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Abstract

In this paper, we present boundary labelling, a new approach for la-
belling point sets with large labels. We first place disjoint labels around
an axis-parallel rectangle that contains the point sites. Then, we connect
each label to its site such that no two connections, so-called leaders, inter-
sect. Such an approach is common e.g. in technical drawings and medical
atlases, but so far the problem has not been studied in the literature. The
new problem is interesting in that it is a mixture of a label-placement and
a graph-drawing problem.

We consider attaching labels to one, two or all four sides of the rectan-
gle. We investigate rectilinear and straight-line leaders. We present simple
and efficient algorithms that minimize the total length of the leaders or,
in the case of rectilinear leaders, the total number of bends.
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1 Introduction

Label placement is one of the key tasks in the process of information visualiza-
tion. In diagrams, maps, technical or graph drawings, features like points, lines,
and polygons must be labelled to convey information. The interest in algorithms
that automate this task has increased with the advance in type-setting technol-
ogy and the amount of information to be visualized. Due to the computational
complexity of the label-placement problem, which is NP-hard in general [7],
cartographers, graph drawers, and computational geometers have suggested nu-
merous approaches, such as expert systems [2], zero-one integer programming
[22], approximation algorithms [7], simulated annealing [23] and force-driven
algorithms [12] to name only a few. An extensive bibliography about label
placement can be found at [21]. The ACM Computational Geometry Impact
Task Force report [5] denotes label placement as an important research area.
Manually labelling a map is a tedious task that is estimated to take 50% of total
map production time. [19].

In this paper, we deal with labelling dense point sets with comparatively
large labels. This is common e.g. in medical atlases where certain features of
a drawing or photo are explained by blocks of text that are arranged around
the drawing. Our model is as follows: we assume that we are given a set
P = {p1,...,pn} of points and an axis-parallel rectangle R that contains P.
Each point, or site, p; is associated with an axis-parallel rectangular open label.
The labels have to be placed and connected to their corresponding sites by
polygonal lines, so-called leaders, such that (a) no two labels intersect, (b) no
two leaders intersect, and (c¢) the labels lie outside R but touch R. We investigate
various constraints concerning the location of the labels and the type of leaders.
More specifically we either allow to attach labels to one, two or all four sides
of R, and we either use straight-line or rectilinear leaders. We propose efficient
algorithms that find some non-intersecting leader-label placement, but we also
consider two natural objectives: minimize the total length of the leaders and,
if leaders are not straight lines, minimize the total number of bends over all
leaders.

These new problems are combinations of label-placement and graph-drawing
problems. They are somewhat related to graph-drawing problems arising in the
automated layout of UML class diagrams where sometimes boxes with notes
have to be attached to class nodes [4]. Similar layout problems arise when labels
are placed after the layout of the graph structure [15]. The reason might be
that the layout algorithm does not support immediate labelling or the size of the
labels is not known during the layout process but changing interactively. Due to
the complexity of either step there are still very few publications that combine
graph drawing and label placement. Klau and Mutzel [17] have coined the term
“graph labelling” for this discipline and have given a mixed-integer program
for computing orthogonal graph layouts with node labels. Their approach has
recently been extended by Binucci et al. [3] who additionally allow edge labels.

Leaders have so far only been used by Zoraster [23] and Freeman et al. [8].
Zoraster [23] investigates the labelling of seismic survey maps. Such maps are
special in that the sites typically lie on a few seismic lines, which also must be
labelled, and in that a site-label is placed orthogonally to the line that contains
the corresponding site. In order to cope with the density of the site sets, Zoraster
used 24 instead of the usual four label positions and connected each label to its



site by a leader. He uses simulated annealing to minimize an objective function
that takes into account (a) the number of objects that receive a label and (b) the
position of labels. The objective function favours labels that are close to the
object they annotate.

Freeman et al. [8] present ALPS, a software system for automated labelling
of soil survey maps. If a soil polygon is too small to accommodate its own label,
the system tries to place the polygon’s label into an adjacent polygon. If this is
possible, a straight-line leader is used to connect label and polygon, otherwise
the polygon remains unlabelled. Label positions are determined by an iterative
raster-based method.

An example of interactive label placement is the widely used infotip mech-
anism, which consists of supplying the user with additional information about
screen objects whenever the mouse pointer rests a certain amount of time in
their vicinity. Fekete and Plaisant [6] extend the infotip paradigm to cope with
labelling of dense maps interactively. They draw a circle of fixed radius around
the current cursor position, the so-called focus circle, and label the sites that
fall into the circle by axis-parallel rectangles that contain the names associated
with the sites. Labels are left-aligned and placed in two stacks to the left and
the right of the circle. If the cursor is too close to the left or right border of the
screen, only one stack is employed. The labels in the right (left) stack correspond
to those sites whose projection is on the right (left) half of the focus circle. The
order of the labels corresponds to that of the projected sites. To connect a site
with its label, Fekete and Plaisant use a non-orthogonal leader that consists of
two line segments: one radially from the site to its projection on the focus circle
and one from there to the midpoint of the left edge of the corresponding label.
For labels on the left side, sometimes a third segment is used. This approach
guarantees that no two leaders cross. In the worst case they may overlap within
the focus circle. Fekete and Plaisant do not specify any asymptotic running
time, but it is obvious that their algorithm runs in O(]S|log|S]) time once the
set S of sites in the focus circle has been determined.

Iturriaga and Lubiw [14] give an O(n*)-time decision algorithm for attaching
elastic labels to n sites on the perimeter of a rectangle. An elastic label models
a block of text of fixed area, but varying width and height. Iturriaga and Lubiw
place their labels inside the rectangle. The problem is motivated by labelling
shops on maps of the downtown areas of North American cities such that the
text labels are placed within the rectangles defined by the surrounding streets.

Tturriaga [13] also briefly investigates the inverse problem, where elastic la-
bels must be attached to their sites outside the given rectangle R. She presents
an algorithm that finds a label placement that uses the minimum-width strip
around R. If n sites are given in order on the boundary of R, the algorithm
takes O(n) time.

This paper is structured as follows: In Section 2, we model and define the
boundary labelling problem. In Section 3, we are concerned with rectilinear
leaders. We present algorithms for legal leader-label placement, leader-bend
minimization, and leader-length minimization. Straight-line leaders are con-
sidered in Section 4. In Section 5, we give example layouts produced by our
algorithms. We conclude in Section 6 with open problems and directions for
future work.



2 Defining and modelling the problem

We consider the following problem. Given an axis-parallel rectangle R = [Ig, rr] %
[br,tr| of width W = rr — g and height H =t — b, and a set P C R of n

sites p; = (x4,y:), each associated with an axis-parallel rectangular open label [;

of width w; and height h;, our task is to find a legal or an optimal leader-label

placement. Our criteria for a legal leader-label placement are the following:

1. Labels have to be disjoint.
2. Labels have to lie outside R but touch the boundary of R.
Leader ¢; connects site p; with label [; for 1 <i < n.

Intersections of leaders with other leaders, sites or labels are not allowed.

ook @

The ports where leaders touch labels may be prescribed (the center of a
label edge, say) or may be arbitrary (sliding ports).

In this paper we present algorithms that compute legal leader-label placements
(for brevity, simply referred to as labellings) for various types of leaders defined
below, but we also approach optimal placements according to the following two
objective functions:

e short leaders (minimum total length) and
e simple leader layout (minimum number of bends).

These criteria have been adopted from the area of graph drawing since leaders
do not play a significant role in the label-placement literature. In Zoraster’s
work [23], the leader length is only indirectly minimized by ranking the above-
mentioned 24 label positions such that positions closer to the site are favored.
We will evaluate the two criteria under two models for drawing leaders. In the
first model we require that each leader is rectilinear, i.e. a connected sequence of
orthogonal line segments. In the second model each leader is drawn straight-line.
Clearly, minimizing the number of bends does not make sense for straight-line
leaders.

A rectilinear leader consists of a sequence of axis-parallel segments that con-
nects a site with its label. These segments are either parallel (p) or orthogonal
(0) to the side of the bounding rectangle R to which the label is attached. This
notation yields a classification scheme for rectilinear leaders: let a type be an
alternating string over the alphabet {p,o0}. Then a leader of type t = t1 ...
consists of an a- and y-monotone connected sequence (eq,...,e) of segments
from site to label, where each segment e; has the direction that the letter ¢; pre-
scribes. In this paper we focus on leaders of the types opo and po, see Figures 1
and 2, respectively. For each type-opo leader we further insist that the parallel
p-segment is immediately outside the bounding rectangle R and is routing in
the so-called track routing area. We consider type-o leaders to be of type opo
and of type po as well. In accordance with this notation we refer to straight-line
leaders as type-s leaders, see Figure 3.

In this paper, we assume that input sites are in general position, i.e. no three
sites lie on a line and no two sites have the same x- or y-coordinate.

We start with a negative result. Assume that not all label heights are equal,
that labels must be attached either to the right or left side of the rectangle R,
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and that the label heights sum up to twice the height of R. Clearly the task
of assigning the labels to the two sides corresponds to the well known problem
PARTITION, which is weakly NP-complete [9]. Due to this observation we will
often assume that labels are uniform.

3 Rectilinear leaders

In this section, we investigate different ways of drawing rectilinear leaders. We
present algorithms for leader-bend minimization, legal leader-label placement,
and leader-length minimization. We consider attaching labels to one, two, and
four sides of the rectangle R and connecting sites to their labels with leaders of
type opo and po, see Figures 1 and 2, respectively.

The algorithms which deal with the routing of type-opo leaders, are mainly
considered with label placement and ignore the routing of the opo leaders. The
routing of the leaders is done by assuming a rectangle R’ broader than R and
using the area of R’ which is not part of R as a fixed width area, called track
routing area, in which the routing of all leader segments which are parallel to the
side of the rectangle is performed. If the track routing area is not of fixed width,
then the algorithms become more complicated and have to take into account
the width of the track area, resulting in an O(n)-time slowdown (which is the
worst case track width) of most type-opo algorithms which are presented in this
section.

3.1 Leader-bend minimization
3.1.1 One-side labelling with type-opo leaders.

We consider the problem of attaching labels of variable height to one, say the
right, side of the rectangle R. We consider the case of sliding ports, i.e., the
leader connecting the site to the label has to simply touch some point in the
perimeter of the label. We assume that the sum of the label heights is at most
the height of R and that the sites are sorted according to increasing y-coordinate.

Observe that, in any legal one-side labelling with type-opo leaders, the ver-
tical order of the sites is identical to the vertical order of their corresponding
labels. This, together with the assumption that no two sites share the same
y-coordinate, guarantees that leaders do not intersect. We summarize this ob-
servation in the following lemma.



Lemma 1 Given a rectangle R of sufficient size, a side s of R, a set P C R
of n sites in general position and a rectangular label for each site, there is an
O(nlogn)-time algorithm that attaches labels to s and connects them to the
corresponding sites with non-intersecting type-opo leaders.

Proof. By construction. Without loss of generality, assume that s is the right
side of rectangle R. We first stack the labels (in increasing order of the y-
coordinate of their corresponding sites) immediately to the right of the track
routing area (to the right of rectangle R) and on top of each other such that
the bottom side of label [; has the same y-coordinate with the bottom side of
rectangle R. Then, we connect each site p; by a horizontal segment y; X [z, 7R]
to the right side of rectangle R. Finally we use the track routing area to lay out
the remaining parts of the leaders from the right side of R to the, say, midpoints
of the left label sides, see Figure 1. The O(nlogn) time complexity is due to the
assumption that the sites are sorted according to increasing y-coordinate.

Note 1 For the case of uniform labels of maximum size (or, in general of fixed
size and location) and fixed ports, there only exists a single legal labelling.
Thus, the algorithm described in the proof of Lemma 1 also yields a labelling
that minimizes the total leader length (the topic of Section 3.3).

Clearly this approach is not optimal in terms of the total number of leader
bends. Each type-opo leader contributes up to two bends. By sliding the labels
along the side of R (without changing the order of the labels) and by allowing
sliding label ports, it is possible to connect some of the sites to their corre-
sponding labels by leaders that consist of a single straight-line segment and
contribute zero bends to the total number of bends. Thus, minimizing the total
number of bends is equivalent to placing the labels to appropriate locations so
that the number of straight line (zero-bend) leaders is maximized. This is a one-
dimensional label-placement problem. There has been work on similar problems
where labels are not restricted to a constant number of positions, but can slide.
Kim et al. [16] have observed that it is trivial to decide whether a set of points
on a line can be labelled with (unit) intervals such that each interval contains
the point it labels. In the same paper, however, they also considered the prob-
lem of finding the maximum interval length that allows to label all points. By
a clever geometric transformation they managed to solve the problem in linear
time if the points are given in order. Garrido et al. [10] have investigated the
problem of deciding whether a set of points on a line can be labelled with labels
of given lengths. They showed that the problem becomes NP-hard if labels can
be placed both above and below the line.

Our problem is new in that labels do not necessarily have to contain the
point they label, but even if they do not (and thus contribute to the objective
function in a negative way), they must be placed within an interval whose length
is restricted (by the height of R). We now give an algorithm for placing labels
that uses as many horizontal (i.e. zero-bend) leaders as possible. We have the
following result:

Theorem 1 Given a rectangle R of sufficient size, a side s of R, a set P C R
of n sites in general position and a rectangular label for each site, there is an
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Figure 4: Label placements that the dynamic programming algorithm takes into
account when computing T, k.

O(n?)-time algorithm that attaches the labels to s and connects them to the
corresponding sites with non-intersecting type-opo leaders such that the total
number of leader bends is minimized.

Proof. Without loss of generality, we assume that s is the right side of rectangle
R. We also assume that the sum of the label heights is at most the height of R
and that the sites are sorted according to increasing y-coordinate. Recall that
by p; = (zi,y:;) we denote the i-th site, by h; we denote the height of the i-th
label, 1 < i < n, and by by and tr we denote the y-coordinate of the bottom
right and top right corner of R, respectively.

Our dynamic programming algorithm (see Algorithm 1) employs a table T
of size (n+ 1) x (n+1). For 0 < k < i < n the entry T[i, k] will contain the
minimum y-coordinate that is needed to accommodate the lowest ¢ labels such
that at least k of them use horizontal leaders. If it is impossible to connect k
out of the lowest ¢ labels with horizontal leaders, we set T'[i, k] to co. As usual,
the table entries are computed in a bottom-up fashion. By definition of T'[i, k],
it always holds that:

Tli, k] <T[i,k+1] (1)

For computing T[i, k] we only need to know the entries T[i — 1,k — 1] and
T[i — 1, k]. We distinguish two cases based on whether y; < T[i — 1,k — 1].

Case 1: y; <T[i—1,k—1].
Refer to Figure 4(a). In the case where y; < T'[¢i — 1,k — 1] it is obvious
that p; cannot be connected to label I; with a horizontal leader and, thus,
the leader out of p; cannot be the k" horizontal leader.

So, T[i,k] can have a finite value only if T[i — 1,k| is finite. In this
subcase, we stack label [; on top of the i — 1 already placed labels, and
get a placement with & horizontal leaders and height T'[i — 1, k] + h;.

If T[i — 1, k] = oo, no solution with k horizontal leaders out of the lowest ¢
sites exists and, thus, T[i — 1, k] = oo. Since “co+h; = 00”, both subcases
can be described by the equation:

T, k) =T[i— 1,k + h; (2)
Case 2: y; > T[i— 1,k —1].

Refer to Figure 4(b). Consider first the subcase where y; < T[i — 1,k —
1] + h;. If we place label I; on top of the already placed labels then it



will be “hit” by the horizontal leader out of site p;. In the subcase where
y; > T[i — 1,k — 1] 4+ h;, we can place label I; (above the already placed
labels) so that its top side lies on line y = y;. From these two subcases,
we conclude that if site p; is connected with a horizontal leader with its
corresponding label, then T'[i, k] = max (yi, Tl —1,k—1]+ h,)

If T[i — 1,k] is finite, a different solution which is obtained by stacking
label I; on top of the already placed labels is also possible. The height of
this solution is T'[i — 1, k] + h;.

The above subcases can be expressed by the equation:
T[i, k] = min (T[z' — 1, k] + hi,max (i, Tli — 1,k — 1] + hi)) (3)

Based on the above cases, we conclude that T'[i, k] can be computed by using
the following recurrence relation:

T[i-1,k]+ h; if y; <Tli-1,k-1]
Tlik]= min (77[i-1,k] —&—hz,max(yz, [i—l,k—l]—khi)) it y; > Ti-1,k-1]

Algorithm 1 computes the maximum possible number of horizontal leaders.
A placement of maximum number of horizontal leaders has minimum number
of bends. The algorithm is directly based on the recurrence relation computed
above (see block 1 of the algorithm). Block 2 of Algorithm 1 computes the
maximum possible number of zero-bend leaders by identifying the largest 5, 0 <
j < n, such that T[n, j] < tg, that is, all labels fit on the side of rectangle R.

It is obvious that Algorithm 1 runs in O(n?) time using O(n?) space. By
using an extra table of the same size as T', the algorithm can be modified such
that it computes the label and leader positions of an optimal solution.

3.2 Legal leader-label placement
3.2.1 Four-side labelling with type-opo leaders.

Our approach for attaching labels to all sides of the rectangle R is very simple.
We partition R into four disjoint regions such that the algorithms from the
previous subsection can be applied to each region separately. For the sake of
brevity our discussion ignores the problem of how to distribute the boundary of
the areas between them.

We have two requirements for a region A in the partition of R: (a) A must
be adjacent to a specific side s4 of R and (b) each site in A must see the point
with the same z- or y-coordinate on s4. Requirement (b) is a consequence of
using type-opo leaders. If we manage to find a partition of R into four regions
such that each region A contains the side s4 of R and A is monotone in the
direction of s then obviously both requirements are fulfilled.

We introduce some notation, see Figure 5. Let v1, ..., v4 be the corners of R
from the lower left corner in counterclockwise order, and let s; = U703, ...,84 =
7407 be the sides of R. For the sake of brevity we view the sides of R as line



Algorithm 1: 1SIDEROUTEOPO
Input: n sites p; = (z;,v;), ¢ = 1,2,...,n, inside rectangle R and, for each
site p;, a label [; of height h;. The sites are sorted in order of increasing
y-coordinate. The top and the bottom sides of rectangle R lie on lines
y =tr and y = tp, respectively.
In order to keep the description of the algorithm simple, we assume that
access to table entries which are meaningless (for example, T'[i — 1,4]) is
possible and yields the value of co. We also assume that adding any
number to oo is possible and yields the value of co.
Output:The maximum possible number of horizontal leaders.

T[0,0] =bgr
for i =1 ton do
T[i,0) =T[i —1,0] + h;
for k =1toido
1 if T[i — 1,k — 1] > y; then
Tl k) =T[i— 1,k] + h;
else

TTi, k] = min (T[i — 1, K] + hsymax (i, Tli — 1,k — 1] + hi))

25=0
while T'[n, j] < tgr do
j=j+1
return j — 1

segments that do not contain their endpoints. We assume that the corners of R
do not lie on any line determined by a pair of sites.

To avoid an NP-hard partition problem as discussed in Section 2 we assume
that we know how many labels have to be attached to which side of R. In case
we want to attach labels to non-parallel sides of R this assumption makes good
sense if we have uniform square labels. Let nq,...,ns be the number of labels
that have to be attached to the respective sides and let n =ny + - -+ + ng4.

We construct the partition of the rectangle R as follows:

1. We first partition R into two regions Ao and Az such that Ao contains
n1 + ngy sites as well as the sides s; and sy. We proceed as follows. Let
h1 be the halfplane below the horizontal line through v, and let hz be
the halfplane to the right of the vertical line through vsz. Now we turn
h1 around v; in counterclockwise direction and hg around v3 in clockwise
direction until A1 = RN (hy U hs) contains exactly ny + ng sites. Due
to our assumption concerning the general position of the sites and the
corners of R this is always possible. The two resulting regions are both x-
and y-monotone; one is a convex, one a non-convex quadrilateral, see the
bold solid line segments in Figure 5.

2. Now we split Ay5 into two regions A; and Ay such that A; contains side
s1 and n sites. Let ho be the halfplane below the horizontal line through



vg. We turn hs in clockwise direction around vy until A7 = hg N Aqa
contains n; sites. Again this is possible due to our assumption regarding
the general position of sites and corners. Clearly A; = Ao\ A7 contains
side sp and the remaining ns sites. In the same fashion we split Az4 into
As and Ay. All four resulting regions are z- and y-monotone, see the
dotted lines in Figure 5.

Vg S3 U3
Rl . 4
S4 A4 y, S92
~ Ay
Ay fee
U1 S1 V2

Figure 5: Partition into monotone regions.

Turning the halfplanes can be implemented by sorting the sites according
to the angles they enclose with the horizontal or vertical lines through the
appropriate corners of R. Using the O(nlogn)-time algorithm of the previous
subsection we have the following result:

Theorem 2 Given a rectangle R of sufficient size, a set P C R of n sites in
general position, square uniform labels, one per site, and numbers ny,...,ny
that express how many labels are to be attached to which side of R, there is an
O(nlogn)-time algorithm that attaches the labels to R and connects them to the
corresponding sites with non-intersecting type-opo leaders.

In general we will get less bends by investing a running time of O(n?) and
using Algorithm 1. However, in order to obtain a routing with the minimum
number of bends with type-opo leaders in the four-side case, we would have to
go through all combinatorially different ways of partitioning the set of sites into
four subsets with the cardinality and monotonicity constraints listed above.

A related problem has been considered by Iturriaga and Lubiw [14]. Given a
set of n points on the boundary of a rectangle and for each point an elastic label
of a certain area, they want to decide whether it is possible to attach these labels
to their points inside the rectangle. To solve this problem they observe that
in any solution the rectangle can be split by a so-called corridor partition into
at most four corner blocks and a corridor such that each label lies completely
within one of these areas. For the two types of areas they use different label-
placement algorithms. They state that the number of combinatorially different
corridor partitions is O(n%). It seems that such an approach that enumerates
all possible partitions of R into four areas cannot be used to obtain an efficient
algorithm for bend minimization. The problem is that there are site sets that
cause an exponential number of such partitions—even in the two-side case. For
example, if n is even, there are (7:;2) different ways to split a rectangle containing
the sites (1,1),(2,2), ..., (n,n) such that half of the sites lie in the area incident
to s; and s4, respectively. It is an interesting open question how a minimum-
bend type-opo routing can be found in the two- or four-side case.

10



3.3 Leader-length minimization

We focus on obtaining label placements of minimum total leader length. We
present a variety of algorithms that attach labels to one side (right), two opposite
sites (left and right) and four sides of rectangle R, examine uniform and non-
uniform labels and fixed or sliding ports.

3.3.1 Two-side labelling with type-opo leaders and uniform labels.

Labels are placed on opposite sides of the rectangle, say sj.r¢ and s,igne, n/2
labels on each side. The labels are assumed to be uniform in the sense that they
all are of identical height (or width, if they are placed on the top and the bottom
sides of the rectangle). The n/2 labels are of maximum height, covering the full
length of the side of the rectangle they reside, and hence their position at each
side is determined. We assume, again, that we are given n sites p; = (z;,v;),
it =1,2,...,n, which have to be connected with leaders to labels on s;.f+ and
Sright SO that the total leader length is minimized.

We consider type-opo leaders which may connect to the labels with fixed
or sliding ports. The i-th site p which is assigned to s;f; is connected to
the -th label of s;.f; with a type-opo leader. Since the location of each label
is determined (and fixed) the length of the leader to the i-th label of si. s is
defined. We denote it by Left(p, ). Similarly, we denote by Right(p, 7) the length
of the type-opo leader which connects site p with the i-th label of s,;4n:. Note
that the distance functions Left(p,i) and Right(p,i) are appropriately defined
to incorporate fixed and sliding ports. In the case of fixed ports the distance
of the label port closer to the site is computed while in the case of sliding port
the functions compute the distance of the label point (sliding port) closer to the
site. We obtain the following result:

Theorem 3 Given a rectangle R with n/2 uniform labels of mazimum height on
each of its left and right sides, and a set P C R of n sites in general position,
there is an O(n?)-time algorithm that attaches each site to a label with non-
intersecting type-opo leaders such that the total leader length is minimized.

Proof. To compute a label placement of minimum total leader length, we use a
dynamic programming algorithm (see Algorithm 2). Without loss of generality,
assume that n is even. We will describe later on how to deal with the case
where n is odd. The algorithm maintains a table 70 : n/2,0 : n/2]. Entry
T[l,7] contains the minimum total leader length for the [ + r lowest sites where
[ of them have labels on s;.7; and the rest r on s,ign:-

For the correctness of the algorithm, it can easily be proven by induction
that T'[l, r] satisfies the following recurrence relation for I, < n/2:

T10,0] 0 (4)
T[0,r] = TI[0,r — 1] + Right(p,, ) (5)
T[I,0] = T[ —1,0]+ Left(p;,1) (6)
T, r] = min{T[l,r — 1] + Right(ps4r,7), T[l — 1,7] + Left(pi+r, 1)} (7)

Having computed table T, entry T'[n/2,n/2] corresponds to a label place-
ment of minimum total leader length. In order to recover the actual placement
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and not only the cost of it, we need to maintain an additional table T’. For
0 <l,r <n/2entry T'[l,r] contains information regarding the side of the rect-
angle which contains the label connected to site p ;1, and is determined by the
term which was minimum in Equation 7.

Since the algorithm maintains an (n/24 1) X (n/2 + 1) table and each entry
is computed in constant time, the time complexity of our algorithm is O(n?).
To complete the proof of the theorem, we have to show how to deal with the
case that n is odd. Assume that n = 2k — 1 for some k& > 0. In this case, we
will attach k labels to one side of the rectangle and k& — 1 to the other. Since we
are using uniform labels, the side which receives k£ — 1 labels can be considered
to have an unoccupied label slot. Note that the label slot can be on either the
left or the right side. The revised dynamic programming algorithm maintains a
table T[0:n/2,0: n/2,0: 1,0 : 1] such that T[l,, a,b] gives the minimum total
leader length for the [ 4 7 lowest sites where [ of them have labels on s;c ¢, r on
Sright and so far we have used a empty label slots on the left side and b empty
label slots on the right, with a, b € {0,1} satisfying a + b < 1. The recurrence
relation which must be satisfied by T' can be easily obtained as an extension of
the one for the case of even number of sites. Finally, observe that the size of the
table remains O(n?), leaving the time and the space complexity unchanged.

Algorithm 2: UNIFORMLABEL2SIDEROUTEOPO

Input: Even number of n sites p; = (z;,y;),i = 1,2,...,n, sorted in order
of increasing y-coordinate.

In order to keep the description of the algorithm simple, we assume that
access to table entries which do not exist, for example T[—1,1] or T[1, —1],
is possible and yields the value of occ.

7[0,0] = 0
for i =1tondo
for I = 0 to min{i,n/2} do
r=14—1T[l,r] =min{T[l,r — 1] + Right(p;, ), T[l — 1, 7] + Left(p;, 1)}

3.3.2 Four-side labelling with type-opo leaders.

We present a polynomial-time algorithm which finds type-opo leaders of mini-
mum total length when the labels can be placed on all four sides of the boundary
of the rectangle. We assume labels of uniform size and sliding ports.

Before we proceed with the description of our algorithm we make some ob-
servations regarding opo-labelling (which might contain crossings) of minimum
total leader length for the case of four-side labelling with labels of uniform size
and sliding ports. Consider an opo-leader ¢ which originates from point p and
is connected with a label on side AB of the rectangle at port ¢ (see Figure 6).
The line containing the segment of the leader which is incident to site p (and
is orthogonal to side AB) divides the plane into two half-planes. We say that
that leader ¢ is oriented towards corner A of the rectangle if port ¢ and corner
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Figure 6: Orientation of a leader with respect to a corner. Leader ¢ is oriented
towards corner A and away of corner B.

A are on the same half-plane, otherwise, we say that leader ¢ is oriented away
of corner A. In the case where the opo-leader consists of only one segment,
i.e., the port lies on the line which defines the two half-planes, we consider the
leader to be oriented towards corner A (and also towards corner B).

Lemma 2 Consider four-side labelling with labels of uniform size and sliding
ports and let L be an opo-labellings (which might contain crossings) of minimum
total leader length. Let c; and c; be two leaders originating from sites p; and
pj, respectively, which cross each other. Then it holds:

(i) The labels associated with leaders c¢; and c; are located at adjacent sides of
the rectangle.

(i1) Leaders ¢; and c; are oriented towards the same corner of the rectangle.
(i11) Leaders ¢; and c; can be rerouted so that they do not cross each other and
the sum of their leader lengths remains unchanged.

Proof. Showing that “the labels associated with leaders c; and c; are located
at adjacent sides of the rectangle” is easy. We simply have to show that it is
not possible to have the labels located at the same side or opposite sides of the
rectangle. For the sake of contradiction, assume first that the labels lie on the
same side, say AB, of the rectangle. Then the segments of the leaders which
are incident to the sites are parallel to each other. Since the sites have distinct
- and y-coordinates, these segments do not overlap each other, and thus, the
intersection of the two leaders takes place outside the rectangle (in the track
routing area). This implies that, along the direction of side AB, the order of the
sites is the reverse of the order of their associated labels. However, by swapping
the labels, we can reduce the total leader length (and also eliminate a crossing),
a contradiction since we assumed that the total leader length of the labelling is
minimum (see Figure 7).

Consider now the case where, for the sake of contradiction the labels lie on
opposite sides of the rectangle. Then, since the leaders intersect each other, the
segments of the leaders which are inside the rectangle (and incident to the sites)
have to intersect. However, since these segments are parallel to each other, they
have to overlap, and thus have the same z- or y-coordinates, a contradiction
since we assume that the sites are in general position. Having eliminated the
cases that the labels lie on the same or on opposite sides of the rectangle implies
that, assuming that we can identify two crossing leaders, their associated labels
lie on adjacent sides of the rectangle.

Let A be the corner which is incident to the two sides of the rectangle
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Figure 7: Rerouting used to prove that in an opo-labelling (where crossings are
allowed) of minimum total leader length, the labels associated with two crossing
leaders do not lie on the same side of the rectangle.

containing the labels associated with leaders ¢; and ¢;. In order to show that in
a labelling of minimum total leader length both “leaders ¢; and c; are oriented
towards the same corner”, it is enough to show that (in a labelling of minimum
total leader length) it is impossible to have one or both leaders oriented away
of corner A. We proceed to consider these two cases.

Case 1: Ezactly one leaders, say c;, is oriented away of corner A. This
case is described in the left-hand side of Figure 8.a. Rerouting the leaders
as described in Figure 8.a results in a reduction of the total leader length, a
contradiction since we assumed that the total leader length of the labelling is
minimum. Note that, in the figure we only show the sub-case where site p; is
below the horizontal line passing through port ¢;. When p; is on or above the
horizontal line passing through port ¢;, rerouting again results in a reduction
of the total leader length. Thus, a labelling of minimum total leader length
does not contain two crossing leaders where one of them is oriented away of the
corner corner A incident to the sides containing their associated labels.

Case 2: Both leaders c¢; and c; are oriented away of corner A. When both
leaders are oriented away of corner A, rerouting results in higher reduction of
the total leader length, compared to Case 1 where only one leader was oriented
away of corner A. The rerouting of the leaders is described in Figure 8.b. Again,
only one of the four possible sub-cases based on whether site p; (p;) is to the
right (below) the vertical (horizontal) line passing through port ¢; (¢;) is shown.
Given that rerouting results to reduction of the total leader length, we conclude
that a labelling of minimum total leader length does not contain two crossing
leaders where both of them are oriented away of the corner corner A incident
to the sides containing their associated labels.

Having eliminated the cases where one or both crossing leaders are oriented
away of corner A, implies that (assuming that we can identify two crossing
leaders) they are both oriented towards corner A.

Showing that “leaders c¢; and c; can be rerouted so that they do not cross
each other and the sum of their leader lengths remains unchanged” is easy. In
the rerouting described in Figure 8.c, use the crossing point O to partition the
first segment of each leader ¢; and ¢; into two sub-segments. Then, leaders ¢
and cfj can be obtained by a parallel translation of the (sub)segments of leaders
¢; and c¢;, leaving their sum unchanged.

To complete the proof of the lemma, we note that in whenever we performed
a rerouting, we never changed the position of a port. So, since the used port
would also be available in the case where the sliding-port model is used, the
lemma applies to sliding ports, as stated.
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Figure 8: Rerouting used to prove that in an opo-labelling (where crossings
are allowed) of minimum total leader length, two crossing leaders are oriented
towards the corner incident to the sides of the rectangle containing the associated
labels and that their crossing can be eliminated without reducing the sum of
their leader length.

Lemma 3 Consider opo-labelling of n sites with uniform labels and sliding ports
where crossings are allowed. Then, given a labelling L of minimum total leader
length, we can always identify a crossing-free opo-labelling L' with total leader
length equal to that of L. Moreover, labelling L' can be obtained in O(nlogn)
time.

Proof.  We will show how to eliminate all crossings in L by rerouting the
intersecting leaders. Our method performs two passes over the sites, one in the
left-to-right and one in the right-to-left direction.

Consider first the left-to-right pass. In the left-to-right pass of labelling
L, we consider all sites with labels on the right side of the rectangle. We
examine the sites in order from left-to-right and focus only on those which are
incident to crossing leaders. Let p be the leftmost such site and let ¢ be the
leader that connects it with its corresponding label on the right side of the
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Figure 9: Rerouting used to eliminate crossings in an opo-labelling of minimum
total leader length. The crossings to be eliminated are identified in a left-to-right
pass of the sites, followed by a right-to-left pass. See proof of Lemma 3.

rectangle (see Figure 9). Given that L is an opo-labelling of minimum total
leader length, Lemma 2 (i) implies that leader ¢ intersects only with leaders
that are connected with labels on the top and bottom sides of the rectangle.
Without loss of generality, assume that c is oriented towards the bottom-right
corner of the rectangle, say A. Then all leaders that intersect ¢ have their labels
on the bottom of the rectangle and are also oriented towards A (Lemma 2 (ii)).
Let ¢; be the leftmost leader that intersects ¢, and let p; be its incident site.
According to Lemma 2 (iii), we can reroute leaders ¢ and ¢; so that the total
leader length remains unchanged (Figure 9). Observe that the rerouting possibly
eliminates more than one crossing (e.g., the crossings between leader ¢ and
leaders ¢; and ¢;) but, in general, it might also introduce new crossings (e.g.,
the crossings between leaders ¢} and ¢ ). However, the total number of crossings
is reduced and, more importantly, the leftmost site incident to an intersecting
leader connected to a label on the right side of the rectangle is located to the right
of site p. Continuing in the same manner, the leftmost site which participates
in a crossing (in the left-to-right pass) is pushed to the right, which guarantees
that all “left-to-right” crossings are eventually eliminated.

Another important property is that “it is tmpossible to introduce during
the left-to-right pass any crossing that has to be examined during a right-to-left
pass”. To see this, assume that such a crossing was introduced and that it
involves leader ¢’ and the leader ¢; which connects site p; to a label on the left
side of the rectangle (Figure 10). Given that the rerouting does not increase
the total leader length, the labelling resulting after all rerouting is still one of
minimum total leader length. Then, according to Lemma 2 (i), both leaders
¢’ and ¢; must be oriented towards corner D, a contradiction since leader ¢’ is
oriented away of corner D (and towards corner A).

From the above discussion, it follows that a left-to-right pass eliminating
crossings involving leaders with their associated labels on the right side of the
rectangle, followed by a similar right-to-left pass, results in a labelling L’ without
any crossings and of total leader length equal to that of L, that is, minimum.

To complete the proof of the theorem, it remains to explain how to obtain in
O(nlogn) time the new labelling L', given labelling L of minimum total leader
length. Consider the left-to-right pass. The analysis for the right-to-left pass is
symmetric. During the pass, we process the sites with labels on the right side
of the enclosing rectangle in order of increasing xz-coordinate. Sorting the sites
in increasing order with respect to their z-coordinate can be done in O(nlogn)
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Figure 10: It is impossible to introduce any right-to-left crossing during the
left-to-right pass described in the proof of Lemma 3.

time.

In order to process site p = (z,,¥,) and to eliminate the crossings (if any)
involving its leader ¢, we have to identify the leftmost site p; such that its corre-
sponding leader (say ¢;) intersects leader c¢. Of course, the intersection involves
the first segment of leader ¢; that is parallel to the y-axis. The processing of
the sites during the left-to-right pass can be accomplished by employing a data
structure storing “vertical line segments” and supporting visibility queries of
the form “given a query point py = (xo,yo) return the first line segment to the
right of po that is intersected by line y = yo 7, as well as insert (for initialization)
and delete operations. For the case of vertical line segments of finite size, the
visibility query can be answered in O(log2 n) time by employing a combination
of interval trees and priority search trees [18, pp. 211]. This results in a total
of O(n log? n) time for the left-to-right pass and, consequently, for the elimina-
tion of all crossings. However, the time needed to eliminate all crossings can be
further reduced to O(nlogn) if we take into account the fact that all vertical
segments considered during the left-to-right pass have one of their endpoints on
the bottom or the top side of the enclosing rectangle.

Without loss of generality, assume that leader c¢ is oriented towards the
bottom-right corner of the enclosing rectangle. (The case where it is oriented
towards the top-right corner can be handled in a symmetric manner.) Then,
according to Lemma 2 (ii) all leaders intersecting leader ¢ are also oriented
towards the bottom-left corner and, thus, their associated labels are placed
on the bottom side of the enclosing rectangle. So, leader ¢ can only intersect
vertical line segments which have one of their end-points on the bottom side of
the enclosing rectangle.

When we have to solve a visibility query on the set of line segments having
one of their end-points on the bottom side of the enclosing rectangle, we can
relax the restriction that the segments are of finite size and assume that they
are semi-infinite rays having their associated site as their higher endpoint. This
is due to the fact that all leader intersections take place inside the enclosing
rectangle. Recall that rrp denotes the y-coordinate of the right side of the
enclosing rectangle R. In the case of semi-infinite segments, the visibility query
(with po = (x0,yo) as the query point) on set of vertical line segments reduces to
finding the site of smallest z-coordinate in the semi-infinite vertical strip defined
by x > zg, y < yo, and x < rg. The MinXinRectangle query just described can
be answered in time O(log n) by employing a dynamic priority search tree based
on half-balanced trees [18, pp. 209]. Insertions and deletions are also supported
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in O(logn) time.

Thus, identifying the (at most n) pairs of leaders to be rerouted during the
left-to-right pass takes only O(nlogn) time, resulting to a total time complexity
of O(nlogn) for the production of the crossing free boundary labelling L'.

Now we are ready to present the main theorem of the section:

Theorem 4 Consider four-side opo-labelling of n sites with uniform labels and
sliding ports. A crossing-free solution of minimum total length can be computed
in O(n?log®n) time.

Proof. Let M be the set of the n labels around the boundary of the rectangle.
We construct a complete bipartite graph G = (P U M, E) between all the sites
p € P and all the labels m € M, with edge weights to be the Manhattan length
of the corresponding leaders. Note that the length of each leader depends on
the type of the port. For the case of sliding ports, the leader typically connects
the site to one of the corners of the label. We proceed by applying the Vaidya's
algorithm [20] for minimum-cost bipartite matching for points in the plane un-
der the Manhattan metric. It runs in O(n?log®n) time and finds a matching
between sites and labels that minimizes the total Manhattan distance of the
matched pairs. The leaders in the produced solution might overlap. However,
based on Lemma 3 we can obtain a crossing free solution in O(n logn) additional
time.

3.3.3 Type-opo leaders and non-uniform labels.

We focus on two-side label placement of type-opo leaders. We are given n sites
pi = (zi,y:),1 = 1,2,...,n, each associated with a label I; of height h; which can
be placed on either the left side (s;ef) or the right side (syijgn:) of rectangle R.
Observe that the height of rectangle R must be large enough to accommodate
the labels. In the event that the height of rectangle R is equal to half the sum of
the label heights, managing to place the labels accounts to solving the partition
problem. So, we cannot expect an algorithm that runs in polynomial time only
to the number of sites. Instead we get an algorithm that runs in polynomial
time to the height of rectangle R, which can be considered to be the equivalent
of the pseudo-polynomial solution to the partition problem.

Here we again ignore the routing of the type-opo leaders and assume the
existence of a slightly wider rectangle R’. We obtain the following theorem:

Theorem 5 Given a rectangle R of height H, a set P C R of n sites in general
position where site p; is associated with label I; of height h;, there is an O(nH?)-
time algorithm that places the labels to the sides of the rectangle and attaches
the corresponding sites with non-intersecting type-opo leaders such that the total
leader length is minimum.

Proof.  We say that label [ is placed at height h if its bottom edge has y-
coordinate h. Assume that the i-th site p; is connected to s;c5+ and its label [; is
placed at height y then the length of the leader from p; to [; leftward is defined.
Call it Left(p;, y). Similarly, we define Right(p;,y).
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We denote by T'[i,yr,,yr] the total length of the type-opo leaders of the i
lowest sites, where the left side of the rectangle is occupied up to y; and right
side is occupied up to yr. By TL[i,yr,yr] we denote the total leader length
for the case where the i-th site has its label on the left side, the left side of the
rectangle is occupied up to y, (including label /;) and right side is occupied up
to yr. Similarly we define Tg[i,yr,yr]. Then, by induction we can show that
the following recurrence relations hold (we omit the boundary conditions):

Tli,yr,yr] = wmin{TL[i,yr,yr], Trli,yr.yr} (8)
17, [Za yrL + hi7 yR] = T[Z - 17 YL, yR] + Left(p“ yL) (9)
TR[ia YL, YR + hL] = T[Z - 17 YL, Z/R] + nght(pl7 yR) (10)

Table T' can be computed by a dynamic programming algorithm (see Al-
gorithm 3). Having computed table T, the minimum table entry of the form
T[n,a,b], where 0 < a,b < H is the minimum total leader length. We can
recover the label placement which realizes the computed total leader length by
maintaining an additional table containing information regarding the routing
of the i-th leader (to the left or to the right side). Algorithm 3 terminates in
O(nH?)-time and uses O(nH?) space.

Algorithm 3: NONUNIFORMLABEL2SIDEROUTEOPO
Input: n sites p; = (z;,;), ¢ = 1,2,...,n, inside rectangle R of height H
and, for each site p;, a label [; of height h;. The sites are sorted in order of
increasing y-coordinate.
In order to keep the description of the algorithm simple, we assume that all
the necessary initializations have been done and that access to table entries
which do not exist (for example, T[—1,0,0]) is possible and yields the value
of oco. For the same reason we do not make any effort to avoid meaningless
assignments (for example, computing T}, (i, H + 1,0) or Tr(4,0, H + 1)).

for i =1ton do
for y, =0 to H do
for yp =0 to H do
Trlisyr + hiyr] = T[i — 1,yr,yr] + Left(p;, yr)
Trli,yr,yr + hi] = Ti — 1y, yr] + Right(pi, yr)

for yp =0 to H do
for yp =0to H do
T[i7yL7yR] = min{TL [iayLayRLTR[iayLayR]}

3.3.4 One-side labelling with type-po leaders and uniform labels.

In this subsection we first describe how to compute a legal labelling with leaders
of type-po and uniform labels, see Figure 2. Then, we show that the computed
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Figure 11: Rerouting of crossing leaders.

labelling also minimizes the total leader length. We restrict ourselves to attach-
ing labels to one side s of R. For our description we assume that s is the right
vertical side of R, and that the sites p1, ..., p, are sorted according to increasing
y-coordinate.

Our algorithm is very simple: we simply stack labels to the right of s in
the same vertical order as the corresponding sites. Then we process the sites
(and the corresponding labels) from bottom to top. Assume we have already
placed non-intersecting leaders for the first ¢ — 1 sites. Then, we connect p; to
I; by a leader ¢; of type po, i.e. by a vertical segment (possibly of length zero)
followed by a horizontal segment. If ¢; intersects previously placed leaders', we
determine the rightmost site p; whose leader c; intersects ¢; and reroute as in
Figure 11: we connect p; to [; and p; to [;. We observe that the new leader c;. of
p;j does not intersect any other leader. This is due to the fact that the vertical
part of c; is contained in c;, the horizontal part of c;- is contained in ¢;, and p;
was the rightmost site whose leader intersected c¢;. By going through the sites
D1, ---,Pi—1 from right to left (i.e., in order of decreasing z-coordinate), we test
their leaders for intersection with ¢; and possibly reroute. This is detailed in
Algorithm 4, where we refer to a leader as disturbing if its horizontal segment
intersects other leaders in {c1,...,¢;}. To compute a legal po-routing, we call
Algorithm 4 for ¢ = 2,...,n. Clearly each call takes O(i) time, resulting to
an O(n?) algorithm. The correctness rests on our observation above and on
the invariant specified in the loop of Algorithm 4. Thus we have the following
result:

Theorem 6 Given a rectangle R, a side s of R, a set P C R of n sites in general
position and a rectangular uniform label for each site, there is an O(n?)-time
algorithm that attaches the labels to s and connects them to the corresponding
sites with mon-intersecting type-po leaders.

Our claim that the computed labelling also minimizes the total leader length
is based on the following lemma:

Lemma 4 Rerouting two po-leaders as described in Figure 11 leaves the sum
of their lengths unchanged.

Proof. The size of the horizontal segments remains identical. Thus, to prove
the lemma, simply observe that the sum of the vertical segments of the two
leaders remain unchanged. For the case of fixed ports this is obvious, however,
it also holds for the case of sliding ports, assuming that we use as port the

IThe case where leader ¢; passes through a site is treated as an intersection. In the case
where the labels are attached to the vertical (horizontal) sides of the rectangle, the site and
the port have the same y-coordinate (z-coordinate).
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Algorithm 4: UNIFORMLABEL1SIDEROUTEP O CROSSINGELIMINATION
Input: A PO placement for sites p1,...,p; and their labels such that:

1. Leaders cq,...,c;—1 out of sites p1,...,p;—1 are mutually disjoint, and

2. Leader ¢; out of site p; is the only (possibly) disturbing leader.

Output: A legal PO placement for sites p1,...,p; and their labels.

Let p',...,p" be an ordering of py, ..., p; such that z(p') > --- > z(p’) and
let c',...,c be the corresponding leaders.
Let j be the index with p/ = p;, i.e., ¢/ is the only (possibly) disturbing
leader.
k=1
while k < ik < j do
{there are more leaders to examine for possible intersection with ¢/}
if ¢/ Nk # () then reroute(, k)
invariant: ¢/ is the only (possibly) disturbing leader, and ¢/ does not

intersect any of {c!,...,c"}
k=k+1
return cq,...,¢;
ke . L3 SR
° reroute(i,]) c; |
A e S L
i c} o

Figure 12: Rerouting of crossing leaders in the case of sliding ports.

point of the left side of the label that is closer to the site. As it can be seen in
Figure 11, in order for a crossing to occur, the ports (fixed or sliding) used by
the two leaders must have smaller or equal y-coordinate? (or, in the symmetric
case, greater of equal y-coordinate) than both sites. In the case of sliding ports,
the leaders use as ports the top points of the left side of the labels (or, in the
symmetric case, the bottom points). After rerouting of the leaders, the same
ports are used and the sum of their length remains unchanged.

To complete the proof for the case of sliding ports, we have to examine the
case where the port is somewhere along the left side of the label. This can hap-
pen only in the case that the site can be connected to the label by a horizontal
leader (assuming leaders of minimum length), and as it can be easily verified
(see Figure 12) the rerouting still works fine. (However, notice that this case will
never occur if the labels are placed in the same order with their corresponding
sites.)

2Given that the sites are considered to be in general position, only one site can have the
same y-coordinate with an given port.
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Theorem 7 Given a rectangle R, a side s of R, a set P C R ofn sites in general
position and a rectangular uniform label, there is an O(n?)-time algorithm that
produces a legal type-po labelling of minimum total leader length.

Proof. The algorithm that support the proof of the theorem is the algorithm
used to construct a legal one-side type-po labelling for rectangular uniform labels
(see Theorem 6). It is based on successive application of the step which resolves
crossings (see Algorithm 4), which by Lemma 4, leaves the total leader length
unchanged (for fixed and sliding ports). Thus, the total leader length of the
labelling is identical to the total leader length of the initial labelling, before any
effort to remove the crossings was made.

So, it only remains to show that the initial (with crossings) labelling where
we simply stack the labels to the right of s in the same vertical order as the
corresponding sites and connect them with type po-leaders is of minimum total
leader length. To see this, consider the case where, instead of type-po leaders,
we use type-opo leaders. Observe that the length of a type-opo leader connecting
a site to its corresponding label does not change when the leader is converted
to type-po (we ignore the width of the track routing area). However, as it was
pointed out in Note 1 the labelling with type-opo leaders is unique and, thus,
of minimum total leader length.

3.3.5 Two-side labelling with type-po leaders and uniform labels of
maximum height.

Our next result deals with two-side placement of uniform labels of maximum
height. We consider type-po leaders and we again aim to minimize the total
leader length. We obtain the following theorem:

Theorem 8 Given a rectangle R with n/2 uniform labels of maximum height on
each of its left and right sides, and a set P C R of n sites in general position,
there is an O(n?)-time algorithm that attaches each site to a label with non-
intersecting type-po leaders such that the total leader length is minimized.

Proof.  We use the dynamic-programming algorithm of Theorem 3 for the case
of type-opo leaders to get the label placement of minimum total leader length. It
runs in O(n?) time. As before (proof of Theorem 7), we observe that connecting
a site to its label with a type-opo or a type-po leader requires the same leader
length, namely, the Manhattan distance of site and port. So after obtaining the
label placement (for type-opo leaders) we use type-po leaders routed in the way
described in Section 3.3.4. Possible crossings of leaders to the same side are
resolved as in Section 3.3.4 without changing the total length, while crossings
of leaders that go to opposites sides cannot occur. This is due to the fact that
swapping labels between a pair of sites with crossing leaders would result in a
solution with smaller total leader length, a contradiction since we assume that
the original solution minimizes the total leader length.
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4 Straight-line leaders

In this section we investigate straight-line or type-s leaders, i.e. we allow skewed
lines but forbid bends. We first give a simple algorithm that computes a legal
one-side labelling. Then we show how this algorithm can be improved either in
terms of runtime or in terms of total leader length. Finally we describe how it
can be applied to four-side labelling.

4.1 One-side labelling

We adopt the scenario of Section 3.1.1. Let R be the bounding rectangle and let
P be the set of sites inside R. We want to attach labels to the right side of R.
We assume that labels are uniform and that their heights add up to the height
of R. We also assume that the port m; where the leader is connected to its label
l; is fixed, say m; is in the middle of the left label edge. Thus the only task is to
assign ports to sites such that no two leaders intersect. Let M = {my,...,m,}
be the ports sorted by y-coordinate from bottom to top. Simple examples show
that a bottom-to-top assignment of the sites to the ports might lead to crossing
leaders.

Lemma 5 A legal one-side type-s leader-label placement for fixed labels with
fized ports can be constructed in O(n?) time.

Proof. For i =1,...,n we assign to m; the first unlabelled site p € P that is
hit by a ray r; that emanates from m; and is rotated around m; in clockwise
order. Initially r; is pointing vertically downwards.

We prove correctness by contradiction: if a crossing would occur between
the first and second line, the rotating line would have found the second site first
and connected it to the first label. A straightforward implementation yields a
time complexity of O(n?) if we perform a linear search for site p each time.

The time complexity of Lemma 5 can nicely be improved to O(nlogn) by
using a dynamic convex hull algorithm.

Theorem 9 A legal one-side type-s leader-label placement for fixed labels with
fized ports can be computed in O(nlogn) time.

Proof. Let C'H be the convex hull of P U M. Note that C'H has an edge be-
tween the lowest port m; and the first site p reached by the rotating ray ry. This
edge is the first leader. Removing p and m; from C'H yields the next leader and
so on. Using a semi-dynamic convex-hull data structure which only supports
deletion of points [11] yields a total running time of O(nlogn). This algorithm
is correct since it mimics the (n?) algorithm in the proof of Lemma 5.

It is also possible to compute a solution of minimum total leader length
which applies to the case of sliding ports, as indicated in the next theorem.

Theorem 10 A legal one-side type-s leader-label placement of minimum total

leader length for fized labels with sliding ports can be computed in time O(n*+°)
time for any § > 0.
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Proof. To compute an assignment that is minimum in terms of total leader
length and supports sliding ports, we proceed as described in the proof of The-
orem 4, except now we use Fuclidean minimum-cost bipartite matching for the
sets of sites and ports. This takes O(n?*?) time [1], where § > 0 can be chosen
arbitrarily small. The weight of each edge of bipartite graph is the Euclidean
distance from the corresponding site to the closest point of the corresponding
label, supporting in this way sliding ports. Fortunately, the solution of the
minimum-weight matching implies a crossing-free solution of the leader assign-
ment since a crossing between two leaders could have been resolved such that
the total length would have decreased. To see that, observe that the two sites
and the two ports which correspond to two crossing leaders define a convex
4-gon which has the two crossing leaders as its diagonals. In any convex 4-gon,
it holds that the sum of the length of its two opposite sides is smaller that the
sum of the length of its two diagonals. Thus, a solution of minimum total leader
length cannot have any crossing leaders.

4.2 Four-side labelling

In this subsection, we consider four side type-s labelling. We describe how to
obtain a legal labelling for fixed labels with fixed ports and a minimum total
leader length labelling for fixed labels with sliding ports. These results can be
considered to be extensions of the results on one-side type-s labelling.

Theorem 11 A legal four-side type-s leader-label placement for fixed uniformly
distributed labels with fized ports can be computed in O(nlogn) time.

Proof. We partition the rectangle into convex polygons, such that the sites in
each polygon can be connected to the labels on the boundary of the polygon
using the O(nlogn) one-side routing in the proof of Theorem 9. Note that the
only assumption we used about the relative position of sets P and M of sites
and ports, respectively, was that M is contained in an edge of the convex hull
of PU M. To make the one-side routing algorithm work, the convex polygons
must be chosen such that they contain exactly as many sites as there are labels
on their boundary. We construct our partition as follows:

1. Rotate a straight line ¢ through the center of the rectangle R until on
each side of ¢ there are exactly n/2 sites. Since £ is rotated through the
center of the rectangle, and the labels are uniformly distributed around
the rectangle’s boundary, there are always n/2 labels on each side of line
£. For simplicity, we assume that ¢ intersects the top and bottom side of
the rectangle R, see the solid line in Figure 13.

2. For the left half, we sweep a horizontal line £.¢; from bottom to top until
both polygons contain as many sites as there are labels on their boundaries.
We proceed similarly for the right half.

3. From each of the corners vy to vy of R we rotate a line ¢; (1 <1 < 4) which
divides the corresponding partitioned area into two adjacent polygons until
both contain as many sites as there are labels on their boundaries.
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Figure 13: Partition of R for straight-line leaders.

Since we always divide a convex polygon with a straight line, the resulting
polygons are also convex. We did not succeed to partition the rectangles into
just four convex polygons but we need two polygons for each side which makes
eight in total. Moreover, by the construction, the number of sites in each poly-
gon is equal to the number of labels on its side that is part of the perimeter of
the original rectangle. Thus, the one side type-s O(nlogn) algorithm of The-
orem 9 can be applied, leading to an O(nlogn) algorithm for legal four side
types labelling.

Since the partition procedure is independent of the scheme that assigns the
sites to the label ports the quality of the resulting leaders is not always good. A
labelling of minimum total leader length can be obtained by using the method
based on minimum bipartite matching in a way identical to that for the one
side labelling case for fixed labels with sliding ports. Thus, we can state the
following theorem:

Theorem 12 A legal four-side type-s leader-label placement of minimum total
leader length for fized labels with sliding ports can be computed in time O(n*+°)
time for any § > 0.

Proof. Similar to the proof of Theorem 10.

5 Examples

In this section, we present drawing obtained by our algorithms some character-
istic examples. Figure 14 depicts a relatively small medical map of a skeleton.
The original labels and leaders are on the right side of the drawing. We have
mirrored the sites at the vertical line through the spine and have applied our
algorithm for type-opo leaders such that labels were placed to the left of the
drawing and the number of bend is minimum.

Figure 15 shows two boundary labellings for the map of Italy. We use uniform
labels of maximum size placed to the left and the right of the map and we
minimize the total leader length. The top labelling uses opo leaders, while the
bottom one po. Although in the type po labelling (bottom figure) the number
of bends is smaller and the bends are better distributed, the relative top-to-
bottom order between the sites and the labels is not preserved, which might
lead to confusion. This order is preserved in the type opo labellings.
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6

We

Conclusion

have defined boundary labelling and have presented a series of models and

algorithms for efficient boundary labelling of site sets. Originally, we were mo-
tivated by a map of the infrastructure network of the Greek school system, see
Figure 16. This examples indicates some possible generalizations of our model:
graph labelling with objectives like the minimization of crossings between graph
edges and leaders.

There are several issues that should be considered in future work:

e The minimum weight matching algorithm for four-side labelling seems to
be quite powerful, but it is not very efficient in praxis.

e The dynamic programming algorithms for two-side labelling (minimizing
the total leader length as well as the number of bends) should be general-
ized to three and four boundary sides.

e The examples for type-opo and type-po leaders show advantages and also
some disadvantages of both types. A practical solution might be to mix
both types in order to cope with disadvantages while keeping advantages.
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Figure 14: A medical map with original labels and leaders (right)
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that minimizes the number of leader bends (left). Drawing from
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Figure 15: Two boundary labellings for the map of Italy. We attach labels to
opposite sides of the map. We assume uniform labels of maximum size and
leaders of type opo (top figure) and po (bottom figure). The total leader length
is minimized in both cases.
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Figure 16: A map of the infrastructure network of the Greek school system.
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