edge X < Y. For example, a PDAG corresponding to the graph in
Figure 2.3 will contain the directed edges A — C' and B — C, because they
comprize the v-structure. The edge C' — D will also keep its directionality,
since it could participate in the v-structure otherwise. The edge B — E will
be undirected in the PDAG.

Given a directed graph G the PDAG representation of its equivalence class
can be constructed efficiently (see Chickering 1996 b). Learning procedures
based on scoring metrics as those described later in Section 2.4 can find exact
network structure up to the correct equivalence class. The presentation of
the joint probability distribution will be the same for all members of the
equivalence class, unless we use a subjective prior for the network structure
enabling to distinguish among them (see Heckerman, 1995). The reversibility
of edges in equivalent graphs does not effect belief updating in a Bayesian
Network.

The advances in research on Bayesian modelling led to the development of
methods to infer Bayesian networks from databases of cases rather than from
the insight of an expert. Bayesian Network learning consists of two major
tasks:

e the induction of the graphical structure G, specifying the conditional
independence assumptions among the variables in X

e the estimation of conditional probabilities defining the dependencies in
the given graphical model G.

The first of these tasks involves searching in the space of possible graphical
models for one or more structures consistent with the conditional indepen-
dence relationships suggested by the data. A scoring function that evaluates
each network with respect to the training data was derived by Cooper and
Herskovits (1992). They applied the methodology of Bayesian statistics. In
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the next section I provide a general introduction into this methodology. Sec-
tion 2.4 presents the derivation of the Bayesian scoring metric using Bayesian
statistics.

In the last years Bayesian network models have gained increasing popularity
for the possibility they provide to represent uncertain knowledge in complex
domains and to make predictions. Due to the development of Bayesian net-
work learning from data, Bayesian network models have become an important
data mining tool. Here I mention only several applications. Bayesian network
is the central part of the expert system HUGIN (Andersen et al. 1989), which
was used e.g. in the commercial tool BayesCredit that predicts the risk of
a credit (see http://www.hugin.com). Bayesian networks were broadly used
in medical applications (see Lucas et al. 2001). The Bayesian expert system
DIAVAL was built for diagnosis of heart diseases (Diez et al. 2001). Bayesian
networks can be used for classification purposes (Friedman and Goldszmidt
1996). In molecular genetics domain Bayesian network learning was applied
to reveal the genetic interactions from gene expression data (Friedman et al.
2000), this is presented in Section 3.4. The present thesis demonstrates the
application of the Bayesian network model in cancer genetics domain.

2.3 Bayesian modelling

Probability and statistics provide a basis for addressing two crucial problems
in artificial intelligence - how to reason in the presence of uncertainty, and
how to learn from experience. The central quantity in statistics is likelihood,
that is the probability that a model with particular parameter values assigns
to the observed data. Assume, cases X1i,..., X have been observed and 6
is the vector of the model parameters, then the likelihood is:

(&
Lz, ...,2c) = P(x1,...,200) = [ [ P(x:]6).

i=1

The likelihood is regarded as a function of the model parameters given data.
It encapsulates the relative abilities of the various parameter values to ”ex-
plain” the observed data, which may be considered as a measure of how
plausible the parameter values are in light of the data.

Determining the parameters of the model from empirical data is a task of
statistical inference and corresponds to the concept of learning in artificial
intelligence. In modern statistics there are two approaches to learning. The
conventional frequentist approach addresses this task by attempting to find
estimators for unknown quantities. The widely used maximum likelihood pro-
cedure estimates the parameters of the model to be those that maximize the
likelihood given the observed data. For a large class of models, the maximum
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likelihood procedure has the frequentist justification that it converges to the
true parameter values in the limit as the number of observed cases goes to
infinity. This is not always the case, however, and even when it is, the quality
of such estimates when based on small amounts of data may be poor.

In contrast, the Bayesian approach reduces statistical inference to probabilis-
tic inference by defining a joint distribution for both the parameters and the
observable data. Conditional on the data actually observed, posterior prob-
ability distributions for the parameters and for future observations can then
be obtained.

This is a crucial aspect of Bayesian methods, in contrast to frequentist pro-
cedures, - to regard 6 as a random quantity. Uncertainty concerning the
parameters of the model is expressed by means of a probability distribution
over the possible parameter values. A prior probability distribution for the
parameters, P(6y,...,0),), is required, which embodies our judgement, before
seeing any data, of how plausible it is that the parameters could have values
in the various regions of parameter space. The introduction of a prior is
the crucial element that converts statistical inference into an application of
probabilistic inference.

When we combine a prior distribution for the parameters with the conditional
distribution for the observed data, by Bayes’ rule, we get a joint probabil-
ity distribution for all quantities related to the problem, the full probability
model:

P(01,...,9p,x1,...,xc)=P(91,...,HP)P(:L"l,...,mc|91,...,9p):

= P(h) HP(J:ZM).

Using the Bayes’ rule we can derive the posterior distribution of the param-

eters, given observed values for Xi,..., X¢:
c
P4 P(x;|0
b0 P(z1,...,2¢) c

() IT P(x:|6)do

—
h)

~
Il
—

Since the denominator does not depend on 6, the posterior can be expressed
as a proportionality in terms of the likelihood:

PO|xy,...,xc) x P(O)L(O|z1,...,zc)
(the operator o« means ”is proportional to”). In words:

posterior distribution o likelihood * prior distribution.
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This shows how the introduction of a prior converts the expression of relative
plausibility contained in the likelihood into an actual probability distribution
over parameter space.

In general, Bayesian methodology use probability to express all forms of un-
certainty: uncertainty about parameters of the model and uncertainty about
the model itself. The results of Bayesian learning are expressed in terms of
probability distributions over all unknown quantities.

Learning the model from data is often called in the literature model selection
or model choice. A Bayesian approach to model selection is a problem of
calculating the posterior probability of a model given data for a collection of
candidate models. Then the model with the maximum posterior probability
will be selected.

Suppose that the data D have been generated by a model m, one of a set M
of candidate models (m € M). If p(m) is the prior probability of model m,
then the posterior model probability is given by Bayes rule:

p(m)p(D|m)
>> p(m)p(D|m)’

méeM

p(m|D) =

where p(D|m) is the marginal likelihood calculated by Total Probability The-
orem:

p(D|m) = / p(D [, 0,,)p(0s|m) A0, (+)

and p(6,,|m) is the conditional prior distribution of model parameters 6,
for model m. Since the denominator is constant for different models, it is
sufficient to compute the marginal likelihood p(D|m) for the model m, in
order to select the most probable model. Again, the definition of the prior
on model parameters is required.

Bayesians divide into two schools on the point of prior definition. Some try
to produce ”objective” (noninformative) priors that represent complete igno-
rance about the parameters. Others, while finding ”subjective” priors useful
on occasion, regard the requirement for complete objectivity as unnecessary.
A common approach for prior elicitation is to choose a prior distribution
with density function similar to the likelihood function (Bernardo and Smith,
1984). In doing so, the posterior distribution of # will be in the same class of
distributions as the prior. The prior is said to be conjugate to the likelihood.
Conjugate priors play an important role in Bayesian methods, since they
can simplify the integration procedure in (). A list of important conjugate
distributions can be found in (Bernardo and Smith, 1984).

Learning Bayesian network model from data was facilitated based on the
general Bayesian approach.
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2.4 Bayesian Network learning

Here I shortly present how the Bayesian learning approach was used by
Cooper and Herskovits (1992) to facilitate the Bayesian network learning
from data, i.e. to derive the Bayesian scoring metrics.

Let X = (Xy,...,X,) be a set of n discrete variables, i.e. a multinomial
random variable, where each variable X; can take one of r; distinct values
1,...,7r;. We will denote by z; a state k of a variable X;, k € {1,...,r;}.
A conditional dependency links a variable X; to a set of parent variables, and
it is defined by the conditional distributions of X; given each configuration
i1, - - -, Tig; Of the parent variables, ¢; is the number of all possible configura-
tions of the parents of X;. We denote by 6,; = (0;;1,...,0ij,) the parameter
vector associated to the conditional distribution X;|m;;,7 € {1,...,q}

Let D be a database of N independent cases, where each case [ is a random
sample (z1;,...,Zn),l € {1,..., N} from a multinomial distribution.

The following assumptions were made to facilitate the derivation of the scor-
ing measure:

e Assumption 1: the data set D is complete, there are no missing values;

e Assumption 2: parameter independence;
The parameter vectors #; and 6; associated to different variables X;
and X are independent for i # i’ (global independence), so:

n

p(6|D) = [ [ »(6:|D)

=1

The parameters 6;; and 6;; associated to the distributions of X; given
different parent configurations, are also assumed to be independent
(local independence), then:

p(6:D) = [T (6D

e Assumption 3: parameter modularity,
If a node has the same parents in two distinct networks, the probability
distribution functions of the parameters, associated with this node are
identical in both networks;

p(0i|m;) = p(6:|m;)

e Assumption 4: the prior probability distribution of the parameters 6,;
is the Dirichlet distribution with hyperparameters {1, ..., Qijr } :

D(aijla Caey O,/ij”),
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Qi — 1
Z] X Hezgk ’

then:

i T

p(8]D) o ﬁHHef;,gk g

i=1 j=1k=1

Let o5 = Z a;ji. Let Nijp be the number of cases in D in which variable

X; has the value k and parents 7; are instantiated with the values of config-
uration j. Let N = ) N;j;. Since the cases are independent, the likelihood
k

of the data D can be written as:

q T

= [T1IIT%"
j=1k=1

i=1

(multinomial distribution). The reason for using Dirichlet distribution for the
prior of the parameters is that it is the natural conjugate for the multinomial
distribution. The posterior distribution of the parameters given D, then, is

i T

p(O10) o [T [0

i=1 j=1k=1

that is the Dirichlet distribution:

D(a’ijl + Nijla ooy Qyr; Nijm)-
The information conveyed by the sample can be therefore incorporated by
simply updating the hyperparameters of the distribution of ;; by increasing
them of the frequency of cases with particular parent-child configurations

observed in the sample.
Under the previously introduced assumptions, the marginal likelihood

p(Dim) = [ p(Dlm, 0,00, m)as
is a Dirichlet integral and has a closed form solution:
N7 C T (o + Nigr)
D zg 1] tJ
‘m H H F C\KU + NZ] H F(aijk) ’

where I'() is the Gamma function satisfying I'(1) = 1 and I'(n+1) = nI'(n) =
nl. Cooper and Herskovits suggested the noninformative assignment for the
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prior distribution of the parameters: D(1,...,1), i.e. hyperparameters o, =

1. Then o = Z 1 =r;. Thus, p(D|m) can be expressed as:

p(D|m) = HH NT;_Tz_lvHka

=1 j=1

and

P(m, HH Nr:__TZ_llHNZJk

=1 j=1

This result is referred to as the Bayesian scoring of the quality of a network
structure or K2 metric, because it is used in the algorithm referred to as
K2-algorithm (Cooper and Herskovits 1992).

In practical implementations, to simplify the computations often the loga-
rithm of this equation is used:

(r; = 1)!
logP(m, D) = logP(m +ZZZO Ny + 71— 1] -|—ZlogN”,c
=1 j=1 k=1
An important characteristic of the Bayesian scoring is its decomposability.
Denote the local contribution of a node X; and its parents Pa; to the overall

score of the model by

(r; — 1)!

ocal = l ' l Nz'
Stocal ;OQ(N +ri—1)!+kz_;09 ik

Then the total score is:

S =logP(m +Zslm, X;, Pa;).

=1

Hence, the contribution of each variable X; to the total network score depends
only on the values of X; and the values of its parents Pa; in the training
instances.

The optimization problem of learning the structure G that maximizes the
score is known to be NP-hard (the number of candidate structures grows
exponentially with the number of nodes), see Chickering (1996 a). Heuristic
methods have to be used to reduce the search space to the subset of models.
Cooper and Herskovits proposed a greedy (hill climbing) search algorithm
that takes advantage of the decomposability of the score and works locally
(K2-algorithm). There is also an arc inversion algorithm. The algorithms
assume that there is an ordering among the variables. Both algorithms start
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from an initial network structure containing no edges. For each variable they
examine the set of its possible parents by adding the edges incrementally until
the score of the structure does not further increase. During the greedy search,
each node in the order is tested as child only of the lower nodes. During the
arc inversion procedure, higher nodes will be tested first and, if not set as
children, they will be tested as parents of lower nodes in the order. In this
work I used the software Bayesware Discoverer (http://www.bayesware.com),
which implements both of these two heuristic procedures: the greedy search
and the arc inversion.

2.5 The method of reconstructing the flow of
progression of genetic abnormalities us-
ing Bayesian network

In the present work I introduce the method of reconstructing the flow of
progression of genetic abnormalities in tumor samples. The main idea is to
apply Bayesian network learning to the data of genetic abnormalities. The
probabilistic semantics of Bayesian network allows to model the stochastic
nature of occurrence of genetic abnormalities and to handle noisy experi-
mental data. Once a Bayesian network model is learned, one can exploit it
for discovering important aspects of the variables representing genetic abnor-
malities.

The induced Bayesian network model can be used to study dependencies and
independencies between the genetic abnormalities. These are multivariate
dependencies describing the probability of one event dependent on configu-
ration of one or more predecessor-events. The dependencies are much more
complex than pairwise co-occurrences of events. ”Negative” dependencies
describing the occurrence of an event, conditioned that other events do not
occur, can also be captured.

One can investigate the graphical component of the Bayesian network. The
lack of edges in the graph going from one variable to another suggests an
independence between these variables. One can investigate which variables
are directly connected with each other, and which are connected via other
variables. Also, by considering Markov blankets of the nodes one can reveal
interesting groups of directly related abnormalities.

Further, the quantitative component of the Bayesian network can be ex-
amined, namely the conditional probability distributions representing the
dependence of one variable on its parent variables in the network.
Exploiting the mechanism of probability propagation and belief updating in
the Bayesian network one can assess the probability of one abnormality given
the observation of some other abnormality. To gain an insight into the effect
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of one abnormality on the other connected with it by an edge, for each edge
X; — X in the network, one can calculate the ratio of the posterior marginal
probability and the prior marginal probability:

P(X;=1|X;=1)

This ratio reflects the change in the probability distribution of X; after ob-
serving X;. The ratio is larger than 1 if the occurrence of X; increases the
probability of X; (“positive” connection) and is less than 1 if the occurrence
of X, decreases the probability of X;(“negative” connection).

The induced Bayesian network model can be used to infer hypotheses about
early events that initiate the accumulation of abnormalities and about events
associated with late stages of tumor progression. If a particular alteration
is a late event, the probability of other alterations to be observed simulta-
neously will be high. Abnormalities which lead to malignant transformation
of the cell will give rise to many other abnormalities and, therefore, in the
Bayesian network they will have high degree of connectivity and high impact
on other abnormalities according to their conditional dependency strength.
As already outlined, the mechanisms of probability propagation in the Bayesian
network allow to assess the probability of one genetic event conditional on
the observation of some other events. This leads to the idea to investigate
in a quantitative way the progression of abnormalities along the hypothetic
pathways as they are being accumulated during oncogenesis. One can insert
in the Bayesian network evidence on occurrence (or no-occurrence) of abnor-
malities from some interesting patterns of genetic events and investigate the
probability of particular abnormalities conditional on this evidence. For each
genetic event of interest one can inspect what other events make this event
mostly probable. The predictions on genetic abnormalities under the induced
Bayesian network model allows to infer hypotheses about the progression of
these events.

An important issue with this approach to analysis of molecular genetics data
is to induce the Bayesian network model with high degree of confidence.
One problem while applying the K2-algorithm for learning the Bayesian net-
work from data is that this heuristic search algorithm depends on the ordering
of the variables. A normal practice in the Bayesian networks community is
to generate as many Bayesian networks as possible while presenting to the
algorithm different random variable orderings. Then, the Bayesian network
with the highest scoring will be chosen.

When working with sparse dataset and relatively high number of variables,
the induction of the highest scoring Bayesian network model might not be
sufficient (Friedman et al. 1999 a, b). The amount of data might not be
enough to induce a high scoring network. Network structures with almost
equal scores might have very different structures. The score of the network

32



reflects how well does the network fits the data. The data might contain a lot
of noise, and some relations found might be spurious (random). Friedman et
al. studied the problem of assessing a confidence measure on features of the
learned Bayesian network structure. The authors proposed to use such con-
fidence measures to induce better Bayesian network structure from the data.
Following Friedman et al., a ”feature” of the model could be considered as re-
liable, if this feature appears in the majority of the models learned from data.
Also, features of the Bayesian network model could be considered as more
reliable, if they were induced from “perturbed” data, i.e the model does not
only fit the training data, but also generalizes from the data. The perturbed
data can be generated from the original dataset by re-sampling (with or with-
out replacement). This is, generally, the idea of the non-parametric bootstrap
method, originally developed by Efron and Tibshirani (1998). Friedman et
al. apply the method for the estimation of confidence in the features of
learned Bayesian networks.

Consider a set of discrete random variables X = {Xj,..., X,,} where each
variable X; may take on values from a finite set. We denote by = assignments
of values to the variables in the set X. Suppose we are given N observations
{z[1],...,z[N]},- the dataset D of size N. The non-parametric bootstrap be-
gins by re-sampling N times (with or without replacement) from the dataset
D. This results in a sequence of instances:

Di = {=z1[1],...,=1[N]}.
The procedure will be repeated m times, the i** replicate is then:
D; = {z}[1],...,x][N]}, i=1,...,m.

From each replicate dataset D; the Bayesian network structure will be learned
G(Dy). Let f(G?) be a feature of the Bayesian network structure G(D;). De-
fine the following quantity

(= =316,

where
L, f € G(D;)

0, otherwise

e =1

In words, f(G7) is equal to 1, if this feature is present in the network struc-
ture. The quantity py(f) is called the confidence in the feature of the
Bayesian network learned based on the dataset D. In the following, we
are interested in the structural feature of the model, i.e. whether two nodes
are directly connected.
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Figure 2.4: Analysis of genetic abnormalities data with Bayesian network

model.

34



My approach for the analysis of the data of genetic abnormalities is pre-
sented in Figure 2.4. For the induction of the Bayesian network model with
high degree of confidence the following procedure is proposed. Generate
Bayesian networks with different random variable orderings using heuristic
algorithms (e.g. greedy search, arc inversion). For each undirected edge
from the generated networks calculate the percentage of its occurrence in
the networks. Further, generate Bayesian networks from “perturbed” data
(bootstrap method) and calculate the degree of confidence of this edge. For
the resulting Bayesian network, select the edges that were most frequently
induced by the network generation procedure, and still have a high degree of
confidence as obtained by bootstrap method.

If for some edges the directions in different Bayesian networks do not coin-
cide, for the resulting Bayesian network choose the direction of an edge going
from the more frequent abnormality to the less frequent. This is a biolog-
ically plausible assumption, since more common abnormalities are likely to
appear earlier than less frequent ones.

Once the Bayesian network model is induced, the goodness-of-fit, of the model
must be checked. The idea of the Bayesian model checking is to assess the
posterior predictions for the variables made under the model and compare
them to the observed values. If the model fits, then the model predictions
should be similar to the observed data. Two procedures can be performed:
batch prediction and cross-validation. The batch prediction predicts the value
of a single variable in each case given the evidence on other variables con-
tained in the case. For the cross-validation method the dataset is divided in
parts. The cross-validation method predicts the value of the variable in one
part of the dataset with the conditional probabilities of the model estimated
based on the other part of the dataset.

After induction of the reliable Bayesian network model, it can be used to
infer hypotheses about the progression of genetic abnormalities.

I applied the described method for the analysis of data of losses of het-
erozygosity in urothelial cancer samples. This will be presented in the next
section.

2.6 Applying Bayesian network analysis to
the allelotyping data (LOH)

2.6.1 The data of losses of heterozygosity. Previous
studies of urothelial cancer.

In tumor samples the condition called ”loss of heterozygosity” (loss of alleles
on one chromosome) can be detected for particular markers for which an

35



individual is heterozygous. Losses of heterozygosity indicate the presence of
tumor suppressor genes inactivated due to the allelic loss and are integral
parts of tumor progression. Screening for LOH is of great significance for
understanding the tumorigenesis. In LOH experiments, several chromoso-
mal regions (loci) are being mapped with microsatellite markers labeled with
fluorescent substrates. Then PCR, (polymerase chain reaction) is performed.
The PCR product is then analysed to measure the intensity of fluorescent
signal with an automated fluorescent DNA sequencer. Loss of heterozygosity
is identified at particular microsatellite loci when either no peak or a very
weak peak is detected in the tumor DNA as compared to the normal DNA
(for example, from blood). For the introduction into the molecular genetics
methods see for example Strachan and Read (1996).

Urothelial carcinoma of the bladder (UC) comprise biologically and mor-
phologically heterogenous groups of neoplasms. During the last decade a
broad spectrum of genetic alterations has been described in UCs. Cytoge-
netic, CGH and microsatellite analyses revealed loss, gain and amplification
of DNA sequences at several chromosomal regions (Knowles, 2001). Hemi-
and homozygous deletion at and methylation/mutation of the CDKN2A gene
at chromosome 9p21 is considered to be an early genetic event (Berggren et al.
2003). The vast majority of urothelial carcinomas acquire several additional
genetic alterations during progression, including deletion of chromosome 2q,
5q, and 8p, deletion/mutation of the p53 and Rb genes or amplification and
overexpression of the FRBB-2 gene (Langbein et al. 2002, von Knobloch
et al. 2000, Muschek et al. 2000, Habuchi et al. 1993, Logothetis et al.
1992, Mellon et al. 1996). Although some of the genetic alterations occur
at random, the recurrent changes may refer to a network of genes that are
specifically involved in tumor development and progression.

Several models indicating a step-by-step order of genetic changes as a single
pathway from normal urothelial cell to malignant tumor have been proposed
(Dalbagni et al. 1993, Spruck et al. 1994, Reznikoff et al. 1996).

Desper et al. (1999) and Schéffer et al. (2001) applied tree models to infer
the order of genetic changes during progression of urothelial carcinomas. As
already pointed out in Section 2.1, tree models are too restrictive to model
the heterogeneous process of tumor progression.

I use Bayesian network model to describe the complex dependencies between
the genetic abnormalities. I apply the framework presented in section 2.5.

2.6.2 Induction of the Bayesian network from LOH
data of urothelial cancer

The dataset I was working on contained the data of allelic losses from 123
cases of papillary urothelial carcinomas of the bladder.
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I considered 17 random variables representing the stochastic genetic events
“complete loss of heterozygosity at a given chromosomal region”, which are
encoded for example such as 9p for loss of the specific region at the short
arm of chromosome 9. These random variables have binary values 0 or 1 rep-
resenting the occurrence or non-occurrence of LOH in a case, respectively.

I have generated 100 Bayesian networks with different random variable order-
ings with greedy search and with arc inversion strategies. For each undirected
edge from the generated networks, I have calculated the percentage of its oc-
currence in the networks (see Table 2.2).

Further, I performed the non-parametric bootstrap method. I generated 30
instances from the dataset by re-sampling without replacement. From each
of the resulting datasets I learned 3 Bayesian networks with different ran-
dom ordering of the variables and different search strategies, thus obtaining
90 Bayesian network structures. Again, for each undirected edge, I estimated
the degree of confidence by calculating in how many network structures this
edge was induced. For the resulting Bayesian network, I have selected edges
that were most frequently induced by the network generation procedure, and
still have a high degree of confidence as obtained by bootstrap method (see
Tab. 2.2). For the edges, for which the directions in different Bayesian net-
works did not coincide, I chose the direction of an edge going from the more
frequent abnormality to the less frequent. The resulting induced Bayesian
Network is presented in Figure 2.5.

Once I have induced the Bayesian network model, I checked the goodness-
of-fit of the model to the data. I have performed batch prediction and cross-
validation as described in the section 2.5. For the cross-validation I have
divided the dataset in two parts and repeated the cross-validation procedure
100 times. The results are presented in Table 2.3.

2.6.3 Results of the application of Bayesian network
analysis to the LOH data of urothelial cancer

The resulting induced Bayesian Network is presented in Figure 2.5. It is a
representation of the most significant features of the underlying probability
distribution. Some arc connections (see Table 2.2) like 13q — 3p, 11p — 11q,
18q — 6q have poor level of confidence, but excluding them from the model
decreased the overall predictive accuracy of the model. Analysis of the graph
revealed only few edges that might be reversible in equivalent graphs: 9p —
9q, 8p — 1q, 8p — 18q, 8p — 2q. Example of the conditional probability tables
quantifying the graph structure and the respective distributions variances
are displayed in Tables 2.4 and 2.5. Analysis of the distribution variances
showed that they were small indicating a high degree of confidence for the
network model. The predictive accuracy of the model obtained by batch
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Edge | Number of BNs, % | Confidence
17p | 16q 100 1
2q | 14q 100 1
18q | 11p 100 1
9p | 9q 100 1
10q | 16q 100 0.99
op | 3p 99 1
17p | 3p 99 1
17p | 13q 99 1
17p | 5q 99 1
8p | 17p 97 1
17p | 2q 97 0.93
8p | 1q 96 1
10q | 3p 96 0.98
8p | 13q 95 1
17p | 11p 95 0.98
8p | 10q 88 0.97
8p | 6q 87 0.99
14q | 3p 85 0.88
11q | 3p 85 0.87
5p | 13q 78 0.77
17p | 11q 7 0.96
9q | 17p 75 0.91
17p | 5p 74 0.83
11p | 10q 61 0.72
5p | 14q 61 0.46
18q | 11q 56 0.71
2q | 16q 53 0.38
8p | 14q 47 0.24
8p | 2q 45 0.59
8p | 18q 35 0.83
5q | 14q 25 0.28
5q | 16q 12 0.11
5q | 6q 10 0.14
13q | 3p 10 0.07
11p | 11q 10 0.07
18q | 6q 10 0.07
10q | 6q 10 0.01

Table 2.2: Percentage of generated Bayesian networks containing the undi-
rected edge defined by two leftmost columns, and the degree of confidence of
the edge as obtained by bootstrap method.
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Figure 2.5: Bayesian network induced from LOH data of urothelial carci-
nomas. The width of the arc represents the strength of the probabilistic
dependencies between genetic losses. Full arcs represent ”positive” connec-
tions, dashed arcs represent “negative” connections.
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9p 9q 8p 17p | 1q 18q

Batch prediction 74.8% | 74.0%| 83.9%| 91.5%| 90.1%| 79.7%

Cross-validation 74.8% | 71.5%| 74.7%| 81.8%| 90.1%| 73.3%

St. deviation of cross-validation | 3.9 4.1 3.9 3.5 2.7 3.4

2q 10 |11p |11q | 5p 5q

Batch prediction 85.1% | 88.4%| 78.0%| 83.9%| 91.6%| 89.1%

Cross-validation 78.2% | 82.2%| 71.7%| 76.3%| 87.1%| 83.1%

St. deviation of cross-validation | 3.7 3.5 4.1 3.8 3.0 3.4

14q | 3p 13q | 6q 16q

Batch prediction 94.2% | 92.8%| 85.4%| 89.3%| 93.6%

Cross-validation 86.4% | 86.8%| 83% | 85.5%| 89.0%

St. deviation of cross-validation | 3.1 3.1 3.4 3.2 2.8

Table 2.3: Predictive accuracy of the model for each of the variables obtained
by batch prediction and cross-validation methods.

prediction and cross-validation is summarized in Table 2.3. The results
show that the model is capable of making accurate predictions.

29
8p | 17p 0 1
0 0 | 0.824|0.176
0 1 | 0.745 | 0.255
1 0 | 0.602 | 0.398
1 1 | 0.270 | 0.730

Table 2.4: Example of the conditonal probability table for the variable 2q.

After induction of the Bayesian network and checking the goodness-of-
fit of the model, T used its graphical and quantitative components to study
(in)dependencies between variables representing allelic losses.

As outlined in the section 2.5, abnormalities which lead to malignant trans-
formation of the cell will give rise to many other abnormalities and therefore
in the Bayesian network they will have high degree of connectivity and high
impact on other abnormalities according to their conditional dependency
strength. The graphical structure of the Bayesian network shows that the
nodes 8p and 17p are highly connected with other nodes, whereas the nodes
9p and 9q are rather ”isolated”. The Markov blanket of the node 9q consists
only of the nodes 9p, 17p, 8p. This “isolation” of the nodes 9p and 9q in view
of the fact that these are frequent losses suggests that they are early events
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2q
0017 0.0340.034
011 0.045[0.045
1]0( 0.056 | 0.056
1|1 0.046 | 0.046

Table 2.5: Example of the distribution variancies for the conditional proba-
bility distribution of the variable 2q.

which may constitute the primary condition for tumor development. The
Markov blanket of the node 8p contains nodes: 9q, 17p, 1q, 18q, 14q, 13q,
6q, 2q, 10q, 11p, 5q, 5p. Only nodes 11q, 3p, 16q and 9p do not belong to
the Markov blanket of 8p. The nodes 11q, 3p, 16q are not connected directly
with 8p, but via other nodes. The Markov blanket of the node 17p consists
of nodes 9q, 8p, 11p, 11q, 3p, 2q, 5p, 5q, 13q, 16q, 10q, 14q. The nodes 1q,
6q, 18q and 9p do not participate in Markov blanket of 17p. The nodes 1q,
6q, 18q are not directly connected with 17p. The dependence of 6q on 17p
is mediated via the node 5q. The nodes 1q and 18q are independent of 17p
given 8p. The large Markov blankets of the nodes 8p and 17p suggest that
these abnormalities give rise to many other abnormalities. The conditional
independence of the nodes 1q and 18q from 17p given 8p might indicate a
pathway of progression distinct from those going through the LOH of 17p
region. The abnormality 6q is likely to be more related to 8p. The loss of

17p
9q | 8p 0 1
0 | O |0.895 ] 0.105
0 1 | 0.732 | 0.268
1 0 | 0.733 | 0.267
1 1 | 0.200 | 0.800

Table 2.6: Conditional probability table representing the probability distri-
bution of the loss of heterozygosity of 17p conditional on the losses of 9q and
8p. The value 0 (1) indicates loss (no loss).

17p is obviously dependent on the losses of chromosome 9p/9q regions and
the loss of 8p. The conditional probability tables determine the strength of
the dependency of an event dependent on the states of its parents. The con-
ditional probability distribution of the node 17p (Table 2.6) shows that the
probability of loss in 17p given both losses of 8p and 9q equals 0.8, whereas
the probabilities of loss of 17p given occurrence of only one of the described
parent events are both 0.27. The propagation of the evidence on observing
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losses 9p, 9q and 8p increased the marginal probability of the loss of 17p
from its prior value 0.312 to the posterior value 0.803. This suggests that
loss of 17p occurs mostly after the losses of chromosome 9 and 8p.

The type of the effect (“positive” or “negative”) of one abnormality on an-
other connected by an edge and the strength of this connection was calculated
as described in the section 2.5. All arc connections in the Bayesian network
except 11p — 10q were found to be “positive” indicating that the occurrence
of one loss makes the occurrence of another loss more probable. The only
negative connection of weak strength was found between nodes 11p and 10q.
The loss of chromosome 11p might not be associated with the loss of chro-
mosome 10q alone. Instead, in combination with the loss 8p, 11p influences
the occurrence of loss 10q positively.

The mechanisms of probability propagation and belief updating in the Bayesian
network allow to assess the probability of one genetic event conditional on
the observation of some others. I have inserted in the Bayesian network
evidence on occurrence (or no-occurrence) of losses from some interesting
patterns and investigated the probability of genetic losses conditional on this
evidence (Table 2.7). The patterns of evidence are presented in the most
left column of the table. In the first line of the Table 2.7 the prior marginal
probabilities of single losses (before any evidence is observed) are presented.
The observation of loss of chromosome 9 changes the probability of 17p loss
from its marginal probability 0.312 to 0.451. The conditional probability of
17p given the evidence that the losses 9p/9q do not occur is estimated to be
0.163.

Of special interest was to determine which genetic losses are associated with
the loss of 8p and the loss of 17p. Consider the patterns of evidence {not (9p,
9q, 17p) and 8p}, {9p, 9q, 17p and not 8p} and {9p, 9q, 8p, 17p} (see Tab.
2.7). The conditional probability of the loss of 18q to occur given the evi-
dence of losses 8p and 17p was 0.467, almost the same (0.464) when only 8p
is present, and is estimated to be 0.219 when 17p but not 8p is present. This
suggests that the loss of 18q might be more associated with the loss of 8p.
Similary, the loss of 10q is likely to be improbable if 8p is not present (0.079)
and has the estimated probability 0.263 to occur when only 8p has occurred.
Further, it has almost the same probability (0.266) when also losses 9p/9q
and 17p have occured. Thus, the loss 17p is likely to have no influence on
the occurrence of 10q. I suggest that the losses of 1q, 18q, and 10q are more
likely to be associated with 8p. With similar examinations the losses of 5p,
5q, 16q were revealed to be likely associated with the loss of 17p. The losses
2q, 14q, 13q, 3p were found to be associated with both losses 8p and 17p.
For example, the probability of 2q to occur if only 8p is present is estimated
to be 0.396 and if 17p (but not 8p) occurs it is 0.255, while the evidence of
both 8p and 17p increases the estimated probability of 2q to 0.731.

For each loss (each column) in Tab. 2.7 have highlighted in bold the highest
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probabilities to occur conditional on the evidence. Inspection of these num-
bers revealed that the loss of chromosome 2q has the estimated probability
0.926 to occur when observing the group of losses 9p, 9q, 8p, 17p, 14q. It in-
dicates a strong connection between losses 2q and 14q. The loss 14q appears
to have high probability (0.837) to occur when losses of chromosome 5p/q
occur. The loss 14q is also highly connected with the loss 3p. The losses 18q,
11p, and 11q were revealed to comprize a group of closely related events. The
loss 6q appears to be almost improbable (0.03) when 8p is absent. The loss
6q is likely to be highly probable in connection with the losses of 18q and of
chromosome 11 (0.773). This suggests the pattern of related losses: 8p, 18q,
6q. The losses 16q and 10q were found to be strongly associated, since the
loss of 16q is most probable under the model when the loss of 10q is evident.
The loss of 3p is obviously a late event, because many other losses (18q, 2q,
11p, 11q, 5p, 14q, 13q) appeared to be highly probable while considering the
evidence of losses 9p/q, 8p, 17p and 3p. One can say that different pathways
”converge” in this event. The loss of 13q is probable (with the estimated
probability 0.359) already with the evidence of abnormalities 9p/9q, 8p and
17p.
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2.6.4 Discussion of the application of Bayesian net-
work analysis to the LOH data of urothelial can-
cer

In this work I induced the Bayesian network model from the LOH data of
urothelial carcinomas. The model contained the most reliable dependencies
between the losses of heterozygosity. This enabled to extract patterns of
DNA losses in bladder cancer and to reveal primary and secondary abnor-
malities associated with the tumor development. I suggested a possible flow
of progression of allelic losses in bladder cancer as heterogeneous, distinct
and converging genetic pathways.

Earlier models suggested that the development of papillary UCs is asso-
ciated with LOH at chromosome 9p followed by mutation of the p53 gene
in invasive tumors, whereas flat tumors, e.g. carcinoma in situ (Tis) are ini-
tiated by mutation of the p53 gene (Spruck et al., 1994). Based on RFLP
analysis, Dalbagni et al. 1993 have proposed that the transition of nonin-
vasive UCs into invasive ones is marked by alteration of chromosomes 5q,
3p, 17p, 11p, 6q, 13q and 18q. Reznikoff et al. (1996) suggested three dif-
ferent pathways. In the first, alteration of chromosome 9q/9p (CDKN2A)
is followed by inactivation of the p53 gene, LOH at chromosomes 3p, or 6q.
The second pathway is characterised by inactivation of the p53 gene and
subsequently by LOH at 3p and 6q/or 9p. The third proposed pathway is
initiated by inactivation of the RB gene at chromosome 13q, followed by the
duplication of chromosomes 5 and 20q, LOH at 10p and inactivation of the
p53 gene at 17p. The three pathways converge into one common pathway
showing LOH at chromosomes 4p, 8p, 11p and amplification of the ERBB2
gene at 17q. Summing up the CGH data, Schiffer et al. (2001) applied tree
models for dependent copy number changes in UCs. In both kinds of trees
the aberrations -9p, -9q were close to the root suggesting that they are early
aberrations. The trees contained two groups of closely related aberrations
+17q, +20q, +20p and +5p, -8p, -17p, +10p, which were suggested to be
late aberrations. The aberrations -18q, -11p, -11q were found to be strongly
related by the branching tree model.

Hoglund et al. (2001) have evaluated the genetic data obtained by karyotyp-
ing 200 UCs. They described two distinct pathways for UCs. One of them is
characterized by deletion of chromosome 9p region, which was followed by -
11p, +1q, -17p, -10, -15, and -16. The other pathway was marked by trisomy
7, followed by -8p, +8q, -17p and -3p. During late progression tumors of
both pathways acquire -2p, -4p, -18, -22p, -6q, -5q, and +5p. Hoglund et al.
define early and late imbalances as those predominantly present in tumors
with few and many imbalances, respectively. They used the modes of the
distributions of number of imbalances per tumor (NIPT) as a measure for
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time of occurrence of an imbalance. They applied principal component anal-
ysis (PCA) and assumed that well separating groups of imbalancies belong
to distinct pathways of progression of bladder cancer. In contrast to this
discriminative approach, my method provides an explicit and quantitative
description of the relations of genetic events. Also, it allows assessing the
probabilities of abnormalities along the oncogenic pathways.

In agreement with several other publications our data suggest that most UCs
arise after alterations of the chromosome 9p (CDKN2A) region. This change
occurs frequently together with LOH of three tumor gene regions at chro-
mosome 9q (PTCH, DBRCC1, TSC1) due to loss of the entire chromosome
9. The loss of chromosome 8p and 17p significantly contributes to the for-
mation of tumor phenotype and is followed by other genetic abnormalities.
The loss of 17p relies on the genetic changes of chromosome 9 and 8p. There
are two genetic pathways going through 8p and 17p. The losses of 18q, 10q
are likely to be related only to the 8p pathway. The loss of 1q region is
also not involved in the 17p pathway. Losses of 2q, 5p/5q, 14q, 3p, 13q, 6q,
16q regions are late events in the progression of cancer that occur in both
pathways going through 8p and 17p. The group of strongly related losses
18q, 11p, and 11q probably indicates a certain genetic subgroup of bladder
cancer. Another group of closely associated genetic events comprise losses of
op, 14q, 13q and 3p.

Schiffer et al. (2001) have found the strong dependency between loss in
8p and loss in 17p but they were not able to distinguish between two path-
ways going through 17p or not. Notably, this is due to the nature of their
mathematical tree model and pairwise dependencies they consider. In con-
trast, my model captures more complex dependencies between events based
on parent-child configurations and thus is able to reveal heterogeneous ways
of tumor progression.

The techniques applied to detect genetic alterations in tumor cells may
also have influenced these results. Karyotyping and CGH give an overview
of gross genomic alterations, but the former may lead to several in vitro
artefacts and both methods can detect only genetic alterations larger than
10 Mb (million base pairs of DNA) (Schiffer et al. 2001, Hoglund et al.
2001). In the dataset I have worked on, specific chromosomal sites have been
analysed by microsatellite deletion mapping, and narrowed down alterations
at chromosome 2q, 5q, 8p, 9p, 9q and 11p by saturation of these regions with
several microsatellites. Specific genetic changes in tumors could be detected
at higher percentage than others by CGH or karyotyping. For example,
cytogenetic as well as CGH studies found loss of chromosome 9 or 9p in
approx. 50-55% of the UCs whereas in our dataset allelic changes at the
CDKN2A, PTCH, DBRC1 and TSC1 genes on the short and long arms of
chromosome 9 including small hemi- or homozygous deletion at the CDKN2A
were detected in 80% of the tumors.
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I have presented a new approach for analysing allelotyping data. The
method is based on learning Bayesian network model from data. My ap-
proach provides an explicit and quantitative description of the relations of
genetic events. I were not only able to demonstrate the dependencies between
allelic losses based on their pairwise correlations, but rather to uncover multi-
variate dependencies reflecting the heterogeneous pathways of tumor progres-
sion. The Bayesian network analysis suggested primary events that initiate
the accumulation of abnormalities and late events, accumulated at the late
stages of cancer. It revealed interesting patterns of allelic losses. The analy-
sis enabled to suggest the possible order of allelic losses during oncogenesis.
The discovered ”high-level” genetic information can give an insight into the
underlying mechanisms of unnormal gene regulation resulting in cancer for-
mation.

The presented approach is the further step on the way of mathematical mod-
elling of tumorigenesis.

2.7 Future work

2.7.1 Applying Bayesian network analysis to the com-
parative genome hybridization data (CGH)

The approach I have developed and tested on the allelotyping data can be
readily applied to the data obtained with another kind of molecular cytoge-
netics experiments, e.g. comparative genomic hybridization (CGH).

CGH is a method for screening a tumor genome for chromosomal imbalances
like gains and losses of chromosomal regions by means of a single experiment.
The genomic DNA from tumor cells is hybridized with the chromosomes from
a normal cell and is detected, for example, through a green fluorescent dye.
Simultaneously, the DNA from normal cells is co-hybridized and is detected
by means of a red fluorescent dye. After an overlapping of the signals, mixed
colors are formed. Chromosome regions that are overrepresented in tumor
appear in green, while underrepresented regions in red. Balanced chromo-
some regions appear in yellow. Image processing techniques permit to obtain
the description of the whole tumor genome profile. CGH does not detect bal-
anced chromosomal translocations or inversion, and it is particularly difficult
to analyse small interstitial deletions by CGH.

We are currently working on the analysis of the CGH data of gastrointestinal
stromal tumors (GISTs).

The data from the CGH experiments is conventionally notated by the bi-
ologists in a special notation ISCN (The International System for Human
Cytogenetic Nomenclature 1995). One of my projects was to develop a soft-
ware tool for parsing the cytogenetic data (see the list of my publications).
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The concept of the ISCN-Parser, briefly, is that it can interpret the ISCN
as a formal language. I have developed the grammar rules for the ISCN in
Extended Backus-Naur Form (EBNF).
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Chapter 3

Inferring genetic regulatory
pathways from expression data

3.1 Biological motivation

As already underlined in Introduction, we are now entering the post-genomic
era. The main focus in genomic research switches from sequencing to using
the genome sequences, in order to understand how genomes are functioning.
The advent of microarray technology is a revolutionary milestone in biolog-
ical research. The microarray technology allows to measure the expression
levels of thousands of genes simultaneously. This provide a ”snapshot” of
the cell’s transcriptions as the genes change over time and react to exter-
nal stimuli. The term ”transcriptome” has been introduced to refer to this
new type of data, comprising the expression levels of all genes of a genome
in a given regulatory state of a cell. The gene expression differs in various
cell types, tissues, in various cell-cycle or developmental stages and under
different conditions like compound treatment or disease. These different ex-
pression patterns are achieved as the result of the complex process of genetic
regulation. Knowing the gene transcript abundance gives a hope to answer
the questions arising:

e how do genes and gene products interact;

e how is the gene expression regulated and controlled;

e in what pathways or cellular processes the genes participate;
e what is the functional role of different genes.

To decipher the mechanisms of transcriptional regulatory machinery is the
great challenge of functional genomics.
The transcription of the genes is controlled by multiple transcription factors
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or signalling molecules that are the gene products themselves. Genes can be
thought of as information processing units ”wired” into the regulatory net-
work. Reconstructing the gene regulatory network from gene expression data
(reverse engineering of genetic networks) is an area of an active research. 1
introduce this area in the section 3.4.

In the next section I will make a short introduction into the microarray tech-
nology, and present briefly the typical method of microarray data analysis.

3.2 Microarray technology and expression data
analysis

In the process of gene transcription, messenger RNA (mRNA) is being con-
structed based on the gene-coding sequence. The mRNA leaves the cell
nucleus and, in the surrounding cytoplasm, each mRNA molecule conducts
the synthesis of the particular protein encoded. Presence and amount of a
particular mRNA regulates the presence and the amount of the encoded pro-
tein. The level of mRNA can be measured in parallel for thousands of genes
by microarray technology.

RNA is prepaired from the cells and is reversely transcribed into more stable
DNA (called ¢DNA). The samples are labeled with distinct fluorescent (or
radioactive) dyes. The labeled DNA is then applied to a microarray. The mi-
croarray consists of a solid support material (nylon, polypropylene or glass),
onto which DNA fragments of different sequences, representing genes, have
been spotted. The roboter facilities make it possible to spot tens thousands
of DNA fragments onto microarray. For DNA of the same kind, complemen-
tary single strands will bind (hybridize), resulting in double stranded DNA.
A laser-scanning microscope reads the microarray, and image analysis pro-
grams are used to determine spot intensities, that is, to measure the amount
of label for each spot. The level of labeled DNA bound to a particular spot
will correspond to the level of the particular kind of mRNA in the cells. In
differential experiments, researchers label two samples with fluorescent dyes
of different colors (usually red for a sample, and green for the reference or
control populations). This allows one to determine the relative amount of
transcript present in the pool by the relative intensities of the fluorescent sig-
nals generated at each spot. After scanning, if the amount of RNA expressed
by a gene being studied exceeds that of the reference sample, the spot turns
red. If it is less than the reference sample, the spot turns green.

The data produced by image analysis is usually a matrix, with rows cor-
responding to genes, and columns corresponding to different experimental
conditions or different time points. Each row is the gene expression pattern
of a particular gene across all conditions characterizing the dynamic func-
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tioning of each gene in the genome (gene expression profile). Each column is
called the profile of the condition.

Microarray technology provides insight into the transcriptional status of the
cell, measuring RNA levels for thousands of genes at once. The benefit of this
technology lies in its broad spectrum of applications. The applications range
from the study of organisms with a particular gene inactivated (knockout mu-
tants) to the investigation of the adaptation of cells to different environmental
conditions (time-series experiments). In the time-course analysis, snapshots
of the entire transcriptome are taken at successive time points after inducing
a change in the regulatory state of a cell culture or a tissue. Microarrays can
be used to study the differential gene expression in tumor samples, in the
cells after the treatment with different chemical substances or drugs. They
can be used in drug discovery, in pharmaceutical and medical studies, for
diagnostic purposes.

Large data sets of gene expression have been collected for model organ-
isms such as yeast Saccharomyces cerevisiae. To mention also is the ”com-
pendium” of expression profiles corresponding to 300 diverse mutations and
chemical treatments of the yeast (Hughes et al. 2000, Gasch et al. 2000).
Chu et al. (1998) studied the genes involved in completion of the sporulation
program of the yeast. J.deRisi et al. (1997) produced a 7-point time-series
dataset for each gene of the yeast envolved in the diauxic shift from sugar
metabolism to ethanol metabolism. Spellman et al. (1998) was the first to
provide the biological community with the comprehensive gene expression
data of cell cycle-regulated genes. Cho et al. (1998) produced 17-point time
series data characterizing the cell cycle of the yeast monitoring transcripts
of almost all of the 6000 genes.

While studying the temporal responses of gene expression patterns during
the development or due to perturbations, one of the difficulties is to deter-
mine, what is the proper time step across which experiments need to be
acquired and interpreted. While producing ”perturbed” expression profiles,
it is unknown how many perturbations will be necessary to capture sufficient
diversity of gene control mechanism.

An initial and broadly used approach for analyzing gene expression data ob-
tained with microarray experiments is clustering (see Eisen et al. 1998), that
is the detection of groups of genes that exhibit similar expression patterns.
The goal is to partition the elements into clusters, so that elements in the
same cluster are highly similar to each other, and elements from different
clusters have low similarity to each other. A measure of similarity is defined
between pairs of vectors (expression profiles). This approach relies on the
biological hypotheses that genes with correlated expression changes are likely
to be regulated by common transcription factors, and might be involved in
similar functions or cellular processes. Gene expression clustering allows also
not to focuse on individual gene, but to handle data in a global fashion. In
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many experimental settings, this approach was demonstrated to be useful
for summarizing data and identifying common data patterns. Figure 3.1
displays hierarchically clustered gene expression profiles of human foreskin
fibroblasts infected with toxoplasma (see Blader et al. 2001). In Figure 3.2
the hierarchically clustered gene expression profiles of the yeast cell cycle-
regulated genes are displayed (see Spellman et al. 1998).

Clustering is a rather crude method, as it is based on pairwise comparisons.
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Figure 3.1: Hierarchical clusters of the gene expression profiles (Blader et al.
2001).

In general, co-expression does not imply co-regulation. The genes assigned
to one cluster by clustering analysis might not share common regulatory re-
gion, they might in fact be secondary response genes, and often could belong
to different regulatory or signalling pathways. Deeper inference of gene re-
lations at a higher level of complexity is required. Beyond cluster analysis
lies the more ambitious challenge: the reconstruction of the underlying gene
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Figure 3.2: Hierarchical clusters of the gene expression profiles (Spellman et
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regulatory interactions from expression data.

3.3 Transcriptional regulation

In this section I will give a short introduction into the general mechanisms
of transcriptional regulation in the cell.

There are several levels at which a cell can control which proteins are ex-
pressed at a given time. The most important is transcriptional control, that
is, the control of when and how often a gene is transcribed. Other controls
exist at the level of RNA processing (such as alternate splicing), RNA trans-
port, RNA translation, RNA degradation, and at the post-translational level
such as protein phosphorylation, inactivation and compartmentalization.

In order the transcription of a gene can be initiated, the RNA polymerase
must recognize the promoter, a sequence of nucleotides preceding the actual
coding sequence of a gene. There is also a region of DNA upstream of the
gene comprizing one or more binding sites, to which distinct regulatory pro-
teins, known as transcription factors or signalling molecules, are capable to
bind. This sequence of DNA, called operon, may be subject to negative or
positive control through repressor or activator proteins, respectively. Posi-
tive control occurs when an activator protein binds to a DNA site near the
promoter. The activator recruits the RNA polymerase to promoter, increas-
ing the transcription of the gene from its low "basal” level to the tens-fold
higher level (regulated recruitment). In negative control, a repressor protein
binds to a DNA site preventing RNA polymerase to assess the promoter and
to start transcription. Binding sites of genes to which regulatory proteins
bind are called cis-requlatory elements. Complexes of regulatory proteins are
called requlatory modules.

An example of a transcriptional regulatory module is a "lac operon” that reg-
ulates the lacZ gene in E.coli. It was first investigated by Jacob and Monod,
1961. The product of the gene lacZ cleaves lactose, therefore the gene is tran-
scribed if, and only if, lactose is present in the medium. The activator CAP
(catabolite activator protein) recruits the polymerase to promoter increas-
ing the transcription of the gene from its ”basal” level to the 40-fold higher
level. In the absence of lactose Lac-repressor binds to the operon excluding
the polymerase from binding, whether or not the activator is present. There
are also other activators capable to influence the transcription of the lacZ
gene: cAMP, CORE, o (see Figure 3.3). Another example is the transcrip-
tional regulation of the Gal4-gene in yeast. The Gal4-activator is inhibited
by Gal80. In the presence of galactose, a protein Gal3 binds Gal80, an in-
teraction that frees Gald’s activating region and the gene is transcribed. In
higher organisms, the process of regulating transcription is more complicated.
Activators and repressors are capable of influencing transcription from thou-

54



QYSC‘&E( Iﬁac- repressor

P O lacZ. Y A

transcription

Figure 3.3: Transcriptional regulation of the genes lacZ, Y and A in E.coli
by the set of activators and the repressor.

sands of nucleotide base pairs away from the start site of the transcription.
Further examples of the principles of genetic regulation and control can be
found in Ptashne and Gann (1998).

The regulatory control is provided by cooperative binding of multiple pro-
teins.

The regulatory proteins usually act as complexes: the simultaneous interac-
tion of two or more factors result in a high level of transcriptional activation.
A gene can have one or more activators which are necessary to start the
transcription. A gene can have one or more inhibitors which prevent the
expression of a particular gene, even in the presence of an apropriate activa-
tor. In some cases two or more regulatory proteins, independently binding
to DNA, synergistically activate transcription. In some cases competition for
overlapping sites leads to a mutually exclusive binding. In other cases, regu-
latory proteins can bind to DNA simultaneously, but binding of a repressor
”"masks” an activation domain of an activator.

Combinatorial nature of transcriptional regulation is one of the fundamen-
tal principles of genome functioning. The genomic regulatory code in this
way enables each gene to be expressed specifically only in those cell types in
which the appropriate combinations of transcription factors is present. This
enables the gene to respond to all of the ambient situations to be encountered
throughout the life cycle. The transcription factors composing a regulatory
element can have different functional features: they can be tissue-, cell type-
and stage-specific, or cell-cycle dependent. In this way the specific spatio-
temporal gene expression profiles are achieved.

Because of the combinatorial nature of gene interaction, in order to correctly
infer the regulation of a single gene, one need to observe the expression of that
gene under many different combinations of expression levels of its regulatory
inputs. This implies a wide variety of different environmental conditions and
perturbations, and thus an enormous experimental effort. This is where the
computer science comes to help the biological research.
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The principles of the transcriptional regulation may be captured by com-
putational models. The cis-regulatory regions can be seen as information
processing elements. Each element acts as a conditional logic gate, the out-
put of which depends on its various inputs. Each logic gate realizes a logical
(boolean) function prescribing the output of the gate. There are genes with
regulatory elements demanding that two or more (according the biological
evidence, up to 8) transcription factors must all be bound to activate the
gene ("AND” logic). There are genes that can be activated by one of a few
different possible transcription factors ("OR” logic). The transcriptional ac-
tivation of some genes may be inhibited by one of a few possible repressor
proteins ("NOT OR” logic, we denote this by "NOR”). There are genes that
can be inhibited by a synergistic effect of some repressor proteins ("NOT
AND?” logic, - "NAND”). In case of ”OR-NOR?” logic, a gene is regulated by
a set of possible activators, combined with ” OR”-function, and a set of pos-
sible inhibitors, also combined with ”OR”-function. The gene is transcribed
if and only if one of its possible activators is active, and it is not repressed by
one of its possible repressors. The ”OR-NAND” logic implies that the gene
is regulated by a set of activators, combined with ” OR”-function, and a set
of inhibitors combined with " AND”-function. The genes regulatory interac-

OR-NOR

AND NOR —
—{ or
=) o o
o)

Figure 3.4: Genetic regulatory functions represented as logic gates.

tions can be presented by means of logic gates as shown in Figure 3.4.

To decipher the mechanisms of transcriptional regulation is the great chal-
lenge of functional genomics. In the past, the investigation of transcriptional
control was based on the statistical analysis of gene regulatory regions. Struc-
turally similar regulatory elements and modules are present in several differ-
ent genes, which probably implies that they are functionally significant. The
problem is that such an analysis brings too much ”false positives”, since the
regulatory elements have short sequences relative to the promoters (regula-
tory regions) of the genes.

The advent of high-throughput mRNA quantitation technologies like mi-
croarrays enable to obtain ”snapshots” of gene expression under different
conditions and over time. This data can be analysed to reveal the possible
regulatory interactions of the genes. The task can be defined as follows: for
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each gene identify a set of candidate regulatory genes. I address this problem
as the task of inferring the genes interaction governed by a particular logical
function.

3.4 Previous approaches for modelling genetic
regulatory interactions

The system of gene interactions has the architecture of the network. A gene
regulatory network defines the complicated structure of gene products which
activate/inhibit other genes.

There have been a number of attempts to model the mechanism of gene reg-
ulation and to reconstruct the genetic regulatory network from data. The
mathematical and computational approaches include linear differential equa-
tions models (D’Haeseleer, 1999, Chen et al., 1999, van Someren et al., 2000),
Boolean networks (Somogyi, Sniegosky, 1996; Liang et al., 1998), recurrent
neural networks (Wahde and Hertz, 2000), Bayesian networks (Friedman et
al. 2000), qualitative modelling (Akutsu et al. 2000, deJong 2002) and bio-
chemical models (Arkin et al., 1998).

Boolean network model was originally proposed and theoretically investi-
gated by Kauffman (Kauffman, 1993). A gene is modelled as a binary vari-
able which has value 1, if the gene is active, i.e. transcribed (sometimes the
gene is referred to be ”ON”). The variable has value 0, if the gene is silent,
i.e. not transcribed (the gene is ”OFF”). In some context, for example, when
the amount of transcription is being measured relative to control sample, it
is appropriate to say that the gene is overexpressed or underexpressed. In
the microarray experiments the continuous measurements of the gene tran-
scription are obtained. Working with discrete models, the continuous domain
need to be appropriately discretized into discrete values. Usually, two states
of gene expression 0 and 1 depend on whether the expression level is signif-
icantly lower or significantly greater than the respective control. These two
states reflect the situations of underexpression or overexpression of a gene,
respectively.

In Boolean network model, the expression state of each gene is function-
ally related to the expression states of some other genes using logical rules.
Boolean networks is a biologically plausible conceptual framework for repre-
senting genetic regulation. In the previous section it was demonstrated that
many simple Boolean operators are present in real transcriptional regulatory
modules.

The problem of inferring the logical rules in Boolean networks from exper-
imental data (Reverse Engineering of Genetic Networks) was considered by
Somogyi, Sniegosky (1996), Liang (1998). They have developed an algorithm
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REVEAL which, shortly, proceeds as follows. For a particular gene Y, a min-
imal set of genes { X1, ..., X} will be identified that has the same Shannon’s
entropy as the set {Y, X1,..., X, }:

H(Xy,..., X)) = HY, X1,..., X,).

Once the input elements have been identified, it remains to find the logical
rules that specify the state of Y given the combination of input states for the
set. This is done by examining the tables of the input values and the values
of Y. The problem of the REVEAL approach was, that the computational
expense of determining Shannon’s entropy as well as of rules governing the
table relationships increased with the in-degree of a gene Y (the number of
genes in the input set). It was needed to limit the in-degrees of genes, i.e.
the connectivity of the genetic network. Although this modelling assumption
is biologically justified, since the genes are believed to be influenced by no
more than 8 other genes, the biologically interpretable results were obtained
only with the in-degree n = 3.

A data-driven approach to the reconstruction of genetic regulatory inter-
actions is particularly difficult because of the combinatorial nature of the
problem. Another severe obstacle is the so called dimensionality problem:
there are too many variables (many genes) and too few conditions where the
gene transcription is measured.

The major limitation of standard Boolean networks is their inherent deter-
minism, contradicting with the stochastic nature of the biological process
of gene transcription and with the noisy character of the experimental mea-
surements of mRNA. The Boolean networks demonstrated the drastic drop in
performance, when even slight amount of measurement noise was introduced.
To be able to reliably extract the complex gene interactions, the modelling
systems must be robust against noise.

Friedman et al. (2000), Linial and Pe’er (2000) proposed to employ Bayesian
networks. Bayesian networks as a modelling tool for the genetic regulatory
network have certain advantages because:

e Bayesian networks are stochastic models, i.e. they deal with probability
as a mean to express uncertainty about the modelling variables and
their dependencies.

e they describe global processes as composed of locally interacted com-
ponents;

e these local interactions are being described probabilistically;

e there are statistically based foundations for learning Bayesian networks
from observations.
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In Bayesian network model each gene is considered a random variable and
is represented as a node. Assume, gene A is a transcription factor of gene
B. Measuring high expression levels of gene A might imply that gene B is
overexpressed as well. Alternatively, if gene A is an inhibitor of gene B, over-
expression of A likely implies underexpression of B. The levels of expression
of gene A and B are dependent.

As already introduced in Section 2.4, learning a Bayesian network consists
of induction of the graphical structure of the model and, when the model
structure is known, of estimation the parameters (i.e. the conditional prob-
ability distributions). As described in Sections 2.3 and 2.4, foundations
for learning Bayesian networks from data were developed based on Bayesian
statistics (K2 algorithm of Cooper and Herskovits, 1992).

Generally, a notion, that facilitated the Bayesian networks employment, was
a notion of causal independence: given the value of its parents, the variable is
causally independent of other variables in the network except its descendants.
Causal independence allows for compact representations of probabilistic re-
lationship among variables in the network via the conditional probability
tables. But still the Bayesian network formalism offers too much freedom,
modelling arbitrary interactions between parents Xi,..., X, of a node Y.
This leads to high computational costs and decrease in parameters reliability
while learning the model from data. Besides this, it is highly difficult to
infer the regulatory relations from conditional probability tables obtained by
learning Bayesian network. I propose a model for the genetic regulatory in-
teractions that combine the simple and biologically motivated boolean logic
semantics of Boolean networks and the possibility of dealing with uncertainty
offered by Bayesian networks. In contrast to Bayesian networks, the parents
interactions of variables in the model is defined with logical functions, clearly
describing the art of gene regulation.

I address the problem of reconstructing genetic regulatory pathways from
data as follows: for each gene and a certain logical function, identify a set of
its candidate regulatory genes.

In Section 3.5 I introduce my model of genetic regulatory interactions which
originates from the field of probabilistic graphical models. T have developed
an approach for learning the structure and parameters of the model from
data. I employed the methodology of Bayesian model selection which was
introduced in Section 2.3. I describe my method in 3.6. Since there is no
closed form solution for the problem of calculating the posterior distribution
of a candidate model given data, the central quantity in Bayesian model se-
lection, I turn to the Markov Chain Monte Carlo simulation technique, in
particular, to Gibbs sampling. I introduced an additional parameter into the
model, so that the problem of model selection transformed into the variable
selection task. I review briefly the different Gibbs sampling algorithms devel-
oped for solving the problem of variable selection, and introduce my model
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definition for the Gibbs sampling in the Section 3.6.3. I also consider issues
of checking a convergence of Markov chain and checking goodness-of-fit of
a model in Section 3.6.5. I tested my approach on the dataset of budding
yeast cell cycle (Spellman, 1998) and present the results in Section 3.7. 1
address previous models for genetic regulatory networks, relevant to ours in
that they attempt to insert "noise” into the Boolean networks models, and
discuss the perculiarities of my method in Section 3.8.

3.5 The model of genetic interactions

Bayesian network formalism exploits independencies among variables in the
network and achieves more compact representations of the joint probability
distribution of the variables by expressing them with conditional probability
tables. The Bayesian network formalism allows for modelling arbitrary in-
teractions between parents Xi,..., X, of a node Y. The CPT expresses the
multinomial distribution. Such a modelling freedom has its price. In this rep-
resentation, the complete CPT for a binary variable with n parents requires
the specification of 2" — 1 independent parameters (one parameter for each
parents’ state configuration). The number of parameters associated with a
variable is exponential in the number of parents of the variable. This expo-
nential explosion of the parameter space makes the learning of the network
model computationally expensive. Conditional probability distributions are
obtained from relative counts of various outcomes in those data cases, that
fulfill the conditions described by a given combination of the outcomes of the
parents. In small datasets there might be no sufficient cases for learning con-
ditional probabilities. Learning distributions with fewer parameters is more
reliable. Besides the computational problems, the general, combinatorial se-
mantics of the parents interaction in Bayesian network make it difficult to
interpret the results of Bayesian network learning and to read out the ”true”
functional relationships among the variables covered in this presentation.
Because of the limitations mentioned, there has been interest in learning
Bayesian network models with more parsimonious representations for the
conditional probability of variables given their parents (local structure), al-
lowing for reductions in the dimension of the parameter space and, hence, in
learning effort. Friedman and Goldszmidt (1996 a) used decision trees.

One can further exploit the independencies between parents of a variable
in a Bayesian network to get more compact representations of CPTs. In
the past, there were models introduced with special types of causal interac-
tion (see Heckerman and Breese, 1994, Meek and Heckerman, 1997, Srinivas,
1993). One kind of such models is the causal independence model which
uses the notion of independence of parents of each variable in the model.
The variables X1, ..., X,,, which are parents of the variable Y, can effect Y
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through independent ”mechanisms”. The results of these effects are com-
bined by a rule represented with a boolean-logic function. Such models were
introduced originally by J.Pearl (1998) and called ”"noisy OR-Gate” (”noisy
AND-Gate”).

I employ such kind of models for modelling the genetic regulatory inter-
actions. I assume that the variable X; (regulator) can execute its influ-
ence on the variable Y (regulatee) independently of other possible regulators
Xq,...,X, of the gene Y. The biological mechanism underlying this mod-
elling assumption is the binding of protein transcribed by the regulator to
the DNA of the regulatee. This process is not deterministic, rather each gene
X, can regulate the gene Y with probability ; and can fail to do this with
probability 1 —6;. The general structure of the genes interaction in my model
is represented as a directed graph as shown in Figure 3.5. In this graphi-
cal representation intermediate variables Iy, ..., I, are introduced, through
which the variables X7,..., X,, execute their influence on a given common
effect variable Y. Each intermediate variable I; has only one parent, a vari-

Figure 3.5: Model of the gene interactions, F - Boolean function

able X;. Its probability distribution is defined as follows: given that X; =1,
I; takes the value 1 with probability #; and the value 0 with probability
1 — 6;, respectively. Given that X; = 0, I; takes the value 0 with probability
1. The combined regulatory influence on the the variable Y is calculated as
the boolean function F' on the input variables I,...,1I,. If X;,..., X, are
activators, then the state of the variable Y is F(Iy,...,I,); if X1,..., X,
are inhibitors, the state of Y is 1 — F(Iy,...,I,). The boolean function F
("interaction function”) defines in which way the intermediate effects I;, and
indirectly, the variables X; interact. I consider two interaction functions:
”AND” and ”OR”. The semantics of the ”OR”-function, for example, im-
plies that the variables X; are each assumed to be sufficient to influence Y.
In the case of ” AND”-function the variables X; all need to execute their own
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Y
X1 | X2 0 1
0 0 1 0
1 0 1 0
0 1 1 0
1 1 || 1—06:0, | 0,0,

Table 3.1: Conditional probability table of regulatee Y, ” AND”-regulation

Y
X1 [ X2 0 1
0] 0 1 0
110 1-6, 0,
0] 1 1— 6, 0
11 | (1=6)1—=6)|1—(1—6)(1—6)

Table 3.2: Conditional probability table of regulatee Y, ” OR”-regulation

influence on the variable Y, so that Y will be active.

Introduction of the hidden state variables I; allows to insert ”noise” into the
Boolean-logic based models. It enables to express that the biological mecha-
nism of the regulation of one gene by another could be inhibited by unknown
reasons. Thus, the input variables can be considered as observables from
which we make our noisy measurements and the hidden variables have the
“true” latent biological values.

The conditional probability distribution for the regulatee Y that is acti-
vated by the combined action of two regulators (" AND”-regulation) is pre-
sented in Table 3.1. If none or only one of the regulators X1 and X2 is
active, the probability of the regulatee Y to be active is 0. The regulatee Y
takes the value 1 with probability 6,65, i.e. only in the case when both X1
and X2 are active. The regulator X1 (X2) is active and executes its influ-
ence on Y with probability #; (fs). Table 3.2 represents the case when the
regulatee Y can be activated by two possible activators (" OR”-regulation).
In this case, the regulatee Y can be activated by X1 or X2 with probability

Y
X1 [ X2 0 1
0] 0 0 1
110 0, 1—6,
0] 1 05 1— 0,
1|1 | 1=(1=6)(1—6)]|(1—6)1—6)

Table 3.3: Conditional probability table of regulatee Y, ”NOR”-regulation
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01 or 6, respectively. If both of regulators are active, the regulatee Y takes
the value 0 with probability (1 —6;)(1—65), i.e. when both regulators failed.
Table 3.3 represents the repression of Y by two possible repressors ("NOR”-
regulation). The regulatee Y takes the value 0 (inactive) with probability
not equal to 0, if one or both repressors X1 and X2 are active and have ex-
ecuted their influence on Y. One can see that the values for the conditional
probability table of regulatee Y in case of repression can be obtained as one
minus the respective values of the conditional probability table of Y in case
of activation.

Note that the model with the Boolean logic-based interaction of parent vari-
ables allows to specify the entire conditional probability distribution for a
variable with only n parameters 6., ...,6,, hence polynomial on number of
parents, in contrast to the general Bayesian network model prescribing the
combinatorial interaction of parents, and therefore demanding the exponen-
tial number of parameters.

In the present work I consider simple models with activatory regulation
("OR”, "AND”) and inhibitory regulation ("NOR”, "NAND"), as well as
complex models: "AND-NAND”, ”AND-NOR”, "OR-NAND” and ”OR-
NOR”. In the complex models the regulatory influences of multiple activators
and multiple inhibitors are combined with ” AND”-function as presented in
Figure 3.6. These models are sufficient to represent the biological mechanism
of gene regulation.

Figure 3.6: Complex model of gene regulatory interactions with activators
and inhibitors ("OR-NOR?” regulation).
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3.6 Bayesian model selection

I employ Bayesian approach to learning the structure and parameters of
a model from data (i.e., model selection). As already described in Section
2.3, the Bayesian approach addresses the problem as calculating the posterior
probability of a model given data for a collection of candidate models and se-
lecting the most probable model. Bayesian statistics differs from classical sta-
tistical theory in that it considers any unknown parameter as random variable
and, for this reason, each of the parameters should have a prior distribution.
The introduction of a prior converts statistical inference into an application
of probabilistic inference based on Bayes’ theorem. Suppose that the data
D have been generated by a model m, one of a set M of candidate models,
m € M. If p(m) is the prior probability of model m, then the posterior model
probability by Bayes rule is p(m|D) x p(D|m)p(m). The marginal likelihood
p(D|m) is calculated as p(D|m) = [ p(D|m, 0,,)p(0n|m)dby,, where p(6,,|m)
is the prior distribution of model parameters #,, for model m. The calcu-
lation of the marginal likelihood is the major computational bottleneck of
Bayesian methods since the integral is analytically tractable only in certain
restricted examples, when there exists a conjugate prior distribution for the
parameters of the model, so that the integral will have a closed form solution.
Let us consider the ”local” model of genetic interactions. Assume the vari-
able Y is commonly influenced by the variables X1, ..., X,,. The probability
distribution of Y given the values of its parents in the model with "OR”-
activation function can be written as:

n

Py =0l0) =] -6)"

=1

and
n

Py =1/0)=1- ][ -6)*.
i=1
Assume we have a sample of N cases corresponding to the states of the
variables Xi,..., X, and the variable Y. Denote with Y} the state of the
variable Y in case j, and with X;; the state of the variable X; in case j. The
likelihood function is then:

n

L(0) = H(H(l —0,)*9)' 75 (1= ][ (1 - 6)%9),

i i=1 =1

If we substitute 1;; by —log(1 — 6;;), then



n

Denote n; = Y 1;;X;; (i.e. linear predictor). Then the likelihood function
i=1
transforms into:

L) = [J(e ) Y= ey,

Jj=1

This is the generalized linear model (see McCullagh and Nelder 1983, Myers
et al. 2002). There is no conjugate prior for such model, because it does not
have the form of the general exponential family parametric models (for intro-
duction into conjugate analysis see Bernardo and Smith, 1994). The " AND”
model as well as complex models like ”OR-NOR?” etc. are intractable analo-
gously.

The "global” model with such "local” structures as presented will not have
the closed form solution as well. Thus, we will not have a global criteria like
e.g. Bayesian scoring for the estimation of the posterior probability of the
whole genetic network.

Possible solutions of evaluating multi-dimensional integrals involved in the
Bayesian methods are asymptotic approximations (see Lindley 1980, Kass
1988). The asymptotic approximations are based on the observation that,
as the number of cases in the dataset increases, the posterior on the param-
eters will be strongly peaked and can be approximated with a multivariate-
Gaussian (normal) distribution. For relatively small datasets, as the biolog-
ical datasets generally are, the assumption of asymptotic normality might
be inaccurate (see Berger 1993). Another approach for the estimation of
posterior probabilities involved in the Bayesian modelling are the variational
methods (see Jaakkola and Jordan 1996). The authors propose the lower
and upper bounds approximations of the posterior distributions of the gen-
eralized linear models.

Instead of using approximation techniques, in view of the lack of empirical
data, I turn to the stochastic simulation techniques - Markov Chain Monte
Carlo (MCMC) methods, recently broadly used in many Bayesian modelling
applications (see Gilks 1996). MCMC techniques generate samples from the
joint posterior distribution of the unknown quantities in a model allowing to
make estimates on them. MCMC sampling from the joint posterior distribu-
tion p(m, 6,,|D) allows to estimate the posterior model probability p(m|D)
and p(6,,|D).

I perform MCMC simulations for selecting the local model of interactions of
one gene with its regulators. In the following, m stays for the local model in-
troduced in this section. In the next subsection I provide a brief introduction
into Markov Chain Monte Carlo methodology.
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3.6.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo methods were first developed for applications
in statistical physics, and were used in spatial statistics and image analy-
sis (Metropolis et al. 1953, Hastings 1970). In recent years MCMC meth-
ods have had a great effect on Bayesian statistics (Gilks 1996). Bayesian
framework allows for the flexible specification of complex models. How-
ever, this comes with a certain price. The probability distributions arising
in the Bayesian modelling can be very complex, with probabilities varying
over a high-dimensional space. Bayesians need to integrate over these high-
dimensional probability distributions to make inference about model param-
eters or to make predictions. Often, however, a sample of points drawn from
such a distribution can provide a satisfactory picture of it.

Markov Chain Monte Carlo draws a sample of points from a required distri-
bution, and then calculates sample averages to obtain expectations of various
functions of the variables.

Suppose X = Xi,...,X, is the set of random variables taking on values
Z1,--.,%n. These variables might be, for example, parameters of the model.
The expectation of a function a(X, ..., X,) - it’s average value with respect
to the distribution over X - can be approximated by

{a) :Z...Za@l,...,aﬂ)mxl =71, Xn =)

.
~ N a('x(t)a "/E'Ezt))a (*)
t=0
where xgt), e ,x,(f ) are the values for the ¢-th point X® in a sample

XO x® XN of size N.

Problems of prediction can be formulated in terms of finding such expecta-
tions.

One way of generating X® = Xl(t), e ,Xflt) for the set of variables at step
t is through a Markov chain having P() as its stationary distribution. The
Markov chain is defined by giving an initial distribution for X(® and the tran-
sition probabilities for X® given the value for X(*~1). These probabilities are
chosen so that the distribution of X® converges to that for X as ¢ increases.
The Markov chain is simulated by sampling from the initial distribution and
then, in succession, from the conditional (transition) distributions.

If Markov chain is sufficiently long, the output of it can be used to estimate
expectations as defined in equation (x).

Generally, the output of Markov chain simulation is used to summarize the
posterior distribution of the variable of interest in terms of means, standard
deviations, etc. For example, if P(x) is a Gaussian distribution, then (z) is
the estimate of the mean of this distribution, and {(x — (x))?) is the estimate
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of the variance. The square root of the variance is the standard deviation.
Usually, while doing estimations from the Markov Chain Monte Carlo out-
put, a particular number of starting iterations of the Markov chain are being
discarded. This is needed for the chain to "forget” its starting values (M
iterations is the so called burn-in time):

1
(@) ~ =7 Y a@l,..2D).

t=M+1

In Bayesian modelling, MCMC methods are used to obtain expectations
(p(m|D)) and (p(6,,|D)).

Typically, the Markov chain explores the space in a ”local” fashion. In some
methods z(*) differs from z®~') in only one component of the state, for ex-
ample, it may differ with respect to z; for some 7, but have x(t) = xgt b
for j # 4. Other methods may change all components at once, but usually
by only a small amount. Locality is often crucial to the feasibility of these
methods. In the Markov chain framework it is possible to guarantee that
such step-by-step local methods eventually produce a sample of points from
the globally-correct distribution.

One of the MCMC approaches is Gibbs sampling (Geman and Geman 1984).

I introduce this method briefly in the next section.

3.6.2 Gibbs sampling

Gibbs sampler reduces the problem of dealing simultaneously with a large
number of unknown parameters in a joint distribution into a much simpler
problem of dealing with one variable at a time, iteratively sampling each from
its full conditional distribution given the current values of all other variables
in the model.

Suppose, we wish to sample from the joint distribution for X = Xy,..., X,
given by P(xy,...,z,). The Gibbs sampler does this by repeatedly replac-
ing each component with a value generated from its distribution conditional
on the current values of all other comFonents The algorithm proceeds as
follows: choose initial values xl e 2 and generate a value xll) from the
conditional density

(m1|x(0) )

Similarly, generate a value x2 ) from the conditional density

p(za)at?,af, .. 2)

and continue up to the value xg) from the conditional density
1 1
0,

(a;n|aj1 I S g
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With the new realization X of X, the above process is iterated, simulating
a homogeneous Markov chain X XM X@ X® For large t, the state
of the Markov chain will converge to the desired distribution, X® can be
regarded as a simulated observation from P(X).

Performing stochastic simulation, especially Gibbs sampling, is particularly
appropriate with a probabilistic graphical model (Pearl, 1987). Due to the
factorization of the joint probability distribution, the full conditional for a
given node in the DAG involves only a subset of nodes which participate in
its Markov blanket (that is the set of node’s parents, children and parents
of the children). The Gibbs sampler generates samples for unobserved nodes
while fixing (or clamping) the observed nodes with the data. From the gen-
erated samples one estimates the quantities of interest, e.g. the posterior
distributions of the unknown parameters given data.

3.6.3 Gibbs Variable Selection

The ”OR” model introduced in Section 3.5 can be written as:
Y ~ Bernoulli(1 — [ J(1 - 6;)™)

=1

(The operator ~ stands for ’is distributed as’.) Now consider the complex
model ”OR-NOR?”. Assume the variable Y is influenced by a set of activators
Xget .., X% and a set of inhibitors X" ... X" The variable Y takes
the value 1, if the activators executed their influence and the inhibitors failed,
otherwise Y is 0. The "OR-NOR” model then can be defined as:

n

Y ~ Bernoulli((1 — H — 05" X H — g th)

=1 =1

=

Consider the ”OR” model. Our problem of model selection is formulated as:
given the data on the gene Y and its potential regulators X, ..., X, identify
a subset Xq,..., X, of actual regulators of Y.

Standard Markov Chain Monte Carlo techniques, such as Gibbs sampler,
cannot be directly applied to the problem of model selection because the
candidate models have different number of parameters (n). One must take a
particular care by setting the probabilities of jumps between different models.
Green (1995) have developed the reversible jump MCMC algorithm which can
account for this.

Another approach for MCMC exploration of the model spaces is ”the model
composition” approach of Carlin and Chib (1995). The authors introduce
the joint model-parameter space, composite model space, which is created by
considering the product space of the model indexing variable m and parame-
ters from all possible candidate models: M X [], ., ©k, a parameter space for
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(m, 0 : k € M). This allows to consider only one joint space of model index-
ing variable m and model parameters, keeping the dimensionality constant
across all possible models. They use Gibbs sampler to generate from the
posterior distribution p(m, x| D). Since the parameter space has changed, a
prior distribution for (m, 6y : £k € M) is no longer completely specified by
p(m) and p(0,,|m), rather the use of pseudopriors p(0x|m # k),k € M is
required. The main drawback of this method is the unavoidable specification
of, and generation from, many pseudoprior distributions.

Gibbs sampling approaches applicable for the model selection problems were
further considered in the works of George and McCulloch (1996), Kuo and
Mallick (1998), and by Dellaportas et al. (2000, 2002). It was proposed to
substitute the model indicator m € M with a wvariable indicator v, binary
vector, representing which of the parameters are included or excluded from
the model. This allows to consider only one joint space of variable indicators
and model parameters, keeping the dimensionality constant across all possi-
ble models. By introducing the variable indicator the ”OR” model may be

written as:
n

Y ~ Bernoulli(l — H(l — 0;)7%)
i=1

In this representation model choice problem is referred to as the variable se-
lection problem.
Let D denote the observed data (for the variables X;,j=1,...,p and Y).
A Bayesian approach to variable selection requires setting up a joint proba-
bility distribution (full probability distribution) over all the observables and
parameters. The sampling procedure samples from the full probability dis-
tribution conditional on the observed data, that is p(f,v|D). The Gibbs
sampling procedure samples successively from univariate conditional distri-
butions, generating a sequence of values

0O A0 g A1) O o)

N N

which constitutes a Markov chain. The subsequence of values

(0) (1) ®)

Y Yy

converges to p(y|D). This sequence can be used to identify the high proba-
bility values of ;. These are the values that appear most frequently in the
sequence. (empirical frequency estimate of ). The sequence of values

00 o) 9" .

gives an estimate of §. If the estimate for ; is close to 1, the respective
X, should be included in the desirable "true” model, other X, should be
excluded.
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Consider a partition of ¢ into (6,,60_,) corresponding to those components
of § which are included and not included in the model. Then p(6|y, D)
may be partitioned into p(6,|0_,,7, D) and p(6_,|6,,7, D). From the model
definition it is obvious that the components of the vector 6_, do not affect
the model likelihood. The full conditional posterior distributions for the
sampling procedure are given by:

p(0,10—,7, D) oc p(D|6,v)p(0|7)p(0—10,,7),

p(0— 10,7, D) o< p(0_10.,7),

the last relation is true since the components of the vector 6_, do not affect
the model likelihood.
Hence, the Gibbs variable selection procedure requires the specification of
the model likelihood p(D|6,7), the specification of the model prior p(6,|y)
and the pseudoprior p(0_,|6,,7).
In our model the terms «; of the variable indicator v are independent. Each
7; can be sampled from a Bernoulli distribution with success probability
O]/(l + Oj), where
0. — p(v; = 174,60, D) _
! p(v; = 0|y 0, D)

p(DI0,7; = 1,v5) pOlv; = 1,7v-5) p(vs = 1,v-5)

p(D[8,~; = 0,7-5) p(6]7; = 0,7-3) p(7; = 0,7-)
The methods on Gibbs variable selection differ in their approaches on spec-
ifying the prior distributions on the model parameters. The most simple is
the "unconditional prior” approach of Kuo and Mallick where the prior dis-
tributions of model parameters 6 is defined independent of variable indicator
7.
In the Stochastic Search Variable Selection method of George and McCulloch
(SSVS), the priors for 6; depend on ~;:

p(O;lv;) = vip(05lv; = 1) + (1 — v;)p(O;]7; = 0).

By Stochastic Search Variable Selection, the parameters priors are defined
as mixtures of Normal distributions for 7; = 0 and ; = 1. If 7; = 0, the
parameters (pseudopriors) are kept close to 0 by defining the mean of the
Normal distribution equal 0.

The method of Dellaportas et al. (2000, 2002) differs from SSVS in that the
pseudopriors may not be distributed around 0, rather they may be chosen
in a way to help to increase the efficiency of the sampling procedure. The
pseudoprior distribution does not effect the model likelihood and is only
relevant to the behaviour of the Markov chain. Efficient performance can be
achieved, if the moves between models would be "local” (Dellaportas et al.
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2000, 2002). In variable selection problems, where the new sampled value of
differs from the current value in a single component, it is reasonable to retain
the parameter values for those terms which are present in both the current
and new models. The method of Dellaportas et al. (2000, 2002) use the
so called proposal densities for pseudopriors, which can be estimated using
a pilot run of the MCMC for the saturated model, i.e. the model where all
terms 7; = 1 for all j. In the present thesis I adopt the method of Dellaportas
et al. (2000, 2002).

Bayesian modelling allows for the hierarchical formulation of the model: the
distributions for the parameters can be formulated, in turn, with the help of
hyperparameters. I defined the parameter priors with Beta distribution with
hyperparameters a; and b;:

0,- ~ Beta(aj, b])

(The notation ~ stands for ’is distributed as’.) The choice of Beta distri-
bution was required because the parameters 6; had to be constrained to the
[0,1]-interval.

The specification of the distributions for the hyperparameters a; and b; is
further required, namely for the cases when ; = 1 and when 7; = 0 (pseudo-
prior). If 7; = 1, I defined the hyperparameters equal to 1, therefore making
the prior noninformative: Beta(1,1).

If v; = 0, I used the proposal distribution, following Dellaportas et al.. 1
calculated the hyperparameters a; and b; by the method of moments:

mean;(1 — mean;) 1

I

a; + bj =
var;

aj = (a; + bj)mean,
bj = (aj + b;)(1 — mean;),

where mean; and var;, the mean and the variance of the parameters 6;, were
estimated by the pilot run of the saturated model.

Next, one must define the prior distribution for the model indicator . Since
the terms -; are independent, the prior can be decomposed into independent
Bernoulli distributions for each term: 7; ~ Bernoulli(r;), where 7; is the
prior probability to include term j into the model. A simple and popular
choice in variable selection problems is the uniform prior on v, assuming that
models are a priori equally probable, i.e m; = m = 0.5. This prior is noninfor-
mative in the sense of favoring all models equally, but is not noninformative
with respect to the model size. If p is the number of potential regulators, and
n is the number of actual regulators, then E(n) = 0.5p and var(n) = 0.25p.
For example, if p = 19 (as in the test study described bellow), then n lies in
the range 5 to 14 with prior probability close to 1, and thus it is possible that
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sampling procedure will not sample models with less than 5 regulators. This
may be crucial for ”AND” models, since there might be a sparse number of
regulators of a gene combined with AND-function. To favor more parsimo-
nious models, one can set the probability 7 so to restrict n a prior:i to lie in
a short range by setting F(n) and var(n) to the desired values and using:

E(n) =7 *p,
var(n) = (1 — m)p.
A more flexible approach is to place a hyperprior on 7:
7 ~ Beta(a, §),
then the prior for the number of actual regulators n is Beta-binomial:
n ~ Betabin(p, «, )

The values for o and 8 can be choosed by setting F(n) and var(n) to the
desired values and solving the following equations (see Kohn et al. 2001):

(07

P 5= F0
at+l var(n) — E(n)(1 — E(n))
at+B+1 (p—1)E(n)

While performing Gibbs variable selection with the complex models like ”OR-
NOR?” T considered the same set of variables (genes) as potential activators
and inhibitors. I used two variables indicators: v** and """, representing
that a particular variable is included in the model as activator or inhibitor,
respectively. To ensure that terms 7% and 7™ cannot be 1 at the same

: J j
time, I specified fy;-"h as:

Y ~ Bernoulli((1 — vi)ai™),

where W;"h is the prior probability to include the term j into the set of ”true”
inhibitors.

I have implemented Gibbs variable selection by utilizing the software BUGS
(Bayesian Updating with Gibbs Sampling) (see Spiegelhalter et al. 1996,
Gilks 1996, also Ntzoufras 2002). This is the general purpose software for
Gibbs sampling on graphical (DAG) models. BUGS uses a specially designed
high level language to describe a graphical model. That is, for each node in a
graphical model its probability distribution must be specified, if the node is
a stochastic variable, or, if the node is a deterministic variable, a functional
expression must be specified for it. BUGS provides a certain number of dis-

tributions and functions. BUGS automatically constructs the necessary full
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conditional distributions for the sampling procedure. It exploits the factor-
ization of the joint probability distribution in the graphical model, namely
that the full conditional for a given node in the DAG involves only a subset
of nodes participating in its Markov blanket. BUGS contains a small ex-
pert system for deciding the best method of sampling from full conditionals.
Firstly, it will be attempted to identify conjugacy, where the full conditional
reduces to a well-known distribution, and to sample accordingly. BUGS also
applies the adaptive rejection sampling (Gilks and Wild 1992) which relies
on the log-concavity of the underlying function.

The BUGS code for the ”OR”-model is presented in Appendix. The ”AND” |
"NOR”,”NAND”,” AND-NOR”,”OR-NAND” and ” OR-NOR” models were
specified in analogous fashion.

The runs of the MCMC can be monitored using the package CODA imple-
mented in R-language (see http://cran.r-project.org).

As described in Section 3.6.1, the output of Markov chain simulation is used
to obtain the estimate on the variable of interest. For example, the marginal
mean of the variable v; from the Monte Carlo output {’yj(-t) ,t=M+1,...,N}

can be estimated by:
N
1 (t
= N — M Z Vi

Here, M is the burn-in time of the Markov chain, i.e. iterations being dis-
carded while doing estimations from the MCMC output.

After the burn-in time of 2000 iterations, I use 10000 Markov chain simula-
tions to make estimations on the parameters. For the complex models, like
"OR-NOR” T used 5000 iterations for the burn-in, and 10000 iterations to
make estimations. I obtained the final statistics on the parameters of interest
7; (its mean value). If the mean value of ; was substantially close to 1 (here,
higher than 0.7), I assumed +; = 1, otherwise 7; = 0. The example of the
trace of Markov Chain Monte Carlo simulation for parameter y; (for some j)
is shown in Figures 3.7. The left part of the figure displays the 12000 values
sampled for this variable, and the right part presents the density estimate for
the ;. Figure 3.8 presents the MCMC sampled values and density estimate
for the parameter 0;.

3.6.4 Monitoring convergence of the Markov chain

The fundamental problem of inference from Markov chain simulation is the
lack of convergence or slow convergence of the Markov chain. There will
always be areas of the target distribution that have not been covered by
the finite chain. As the simulation progresses, the ergodic property of the
Markov chain causes it eventually to cover all the target distribution but,
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Figure 3.7: Example of the trace of the MCMC sampled values and density
estimate for the parameter ;.
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Figure 3.8: Example of the trace of the MCMC sampled values and density
estimate for the parameter 0;.
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in general, the simulations cannot tell us about areas they have not been.
The simulations might move too slow or stick in separate places in the tar-
get distribution. The simulations can remain for many iterations in a region
heavily influenced by the starting distribution. In particular, the Gibbs sam-
pler depends on local properties of the model, and it is hardly possible to
understand the large-scale features of the joint distribution. The slow con-
vergence of the Markov chain can be also due to an inappropriate model.
For these reasons, the Markov chain must be monitored for diagnosing slow
convergence or lack of convergence.

As proposed by Gelman and Rubin (1992), a number of parallel runs of
Markov chains should be carried out from different starting points. The
method of Gelman and Rubin is based on the comparison of within-chain
and between-chain variances, and is similar to the classical analysis of vari-
ances. Approximate convergence is diagnosed when the output from different
Markov chains is indistinguishable, i.e., the variance between the different
chains is no larger than the variance within each individual chain. That is,
the two sequences are much farther apart than we could expect, based on
their internal variability.

Assume, we have m parallel Markov chain simulations, each of length n, for
the quantity of interest ¢: (¢45), j =1,...,n,i=1,...,m. I compute two
quantities, the between-chain variance B and the within-chain variance W'

n -
B= C— )2
m_I;(wz ¥.)?,
where
. 1&
d)Z ZEZ%J’
j=1
=iy w
_mZZI 2.9
and
1 m
W=_ 2
where
1 < —
2 o \2
8i = EZ(qﬁ’L] Vi)”

Jj=1

The between-chain variance B contains a factor of n because it is based on
the variance of the within-chain means, 1); , each of which is an average of n
values ;;.
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From the two quantities two estimates of the variance of v in the target
distribution are obtained. First,

— n-—1

var(y) =

W+ LB
n n
is an overestimate under the more realistic assumption that the starting
points are overdispersed. The within-chain variance W should underesti-
mate the variance of 1 because the individual chains have not had time to
range over all of the target distribution and, as the result, will have less vari-

ability. In the limit as n — oo, both vm) and W approach var(1), but
from opposite directions.

The convergence of the Markov chain can be estimated by the ratio between
the estimated upper and lower bounds for the standard deviation of v, which
is called estimated potential scale reduction:

o ——

= [var(z)
VE = T

(This is R (estimate) rather than R because the numerator and denominator
are merely estimated upper and lower bounds on the variance). As the
simulation converges, the potential scale reduction declines to 1, meaning
that the parallel Markov chains are essentially overlapping. If the potential
scale reduction is high, then we have reason to believe that proceeding with
further simulations may improve our inference about the target distribution.
According Gelman and Rubin, it is desirable to choose starting points that
are far apart in the parameter space. I used different initial values of the
parameters indicators v (y; = 0 for all j and v; =1 for all j).

3.6.5 Bayesian model checking

In previous sections I described the model selection approach for the mod-
els with different Boolean-logic semantics. After the execution of the Gibbs
variable selection method described above and the estimation of the variable
indicator 7y, the check of goodness-of-fit of the model to data is required,
to check whether the model assumptions were appropriate. In context of
Bayesian modelling it is called Bayesian model checking. Bayesian model
checking uses posterior predictive distributions (Gelman and Meng 1993, Gel-
man 2004). The goal is to perform posterior predictions under the model and
to assess the discrepancy between the predicted and the observed data. If
the model is reasonably accurate, the generated prediction data should look
similar to the observed data.

The aspect of the inferred regulatory model that is reasonable to check is its
ability to predict the state of the gene Y from the states of its regulators.
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Let y be the observed data on Y and 6 be the vector of parameters. Denote
y P the replicated data generated under the model with parameters . The
posterior predictive distribution is

p(y"ly) = / p(y"|0)p(]y)db.

The posterior predictive distribution can be computed by simulation: sim-
ulate parameters @ from their posterior distribution, and simulate y"*? from
the sampling distribution p(y™?|#) conditioning on values of the simulated
parameters. An advantage of using BUGS is that the generation of the repli-
cate data can be easily incorporated into the model inference procedure.
Based on the current simulated values of the parameters 6 obtained at each
iteration of the MCMC, I generate replicate dataset {y""} from the sampling
distribution of Y.

My model checking strategy is based on examination of individual observa-
tionsof Y y;,2 = 1,..., N (N is the number of data samples) and comparison
of them to the posterior predictive distributions. For the comparison I use
the residual function r; = y; — E(y;), where the expectation E(y;) is esti-
mated based on the replicate dataset. Observations for which the residual is
not close to 0 indicate some lack-of-fit of the model and should be regarded
as outlier. I regarded the residual as not close to 0 if in its absolute value it
exceeded one estimated standard deviation. I calculate the model prediction
accuracy as the percent of non-outliers.

My approach for learning the model of gene interactions from expression
data is presented in Figure 3.9. The general workflow in this framework
is represented with rectangles containing the descriptions of the procedures
and connected with solid arrows. Rectangles with rounded corners contain
the descriptions of the data obtained after performing the procedures and
serving as input into further procedures. The dashed arrows represent the
dataflow.
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Figure 3.9: Method for inferring the model of gene interactions from expres-
sion data.

3.7 Inferring the interactions of the cell cycle
regulated genes of S. cerevisiae

To test my approach I used the microarray data from Spellman et al. (1998)
and Cho et al. (1998). The microarrays were produced for S. cerevisiae
cell cultures that were synchronized by three different methods. I used the
cdclb dataset (arrest of cded15 temperature-sensitive mutant) which has the
largest number of samples (25).

I discretized the continuous gene expression values into two states (0 - not
expressed, 1 - expressed) using vector quantization. I.e. for each gene, I
applied the standard k-means clustering algorithms with two initial values:
0 and the maximum expression value of the gene.

The mitotic division of the yeast cell is a series of periodic events (Menden-
hall and Hodge 1998). Such events as DNA replication and chromosome
segregation by the mitotic spindle are promoted with the actions of specific
cyclin-dependent kinases (CDKs). The activity of CDKs are dependent on
the binding of a cyclin subunit. Besides the cyclins activity, the cycle peri-
odicity demands the degradative, proteolytic processes, that eliminate cycli-
cally acting proteins at stages, when they are no longer required. Some cell
cycle transitions are negatively regulated by specific inhibitors which must
be eliminated in a timely fashion to initiate cell cycle transition. The gene
transcription in the mitotic division of the yeast is coordinated in a periodic
manner according to the consecutive phases of the cell cycle: G1, S, G2, M,
M/G1.

I considered the group of 20 genes known to be involved in the cell-cycle

78



regulation. The same set of genes was used by Chen et al., 2000 and Soinov
et al., 2003. T applied my approach for learning the models ”AND”, ”OR”,
"NOR”, ”"NAND”, ”AND-NAND”, ”AND-NOR”, ”OR-NAND” and "OR-
NOR” from data, for each gene in the dataset considering all other genes in
the dataset as candidate regulators. After the vector of variable indicators
was obtained from Gibbs variable selection procedure, I performed model
checking.

OR | NOR

Genes Activators Accuracy Inhibitors Accuracy
CLN1 CLB6, CDC28 48 CLB2 76
CLN2 CLB5 88 CDC20 76
CLN3 MBP1 48 CLB4, MCM1 88
CLB1 CLB2 96 CLBS6, SIC1, SWI4 88
CLB2 | CLBIL, SWI5 88 CLB6, SICI, SWI4 92
CLB4 CDC34 80 CLN3, CLB6 64
CLB5 CLN2 88 CDC20 72
CLB6 CLN1 80 CLB2 80
MCM1 || SKP1, CLN2 40 CDC20 52
SIC1 SWI4 60 CLB2 68
SWI6 SWI4 68 CDC20 36
CDC28 no no CLB5 60
CDC53 no no no no
MBP1 SKP1 44 CDC34 84
CDC34 CLB4 80 MBP1 84
SWI5 CLB2 92 SWI4 80
SKP1 MBP1 44 CLB6, CDC34 60
SWI4 SIC1 80 CLN3, CDC53, CDC34 20
CDC20 SIC1 68 CLN2, CLN3 68
HCT1 MBP1 40 no no

Table 3.4: Regulators of the genes found by learning "OR” and "NOR”
models from data.

The results for the models I applied are displayed in Tables 3.4, 3.5. 1
have experimented with different settings of the prior for the variable in-
dicator 7. I tried the Bernoulli distribution with parameters # = 0.5 and
m = 0.1, and also the setting with Beta distribution described previously.
I tried Beta(16,133) that keeps expectation and variance of the number
of actual regulators E(n) = 2, var(n) = 2, and also Beta(0.8,14.4) with
E(n) = 1,var(n) = 2. The results of the ”OR” and "OR-NOR” models with
these different prior settings appeared to be the same, but for the ” AND?”
model, which is apparently more restrictive, I found only few regulatory re-
lations for some genes with Bernoulli(0.1) and Beta distribution settings.
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OR-NOR | OR-NAND

Genes Activators Inhibitors | Accuracy Activators Inhibitors | Accuracy
CLN1 CLB6 no 56 CLB6 no 60
CLN2 CLB5 CDC20 80 CLB5 no 56
CLN3 no no no MBP1 no 72
CLB1 CLB2, SWI5 no 88 CLB2 no 60
CLB2 CLB2, SWI5 no 88 CLB1, SWI5 no 56
CLB4 CDC34 CLN3 88 CDC34 no 56
CLB5 CLN2 no 88 CLN2 no 60
CLB6 CLN1, CLN2 no 64 CLN1 no 56
MCM1 CLN2, SKP1 CDC20 48 CLN2, SKP1 no 52
SIC1 no no no SWI4 no 76
SWI6 CLB5, SWI4 no 52 CLB5, SWI4 no 52
CDC28 no no no no no no
CDC53 no no no no no no
MBP1 SKP1 CDC34 80 CLN3, SWI5, HCT1 CDC34 92
CDC34 || CLB4, CDC20 MBP1 92 CLB2, CLB4, SIC1 MBP1 92
SWI5 CLB1, CLB2 no 92 CLB2 no 48
SKP1 MBP1 no 44 MBP1 no 60
SWI4 SIC1 no 80 SIC1 no 64
CDC20 || SIC1, CDC34 no 52 SIC1 no 52
HCT1 MBP1 no 40 no no no

Table 3.5: Regulators of the genes found by learning ”OR-NOR” and ”OR-

NAND” models from data.
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Genes Activators Inhibitors Accuracy
CLN1 CLB6 CLB2 84
CDC28 CLB2 80
CLN2 CLB5 CDC20 80
CLN3 no CLB4, MCM1 88
CLB1 CLB2, SWI5 CLB6, SIC1, SWI4 92
CLB2 CLB1, SWI5 CLB6, SIC1, SWI4 96
CLB4 CDC34 CLN3, CLB6 80
CDC34 CLN3 88
CLB5 CLN2 CDC20 80
CLN2 no 88
CLB6 CLN1, CLN2 CLB2 84
MCM1 CLN2 CDC20 72
SIC1 SWI14 no 76
SWI6 CLB5 CDC20 72
CDC28 no no no
CDC53 no no no
MBP1 || CLN3, SWI5, HCT1 CDC34 92
CDC34 || CLB2, CLB4, SIC1 MBP1 92
SWI5 CLB1, CLB2 SWI4 92
SKP1 MBP1 CLB6, CDC34 68
SWI4 SWI6 CLB2 88
CDC20 SIC1, CDC34 CLN2 80
HCT1 no no no

Table 3.6: Final result: possible activators and inhibitors of the genes.

The results were covered by the results of ”OR” model.

Anylyzing the tables 3.4, 3.5, one can see that for some genes the "NOR”-
model suggest more inhibitors that ”OR-NOR”-model. Learning the ”"NOR”-
model identifies only the inhibitors of a gene, the model ”explains” the non-
activity of the gene with the activity of its regulators. By the ”OR-NOR”-
model the non-activity of the regulatee can be also "explained” with the
failure of its activators.

For the final result (Table 3.6), I tested the accuracy of the ”OR-NOR”-
model with the activators and inhibitors from the Tables 3.4 and 3.5, and
selected the highest accuracy results. The resulting genetic regulatory in-
teractions are presented in Figure 3.10. The relationship between genes
regulating one common gene is described with ”OR”-function. Note, that
this is not a graphical model, because it is not a directed acyclic graph,
rather this graph contains cycles: for some genes there were symmetric in-
teractions found. Note, that we searched for the local models, i.e., for each
gene we considered all other genes as possible regulators, and did not test
any global criteria for the whole network. The symmetric activatory relations
between the genes A and B represent the following: ”if A is active, then B
is active, and vice versa”. The symmetric inhibitory relations represent: ”if
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A is active, then B is inactive, and if B is active then A is inactive”. The
”true” direction of the regulatory relation can be reconstructed by using fur-
ther biological knowledge, e.g., that one gene lies upstream from the other.

My results are consistent with previous biological knowledge: the interrela-
tionships between the genes reflect the coincidence with different phases of
the cell cycle. The genes CLN1 and CLN2, transcribing the so called G1
cyclins, are expressed in Gl-phase (an interval between mitosis and DNA
replication). The genes CLB5 and CLB6, transcribing the B-cyclins CIb5,
Clb6, are also expressed in G1. Note the activatory connections between the
genes CLN1, CLN2, CLB5, CLB6. The genes CLB1, CLB2, and SWI5 are
expressed in G2. Note the activatory connections between the genes CLBI,
CLB2, and SWI5. The negative connections were found between the genes
related to G1- and G2-phases confirming that G1 and G2 cyclins are sepa-
rated in time. It is known that Clb5 stimulate some Start-specific transcripts
and initiate the S phase. The results show that CLB5 can activate the gene
SWI6 which encodes the Swi6, the regulatory component of SBF and MBF
transcription factor complexes important for Start-specific gene expression.
Note that the gene SWI6 has the activatory connection to SWI4. The pro-
tein Swi4 is a component of the SBF complex which is a transcription factor
controlling the expression of genes in G1-phase. Swi4 forms the complex with
Swi6. Our method found negative connections of the gene SWI4 to the genes
expressed in G2-phase.

The results suggest that the transcription of SIC1 depends on the activity
of SWI4. The gene SIC1 is known to be an inhibitor of the Clb complexes
and is active in the Gl-phase maintaining the genes CLB1 and CLB2 in
inactive state. Note the inhibitory connections of SIC1 to the G2 cyclins
CLB1 and CLB2. The protein Sicl degrades at G1-S boundary in the pro-
cess of ubiquitin-mediated proteolysis triggering the initiation of the DNA
synthesis. The Sicl must be phosphorylated in order to be recognized by
the ubiquitinating machinery. The CDK complexes CDC20 and CDC34 are
needed for the phosphorylation of Sicl, this explains the positive connection
from SIC1 to CDC20 and CDC34 found by our method.

The gene CDC34 encodes the protein Cdc34, that is the E2 ubiquitin con-
jugating enzyme. Both genes CDC20 and CDC34 are required for prote-
olytic degradation of G1 regulators. This explains the negative connection
of CDC20 to SWI6, which encodes the component of SBF and MBF tran-
scription factors and the negative connection of CDC20 to MCM1, that is
the transcription factor. CDC20 is transcribed in late S/G2 phase, whereas
CLN2 and CLB5 have their transcription peak in G1. This explains the nega-
tive connection of CDC20 to these genes. In our results, the genes CDC34 and
MBP1 negatively influence each other, likely because the activity of CDC34
as part of the SCF ubiquitinating complex, and the activity of MBP1 as
part of MBF transcription factor complex, are completely separated in time.

82



In the Figure 3.10 there is a negative connection from the gene CDC34 to
the gene SKP1, whereas Skpl is the E3 ubiquitin ligase which is needed for
Cdc34 essential function. However, if I used the "time delayed” samples of
the gene SKP1, I found the positive influence of the gene CDC34 on the
gene SKP1. This suggests that a certain time interval is needed between the
transcription of these genes to achieve their function.

The gene CLB4 is expressed in S- and G2-phases. Its product can initiate
S-phase, if Clb6 is lacking (note the inhibitory connection from CLB6 to
CLB4). CDC34, is required for the proteolysis of Clb proteins Clb2 and
Clb4 at the border of G2-M (positive connections from CLB2 and CLB4 to
CDC34. The gene CLN3 is expressed at the M/G1 border. The MCM1
gene encodes the transcription factor and is active during G2/M transition.
The time delay in the activities of MCM1 and CLN3 implied the negative
connection from MCM1 to CLN3.

Obviously, most of the regulatory interactions coordinating the cell division
cycle of the yeast occur at protein level. Such events cannot be measured
by microarray experiments. The genetic interactions reconstructed from the
gene expression data can only give a hint towards the genetic regulatory
pathways. Many events in this chain of events will likely remain hidden.

3.8 Discussion

In this thesis I present a model for the genetic regulatory interactions and an
automated approach for learning the structure and parameters of the model
from gene expression data. The model represents the Boolean logic semantics
of gene interactions which is a biologically plausible assumption. In contrast
to the standard Boolean networks, my model has a probabilistic nature rep-
resenting probabilistic dependencies between a gene and its regulators. This
stochasticity is more suitable for modelling noisy biological process and ex-
perimental measurements. The model is a graphical model that explicitly
represents the (in)dependencies among variables. It can be seen as an in-
termediate model between the structures of gene interactions represented by
Boolean networks and by Bayesian networks. The model is not fully observ-
able, rather it contains hidden variables allowing for the representation of
factors that could not be measured.

Due to the statistical context of the model, unlikely to Boolean networks, I
could employ the methodology of Bayesian statistics for learning the model
from data. Bayesian approach treats the uncertainty on model structure and
parameters in a unified fashion, defining the priors on these quantities. The
Bayesian modelling deals with complex models with many parameters giving
the possibility of the hierarchical formulation of the model: the prior on the
model parameters can be defined with the help of further parameters. It was
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Figure 3.10: Gene regulatory interactions inferred for 20 genes of S.cerevisiae.
The full arcs represent activatory regulation, the dashed arcs represent in-
hibitory regulation. The relationship between genes influencing one common
gene is described by ” OR”-function.
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possible to insert into the model a new parameter (variables indicator). The
learning of the resulting complex model was facilitated with sampling-based
methods.

Bayesian networks are acyclic graphs. However, there is an evidence that
genetic networks can have circular dependencies - feedback loops (gene A
affects gene B but gene B also affects gene A). In contrast to the Bayesian
networks, in my approach I do not have a global criteria to score the whole
genetic network with respect of its fitness to the data, rather I investigate
local relationships between the genes.

In the past, there were some models suggested with the same attempt to
extend Boolean networks to make them robust against noise. In the noisy
Boolean networks of Akutsu (2000), they defined a probability with which
a certain number of input/output patterns of gene expression will not be
discarded by an inference algorithm, even if a certain Boolean function is not
satisfied. In contrast, my approach considers the probability of "noise” as
parameters of the model, giving a possibility to apply statistical learning for
model inference.

Shmulevich et al. (2002) present Probabilistic Boolean networks. They insert
"noise” into the model by accomodating more than one possible Boolean
functions for each node in the network. They introduced a probability with
which a certain Boolean function is selected from the set of possible functions
for calculating the output of the target gene. In contrast, I see the source
of uncertainty of the model not in the realizations of different Boolean func-
tions, but in the fact that independent basic elements of the gene regulatory
modules could fail. The authors investigate the global dynamical properties
of the model, and do not present any algorithms for learning the model from
data. In contrast, my work focuses on the data mining task of learning the
structure of these regulatory modules from data.

The identification of genetic regulatory interactions and gene regulatory
pathways is an important part of bioinformatics and biological research. Cel-
lular responses and actions are often a result of coordinated activity of a
group of genes. There is a growing indication that most single-gene muta-
tions do not have marked phenotypes. Most phenotypes are the result of
the collective response of a group of genes. Genes act ’'in concert’ to achieve
certain phenotypic characteristics. Reconstructing genetic regulatory inter-
actions help rationalize how these complex traits arise and which genes are
responsible for them.

Recent estimates on the number of genes in the human genome suggest that
there are about 35000 human genes, only about twice that of the worm
Caenorhabditis elegans, and about five times more than by the Saccharomyces
cerevisiae. This relative ”simplicity” of the human genome can be explained
by several hypotheses. First, the proportion of regulatory genes (encoding
signalling proteins, transcription factors, etc.) could be higher than in other
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genomes. Second, the human genetic network could have a higher mean num-
ber of connections per gene, which implies that the encoded proteins contain
more binding sites. Both hypotheses could be tested by determining and
comparing genetic networks of different organisms (comparative genomics).

The topology of gene networks might be responsible for the robustness shown
by organisms. A particular gene network topology might have been selected
during evolution to permit the system robustness against drastic perturba-
tions at the genetic level (40% of the genes of Saccharomyces cerevisiae can
be removed without causing noticeable phenotypes).

The robust inferring of genetic regulatory relations can help for further iden-
tification of transcription factor binding sites, promoter prediction, identifica-
tion of "target” genes regulated by a particular regulatory element. Earlier
methods based on computational screening of the genomic sequences were
less advanced than, for example, methods for predicting coding regions of
the genes, because the regulatory elements are very diverse and comprized of
short motifs. There were a lot of false positives obtained by such kind of anal-
ysis, and only a small fraction of the predicted binding sites were functionally
significant. The robust reconstruction of genetic interactions from data can
provide reliable sets of co-regulated genes, which might be possibly regulated
by similar mechanisms, i.e. by common transcription factors, and therefore,
should have transcription factor binding sites in common. Knowing a set of
transcription factors can allow to predict new, previously unknown target
genes that are responsive to this factors.

Knowledge about gene regulatory interactions might provide valuable clues
and lead to new ides for treating complex diseases like cancer. Biomolecules
that affect transcription (either inducers or inhibitors of transcription) be-
come high-priority targets for pharmaceutical research and drug develop-
ment. By introducing compounds known to affect transcription and then by
studying the actual transcription profiles with microarrays, it is possible to
identify critical steps in regulatory and other cellular pathways.
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Chapter 4

Conclusions and future
perspectives

The presented thesis focuses on the application of probabilistic graphical
models in bioinformatics. I was dealing with two kinds of models:

e Bayesian networks, that represent multivariate probabilistic dependen-
cies between variables, and

e networks with the dependencies between variables defined by Boolean-
logic functions.

I applied these models for the analysis of two different kinds of biological
data:

e the cytogenetic data about the allelic losses in tumors (losses of het-
erozygosity LOH) and

e the genetic data about expression of the genes obtained with microarray
experiments.

Learning the models from data allows to determine and quantify stochastic
relationships between biological entities. In the first application I was able
to reveal primary and secondary allelic losses and to suggest pathways of
progression of these abnormalities which are possibly associated with tumor
pathogenesis. In the second application I have learned the model from mi-
croarray data to uncover the regulatory interactions of the genes.

Both models are probabilistic, hence being capable to deal with the sub-
stantial amount of noise present in the biological data. Both models are
parametric models with many parameters. Learning probabilistic graphical
models from data is facilitated by the modern statistics approach - Bayesian
modelling. Bayesian modelling is characterized by the conversion of the sta-
tistical inference into the probabilistic inference based on the Bayes theo-
rem. Therefore, priors on model parameters must be inserted into the model
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formulation. Bayesian approach is well suited to the problems with many
variables and many parameters due to the possibility to define the model
hierarchically, i.e. the prior on model parameters can be formulated with the
help of further parameters.

One of advantages of the Bayesian approach is that it enables to include
”subjective” prior information into the model. In this study I used the sub-
jective prior specification to enforce the number of gene regulators to lie in
the desired range. Potentially, one could define priors aiming to incorporate
previous biological knowledge into the model learning making the model more
biologically plausible.

The major obstacle to the broad employment of the Bayesian methodology
was that integrals involved in the Bayesian problems like model estimation
have no analytical solution (conjugate prior for model likelihood for many
models does not exist). Recently developed computer intensive approaches
based on Markov Chain Monte Carlo algorithms such as Gibbs sampler have
revolutionized the application of Bayesian methods. I have applied MCMC
simulation for the model selection in the second application, because the
problem had no closed form solution. Due to the flexibility of the Bayesian
modelling, I could introduce an additional parameter into the model, so that
the problem of model selection transformed into the variable selection task,
and performed Gibbs variable selection.

The idea behind the whole Bayesian approach was to extend classical statis-
tics with a form of decision-making. Bayesian approach allows to fit a model
to the data and to perform predictive inference under the model. It allows
to make estimates on the variables of interest given the observed values of
some other variables. This enables to use models as predictors, or even as
simulating systems and to bring together two kinds of analysis: the data-
maning analysis, which is an explorative, knowledge discovery task and the
stmulation-based analysis.

Biological systems (like cell or tumor cell) are complex and heterogeneous.
They are comprized of a very large number of elements, which are frequently
multifunctional, and different functions emerge from the specific interactions
of the elements. The systems exhibit complex behaviour that is usually not
predictable from the properties of individual components alone. To under-
stand complex biological systems requires not only to uncover a multitude of
biological facts, but to gain insight into their various dependencies. Devel-
oping methods for establishing cause-effect relationships between biological
entities on the basis of observed data is an important part of bioinformatics
research.

With the advancement of high-throughput methods the amount of quanti-
tative biological data will increase. But it will never be possible to discover
all biological relations experimentally, and to explore the complex behaviour
of interacting cellular components by focusing on single molecules and re-
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actions. Insights into the functioning of biological systems will not result

Biological _\

knowledge and -

data Models of
gene regulation,
cancer progression,

"Wet" . signalling networks,
et extp())erlments metabolic networks, etc.
verify or reject ~
hypotheses +

Computational
"dry" experiments and
analysis to

screen hypotheses

Experimental design

to #
test hypotheses

Figure 4.1: Systematic approach to hypotheses testing and knowledge dis-
covery in biology.

from purely intuitive approach, but a lot of modelling work and theoretical
exploration will be required. The systematic integration of experimental and
computational research will determine the future perspectives of the biologi-
cal research. A new discipline systems biology arised with the focuse on this
systematic view. This can be represented as in Figure 4.1. Data-mining
approaches and modelling are needed to fit the computer-executable models
based on current biological knowledge and data. Simulations and predictions
made under the models ("dry” experiments) allow to verify and validate as-
sumptions underlying the model. Inconsistency at this stage means that the
assumptions representing our knowledge are at best incomplete. Models that
survive validation can then be used to make predictions to be tested by bio-
logical (”wet”) experiments.

In this work I developed a general computational framework enabling to de-
fine a model of gene interactions with a particular regulatory function and
to perform Bayesian learning of this model from data. The main advantage
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of the model is that the relationships found by the model have a clear logi-
cal semantics and do not require laborious analysis for their interpretation.
Therefore, the results obtained with this approach can be further utilized in
an automatic system for discovering transcription factor binding sites, new
regulatory elements and pathways.

The regulatory pathways of the cell rely not only on the transcriptional regu-
lation, but to a great extent on the post-translational and external signalling
events. ”Genetic networks” are phenomenological, because they do not ex-
plicitly represent the proteins and metabolites mediating interactions in the
cell. They provide a system view at the level of gene activities, when the
expression level of one gene affects the expression level of some others. Often
”pathways” rather then "networks” are referred to when one is interested in a
particular series of interactions (e.g. cellular pathways regulated by specific
transcription factors). The reconstruction of the genetic regulatory inter-
actions from gene expression data can give only hypotheses on the cellular
pathways.

Unobserved events on protein level can be represented in a probabilistic
model by introducing hidden variables. When more detailed proteomics data
will be available, it can be also handled by the approach introduced here.
There are other networks being considered in bioinformatics. Metabolic net-
works represent the chemical transformations between metabolites. Protein
networks (also known as signalling networks) represent protein-protein inter-
actions, such as formation of complexes and protein modification by signalling
enzymes. The ultimate goal and challenge of biology and bioinformatics is to
combine the genomic, transcriptomic and proteomic information and to link
the genes and their products into global functional networks. When more
detailed proteomics or other kinds of data will be available, this can be easily
incorporated into the framework of my approach.

To summarize, the present thesis demonstrates the novel application of Bayesian
network model in the domain of molecular genetics data. My further contri-
bution to the bioinformatics and informatics research is the development of a
Bayesian model with Boolean-logic based semantics representing the genetic
interactions. I have applied the Bayesian modelling approach and developed
a novel method for learning my model based on Gibbs sampling.

Bayesian models like Bayesian networks and the second Boolean-logic based
model presented in this work can find a broad application in bioinformatics
due to the modelling freedom they provide, the ability to incorporate prior
knowledge and the possibility of predictive inference. The well grounded the-
oretical foundations of Bayesian modelling and the development of Markov
Chain Monte Carlo techniques will facilitate, that Bayesian models would
meet further challenges of bioinformatics, systems biology, in general, and
oncological research, in particular.

Cellular processes as for example regulatory processes and gene expression
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have a dynamical nature. When the biological quantitative methods will be
able to capture the dynamics of the underlying biological processes (i.e. to
make measurements with an appropriate time resolution), the time-series
analysis methods will be required. Dynamic Bayesian networks is an exten-
sion of Bayesian networks to represent the statistical dependencies evolving
in time. One of my future goals is the investigation of Bayesian models
capturing the system’s dynamics.
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Appendix A

Microsatellite loci

chromosome 1:

D1S-214, 2635, 2844, 2799

chromosome 2:

D2S-2200, 119, 2215, 2313, 335, 369, 128, 2204, 172, 248, 259

chromosome 3:

D3S-1560, 1289

chromosome 4:

D4S-412, 3032, 2974, 408, 426

chromosome 5:

D5S-502, 419, 695, 2055

chromosome 6:

D6S5-470, 1665, 1639, 1633

chromosome 7:

D7S-817, 2847

chromosome 8:

D8S-504, 264, 1806, 1824, 1781, 262, 518, 1819, 1469, 1109, 549, 261,
282, 1739, 1114, 1758, 593, 198, 1753

chromosome 9:

D9S-163, 288, 937, 921, 274, 156, 157, 925, 1684, 162, 1870, 1748, 171,
161, 1788, 1876, 153, 1815, 1689, 1809, 53, 154, 1872, 195, 1830, 1838.

chromosome D10S-1744, 541
10:
chromosome D11S-922, 4088, 1338, 902, WT1, 4083, 903, 4174, 1344, 4117, 1313,
11:
1357, 4191, 1908, 971, 1314, 901, 917, 1339, 4111, 924, 1328, 4131.
chromosome D12S-375, 391
12:
chromosome D13S-168, 153
13:
chromosome D14S-1039, 267
14:
chromosome D16S-539, 3253
16:
chromosome D17S-796, 1353, 786, 806, 787
17:
chromosome D18S-474, 1119, 64, 42, 61, 58, 461, 70
18:

Table A.1: Microsatellite loci analysed with LOH
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Appendix B
BUGS code

Example of the BUGS code for the model OR. The operator ~ means ’is
distributed as’, and <— corresponds to ’is logically defined by’.

model OR;
const
N=25, # number of samples in dataset
P=19; # number of parents of the variable Y
var
Y[N], X[N,P], # data
gammal(P], # variable indicators
theta[P], # model parameters
a[P], # a and b - hyperparameters of Beta distribution for model parameters
b[P],
aprop[P], # proposal for hyperparameters a and b
apropl[P],
priormean[P], # mean and variance of the parameters obtained by pilot run of the
model
priorvar[P],
I[N,P], # intermediate states of the variables X
s[i,j], # help variables to calculate intermediate states
sum[N],
constraint[N];
data X, Y in ”Spellman.dat”;

{
# model definition
for (i in 1:N) {
for (j in 1:P) {
s[i,j] ~ dbern(theta[j]);
I[i,j] « X[i,j]*s[i,j]*gammalj];
} #end

sum[i] < sum(I[i, ]); # sum over j
constraint[i] < step(sumli]-1);
# constraint is 1, if at least one of the components of the sum is 1, otherwise 0
Y[i] ~ dbern(constraint[i]);
}# end i

for (j in 1:P) {
# definition of priors for variable indicators
gammalj] ~ dbern(0.5); # noninformative uniform
# gammalj] < 1; # for pilot run of the model

# definition of priors for model parameters
theta[j] ~ dbeta(alj],b[j]);
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# definition of priors for hyperparameters
# if model parameters do not depend on variable indicators,
# noninformative uniform:
afj] « 1;
b[j] « 1;

# Gibbs Variable Selection
# if gamma[j]=1, noninformative uniform
# if gamma[j]=0 (pseudoprior), proposal distributions:
a[j] «+ gammalj]*1+4(1-gammalj])*aprop[j];
b[j] + gammal[j]*1+(1-gammal[j])*bprop[j];
# calculate proposal distributions, use mean and variance obtained
# by pilot run of the model:
aprop[j] < (priormean[j]*(1-priormean(j]) /pow(priorvar[j],2)-1)*priormean][j] ;
bprop|j] < (priormean(j]*(1-priormean(j]) /pow(priorvar[j],2)-1) *(1-priormean([j]);

}#tend j
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Zusammenfassung

Die vorliegende Dissertation ist das Ergebnis meiner Arbeit im Deutschen
Krebsforschungszentrum (DKFZ) auf dem interdisziplindren Gebiet Bioin-
formatik. Dieses Gebiet entwickelt sich zusammen mit den Fortschritten der
molekularen Genetik, deren experimentellen Techniken grosse Datenmen-
gen produzieren. Die in den letzten Jahren entstandene Microarray-Technik
ermoglicht die globale parallele Erfassung von Expressionswerten von Tausen-
den von Genen. Das Studium der Genexpression und Genregulation ist von
grosser Bedeutung fiir die bio-medizinische Forschung, denn z.B. die Krebs-
entstehung und Progression ist grundsatzlich mit den Verdnderungen der
Genexpression und Regulation verbunden. Zu der Methodenreservoir der mo-
lekularen Genetik und Zytogenetik gehort auch die Allelotypisierung (LOH),
die die Ermittlung von allelischen Verlusten in Tumorzellen ermoglicht. Ei-
ne weitere Methode ist die komparative genomische Hybridisierung (CGH),
die erlaubt, die genomische Aberrationen in Tumorzellen zu erfassen. Die ge-
nomische Abnormalitdten sind mit Tumorphanotypen assoziiert und spielen
eine wichtige Rolle fiir das Verstindnis der Kanzerogenese.

Effektive Verarbeitung und Auswerten von molekulargenetischen Daten ver-
langen die entsprechend angepassten computerbasierten Methoden. Das cha-
rakteristische Merkmal der biologischen Daten ist ihre Ungenauigkeit, be-
dingt durch die stochastische Natur der biologischen Prozesse und ein erheb-
liches Messrauschen. Um diese Ungenauigkeit zu tolerieren und zuverlassig
zu sein, sollen die Analysemethoden auf dem statistischen Ansatz basieren.
Die grundséatzliche Fragestellung bei dem Auswerten von biologischen Daten
besteht darin, neue Muster, neue Zusammenhange zwischen Ereignissen zu
gewinnen, diese zu evaluieren und zu interpretieren, um bestehende Hypo-
thesen priifen oder gar neue stellen zu konnen, und Vorhersagen zu machen.
Hierbei spielt die statistische Modellierung eine grosse Rolle, denn ein sta-
tistisches Modell erlaubt, den grundlegenden biologischen Prozess abstrakt,
mit Hilfe von Parametern und eventuell von verborgenen Variablen, zu re-
préasentieren. Algorithmen zu entwickeln, die fihig sind, ein Modell aus den
Daten zu lernen, ist eine Herausforderung fiir Informatiker.

Im Kernpunkt dieser Arbeit steht die Anwendung der probabilistischen gra-
fischen Modellen. Diese Modelle sind fiir die Modellierung der biologischen
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Prozesse vorteilhaft aufgrund ihrer Fahigkeit, komplexe Abhingigkeiten zwi-
schen den Zufallsvariablen zu reprasentieren. Das Lernen eines probabilisti-
schen grafischen Modells besteht aus der Suche nach einer optimalen Gra-
phenstruktur und nach einem Parametersatz, die am besten an die gegebe-
nen Daten angepasst sind. Die Analyse der grafischen und der quantitati-
ven Struktur des Modells ermoglicht den Einblick in die Beziehungszusam-
menhange von Variablen zu gewinnen.

In der vorliegenden Arbeit befasse ich mich mit den Daten von zwei Arten:
LOH-Daten und Mikroarray-Daten, daher ist diese Arbeit in zwei Teile auf-
geteilt. Im ersten Teil sollte man die mogliche Progression der allelischen
Verluste in urothelialen Karzinomen rekonstruieren. Man sollte die Hypo-
thesen aufbauen dariiber, welche Abnormalititen fiir die Entwicklung des
Karzinoms primare sind, und welche Abnormalitiaten sich in Folge der vor-
herigen genetischen Veranderungen akkumulieren.

Bei dieser Fragestellung habe ich das probabilistische grafische Modell
”Bayes’sche Netzwerke” angewandt. Ein Bayes’sches Netzwerk ist ein gerich-
teter azyklicher Graph, der die multivariaten Abhingigkeiten von Zufallsva-
riablen (hier - von allelischen Verlusten) darstellt. Dabei ldsst sich die ge-
meinsame Verteilung der Variablen iiber das Produkt bedingter Wahrschein-
lichkeiten definieren. Die bedingten Wahrscheinlichkeiten, d.h. Parameter des
Modells, quantifizieren die Abhéngigkeit von einer Variable von ihren Vatern
in der Graphenstruktur.

Der Vorteil des Bayes’schen Netzwerk-Modells gegeniiber den vorherigen
Baum-basierten Ansitzen ist, dass das Modell die allgemeinste
Abhéangigkeitsstruktur erfassen lasst und erlaubt, die Heterogenitit der Tu-
morentwicklung darzustellen. Die mathematischen Grundlagen fiir das Ler-
nen von einem Bayes’schen Netzwerk aus den Daten ist die Bayes’sche Mo-
dellierung, ein moderner Zweig der Statistik. Ich habe das Lernverfahren
fiir Bayes’sche Netzwerke angewandt, um die Graphen- und Parameterstruk-
tur zu induzieren, die die Abhéngigkeiten zwischen den allelischen Verlusten
reprisentieren. Mit Hilfe des induzierten Modells kann man die probabili-
stische Inferenz durchfiihren, d.h. ermitteln, welche Wahrscheinlichkeit eine
Variable hat wenn den Zustand von einer oder mehreren anderen Variablen
bekannt ist. Die Analyse der Graphenstruktur und die probabilistische Infe-
renz ermoglichten, die interessanten Muster und Zusammenhénge zwischen
den allelischen Verlusten zu entdecken, und die Progression der allelischen
Verdanderungen entlang der moglichen Tumorentwicklungswege zu beschrei-
ben.

Der zweite Teil der vorliegenden Arbeit konzentriert sich auf die regula-
torischen Beziehungen der Gene auf der Ebene der Expression. Die Daten
iiber die Expression der Gene bei unterschiedlichen Zellzustinden und unter
unterschiedlichen experimentellen Bedingungen werden in den Mikroarray-
Experimenten gemessen. Transkriptionsfaktoren oder andere Signalproteine,
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die von bestimmten Genen exprimiert werden, haben eine aktivierende oder
inhibierende Wirkung auf mehrere Zielgene. Dabei wirken die Faktoren im
Verbund miteinander. In Folge dieser kombinatorischen Interaktion kommt
die Genregulation zustande. Man spricht hier von genetischen Regulationswe-
gen. Die regulatorischen Beziehungen von Genen aus den Mikroarray-Daten
zu rekonstruieren, war die weitere Fragestellung meiner Arbeit. Dazu habe
ich das Modell definiert, das die Wirkung der Regulatoren auf das Zielgen mit
der Boole’schen Logik festlegt. Im Unterschied zu den vorherigen Ansétzen
von deterministischen Boole’schen Netzwerken, hat das Modell eine proba-
bilistische Semantik, indem die Wirkung eines aktiven Regulators mit einer
Wahrscheinlichkeit ausfallen kann. Somit enthalt das Modell verborgene Va-
riablen und Parameter. Ich habe die Bayes’sche Methodologie angewandt,
um das Lernverfahren zum Lernen des Modells aus den Daten zu entwickeln.
Da das Problem keine exakte Losung hat, habe ich das Markov Chain Monte
Carlo Simulationsverfahren angewandt, namlich Gibbs sampling.

Diese Arbeit demonstriert die neuen Mdoglichkeiten der Anwendung der pro-
babilistischen grafischen Modelle und der Bayes’schen Modellierung in der
Bioinformatik und in der onkologischen Forschung.

111



