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Chapter 1

Introduction

Since the first railway lines have been constructed, mo-
bility gained importance in modern life, and public trans-
portation systems have grown to huge and complex
networks. Until the late eighties itineraries had to be
planned manually using printed railway guides. In small
railway networks (e.g., the timetable in the year 2001
of the Greek railways spans a few tens of pages) opti-
mal itineraries can be quite easily determined manually.
However, in larger timetables (e.g., in the year 1957, the
“Kursbuch” published by the German railways had al-
ready 1 272 pages), manual planning gets difficult and time-consuming, especially if
also local traffic shall be included and optimal connections are wanted. In the late
eighties of the last century, the first electronic timetable information systems were
established in Germany. Current systems are for example HAFAS [HAF], which is
used by many European railway companies, or EFA [EFA], which is mainly used for
local traffic limited to smaller regions in Europe. Empirically, the resulting connec-
tions are in the majority of cases satisfying. There are cases, however, for which the
suggested itineraries are clearly not optimal. The main reason for such non-optimal
connections is that the algorithms behind the systems employ heuristic methods to
reduce the search space (in order to achieve an acceptable response time) that do
not always guarantee optimal solutions.

In the 15 or 20 years that passed by since the first timetable information systems
have been developed, the performance of computers has been drastically improved.
State-of-the-art computers—with clock rates of several gigahertz and many giga-
bytes of main memory—have reached (or will reach soon) the point where the run-
ning time of optimal algorithms is feasible for application in a productive timetable
information system. In this thesis, we investigate two models that map a timetable
information query to a single shortest-path problem in an appropriately defined graph
(in contrast to most algorithms behind existing systems that split the problem in
two or more parts). Provided an optimal shortest path is calculated, also the opti-
mality of the resulting itinerary can be guaranteed. Two issues are crucial for the
modelling: On the one hand, many details concerning feasible itineraries have to be
included in the graphs, for example, rules for train transfers. On the other hand,
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the notion of optimality has to be clearly defined. Different criteria like earliest
arrival at the destination or minimisation of train transfers are modelled as edge
weights. Besides optimal modelling, the average running time of the algorithms is
crucial. We evaluate the algorithms by conducting extensive experimental analyses
using real-world data.

Not only the brute force of the modern high-performance computers can be
utilised to compute optimal connections, but also algorithmic improvements of stan-
dard shortest-path algorithms are fruitful by reducing the running time. Since we
translated the timetable information problem to shortest path problems, we can use
variants of Dijkstra’s classical shortest-path algorithm. The running time of these
algorithms applied to real-world instances can be considerably improved by speedup-
techniques while still optimal solutions can be guaranteed—a typical approach in the
domain of Algorithm Engineering. We introduce such a speedup-technique, called
the multi-level graph approach, which is based on a hierarchical decomposition of the
underlying graph. Also, the combination with other known techniques of improving
the running time of Dijkstra’s algorithm is an issue.

The final part of the thesis is motivated by the hierarchical decompositions
needed for the previously mentioned speedup-technique, and is not directly related
with timetable information anymore. Generally, it cannot be guaranteed to find a
“good” decomposition of a given graph. However, Lipton and Tarjan [LT79] in-
troduced the first linear-time algorithm for determining good separators in planar
graphs, and many improvements have been suggested later on. These algorithms
compute a set of separator nodes, whose removal decomposes the graph into at least
two components, and guarantee upper bounds on the size of the separator and on
the size of the components. For theoretical analyses, these worst-case bounds are
enough, but for practical application, separator algorithms that are optimised to-
wards finding possibly the best separators (i.e., having a small number of separator
nodes and balanced components) are desired. We are engineering the classical algo-
rithms and we will see that a subprocedure is suited as separator algorithm on its
own: even though the upper bound is worse than that of the classical algorithms, on
almost all of the graphs we have considered, surprisingly good results are achieved.

The outline of the thesis is as follows: After introducing fundamentals regard-
ing shortest path algorithms, graph models incorporating time, and Pareto-optimal
shortest paths (Chapter 2), we deal with the modelling of timetable information
problems as shortest path problems (Chapters 3 and 4). The second part investi-
gates how these shortest path problems can be solved efficiently (Chapter 5). Dur-
ing the second part, we will come across the problem of decomposing a given graph,
which leads us to the topic of the third and final part: Separators in planar graphs
(Chapter 6).



Chapter 2

Fundamentals

This chapter introduces basic concepts and algorithms that will be needed later.
We review some shortest-path algorithms, address the problem of finding optimal
paths when multiple criteria are involved, and finally discuss how to deal with edge
lengths that depend on time.

2.1 Single-source Shortest Path Algorithms

We are going to model timetable information problems as shortest path problem in
an appropriately defined graph. Such a graph is usually referred to as G, and consists
of a set of nodes V (also called vertices) and a set of directed edges E ⊆ V ×V (also
called arcs). The number of nodes is denoted by n and the number of edges by m,
respectively. An edge has the form (u, v), where u, v ∈ V are two distinct nodes
(i.e., edges are ordered pairs of nodes). Sometimes, we also deal with undirected
graphs, if the direction of the edges is not important. In that case, an edge has the
form {u, v} and is a subset of the nodes containing exactly two nodes.

Each edge is assigned a length, which will mostly be a natural number for our
applications. A path is a sequence v1, e1, v2, . . . , ek−1, vk of nodes and edges such
that for every i (1 ≤ i < k) the edge ei connects vi and vi+1: ei = (vi, vi+1). For
simple graphs (i.e., graphs that neither contain loops nor parallel edges), the path
is already uniquely defined by the sequence of nodes. The length of a path is the
sum of the lengths of all edges in the path. A s-t-path from a source node s to a
target node t is a path whose first node is s and whose last node is t. If among all
such s-t-paths there is none of smaller length, the path is called shortest path from
the source s to the target t.

Since for the problems we are considering the source node of the shortest path
queries will always be given, we only consider single-source shortest path problems:
find shortest paths from the given source node to all other nodes. In some of our
models, also the target will be fixed, and in that case we refer to the problem as
single-pair. The case of a limited set of target nodes also occurs, referred to as
single-source some-targets problem: among all paths from the source to one of the
target nodes a path with minimal length is wanted (note that only one path has to
be computed in this case).
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These restrictions on the shortest path problems to be solved limit the choice
of reasonable algorithms. Since the target is more or less fixed, a shortest path
algorithm can be terminated once the shortest path to the target is found. Such
a termination can easily be done if the algorithm is label-setting (i.e., in each step
of the algorithm the shortest path to one node is determined and the label of that
node is definitely set). Usually, such an algorithm can be terminated after only a
small fraction of all nodes (also referred to as the search space) have been processed.
Several speedup techniques, for example the goal-directed search, which we describe
later in detail (cf. Section 3.4 on pages 24 et seq.), try to improve the running-
time by further reducing the search space. In contrast, label-correcting algorithms
improve in each step the currently known shortest path to every other node, and
the algorithm cannot just be aborted as in the label-setting case above. Thus, we
focus on label-setting algorithms.

2.1.1 Dijkstra’s Algorithm

The classical label-setting algorithm is due to Dijkstra [Dij59], and most of the
timetable-information problems are going to be solved by this algorithm and variants
of it. The given edge lengths are required to be non-negative.

Each node is assigned a distance label and a marker with the states unvisited,
visited, and finished. The algorithm initialises all nodes to be unvisited, sets the
distance label of the source node to 0, and marks the source node to be visited.
Further, the algorithm maintains a priority queue that stores the visited nodes, and
adds the source node to the priority queue at the beginning. The priority in this
queue is the distance label of the nodes (the smaller the better). The remainder of
the algorithm is a loop that terminates when the priority queue is empty: The node
u with the smallest distance label is removed from the queue, and it is marked to
be finished. Then, all outgoing edges of u are considered one by one and “relaxed”:
Let v be the other node of such an edge. If, on the one hand, v is still unvisited
or, on the other hand, v is already visited but the distance label of u plus the edge
length from u to v is smaller than the distance label of v, the distance label of v is
set to the distance label of u plus the edge length of the edge from u to v. The node
v has to be marked visited and inserted in the priority queue unless it was already
in that state. If v was already visited, it was already in the queue and the priority
may have to be updated.

If the algorithm is executed more than once for the same graph, but for a different
source node, the initialisation of the marker does not have to be repeated always.
Instead, a timestamp technique can be used: Let us assume we are executing the
algorithm the i-th time. The marker is encoded by an integer value m as follows: a
node is unvisited if m < 2 · i, it is visited if m = 2 · i, and the node is marked finished
if m = 2 · i + 1.
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2.1.2 Priority Queues for Dijkstra’s Algorithm

In the original description of Dijkstra [Dij59], there is not specifically mentioned
how to choose the node with the smallest distance label among all visited nodes.
The naive approach to just scan all visited nodes results in a running time quadratic
in the number of nodes. For graphs that have quadratic many edges in the number
of nodes, this running time is optimal, since also every edge is processed by the
algorithm. However, for “sparse” graphs with less edges, the running time can be
improved by implementing a better priority queue.

Dial’s Implementation

If the edge lengths are natural numbers bounded by a small constant C, a bucket
technique suggested by Dial [Dia69] leads to a very efficient algorithm. We maintain
an array of C buckets, each of the buckets being able to store a set of nodes. Inserting
of a node with distance d is done by adding the node to the (d mod C)-th bucket.
Further, we have a counter that reflects the bucket that contained the last node that
has been removed. Removing a node is simple: we increase the bucket counter until
a non-empty bucket is reached (if we reach the last bucket we continue at the first
bucket in a circular way), and take a node from this bucket. If the distance of a
node has to be updated, we remove the node from the bucket it is currently stored
in, and insert it with the new distance in another bucket.

The running time of Dial’s implementation of Dijkstra’s algorithm is O(m+n·C),
because it is possible that for each removal of a node from the queue, the bucket
counter has to be increased C − 1 times. In practice, especially if C is small, Dial’s
implementation is one of the most efficient implementations of Dijkstra’s algorithm
with integral edge lengths [HD88].

Fibonacci and Pairing Heaps

In the pointer model of computation, the use of a Fibonacci heap [FT87] as priority
queue gives the theoretically best bound for Dijkstra’s algorithm of O(m + n log n).
With this heap the insert and remove operations can be done in O(log n) time, and
the decrease-key operation (update of priority) is possible in amortised constant
time.

The pairing heap [FSST86] is a relative of the Fibonacci heap. The focus of the
pairing heap is an easy and efficient implementation. The disadvantage with respect
to Fibonacci heaps is that for pairing heaps, the decrease-key operation cannot be
guaranteed to run in constant time [Fre99]. However, experimental studies [SV87,
Lia92] indicate that pairing heaps are in practice very efficient, and a good choice to
be used in Dijkstra’s algorithm, especially in the general case of non-integral edge
lengths.

A pairing heap is implemented as a single tree, where each tree node contains one
element of the heap. It respects the heap order, i.e., the priority of the children is not
smaller than the priority of the parent node. The element with the smallest priority
is stored in the root of the tree. The operations insert, remove, and decrease-key
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are implemented as a series of linking operations. See [FSST86] for the details.

2.1.3 Other algorithms

Being a fundamental topic in computer science, there are many different shortest
path algorithms for a variety of different versions of the problem. Besides various
textbooks presenting the classical algorithms [AMO93, CLRS01, Len90, Meh84],
surveys on more recent work and experimental comparisons as well as engineering
aspects can be found in [Zwi01, Gol01a, CGR96].

An important issue in recent research about single-source shortest path algo-
rithms is the design of algorithms with a better running time than O(m+n log n) in
a RAM model of computation with word operations. Some of these new algorithms
are of more theoretical interest, like Thorup’s linear-time algorithm for undirected
graphs [Tho99], but also from a practical point of view there are interesting results,
like the average-case linear-time algorithms proposed by Meyer [Mey01] and Gold-
berg [Gol01b]. The latter algorithms use hierarchically organised buckets as data
structures to store already visited nodes.

Another direction of recent work is the development of speedup techniques for
single-pair shortest path algorithms applied to large and sparse graphs (see [WW]
for a survey). These techniques compute in a preprocessing step information about
shortest paths. The space consumption to store this information is usually linear
in the number of nodes (must be less than quadratic, since otherwise the complete
distance matrix could be stored). Then, to answer a query, the pre-computed in-
formation can be used to limit the search space in Dijkstra’s algorithm or other
shortest-path algorithms. In Chapter 5 we will discuss such a technique in detail
and present an experimental study with data from timetable information, and also
consider other known speedup techniques of that kind.

We conclude the discussion of shortest path algorithms with a linear time shortest-
path algorithm for a very special graph class that will occur in the course of this
thesis.

Shortest paths in dags. A directed graph G that doesn’t contain any directed
cycle is called a directed acyclic graph, or simply dag. In dags, the single-source
shortest path problem can be solved in linear time: The nodes of the dag are first
topologically ordered. Such an ordering of the nodes requires that every edge points
forward (i.e., all neighbours of each node appear always later in the ordering). It can
be constructed by a depth-first search in linear time. Then, the shortest path can
be found by processing the nodes of the graph in the topological order and relaxing
the outgoing edges as in Dijkstra’s algorithm. Since the algorithm doesn’t need to
maintain a priority queue and every edge is touched at most once, the total running
time is linear in the size of G. For a more detailed description of this algorithm we
refer the reader to [CLRS01].
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(0, 1) (0, 4) (0, 8) (0, 16)(0, 2)

(4, 0) (8, 0) (16, 0)(1, 0) (2, 0)

s t

Figure 2.1: Example of a graph with p(t) = 2n−1 many Pareto-optimal s-t-paths
(here n = 6 and p(t) = 32; example taken from [Möh99]).

2.2 Multi-Criteria Shortest Paths

Later on we will also have to deal with more than one different edge lengths, also
referred to as different optimisation criteria (e.g., the travel time and the number
of transfers in a graph representing a railway network): Let l1(e), . . . lk(e) be the k
different edge lengths. The length of a path P is defined to be the sum of the tuples
(l1(e), . . . , lk(e)) over all edges e on the path P . It is not clear how to define a single
“shortest path” anymore, especially if all different length measures are considered
to be equally important. Instead, one can introduce the notion of dominating paths:
A path P dominates another path Q if for one length li the path P is better than
Q, and for all other lengths lj the path P is at least as good as Q. More formally,
we define path domination as follows:

Definition 2.1 A s-t-path P with length (p1, . . . pk) dominates another s-t-path Q
with length (q1, . . . , qk) if pi < qi for some i (1 ≤ i ≤ k), and pj ≤ qj for all other j
(1 ≤ j ≤ k, i 6= j).

Dominated paths are not optimal in the sense that there is a better path which
improves one criterion, while all other criteria remain at least as good. Hence, we
are interested in all non-dominated paths:

Definition 2.2 A s-t-path is called Pareto-optimal1 if it is not dominated by any
other s-t-path.

It is long known that the problem to determine all Pareto-optimal paths is (weakly)
NP-hard in general [War87]. We denote by p(v) the number of Pareto-optimal s-
v-paths. In general, p(v) may be exponential in the number of nodes of the graph,
even if k = 2, as Figure 2.1 shows. In the following we outline some algorithms for
computing Pareto-optimal paths, which run for special cases in polynomial time, and
for the general case in exponential time. As we will see later, the latter algorithms
can be efficient enough in practice, since often the number of Pareto-optimal paths
is quite small (see for example [MHW01] for an experimental study).

1The notion of a Pareto optimum dates back to Vilfredo Pareto. In [Par06] he writes: “We will
say that the members of a collectivity enjoy maximum ophelimity in a certain position when it
is impossible to find a way of moving from that position very slightly in such a manner that the
ophelimity enjoyed by each of the individuals of that collectivity increases or decreases. That is to
say, any small displacement in departing from that position necessarily has the effect of increasing
the ophelimity which certain individuals enjoy, and decreasing that which others enjoy, of being
agreeable to some, and disagreeable to others.”
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2.2.1 Lexicographically First Solution

For every order of the criteria (assume the criteria l1, . . . , lk are in such an order),
there is one special Pareto-optimal path: the one that is lexicographically optimal
(i.e., minimal with respect to the lexicographical order defined on the path lengths).
The lexicographically optimal path can be computed by Dijkstra’s algorithm by
maintaining tuples (d1, . . . , dk) as node labels and using the lexicographical order
when the edges are relaxed. It is clear that the lexicographically optimal path is
Pareto-optimal, since a dominating path would be lexicographically smaller.

2.2.2 All Pareto-optimal Paths

All Pareto-optimal paths from a node s to all other nodes can be determined by
a labelling algorithm similar to Dijkstra’s algorithm (cf. [Möh99, The95, Zie01]).
Instead of maintaining one label per node, the labelling algorithm maintains a set of
labels for each node. A single label of a node v is, as above for the lexicographically
first solution, a tuple (d1, . . . , dk)v. The set of labels at a node v at some stage of
the algorithm represents the non-dominated paths from s to v found so far. The
differences to Dijkstra’s algorithm are: (i) initially, the set of labels for each node is
empty, and the label for s is set to 0k; (ii) instead of storing nodes in the priority
queue, labels (d1, . . . , dk)v are stored (along with the corresponding node v) and
lexicographically ordered; (iii) instead of just updating the labels for the outgoing
edges e = (u, v), a new label (d1 + l1(e), . . . , dk + lk(e))v is added to the labels of v,
and non-dominated labels are removed from the set of labels of v.

The labelling algorithm considers for every Pareto-optimal s-v-path the outgoing
edges of the end-node v, which dominates the running time of the algorithm. This
may require exponential running time in the number of nodes, but if the number
of Pareto-optimal paths per node is bound by a constant, the asymptotic running
time is the same as the one of Dijkstra’s algorithm.

In the single-pair case (i.e., the destination node t is known), the labelling al-
gorithm can of course be terminated when all Pareto-optimal paths at t have been
found. In particular, in the bicriterion case (i.e., k = 2), the shortest s-t-path P ′

with respect to the second criterion l2, can be computed beforehand using Dijkstra’s
algorithm, and the labelling algorithm can be terminated once a Pareto-optimal s-
t-path of length (d1, d2) has been found with d2 = l2(P

′).

Similar techniques are also used in labelling approaches for the (resource) con-
strained shortest path problem (cf. [Zie01]), which is also weakly NP-hard [GJ79].
As in the normal shortest-path problem, there is one edge length l per edge. Addi-
tionally, edges are assigned k resources, which are also additive along a path, and
there is a resource limit for each resource. The goal is to find a shortest path with
respect to l that satisfies all resource constraints. During the labelling algorithm,
only paths are considered that are promising: a path P is non-promising if a resource
exceeds the given limit, or if the length l(P ) exceeds an upper bound on an optimal
solution.
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2.3 Graphs and Time

Time is obviously an important issue in timetable information. First, we define the
discrete time values used in the following chapters, and after that review models for
time-dependent shortest paths introduced by Orda and Rom. We also throw a first
glance at the concept of time-expansion.

2.3.1 Time Values

Time will be modelled in this thesis always as discrete time values representing
minutes. Sometimes, only the time within one day is of interest and the time values
are in the interval [0, 1439]; in other occasions also the day is encoded in the time
value by adding 1440 times number of days between a given reference day and the
actual day. The formal definition is as follows.

Definition 2.3 A time value t ∈ IN represents minutes past midnight of a specific
reference day. Such a time value t is of the form t = a · 1440 + b, where a ∈ IN and
b ∈ [0, 1439]. Hence, the actual time within a day is t (mod 1440) and the actual
day is bt/1440c.

Given two time values t and t′ we often need to refer to the time that passes
starting at the time within the day represented by t until the time within the day
represented by t′ is reached (regardless of the actual day that t and t′ represent).
We refer to this time difference as day-diff(t, t′). For example, if t represents two
o’clock in the afternoon and t′ ten o’clock in the morning, day-diff(t, t′) is 20 hours.
Note that this time difference is not symmetric, for example, using the above sample
values the day-diff(t′, t) is 4 hours.

Definition 2.4 Given two time values t and t′, the day-diff(t, t′) is the smallest
nonnegative integer l such that l ≡ t′ − t (mod 1440).

2.3.2 Time-Dependent Shortest Paths

In [OR91] Orda and Rom investigate an approach of modelling shortest paths in
graphs whose edge weights depend on time. Let T denote a set representing time
(in the case of timetable information usually T = IN). Whenever an edge is passed,
the delay on this edge depends on time and is modelled as a function de : T → T .
Further, edge weights are also functions of time, for example we : T → IR. Generally,
waiting is allowed at the nodes, but there are also waiting costs at the nodes, which
can be used to disallow waiting by using high waiting costs. Given a path and the
waiting times at the intermediate nodes, the weight of the path can be calculated
using the delay and weight functions. The goal is to find, given a departure node
and time, a path (along with waiting times at the nodes) of smallest weight. It turns
out that, in the general case, the problem is difficult to solve, even infinite shortest
paths are possible, as Figure 2.2 shows.
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Figure 2.2: Sample time-dependent graph (cf. [OR91]) with an infinite shortest 1-
3-path. The edge labels denote the time-dependent weight, while the delay is equal
to 1 for each edge.
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Figure 2.3: Waiting pays off for an edge e = (u, v) and the shown delay function de.
If t1 is the arrival time at u, no waiting implies an arrival time of t4 at the node v,
whereas waiting until t2 yields an arrival at t3 < t4.

However, Orda and Rom have further shown that in restricted cases, a Dijkstra-
like algorithm can be used to determine time-dependent shortest paths [OR90]. In
that, there are no weights anymore, and the objective is to minimise the arrival time
(i.e., the problem corresponds to finding a fastest path). If waiting is forbidden, the
problem can be shown to be NP-hard, but if unrestricted waiting is allowed and
all delays are non-negative (i.e., for all t, de(t) ≥ 0), a modification of Dijkstra’s
algorithm solves the problem: The distance labels represent arrival times at the
nodes, and whenever an edge e = (u, v) is to be relaxed and tu is the arrival time
at the node u, the optimal waiting time τe for e can be determined by minimising
tu + de(tu + τe). The latter time value is the tentative arrival time at the node v in
Dijkstra’s algorithm.

Waiting at nodes may pay off: Consider for example the delay function de of the
edge e = (u, v) shown in Figure 2.3. In that case, even if the earliest arrival at u is
t1, a waiting time of τe = t2 − t1 yields the earliest arrival time at v. The possibility
of waiting at nodes involves the calculation of optimal waiting times which may be
not very efficient. However, for a restricted class of delay functions, the FIFO (first
in first out) delays, waiting never pays off and the calculation of waiting times is
easy. A delay function is FIFO if it satisfies the following condition:

t1 ≤ t2 ⇒ t1 + de(t1) ≤ t2 + de(t2).
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For a FIFO delay function de of an edge e = (u, v), the optimal arrival time tv at
v can simply be determined by evaluating de(tu), where tu is the arrival time at u.
We summarise the above discussion by the following lemma.

Lemma 2.1 Given a time-dependent network with edge delays d(e). If d is non-
negative and FIFO, a shortest path with respect to d (also referred to as fastest path)
can be computed efficiently by the above mentioned adaption of Dijkstra’s algorithm.

2.3.3 Time-Expansion

Instead of modelling time using delay and weight functions depending on time as
described in the previous section, the approach of time-expansion translates the
delays and weights that depend on time into a static time-expanded graph. This
approach requires discrete time values, and in the general case for every time value a
copy of the node is maintained in the time-expanded version of the graph. A crucial
problem with time-expansion is the huge size of the resulting graph; it may even be
impossible to explicitly store such a graph.

In the field of dynamic flow problems time-expansion is widely used: already
Ford and Fulkerson [FF58, FF62] applied this approach, and in several recent stud-
ies of variants of dynamic flow problems time-expansion was considered (see for
example [FET98, FS02, KLS02, FS03]). Since in timetable information time values
are discrete, time-expansion can be applied directly. Actually, only for certain time
values involving an event in the timetable (e.g., a departure or an arrival of a train),
a copy of the node has to be maintained in the time-expanded graph. Hence, the
resulting graph is not as huge as in the general case. We will discuss time-expansion
applied to timetable information in more detail in Section 3.3.1 (pages 18 et seq.).





Chapter 3

The Basic Timetable Information
Problem

After discussing previous work, we start the investigation of timetable information
with the introduction of the basic timetable information problem: the earliest arrival
problem. The goal is to find a train connection from a departure station A to an
arrival station B that departs at A later than a given departure time and arrives at
B as early as possible. We consider throughout this chapter a simplified version of
the problem in assuming that transfers within a station take negligible time.

We review two approaches of modelling the simplified earliest arrival prob-
lem as shortest path problem: the time-expanded approach that we have investi-
gated in [SWW00], and the time-dependent approach suggested by Brodal and Ja-
cob [BJ04]. New issues concerning modelling and algorithms provided in this chapter
are: (i) the concept of the fully time-expanded graph, which will be a useful abstrac-
tion when the models are extended in the next chapter; and (ii) an extension of the
goal-directed search technique applied to the time-dependent approach. Comparing
the two approaches, it is argued theoretically in [BJ04] that the time-dependent
approach is more efficient than the time-expanded one. We address the same ques-
tion from an experimental point of view and provide, as main contribution of this
chapter, an experimental comparison of the time-expanded and the time-dependent
approaches with respect to their performance, and show that—at least in the simpli-
fied version—the time-dependent approach is clearly superior to the time-expanded
approach.

Parts of this and the following chapter have been published as “Experimental
Comparison of Shortest Path Approaches for Timetable Information” [PSWZ04a].
The subsequent chapter discusses on the one hand realistic variants of the earliest
arrival problem involving transfer times, and on the other hand also other optimi-
sation criteria than the earliest arrival, for example the number of transfers and
multi-criteria problems.
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3.1 Previous work

Two main approaches have been proposed for modelling timetable information as
shortest path problem: the time-expanded [SWW00, MHW01, PS98, Möh99], and
the time-dependent approach [BJ04, Nac95]. The common characteristic of both
approaches is that a query is answered by applying some shortest path algorithm to
a suitably constructed graph.

The time-expanded approach constructs the time-expanded graph in which ev-
ery node corresponds to a specific time event (departure or arrival) at a station
and edges between nodes represent either elementary connections between the two
events (i.e., served by a train that does not stop in-between), or waiting within a
station. Depending on the optimisation criterion, the construction assigns specific
fixed weights to the edges. This naturally results in the construction of a very large
(but usually sparse) graph. The simplified version of the earliest arrival problem—
where details like transfer rules and traffic days are neglected—has been extensively
studied: In [SWW00] (see also [Sch00]), we explicitly used the time-expanded ap-
proach to model the simplified earliest arrival problem as shortest path problem in
a static graph and solve the problem optimally, in contrast to the approaches used
in practice, which usually cannot guarantee optimal solutions. We conducted an
extensive experimental study and were able to demonstrate that—at least in the
simplified scenario—the running time of the time-expanded approach on state-of-
the-art computers is acceptable. To achieve this result, we applied several speedup
techniques, which guarantee optimal solutions, to Dijkstra’s algorithm for comput-
ing the shortest path.

An extension of the time-expanded approach able to count train transfers is
presented by Müller-Hannemann and Weihe along with an experimental study fo-
cused on multi-criteria problems in [MHW01]. The results of this study are quite
promising: they show that in practice (among other data also the time-expanded
graph was considered) the number of Pareto-optimal paths is often very small, and
labelling approaches are feasible. In [MHSW02], the same authors together with
Schnee investigate the issue of space consumption when more complex real-world
scenarios shall be modelled. In a subsequent study, Müller-Hannemann and Schnee
extensively investigate multi-criteria optimisation in the time-expanded graph by a
labelling approach [MHS]; they relax the notion of Pareto-optimal connections in
order to find all attractive train connections. Möhring suggests the time-expanded
model as graph-theoretic concept for timetable information in [Möh99]. He further
discusses algorithms for solving multi-criteria problems, and focuses on a distributed
approach for timetable information, which is also the topic of the recent projects
DELFI [DEL] and EU-Spirit [EUS]: the railway network is considered as consist-
ing of several (overlapping) subnetworks (e.g., each subnetwork is operated by a
different company or institution), and a global solution is constructed from several
subqueries to the conventional timetable information systems operated on the re-
spective subnetworks. In a sense such new systems operate like meta search engines
for the web.

The idea of the time-dependent approach is to avoid the maintenance of a node
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per event. Instead, the time-dependent graph is used in which every node represents
a station, and two nodes are connected by an edge if the corresponding stations are
connected by an elementary connection. The weights on the edges are assigned
“on-the-fly”: the weight of an edge depends on the time in which the particular
edge will be used by the shortest path algorithm to answer the query. The gen-
eral idea of time-dependent networks dates back to Orda and Rom [OR90, OR91];
see Section 2.3 (pages 9 et seq.). Brodal and Jacob argued in [BJ01, BJ04] that
in the simplified case of the earliest arrival problem, Dijkstra’s algorithm consid-
ers many redundant edges in the time-expanded approach. They suggest to use a
time-dependent network instead and proved by a detailed theoretical analysis of op-
eration counts in both approaches that the time-dependent approach is more efficient
than the time-expanded approach. This was the starting point of our experimental
comparison of the two approaches that we provide in this chapter. The work of
Nachtigal [Nac95] can also be classified as a time-dependent approach to timetable
information, but the problem specification is different to the one we consider: given
a source station, for all other stations arrival functions depending on the departure
time shall be computed. In contrast, we always consider the departure time as part
of the query.

Finally, we want to mention two predecessors of “real” timetable information
systems in use. Around the year 1988, the Dutch and German train companies
started to use electronic timetable information systems. We want to mention two
algorithms behind these early systems. At that time, the computers were too slow
and had too few memory to dare implementing the whole problem by a shortest
path search in a huge time-expanded graph with something like a million of nodes.
Heuristics, as they were for example known from AI, were used instead to keep
the search spaces small enough. Tulp and Siklòssy describe in [TS88] the TRAINS
system, which was used by the Dutch railways (NS) at that time as a prototype: It
is based on a graph where nodes represent cities. They distinguish two levels of the
network, a “static” level which consists of arcs between nodes representing distances,
and a “dynamic” level where the arcs include information about the departure and
arrival times of trains. The dynamic level can be regarded as a time-dependent
network as described above. The algorithm uses the static level to cut out the
“interesting” part of the network, without considering any information about time.
Note that this cutting is heuristic in the sense that optimal connections may be lost
by that step, which we don’t want to tolerate in the models investigated later in
this thesis. Then, a train connection is calculated by a modification of Dijkstra’s
algorithm trying to incorporate time for train changes at stations. Once a connection
to the destination station is found, a backward search tries to improve the result
(e.g., to find a connection that departs later and has the same arrival time).

Baumann and Schmidt outline in [BS88] an algorithm called ARIADNE, which
can be regarded as ancestor of HAFAS [HAF], the timetable information system
that is nowadays used by the German railway company (Deutsche Bahn) and many
other railway companies worldwide. As in TRAINS, the algorithm considers two
different networks: a static graph representing the topographic railway network, and
a dynamic network including time, traffic days, train classes etc. The ARIADNE
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*Z 00461 80____ 01

*G IR 8000096 8000112

*A VE 8000096 8000112 000934

8000096 Stuttgart Hbf 1201

8000302 Plochingen 1214 1215

8000127 Goeppingen 1225 1226

8002218 Geislingen(Steige) 1237 1238

8000170 Ulm Hbf 1301 1311

8000943 Biberach(Riss) 1334 1335

8000746 Bad Schussenried 1348 1349

8000014 Aulendorf 1354 1355

8004965 Ravensburg 1409 1410

8000112 Friedrichshafen St. 1425

Figure 3.1: Sample raw timetable data: a train on the famous “Schwäbsche Eise-
bahne” line from Stuttgart via Ulm, Biberach, Meckenbeuren and Durlesbach to
Friedrichshafen [Sch] (Meckenbeuren and Durlesbach are not anymore stops of long-
distance trains). The first three lines represent general information about the train,
followed by one line per station visited by the train.

algorithm works in two phases: The first phase (“Wegesuche”) searches feasible
paths in the static network by a bidirectional version of Dijkstra’s algorithm and
outputs a subgraph of the network to be considered in the second phase. Note that
again—as in the TRAINS algorithm—optimal solutions may be lost by this step.
The second phase (“Zeitsuche”) computes on the dynamic, time-dependent version
of the network, limited by the subgraph computed in the first phase, several feasible
train connections. These are rated according to measures like travel time, quality of
trains, direct connection, etc. The authors also mention caching of frequently asked
queries to improve the average running time, which shall be less than 6 seconds
on average. Nowadays a timetable information server should be able to guarantee
average running times in the magnitude of a hundredth of a second.

3.2 Problem Specification

In this section, we provide a mathematical formulation of the basic timetable data
we are using in this chapter, and further define the first and most fundamental
timetable problem, the earliest arrival problem (EAP). We use terminology from
railway transport, but, of course, the problem definitions, models, and algorithms
can as well be applied to other domains with similar characteristics.
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3.2.1 Data

A timetable consists of data concerning: stations (or bus stops, ports, etc.), trains
(or busses, ferries, etc.) connecting stations, and departure and arrival times of
trains at stations. More formally, we are given a set of trains Z, a set of stations
B, and a set of elementary connections C whose elements c are 5-tuples of the form
c = (Z, S1, S2, td, ta). Such a tuple (elementary connection) is interpreted as train Z
leaves station S1 at time td, and the immediately next stop of train Z is station S2

at time ta. If x denotes a tuple’s field, then the notation x(c) specifies the value of
x in the elementary connection c.

The departure and arrival times td(c) and ta(c) of an elementary connection
c ∈ C within a day are integers in the interval [0, 1439] representing time in minutes
after midnight. The length of an elementary connection c, denoted by length(c), is
day-diff(td(c), ta(c)), and reflects the time that passes between the departure and the
arrival (see the definition of day-diff provided in Section 2.3.1 on page 9). Figure 3.1
shows a sample data set in the raw input format.

3.2.2 The Earliest Arrival Problem

Let P = (c1, . . . , ck) be a sequence of elementary connections together with departure
times depi(P ) and arrival times arri(P ) for each elementary connection ci, 1 ≤ i ≤ k.
We assume that the times depi(P ) and arri(P ) include data regarding also the
departure/arrival day by counting time in minutes from the first day of the timetable.
A time value t is of the form t = a · 1440 + b, where a ∈ [0, 364] and b ∈ [0, 1439].
Hence, the actual time within a day is t (mod 1440) and the actual day is bt/1440c
(cf. the definition of time values in Section 2.3.1)

Such a sequence P is called a consistent connection from station A = S1(c1) to
station B = S2(ck) if it fulfils the following consistency conditions: the departure
station of ci+1 is the arrival station of ci, and the time values depi(P ) and arri(P )
correspond to the time values td and ta, resp., of the elementary connections (modulo
1440), and the departure of the each elementary connection (except the first one) is
later than the previous arrival. More formally, P is a consistent connection if the
following conditions are satisfied:

S2(ci) = S1(ci+1)

depi(P ) ≡ td(ci) (mod 1440)

arri(P ) = length(ci) + depi(P )

depi+1(P ) − arri(P ) ≥ 0

Note that by this definition we assume that it is possible to transfer at any station
to any other train that departs later than or equal to the arrival time at the specific
station. We further assume that all trains are operated daily. Because of these
simplifications, we refer to the problem defined here also as the simplified earliest
arrival problem. In the next chapter we discuss how more realistic transfer rules as
well as traffic days specifying operation days for trains can be incorporated.

We are additionally given a large, on-line sequence of queries. A query generally
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defines a set of valid connections, and an optimisation criterion (or criteria) on
that set of connections. The problem is to find the optimal connection (or a set of
optimal connections) w.r.t. the specific criterion or criteria. For the earliest arrival
problem, a query (A,B, t0) consists of a departure station A, an arrival station B,
and a departure time t0. The departure time is in [0, 1439] for the simplified version.
Connections are valid if they depart at least at the given departure time t0, and the
optimisation criterion is to minimise the difference between the arrival time and the
given departure time.

3.3 Basic Modelling Approaches

We review the modelling of the simplified version of EAP for two approaches: the
time-expanded and the time-dependent approach. In addition, we discuss some
further insights and similarities of the approaches.

3.3.1 Time-Expanded Model

The time-expanded model, as it is described in [SWW00], follows the principle of
time-expansion mentioned in Section 2.3.3 (page 11) and is based on the time-
expanded graph which is constructed as follows. There is a node for every time
event (departure or arrival) at a station, and there are two types of edges. For
every elementary connection (Z, S1, S2, td, ta) in the timetable, there is a train-edge
in the graph connecting a departure-node, belonging to station S1 and associated
with time td, with an arrival-node, belonging to station S2 and associated with
time ta. In other words, the endpoints of the train-edges induce the set of nodes of
the graph. For each station S, all nodes belonging to S are ordered according to
their time values. Let v1, . . . , vk be the nodes of S in that order. Then, there is a
set of stay-edges (vi, vi+1), 1 ≤ i ≤ k − 1, and (vk, v1) connecting the time events
within a station and representing waiting within that station. The length of an edge
(u, v) is day-diff(tu, tv), where tu and tv are the time values associated with u and v,
respectively. Figure 3.2 illustrates this definition. The following theorem states that
an appropriate shortest path computation on the above graph solves the simplified
version of EAP.

Theorem 3.1 A shortest path in the time-expanded graph from the first departure-
node s at the departure station A with departure time later than or equal to the given
start time t0 to one of the arrival-nodes of the destination station B constitutes a
solution to the simplified version of EAP in the time-expanded model.

Proof. To prove correctness, it suffices to show that: (i) there is a one-to-one corre-
spondence between a valid and consistent A-B-connection and an A-B-path in the
time-expanded graph; and (ii) the valid and consistent connection constructed from
a shortest path is optimal in the EA sense (i.e., the difference of the arrival time
and the given start time t0 is minimal).
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(i) Let Π be a path from node s of station A to some arrival-node of station
B. We will show that Π corresponds to a valid and consistent A-B-connection P
in the EAP setting. Define P to be the sequence of all elementary connections
corresponding to the train-edges that occur in the path Π. Further, define the time
value depi(P ) to be the length of the subpath from s to the tail of the i-th train-
edge plus the time associated with s. Similarly, set arri(P ) to be the length of the
subpath from s to the head of the i-th train-edge plus the time associated with s.
It can be easily verified that P is a valid and consistent connection, whose duration
equals the length of Π.

Conversely, let P ′ be a valid and consistent A-B-connection departing from A at
t0 or at the earliest possible time after t0, and let the corresponding departure-node
be s. We will show that P ′ corresponds to an A-B-path Π′ starting from s and ending
at some arrival-node of B in the time-expanded graph. Π′ is constructed as follows.
It contains all train-edges corresponding to the elementary connections in P ′. Π′

starts at s, which is connected by a simple path of stay-edges with the tail of the first
train-edge. We can assume without loss of generality that all stays are less than a day
and correspond to simple paths of stay-edges in the time-expanded graph, because
when every train operates daily, an optimal connection never stays more than a day
at a station (otherwise there would be a one day faster connection). When traffic
days shall be modelled, this is not necessarily true anymore; see Section 4.2 (pages 43
et seq.). The head of the first train-edge is connected by a path of stay-edges to
the tail of the second train-edge, and so on, until the tail of the last train-edge is
reached. Clearly, the head of the last train-edge is an arrival-node of B. It can be
easily verified that the length of Π′ is equal to the difference of the arrival and the
departure time of P ′.

(ii) Let P be a valid and consistent connection (departing from A at t0 or at
the earliest possible time after t0) that corresponds to a shortest A-B-path Π in
the time-expanded graph (starting from departure-node s). Assume on the contrary
that there is an A-B-connection (valid and consistent) P ′, departing from A at t0
or at the earliest possible time after t0, and arriving to B earlier than P . Let Π′ be
the A-B-path in the time-expanded graph corresponding to P ′. The length of Π′

is equal to the difference of the arrival and the departure time of P ′, which is by
assumption less than the difference of the arrival and the departure time of P , and
consequently also smaller than the length of Π. This, however, is a contradiction to
the fact that Π is a shortest path.

The Fully Time-Expanded Graph

Instead of introducing stay-edges from the last node to the first node at every sta-
tion, the time-expanded graph can also be fully expanded by maintaining a copy of
every event for each day in the timetable period. This reflects the general idea of
time-expansion described in Section 2.3.3 more directly. An explicit construction of
such a graph is usually not possible (it would be too large for practical instances),
but it has the nice property that there is a one-to-one correspondence between all
connections—not only those with stays of less than a day—and paths.
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Figure 3.2: The time-expanded graph (left) and the time-dependent graph (right)
of a timetable with three stations A, B, C. There are three trains that connect A
with B (elementary connections u,v,w), one train from C via B to A (x,y) and one
train from C to B (z).

If the timetable is valid for N days, the fully time-expanded graph is based on
N copies of the time-expanded graph. Whenever there is an overnight edge in the
i-th copy, the edge is redirected to the corresponding node in the (i+1)-st copy, for
i < N ; in the N -th copy, overnight edges are deleted. In the following, we assume
that each node in the fully time-expanded graph is not only assigned the time of
the day td in the interval [0, 1439], but also the absolute time in the timetable, i.e.,
a node in the copy corresponding to day i is assigned time t = td + i · 1440.

There is an obvious one-to-one correspondence between (valid and consistent)
connections and paths in the fully time-expanded graph. Thus, it is also obvious that
an appropriate shortest path in the fully time-expanded graph provides a solution
to the earliest arrival problem. There are two further interesting properties of the
fully time-expanded graph: The first observation is that the graph doesn’t contain
any directed cycles and therefor is a dag (a directed acyclic graph). The second
property is that any two s-t-paths connecting the same two nodes s and t have the
same length.

Algorithm

These two properties suggest that the shortest path can be found in linear time:
In dags, one can use a topological order of the nodes as described in Section 2.1.3
(page 6). Further, if two s-t-paths have always the same length, any graph search in
the fully time-expanded graph, like breadth first search for example, would suffice
to determine the first reachable node at the target station.

However, applying directly such procedures would require the huge fully time-
expanded graph. Instead, we suggest to apply Dial’s implementation of Dijkstra’s
algorithm to the time-expanded graph and argue below that it benefits from the
special properties: Since edge lengths are non-negative, the actual shortest path in
the time-expanded graph can be found by Dijkstra’s algorithm (cf. Section 2.1.1).
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All edge lengths are natural numbers less than or equal to 1440, so we can use Dial’s
bucket implementation of the priority queue (cf. Section 2.1.2, page 5) and thus the
running time is linear in the number of nodes. Actually, only a fraction of the nodes
is processed because the main loop can be aborted when a node at the destination
station is reached.

Dijkstra’s algorithm processes the nodes in the order of distance from the source
node. In fact, all reachable nodes from the start node are processed ordered by
time. On the one hand, ordering all nodes of the fully time-expanded graph by time
is obviously a topological order, since there is no edge backward in time. Thus,
Dijkstra’s algorithm processes the nodes of the fully time-expanded graph in a topo-
logical order. On the other hand, searching the reachable nodes of the graph by
increasing time is a very good idea, since we can abort the search once we reach the
very first node at the destination station, which is exactly what Dijkstra’s algorithm
applied to the time-expanded graph does. Hence, applied to the fully time-expanded
graph with its special structure, Dial’s implementation of Dijkstra’s algorithm is a
linear-time graph search in topological order that can be terminated when the first
node at the destination station is reached.

3.3.2 Time-Dependent Model

The time-dependent model suggested in [BJ04] uses the time-dependent shortest
paths investigated by Orda and Rom; see Section 2.3.2 (page 9). It is also based
on a directed graph, called time-dependent graph. In this graph, there is only one
node per station, and there is an edge e from station A to station B if there is an
elementary connection from A to B. The set of elementary connections from A to
B is denoted by C(e). The definition is illustrated in Figure 3.2. The length of an
edge e = (v, w) depends on the time at which this particular edge will be used by
an algorithm which solves EAP. In other words, if T is a set denoting time, then the
length of an edge e = (v, w) is given by `e(t) = fe(t) − t, where t is the departure
time at v, fe : T → T is a function such that fe(t) = t′, and t′ ≥ t is the earliest
possible arrival time at w. The time-dependent edge length le is a delay function
in the terminology of time-dependent shortest paths introduced in Section 2.3.2. A
sample delay function le as defined above is depicted in Figure 3.3.

As we have already seen in Lemma 2.1 (page 11), a time-dependent shortest
path can be found easily when the delay functions are non-negative and FIFO: a
modification of Dijkstra’s algorithm can be used, where the delay functions have to
be evaluated. In our case each time-dependent edge length `e is non-negative by
construction; we have to ensure that it is FIFO:

t ≤ t′ ⇒ t + `e(t) ≤ t′ + `e(t
′).

Using the earliest arrival functions fe, a simpler and equivalent condition is that fe

is non-decreasing:
t ≤ t′ ⇒ fe(t) ≤ fe(t

′).

The meaning of the condition is that overtaking of trains on an edge is not allowed,
and from now on we will assume that the condition is always fulfilled, which is
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1440 t

le(t)

Figure 3.3: Sample delay function le used in the time-dependent model for the
earliest arrival problem. The dotted lines intersecting with the abscissa indicate the
arrival times fe(t) at the arrival station, and jumps occur whenever a train departs.
After one day (1440 minutes) the function is repeated, i.e., le(t + 1440) = le(t).

true for our data. It is also reasonable, since if ever a train overtakes another train
somewhere between two stations, the first train is probably a fast high-speed train
and the second a slower train; these two trains usually don’t stop at the same stations
(the slower train stops more frequently), and thus they don’t belong to the same
edge.

Assumption 3.1 For any two given stations A and B, there are no two trains
leaving A and arriving to B such that the train that leaves A second arrives first at
B.

Algorithm

Next, we explain the modification of Dijkstra’s algorithm that can be used to
solve the earliest arrival problem in the time-dependent model in more detail (see
also [BJ04]). Let D denote the departure station and t0 the earliest departure time.
The differences, with respect to Dijkstra’s algorithm, are: Set the distance label
δ(D) of the starting node corresponding to the departure station D to t0 (and not
to 0), and calculate the edge lengths on-the-fly. The edge lengths are calculated as
follows. Since Dijkstra’s algorithm is a label-setting shortest-path algorithm, when-
ever an edge e = (A,B) is considered, the distance label δ(A) of node A is optimal.
In the time-dependent model, δ(A) denotes the earliest arrival time at station A.
In other words, we indeed know the earliest arrival time at station A whenever the
edge e = (A,B) is considered, and therefore we know at that stage of the algo-
rithm (by Assumption 3.1) which train has to be taken to reach station B via A
as early as possible: the first train that departs later than or equal to the earliest
arrival time at A. Let t = δ(A) and let c∗ ∈ C(e) be the connection minimising
{day-diff(t, td(c)) | c ∈ C(e)}. The particular connection c∗ can be easily found by
binary search if the elementary connections C(e) are maintained in a sorted array.
The edge length of e, `e(t), is then defined as `e(t) = day-diff(t, td(c

∗)) + length(c∗).
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Consequently, fe(t) = t+ `e(t). Note that actually the lengths `e(t) don’t have to be
explicitly calculated, since in Dijkstra’s algorithm only the distance (resp. arrival
time) fe(t) at the target node (resp. station B) is needed, which we can get directly
by the arrival time ta(c

∗) of the corresponding connection.

The following theorem is proved explicitly in [BJ04] and can also be derived
from the general results on time-dependent shortest paths (cf. Section 2.3.2). Its
correctness is based, as we have discussed already above, on the following two facts:
(i) the edge lengths are non-negative, which means in other words that all fe have
non-negative delay (for all t, fe(t) ≥ t), and is true by definition; and (ii) the edge
lengths are FIFO, which means in our case that all fe are non-decreasing (t ≤
t′ ⇒ fe(t) ≤ fe(t

′)), and follows directly from Assumption 3.1. Because of the
nature of the investigated application, we can safely assume that all functions we
are considering later on have non-negative delay, too.

Theorem 3.2 The above modified Dijkstra’s algorithm solves the simplified version
of EAP in the time-dependent model, provided that Assumption 3.1 holds.

3.3.3 Comparison of the Approaches

In the simplified scenario we are investigating in this chapter, the graphs that are
used in the two approaches are strongly related: Contracting all nodes that belong to
the same station in the time-expanded graph and deleting parallel edges afterwards
yields the time-dependent graph. Further, the algorithm used in the time-dependent
approach can be viewed as an improved implementation of the simple shortest-path
search by Dijkstra’s algorithm in the time-expanded approach: If the first edge
from some station A to another station B has already been processed by Dijkstra’s
algorithm in the time-expanded graph, all other edges e′AB from station A to station
B do not have to be considered anymore. The reason is that such an edge doesn’t
provide an improvement since the path through the first edge extended by some
stay-edges to the head of the edge e′AB has the same length. In a sense, the time-
dependent algorithm implements this observation.

However, it is not immediately clear whether the time-dependent approach is
superior. On the one hand, the edge lengths have still to be computed in the time-
dependent algorithm, which consumes running time as well. In [BJ04] it is argued
theoretically that in the time-dependent model less elementary operations have to
be executed. We are going to approve this theoretical observation by means of an ex-
perimental analysis in Section 3.5. On the other hand, the similarity of the graphs
and the algorithms in the two approaches is disturbed when the realistic specifi-
cations are incorporated into the models in the following chapter, which has also
implications on the running time of the algorithms: the time-dependent algorithm
is not anymore that faster than the time-expanded algorithm.
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3.4 Basic Speedup Techniques

Now that we have seen how the basic timetable information problem can be mod-
elled, we turn our focus on how the running time of the algorithms can be improved
by basic speedup techniques. Note that by the notion of speedup technique we always
refer to a strategy to improve the running time of a shortest-path algorithm that
always guarantees the optimality of the solution. On the one hand, a well-known
speedup technique for shortest path algorithms called goal-directed search is ap-
plied to both models (for the time-dependent model we suggest a modification of
it), and on the other hand basic improvements of the models themselves and the
model-specific algorithms are introduced. Later, in Chapter 5 (pages 61 et seq.),
more sophisticated techniques are discussed. In the rest of the section we briefly
review the goal-directed search for the time-expanded model and present our further
modifications and model-specific techniques in more detail.

3.4.1 Time-Expanded Model

Goal-Directed search

A commonly used speedup technique is the goal-directed search, also referred to
as the A∗ algorithm or the method of potentials, introduced originally by Hart,
Nilsson and Raphael [HNR68] in the field of artificial intelligence (see also [Len90]).
The intuition behind this method is to direct the search carried out by Dijkstra’s
algorithm towards the destination. The length of every edge is modified in a way
that if the edge points towards the destination its length gets smaller, while if the
edge points away from the destination node, then its length gets larger. More
precisely, for an edge (u, v) with length `(u, v), its new length `′(u, v) becomes
`′(u, v) = `(u, v) − p[u] + p[v], where p[·] is a potential function associated with the
nodes of the graph. A potential function p[·] is called valid if `′(u, v) is non-negative.
The optimality of the goal-directed search with valid potentials is shown by the next
lemma.

Lemma 3.1 Let p[·] be a valid potential. A s-t-path P is a shortest path with
respect to edge lengths `′(u, v) if and only if P is a shortest path in the original
graph with edge lengths `(u, v). Dijkstra’s algorithm applied to the graph with edge
lengths `′(u, v) can be used to compute P .

Proof. Let P = (s = v1, . . . , vk = t) be a s-t-path. We can proof that `′(P ) = `(P )+c
for a constant c depending only on s and t.

`′(P ) =
k−1
∑

i=1

`′(vi, vi+1)

= `(v1, v2) − p[v1] + p[v2] + `(v2, v3) − p[v2] + p[v3] + . . . + p[vk]

= `(P ) − p[v1] + p[vk]

= `(P ) − p[s] + p[t].
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Hence, a shortest path with respect to `′ is also a shortest path with respect to `
(otherwise a shorter path P ′ with `(P ′) < `(P ) would imply `′(P ′) < `′(P )), and
vice versa. Since all edge lengths `′(u, v) are non-negative, Dijkstra’s algorithm can
be applied to the graph with lengths `′(u, v) to compute the shortest path P .

Usually, lower bounds on the destination station are used to obtain valid po-
tentials. In our case, we exploit the geometric information about stations, which
is available in our data: If D(u) denotes the Euclidean distance of the station of
u to the destination station B, and vmax is the maximum speed of the timetable1,
the potential function in the time-expanded model is defined as p[u] = D(u)/vmax.
This scaling of Euclidean distances guarantees valid (i.e., non-negative) potentials:
Let D(u, v) denote the Euclidean distance of an edge (u, v). Since `(u, v) denotes
the travel time of some train, `(u, v) ≥ D(u, v)/vmax (for stay-edges the validity is
clear since the Euclidean distance is 0), and the triangular inequation for Euclidean
distances yields D(u, v) + D(v) ≥ D(u). We obtain

`(u, v) − p[u] + p[t] ≥ D(u, v) − D(u) + D(v)

vmax

≥ 0.

Omitting Nodes

There is a simple way to reduce the size of the graphs in the time-expanded model,
based on the fact that there are a lot of nodes with out-degree one. Any path
through such a node must continue to the head of the single outgoing edge. Thus,
we can safely delete such nodes from the graph and re-direct the incoming edges to
the head of the single outgoing edge. The weight of a re-directed edge is the sum of
the incoming edge plus the weight of the outgoing edge.

In the time-expanded graph, we omit arrival-nodes except for those belonging to
the destination station. The arrival-nodes at the destination station are important
since the algorithm has to be terminated once such a node is processed in the main
loop of Dijkstra’s algorithm. Since the destination is only known when a query is
issued, arrival nodes at the destination station are dynamically inserted on demand
during the algorithm.

The technique yields a graph of roughly half the original size, since all arrival-
nodes have out-degree one. Figure 3.4 illustrates the construction.

3.4.2 Time-Dependent Model

Goal-Directed search

The goal-directed search heuristic described in Section 3.4.1 can be also applied
in the time-dependent model. However, preliminary experiments with exactly the
same technique showed no improvement of the running time in the time-dependent
model. Therefore, we tried to improve the goal-directed search method. Our new

1The speed of an elementary connection is the Euclidean distance of the two stations involved
divided by the travel time. The maximum speed vmax of the timetable is the maximum over all
speeds of elementary connections.
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Figure 3.4: The sample time-expanded graph from Figure 3.2 (page 20), with re-
dundant nodes omitted. Station A is assumed to be the destination station, i.e. at
station A none of the nodes is omitted.

variant uses: (i) a different potential function, which depends on the destination
station; (ii) Manhattan, besides Euclidean, distances between stations; and (iii)
integral potentials to avoid expensive floating-point operations. The details are as
follows.

As in Section 3.4.1, for an edge e = (u, v) ∈ E with time-dependent length `e(t),
the new length function `′e(t) is defined as `′e(t) = `e(t) − p[u] + p[v], where p[·] is
the potential function. Let B denote the destination station. Then, define

p[u] = D(u,B)λB, u ∈ V, λB ≥ 0,

where D(u,B) is the Euclidean or Manhattan distance between the station of node
u and the destination station B. The parameter λB is called the scaling factor and
is a non-negative number (which can be different for each destination station B)
that is used to scale the distances so that `′e(t) is non-negative. The scaling factor
is defined as

λB = min
(u,v)∈E,D(u,B)−D(v,B)>0

mint `(u,v)(t)

D(u,B) − D(v,B)
.

Note that λB corresponds to the inverse of the maximum speed considered in Sec-
tion 3.4.1; however, in Section 3.4.1 the maximum speed is the same for all des-
tinations, while λb depends on the destination station. The basic idea behind the
modification we propose here is that the maximum speed is calculated only over
all edges pointing geographically towards the destination station. Thus, for edges
pointing towards the destination, the condition `′e ≥ 0 is fulfilled because of the
scaling. For the other edges pointing away from the destination, the length anyway
gets bigger and the condition is also fulfilled: `′e ≥ `e ≥ 0. The next lemma shows
more formally that the potentials p[·] as defined above are valid.

Lemma 3.2 The function p[·] is a valid potential function for the goal-directed
search, i.e., `′e is non-negative for each edge e.
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Proof. Let (α, β) ∈ E be the edge yielding the minimum in the definition of λB,
i.e., λB = `(α,β)(t0) = mint `(α,β)(t). Note that there is an edge (u, v) ∈ E such that
D(u,B) − D(v,B) > 0, since otherwise there would be no way reaching B—the
distance to get there from every node u ∈ V could never be reduced. Then, for
every edge e = (u, v) ∈ E with D(u,B) > D(v,B) we have

mint `e(t)

D(u,B) − D(v,B)
≥ `(α,β)(t0)

D(α,B) − D(β,B)
(3.1)

Let t′ be an arbitrary time value. Then, from the definition of `′e we get

`′e(t
′) ≥ min

t
`e(t) − `(α,β)(t0)

D(u,B) − D(v,B)

D(α,B) − D(β,B)

and from Equation (3.1) we obtain that

min
t

`e(t) ≥ `(α,β)(t0)
D(u,B) − D(v,B)

D(α,B) − D(β,B)

which consequently implies that

`′e(t
′) ≥ 0.

Now, if D(u,B)−D(v,B) ≤ 0, then −[D(u,B)−D(v,B)] ≥ 0 and −λB[D(u,B)−
D(v,B)] ≥ 0, which means that `′e = `e − λB[D(u,B) − D(v,B)] ≥ `e ≥ 0.

Even if all edge weights are integers, the use of the Euclidean or Manhattan
distances as potentials forces us to use floating point numbers in the priority queue,
and this may result in an additional time overhead. In order to avoid this, we can
transform the floating-point potentials to integers without invalidating the potentials
as the following lemma shows.

Lemma 3.3 If for the non-negative numbers w ∈ IN , a, b ∈ IR+ it holds that w −
a + b ≥ 0, then it will also hold that w − bac + bbc ≥ 0.

Proof. If a = b, the proposition holds trivially. Let fr(a) = a − bac and fr(b) =
b−bbc. Consider first the case a < b. Then, a− b < 0 ⇒ bac− bbc < fr(b)− fr(a).
Assume that w−bac+ bbc < 0. Since w ≥ 0, we must have that bac− bbc > 0, and
hence 0 < bac − bbc < fr(b) − fr(a). But, fr(b) − fr(a) < 1 and bac − bbc is an
integer, a contradiction.

We turn now to the case a > b. Assume again that w − bac + bbc < 0. Then,
w < bac−bbc. We also have bac−bbc ≤ w + fr(b)− fr(a). Combining the last two
inequalities and the fact that fr(b)− fr(a) < 1, we get that w < bac− bbc < w + 1,
which is again a contradiction.

Consideration of the integral parts of the floating-point potentials turned out to
be rather beneficial in certain cases as our experiments show.
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Avoiding Binary Search

We also considered the heuristic that avoids the binary search as described in [BJ04].
The idea is as follows. Let k be the out-degree of a node v in the time-dependent
graph and let (v, u1), . . . , (v, uk) be its outgoing edges. Construct a table Dv by
sorting all events of v’s outgoing edges with respect to their departure time. Place
the first k such events in the first k entries (primary segment) of Dv, leave the next
k entries empty (secondary segment), place the next k events in the next k entries
of Dv, and so on. Let t0 be the last event in Dv before some secondary segment. For
every (v, ui), 1 ≤ i ≤ k, find the first event with departure time t ≥ t0 and put it
into the i-th entry of the next secondary segment. For an edge (w, v), let t1 be the
arrival time of a primary event P w ∈ Dw (event belonging to some primary segment
of Dw). Create a pointer from P w to the immediately next primary event P v ∈ Dv

with timestamp t2 ≥ t1. The above construction avoids binary search, because when
node v is extracted from the priority queue, we simply follow the pointer of the event
Pw that caused v’s extraction from the priority queue, and which leads to a primary
entry P v ∈ Dv. Hence, to find the next outgoing event of node v it suffices to scan
the rest of the primary segment containing P v and its next secondary segment.

3.5 Experimental Comparison of the Models

The main goal of our experimental study is to compare in practice the performance
of the time-expanded and the time-dependent approach. For both models we also
investigate the speedup techniques described in the previous section.

Given two different implementations and a timetable, we define the relative per-
formance or speedup with respect to a measured performance parameter as the ratio
of the value obtained by the first implementation and the value obtained by the
second one. When one time-expanded and one time-dependent implementation is
compared, we always divide the time-expanded value by the time-dependent value,
i.e., we consider the speedup achieved when the time-dependent approach is used
instead of the time-expanded approach.

For the experiments described in this section, the code is written in C++ and
compiled with the GNU C++ compiler version 3.2. The experiments were run on a
PC with an AMD Athlon XP 1500+ processor at 1.3 GHz and 512MB of memory
running Linux (kernel version 2.4.19). The implementation of the time-dependent
model for the earliest arrival problem uses the graph data structure of LEDA [NM99]
version 4.4.

3.5.1 Data

We have used real-world data from the German and French railways. More pre-
cisely, the following five timetables have been used (ordered by size). The first
timetable contains French long-distance railway traffic (france) from the winter pe-
riod 1996/97. The remaining four are German timetables from the winter period
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Figure 3.5: A visualisation of the timetable data ger-longdist (gray), the search
space corresponding to a sample query from Berlin to Frankfurt (black), and the
optimal train connection (thick line).
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Time-Expanded Time-Dependent

Elem. conn. Elem. conn.

Timetable Nodes Edges Nodes Edges per node per edge

france 166085 332170 4578 14791 36 11

ger-longdist 480173 960346 6817 18812 70 26

ger-local1 691541 1383082 13460 37315 51 19

ger-local2 1124824 2249648 13073 36621 86 31

ger-all 2295930 4591860 32253 92507 71 25

Table 3.1: Parameters of the considered graphs for each of the timetables. The two
columns on the left show the size of the graph used in the time-expanded model
with the optimisation described in Section 3.4.1. The number of nodes equals the
total number of elementary connections in the timetable. The remaining columns
show the parameters of the graph used in the time-dependent model.

2000/01; one resembles the long-distance railway traffic in Germany (ger-longdist),
two contain local traffic in Berlin/Brandenburg (ger-local1) and in the Rhein/Main
region (ger-local2), and the last is the union of all these three German timetables
(ger-all). We would like to note that HAFAS [HAF], the timetable information
system used by the German railway company Deutsche Bahn, is based on data of
the same format. Table 3.1 shows the characteristics of the graphs used in these
models for the above mentioned timetables.

Real-world queries were available only for the timetables ger-longdist and
ger-all: we took 50 000 queries from a snapshot of a central HAFAS server [HAF]
in Germany that originally has been used in [SWW00] and consists of over half a
million of real-world queries. We additionally generated random queries for every
timetable. Each query-set consists of 50 000 queries of the form departure station,
destination station, and earliest departure time.

3.5.2 Implementation Environment and Performance

Parameters

For the time-expanded model the implementation is based on that used in [SWW00];
the optimisation technique to omit the arrival-nodes is included. For the time-
dependent model, we have implemented both the plain version that uses binary
search as well as the “avoid binary search” technique. For both models we also used
the goal-directed search. (See Section 3.4, for the description of the speedup tech-
niques.) Thus, for the time-expanded model we have two different implementations
(goal-directed search with Euclidean distances or not), while for the time-dependent
model we have several implementations depending on the use of: binary search or
the “avoid binary search” version, the goal-directed search heuristic with Euclidean
or Manhattan distances, and whether floating-point or integral potentials are used.

For each possible combination of timetable and implementation variant we per-
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Timetable Real Time [ms] El. Conn. Nodes Edges

france 100.4 30824 33391 61649

ger-longdist 169.6 44334 48094 88668

ger-local1 608.7 176720 182717 353443

ger-local2 840.1 226027 232511 452056

ger-all 1352.8 326186 342917 652378

ger-longdist ✗ 66.7 18891 20853 37783E
x
p
an

d
ed

ger-all ✗ 392.1 96943 104369 193888

france 8.2 8539 2269 4463

ger-longdist 10.7 20066 3396 5129

ger-local1 19.7 26792 6535 9835

ger-local2 20.7 31698 6524 10075

ger-all 76.6 79981 16145 26333

ger-longdist ✗ 5.5 11173 1711 2682D
ep

en
d
en

t

ger-all ✗ 37.3 40808 6926 11647

Table 3.2: Average CPU-time and operation counts for solving a single query for
the time-expanded (upper part) and the time-dependent model (lower part). The
arrival-nodes are omitted in the time-expanded model (see Section 3.4.1), and in
the time-dependent model binary search was used. Goal-directed search was not
applied in both cases. The column Real indicates whether real-world or random
queries have been used.

formed the corresponding set of random queries (for ger-longdist and ger-all

we additionally performed the corresponding real-world queries) and measured the
following performance parameters as mean values over the set of performed queries:
CPU-time in milliseconds, number of nodes, number of edges, and number of ele-
mentary connections touched by the algorithm. For the time-expanded model, the
number of touched elementary connections is the number of train-edges touched by
the algorithm, while for the time-dependent model it is the total number of ele-
mentary connections that have been used for calculating the edge lengths. More
precisely, when binary search is used in the time-dependent model, for a single edge
the number of steps needed by the binary search is the number of touched elementary
connections.

3.5.3 Results and Discussion

Our experimental results are reported in Figures 3.6 and 3.7, and Tables 3.2, 3.3,
and 3.4. The reported results clearly show that the time-dependent model solves
the simplified earliest arrival problem considerably faster than the time-expanded
model, for every considered data set. Regarding CPU-time, the speedup ranges
between 12 (france) and 40 (ger-local2) when the basic implementations are
used (see Fig. 3.6 and Table 3.2), and between 17 (france) and 57 (ger-local2)
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Figure 3.6: Performance of the basic implementations of the time-expanded and
time-dependent models for the simplified earliest arrival problem (no goal-directed
search, binary search in the time-dependent model) regarding the five timetables
and the random queries. Each point represents the average over these queries of
one measured performance parameter. On the abscissa the size of the timetable in
number of elementary connections is shown, and the ordinate represents the average
CPU-time for answering a query in the time-expanded model (top curve) and the
time-dependent model (lower curve), respectively.
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Figure 3.7: Like Figure 3.6, but now the ordinate represents the speedup of using
the time-dependent model instead of the time-expanded model, with respect to the
number of touched edges, CPU-time, and number of touched elementary connections
(from top to bottom).
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when comparison concerns the best implementations (including heuristics) in both
models (see Tables 3.3 and 3.4).

Concerning the time-dependent model, we observe that is is better to use the
“avoid binary search” technique (see Tables 3.3 and 3.4). Compared to the bi-
nary search implementation the speedup was between 1.39 (ger-local1) and 1.86
(ger-all with real-world queries). The goal-directed search technique always re-
duces the search space of Dijkstra’s algorithm, i.e., the number of touched nodes and
edges. However, this reduction payed off only in a few cases in the sense that it could
not also decrease the CPU-time. In most cases the CPU-time was increased due to
the additional computations required to calculate the edge lengths, and this is the
main reason why this technique appears slower in the results. Another reason is that
in the timetables used in our experiments the maximum speed over all elementary
connections is high. A high maximum speed yields small potential functions2, and
thus bad performance of the goal-directed search technique.

2In both models the potentials are inversely proportional to the maximum speed; for the time-
expanded case this is clear by definition, and for the time-dependent case see the definition of the
factor λB .
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Time-Dependent Model, Binary Search

Timetable Real Time [ms] El. conn. Nodes Edges

france 9.4 7072 1593 3415

ger-longdist 13.5 16597 2737 4217

ger-local1 28.6 26008 6257 9434

ger-local2 30.4 31196 6398 9895

ger-all 100.3 74525 14568 24030

ger-longdist ✗ 6.3 8349 1238 1991

G
oa

l
E

u
cl

.
in

t

ger-all ✗ 43.1 33676 5551 9420

france 9.4 7062 1590 3410

ger-longdist 13.6 16560 2730 4208

ger-local1 28.9 25975 6249 9422

ger-local2 30.7 31152 6389 9882

ger-all 103.6 74394 14538 23983

ger-longdist ✗ 6.4 8318 1233 1984

G
oa

l
E

u
cl

.
fl
oa

t

ger-all ✗ 44.5 33565 5532 9388

france 7.9 7225 1647 3511

ger-longdist 11.2 16975 2807 4316

ger-local1 23.2 26086 6284 9473

ger-local2 24.7 31235 6407 9908

ger-all 86.4 74822 14639 24138

ger-longdist ✗ 5.3 8555 1272 2041

G
oa

l
M

an
h
.

in
t

ger-all ✗ 38.0 33994 5615 9524

france 7.7 7214 1644 3505

ger-longdist 11.1 16938 2800 4306

ger-local1 23.1 26053 6276 9461

ger-local2 24.6 31189 6398 9894

ger-all 88.9 74689 14608 24091

ger-longdist ✗ 5.2 8524 1267 2034

G
oa

l
M

an
h
.

fl
oa

t

ger-all ✗ 39.0 33880 5594 9491

Table 3.3: Comparison of the time-dependent implementations that use binary
search and four different versions of goal-directed search: Euclidean distance with in-
teger and float potentials, and Manhattan distance with integer and float potentials.
Columns are as in Table 3.2.
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Time-Expanded Model

Timetable Real Time [ms] El. Conn. Nodes Edges

france 84.0 22259 24179 44517

ger-longdist 175.0 34259 37453 68517

ger-local1 684.3 170369 176243 340741

ger-local2 953.0 219992 226386 439986

ger-all 1392.6 285440 300788 570885

ger-longdist ✗ 54.3 13384 14931 26768

G
oa

l
E

u
cl

.
in

t

ger-all ✗ 341.9 74069 80229 148140

Time-Dependent Model, Avoid Binary Search

france 5.9 8942 2262 4386

ger-longdist 7.5 9216 3396 5129

ger-local1 14.2 18312 6541 9814

ger-local2 14.6 18435 6524 10075

ger-all 47.4 48520 16146 26333

ger-longdist ✗ 3.8 4773 1711 2682

P
la

in
D

ij
k
st

ra

ger-all ✗ 20.1 20993 6927 11648

france 6.6 6711 1614 3406

ger-longdist 9.2 7553 2737 4217

ger-local1 20.5 17656 6301 9499

ger-local2 21.5 18088 6398 9895

ger-all 63.0 44010 14568 24030

ger-longdist ✗ 4.2 3527 1238 1991

G
oa

l
E

u
cl

.
in

t

ger-all ✗ 23.7 16898 5552 9421

france 5.1 6926 1669 3505

ger-longdist 7.1 7733 2807 4316

ger-local1 15.3 17621 6289 9480

ger-local2 16.1 18113 6407 9908

ger-all 50.5 44214 14639 24138

ger-longdist ✗ 3.2 3618 1272 2041

G
oa

l
M

an
h
.

in
t

ger-all ✗ 19.1 17088 5615 9524

Table 3.4: Comparison of goal-directed search in the time-expanded case (upper
part) and the technique to avoid binary searches in the time-dependent case (lower
part). In the time-dependent case two different distance measures for the goal-
directed search are reported, the Euclidean and the Manhattan distances with inte-
gral potentials, which were the fastest. Columns are as in Table 3.2.





Chapter 4

Towards Realistic Timetable
Information

The previous chapter introduced basic modelling techniques exemplarily for a version
of the earliest arrival problem which is, for application in a real timetable information
system, too restrictive. In reality, several issues regarding realism of the problems
and models have to be addressed: First, we have to deal with realistic transfer
rules, and waive the assumption that transfers within a station take negligible time.
Furthermore, in reality trains are operated only on certain traffic days, so we cannot
assume—as we did so far—that every day in the timetable is the same. Another
issue is to consider different optimisation criteria besides the earliest arrival: In
the minimum number of transfers problem, the goal is to find a connection that
minimises the number of train transfers when considering an itinerary from A to B.
In the latest departure problem, among all optimal solutions to an instance of the
earliest arrival problem, the one departing the latest is wanted. Finally, a timetable
information system should also allow combinations of different criteria.

We show how both approaches to model timetable information introduced pre-
viously can be extended to cope with the realistic problem specifications outlined
above. We also conducted extensive experiments comparing the extended approaches.
This comparison is important, since the described extensions are mandatory for real-
world applications, and (to the best of our knowledge) nothing is known about the
relative behaviour of realistic versions of the two approaches. The extensions used
in the time-dependent model have been published as “Towards Realistic Modeling
of Time-Table Information through the Time-Dependent Approach” [PSWZ04b].

4.1 Realistic Transfer Rules

In contrast to the previous chapter, where transfers were always allowed, we inves-
tigate now how non-zero transfer times at stations can be included in the models
introduced in Sections 3.3.1 and 3.3.2 (pages 18 et seq.). Also, more sophisticated
transfer rules are under consideration. We refer to the earliest arrival problem with
realistic transfer rule as the realistic earliest arrival problem, or realistic EAP.
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4.1.1 Specification

At a station S ∈ B it is possible to transfer from one train to another only if the time
between the arrival and the departure at that station S is larger than or equal to a
given, station-specific, minimum transfer time, denoted by transfer(S). To include
this transfer rule in our formal specification, we extend the definition of a consistent
connection in Section 3.2.2 (page 17) by the following condition:

depi+1(P ) − arri(P ) ≥
{

0 if Z(ci+1) = Z(ci)

transfer(S2(ci)) otherwise.

There may also be more detailed transfer rules, for example the transfer time
can be smaller for trains that depart from the same platform. Transfer times can be
given between train routes (also referred to as train lines) instead of specifying one
single transfer time per station. Another more general way is to specify a station-
specific minimum transfer time, and exceptions in the form of a set of additional
feasible transfer trains for each arrival of a train at a station.

4.1.2 Time-Expanded Model

To solve the realistic earliest arrival problem, we extend the time-expanded model
by constructing the realistic time-expanded graph as follows. Based on the time-
expanded graph, we keep, for each station, a copy of all departure- and arrival-
nodes in the station which we call transfer-nodes; see Figure 4.1. The stay-edges are
now introduced between the transfer-nodes. For every arrival-node there are two
additional outgoing edges: one edge to the departure-node of the same train; and a
second edge to the transfer-node with time value greater than or equal to the time of
the arrival-node plus transfer(S). The edge lengths are defined as in the definition
of the original model in Section 3.3.1 (page 18).

More detailed transfer rules can also be easily integrated into the realistic time-
expanded graph. Each exceptionally allowed transfer from train Z1 to train Z2 can
be modelled by an additional edge from the arrival-node of Z1 at the specific station
to the departure-node of Z2.

The correctness of the modelling is established by the following theorem.

Theorem 4.1 A shortest path in the realistic time-expanded graph from the first
departure-node at the departure station A with departure time later than or equal
to the given start time t0 to one of the arrival-nodes of the destination station B
constitutes a solution to the realistic EAP in the extended time-expanded model. The
actual path can be found by Dijkstra’s algorithm.

Proof. The construction of paths from connections and vice versa used in the proof
of Theorem 3.1 can be easily adapted to the realistic EAP, and thus that proof
applies analogously.

The technique of omitting redundant nodes described in Section 3.4.1 (page 25)
can also be applied to the realistic time-expanded graph. However, here the graph
can only be reduced by about one third (instead of one half in the simple version of
the graph), since only the departure-nodes have out-degree one.
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arrival transfer departure

Figure 4.1: Modelling train transfers in the time-expanded model for a sample
station. On the left the original modelling from the previous chapter is shown, and
on the right the realistic time-expanded graph with three types of nodes: arrival,
transfer and departure nodes.

4.1.3 Time-Dependent Model

To model non-zero train transfers, we extend the original time-dependent model
using information on the routes that trains may follow. Hence, we assume that we
are given a set of train routes and their respective time schedules. We examine
both the cases of a constant transfer time per station and detailed transfer rules
which we also refer to as variable transfer time here. A somehow similar idea for
the constant transfer time case was very briefly mentioned in [BJ04], but without
providing details. In the following, we describe the construction of a graph G =
(V,E) that models these two cases. We shall refer to G as the train-route graph.

Let S be a set of nodes representing stations. For u ∈ S, we denote by station(u)
the actual station which u represents. We say that nodes s0, s1, ..., sk−1, k > 0, form
a train route if there is some train starting its journey from station(s0) and visiting
consecutively station(s1), ..., station(sk−1) in turn. If there are more than one trains
following the same schedule (with respect to the order in which they visit the above
nodes), then we say that they all belong to the same train route P . Note that it
can be station(si) = station(sj), i 6= j, si 6= sj, 0 ≤ i, j ≤ k − 1, for example when
the train performs a loop.

For u ∈ S, let Σu be the set of different train routes that stop at station(u),
and let Pu be a set that contains exactly one node for each P ∈ Σu that passes
through station(u). Also, let Pu = |Pu|, and P =

⋃

u∈S Pu. Then, the node set V
of G is defined as V = S⋃P . For u ∈ S, we denote by pu

i , 0 ≤ i < Pu, the node
representing the i-th train route that stops at u.

The edge set E = A
⋃

D
⋃

D
⋃

R of G consists of four types of edges which are
defined as follows.

• A =
⋃

u∈S Au, where Au =
⋃

0≤i<Pu
{(pu

i , u)}.

• D =
⋃

u∈S Du, where Du =
⋃

0≤i<Pu
{(u, pu

i )}.
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• D =
⋃

u∈S Du, where Du = ∅, if the time needed for a transfer is the same for

all trains that stop to station(u); and Du =
⋃

0≤i,j<Pu,i6=j{(pu
i , p

u
j )}, otherwise.

• R =
⋃

u,v∈S,0≤i<Pu,0≤j<Pv
{(pu

i , p
v
j ) : station(u) and station(v) are visited suc-

cessively by the same train route and pu
i , p

v
j are the corresponding route nodes}.

An edge e is called a route or timetable edge if e ∈ R, and it is called a transfer
edge if e ∈ A

⋃

D
⋃

D. The modelling with train routes is based on two additional
assumptions.

Assumption 4.1 Let u, v be any two nodes in S and pu
i ∈ Pu, pv

j ∈ Pv such that
(pu

i , p
v
j ) ∈ R. If d1, d2 are departure times from pu

i and a1, a2 are the respective
arrival times to pv

j , then d1 ≤ d2 ⇒ a1 ≤ a2.

This assumption is the equivalent of Assumption 3.1 (page 22) in the simplified time-
dependent approach, and it states that there cannot be two trains that belong to the
same train route, such that the first of them leaving a station is a slow train, while
the following one is a fast train and it arrives to the next station before the first.
When this assumption is violated, we can enforce it by separating the trains that
belong to the same train route into different speed classes, and hence introduce new
train routes, one for each different speed class, where all follow the same schedule
as before.

Assumption 4.2 For any u ∈ S and pu
i ∈ Pu such that (x, pu

i ) ∈ R, for some
x ∈ V , let δui

x be the smallest interval between two successive arrivals to pu
i from

(x, pu
i ) ∈ R and τu be the maximum time needed for a transfer at station(u). Then,

it must hold that δui
x ≥ τu.

Assumption 4.2 serves the purpose of ensuring that waiting at stations to take the
next train of the same train route cannot be beneficial. In other words, given that
Assumption 4.1 holds, taking the first possible train from a station A to some station
B will not result in missing some connection from B that could be used if we had
followed some train (of the same train route) that departed later than the one we
followed. It will be seen later that Assumption 4.2 will only be needed in the case
where we consider variable transfer times within the same station.

In the following, we shall assume that u, v ∈ S, 0 ≤ i, i′ < Pu, 0 ≤ j < Pv, and
that T is a set representing time.

Constant Transfer Time

In this case, the edge costs of the train-route graph are defined as follows (see
Figure 4.2). Let transfer(u) = transfer(station(u)) denote the transfer time of the
station a node u belongs to.

• An edge (pu
i , u) ∈ A has zero cost.

• An edge (u, pu
i ) ∈ Du has cost determined by a function gu : T → T , such that

gu(t) = t + transfer(u).
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Figure 4.2: An example of modelling through train routes with constant transfer
time per station.

• An edge (pu
i , p

v
j ) ∈ R has cost determined by a function f(pu

i ,pv
j ) : T → T such

that f(pu
i ,pv

j )(t) is the time at which pv
j will be reached using the edge (pu

i , p
v
j ),

given that pu
i was reached at time t.

To solve the realistic EAP for a given query (α, β, t0), we need to find a shortest
path from station α to β using the modified Dijkstra’s algorithm introduced in
Section 3.3.2 (pages 22 et seq.), where for each edge we use its associated cost
function as described above. We actually need to find the shortest path in the
graph G = (V,Eα,β) from sα to sβ starting at time t0, where α = station(sα),
β = station(sβ), and Eα,β = A

⋃

D
⋃

R (see Figure 4.2). Note that all edges
e ∈ Dsα

must have zero cost.

Theorem 4.2 The above algorithm solves the realistic EAP with constant trans-
fer times at stations in the extended time-dependent model, provided that Assump-
tion 4.1 holds.

Proof. In view of the discussion in Section 3.3.2 (page 21) regarding the correctness
of Theorem 3.2, the correctness of the above algorithm for solving the realistic EAP,
when the transfer time in each station is constant, follows from the non-negative
delay assumptions of functions f and g, and by the fact that both functions are
non-decreasing (f by Assumption 4.1, and g by construction).

Variable Transfer Time

The edge costs of the train-route graph in this case are defined as follows (see also
Figure 4.3).

• An edge (pu
i , u) ∈ A has zero cost.
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Figure 4.3: An example of modelling through train routes with variable transfer
times at the stations.

• An edge (u, pu
i ) ∈ Du has zero cost. An edge (pu

i , p
u
i′) ∈ Du has cost determined

by a function f(pu
i ,pu

i′
) : T → T such that f(pu

i ,pu
i′

)(t) represents the time required

by a passenger who reached station(u) at time t with a train of the train route
pu

i , to be transferred to the first possible train of route pu
i′ . In particular,

f(pu
i ,pu

i′
)(t) = t + τu

change(i,i′)(t), where τu
change(i,i′)(t) is the function that, for each

arriving time, returns the corresponding transfer time.

• An edge (pu
i , p

v
j ) ∈ R has cost determined by a function f(pu

i ,pv
j ) : T → T such

that f(pu
i ,pv

j )(t) is the time at which pv
j will be reached using the edge (pu

i , p
v
j ),

given that pu
i was reached at time t.

As before, given a realistic EAP query (α, β, t0), all we need is to find a shortest
path from station α to station β in the above graph, where for each edge we use
its associated cost function as described above. This is again accomplished by the
modified Dijkstra’s algorithm (cf. Section 3.3.2). We actually need to find a shortest
path in the graph G = (V,Eα,β) from sα to sβ starting at time t0, where α =
station(sα), β = station(sβ), but now Eα,β = Dsα

⋃

Asβ

⋃

D
⋃

R (see Figure 4.3).
Note that all edges e ∈ Dsα

must have zero cost.
Let nodes pu

i , p
u
j ∈ Pu, 0 ≤ i, j < Pu, i 6= j, such that (pu

i , p
u
j ) ∈ D. In addition

let node pv
i′ ∈ Pv, 0 ≤ i′ < Pv such that (pv

i′ , p
u
i ) ∈ R. In order to be able to apply

the above algorithm and solve EAP in this case, we have to ensure that the functions
are non-decreasing. Assumption 4.1 ensures that f(pv

i′
,pu

i )(t) is non-decreasing. What

we need to prove is that f(pu
i ,pu

j )(t) is also non-decreasing when t ∈ Tui
, where Tui

denotes the set of the arrival time values to pu
i from the edge (pv

i′ , p
u
i ) ∈ R. (Note

that pv
i′ is the only in-neighbor, i.e., tail of an in-coming edge, of pu

i that is not in
Pu.)

Lemma 4.1 The function f(pu
i ,pu

j )(t) is non-decreasing when t ∈ Tui
, where Tui

=

{t|t is the arrival time to pu
i from the edge (pv

i′ , p
u
i ) ∈ R}.
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Proof. Let τu be the maximum time needed for a transfer at station(u), let δui
vi′

be
the minimum interval between two successive arrivals to pu

i from (pv
i′ , p

u
i ), and let

t1, t2 ∈ Tui
where t1 < t2. Since t1, t2 are two distinct arrival times at pu

i from
(pv

i′ , p
u
i ), it holds that t2 − t1 ≥ δui

vi′
. By Assumption 4.2, we have that δui

vi′
≥ τu.

Also, f(pu
i ,pu

j )(t) − t ≤ τu, t ∈ T , since f(pu
i ,pu

j )(t) − t is the time needed for a transfer
from pu

i to pu
j on time t. Consequently,

t2 − t1 ≥ δui
vi′

≥ τu ≥ f(pu
i ,pu

j )(t1) − t1

⇒ t2 − t1 ≥ f(pu
i ,pu

j )(t1) − t1

⇒ f(pu
i ,pu

j )(t1) ≤ t2 ≤ f(pu
i ,pu

j )(t2)

⇒ f(pu
i ,pu

j )(t1) ≤ f(pu
i ,pu

j )(t2)

which completes the proof of the lemma.

Lemma 4.1 and the above discussion establish the next theorem whose proof
follows that of Theorem 4.2.

Theorem 4.3 The above algorithm solves the realistic EAP with variable trans-
fer times at stations in the extended time-dependent model, provided that Assump-
tions 4.1 and 4.2 hold.

4.2 Traffic Days

For all models described so far we have assumed that every train operates daily, i.e.,
the timetable is identical every day. In this section we discuss how different traffic
days can be integrated in the models. For each train we are given the information
on which day of the timetable it is valid.

4.2.1 Specification

A timetable is valid for a number of N traffic days, and every train is assigned a
bit-field of N bits determining on which traffic day the train operates (for overnight
trains the departure of the first elementary connection counts). A connection was
defined in Section 3.2.2 (page 17) to be a sequence of elementary connections ci

together with departure times depi and arrival times arri. Since every elementary
connection ci is assigned one train, the validity of ci at a given day can be verified
through the traffic days of the respective train. The day within the timetable of
one of the elementary connections ci is encoded in the time value depi and can be
calculated by bdepi(P )/1440c; see also Section 2.3.1 (page 9). Hence, we have to
extend the definition of a consistent connection by the following condition:

ci is valid on day bdepi(P )/1440c
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4.2.2 Time-Expanded Model

When traffic days are used, an optimal connection may stay for more than a day
at an intermediate station (e.g., assume that on a holiday no trains are operated
at all). Such connections do not correspond to simple paths in the time-expanded
graph, and the problem cannot be solved directly using that graph. Therefore, we
make use of the fully time-expanded graph introduced in Section 3.3.1 (page 19)
to tackle the problem in the time-expanded approach. As we will see below, we do
not have to explicitly maintain this graph. The execution of an algorithm on the
fully time-expanded graph can be simulated on the original (Section 3.3.1) or on the
realistic time-expanded graph (Section 4.1.2).

As described earlier for the simplified case of the earliest arrival problem, the
fully time-expanded graph is based on N copies of the time-expanded graph, if the
timetable period consists of N days. The construction can be done analogously for
the realistic version including the modelling of realistic transfer rules. To incorporate
the traffic day information, in the i-th copy all train-edges that correspond to ele-
mentary connections that are not valid on day i are deleted from the graph. Again,
there is an obvious one-to-one correspondence between connections (consistent also
with traffic days) and paths in the fully time-expanded graph, which immediately
yields the following theorem.

Theorem 4.4 A shortest path in the original (resp. realistic) fully time-expanded
graph constitutes a solution to the simplified (resp. realistic) version of EAP when
elementary connections are valid on specific traffic days only.

Since the size of the fully time-expanded graph is huge (N times the size of the
time-expanded graph), we consider now how we can avoid to maintain this huge
graph explicitly. By construction, all edge lengths in the fully time-expanded graph
are less than a day. Assume an application of Dijkstra’s algorithm to the fully time-
expanded graph, and let t be the time associated with the first node in the priority
queue. All other nodes in the priority queue have an associated time larger than
or equal to t and less than t + 1440. This observation allows the simulation of the
algorithm by applying a modification of Dijkstra’s algorithm to the time-expanded
graph: the time-expanded graph reflects the subgraph of the fully time-expanded
graph induced by the nodes with associated time in the interval [t, t + 1440], and
by ignoring all train-edges that correspond to trains which are not operated on the
considered day. In the simulation, the day under consideration has to be determined
by dividing the current absolute departure time1 by 1440. Whenever a node is
settled, it is not marked permanent in Dijkstra’s algorithm. It is marked to be
untouched again, by setting its distance label to infinity, because from that point on
it is considered to be the copy of the node in the next day. This can safely be done
since the fully time-expanded graph is a dag and Dijkstra’s algorithm processes the
nodes in topological order: no edge is pointing backward, and thus the node can be
“re-used”.

1The current absolute departure time is equal to the absolute time associated with the source
node s plus the current distance of the considered node.
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4.2.3 Time-Dependent Model

The model as defined in Section 3.3.2 (pages 21 et seq.) or in Section 4.1.3 is
inherently able to handle traffic days. For route edges, the length is determined
by the first elementary connection on that edge leaving later than the arrival time.
Now, the length is determined by the first edge leaving later than the arrival time
that is valid on the day under consideration (the day is computed by dividing the
arrival time by 1440).

Note, however, that the speedup technique to avoid binary search in the calcula-
tion of edge lengths described in Section 3.4.2 (pages 28 et seq.) cannot be applied
directly anymore.

4.3 The Minimum Number of Transfers
Problem

Besides the earliest arrival (EA), the minimum number of transfers (MNT) is an
important criterion in timetable information. The problem of minimising the num-
ber of transfers is formally specified and it is shown how it can be solved using the
graphs constructed in both the time-expanded and the time-dependent models for
the earliest arrival problem.

4.3.1 Problem Specification

In the minimum number of transfers problem (MNTP), a query consists only of
a departure station A and an arrival station B. Trains are assumed to operate
daily, and there is no restriction on the number of days a timetable is valid2. All
connections from A to B are valid, and the optimisation criterion is to minimise
the number of train transfers. More precisely, let P = (c1, . . . , ck) be a connection
from A to B and let transi(P ) ∈ {0, 1} be a variable denoting whether a transfer
is needed from elementary connection ci to ci+1, 1 ≤ i < k. Then, transi(P ) = 1,
if Z(ci+1) 6= Z(ci), and transi(P ) = 0, otherwise. Consequently, the objective of
MNTP is to minimise, among all P , the quantity

∑k−1
i=1 transi(P ).

4.3.2 Modelling

The graphs defined for the realistic earliest arrival problem in both the time-expanded
(Section 4.1.2) and the time-dependent (Section 4.1.3) approach can be used to solve
the minimum number of transfers problem with a similar method: edges that model
transfers are assigned a weight of one, and all the other edges are assigned weight
zero, as shown exemplarily in Figure 4.4. In the time-expanded case all edges from

2This assumption can be safely made since time is not minimised in MNTP, and thus in a
MNT-optimal connection one can wait arbitrarily long at a station for some connection that is
valid only on certain days.
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Figure 4.4: Edge weights for solving the minimum number of transfers problem. On
the left the edge weights used in the MNTP modelling are shown for the sample
time-expanded graph from Figure 4.1 (page 39), and on the right for the train-route
graph of the same instance, assuming that the upper two (blue and red) trains form
a train route, and the lower (gray) train another train route.

arrival-nodes to transfer-nodes have weight one, whereas in the time-dependent case
the edges in the set D (i.e., edges from nodes representing stations to route-nodes),
except those belonging to the departure station, are assigned weight one, and all
other edges have weight zero. Note that the edge costs in the time-dependent graph
are all static here. The correctness of this modelling for finding MNT-optimal con-
nections as shortest paths can be easily verified as in the proof of Theorem 3.1. This
establishes the following theorem.

Theorem 4.5 A shortest path in the realistic time-expanded (resp. train-route)
graph, with the edge costs given above, from a node belonging to (resp. representing)
the departure station to a node belonging to (resp. representing) the arrival station
is a solution to the MNTP.

4.4 Bicriteria Problems

We consider also bicriteria problems with the earliest arrival (EA) and the minimum
number of transfers (MNT) as the two criteria. In the following, we parameterise the
bicriterion problem we consider by (X,Y), where X (resp. Y) is the first (resp. second)
criterion we want to optimise and X,Y ∈ {EA,MNT}. The general problem and al-
gorithms for multi-criteria shortest paths have been described in Section 2.2 (pages 7
et seq.). Concerning timetable information, Möhring [Möh99] provides an overview
on methods to be used when multiple criteria are involved. Müller-Hannemann
and Weihe [MHW01] conducted experiments computing all Pareto-optimal paths
in a time-expanded graph for timetable information (they also considered other
graphs). They found that, for several multi-criteria problems in timetable infor-
mation graphs, there are on average only very few Pareto-optimal paths per node,
which implies that the labelling algorithm is feasible despite its exponential running
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time in general. Also Müller-Hannemann and Schnee apply a labelling algorithm to
solve multi-criteria problems in the time-expanded approach [MHS]. In that work,
they found that the notion of Pareto-optimality is sometimes too strict, and they
suggest to use a relaxed variant of Pareto-optimality in order to find all attractive
train connections.

Given a departure station A, a destination station B, and a departure time t, we
are interested in three problem variants: First and most generally, we want to find
all Pareto-optimal solutions (i.e., the set of feasible solutions where the attribute-
vector of one solution is not dominated by the attribute-vector of another solution;
cf. Definition 2.2). Second, a resource constrained solution for (X,Y ) shall be
calculated: a solution that minimises the first criterion X while retaining the second
criterion (also referred to as resource) Y below a given threshold (cf. the constrained
shortest path problem in the bicriterion case described on page 8). We are mainly
interested in the (EA,MNT) case here and refer to that problem as the Earliest
Arrival problem with Bounded number of Transfers (EABT), which is defined to
be the problem of finding a valid and consistent connection from A to B such
that the arrival time at B is the earliest possible, and subject to the additional
constraint that the total number of transfers performed in the path is not greater
than an additionally given threshold k. Finally, the third problem deals with the
lexicographically first solution: among all solutions that minimise X the one with
minimal Y .

4.4.1 Time-Expanded Model

We use the realistic time-expanded graph (cf. Section 4.1.2) to find the lexicograph-
ically first Pareto-optimum as well as all Pareto-optimal solutions. Surprisingly, it
will turn out that also all Pareto-optimal solutions can be computed by the normal
version of Dijkstra’s algorithm in the bicriterion case we consider here. Note that in
the general case (i.e., either more than two criteria or two criteria that don’t include
travel time), this method doesn’t work and a general multi-criteria algorithm like
the labelling algorithm has to be used.

Lexicographically First Pareto-Optimum

We first consider the (EA,MNT) case. Every edge e of the realistic time-expanded
graph is now associated with a pair of costs (a, b) = (EA(e),MNT (e)), where EA(e)
is the cost of e when solving the realistic EAP (Section 4.1.2) and MNT (e) is the cost
of e when solving MNTP (Section 4.3). Define on these cost-pairs (a, b) the canonical
addition, i.e., (a, b)+ (a′, b′) = (a+a′, b+ b′), and the lexicographic comparison, i.e.,
(a, b) < (a′, b′) ⇔ (a < a′) or (a = a′ and b < b′). To find the lexicographically first
(EA,MNT) Pareto-optimal solution, as discussed already in Section 2.2.1 (page 8),
it then suffices to run Dijkstra’s algorithm by maintaining distance labels as pairs
of integers and by initialising the distance label of the start-node s to (0, 0). The
optimal solution is found when a node at the destination station is considered for the
first time during the execution of the algorithm. The (MNT,EA) case is symmetric



 Chapter 4: Towards Realistic Timetable Information

to the above and can be solved similarly. The proof of Theorem 3.1 can be easily
adopted to establish the following.

Theorem 4.6 A shortest path in the realistic time-expanded graph using cost-pairs
associated with its edges as defined above constitutes a solution to the problem of
finding the lexicographically first Pareto-optimal connection (among all connections
that minimise the first criterion, the one with minimum value in the second crite-
rion).

Note that in the same way the latest-departure problem can be solved by minimising
the difference between arrival time and actual departure time as second criterion.

All Pareto-Optima

As already mentioned, finding all Pareto-optimal solutions is generally a hard prob-
lem, since there can be an exponential number of them. However, the realistic fully
time-expanded graph used in Section 4.2 has a very interesting and useful property:
Given a start node s, for every node v in the time-expanded graph there is at most
one Pareto-optimal s-v-path. Since the lexicographically first s-v-path is a Pareto-
optimal path (cf. Section 2.2.1), this lexicographically first s-v-path is the desired
Pareto-optimal s-v-path. Hence, we can compute for each node of the destination
station the shortest path according to the cost-pairs (a, b) = (EA(e),MNT (e)) with
the canonical addition and the lexicographic comparison. When the first node of
the destination station is settled, we have found the first (EA,MNT)-Pareto-optimal
connection. We let Dijkstra’s algorithm continue; whenever a node of the destination
station is settled with a smaller number of transfers than in any of the already found
Pareto-optimal solutions, a new Pareto-optimal connection (which corresponds to
the shortest path to that node) is found. The algorithm can be stopped when
the Pareto-optimal solution with the lowest possible number of transfers (i.e., the
solution of MNTP) is found.

Theorem 4.7 All Pareto-optimal solutions for the two criteria EA and MNT can
be enumerated during one run of Dijkstra’s algorithm in the fully time-expanded
graph using cost-pairs associated with its edges as defined above.

Proof. It suffices to prove that each node of the destination station in the fully
time-expanded graph has at most one Pareto-optimal solution. In that graph, every
node v is associated with an absolute time value t(v) (not only the time of the day).
Thus, every v1-v2 path has length l = t(v2) − t(v1) according to the EA criterion,
and if k is the minimum number of transfers from v1 to v2, then (l, k) is the only
Pareto-optimal solution for v2, since all other solutions have the same EA length l
and an equal or larger number of transfers.

Now, similarly to Section 4.2.2, the realistic fully time-expanded graph does not
need to be maintained explicitly. The above algorithm can again be simulated on
the realistic time-expanded graph. The simulation is identical to that described in
Section 4.2.2.
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Earliest Arrival with Bounded Number of Transfers

As we will see in this section, the above algorithm for finding all Pareto-optimal
solutions can be terminated earlier if only a solution is wanted that minimises the
earliest arrival (EA) while retaining the number of transfers (MNT) below a given
threshold k. By Theorem 4.7, all Pareto-optimal solutions are enumerated in lex-
icographical (EA,MNT) order during the algorithm, and thus the solution to the
earliest arrival problem with bounded transfers (EABT) is found when the first
node at the destination is processed by the algorithm that has a number of transfers
less than or equal to k. The running time can be further improved by considering
during the algorithm only promising paths with a number of transfer less than or
equal to k (cf. also the labelling algorithm to solve the constrained shortest path
problem outlined on page 8): all node labels with a number of transfers larger than
k are ignored. We formulate this result as a corollary to Theorem 4.7:

Corollary 4.1 The EABT problem can be solved in the time-expanded approach
by applying a modification of the algorithm used in Theorem 4.7. The modified
algorithm only considers promising paths and stops when the first feasible solution
is determined.

Note that in the case of minimising MNT and retaining EA less than or equal
to t, the problem can be tackled similarly. Again, the algorithm described above for
all Pareto-optimal solutions can be used. Now, the algorithm is terminated when
a node at the destination is processed that has an arrival time larger than t. The
solution is obtained by the last node with an arrival time less than or equal to t.

4.4.2 Time-Dependent Model

We use the train-route graph that models the realistic EAP (Section 4.1.3) to solve
the three variants of the bicriteria optimisation problems.

Lexicographically First Pareto-Optimum

We present an approach similar to that described for the time-expanded case,
but which finds only the lexicographically first (MNT,EA) Pareto-optimal solution.
Later, we will explain why it fails to do the same for the (EA,MNT) case.

A solution to the lexicographically first (MNT,EA) Pareto-optimum problem can
be easily achieved, if instead of using a single value for the cost of an edge, we use a
pair (a, b) of values, and define the canonical addition and lexicographic comparison
to these pairs (exactly as in Section 4.4.1). The attribute values a, b of the pairs
are updated separately. For the (MNT,EA) case, a is the MNT cost defined on IN
(non-negative integers), and b is the EA cost defined on T (set representing time).
An edge e ∈ E has cost determined by a function he : (IN, T ) → (IN, T ), such that
each attribute value is determined by the corresponding edge function.

Theorem 4.8 A shortest path in the train-route graph using cost-pairs associated
with its edges as defined above constitutes a solution to the problem of finding the
lexicographically first (MNT,EA) Pareto-optimal connection.
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Proof. To prove the correctness, it suffices to show that the new edge cost function
he is non-decreasing and with non-negative delay. Consider the modelling of the
constant transfer cost case, and let τ, τ1, τ2 ∈ IN and t, t1, t2 ∈ T .

• If e ∈ A, then he(τ, t) = (τ, t). If (τ1, t1) ≤ (τ2, t2), then he(τ1, t1) ≤ he(τ2, t2).

• If e ∈ D, then he(τ, t) = (τ + 1, t + x) ≥ (τ, t), where x ≥ 0 ∈ T is the transfer
time at the station that e belongs to. If (τ1, t1) ≤ (τ2, t2), then he(τ1, t1) =
(τ1 + 1, t1 + x) ≤ (τ2 + 1, t2 + x) = he(τ2, t2).

• If e ∈ R, then he(τ, t) = (τ, fe(t)) ≥ (τ, t), since fe has non-negative delay. If
(τ1, t1) ≤ (τ2, t2), then

– if τ1 < τ2, then he(τ1, t1) = (τ1, fe(t1)) < (τ2, fe(t2)) = he(τ2, t2), and

– if τ1 = τ2 = τ and t1 ≤ t2, then he(τ1, t1) = (τ, fe(t1)) ≤ (τ, fe(t2)) =
he(τ2, t2).

The case with variable transfer cost can be proved similarly.

In contrast to the time-expanded case, the symmetric problem of finding a lexico-
graphically first (EA,MNT) Pareto-optimal solution cannot be solved by just using
appropriate edge cost-pairs on the train-route graph, as in Section 4.4.1. To show
that such an approach may fail, consider the train-route graph shown in Figure 4.5
with a query to find an (EA,MNT) Pareto-optimal connection from A to D. Assume
there is a train T1 on the first route from A to C via B, and another train T2 on
the second route from A to D via C. Further assume that both T1 and T2 depart at
A later than the given departure time, and let train T1 arrive earlier than train T2

at station C (let C1 < C2 be the corresponding arrival times at C, and D2 be the
arrival time of train T2 at station D.) Consider the edge e from station C to station
D. The time-dependent shortest-path algorithm with edge cost-pairs (a, b), where a
is the EA cost and b is the MNT cost, will fail to find an (EA,MNT) Pareto-optimal
solution, because the time-dependent function he in this case is decreasing. It holds
that (C1, 1) < (C2, 0), and

he(C1, 1) = (D2, 1) > (D2, 0) = he(C2, 0).

Hence, when the algorithm relaxes edge e will assign the label (D2, 1) to the head of e,
and consequently output a connection with that destination label, i.e., a connection
using train T1 and T2 with one change at station C. However, this is not the
lexicographically first (EA,MNT) Pareto-optimal connection, since the connection
that uses only train T2 yields a lexicographically smaller destination label (D2, 0).

Earliest Arrival with Bounded Number of Transfers

In this section, we describe two algorithms for solving the EABT problem. The first
one is an adaptation of the graph-copying method proposed in [BJ04] to our realistic
time-dependent model (train-route graph). The second one is an adaptation of the
labelling approach outlined in Section 2.2.2 (page 8; see also [Zie01]) for solving
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Figure 4.5: Lexicographically first (EA,MNT) connections cannot be found by sim-
ply using pairs as edge costs in the train-route graph: Assume that a connection
from A via B arrives earlier in C (including transfer time) than a train from A to C,
and both connections end with the same train from C to D. The label of the source
of e becomes (11:58, 1), and the time-dependent algorithm outputs the connection
with one transfer via B, while the optimal connection (A-C-D) involves no transfer
with the same arrival time.

resource constrained shortest paths to our realistic time-dependent model. Let A be
the source station, B the destination station, t the departure time, and k the bound
on the number of transfers.

The idea of [BJ04] adapted to our realistic time-dependent model is as follows.
We construct a new graph G′ = (V ′, E ′) consisting of k + 1 levels. Each level
contains a copy of the train-route graph G = (V,E), where E = A

⋃

D
⋃

D
⋃

R)
(cf. Section 4.1.3). For node u ∈ V , we denote its i-th copy, placed at the i-th level,
by ui, 0 ≤ i ≤ k. For each edge (u, v) ∈ A

⋃

R, we place in E ′ the edges (ui, vi),
for all i with 0 ≤ i ≤ k. For each edge (u, v) ∈ D

⋃

D, we place in E ′ the edges
(ui, vi+1), for all i with 0 ≤ i ≤ k. These edges, which connect consecutive levels,
indicate transfers. With the above construction, it is easy to verify that a path
from some node s0 (copy of s at the 0-th level) to a node xl (copy of x at the l-th
level) represents a path from the station of s to the station of x with l transfers.
In other words, the EABT problem can be solved by performing a time-dependent
shortest path computation in G′ aiming to find a shortest path from the node s0

in level 0, where s represents the source station A in G, to the first possible ui

at level i, 0 ≤ i ≤ k, where u is the node of the train-route graph representing
the destination station B. Let n = |V | and m = |E|. Since G′ consists of k + 1
copies of G, an application of Dijkstra’s algorithm on G′ for solving EABT takes
O(mk+nk · log(nk)) time (assuming that the computation of a time-dependent edge
length can be done in constant time).

The adaptation of the labelling approach to our train-route graph G = (V,E) is
as follows. We use the time-dependent modification of Dijkstra’s algorithm (cf. Sec-
tion 4.1.3), where now we maintain up to k +1 (instead of one) labels. Each label is
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of the form (ti, li)u, 0 ≤ i ≤ k, representing the currently best time ti to reach node
u by performing exactly li transfers.

Let s be the node representing the source station A in the train-route graph.
Initially, we insert to the priority queue the label (t, 0)s. The priority queue is
ordered according to time, aiming at computing the earliest arrival path. In the
main loop of the algorithm, a label (tl, l)u is extracted from the priority queue. If u
represents the destination station (i.e., station(u) = B), the algorithm is terminated
and tl is the earliest arrival at B with less than or equal to k transfers. Otherwise,
we relax the outgoing edges of u considering that u is reached on time tl and with
l transfers. In addition, if (tl′ , l

′) was the last label of u that has been extracted,
then we delete from the priority queue all labels of the form (tr, r)u for l < r < l′,
setting l′ = k in the case where (tl, l)u was the first of the labels of u to have been
extracted. In this way, we discard the labels dominated by (tl, l)u from the priority
queue, since for all such (tr, r)u it holds that tl ≤ tr (as (tl, l)u was extracted before
(tr, r)u) and l < r. Clearly, such labels are no longer useful as (tl, l)u corresponds to
an s-u path at least as fast as the one suggested by (tr, r)u, and with less transfers
than the latter. Exactly for the same reasons, when we relax an edge (u, v) ∈ E
having found a new label (tl1 , l1)v for v, we will actually update the label of v only
if there has been so far no label of v extracted from the priority queue, or if the last
label of v that was extracted had a number of transfers greater than l1. The edge
(u, v) is ignored if l1 > k, and thus only promising paths (i.e., paths with less than
or equal to k transfers) are considered during the algorithm.

Concerning now the complexity of the labelling algorithm, we need to see that
for each node the total number of labels that is scanned in order to find those that
are in the priority queue and can be safely deleted is O(k), while the total number
of deletions is O(nk), where n = |V |. This is due to the fact that we only check the
labels from the last known (by a delete-min operation) number of transfers, until
the previous one. In this way, each label is checked at most once throughout the
execution of the algorithm. Since each edge will be relaxed at most k + 1 times,
the total number of relaxations will be O(mk), where m = |E|. We can also see
that the total number of labels that is in the priority queue is at most O(nk).
Because of this, the time for a delete-min or a delete operation is O(log(nk)). This
means that the total time needed for the algorithm is O(mk + nk · log(nk)), which
is asymptotically the same with the previous one. The discussion in this section
establishes the following.

Theorem 4.9 The Earliest Arrival with Bounded Number of Transfers problem can
be solved in the extended time-dependent model in time O(mk +nk · log(nk)), where
n (resp. m) is the number of nodes (resp. edges) of the train-route graph, and k is
the bound in the number of transfers.

All Pareto-Optima

Of course, all Pareto-optimal solutions could be calculated by the standard labelling
algorithm applied to the train-route graph. In order to consider fewer paths and
to be able to terminate the algorithm when all Pareto-optimal solutions at the
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Time-Expanded Time-Dependent

Station Route Timetable Transfer

Graph Nodes Edges Nodes Nodes Edges Edges

Simplified 289432 578864 6685 – 17577 –

Realistic 578864 1131164 6685 79784 72779 159568

Table 4.1: Graph parameters for the realistic models, applied to the same input
timetable ger-longdist1, and compared to the simplified models used in the pre-
vious chapter.

destination have been found, we propose to apply the modified labelling algorithm
introduced above for the EABT problem with beforehand calculated bound on the
number of transfers: First, solve EAP and count the number of transfers found, say
M . Then, run the labelling algorithm of above for solving EABT. Recall that the
algorithm maintains for each node M +1 labels, where label i, for 0 ≤ i ≤ M , stores
the best EA solution performing exactly i transfers (provided that such a solution
exists), and discards dominated paths. Hence, instead of stopping the algorithm
when a label belonging to the destination station is processed in the main loop of
the algorithm, we can just continue with the execution of the algorithm to produce
the next solution with at most M −1 transfers, considering the bound k being equal
to M − 1, and so on, until a path solving MNTP is found (or until no new path is
found). The above discussion is summarised as corollary of the previous theorem.

Corollary 4.2 The modified labelling algorithm of Theorem 4.9 can enumerate all
Pareto-optimal solutions for the two criteria EA and MNT in the extended time-
dependent model.

4.5 Experimental Comparison of the Models

In this section we investigate how the time-expanded and the time-dependent ap-
proaches compare when the realistic versions of the problems and models are con-
sidered. The general experimental setup is the same as in Section 3.5 (pages 28 et
seq.). As input data we use a modification of the ger-longdist timetable which we
refer to as ger-longdist1. Since train changes are considered here, we only use the
trains of the timetable that operate on one specific day, whereas in the simplified
case discussed before we assumed that all trains operate daily. The real-world and
random queries as described in Section 3.5.1 (page 28) are used. Table 4.1 shows
the parameters of the graphs used in the realistic models compared to the original
models.
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Time-Expanded Time-Dependent

Problem Nodes Edges Time [ms] Nodes Edges Time [ms]

EA-realistic 40624 73104 78 44731 83662 50

MNT 101731 138417 125 26680 83173 38

Lex-F(MNT,EA) 99061 137075 161 28272 83363 83

All Pareto-Opt 123943 236887 287 78412 145444 181

Table 4.2: Main results for the realistic models, applied to the input timetable
ger-longdist1: the average number of nodes and edges touched by the algorithms,
and the CPU time in milliseconds for the different problems solved.

4.5.1 Implementation Environment

For both approaches we implemented the described solutions for the realistic ear-
liest arrival (EA-realistic) problem (Section 4.1), the minimum number of trans-
fers (MNT) problem (Section 4.3), the all Pareto-optima (All Pareto-Opt) prob-
lem involving EA and MNT as the two criteria (Section 4.4), the lexicographi-
cally first (MNT,EA) Pareto-optimum (Lex-F(MNT,EA)), and the lexicographically
first (EA,MNT) Pareto-optimum (Lex-F(EA,MNT))—the latter only for the time-
expanded model; see Section 4.4.2. Moreover, for the time-dependent model, we
have also considered the two algorithms for solving the earliest arrival with bounded
number of transfers problem (Section 4.4.2): the one based on the graph-copying
approach (EABT-BJ) and the one based on the labelling approach (EABT-L).

In the time-expanded implementations we again reduced the node set by omitting
the departure-nodes in the realistic time-expanded graph (see Section 3.4.1, page 25).
Also in the realistic time-dependent implementations we applied heuristics similar
to the “avoid binary search” method as described in Section 3.4.2 (pages 28 et seq.).

4.5.2 Results

Table 4.2 reports on the comparison between the problems solved in both realis-
tic versions of the time-expanded and the time-dependent approaches. The key
parameters—number of touched nodes, edges, and average running time—are dis-
played for the real-world queries. More details, as well as results on random queries
and other problems, are shown in Tables 4.3 and 4.4.

Concerning CPU time, the results show that the time-dependent approach still
performs better than the time-expanded approach in all cases considered. However,
the gap for the realistic EAP is not as huge as it was for the simplified EAP; in fact,
for real-world queries the speedup is now only 1.5. Moreover, if one considers the
number of touched edges, then for real-world queries the speedup is even smaller than
1 (i.e., the time-expanded approach is better). For the other problems considered,
the time speedup ranges from 1.5 to 3.3, while the touched-edges speedup is 1.6 in
all cases.

In particular, for the MNT problem, the extended time-dependent model (train-
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Time-Expanded Model

Problem Real Time [ms] Average Average

Queries Nodes Edges

EA-simplified ✗ 70 20760 41519

EA-realistic ✗ 78 40624 73104

MNT ✗ 125 101731 138417

Lex-F(EA,MNT) ✗ 82 40628 73123

Lex-F(MNT,EA) ✗ 161 99061 137075

All Pareto-Opt ✗ 287 123943 236887

EA-simplified 106 34469 61955

EA-realistic 122 61159 111301

MNT 212 169299 239841

Lex-F(EA,MNT) 129 61195 111386

Lex-F(MNT,EA) 259 163438 234297

All Pareto-Opt 405 170946 330150

Time-Dependent Model

Problem Real Time [ms] Average Average

Queries Touched Edges

EA-simplified ✗ 10 2967 4365

EA-realistic ✗ 50 44731 83662

MNT ✗ 38 26680 83173

Lex-F(MNT,EA) ✗ 83 28272 83363

EABT-L ✗ 79 39070 71127

EABT-BJ ✗ 77 46127 82749

All Pareto-Opt ✗ 181 78412 145444

EA-simplified 11 3315

EA-realistic 54 48200 89953

MNT 47 33455 96646

Lex-F(MNT,EA) 106 35262 97833

EABT-L 104 49179 90406

EABT-BJ 107 60493 109298

All Pareto-Opt 219 92378 172514

Table 4.3: Detailed results for the realistic problems. The upper table concerns
the time-expanded implementations, and the lower table the time-dependent ones.
All results are based on the ger-longdist1 timetable. For comparison with the
original models, we have included the results for the simplified version of the earliest
arrival problem (EA-simplified). Table 4.4 shows more detailed results for the time-
dependent implementation.
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Problem Real Timetable Transfer El. conn. per

Queries Edges touched Edges touched timetable edge

EA-simplified ✗ 4365 – 3.126

EA-realistic ✗ 38168 45494 0.319

MNT ✗ 21558 61615 –

Lex-F(MNT,EA) ✗ 22901 60462 0.178

EABT-L ✗ 32093 39034 0.247

EABT-BJ ✗ 37499 45250 0.261

All Pareto-Opt ✗ 65753 79691 0.211

EA-simplified 4811 – 3.005

EA-realistic 41011 48942 0.311

MNT 27235 69411 –

Lex-F(MNT,EA) 28779 69054 0.172

EABT-L 40638 49768 0.242

EABT-BJ 49392 59906 0.254

All Pareto-Opt 77610 94904 0.204

Table 4.4: More detailed results for the time-dependent implementation, distin-
guishing the number of edges between timetable edges (which have time-dependent
lengths) and transfer edges (which have static lengths). Also shown is the average
number of elementary connections that are touched during the calculation of edge
lengths. Note that a value of less than one makes sense here, since for all transfer
edges this number is zero: no elementary connection has to be touched at all.
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route graph) is clearly superior to the extended time-expanded model (realistic time-
expanded graph); the speedup with respect to CPU time is 3.3 for real-world queries
and 4.5 for random queries. This is clear since both graphs are static, and the realis-
tic time-expanded graph is much larger and contains a lot of redundant information
that is not needed for solving the MNT problem. A similar observation holds for the
lexicographically first (MNT,EA) Pareto-optimum problem, where the CPU speedup
is 1.9 for real-world queries and 2 for random queries, and for the all Pareto-optima
problem, where the CPU speedup is 1.5 for real-world queries and 1.8 for random
queries.

We would like to note that the solution to the problem of finding all Pareto-
optima exhibits a quite stable behaviour compared to EAP in both approaches. It
is 3.6 times slower than EAP for real-world queries in both models, and about the
same factor slower when random queries are considered (3.3 in the time-expanded
model and 4 times slower in the time-dependent model).

Further observations regarding each model separately are as follows.

Time-Expanded Model.

The graph used in the realistic EAP (Table 4.3) has less than twice as many nodes
and edges as the graph used in the simplified EAP, and is of very similar structure.
Thus, it needs only slightly more time to solve the realistic EAP than to solve the
simplified EAP (11% more time using real-world queries and 16% more using random
queries). The lexicographically first (EA,MNT) Pareto-optimal problem is solved in
a very similar way as the realistic EAP. It is interesting to observe that the CPU-
time as well as the average number of nodes and edges touched are almost identical.
In contrast, the MNT, the lexicographically first (MNT,EA) Pareto-optimum, and
the all Pareto-optima problems require more CPU time than the realistic EAP, since
a much bigger part of the graph has to be explored.

Time-Dependent Model.

Although the train-route graph has approximately 13 times more nodes and edges
than the graph of the original time-dependent model (see Table 4.1), the experi-
mental results reported in Table 4.3 show that the time required for solving the
realistic EAP is only 5 times slower than that of the simplified EAP. This is due to
the fact that the structure of the two graphs is quite different. While the original
time-dependent graph has only timetable edges, almost 70% of the train-route graph
edges have constant cost and the timetables of the other edges have much less events
than their corresponding edges in the original time-dependent graph.

The MNT problem is solved faster than the realistic EAP, since in this case all
edge lengths in the train-route graph are static and hence no binary search is needed.

The solution of the lexicographically first (MNT,EA) Pareto-optimum problem
involves (again) time-dependent edge lengths and is slower than both MNTP and
the realistic EAP, even though its performance parameters (number of nodes and
edges touched) are similar to those of MNTP. This is due to the fact that in this
problem more computations are needed in order to maintain the priority heap. It
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is interesting to observe that the algorithm for solving the lexicographically first
(MNT,EA) Pareto-optimum problem touches on average roughly half of the ele-
mentary connections than when the realistic EAP is solved. This can be explained
as follows. While solving the Lex-F(MNT,EA) problem, the first connections to be
considered are the ones with no transfers (i.e., those that belong to the train routes
that pass through the departure station), the next connections will be those with
only one transfer, and so on, thus avoiding to perform a transfer as long as this is
possible. Now, the implementation does not use binary search at a timetable edge,
unless the source of the edge has been reached through a transfer edge of the same
station. In addition, the time of this problem is greater than the time of EAP, since
in order to compare two node labels there will exist quite often the need to compare
the second cost parameter (time), as the first one (number of transfers) is the same
for much more nodes.

Both algorithms for solving the EABT problem require practically the same time.
It is interesting to observe though that the labelling approach (EABT-L) touches
much less nodes and edges than the graph-copying approach (EABT-BJ).

The algorithm for enumerating all Pareto-optimal solutions uses the computation
of the EABT problem as a sub-procedure. It needs, however, only double the time
it is required for the solution of EABT. The same applies when it is compared
to the algorithm for solving the lexicographically first (MNT,EA) Pareto-optimum
problem.

4.5.3 Discussion

We have discussed time-expanded and time-dependent models for several kinds of
single-criteria and bicriteria optimisation problems on timetable information sys-
tems. In the time-expanded case, extensions that model more realistic requirements
(like modelling train transfers) could be integrated in a more-or-less straightforward
way and the central characteristic of the approach is that a solution to a given opti-
misation problem could be provided by solving a shortest path problem in a static
graph, even for finding all Pareto-optimal solutions in the considered bicriteria opti-
misation problems. In the time-dependent case, the central characteristic of having
one node per station had to be violated when more realistic requirements (like the
integration of minimum transfer times at stations) were considered, and more so-
phisticated techniques in the bicriteria optimisation problems had to be used for
their effective solution. Nevertheless, all the problems under consideration could be
efficiently modelled in an extension of the time-dependent model introduced here.
Moreover, it turned out that such modelling was more compact than in the extended
time-expanded model, thus resulting in better performance in practice.

Our experimental study showed that the time-dependent approach is clearly
superior with respect to performance when the original version of the models is
considered, and speedup factors in the range from 10 to 40 were observed. When
considering extensions of the models for the solution of realistic versions of opti-
misation problems, the time-dependent approach still performs better, but with a
much smaller difference though (the speedup is now reduced in the range of 1.5 to
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3.3). The time-expanded approach benefits in this case from the straight-forward
modelling that allows more direct extensions and effective solutions. When other
optimisation criteria shall be integrated, it is more likely that it can be modelled
directly as edge lengths in the time-expanded model than in the time-dependent
model. In case the criterion can be expressed as additive costs for elementary con-
nections, these costs induce edge lengths in the time-expanded graph, while it is
not clear if the costs can be mapped to feasible edge lengths in the time-dependent
approach, since only the first elementary connection per edge is considered.





Chapter 5

Towards Efficient Timetable
Information

In the previous two chapters several timetable information problems have been re-
duced to the problem of finding a shortest path in an appropriately defined graph.
The focus had been on the modelling, and the shortest paths have been computed
by standard algorithms, namely Dijkstra’s algorithm and a variant of Dijkstra’s algo-
rithm for time-dependent graphs. As already discussed previously, the crucial point
for the core of a timetable information system is to minimise the average running-
time per query. Not only in timetable information the scenario arises where a large
number of on-line shortest path queries in a huge graph have to be processed as
fast as possible: also in many other practical applications, including route planning
for car traffic [IOAI91, CF94, JMN99, SWN92, JP02], integrated travel informa-
tion systems [SKC93], database queries [SFG97, GSVGM98], and Web searching
[BJM00], the algorithmic core problem consists in solving shortest-path queries as
fast as possible.

In practice, the usual approach to tackle the shortest path problems arising in
scenarios like the above is to use heuristic methods, which in turn implies that
there is no guarantee for an optimal answer. On the contrary, we are interested
in distance-preserving algorithms (i.e., shortest path algorithms that produce an
optimal answer for any input instance). Distance-preserving algorithms were not
in wide use in traffic information systems, mainly because the average response
time was perceived to be unacceptable. However, the results in [SWW99, SWW00]
showed that distance-preserving variants of Dijkstra’s algorithm are competitive in
the sense that they do not constitute the bottleneck operation in the above scenario.

This chapter deals with further improving the running-time of the shortest-path
algorithms by investigating distance-preserving speedup techniques. First, an ap-
proach using so-called “multi-level graphs” is introduced and investigated in general,
and we will see that it is especially suited for application in our timetable information
models. The extensive experimental analysis we conducted confirms this observa-
tion and moreover yields the rather surprising result that several hierarchical levels
are beneficial in practice. Parts of this work appeared as “Using Multi-Level Graphs
for Timetable Information in Railway Systems” [SWZ02]. Further, a brief review
of other speedup techniques is provided including the discussion whether the tech-
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niques can or cannot be applied to our timetable information models. We are also
interested whether it makes generally sense to combine these speedup techniques,
and present an experimental study using several generated and real-world graphs,
which has been published as “Combining Speed-Up Techniques for Shortest-Path
Computations” [HSW04].

5.1 The Multi-Level Graph Approach

Several of the approaches used so far in traffic engineering introduce speedup tech-
niques based on hierarchical decomposition. For example, in [IOAI91, AJ94, CF94,
JP02] graph models are defined to abstract and store road maps for various routing
planners for private transport. In her PhD thesis [Fli04], Flinsenberg successfully
used an hierarchical approach similar to the HiTi graphs introduced by Jung and
Pramanik [JP02] in the area of car navigation. Similarly, Siklóssy and Tulp [ST91]
introduce a space reduction method for shortest paths in a transportation net-
work, and Buchholz [Buc00] investigates in his PhD thesis more generally how pre-
computed information stored as hierarchical graphs can help in—approximately or
optimally—finding shortest paths. The idea behind such techniques is to reduce
the size of the graph in which shortest path queries are processed by replacing pre-
computed shortest paths by edges. The techniques are hierarchical in the sense
that the decomposition may be repeated recursively. Several theoretical results on
shortest paths, regarding planar graphs [Fre91, Fre95, KPSZ96] and graphs of small
treewidth [CZ00, CZ98], are based on the same intuition.

So far, however, there exist few systematic studies of hierarchical decompo-
sition techniques, especially when concrete application scenarios are considered.
In [SWW00], we made a first attempt to introduce and evaluate a speedup tech-
nique based on decomposition, called selection of stations. Based on a small set
of selected nodes an auxiliary graph is constructed, where edges between selected
nodes correspond to shortest paths in the original graph. Consequently, shortest
path queries can be processed by performing parts of the shortest path computation
in the much smaller and sparser auxiliary graph. In [SWW00], we extensively stud-
ied this approach for one single choice of selected nodes, and the results are quite
promising.

We introduce a hierarchical decomposition technique called the multi-level graph
model that generalises the approach of [SWW00]. A multi-level graph M of a given
weighted (directed) graph G = (V,E) is a graph which is determined by a sequence
of subsets of V and which extends E by adding multiple levels of edges. This
allows to efficiently construct a subgraph of M which is substantially smaller than
G and in which the shortest path distance between any of its nodes is equal to the
shortest path distance between the same nodes in G. Under the new framework,
the auxiliary graph used in [SWW00]—based on the selection of stations—can be
viewed as adding just one level of edges to the original graph. The crucial difference
of the multi-level graphs we are investigating and HiTi-graph like approaches [JP02,
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Fli04], which are mainly applied in the area of car navigation, is that in the latter
approaches the underlying graphs are decomposed by edge separators, whereas our
technique is based on node separators. We believe that for application in timetable
information, a decomposition of the railway network by stations (represented by
nodes) is better suited than a decomposition by edges, since intuitively the network
is easily decomposable by removing important hubs (i.e., important stations). We
follow this intuition in the decompositions shown in Section 5.2.3.

5.1.1 Definition of the Multi-Level Graph

Let G = (V,E) be a weighted (directed) graph with non-negative edge weights. The
length of a path is the sum of the weights of the edges in the path. The multi-level
graph M of G is, roughly speaking, a graph that extends G in two ways: On the one
hand, it extends the edge-set of G by multiple levels of edges. On the other hand,
it provides the functionality to determine for a pair of nodes s, t ∈ V a subgraph
of M such that the length of a shortest path from s to t in that subgraph is equal
to the shortest path length in G. To achieve this, we use a special data structure
called the component tree (a tree of connected components).

The objective is that the resulting subgraph of M is substantially smaller than
the original graph G. Then, single-pair shortest path algorithms can be applied to
the smaller graph, improving the performance. The multi-level graph is built on the
following input: (i) a weighted (directed) graph G = (V,E); and (ii) a sequence of
l subsets of nodes Si (1 ≤ i ≤ l). The subsets Si are decreasing with respect to set
inclusion: V ⊃ S1 ⊃ S2 ⊃ . . . ⊃ Sl.

To emphasise the dependence on G and the sets S1, . . . , Sl, we shall refer to the
multi-level graph by M(G; S1, . . . , Sl). The node-sets Si will determine the levels
of the multi-level graph. In the following, we shall discuss the construction of the
multi-level graph and of the component tree.

Level Construction

Each level of M(G; S1, . . . , Sl) is determined by a set of edges. The endpoints of
these edges determine the node set of each level. For each set Si (1 ≤ i ≤ l), we
construct three sets of edges:

• level edges Ei ⊆ Si × Si;

• upward edges Ui ⊆ (Si−1 \ Si) × Si; and

• downward edges Di ⊆ Si × (Si−1 \ Si).

We call the triple Li := (Ei, Ui, Di) the level i of the multi-level graph. We further
say that L0 := (E, ∅, ∅) is the level zero, where E are the edges of the original graph
G. With the level zero there are totally l +1 levels, so we say that M(G; S1, . . . , Sl)
is an l + 1-level graph. Figure 5.1 illustrates a 3-level graph.

The construction of the levels is iterative, so we assume that we have already
constructed the level Li−1. The iteration begins with i = 1. For each node u in Si−1
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Level 2

Level 1

Level 0

E

E

s G
ta b c

2

1

Figure 5.1: A simple example of a 3-level graph. Level zero consists of the original
graph G. The sets of nodes that define the 3-level graph are S1 = {a, b, c} and
S2 = {a, c}. In order to show the levels, we draw copies of each node for the
levels one and two, but actually there is only one occurrence of them in the 3-level
graph. The levels one and two are each split into two planes, where the upper plane
contains the edges Ei, and the lower plane shows the connected components in the
graph G − Si. The edges Ui and Di connect nodes in different planes of one level.

consider a shortest-path tree Tu (rooted at u) in the graph (Si−1, Ei−1). Candidates
for edges in level Li are all the edges Si × Si for level edges, (Si−1 \ Si) × Si for
upward edges, and Si × (Si−1 \ Si) for downward edges. The condition to decide
whether one candidate edge (u, v) is actually taken for the sets Ei, Ui and Di is the
following:

Li contains an edge (u, v) if and only if no internal node of the u-v path
in Tu belongs to Si.

In other words, if the u-v path contains no node of Si except for the two endpoints u
and v, the edge (u, v) is added to Li. The weight of a new edge (u, v) is the shortest
path length from u to v in G. Note that the level Li is not uniquely determined by
this construction, since the shortest-path trees are not unique. Now, we can define
the multi-level graph as

M(G; S1, . . . , Sl) := (V,E ∪
⋃

i=1...l

(Ei ∪ Ui ∪ Di)).

Connected components

Consider the subgraph of G that is induced by the nodes V \ Si. We will use the
following notation:

• the set of connected components is denoted by Ci, and a single component is
usually referred to by C;

• V (C) denotes the set of nodes of a connected component C of Ci;
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Figure 5.2: The component tree for the 3-level graph in Figure 5.1. Only the leaves
for the nodes s and t are shown. The thin black edges are the edges Est that define
the subgraph with the same shortest path length as G.

• for a node v ∈ V \ Si, let Cv
i denote the component in Ci that contains v;

• a node v ∈ Si is called adjacent to the component C ∈ Ci, if v and a node of
C are connected by an edge (ignoring direction);

• the set of adjacent nodes of a component C is denoted by Adj(C).

The edges Ei, Ui and Di can be interpreted in terms of connected components as
follows (see Figure 5.1). The edges Ei resemble the shortest paths between nodes of
Si that pass through a connected component (i.e., if two nodes x and y are adjacent
to the same component, and the shortest path from x to y is inside that component,
then there is an edge from x to y representing that shortest path). This includes
edges in G that connect two nodes of Si. Notice that for a pair of nodes in Si, the
subgraph of M induced by Ei suffices to compute a shortest path between these
nodes.

In the same way, the edges Ui represent shortest paths from a node inside a
connected component to all nodes of Si adjacent to that component, and the edges
Di represent the shortest paths from the adjacent nodes of a component to a node
of the component.

Component tree

The data structure to determine the subgraph of M for a pair of nodes s, t ∈ V is a
tree with the components C1 ∪ . . . ∪ Cl as nodes. Additionally, there is a root Cl+1,
and for every node v ∈ V a leaf Cv

0 in the tree (we assume that Adj(Cv
0 ) := {v}

and Adj(Cl+1) := ∅). The parent of a leaf Cv
0 is determined as follows: Let i be the

largest i with v ∈ Si. If i = l, the parent is the root Cl+1. Otherwise, the smallest
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Figure 5.3: The subgraph Mst(G) of a sample query (top), and the original graph
G (bottom).

level where v is contained in a connected component is level i + 1, and the parent
of Cv

0 is the component Cv
i+1 ∈ Ci+1.

The parent of the components in Cl is also the root Cl+1. For one of the remaining
components Ci ∈ Ci, the parent is the component C ′

i+1 ∈ Ci+1 with V (Ci) ⊆ V (C ′
i+1).

Figure 5.2 illustrates the component tree of the 3-level graph in Figure 5.1.

Subgraph

For the given pair of nodes s, t ∈ V we consider the Cs
0-C

t
0 path in the component

tree. Let L be the smallest L with Cs
L = Ct

L (i.e., Cs
L = Ct

L is the lowest common
ancestor of Cs

0 and Ct
0 in the tree). Then, with our notation for the components,

the Cs
0-C

t
0 path is

(Cs
0 , C

s
k, C

s
k+1, . . . , C

s
L = Ct

L, . . . , Ct
k′+1, C

t
k′ , Ct

0),

where k > 0 and k′ > 0 are the levels of the parents of Cs
0 and Ct

0 as defined above
(cf. darker tree edges in Figure 5.2). The subgraph with the same s-t shortest-path
length as G is the subgraph Mst of M induced by the following edge set:

Est := EL−1

∪
⋃

i=k,...,L−1

{(u, v) ∈ Ui|u ∈ Adj(Cs
i−1), v ∈ Adj(Cs

i )}

∪
⋃

i=k′,...,L−1

{(u, v) ∈ Di|u ∈ Adj(C t
i ), v ∈ Adj(C t

i−1)}.

A sample subgraph Mst is illustrated in Figure 5.3. The correctness of the multi-
level graph approach is shown by the following theorem.

Theorem 5.1 The length of a shortest s-t path is the same in the graphs G and
Mst(G; S1, . . . , Sl).

Proof. Let s, t ∈ V be a pair of nodes G for which a s-t path in G exists, and let
Cs

0 , C
s
k, . . . , C

s
L = Ct

L, . . . , Ct
k′ , Ct

0 be the corresponding graph in the component tree.
By definition, every edge (u, v) in Mst has a weight that is at least as large as the
shortest-path length from u to v in G. Hence, the length of a shortest s-t path in
Mst can never be smaller than the one in G. It remains to prove that there is a s-t
path in Mst with the same length as a shortest s-t path P in G. To prove this, it
suffices to prove the following claims, where 1 ≤ x ≤ l:
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1. For each pair of nodes u, v ∈ Sx such that there exists a u-v path in G, the
graph (Sx, Ex) contains a path with the same length as a shortest u-v path in
G.

2. For the subgraph M′ of M induced by the edge set

Ex ∪
⋃

i=k,...,x

{(u, v) ∈ Ui|u ∈ Adj(Cs
i−1), v ∈ Adj(Cs

i )}

it holds that for each node w ∈ Sx that is reachable from s in G there exists
a path from s to w in M′ with the same length as a shortest s-w path in G.

3. For the subgraph M′ of M induced by the edge set

Ex ∪
⋃

i=k′,...,x

{(u, v) ∈ Di|u ∈ Adj(C t
i ), v ∈ Adj(C t

i−1)}

it holds that for each node w ∈ Sx from which t is reachable in G there exists
a path from w to t in M′ with the same length as a shortest w-t path in G.

We first show how the proof is completed using the above claims, and then give
the proofs of the claims. The value L is the level of the lowest common ancestor of C s

0

and Ct
0 in the component tree. Because of this, s and t are in different components

of the subgraph induced by V − SL−1, and therefore at least one node of a shortest
s-t path in G has to be in SL−1. Let w (resp. z) be the first (resp. last) node of
P that belongs to SL−1. Then, nodes w and z split P into three (not necessarily
non-empty) parts P1, P2 and P3. By Claim 1, it follows that there is a w-z path in
Mst with the same length as P2. Similarly, by Claim 2, it follows that there is a
path in Mst from s to w with the same length as P1, and by Claim 3 that there is
a path in Mst from z to t with the same length as P3. The concatenation of these
three paths is an s-t path in Mst with the same length as P .

We now turn to the proofs of the claims. The proofs are by induction on x. We
give the proof of Claim 1; the proofs of the other claims follow similarly. We start
with the basis of the induction (x = 1).

Let u and v be two nodes of S1 and P = (u = v1, . . . , vz = v) be the shortest u-v
path in the shortest-path tree Tu in G considered in the definition of the levels. If
no internal node of that path belongs to S1, by the definition of E1, there is an edge
(u, v) ∈ E1 whose weight is the length of P , and we are done. Otherwise, some of the
internal nodes of P belong to S1, and we consider all the subpaths Pj of P , where
P1 is the part from u to the first node belonging to S1, then P2 is the part from the
latter node to the second node in P belonging to S1, and so on. The end-nodes of
each subpath Pj are connected by an edge in E1, because for these subpaths there
is no internal node in S1, and the weight of such an edge is exactly the length of Pj

in G. The combination of all these edges is the path in (S1, E1) we are looking for.
Now, assume that the claim is true for any value smaller than x. Then, the

induction step for x is proved in exactly the same way as for the basis, by replacing
G by (Sx−1, Ex−1), S1 by Sx, and E1 by Ex.
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5.1.2 Regular Multi-Level Graphs

The basic idea of multi-level graphs is that the subgraph Mst is small and thus a
shortest path can be found faster using that subgraph instead of the original graph
G. In general, this is not necessarily true, actually the subgraph Mst may even
be larger than G for a bad selection of the sets S1, . . . Sl, for example if l = 1 and
S1 doesn’t decompose the graph G at all. However, for regular multi-level graphs,
under certain assumptions concerning the decomposition, we are able to prove a
bound on the total number of edges in the multi-level graph itself and on the size
of the subgraphs Mst. The latter size depends crucially on the level L determining
the subgraph Mst, so we are also interested in the probability that for a random
query at least a given level L is reached.

We use the following notions: The original graph G = (V,E) consists of n = |V |
nodes and m = |E| edges. Further, the set Si (1 ≤ i ≤ l) decomposes the graph G
in connected components. Let the set of these components be denoted by Ci, and
Ci,j be the j-th component in Ci (1 ≤ j ≤ |Ci|). Further, let A be the maximum
number of adjacent nodes of a component over all components Ci,j.

Number of Edges in a Regular Multi-Level Graph

First, we count the total number of upward (U) and downward (D) edges: In level i
(1 ≤ i ≤ l), there are only upward/downward edges from/to nodes in Si−1 \ Si. For
each of these nodes there are at most A upward and A downward edges. If we sum
over all levels we get:

|U | + |D| ≤
l
∑

i=1

2A(|Si−1| − |Si|) (5.1)

= 2A(n − |S1| + |S1| − |S2| . . . |Sl−1| − |Sl|) (5.2)

= 2A(n − |Sl|) (5.3)

≤ 2An. (5.4)

The level edges Ei in level i are on the one hand the edges induced by the nodes Si

in G (denoted by EG(Si)), and on the other hand the newly constructed edges. The
latter edges can be at most A(A − 1) for each component: the worst case occurs
when a component is substituted with a complete directed graph on all the adjacent
nodes of that component. Hence,

|Ei| ≤ |EG(Si)| + A(A − 1)|Ci|. (5.5)

With these observations, the total number of level edges (LE) can be obtained by
taking the sum over all levels i, 1 ≤ i ≤ l, and we get the following bound:

|LE| ≤
l
∑

i=1

|EG(Si)| + A(A − 1)
l
∑

i=1

|Ci|. (5.6)

In general, both addenda can become large if the decomposition by the sets S1, . . . , Sl

is bad. However, if the following two assumptions—which intuitively characterise a
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“good decomposition”—are true, we can show that also the number of level edges
|LE| is relatively small.

Assumption 5.1 For each i, 1 ≤ i < l, the part of EG(Si) that is not in EG(Si+1)
is at most half as big as the same part in the previous level:

|EG(Si) \ EG(Si+1)| ≤ |EG(Si−1) \ EG(Si)|/2.

Assumption 5.2 For the decomposition of the graph G into components holds that
∑l

i=1 |Ci| ≤ n.

A multi-level graph M(G) is called regular if it complies with these assumptions.
Because of Assumption 5.1, for the first part of the above bound (Inequality 5.6) on
|LE|, the following holds:

l
∑

i=1

|EG(Si)| = l|EG(Sl)| +

(l − 1)|EG(Sl−1) \ EG(Sl)| +
. . . +

2|EG(S2) \ EG(S3)| +
1|EG(S1) \ EG(S2)|

≤ |EG(S1) \ EG(S2)| + |EG(S1) \ EG(S2)|
(

l−1
∑

i=1

i

2i

)

≤ |EG(S1) \ EG(S2)|(1 +
l−1
∑

i=1

i

2i
)

≤ 3|EG(S1) \ EG(S2)|
≤ |EG(S1) \ EG(S2)| + |EG(S0) \ EG(S1)|
≤ m.

Further, by applying Assumption 5.2 to the second part of the bound in Inequa-
tion 5.6, we obtain as bound on the number of level edges in regular multi-level
graphs:

|LE| ≤ m + A(A − 1)n, (5.7)

which yields together with Inequation 5.4 as final estimate for the total number of
additional edges in the regular multi-level graph:

|U | + |D| + |LE| ≤ m + [A2 + A]n. (5.8)
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Random Queries

Let (s, t) ∈ V × V be a query selected randomly, where P (s, t) = 1/n2. We are
interested in the probability that the lowest common ancestor of s and t in the
component tree, denoted as level(s, t), is at least L (1 ≤ L ≤ l + 1). This is the
case if either one of the nodes s and t is in the set SL−1, or if both s and t belong
to different components in CL−1. Therefore, the number of pairs (s, t) that fulfil the
following two conditions have to be counted:

1. If s belongs to SL−1, then t can be any node: |SL−1|n pairs. The same holds
if t belongs to SL−1, but then we have counted the pairs where s and t belong
both to SL−1 twice and have to subtract these terms: −|SL−1|2. In total we
get 2|SL−1|n − |SL−1|2.

2. If s belongs to component CL−1,j , then t belongs to any of the other com-
ponents: |CL−1,j|

∑

k 6=j |CL−1,k|. The sum over all components in level L − 1
yields the number of all (s, t)-pairs for the second condition:

|CL−1|
∑

j=1

[

|CL−1,j|
∑

k 6=j

|CL−1,k|
]

The probability can now be calculated by the following formula:

P (level(s, t) ≥ L) = P (s ∈ SL−1 or t ∈ SL−1) +

P (s ∈ CL−1,j , t ∈ CL−1,k, and j 6= k)

= 1/n2



2|SL−1|n − |SL−1|2 +

|CL−1|
∑

j=1

[

|CL−1,j|
∑

k 6=j

|CL−1,k|
]



 .

Assuming that all components in CL−1 have the same size C the formula can be
simplified to

P (level(s, t) ≥ L) =
2|SL−1|n − |SL−1|2 + (C − 1)(n − |SL−1|)2/C

n2
.

Finally, let us consider the highest possible level (i.e., L = l+1), and further assume
that C and the number of nodes in the smallest subset of nodes |Sl| are constant,
and n → ∞. Then, for the probability that the highest level is used in the subgraph
Mst it holds

P (level(s, t) ≥ l + 1) −→ (C − 1)/C. (5.9)

Size of the Subgraph

The number of edges and nodes of the subgraph Mst used for solving a shortest-
path query shall be estimated, depending on L = level(s, t), the level of the lowest
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common ancestor of s and t in the component tree. There are 2 nodes in level 0, at
most A in the levels from 1 to L − 2, and |SL−1| nodes in level L − 1:

|V (Mst)| ≤ 2 + (L − 2)A + |SL−1|.

The number of edges is the sum of all upward and downward edges used in levels 1
to L−1, plus the edges induced by SL−1 in G and the newly constructed level-edges
for level L − 1. In level 0 there are at most A upward edges. For the next level,
from the A endpoints, there may be A2 upward edges, which all lead to at most
A endpoints in the next level. Because of this, for the following level also at most
A2 upward edges can occur. For downward edges the same argument holds. That
means in total there are at most 2(A + (L − 2)A2) upward and downward edges.
For the level-edges Inequation 5.5 can be used. Altogether for the total number of
edges in the subgraph Mst holds that

|E(Mst)| ≤ 2[A + (L − 2)A2] + |EG(SL−1)| + |CL−1|A(A − 1). (5.10)

It turns out that A is a crucial parameter for the size of Mst, and assuming A being
a small constant, this size can be guaranteed to be small as well.

Assumption 5.3 We assume that A, the maximum number of adjacent nodes of
a component over all components Ci,j in the regular multi-level graph M(G), is
smaller than or equal to a constant α. Such a multi-level graph is called α-regular
multi-level graph.

For the majority of all queries level(s, t) = l + 1 (as we have seen above for random
queries). The following lemma shows that for such queries in α-regular multi-level
graphs the search space (the number of edges in Mst) is small. More precisely, the
search space is asymptotically dominated by the number of levels l, which is usually
in O(log n), and by El, the number of level edges in level l.

Lemma 5.1 Let α ∈ IN be a constant and M(G; S1, . . . , Sl) an α-regular multi-
level graph. Then, given a shortest-path query (s, t) with level(s, t) = l + 1, for the
number of edges in the subgraph Mst holds that

|E(Mst)| ∈ O(l + |Sl|2).

Proof. Inequation 5.10 was established by summing up the upward and downward
edges to the first addend; the last two terms constitute a bound on the number of
the level edges. Obviously, the number of level edges El in level l is also limited
by the number of edges in a complete graph with |Sl| nodes. Summing up the first
addend of the bound 5.10 and the edges of a complete graph with |Sl| nodes yields

|E(Mst)| ≤ 2[A + (l − 1)A2] + |Sl|2, (5.11)

which completes the proof since A ≤ α.
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Figure 5.4: A component-induced random graph with l = 3, C = 3, N = 5, M = 6
and A = 3.

Discussion

We want to conclude the theoretical analysis of (α-regular) multi-level graphs with
a discussion of the achieved results. Assumptions 5.1 and 5.2 are not very strict,
and should be fulfilled by a reasonable decomposition of the graph. Then, the total
number of additional edges is less than m + [A2 + A]n (cf. Inequation 5.8). (A
was defined to be the maximum number of adjacent nodes of a component over all
components Ci,j.) Hence, the parameter A is crucial for the amount of additional
space needed. It is also important for the efficiency of the technique: for queries
that use the highest level the subgraph contains at most 2[A + (l − 1)A2 + |Sl|2
edges (cf. Inequation 5.11). Note that the bounds are not very tight in practice:
in the experiments with time-expanded graphs presented later, the total number of
additional edges, for example, was always roughly equal to m, number of edges in
the original graph.

Another important issue is the similarity of the components. If there is one large
component in the highest level, the probability that two nodes belong to that com-
ponent is quite high that the highest level is not used for the subgraph. In contrast,
if all components have the same size C, the probability that the highest level is used
is approximately C − 1/C (if the graph is large enough; cf. Inequation 5.9).

In summary, decompositions should be used for which the components Ci,j have
few adjacent nodes in the corresponding set Si. Additionally, the components in
each level should be preferably of equal size.

5.1.3 Component-Induced Random Graphs

Motivated by the previous analysis of regular multi-level graphs, we introduce a ran-
dom graph model with a regular hierarchical structure. Using information about this
structure, we get multi-level graphs that comply with all the assumptions made in
the previous section. Experiments with such graphs confirm the achieved theoretical
results.
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Recursive Construction

A component-induced random graph Gc(l, C,N,M,A) is constructed recursively de-
pending on the following parameters: (i) the number of levels l; (ii) the number of
components per level C; (iii) the number of new nodes N and new edges M per
level; and (iv) the number of adjacent nodes per component A. Feasible values are
C > 1, M ≤ N(N − 1), and A ≤ N .

The recursive procedure takes as argument a level index i, which is l at the
beginning, and first computes a classical Erdös-Réyni random graph R with N
nodes and M edges, (i.e., R contains N nodes and M edges selected uniformly at
random from all possible edges; see also [Bol85]). If R is not connected we repeat the
construction. By setting µN = log2 N + 3 and M = µNN , the probability that R is
connected is greater than 95% (cf. [Bol85]). If the level index is 0 the procedure ends
at that point. Otherwise, C components are constructed by applying the recursive
procedure C times with a level index of i− 1. Finally, for each of these components
A nodes from R are selected randomly and two edges between each of these nodes
and randomly selected nodes in the respective component are introduced.

Size

The number of nodes n in the resulting graph Gc can be calculated by summing up
the nodes generated in each level i. In the i-th level C l−i random subgraphs R are
generated which contain N nodes each, and in total we get

n =
l
∑

i=0

C iN. (5.12)

Similarly, the number of edges can be calculated. The first random subgraph R in
level l contains ml = M generated edges. In the i-th level the random subgraphs
contain in total C iM edges, and additionally there are 2C iA edges connecting the
components to nodes from the previous level. Hence, the total number of edges in
level i (0 ≤ i < l) is

mi = C l−iM + C l−i2A = C l−i(M + 2A), (5.13)

and the total number of edges are the edges of all levels 0 to l amounts to

m = M +
l−1
∑

i=0

cl−iM + C l−i2A = M +
l
∑

i=1

C i(M + 2A).

Bringing together the number of nodes n and the number of edges m we can obtain
now the following bound on the number of edges:

m = NµN +
l
∑

i=1

C i(NµN + 2A)

=

[

l
∑

i=0

C iN

]

µN + 2
l
∑

i=1

C iA
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= nµN + 2
l
∑

i=1

C iA

≤ nµN + 2n (since A ≤ N)

= n(µN + 2).

If we set µN = log2 N +3 as mentioned above, the graph Gc is sparse: for the number
of edges in Gc it holds that

m ≤ n(log2 N + 5).

Multi-Level Graph

A regular multi-level graph M(Gc; S1, . . . , Sl) can now be obtained by setting Si

(1 ≤ i ≤ l) to be the nodes generated at levels greater than or equal to i. To
show that M(Gc) is a regular multi-level graph (cf. Section 5.1.2), we have to prove
that M(Gc) complies with Assumptions 5.1 and 5.2. The number of components
induced by removing Si amounts to |Ci| = C l−i+1. Summing up all components and
applying Equation 5.12 yields

l
∑

i=1

|Ci| =
l
∑

i=1

C l−i+1 =
l−1
∑

i=0

C i

≤
l
∑

i=0

C iN = n,

which means that Assumption 5.1 is fulfilled. Further, the edges induced by the
nodes Si in Gc are all edges introduced in levels i to l (cf. Equation 5.13):

|EGc
(Si)| = M +

l−1
∑

j=i

mj

= M +
l−1
∑

j=i

C l−j(M + 2A)

= M +
l−i
∑

j=1

Cj(M + 2A).

Now the number of edges in Si that are not anymore in Si+1 can be calculated, and
for C ≥ 2 we can show that the condition of Assumption 5.2 is also fulfilled for our
multi-level graph:

|EGc
(Si) \ EGc

(Si+1)| = |EGc
(Si)| − |EGc

(Si+1)|
= C l−i(M + 2A)

=
1

C

[

C l−(i−1)(M + 2A)
]

≤ 1

2
|EGc

(Si−1) \ EGc
(Si)|.
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Hence, our multi-level graph is regular, and the statements obtained above for regular
multi-level graphs apply. Finally, we want to investigate the crucial parameter,
namely the size of the subgraph Mst for a query (s, t). By Inequality 5.11 and the
fact that |Sl| = N in our case, the size of the subgraph is

|E(Mst)| ≤ 2[A + (l − 1)A2] + N 2.

Given that A ≤ α for a constant α ∈ IN , Assumption 5.3 follows directly from
the construction of the component-induced random graphs, and also Lemma 5.1 can
be applied: In our case, the number of levels l is logarithmic in the number of nodes
in Gc, and thus the size of the subgraph Mst is in O(log n + N 2).

Concluding, we consider the speedup factor s = m/|E(Mst| indicating how much
faster a shortest-path algorithm applied to the subgraph Mst can be compared to
the same algorithm applied to Gc. By the latter observation concerning the size
of the subgraph, the factor s increases with the number of nodes n in Gc, given
the parameter N is kept at a constant size. This implies that the speedup of a
shortest-path algorithm by using the multi-level approach can become arbitrarily
high for component-induced random graphs that are sufficiently large (e.g., for fixed
parameters C, N , M , and A, increasing the number of levels l yields arbitrary large
graphs, where the other parameters remain constant).

Experiments

In [Hol03], Holzer shows various experiments with component-induced random graphs
that confirm the theoretical results above. The number of levels considered in these
experiments range from one to five, and also the impact of the other parameters is
considered. In contrast to the definition of component-induced random graphs, the
parameters N , C, and A may differ from level to level in [Hol03]. Besides the size of
Mst for a given query, which was the crucial parameter to evaluate the approach in
the theoretical analysis above, also the real speedup is measured. The real speedup
is defined to be the ratio of CPU-times t1/t2, where t1 is the CPU-time needed to ap-
ply Dijkstra’s algorithm to the original graph Gc, and t2 measures the CPU-time to
apply Dijkstra’s algorithm to the subgraph Mst. The values of speedup are average
values for a statistically significant set of random queries.

One crucial result is that with increasing size of the graph, also an increasing
speedup can be observed, up to a speedup of approximately 1000 for a graph with
roughly 100 0000 nodes and 5 levels. In addition, it turns out that, considering only
component-induced random graphs Gc with a fixed number of nodes, the speedup
differs greatly when the parameters for construction of the graph are varied (cf.
Figure 5.5). For more details about the experiments we refer the reader to [Hol03].
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Figure 5.5: Speedup for component-induced random graphs Gc with roughly 100 000
nodes. The abscissa represents the design of the graphs: the number of levels (3, 4,
and 5), and different labels (a-d) imply a different setting for the number of nodes
Ni generated in level i.

5.2 Applying the Multi-Level Graph Ap-
proach

We adapted the multi-level graph approach introduced in the previous section for
application to a timetable information system. Actually, we focus on the time-
expanded model for the simplified earliest arrival problem timetable information
described in Section 3.3.1 (page 18). For the realistic version and the time-dependent
model the multi-level graph approach can be applied analogously. We conducted an
extensive experimental study based on all long-distance train data (winter period
1996/97) of the German railways consisting of time-table information and real-world
queries. Based on the time-expanded graph, we considered various numbers l of
levels and sequences of subsets of nodes. For each of these values, the corresponding
multi-level graphs are evaluated.

Our study was concentrated in measuring the improvement in the performance
of Dijkstra’s algorithm when it is applied to a subgraph of M instead of being
applied to the original time-expanded graph. Our experiments demonstrate a clear
speedup of the hierarchical decomposition approach based on multi-level graphs.
More precisely, we first considered various selection criteria for including nodes on
the subsets which determine the multi-level graphs. This investigation revealed that
random selection (as e.g., proposed in [UY91]) is a very bad choice. After choosing
the best criteria for including nodes in the subsets, we analysed their sizes and
demonstrated the best values for these sizes. It turns out that the dependence of
the multi-level graphs on the subset sizes is also crucial. Finally, for the best choices
of subsets and their sizes, we determined the best values for the number of levels.
For the best choice of all parameters considered we obtained a speedup of about 11
for CPU time and of about 17 for the number of edges hit by Dijkstra’s algorithm.
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Before turning to the experiments, we have to discuss a necessary customisation
of the multi-level approach to the time-expanded graphs.

5.2.1 Station Graph

The earliest arrival problem is translated into a single-source some-target shortest
path problem in the time-expanded graph (referred to by EG), where the targets
for one query are the set of nodes belonging to one station. Since the multi-level
graph approach is tailored to single-pair shortest path queries, we will need a second
graph, the station graph (referred to by SG), which is identical with the graph used
in the time-dependent model for the simplified earliest arrival problem introduced
in Section 3.3.2 (page 21). It contains one node per railway station R, and there is
an edge between two stations R1 and R2 if and only if there is an edge (v1, v2) in the
time-expanded graph, with v1 belonging to station R1 and v2 belonging to R2. The
station graph is simple and unweighted. With T (R) we denote the set of all arrival
and departure nodes in the time-expanded graph that belong to the station R. Note
that the station graph is the graph minor of the time-expanded graph obtained by
contracting all stay-edges in the time-expanded graph and by removing all but one
of multiple edges. The following lemma follows directly by the definition of SG and
EG.

Lemma 5.2 Consider a subset Σ of nodes in SG, and let T (Σ) be the set of all
arrivals and departures of the stations in Σ. Then, if the stations R1, . . . , Rk belong
to one connected component of SG − Σ, the nodes T (R1), . . . , T (Rk) belong to one
connected component of EG − T (Σ), and vice versa.

5.2.2 Customisation of the Multi-Level Graph Model

If we define the multi-level graph M(EG) of the time-expanded graph EG according
to the definition given in Section 5.1.1, then we would get a subgraph of M(EG)
for a pair s, t of nodes on which we could solve a single-pair shortest path problem
in order to determine an s-t shortest path in EG. The time-expanded modelling of
the earliest arrival problem, however, requires to solve a single-source some-targets
problem, and hence the direct application of the multi-level graph approach is not
suitable for this case. Instead, we need a subgraph that guarantees the same shortest-
path length between every pair of nodes belonging to two stations (i.e., sets of nodes
of EG). Therefore, we define on EG a slightly modified version of a multi-level
graph:

1. The first modification is to start with a sequence of l sets of stations of the
station graph, Σi (1 ≤ i ≤ l), which are decreasing with respect to set inclu-
sion. Then, the l sets of nodes of the time-expanded graph are defined to be
Si := ∪R∈Σi

T (R), all departures and arrivals of all the stations in Σi. The
levels of the multi-level graph M are then defined using the Si as described
in Section 5.1.1 (page 63), yielding M(EG; S1, . . . , Sl). To emphasise the de-
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pendence of Si on Σi and in order to facilitate notation, we shall refer to this
multi-level graph as M(EG; Σ1, . . . , Σl).

2. The component tree is computed in the station graph. There is one leaf CR per
station R, and Adj(CR) := T (R) (i.e., the arrivals and departures belonging
to R).

3. We define a node v of the time-expanded graph to be adjacent to a component
C of the station graph, if v and any node belonging to a station of C are
connected by an edge in the time-expanded graph. With this definition, and s
and t being the departure and arrival stations, the definition of the subgraph
Mst is exactly the same as for general multi-level graphs in Section 5.1.1
(page 66).

Given a query with departure station s, arrival station t, and a departure time,
the subgraph Mst of M(EG; Σ1, . . . , Σl) depends now on the stations s and t. The
departure time determines the departure node in EG belonging to station s. To
solve the query, we have to compute the shortest-path length from the departure
node of EG to one of the nodes belonging to station t. Based on Theorem 5.1 and
Lemma 5.2, we are able to show (next lemma) that it is sufficient to perform such
a shortest path computation in Mst.

Lemma 5.3 For each departure node v in the time-expanded graph belonging to
station s, the shortest-path length from v to one of the nodes belonging to station t
is the same in the graphs EG and Mst(EG; Σ1, . . . , Σl).

Proof. Using Lemma 5.2, the proof of Theorem 5.1 can be adopted to the customi-
sations that were made for the time-expanded graph.

The proof for Claim 1 is exactly the same here. Claims 2 and 3 are modified in
the way that now s and t are sets of nodes of EG, namely the sets of all arrivals
and departures belonging to the stations s and t, respectively. Then, Claims 2 and
3 hold for each of these nodes, because of Lemma 5.2.

Let P be a shortest path in EG from the departure node v to one of the
nodes belonging to station t. Then, similarly to the proof of Theorem 5.1, we
can show that there is a path with the same end-nodes and of the same length in
Mst(EG; Σ1, . . . , Σl).

5.2.3 Experiments

As mentioned above, we will consider different multi-level graphs that are all based
on one single graph. This original graph is the time-expanded graph EGDB as de-
fined in Section 3.3.1 (page 18), which is based on the winter 1996/97 train timetables
of the German railroad company Deutsche Bahn (DB). It consists of 6960 stations,
931 746 nodes, and 1 397 619 edges. The format of the timetable data is the same as
the one used in the comparison of the time-expanded and time-dependent model in
Section 3.5.1 (page 28).
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The second input to the multi-level graph for time-expanded graphs is the se-
quence of sets of stations Σ1, . . . , Σl, which determines the multi-level graph, referred
to by M(EGDB; Σ1, . . . , Σl). In the following we will omit the graph EGDB in the
notation of the multi-level graph. The goal of this experimental study is to investi-
gate the behaviour of the multi-level graph with respect to the sequence Σ1, . . . , Σl.
The experiments to measure the raw CPU time were run on a Sun Enterprise
4000/5000 machine with 1 GB of main memory and four 336 MHz UltraSPARC-II
processors (of which only one was used). The preprocessing time to construct a
multi-level graph (i.e., the additional edges and the component tree) varies from
one minute to several hours.

Parameters

First of all, we want to measure the improvement in performance of shortest path
algorithms if we compute the shortest path in the subgraph of M instead of the
original graph G. From the snapshot of over half a million of realistic timetable
queries, which has been used also in the experiments comparing the time-expanded
and the time-dependent approach in Section 3.5.1 (page 28), we take a subset of
100 000 queries. Then, for each instance of a multi-level graph M that we consider
we solve the queries by computing the corresponding shortest path in the subgraph of
M using Dijkstra’s algorithm. From these shortest path computations we consider
two parameters to evaluate the improvement of the performance:

• CPU-speedup: the ratio between the average CPU time needed for answering
a single query in the original time-expanded graph (103 milliseconds) and the
average CPU time when the subgraph of M is used;

• edge-speedup: the same ratio when the average number of edges hit by Dijk-
stra’s algorithm is used instead of the average raw CPU time.

Note that the time needed to compute the subgraph for a given query is only in-
cluded in the CPU-speedup, not in the edge-speedup. Another issue is the space
consumption, and therefore we define

• the size of a level of M to be the number of edges that belong to that level;

• the size of M to be the total number of edges in all levels of M (including the
original graph G);

• the relative size of M to be the size of M divided by the number of edges in
the original graph G.

Finally, to compare the improvement in performance and the space consumption, we
consider the (CPU-, edge-) efficiency of M, being the ratio between (CPU-, edge-)
speedup and the relative size of M.
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Two Levels

In the following we define the sequences of sets of stations used in our experiments
with 2-level graphs.

We define three sequences A = (A1, . . . , A10), B = (B1, . . . , B10), and C =
(C1, . . . , C10) of sets of stations, which are decreasing with respect to set inclusion.
The first set in each sequence is identical for all the three and consists of all the
stations that have a degree greater than two in the station graph; this yields a set
of 1974 stations. The last set of each sequence contains 50 stations, and the sizes
of the remaining 8 sets of stations are such that the sizes are equally distributed
in the range [50, 1974]. The difference between A, B, and C is the criterion on the
selection of stations:

A: In the timetable data, each station is assigned a value that reflects the impor-
tance of that station with respect to changing trains at that station. The sets
Ai contain the stations with the highest importance values.

B: The sets Bi contain stations with the highest degrees in the station graph.

C: The set C1 is a random set of stations. Then, for Ck (2 ≤ k ≤ 10), stations
are randomly selected from Ck−1.

These criteria for selecting stations are crucial for the multi-level graph approach.
For criteria A and B we use additional information from the application domain:
they reflect properties of important hubs in the railroad network. Removing these
hubs yields intuitively a “good” decomposition of the network. The experimental
results confirm this intuition.

Using each set of stations Ai, Bi, and Ci (i = 1, . . . , 10) as the set Σ1, we compute
the 2-level graph (i.e., consisting of the original graph being level zero and level one)
M(Σ1). Figure 5.6 shows the sizes (i.e., the number of edges) of the level one. For
the sequences A and B these sizes are similar, and for the randomly selected sets C,
the size grows dramatically as the number of stations decrease. In the following we
will focus on the sequence A, since B shows similar but slightly worse results, and
the multi-level graphs using sets of stations of C are too big.

For i = 1, . . . , 9 with decreasing number of stations in Ai, the speedup and
efficiency of M(Ai) is growing, and from 9 to 10 it is falling drastically, as Figure 5.7
shows. Figure 5.8 reveals one reason for this behaviour: While the number of
stations in Ai is big enough, for almost all queries (> 96%) the level one is used
(i.e., the subgraph of M(Ai) used for the shortest path computation consists of
the corresponding upward and downward edges of level one, and of the edge-set
E1). But for i = 10, for only about 60% of the queries the level one is used, and the
remaining 40% of the queries have to be solved in level zero (i.e., the original graph).
The queries for which level one is used still profit from level one as Figure 5.8 shows,
but for the rest of the queries the speedup equals one. In total, this reduces the
average speedup over all queries.
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Figure 5.6: For each sequence A, B, and C, there is one curve. Each point corre-
sponds to one set Σ1 of stations in these sequences. The diagram shows the size of
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Figure 5.7: Each point corresponds to one 2-level graph M(Ai) for each set of
stations in A. The left diagram shows the CPU-efficiency of M(Ai) according to
the number of stations in Ai, and in the right diagram the ordinate is the average
CPU-speedup for the 2-level graphs.
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Figure 5.8: Like Figure 5.7, the points refer to sets of stations Ai, and the abscissa
denotes the number of stations in Ai. For the curve that is growing with respect to
the number of stations, the ordinate on the right shows the percentage of queries
for which the second level is actually used (i.e., the lowest common ancestor in the
component tree is the root), while for the descending curve the average CPU-speedup
over all these queries is shown on the left ordinate.

Multiple Levels

The experiments with two levels show, that the set of stations A9 with 263 stations
yields the best performance, and (according to Figure 5.8) that the most interesting
cases to investigate is to consider subsets with less than |A9| stations. In our test
sequence, there is only the set A10 with less stations. Consequently, we included
in the sequence A for our investigation with more than two levels also the subsets
of stations A9a (225 stations), A9b (156 stations), A9c (100 stations), and A10a (30
stations).

Three Levels For every pair Σ1, Σ2 of sets of stations in A with Σ1 ⊃ Σ2, we
consider the 3-level graph M(Σ1, Σ2). For fixed Σ1, we investigate the behaviour
of the 3-level graph with respect to Σ2. Figure 5.9 shows this behaviour for Σ1 ∈
{A1, A7, A8, A9}. With Σ1 = A1, we see the same drop of speedup and efficiency
when Σ2 gets too small as in the 2-level case. However, when the size of Σ1 decreases
(e.g., Σ1 = A9), we observe that the suitable choices for Σ2 are the subsets A10 (50
stations) and A10a (30 stations) which improve both speedup and efficiency. This
also shows that different levels require different sizes of subsets.

More Levels For more than three levels, we do not investigate every possible
combination of sets of stations in A, but follow an iterative approach. To get initial
sequences Σ1, . . . , Σl−1 for the l-level graph, we take the sequences Σ1, . . . , Σl−2 that
were the basis for the best l− 1-level graphs, and combine these sequences with the
sets of stations Σl−1 in A with Σl−1 ⊃ Σl−2. Then, subsequences of A are used as
input for the l-level graph that are similar to the initial sequences.

Table 5.1 as well as Figure 5.10 show the results for the best l-level graph for 2 ≤
l ≤ 6. The gap between CPU- and edge-speedup reveals the overhead to compute
the subgraph Mst for a query using the multi-level graph, since the average CPU-
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Figure 5.9: The equivalent of Figure 5.7 for 3-level graphs M(Σ1, Σ2). For each set
of stations Σ1 ∈ {A1, A7, A8, A9} there is one curve, which is obtained by varying
Σ2 (abscissa). On the left hand, the ordinate shows the CPU-efficiency, while on
the right hand the CPU-speedup is shown.

speedup efficiency

l M(·) CPU edge CPU edge

2 A9 3.97 4.89 1.37 1.56

3 A9, A10 10.58 14.06 3.11 4.12

4 A7, A9b, A10a 11.18 16.63 3.48 5.18

5 A7, A9b, A9c, A10a 9.91 17.52 3.06 5.41

6 A7, A9, A9a, A9c, A10a 8.58 17.01 2.55 5.06

Table 5.1: Results for the best l-level graph. Note that the one-level graph is the
original graph, and that the speedup and efficiency are ratios comparing the results
for multi-level graphs with the original graph, so for the original graph the speedup
and efficiency are one.
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Figure 5.10: For different numbers l of levels the results of the best l-level graph
is shown: the CPU- and edge-efficiency in the left diagram, and the CPU- and
edge-speedup in the right one.

time includes this computation, but the average number of edges hit by Dijkstra’s
algorithm does not. Considering levels four and five, because of this overhead the
CPU-speedup is decreasing while the edge-speedup is still increasing with respect
to the number of levels. Experiments with larger values of l revealed that there is
no further improvement in the speedup and/or in the efficiency.

5.2.4 Discussion

In this section, we empirically investigated a hierarchical decomposition approach
based on multi-level graphs. The experiments were focused on a specific application
scenario motivated by the timetable information problems discussed earlier.. Given
the complexity of the recursive construction of the multi-level graph (or of similar
models proposed in the literature), this concept might appear to be more of theoret-
ical interest than of practical use, especially when more than one hierarchical level is
introduced. To our surprise, our experimental study with multi-level graphs for this
specific scenario exhibited a considerable improvement in performance regarding the
efficient computation of on-line shortest path queries. The best results have been
achieved with 4-level and 5-level graphs.

In defining the multi-level graphs, we considered three simple criteria A (impor-
tance of stations), B (highest degrees), and C (random choice) to select the stations.
The latter criterion turned out to be a very bad choice. It further turned out that—
given a reasonable criterion to select nodes—the size of the subsets of nodes defining
the decomposition have a high influence of the achieved speedup. These results in-
dicate that a careful selection of nodes is crucial for the success of the multi-level
graph approach.

Further improvements could be possibly achieved by using more sophisticated
versions of criteria A and B. For example, in [SWW00] we used a more sophisticated
version of criterion A for 2-level graphs. This criterion adds new stations to a set of
stations for which the 2-level graph is already known and hence is not applicable to
generate sets of stations with fixed sizes for more than two levels. Consequently, it
could not directly be used here. However, based on the similarities of the results for
the sequences A and B, we believe that if a criterion is chosen which yields a better
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performance for 2-level graphs, the performance of the multi-level graphs with more
than two levels could be improved as well.

5.3 More Speedup Techniques

There is a multitude of speedup techniques known for Dijkstra’s algorithm in the
single-pair case.1 We don’t provide a complete overview of these techniques (see
[WW] for a survey), but want to discuss a few such techniques with different char-
acteristics. There are also methods that improve the running time but that don’t
guarantee optimal solutions, but we focus only on techniques guaranteeing optimal
solutions.

We distinguish techniques that use preprocessing—like the multi-level graph ap-
proach above—and those that don’t. Naturally, techniques with preprocessing are
more effective when they are applied to a query, since in an expensive preprocessing
step additional information has been computed already beforehand. Usually, these
techniques only make sense in a setting when many queries have to be solved. An-
other distinctive feature is whether geometric information via coordinates is given or
not. This information can be utilised to direct the search towards the destination.
In the case that some coordinates of nodes are missing in a timetable (e.g., small
stations or bus stops of a timetable), or no coordinates are given at all, we have suc-
cessfully applied methods from graph drawing to generate the missing coordinates
in [BSWW04]. The goal of that study was to provide coordinates yielding the best
speedup of the respective technique.

5.3.1 Techniques Without Preprocessing

The goal-directed search introduced previously and the so-called bidirected search are
examples of methods to improve the running time but don’t require a preprocessing
step.

Goal-directed Search

In Section 3.4 (pages 24 et seq.), the goal-directed search has been introduced already
in detail. It is based on a potential function on the nodes, which is often a lower
bound on the distance to the destination node. When coordinates are given, such
a potential function can be obtained by using a linear function depending on the
Euclidean distance to the destination, as we did. Good potential functions lead
the search carried out by Dijkstra’s algorithm towards the goal, and thus the search
space (i.e., the number of edges touched by the algorithm) is reduced. In graphs with
Euclidean distances as edge lengths we have observed an improvement in running
time by a factor two or more, as Figure 5.15 shows (page 92; see also [SV86] for a

1We focus on techniques improving Dijkstra’s algorithm. Note, however, that some of the
techniques are more general in the sense that they can be applied to any shortest-path algorithm.
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theoretical discussion of goal-directed search in Euclidean graphs).

However, our experiments in Section 3.5 (pages 28 et seq.) have revealed that
applied to timetable information, the goal-directed search performs quite badly.
The main reason is that the used scale factor needed to guarantee optimal solutions
leads to bad potentials, and in the end the overhead to compute the potentials nearly
cancels out the obtained reduction in search space.

Bidirected Search

The bidirected search simultaneously applies the “normal”, or forward, variant of
the algorithm, starting at the source node, and a so-called reverse, or backward,
variant of Dijkstra’s algorithm, starting at the destination node. With the reverse
variant, the algorithm is applied to the reverse graph: a graph with the same node
set V as that of the original graph, and the reverse edge set E = {(u, v) | (v, u) ∈
E}. Let df (u) be the distance labels of the forward search and db(u) the labels
of the backward search, respectively. The algorithm can be terminated when one
node has been designated to be permanent by both the forward and the reverse
algorithm. Then the shortest path is determined by the node u with minimum
value df (u)+ db(u) and can be composed of the one from the start node to u, found
by the forward search, and the edges reverted again on the path from the destination
to u, found by the reverse search. (See also [AMO93] and [Len90].)

In timetable information, however, the bidirected search cannot be applied di-
rectly, neither in the time-expanded model nor in the time-dependent model. The
reason is that the arrival time at the destination station is not known, and thus the
starting node (and starting time in the time-dependent model) for the backward
search is not specified. In [SWW00], we experimented with an idealised version of
the bidirected search for the simplified earliest arrival problem, and used as initial
node for the backward search the arrival node at the destination station computed
by a normal run of Dijkstra’s algorithm. By this idealised version we get a bound
on the reduction of the search space achievable with any “real” applicable modifi-
cation of the bidirected search—using, for example, estimates for the arrival time.
Experiments with the idealised bidirected search showed that the search space (i.e.,
the number of touched edges) could be reduced to roughly one third of the search
space of Dijkstra’s algorithm.

5.3.2 Preprocessing Techniques

In a scenario like timetable information, where a multitude of shortest-path queries
have to be solved in a large, sparse graph, preprocessing techniques are reasonable:
On the one hand, a rather expensive preprocessing pays off since many queries can be
answered much faster than with standard algorithms, which is especially important
in an on-line setting. On the other hand, the complete distance matrix requires
quadratic space in the number of nodes which means that it usually cannot be
stored when graphs contain one million or more nodes. But, additional information
in the size of the input graph can be precomputed and stored. For solving the
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queries, this information is used to speedup the shortest-path algorithm.

Hierarchical Decomposition Techniques

The multi-level graph approach introduced in Section 5.1 is the first example of
such a preprocessing technique. The input graph is hierarchically decomposed and
additional edges representing shortest paths in the input graph are computed. The
search space is reduced since the shortest path search can be done in a small sub-
graph. Speedup factors of 1000 for regular component-induced random graphs (cf.
Section 5.1.3) and up to 11 for timetable information (cf. Section 5.2.3) show the
potential of the technique. Similar approaches are the HiTi graphs introduced by
Jung and Pramanik [JP02], and methods used in the area of car navigation sys-
tems [CF94, Fli04].

Geometric Shortest-Path Containers

This technique [WW03] requires a layout of the graph given by coordinates of the
nodes. In the preprocessing, all shortest path trees have to be computed. For each
edge e ∈ E, a set S(e) of those nodes to which a shortest path starts with edge e
is computed. Using a given layout, for each edge e ∈ E the bounding box of S(e)
is stored in an associative array BB with index set E. Then, Dijkstra’s algorithm
can be performed on the subgraph induced by the edges e ∈ E with the target node
included in BB[e]. This subgraph can be determined on the fly, by excluding all
other edges in the search.

We have introduced a variation of this technique in [SWW00], where as geo-
metric objects we used angular sectors instead of bounding boxes. Experiments
have been conducted with the time-expanded graph (for the simplified earliest ar-
rival problem), and speedup factors in the range from 6 to 10 have been observed.
Willhalm and Wagner showed in an extensive study [WW03] that bounding boxes
are the fastest geometric objects in terms of running time (in particular, bounding
boxes are more effective than the angular sectors), and competitive with much more
complex geometric objects in terms of visited nodes. We refer to the specific case of
bounding boxes as shortest-path bounding boxes.

5.3.3 Combination of Speedup Techniques

We have combined the above described preprocessing techniques using geometric
containers (in this case angular sectors) and a preliminary version of multi-level
graphs with one additional level in [SWW00] using the time-expanded graph. The
result is promising: concerning the average CPU time (when Dial’s priority queue
was used), the single speedup factors observed were 6 and 9, and the speedup of
the combination of both techniques was 34 (the best speedup one can hope for the
combination would be 6 · 9 = 54). Figure 5.11 illustrates the reduction of search
space achieved by the latter combination of techniques, compared to the search
space of Dijkstra’s algorithm shown in Figure 3.5 (page 29). In the following, we
present an experimental study investigating further combinations of the four speedup
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street

n 1444 3045 16471 20466 25982 38823 45852 45073 51510 79456

m 3060 7310 34530 42288 57620 79988 98098 91314 110676 172374

public transport

n 409 705 1660 2279 2399 4598 6884 10815 12070 14335

m 1215 1681 4327 6015 8008 14937 18601 29351 33728 39887

planar

n 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

m 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Waxman

n 938 1974 2951 3938 4949 5946 6943 7917 8882 9906

m 4070 9504 14506 19658 24474 29648 34764 39138 44208 48730

Table 5.2: Number of nodes and edges for all test graphs used for the experiments
on combining speedup techniques.

techniques goal-directed search, bidirected search, multi-level graph approach, and
shortest-path bounding boxes, applied to several different graph classes.

Graphs

The graphs under investigation are: (i) street graphs, taken from the publicly avail-
able data bases [Bar, Esr]; (ii) public transport graphs, where nodes are stations
and edge weights are average travel times; (iii) random planar graphs generated by
LEDA [NM99]; and (iv) a random graph model introduced by Waxman [Wax88],
where coordinates are chosen uniformly at random in the unit square and the prob-
ability that an edge exists is higher for smaller edges than for larger edges. For each
of the above four graph classes 10 graphs of different sizes have been studied; Ta-
ble 5.2 shows the number of nodes and edges of all graphs. Node coordinates, which
are needed by the speedup techniques goal-directed search and geometric containers,
are available for all of the graphs.

Experiments

All 16 possible combinations of the four techniques have been implemented (we refer
to [HSW04] for details on how the techniques can be combined) in C++, using the
graph and priority queue data structures of the LEDA library [NM99] (version 4.4).
The code was compiled with the GNU compiler (version 3.3), and experiments were
run on an Intel Xeon machine with 2.6 GHz and 2 GB of memory, running Linux
(kernel version 2.4).

For each graph and combination, we computed for a set of queries shortest paths,
measuring two types of performance: the mean values of the running times (i.e., CPU
time in seconds) and the number of nodes inserted in the priority queue. Finally,
the parameters of interest are the speedup factors CPU-speedup and node-speedup
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Figure 5.11: The search space (black edges) of a combination of the multi-level
graph approach and geometric containers (angular sectors) for the sample query
from Berlin to Frankfurt used in Figure 3.5.
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obtained by dividing the performance of Dijkstra’s algorithm by the performance
of the respective combination of techniques. The queries were chosen at random
and the amount of them was determined such that statistical relevance could be
guaranteed (see also [WW03]).

Results

The outcome of the experimental study is shown in Figures 5.12–5.15. Each combi-
nation is referred to by a 4-tuple of shortcuts: go (goal-directed), bi (bidirected), ml
(multi-level), bb (bounding box), and xx if the respective technique is not used (e.g.,
go-bi-xx-bb). In all figures, the graphs are ordered by size, as listed in Table 5.2.

On first sight it is striking that the multi-level graph approach performs generally
much worse than in the experiments shown previously (cf. Section 5.2.3) when we
applied the multi-level graph approach to our timetable information problem. This
is due to the fact that here, for the implementation of the multi-level graph approach
in combination with the other techniques, we use a relatively simple method to de-
rive the hierarchical decomposition of the graph. It is based on the results in [Hol03]
and basically removes a certain fixed number of nodes of high degree. However, as
the experiments in Section 5.2.3 suggest, the performance of the multi-level graph
approach highly depends on the various parameters of the decomposition. We be-
lieve that considerable improvements of the presented results are possible if these
parameters are chosen carefully for every single graph.

The results indicate that there are speedup techniques that combine well and
others where speedup does not scale. Good combinations are generally the goal-
directed search with the multi-level graph approach, and also the bidirected search
with the shortest-path bounding boxes, which complement each other very well.
For real-world graphs, a combination including bidirected search, multi-level graph
approach, and shortest-path bounding boxes is the best choice as to the number of
visited nodes, and in terms of running time, the bidirected search in combination
with shortest-path bounding boxes is the best. For generated graphs, the best
combination is goal-directed search, bidirected search, and shortest-path bounding
boxes for both the number of nodes and running time.

Without an expensive preprocessing, the combination of goal-directed and bidi-
rected search is generally the fastest algorithm with the smallest search space—
except for Waxman graphs. For these graphs, pure goal-directed search is better
than the combination with bidirected search. Actually, goal-directed search is the
only speedup technique that works comparatively well for Waxman graphs. Because
of this different behaviour, we conclude that planar graphs are a better approxima-
tion of the real-world graphs than Waxman graphs (although the public transport
graphs are not planar).
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Figure 5.12: Speedup relative to Dijkstra’s algorithm in terms of visited nodes for
real-world graphs (in this order: street graphs in red and public transport graphs in
blue)
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Figure 5.13: Speedup relative to Dijkstra’s algorithm in terms of visited nodes
for generated graphs (in this order: random planar graphs in yellow and random
Waxman graphs in green)
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Figure 5.14: Speedup relative to Dijkstra’s algorithm in terms of running time for
real-world graphs (in this order: street graphs in red and public transport graphs in
blue)
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Figure 5.15: Speedup relative to Dijkstra’s algorithm in terms of running time
for generated graphs (in this order: random planar graphs in yellow and random
Waxman graphs in green)



Chapter 6

Separators in Planar Graphs

The hierarchical decompositions needed in the multi-level graph approach intro-
duced in the previous chapter leads us now to a topic that is not directly related
to the timetable information problems. For planar graphs, there are efficient algo-
rithms to compute relatively small node separators that decompose the input graph
into balanced components: The Planar Separator Theorem was introduced by Lip-
ton and Tarjan in [LT79], where they give a linear-time algorithm for determining
a set of nodes (separator) of size smaller than 2

√
2n that separates a given planar

graph with n nodes into two components of size smaller than 2n/3. Djidjev [Dji82]
improved the bound on the separator size to

√
6n, and also proved a lower bound of

1.55
√

n, which is still the best known. The algorithms behind these two classical re-
sults share a common core algorithm, which determines an appropriate fundamental
cycle in a planar graph that contributes to the sought separator.

Since then, a lot of generalisations and extensions have been made, and the
best upper bound on separator size currently known is 1.97

√
n due to Djidjev and

Venkatesan [DV97], where the aforementioned core algorithm is used as a subrou-
tine, too. Recently, an experimental study [ADGM02] considered a variant of a
planar separator algorithm where the bound on the component size can be chosen
arbitrarily, which typically requires the graph to be separated into more than two
components.

We implemented these classical algorithms, and consider several new algorithmic
aspects regarding: (i) the optimisation of separator size and balance, instead of just
guaranteeing upper bounds; (ii) the consideration of fundamental cycle separator
algorithms in their own right; and (iii) the application of postprocessing techniques
to improve the quality of the separators. These issues are the subject of a com-
prehensive experimental study that constitutes our second contribution. For our
experiments, we used a large variety of planar graphs, both from real-world and
synthetic inputs with different characteristics (e.g., size of diameter, size of mini-
mum separator, etc).

A surprising outcome of our experimental investigation is that fundamental cycle
separator algorithms always provide the best solutions. Another important issue of
our experimental analysis concerns the arbitrary choices that have to be made during
the course of an algorithm (e.g., the choice of a node as the root of a BFS tree).
It turns out that such choices influence significantly the quality of the separators
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found.

The contents of this chapter have appeared as technical report entitled “Engi-
neering Planar Separator Algorithms” [HPS+04]. We start (Section 6.1) with a brief
review of the planar separator algorithms and their implementations, give our opti-
misation criteria, and introduce the fundamental cycle separator (FCS) algorithm.
Moreover, we present the postprocessing techniques applied and address implemen-
tation details of the FCS algorithm. Section 6.2 describes the graphs used for our
experiments, while the results of our experimental study are reported in Section 6.3.
We discuss the obtained results in Section 6.4.

6.1 Separating Planar Graphs

In this section, we consider classical linear-time planar separator algorithms im-
plementing the Planar Separator Theorem as stated below. The node separators
computed by the different algorithms fulfil different upper bounds β

√
n, for some

constant β, on the separator size, while each of the remaining components contains
less than two thirds of all nodes. The first theorem of this kind (for β = 2

√
2),

which constitutes the foundation of our work, was introduced by Lipton and Tar-
jan [LT79]. For simplicity, we state the theorem and its related algorithms for the
case of an unweighted planar graph. The algorithms and our implementations work
for the weighted case, as it is introduced in [LT79], as well.

Theorem 6.1 (Planar Separator Theorem) Given a planar graph G, the n nodes
of G can be partitioned into three sets A, B, and S such that no edge joins a node
in A with a node in B, neither A nor B consists of more than 2n/3 nodes, and S
contains no more than β

√
n nodes, where β is a constant.

The proof of the theorem for β = 2
√

2 provided in [LT79] is constructive and the
running time of the resulting algorithm is linear in the number of nodes of G. We
outline the algorithm in Section 6.1.2. It is based on so-called fundamental cycles,
which can be computed in linear time. Given a spanning tree of the graph G, every
non-tree edge {u, v} induces a unique fundamental cycle consisting of the path in the
spanning tree connecting u and v together with the edge {u, v}. The following lemma
represents the crucial part of the proof; we describe the fundamental cycle algorithm
behind the lemma in Section 6.1.4, and provide details about our implementation.

Lemma 6.1 (Fundamental Cycle Lemma) Let G be a connected planar graph.
Suppose G has a spanning tree T of height h. Then, the nodes of G can be partitioned
into three sets A, B, and C such that no edge joins a node in A with a node in B,
neither A nor B consists of more than 2n/3 nodes, and C contains no more than
2h+1 nodes, including the root of the tree. The nodes in C represent a fundamental
cycle of G with respect to the spanning tree T .
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6.1.1 Optimisation Criteria

In practical applications of planar separator algorithms, requirements as to “good
separations” may vary a lot. We therefore provide three optimisation criteria: sep-
arator size, balance, and separator ratio. Let A be the smaller and B the larger of
the two components, then balance is defined as A/B, and the separator ratio as S/A
(cf. [LR99]). What is desirable are small separator size and high balance at the same
time; the separator ratio, which is to be minimised, represents a trade-off between
the two targets. Note that if one of the simple criteria, separator size or balance,
is to be optimised and there are several optimal solutions, then the separator ratio
criterion becomes relevant.

6.1.2 The Algorithms

We investigate two classical linear-time algorithms, by Lipton and Tarjan (LT) [LT79]
and by Djidjev (Dj) [Dji82]. Both work in three phases. First, a breadth-first search
(BFS) tree is computed, partitioning the nodes into levels. If one of the BFS levels
constitutes a separator fulfilling the size and balance requirements, then the algo-
rithm returns that level. In case there are several feasible levels and an optimisation
criterion is applied, the respective algorithm selects a level that is optimal with re-
spect to that criterion. In the second phase, separators consisting of two levels of the
BFS tree are considered, yielding a separation of the tree into a lower, middle, and
upper part of the graph. Finally, if these separators do not fulfil the requirements,
the third phase applies Lemma 6.1 to the middle part of the previous two-level sep-
aration. In this case, the separator consists of those two levels and the fundamental
cycle found through the lemma. The algorithms differ in the selection of the levels,
as described in more detail below. We also consider fundamental cycle separations
computed by applying (the algorithmic version of) Lemma 6.1 directly to the graph.

Note that there are several parts in all the above algorithms, where certain
arbitrary (in a sense “random”) decisions have to be made: (i) the choice of the
BFS root and the search itself; (ii) the triangulation of the graph, which is needed
in phase 3 of the algorithms; and (iii) the choice of the fundamental cycle from
among several feasible ones—the so-called choice of the non-tree edge, as explained
in Section 6.1.4. We will thoroughly discuss the influence of the choices of the BFS
root and the non-tree edge in Section 6.3.

Lipton and Tarjan (LT). First, the middle level in the BFS tree is considered:
the first level, starting from the root, that covers together with the lower levels
more than half of the nodes. If this level is too large, the levels above and below are
scanned until in each direction a level of size less than 2(

√
n − D) is found, where

D is the distance to the middle level. If these two levels do not meet the bound,
then Lemma 6.1 is used to separate the part between these two levels and in this
case the separator consists of the two levels plus a fundamental cycle. We consider
a textbook version [Meh84, Koz92] of the algorithm guaranteeing a separator of size
less than 4

√
n, i.e., β = 4.
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Djidjev (Dj). Already in [LT79], Lipton and Tarjan give an even better bound,
and in [Dji82] Djidjev further improves the selection of levels to β =

√
6 ≈ 2.45. In

a similar but more sophisticated way than that in LT, the algorithm tries to find a
separator consisting of one or two levels of the BFS tree (which have to be smaller
than in LT), and as final option also determines a fundamental cycle.

Fundamental Cycle Separation (FCS). During the experimental phase of this
study, we observed that it is very effective to omit the selection of levels and directly
consider fundamental cycles as separators. Simple cycle separators are promis-
ing from a theoretical point of view, since an upper bound on the separator size
of 1.97

√
n, which is (to our knowledge) the best one currently known [DV97], is

achieved by a simple cycle. From a practical point of view, the algorithm used in
the proof of the latter bound seems too complicated. Instead, we compute a simple
cycle separator by applying Lemma 6.1 directly to the input graph. Note that we
can only guarantee the separator to be smaller than or equal to 2d + 1, where d
denotes the diameter of the input graph.

Optimised versions. We have also implemented optimised versions of LT, Dj,
and FCS that select an optimal separator according to a specific optimisation crite-
rion (cf. Section 6.1.1).

6.1.3 Postprocessing

To the above algorithms we provide two optional postprocessing steps, which may
help to improve the separation found by the specific algorithm in terms of separator
size and/or balance. The first one, called node expulsion, consists of moving sepa-
rator nodes that are not connected to both components A and B (and hence do not
actually separate two nodes from different components) to one of the components,
thus decreasing the size of the separator. If a node can be moved to either compo-
nent, then it is assigned to the smaller one, so that imbalance does not deteriorate.
The idea behind the other postprocessing step, called the Dulmage-Mendelsohn op-
timisation [AL96], is to detect a subset of the separator, ∅ 6= S ′ ⊂ S, such that the
subset B′ ⊂ B, consisting of nodes that are adjacent to S ′ and belong to the larger
component B, is smaller than S ′. Then, the separator is modified by removing the
nodes in S ′ and adding the nodes in B ′. The size of the new separator is smaller
than the original one, and the balance may be improved as well. For details on the
construction of S ′ we refer to [AL96].

6.1.4 Implementing the Fundamental Cycle Lemma

The proof of Lemma 6.1 given by Lipton and Tarjan in [LT79] is constructive in the
sense that it delivers an algorithm for computing the desired fundamental cycle. This
algorithm provides the core to all planar separator algorithms under investigation.
Briefly, the algorithm, which will be referred as the Fundamental Cycle Separator
(FCS) algorithm, is as follows. The graph is triangulated and a spanning tree of the
appropriate height is constructed. Every non-tree edge forms together with some
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tree edges a cycle. Each of these cycles is a candidate fundamental cycle separating
the graph into two parts, so the goal is to find a cycle such that these two parts have
the appropriate sizes. The optimised version of the FCS algorithm selects a cycle
that induces an optimal separator according to a specific optimisation criterion.

The FCS algorithm proceeds by examining each non-tree edge and the corre-
sponding cycle, keeping track of the nodes on the cycle as well as of those inside it
and their weight. Depending on whether the two edges, which form together with
the current non-tree edge the triangular face lying inside the cycle, belong to the
tree, the algorithm combines information computed for previous cycles until the de-
sired cycle is found (e.g., in the case that one of the other two edges is non-tree and
its corresponding cycle lies inside the current cycle). It is relatively straightforward
to show that this strategy will compute a fundamental cycle.

Although the description of the algorithm is clear, there is a subtle problem of
how to deal with the notions inside and outside. To compute correctly the informa-
tion about cycles, there must be a sense of direction so that the non-tree edges are
examined in a meaningful order. Our approach provides this sense of direction. We
make use of the dual of the planar graph. The following well-known lemma provides
an interesting property linking the spanning trees of a planar graph and its dual.

Lemma 6.2 Let G = (V,E) be a connected planar graph with dual G∗ = (V ∗, E),
and let E ′ ⊆ E. Then, T = (V,E ′) is a spanning tree of G iff T ∗ = (V ∗, E − E ′) is
a spanning tree of G∗.

The given planar graph G is triangulated and a spanning tree T = (V,ET ) of
appropriate height is found using a simple breadth-first search, and the dual G∗

is constructed. By Lemma 6.2, the edges E − ET form a spanning tree T ∗ =
(V ∗, E−ET ) of G∗. A node of T ∗ is chosen (arbitrarily) to be the root of T ∗ and all
edges of T ∗ are directed away from this root. It can be easily proven that all these
constructions require linear time.

Since there is a one-to-one correspondence between the non-tree edges in the
original planar graph and the tree edges of the dual, there is a correspondence
between the cycles in the original and the tree edges of the dual graph. By first
examining the cycles corresponding to the edges that lead to the leaf nodes of T ∗

and continuing towards the root, the properties of all the cycles can be computed
inductively. The direction of the edges in T ∗ ensures that when examining a cycle, all
information needed (from cycles that lie inside it) will have been already computed.

Evidently, our strategy provides the necessary order of cycle examination. It
should be noted that in the actual implementation of the algorithm the construction
of the dual graph and its spanning tree can be avoided. Instead, the construction
of the spanning tree is simulated by performing a “breadth-first” traversal on the
faces of the original graph using the non-tree edges. We keep track of the edges
that are used to “enter” a face and then examine them in the reverse order of their
discovery. The result is a correct and reasonably efficient implementation.



 Chapter 6: Separators in Planar Graphs

6.2 Data Sets

In the following, we give a brief description of the graph classes used in our ex-
periments and illustrated in Figures 6.1-6.6. The first five categories consist of
synthetically generated graphs, whilst the data sets in the last stem from real world.

Grid-like graphs. This category encompasses three classes of regular-structured
graphs, namely grid, rect(angular), and sixgrid. The grid and rect graphs
can be regarded as an x × x or x × y raster of nodes, respectively, where adjacent
nodes of the same row or column are connected by an edge. A sixgrid graph is
composed of x × y hexagons in a honeycomb-like fashion. In a grid graph with n
nodes a separator with minimal size consists of approximately

√

2n/3 ≈ 0.82
√

n
nodes. If x ¿ y, then the smallest separator of a rectangular graph has x nodes,
and a sixgrid graph has an optimal separator with x + 1 nodes.

Sphere approximation. In [Dji82] the currently best lower bound of 1.55
√

n on
the separator size is proven by graphs that approximate the sphere. We consider two
simple constructions of graphs that approximate the sphere, as worst-case examples
concerning separator size. A globe graph is—simply speaking—the graph induced
by (a specified number of) meridians and circles of latitude of a terrestrial globe.
A t-sphere graph approximates the sphere by almost similar triangles, see e.g.,
[Bou92]. The iterative generation process starts with an icosahedron (consisting
of 20 equilateral triangles with all nodes on the sphere). During an iteration each
triangle is split into four smaller ones.

Graph with big diameter. Given a diameter d, we construct a maximal planar
graph that consists of 3d + 1 nodes and has diameter d. We refer to this class as
diameter. By construction, such a graph has always a separator of size 3.

Random planar graphs. Random maximum planar graphs, denoted by del-max

and leda-max, are generated such that the specified number of nodes are randomly
placed in the plane and the convex hull of them is triangulated, the triangulation
being a Delaunay triangulation (del-max) or a standard LEDA-triangulation [NM99]
(leda-max), respectively. In addition, we have the del and leda graphs, which
are obtained from del-max and leda-max, respectively, by deleting at random a
specified number of edges. We will occasionally refer to del and del-max (leda and
leda-max, resp.) as the Delaunay (LEDA, resp.) graphs.

Graphs with small separators. Given a planar graph, two copies of this graph
are connected via a given small number of additional nodes, which constitute a
perfectly balanced separator of a so constructed graph. The challenge of the algo-
rithms is to re-determine these small separators. We consider four of the previous
graph types and get the following new kind of generated graphs: c-grid, c-globe,
c-del-max, and c-leda-max graphs.

Road map graphs. Regarding real-world data, we consider seven graphs repre-
senting the road networks of some U.S. cities and their surrounding areas (referred to
as city), taken from the San Francisco Bay Area Regional Database (BARD) [Bar]
and the Environmental Systems Research Institute (ESRI) info-page [Esr].
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Figure 6.1: Sample grid-like graphs. From left to right: a 15x15 grid, a 17x5
rectangular graph, and a 7x4 sixgrid graph. Nodes belonging to a component
are drawn as red (grey) and blue (black) circles, separator nodes as black squares.

Figure 6.2: Sample diameter graph with diameter 6.

Figure 6.3: Sample random planar graphs with 50 nodes and 125 edges: delaunay

(left) and leda (right).



 Chapter 6: Separators in Planar Graphs

Figure 6.4: A c-del-max graph with 5 connecting nodes.

6.3 Experiments

Our experimental study is subdivided into three parts encompassing graphs of in-
creasing size. The three algorithms LT, Dj, and FCS have been implemented in C++

using the LEDA library [NM99] (version 4.5). The code is compiled with the GNU
C++ compiler (version 3.3.3) and the experiments were performed on a 2.8 GHz Intel
Xeon machine running a Linux kernel (version 2.6.5).

6.3.1 Small Graphs

For each of the generated graph types grid, rect, sixgrid, globe, del, leda,
del-max, and leda-max, we considered series of ten graphs containing between 50
and 1000 nodes. We take into account all algorithms, LT, Dj, and FCS, optimised on
separator size, and each node was once chosen as BFS root. As already described
above, if more than one smallest separators have been found, the one with best
balance is selected.

Separator size and balance. Concerning the grid-like and globe graphs, the
differences between the three algorithms are quite small. Due to the regular con-
struction of these graphs, LT and Dj always succeed right after the first phase, and
the smallest BFS level is almost optimum. The mean size of a fundamental cycle
separator is always slightly smaller and yields better balance. For the randomly
generated graphs, the results are different. Although for the Delaunay graphs, LT
always terminates after the first phase with a smallest valid BFS level, Dj applies
for around 15 per cent of the BFS roots the last phase of the algorithm.

The diagrams in Figure 6.7 show the mean values of separator size and balance
for the case of Delaunay graphs. It can be clearly seen that FCS computes on
average the best separators, while Dj is slightly better than LT. Considering the
LEDA random graphs, the results are again different: With those, both LT and Dj
always have to pass the third phase. The mean separator size of FCS is only slightly
better than that of Dj, while LT is by far worse. The mean balance with LEDA
graphs is similar for all three algorithms, in the range between 0.8 and 0.9.
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Figure 6.5: Approximation of the sphere: t-sphere graphs with 0 to 4 iterations,
and a globe graph.
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Figure 6.6: Sample real-world graph: city5. The separator has been computed
with the randomised method suggested for very large graphs in Section 6.3.3.
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Figure 6.7: Experiments with a series of Delaunay graphs of sizes ranging from 50
to 1000 nodes: the mean separator size (left) and mean balance (right) with LT, Dj,
and FCS.
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Figure 6.8: Same graph series as in Figure 6.7: for FCS the mean ranges of BFS
root vs. non-tree edge selection concerning separator size (left) and balance (right).
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graph nodes edges diam
orig triang

grid 10000 19800 198 67
rect 10000 19480 518 20
sixgrid 9994 14733 513 22

globe 10002 20100 101 101
t-sphere 10242 30720 96 96

diameter 10000 29994 3333 3333

del 10000 25000 56 45
del-max 10000 29971 52 48
leda 9989 25000 18 15
leda-max 10000 29975 15 14

c-grid 10087 19904 212 72
c-globe 10090 20325 144 142
c-del-max 10005 29972 65 58
c-leda-max 10005 29984 20 16

city2 2948 3564 131 14
city3 15868 16690 658 13

Table 6.1: Parameters for the graphs used in the experiments with large graphs. The
table depicts the number of nodes and edges, the diameter (diam) of the original
graph (orig) and the diameter of a triangulation of the graph (triang).

BFS root and non-tree edge selection. The diagrams in Figure 6.8 show the
influence of BFS root selection and non-tree edge selection on separator size and
balance. For FCS applied to the Delaunay graphs, the mean ranges of both the
separator size and balance values are depicted, either over all possible BFS root
nodes or over all possible non-tree edges. More precisely, the mean range of the
separator size over all possible BFS root nodes, for example, is defined as follows:
For every BFS root, determine the mean separator size over all possible non-tree
edges. Then, the wanted mean range is the difference between the maximum and
the minimum of these separator sizes among all BFS root nodes. The other mean
ranges are defined similarly. The diagrams show that selection of the BFS root node
is more decisive for the separator size than non-tree edge selection. Concerning
balance, both selections are of similar importance.

6.3.2 Large Graphs

The second series of graphs that we experimented with, the large graphs, consists of
16 graphs of the categories mentioned in Section 6.2 of size roughly 10000 (except for
the two real-world graphs, which have about 3000 and 16000 nodes, respectively).
The rectangular graph represents a 20 × 500 raster, the sixgrid graph consists
of 20 × 237 hexagons, the globe has 100 meridians and circles of latitude, and the
t-sphere is constructed by 5 iterations. For c-grid, c-del-max and c-leda-max,
the two copies of the respective graph are connected by 5 nodes, while for c-globe
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graph BFS level LT Dj FCS
orig triang min mean min mean min mean

grid 82 135 82 106 82 106 89 99
rect 20 931 20 27 20 27 20 20
sixgrid 21 839 21 28 21 28 21 21

globe 100 100 100 119 100 119 100 106
t-sphere 160 160 160 169 160 169 160 164

diameter 3 3 3 4 3 4 3 3.3

del 206 232 206 300 82 113 65 75
del-max 204 233 204 314 86 117 74 79
leda 783 1459 76 216 7 31 5 8
leda-max 1604 1619 56 205 7 26 6 10

c-grid 38 73 38 78 38 78 5 6.4
c-globe 4 4 4 96 4 96 4 12
c-del-max 74 215 74 318 19 65 5 8.3
c-leda-max 211 1050 78 209 7 32 4 4.5

city2 15 162 15 39 15 39 4 9.5
city3 28 2161 28 53 28 53 4 6.8

Table 6.2: Results for large graphs: BFS tree level for both the graph itself (orig)
and a triangulation of it (triang); for each of the algorithms LT, Dj, and FCS, all
of them optimised on separator size with postprocessing applied, the minimum and
mean separator sizes; bold-face figures represent the best separator size achieved for
the respective graph.
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Figure 6.9: Box plots depicting the separator sizes relative to
√

n obtained with
unoptimised LT (light-gray) and LT (gray), Dj (dark-gray), and FCS (black), the
latter three optimised on separator size. The dashed lines indicate the range of all
separators without postprocessing applied.

only 4 nodes are used to connect the two globe graphs. A detailed synopsis of the
graphs and some of their characteristics, such as the diameter and the minimum
number of nodes in a level of a BFS tree forming a valid separator, for both the
original (orig) and the triangulated graph (triang), respectively, are reported in
Table 6.2.

In the first experiments that we carried out for large graphs, we investigated the
performance in terms of separator size of LT, both unoptimised and optimised on
separator size, Dj, and FCS, the latter ones also optimised on separator size. We
ran each of these algorithms for each graph while once making each node the root
of the BFS tree.

The subsequent experiments deal with the effect of postprocessing on the vari-
ous algorithms. In order to appropriately choose the postprocessing variant to be
performed with each optimisation criterion, we undertook a pre-study, performing
for each graph and each combination of optimisation and preprocessing steps one
run of each of the above algorithms.

To get an idea of the quality of the separators found by the algorithms, we
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Figure 6.10: Pre-study: average separator reduction and balance improvement. The
upper key in the x-axis labels denotes optimisation (-: none, S: separator, B: bal-
ance, R: separator ratio); the lower one stands for postprocessing (-: none, E: node
expulsion, D: Dulmage-Mendelsohn decomposition), where double letters reflect the
application order of the postprocessing steps.
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Figure 6.11: Pre-study: separator ratio improvement. The keys are as in Figure 6.10.

compare them against separators obtained with the help of MeTiS [Kar], a graph
partitioning tool collection. Separators determined by MeTiS are a trade-off between
separator size and balance, so for the sake of a meaningful comparison, we contrast
the MeTiS results and our algorithms optimised on separator ratio.

Pre-study. Figures 6.10 and 6.11 depicts average values of the separator reduc-
tion relative to the former separator size and the absolute improvement in terms of
balance and of separator ratio. These results suggest that optimisation of separa-
tor size and separator ratio should be accompanied by a combination of Dulmage-
Mendelsohn optimisation as the first postprocessing step and node expulsion after-
wards; the same holds when not optimising at all. With balance as optimisation
criterion, no postprocessing step is on the average able to improve balance further.

Comparison of algorithms. The results of the experiments regarding the sepa-
rator sizes achieved by the various algorithms is listed in Table 6.2, and illustrated
in Figure 6.9 by means of box plots that represent the middle fifty per cent of the
data series (note that the whiskers here span the whole range of outcomes). The
data show that—except for the grid graph—the smallest separator is found by
FCS. This, together with the fact that the boxes are clearly slender, and—except
for c-globe—the ranges are minimal for FCS, suggests that FCS outperforms sig-
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Figure 6.12: Postprocessing: average separator size for unoptimised LT (light-gray)
and LT (gray), Dj (dark-gray), and FCS (black), the latter three optimised on
separator size. The line on top of a bar shows the respective value before the
postprocessing.

nificantly the other algorithms in terms of separator size.

The runtime is linear for all of our algorithms. However, for the algorithms LT
and Dj, the constant crucially depends on the phase in which the algorithms ter-
minate (cf., Section 6.1.2). The first two phases consist basically of a breadth-first
search, while the computation of the fundamental cycle requires expensive oper-
ations like embedding, triangulation, and copying. FCS, of course, computes a
fundamental cycle and always needs the expensive operations. LT and Dj terminate
after phase 1 with all grid-like graphs, sphere-approximating graphs, and with the
diameter, c-grid, c-globe, and city graphs. In contrast, the LEDA, c-del-max,
and c-leda-max graphs in the majority of cases require phase 3. For the Delaunay
graphs, LT mostly terminates after phase 1, but Dj needs phase 3. The mean run-
ning time for LT (applying only phase 1) in the city3 graph, for example, is 0.04
seconds, while FCS involving a fundamental cycle computation needs 0.71 seconds.

Postprocessing. Figure 6.12 depicts the average separator size achieved with the
diverse algorithms before and after the application of a postprocessing step. On the
one hand, for the grid-like and sphere-approximating graphs as well as the diameter
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Figure 6.13: Minimum separator sizes relative to
√

n (left) and balance (right)
computed with MeTiS (light-gray) and with FCS (black) optimised on separator
ratio.

graph, the separators found by the algorithms without postprocessing cannot be
much improved. (Often the separators are already close to optimal solutions for these
graphs.) On the other hand, for the remaining graphs, the separators computed by
the algorithms Dj and LT are very large compared to an optimal solution, and
in these cases the postprocessing greatly improves the separators. The separators
computed by FCS can generally be improved only a little.

Benchmark. MeTiS provides—amongst others—implementations of two algo-
rithms, kmetis and pmetis, for computing small-cardinality k-way edge partitions
with balancing constraints. The application of both kmetis and pmetis on all of our
instances yield 2-partitions of ‘very high’ balances (meeting the requirement that
each part encompass at least one third of the graph’s nodes) and with ‘quite few’
cut edges.

From an edge partitioning thus obtained we can get a node separator by choosing
an appropriate subset of the end-nodes of the edges forming the cut. To achieve
this, our implementation proceeds as follows: at each time, until all cut edges are
covered, i.e., have one of their end-nodes included in the separator, we pick one
end-node as a separator node, trying to cover with it as many cut edges not covered
yet as possible.

Since among LT, Dj, and FCS optimised on separator ratio, the solutions com-
puted by FCS were the best with respect to both separator size and balance, we
compare MeTiS with FCS only. Figure 6.13 shows the best separator size and bal-
ance values. One may state that with FCS, the separator size is always at least as
good as with MeTiS and balance is almost always comparable. Those graphs whose
balance is considerably worse with FCS than with MeTiS (leda and city2) exhibit
by far smaller separators with FCS, which suggests that the weighting between the
two criteria, separator size and balance, seems to be more in favour of separator size
with FCS, while MeTiS tends to prefer balance. Indeed, almost perfect balance can
always be achieved with FCS optimised only on balance.
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Figure 6.14: Delaunay graph series: Separator size (left) and computation time in
seconds (right). The separators were computed with FCS for ten randomly selected
BFS roots optimised on separator ratio. Shares in computation time for one BFS
root (from bottom to top): computing the BFS tree, copying the graph, triangulating
the graph, determining fundamental cycles, postprocessing.

graph nodes edges size balance

city1 1429 3034 5 0.871

city2 2948 3564 8 0.996

city3 15868 16690 7 0.869

city4 20036 41476 10 0.789

city5 24106 53826 5 0.740

city6 38823 79988 8 0.704

city7 44878 90930 7 0.547

Table 6.3: City graph series: number of nodes and edges, and best separator size and
balance values achieved with the randomised fundamental-cycle heuristic optimised
on separator ratio.

6.3.3 Very Large Graphs

Under the name of very large graphs, we consider two series of graphs increasing in
size: a series of city graphs with numbers of nodes up to about 45,000 and a series
of ten random del graphs of sizes between 50,000 and 500,000. For these graphs
we computed separations by the following procedure: run FCS on ten BFS trees
of a given graph, determined by a random node as root, and from among these
separations take the one with best separator ratio.

The results of the experiments with the city graph series is depicted in the table
aside. Obviously, all city graphs have extremely small separators, which are also
found by our algorithm. The separators for the city2 and city3 graphs, which
had already been included in the experiments of the previous section, are somewhat
bigger than those of the preceding experiment (8 and 7 instead of 4, resp.; see
Table 6.2). This is due to the fact that: (i) the separator ratio is now optimised
instead of the separator size; and (ii) we do not longer take into account every node
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as a BFS root.
Figure 6.14 shows the separator sizes and the running times with the Delaunay

graph series. The balance is very high for all graphs, namely greater than 0.94, and
the separator size divided by

√
n is always in the range between 0.6 and 0.63. This

suggests that the separator ratio criterion indeed represents a good trade-off between
separator size and balance. The running times vary between approximately 2 and 20
seconds. Also, the diagram pronouncedly reflects linearity of the algorithms’ time
complexity.

6.4 Discussion

Our experiments have shown that, especially for graphs with small separators, there
is a high potential for optimising the separators computed by the algorithms. Both
the postprocessing and in particular the Fundamental Cycle Separation yielded
almost-optimal separators with respect to separator size and balance (in contrast
to the classical algorithms for many graphs). Selection of the non-tree edge in the
fundamental cycle computation has a considerable influence on both criteria, and
we are able to select the best during the respective algorithm. The choice of the
BFS root also exhibits a great impact on separator quality, mainly on its size.

The only graph where FCS did not compute the best solution was the grid

graph (cf. Table 6.2). This must be due to a “bad” triangulation of the graph,
since one can specify a triangulation such that FCS finds the optimal solution.
For grids, the optimal separator is not a cycle in the graph, but it is a cycle in a
“good” triangulation. A strategy to improve the algorithm would be to compute the
triangulation during the breadth first search to determine the spanning tree. The
intuition behind this approach is to assume that the root belongs to the optimal
separator that shall be computed; by triangulating during the breadth first search,
edges are used to triangulate the graph such that the optimal separator becomes a
fundamental cycle in the triangulated graph. Of course, the problem that also the
breadth first search makes random choices, which can lead to non-optimal separators,
remains.

For practical application, in case more runtime can be invested in order to achieve
high quality separators, we suggest to select a small (randomly chosen) set of BFS
roots and compute the separators using an optimised FCS algorithm with postpro-
cessing.1 Our experiments on very large graphs demonstrated that this strategy
yields good results.

1We have unsuccessfully tried to classify “good” BFS roots. A better strategy to select the BFS
roots remains as an open problem.





Chapter 7

Conclusion

We want to conclude the thesis by summarising the achieved results and giving some
remarks about open problems for each of the three main parts.

7.1 Timetable Information

We have thoroughly investigated models and algorithms for the core of an timetable
information system for public transportation. The crucial issues have been (i) the op-
timality of the solutions with respect to several criteria; (ii) realistic modelling (e.g.,
the integration of train transfers); and (iii) the efficiency of the algorithms. Both the
time-expanded and the time-dependent approaches have been implemented and we
evaluated the performance and experimentally compared the models. We were able
to model the realistic itinerary specifications under consideration in both approaches
as shortest path problems. For the simplified specification without transfer rules,
the time-dependent approach clearly outperforms the time-expanded approach. Re-
alistic transfer rules required extensions of the models: Additional nodes and edges
had to be included such that a transfer could be modelled as edge cost. In the
time-expanded model the number of edges is doubled, while in the time-dependent
model the number of edges is more drastically increased (by a factor depending on
the number of train lines per station). This different behaviour is also reflected in
our experiments: for most of the considered problems, the running time is roughly
the same in both realistic models.

When we integrated the additional criterion of optimising transfers (in combi-
nation with the earliest arrival), the time-expanded approach benefited from the
straightforward modelling of itineraries as paths in a static graph. In the time-
dependent approach a bigger change of the underlying graph was necessary. The
crucial principle of the time-dependent approach is to only consider the first train
leaving a station in some direction. However, when train transfers shall also be
optimised, the first train is not always the best anymore. Hence, the edges had to
be split into several edges, each representing the set of trains belonging to one train
line, such that the first train is the best among all (fewer than before) trains on a
new edge again: it doesn’t make sense to transfer into a later train of the same line.

It may be necessary to include further optimisation criteria besides the two main
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criteria earliest arrival and minimum number of transfers that we have discussed in
this thesis. A criterion that can be modelled as edge length in the time-expanded
or the time-dependent graph can be integrated easily into the approaches. The
labelling algorithm to compute all Pareto-optimal paths can be used to find all
Pareto-optimal connections with respect to earliest arrival, transfers, and the new
criterion. It is more likely that an additional criterion can be modelled as edge
lengths in the time-expanded graph than in the time-dependent graph, since in
the latter graph—as discussed above—only the first train on an edge is considered,
which is usually not the best with respect to the new criterion. In the time-expanded
graph, each elementary train connection corresponds to a different edge, and thus
every criterion that can be broken down to a cost per elementary connection can be
modelled directly as edge length. In case the criterion cannot be modelled as edge
lengths, it might be possible to extend the graphs similarly to the extensions we did
for modelling transfers.

7.2 Speedup Techniques

We have investigated techniques to improve the performance of our algorithms for
the single-criterion case (i.e., modifications of Dijkstra’s algorithm). Standard ap-
proaches like bidirected or goal-directed search could either not be applied or did not
yield a significant improvement. However, we demonstrated that preprocessing tech-
niques, like the multi-level graph approach that we have extensively investigated,
have the potential to drastically improve the running time by two digit factors. Also
the combination of such techniques is viable, as we have observed that combinations
of techniques yield much higher speedup factors as the single techniques for the
time-expanded graph as well as for other graphs (randomly generated and road net-
works). The drawback of these techniques is, of course, the expensive preprocessing
step. As open problem we want to mention the treatment of dynamic changes of the
graph. When an edge length is changed or edges are deleted or added to the graph,
the precomputed information (e.g., the multi-level graph) is not valid anymore and
has to be updated accordingly. Such dynamic changes may be due to delayed trains,
or accidents. Also, traffic days of trains can be regarded as dynamic changes of the
underlying graph (i.e., some edges are removed on certain days).

The multi-level graph approach proved to be suited to improve the performance
of Dijkstra’s algorithm by factors from 11 to 17 when it was applied to the time-
expanded graph. The best performance was achieved when 3 or 4 additional levels
have been used, which shows that it is indeed useful to use more than one additional
level, which was not clear before. Our experience with multi-level graphs is that the
selection of nodes inducing the hierarchical decomposition needs to be done carefully.
The resulting speedup crucially relies on (i) the number of additional levels (for
larger graphs more levels are feasible); (ii) good decompositions; and (iii) on the
number of selected nodes in each level. From the theoretical point of view we have
shown that for graphs with an especially regular hierarchical structure the multi-
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level graph approach yields search spaces that are asymptotically smaller than the
search space of Dijkstra’s algorithm. Hence, for sufficiently large graphs, arbitrary
high speedup factors can be achieved. Such high speedup factors have also been
observed in experiments with random graphs of regular hierarchical structure.

7.3 Separators in Planar Graphs

Good node separators of graphs can be characterised by a small set of separating
nodes, and a balanced decomposition (i.e., the induced components are of similar
size), as we have seen, for example, in our analysis of the multi-level graph approach.
For planar graphs, we have investigated modifications of classical linear-time algo-
rithms for determining such good separators: given a planar graph with n nodes,
a separator size of O(

√
n) can be guaranteed, while all induced components are

smaller than 2n/3. Our focus was to compute optimal separators rather than to
just fulfil the worst-case bounds. In particular, the fundamental cycle separation
turned out to provide excellent separators in practice. In the classical algorithms,
these fundamental cycles are used as subprocedures, since better worst-case bounds
can be achieved by additional steps before the fundamental cycle separation is ap-
plied. However, we have experimentally shown for many graph classes that the
direct application of fundamental cycle separation yields the better results, which
are close to optimal solutions. Also, the application of post-processing techniques
proved to be very useful.

The algorithms rely on a spanning tree which is calculated by a breadth first
search initiating from an arbitrary root node. Our experiments have shown that
the choice of the root has a high influence on the solution found by the algorithms,
especially on the number of nodes in the separator. Since the range of observed
separator sizes is quite small for the fundamental cycle separation, it suffices to
compute fundamental cycle separators for a small number of randomly chosen root
nodes: with high probability a good separator is found, while the running time is
still linear in the size of the graph. However, this strategy is a bit unsatisfactory,
since no good worst-case bounds can be guaranteed. An interesting issue for future
work would be whether a spanning tree can be computed deterministically that
always guarantees a good solution.
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[FET98] Lisa Fleischer and Éva Tardos. Efficient continuous-time dynamic net-
work flow algorithms. Operations Research Letters, 23:71–80, 1998.

[FF58] L. R. Ford and D. R. Fulkerson. Constructing maximal dynamic flows
from static flows. Operations Research, 6:419–433, 1958.

[FF62] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton Uni-
versity Press, 1962.

[Fli04] Ingrid C.M. Flinsenberg. Route Planning Algorithms for Car Naviga-
tion. PhD thesis, Technische Universiteit Eindhoven, 2004.

[Fre91] G. Frederickson. Planar graph decomposition and all pairs shortest
paths. Journal of the ACM, 38:162–204, 1991.

[Fre95] G. Frederickson. Using cellular graph: Embeddings in solving all pairs
shortest path problems. Journal of Algorithms, 19:45–85, 1995.

[Fre99] Michael L. Fredman. On the efficiency of pairing heaps and related
data structures. Journal of the ACM, 46:473–501, 1999.

[FS02] Lisa Fleischer and Martin Skutella. The quickest multicommodity flow
problem. In Proceedings of the 9th Conference on Integer Programming
and Combinatorial Optimization (IPCO’02), volume 2337 of LNCS,
pages 36–53. Springer, 2002.

[FS03] Lisa Fleischer and Martin Skutella. Minimum cost flows over time
without intermediate storage. In Proceedings of the 14th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2003), pages 66–75.
SIAM, 2003.

[FSST86] M. Fredman, R. Sedgewick, D. Sleator, and R. Tarjan. The pairing
heap: A new form of self-adjusting heap. Algorithmica, 1:111–129,
1986.

[FT87] Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of the
ACM, 34:596–615, 1987.

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman, New York, 1979.

http://www.mentzdv.de/
http://www.esri.com/
http://www.eu-spirit.com/


 Bibliography

[Gol01a] A. V. Goldberg. Shortest path algorithms: Engineering aspects. In
Proceedings of the 12th International Symposium on Algorithms and
Computation (ISAAC 2001), volume 2223 of LNCS, pages 502–513.
Springer, 2001.

[Gol01b] Andrew V. Goldberg. A simple shortest path algorithm with linear
average time. In Proceedigns of the 9th European Symposium on Algo-
rithms (ESA 2001), volume 2161 of LNCS, pages 230–241. Springer,
2001.

[GSVGM98] Roy Goldman, Narayanan Shivakumar, Suresh Venkatasubramanian,
and Hector Garcia-Molina. Proximity search in databases. In Pro-
ceedings of 24th International Conference on Very Large Data Bases
(VLDB 1998), pages 26–37. Morgan Kaufmann, 1998.

[HAF] HAFAS, a timetable information system by HaCon Ingenieurge-
sellschaft mbH, Hannover, Germany.
http://www.hacon.de/hafas/.

[HD88] M. S. Hung and J. Divoky. A computational study of efficient shortest
path algorithms. Computers and Operations Research, 15:567–576,
1988.

[HNR68] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuris-
tic determination of minimum cost paths in graphs. IEEE Transactions
on Systems Science and Cybernetics, SSC-4(2):100–107, 1968.

[Hol03] Martin Holzer. Hierarchical speed-up techniques for shortest-path al-
gorithms. Master’s thesis, Fachbereich Informatik und Informations-
wissenschaft der Universität Konstanz, 2003.
http://www.ub.uni-konstanz.de/kops/volltexte/2003/1038/.

[HPS+04] Martin Holzer, Grigorios Prasinos, Frank Schulz, Dorothea Wagner,
and Christos Zaroliagis. Engineering planar separator algorithms.
Technical report, DELIS Project, Universität Paderborn, Germany,
2004.
http://delis.uni-paderborn.de/docs/subproject1/papers2004/.

[HSW04] Martin Holzer, Frank Schulz, and Thomas Willhalm. Combining speed-
up techniques for shortest-path computations. In Proceedings Third In-
ternational Workshop on Experimental and Efficient Algorithms (WEA
2004), volume 3059 of LNCS, pages 269–284. Springer, 2004.

[IOAI91] K. Ishikawa, M. Ogawa, S. Azume, and T. Ito. Map navigation software
of the electro multivision of the ’91 Toyota soarer. In Proceedings of
the IEEE International Conference on Vehicle Navigation Information
Systems, pages 463–473, 1991.

http://www.hacon.de/hafas/
http://www.ub.uni-konstanz.de/kops/volltexte/2003/1038/
http://delis.uni-paderborn.de/docs/subproject1/papers 2004/


Bibliography 

[JMN99] R. Jakob, M. Marathe, and K. Nagel. A computational study of routing
algorithms for realistic transportation networks. The ACM Journal of
Experimental Algorithmics, 4, 1999.

[JP96] Sungwon Jung and Sakti Pramanik. HiTi graph model of topographical
road maps in navigation systems. In Proceedings of the 12th Interna-
tional Conference on Data Engineering, pages 76–84. IEEE, 1996.

[JP02] Sungwon Jung and Sakti Pramanik. An efficient path computation
model for hierarchically structured topographical road maps. IEEE
Transactions on Knowledge and Data Engineering, 14(5), 2002. A
previous version appeared as [JP96].

[Kar] George Karypis. MeTiS.
http://www-users.cs.umn.edu/~karypis/metis.
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Zusammenfassung

Die elektronische Fahrplanauskunft ist im heutigen öffentlichen Personenverkehr zur
Normalität geworden. Was vor einigen Jahren noch mittels Kursbüchern mühsam
von Hand gesucht werden musste wird heute im Internet oder am Bahnschalter von
Fahrplanauskunftssystemen, wie z.B. das von vielen Bahnunternehmen eingesetz-
te System Hafas [HAF], erledigt. Typischerweise werden zentrale Server eingesetzt,
wobei pro Sekunde hunderte von Anfragen beantwortet werden müssen. Die Da-
tenbasis ist enorm, die Auskunft der Deutschen Bahn etwa deckt den Großteil des
europäischen Fernverkehrs sowie weite Teile des deutschen Nahverkehrs ab. Das Sys-
tem muss also fähig sein im Bruchteil einer Sekunde eine optimale Zugverbindung
zu ermitteln. In der Praxis werden heutzutage meist heuristische Verfahren einge-
setzt, die zwar schnell eine Zugverbindung berechnen, deren Optimalität aber nicht
garantiert werden kann.

Mittelpunkt und Motivation dieser Arbeit ist der algorithmische Kern eines Fahr-
planauskunftsystems, insbesondere spielen die Modellierung der betrachteten Pro-
bleme über kürzeste Wege in geeigneten Graphen, der Entwurf von Algorithmen
sowie vor allem deren experimentelle Analyse eine wichtige Rolle. Somit ist die Ar-
beit hauptsächlich dem Gebiet des Algorithmen-Engineering zuzuordnen. Neben den
kommerziellen Fahrplanauskunftsystemen sind nur wenig wissenschaftliche Arbeiten
zu diesem Thema vorhanden (siehe etwa [Möh99, Nac95]), insbesondere gibt es kaum
experimentelle Untersuchungen.

Erster wichtiger Punkt ist die Festlegung des Fahrplanauskunftproblems, d.h. die
formale Definition des Begriffes optimale Zugverbindung. Für diverse Varianten und
Optimierungskriterien dazu werden Graphmodelle und Algorithmen untersucht, die
gemäß der jeweiligen Problemspezifikation garantiert optimale Verbindungen liefern.
Es werden zwei Modellierungsansätze verfolgt, die beide das Fahrplanauskunftspro-
blem in ein kürzeste Wege Problem transformieren. Im ersten Fall wird ein Graph
konstruiert, der für jede Abfahrt und jede Ankunft jedes Zuges im Fahrplan einen
Knoten enthält. Es wird also gewissermassen im Graphen für jeden Bahnhof die
Zeit expandiert, indem für jeden Zeitpunkt, an dem ein Zug abfährt oder ankommt,
ein neuer Knoten eingeführt wird. Die Lösung wird dann mittels eines Algorith-
mus für kürzeste Wege bestimmt, wobei Varianten des Algorithmus von Dijkstra
besonders geeignet sind. Im zweiten Modell entspricht der Graph im Prinzip dem
zugrundeliegenden Streckennetz (zusammen mit weiteren Kanten, die Direktverbin-
dungen ohne Zwischenhalte modellieren). In diesem Fall wird pro Kante eine ganze
Liste von möglichen Abfahrts- und Ankunftszeiten gespeichert, und während des
Algorithmus die jeweilige Ankunftszeit berechnet. Dies ist eine spezielle Form eines
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zeitabhängigen kürzeste Wege Problems.

Zum Vergleich der beiden grundlegenden Modelle werden zunächst Umstiegszei-
ten vernachlässigt und das Kernproblem der Fahrplanauskunft betrachtet: Gegeben
eine früheste Abfahrtszeit, einen Abfahrts- und einen Zielbahnhof, sucht man ei-
ne Verbindung, die baldmöglichst am Ziel ankommt. Anschließend wird untersucht,
wie diese Modelle erweitert werden können um alle in der Realität vorkommen-
den Eigenheiten, wie Umstiegszeiten an Bahnhöfen oder Fußwege, zu integrieren.
Des Weiteren werden neben der Fahrzeit andere Optimierungskriterien, wie z.B.
die Anzahl der Umstiege, betrachtet. Schließlich sollen mehrere Kriterien gleichzei-
tig optimiert werden, einerseits durch Festlegen einer Reihenfolge und Bestimmung
der lexikographisch ersten Lösung, oder im Allgemeinen durch Bestimmung aller
Pareto-optimalen Lösungen.

Wie oben schon erläutert ist, neben der korrekten Modellierung, die mittlere
Laufzeit pro Anfrage entscheidend für den Kern eines zentralen Fahrplanauskunfts-
systems. Die beschriebenen Modelle wurden implementiert, und auf echten Fahrplan-
und Anfragedaten der Deutschen Bahn experimentell analysiert. Der zeitabhängige
Ansatz ist bei der vereinfachten Problemstellung deutlich schneller. Dieser Vorteil
wird aber relativiert, wenn man zu realistischen Problemstellungen übergeht. Die
experimentellen Ergebnisse zeigen auch, dass die Basisalgorithmen (Dijkstra’s Al-
gorithmus bzw. eine zeitabhängige Variante davon) noch zu langsam für ein reales
Auskunftssystem sind. Deswegen werden im Weiteren Techniken untersucht, wie Al-
gorithmen für kürzeste Wege beschleunigt werden können ohne die Optimalität der
Lösung zu verletzen.

Der Multi-Level Ansatz zur Beschleunigung von Algorithmen für kürzeste Wege
besteht aus zwei Phasen. Zuerst wird in einem (langsamen) Vorverarbeitungsschritt
der gegebene Graph hierarchisch durch Wegnahme wichtiger Knoten zerlegt und zwi-
schen diesen mehreren Leveln wichtiger Knoten neue Kanten, die Information über
kürzeste Wege tragen, berechnet. Später, wenn ein kürzester Weg berechnet werden
soll, wird dieser nicht im Originalgraph gesucht, sondern nur in einigen Komponen-
ten des hierarchisch zerlegten Graphen. Dadurch wird der Suchraum eingeschränkt,
der gefundene kürzeste Weg hat jedoch garantiert die gleiche Länge wie ein kürzester
Weg im Originalgraph. Das Problem, geeignete hierarchische Separatoren für diese
Technik zu bestimmen, wird sowohl theoretisch als auch experimentell ausführlich
untersucht.

Für eine Klasse von Graphen, für die
”
gutartige“ hierarchische Zerlegungen ange-

geben werden können, kann durch den Multi-Level Ansatz eine Beschleunigung der
kürzeste Wege Suche garantiert werden. Wir stellen weiter ein Zufallsgraphmodell
vor, mit dem Graphen generiert werden können, die zur oben erwähnte Graphklasse
gehören, und sind somit in der Lage, die garantierte Beschleunigung experimentell
zu validieren. Danach wird diskutiert, wie sowohl der Multi-Level Ansatz als auch
andere Beschleunigungstechniken, die jeweils die Optimalität der Lösung erhalten,
für die beschriebenen Modelle zur Fahrplanauskunft eingesetzt werden können, um
für die Praxis akzeptable Antwortzeiten zu erhalten. Dabei kommt eine etwas abge-
wandelte Variante des Multi-Level Ansatz mit heuristisch bestimmten Separatoren
zum Einsatz. Einen entscheidenden Punkt hierbei spielt wieder die experimentelle
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Analyse der Techniken auf realen Daten. Abschließend soll die Frage der Kombinati-
onsmöglichkeit von Beschleunigungstechniken, angewandt nicht nur auf Graphen aus
dem öffentlichen Personenverkehr, sonder auch auf Graphen aus der Routenplanung
und auf Zufallsgraphen, geklärt werden. Alle Kombinationen aus dem Multi-Level
Ansatz, einer weiteren Vorverarbeitungs-basierten Technik, und den Standardtech-
niken zielgerichtete und bigerichtete Suche werden betrachtet.

Motiviert durch die im Multi-Level Ansatz benötigten Knotenseparatoren wer-
den wir uns im letzten Kapitel Algorithmen zum Berechnen von Knotenseparatoren
widmen. Dabei entfernen wir uns etwas von der Anwendung der Fahrplanauskunft,
und beschäftigen uns mit planaren Graphen. (Die Graphen für die Fahrplanauskunft
sind in der Regel nicht planar.) Für planare Graphen gibt es Linearzeitalgorithmen
zur Berechnung von garantiert kleinen Knotenseparatoren, die gleichzeitig gewähr-
leisten, dass die Komponenten, die durch Wegnahme der Separatorknoten entste-
hen, ungefähr gleich groß sind. Die Algorithmen basieren auf dem

”
Planar Separator

Theorem“ von Lipton und Tarjan [LT79], wobei eine obere Schranke für die Größe
eines Separators garantiert wird. Viele planare Graphen, die auch in der Realität
vorkommen (z.B. Graphen zu Straßenkarten), haben jedoch Separatoren, die we-
sentlich kleiner sind als diese obere Schranke. Uns beschäftigt nun hauptsächlich die
Frage, inwiefern die Algorithmen modifiziert werden können, um möglichst optimale
Lösungen zu berechnen.

Für eine Vielzahl sowohl generierter planare Graphen also auch für planare
Straßenkarten, mit unterschiedlichen Eigenschaften wie Durchmesser und minimale
Größe eines möglichen Separators, wurden mit den klassischen und den modifizierten
Algorithmen Separatoren bestimmt. Diese Experimente liefern Erkenntnisse wie sich
die Algorithmen auf unterschiedlichen Graphen verhalten, und welche Phasen der
Algorithmen überhaupt eintreten. Eine Modifikation des klassischen Algorithmus
lieferte dabei durchaus erstaunliche Ergebnisse: Beim modifizierten Algorithmus ist
die garantierte obere Schranke schlechter als beim klassischen Algorithmus, aber bei
(fast) allen Graphen sind die vom modifizierten Algorithmus berechneten Separato-
ren besser, zum Teil sogar wesentlich besser, als die des klassischen Algorithmus.
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