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Nondemolition measurements of a single quantum spin using Josephson oscillations.
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We consider a Josephson junction containing a single localized spin 1/2 between conventional
singlet superconducting electrodes. We study the spin dynamics and measurements when a dc-
magnetic field B ‖ z acts on the spin and the junction is embedded into a dissipative circuit. We
show that when tunneling or a voltage are turned on at time t = 0 the Josephson current starts
to oscillate with an amplitude depending on the initial (t = 0) value of the spin z-component,
Sz = ±1/2. At low temperatures, when effects of quasiparticles may be neglected, this procedure
realizes a quantum-non-demolition (QND) measurement of Sz.

PACS numbers: 74.50.+r, 03.67.-a, 03.65.Yz

Quantum measurements in mesoscopic systems by use
of tunneling attracted recently great interest. One of
the motivations is the challenge of the single spin detec-
tion [1–3]. The other motivation comes from the quan-
tum computing where the final state (after the computa-
tion) of a qubit must be measured. The meter couples,
usually, to a single observable of the qubit, e.g., σz . If
this observable commutes with the spin Hamiltonian, the
QND regime is realized, i.e., the two possible eigenvalues
of σz can be measured with proper probabilities even by
a weakly coupled meter. Otherwise the initial state is
quickly destroyed and one can only observe the steady
state properties of the qubit and the meter performing
continuous measurements [4–6]. In the spin detecting
tunneling schemes all components of the localized spin
are coupled to the tunneling electrons via the exchange
interaction. Thus QND measurements seem impossible.

In this paper we show that in fact QND measurements
of the spin projection on the direction of the applied
field B ‖ z are possible with the use of spin dependent
Josephson tunneling at low temperatures, when the ef-
fect of quasiparticles is negligible. In this case the ampli-
tude of Josephson oscillations depends on the state of the
spin just before the measurement. The amplitude can be
measured, e.g., in a circuit containing Josephson junc-
tion with the spin, a dc-voltage source V and a resistor
R, see Fig. 1. The dissipative spin-dependent current in
the circuit appears when the voltage exceeds a threshold
and, effectively, it measures the squared amplitude of the
Josephson-current oscillations.

The measurement can begin either when the voltage
exceeding a threshold [12] or the tunneling in the pres-
ence of such a voltage is switched on. The first possibility
appears more natural for mesoscopic circuits, while the
second could be realized with the use of the STM with
a superconducting tip and a molecule with spin on the
superconducting substrate. As the tip approaches the
molecule, tunneling is turned on.
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FIG. 1. The circuit containing Josephson junction with a
spin.

The system we consider, i.e. a spin in a Josephson
junction with applied voltage, is interesting also from the
general viewpoint of quantum measurements. The entan-
glement of the spin with the measurement apparatus is
realized here by use of the non-dissipative macroscopic
quantum system as an intermediate step, namely with
the superconducting phase degree of freedom. Remark-
ably, in such a system the amplitude of Josephson oscil-
lations at frequency ωJ = 2eV/~ at finite bias V carries
information on the initial state of the spin even for junc-
tions made of singlet superconductors. Due to the spin
conservation in a singlet-Cooper-pair tunneling in the ab-
sence of quasiparticles (T → 0) the average spin compo-
nent, 〈Sz〉, is preserved to second order in the tunneling
amplitude at V < 2∆0 (∆0 being the superconducting
gap), though the spin operator Ŝz does not commute with
the Hamiltonian Ĥ of the system. The noncommutativ-
ity of Ĥ and Ŝ enables the tunneling measurement of the
z-component of the spin, while due to the preservation
of 〈Sz〉 it is a QND measurement.

We consider a Josephson junction where the spin-
independent tunneling is described by amplitude T0 and

the spin-dependent tunneling by Ts
<
∼ T0. The Hamilto-

nian of the system is
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H = H0 + HT , H0 = Ha + Hb − µBzSz, (1)

HT =
∑

n,m,α,α′

a†
nα[T0δα,α′ + Ts(σ)α,α′ · S]bmα′ + h.c., (2)

where Ha and Hb are the Hamiltonians of the supercon-
ducting leads a and b, and a†

nα (anα) creates (annihilates)
an electron in the lead a in the state n with the spin α.
Further, σ represents the three Pauli matrices, the local-
ized spin 1/2 is described by the operator Ŝ, and µ is the
magnetic moment of the spin. In the following we use
notations B for µBz and ωL = B/~.

As we will show in the following, the Josephson cur-
rent I(t) oscillates at the frequency ωJ = 2eV/~, and
the average oscillation amplitude depends on the state of
the spin at t = 0, i.e. on |α|2 for the spin wave func-
tion Ψs(0) = α| ↑〉 + β| ↓〉. We show also that the dc-
component of the current in the circuit with a resistor
depends quadratically on the oscillation amplitude, and
thus is sensitive to the value Sz at time t = 0.

First, we derive the expression for the Josephson cur-
rent across the junction as a functional of the phase dif-
ference ϕ(t) across the junction and the spin wave func-
tion Ψs(0) at low temperatures, neglecting the effect of
quasiparticles, which will be estimated later. We neglect
quantum fluctuations of the phase difference across the
junction, assuming that the charging energy (2e)2/C is
lower than the Josephson energy ∼ T 2

0 ρ2∆0, where C is
the junction capacitance and ρ is the density of states
per spin in the leads. We assume that T 2

0 ρ2, T 2
s ρ2 ≪ 1

and 2eV, B ≪ ∆0, and that all relevant frequencies are
much lower than ∆0/~. We find the Heisenberg operator
for the current using the operator perturbation theory
[13] with respect to the tunneling Hamiltonian HT , and
then we average this operator over the electron ground
state of the Hamiltonian Ha + Hb. The current oper-
ator 〈I(t)〉e obtained in this way is an operator in the
spin space and 〈Ψ∗

s(0)|〈I(t)〉e|Ψs(0)〉 defines the average
current for any initial state Ψs(0). Yet the measurement
produces one of the two values, corresponding to the spin
up/down states, Sz = ±1/2, rather than the average.

At time t > 0 the current is given by

Î(t) = exp(
i

~
Ĥt)Î exp(−

i

~
Ĥt) , (3)

exp(−
i

~
Ĥt) = exp(−

i

~
Ĥ0t)T exp

[

−
i

~

∫ t

0

H̃T (τ)dτ

]

, (4)

Î =
∑

n,m,α,α′

ie

~
â†

nα[T0δα,α′ + Ts(σ̂)α,α′ · Ŝ]b̂mα′ + h.c. , (5)

where we accounted for isotropic exchange interaction of
tunneling electrons with localized spin, T is the time or-
dering operator and Ã(t) = exp(iH0t/~)Â exp(−iH0t/~)
is the operator in the interaction representation, Â is the
Schroedinger operator and Â(t) is the Heisenberg oper-
ator. After averaging over electronic degrees of freedom

in the absence of quasiparticles and assuming a classical
phase difference on the junction ϕ(t) we find

〈Î(t)〉e =
4ie

~2

∫ t

0

dt′ sin

[

ϕ(t) + ϕ(t′)

2

]

×

{

F+(t − t′)F (t − t′)[T 2
0 − T 2

s S̃(t) · S̃(t′)] − h.c.
}

, (6)

where S̃(t) = exp(−iωLŜzt)S exp(iωLŜzt), and the
Gor’kov Green functions are related to the Bessel func-
tions as

F+(t) = −F (t) = (π∆0ρ/2)[J0(∆0t/~) − iN0(∆0t/~)] .

For singlet Cooper pairing the dependence of the current
on the spin is isotropic due to the isotropic exchange cou-
pling of the spin and the tunneling electrons. We see that
the average current is expressed via the spin correlation
function 〈Ψ∗

s(0)|S̃(t)·S̃(t′)|Ψs(0)〉. This function depends
on the initial spin state, thus leading to the correspond-
ing dependence for the supercurrent, because

S̃(t) · S̃(0) = (2 cosωLt + 1)1̂/4 − iŜz sin ωLt, (7)

where 1̂ is the unit matrix in the spin space.
The functions F+(t)F (t), F+(t)F (t) cos ωLt and
F+(t)F (t) sin ωLt oscillate and drop on the scale ∆−1

0

at B ≪ ∆0. For the function ϕ(t) with characteristic
frequencies well below ∆0, we take ϕ(t) ≈ ϕ(t′) and for
t ≫ ∆−1

0 we obtain

〈Î(t)〉e = Îc sin ϕ(t), Îc = I01̂ + IsŜz. (8)

I0 =
2π2e

~

(

T 2
0 −

3

4
T 2

s

)

ρ2∆0, Is =
4e

~
T 2

s ρ2B.

〈Î(t)〉e is the renormalized current via the Josephson
junction obtained after integration over all high frequen-
cies & ∆0. It corresponds to the Josephson energy

ÊJ{ϕ(t), Ŝz} = (~/2e)(I01̂ + IsŜz)[1 − cosϕ(t)], (9)

which can be considered as an effective Hamiltonian for
the Josephson junction with the spin. The spin sup-
presses the Josephson energy due to the negative con-
tribution (3/4)T 2

s to I0 which can lead to the formation
of a π-junction when I0 changes sign [7].

The current amplitude depends on the initial state of
the spin with different values for Sz = 1/2 and Sz = −1/2
until the spin flips due to quasiparticles or due to re-
laxation. Otherwise, on average, the spin does not flip
in Josephson tunneling because the first electron of the
Cooper pair may flip it, but then the second one restores
the spin since the Cooper pair cannot carry spin; thus Sz

on average is an integral of motion.
The effect of the Josephson current on the spin can

also be understood from the following argument. One
sees from Eq. (2) that the spin feels the fluctuating ex-
change field induced by tunneling electrons,
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µĥ(t) = Ts

∑

n,m,α,α′

a†
nα(t)(σ)α,α′bmα′(t) + h.c. . (10)

This field causes deviations of spin from the z-axis orien-
tation due to presence of transverse components σx and
σy when the first electron of a Cooper pair tunnells via
spin. This spin response interferes with the spin depen-
dent part of the current operator (5) giving rise to the
spin dependent contribution in the current.

Having obtained linear dependence of the Josephson
critical current on the spin z-component we have reduced
the problem to the well studied case of a dc-SQUID mea-
suring a flux qubit [4]. Here, for completeness, we provide
a simplified version of the derivation of the dephasing and
measurement times, valid for R ≪ h/e2 and T ≪ V .

Without the resistor (R = 0) the system is dissipa-
tionless, ϕ(t) = ωJ t and no measurement is performed.
Introducing dissipation allows us to measure the ampli-
tude of the Josephson-current oscillations, and, thus, the
initial state of the spin. We consider the circuit in Fig. 1
with R 6= 0. The circuit dynamics is described by

~

2e
Cϕ̈ +

~

2e

ϕ̇

R
+ Ic sin ϕ =

V

R
+ ξ(t) , (11)

where the Langevin force ξ(t) is the random current
(Nyquist noise) generated by the resistor. Let us con-
sider the simplest case when the junction capacitance
can be neglected. This is possible if RCωJ ≪ 1. When
V ≪ IcR no voltage drops on the junction and the dc-
current is not sensitive to the value of the Josephson
critical current and, thus, to the state of the spin. For
V ≫ IcR, solving Eq. (11) and averaging one obtains
ϕ(t) = ωJ t + (IcR/V ) cos(ωJ t) (see e.g., [8]) and

I = Ic sinϕ ≈ Ic sin(ωJ t) + (I2
c R/V ) cos2(ωJ t) . (12)

The dc-component of the current is given by

Îdc =
Î2
c R

2V
=

(I2
0 + I2

s /4)R

2V
1̂ +

I0IsR

V
Ŝz . (13)

Now the dc-current is sensitive to the state of the spin.
For a single measurement one of the two possible values of
the current, (I0 ± Is/2)2R/2V , is realized. In a multiple
set of measurements these values occur with probabilities
P+ = |α|2 and P− = 1 − |α|2.

Now we are in a position to derive the measurement
rate Γm needed to resolve two values of the current corre-
sponding to Sz = ±1/2 on the background of shot noise
of Cooper pairs tunneling incoherently due to the resis-
tor. The signal is δI ≡ I0IsR/V . The noise power of the
background current SI(ω) is defined as

SI(ω) =
1

2

∫ ∞

−∞

dt exp(iωt)〈[I(t)I(0) + I(0)I(t)]〉 . (14)

At V ≫ IcR it is given by

SI(ω) ≈ 2eIdc ≈ eI2
0R/V, ω < V ≪ ∆0, (15)

assuming I0 ≫ Is. This expression can be obtained [8]
from the Langevin equation (11) with the appropriate
high frequency spectrum of ξ(t) [9]. It describes the shot
noise of individual Cooper pairs tunneling incoherently
through the junction and dissipating each energy 2eV
into the microscopic modes of the resistor [10]. We de-
fine the measurement rate as:

Γm ≡ (δI)2/(8SI) ≈ (I2
s R)/(8eV ) . (16)

Note that the current correlation function for the shot
noise is expressed via the phase correlation function as

〈I(t)I(0)〉 = I2
0 〈sin ϕ(t) sin ϕ(0)〉 . (17)

Next we discuss the back-action effect of the measure-
ment, i.e. the effect of incoherent Cooper pair tunnel-
ing, on the spin dynamics. It leads to the dephasing of
transverse spin components, i.e. to the destruction of
coherent superposition of states Sz = ±1/2. To derive
the dephasing rate, Γd, we consider the x-component of
spin averaged over the electronic degrees of freedom. We
obtain

〈Sx(t)〉e = η(t)S̃x(t) +
~

2e
Is S̃y(t)

∫ t

0

cosϕ(τ)dτ , (18)

where η(t) < 1 is an oscillating function close to unity
[see Eq. (20)], describing the reduction of the spin
amplitude. Its origin will be discussed later. Here
we focus on the second term in the right hand side.
This term describes the phase accumulation due to
the effect of a random magnetic field acting on spin,
hzr(t) = [~Is/(2e)] cosϕ(t), in agreement with the ef-
fective Hamiltonian (9). The dephasing rate is given by

Γd =
1

2~2

(

~Is

2e

)2 ∫ ∞

−∞

dτ〈cos ϕ(τ) cos ϕ(0)〉 . (19)

By use of Eqs. (15), (17) we get Γd ≈ I2
s R/(8eV ) ≈ Γm.

The inequality Γd ≥ Γm is the fundamental property
of quantum mechanics as it follows from the uncertainty
relations (see, e.g., review [11] and references therein). It
was proven for the case of a linear detector with the di-
rect coupling of the detector to the measured observable,
see e.g., Ref. [4,14]. In our setup the interaction of spin
with tunneling electrons is nonzero only in the second
order of perturbation theory. However, effectively we
obtain a linear relation between the spin z-component
and the superconducting current accessible experimen-
tally, see Eqs. (8), (9). Consequently, the optimal rela-
tion Γd ≈ Γm is satisfied for our measurements.

Now we discuss the effects which are beyond the accu-
racy of the effective Hamiltonian (9). We calculate the
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z-component of the spin, 〈Sz(t)〉e averaged over the elec-
tronic degrees of freedom, as was done in Eqs. (3), (4).
We derive for t ≫ ~/∆0:

〈Ŝz(t)〉e = 〈exp(iHt)Ŝz exp(−iHt)〉e = η(t)Ŝz ,

η(t) = 1 − 2T 2
s ρ2[1 + cosϕ(t)] . (20)

The maximum average value of the spin z-component
is slightly smaller than 1/2. This is because spin
flips can happen after one electron of a Cooper pair
passes the spin. The time of passing is ∼ ~/∆0 and
probability to scatter on the spin per unit time is ∼
T 2

s ρ2(∆0/~) cosϕ(t). Also the second term in Eq. (18),
which corresponds to an extra phase in the spin rotation,
can be understood in terms of the spin flips. Each pas-
sage of a Cooper pair changes this phase by ∆α ∼ B/∆0

and in the case of coherent tunneling during the time
t this phase changes by α(t) ∼ T 2

s ρ2(∆0/~)(B/∆0)t ∼
T 2

s ρ2ωLt. Hence, in addition to B there is the effec-
tive magnetic field acting on spin hz ∼ T 2

s ρ2B as follows
also from the effective Hamiltonian (9). For uncorrelated
tunneling of Cooper pairs this field is random and in ad-
dition to regular change it leads to phase diffusion as
〈[α(t) − 〈α(t)〉]α(0)〉 ∝ (∆α)2t ∝ B2t and Γd ∝ B2.

For comparison, we consider a normal tunnel junction
with unpolarized electrons in the leads. We find the cur-
rent sensitivity to the spin z component also,

〈Î(t)〉e =
2πe

~
ρ2[(2T 2

0 + 3T 2
s )V 1̂− (21)

T 2
s (|V + B| − |V − B|)Ŝz].

Now, however, the spin flips are allowed because tun-
neling electrons are not paired. For short times
~[T 2

s ρ2
0V ]−1 ≫ t ≫ ~V −1 we obtain

〈Ŝz(t)〉e = Ŝz − 2πT 2
s ρ2[2Ŝzmax(|V |, |B|) − B]t, (22)

which gives at eV ≫ B the spin-flip (demolition) rate
Γ†

n ∼ T 2
s ρ2eV/~. The dephasing rate is about the same.

The measurement rate given by ~Γm ∼ T 4
s ρ2B2/(T 2

0 eV )
is smaller than the spin-flip rate. Hence, tunneling mea-
surement of spin is impossible in the normal state.

Thermal quasiparticles cause spin flips as the electrons
do in the normal state. The demolition rate is propor-
tional to the fraction of quasiparticles. At T ≪ ∆0 it is
exponentially small, ~Γ†

s . T 2
s ρ2eV exp(−∆0/T ).

In this paper we have considered spin S = 1/2. We
note that also for arbitrary S the current operator 〈Î(t)〉e
is a linear combination of operators Ŝn

z , 0 ≤ n ≤ 2S.
It depends on the spin initial state and differs for the
states 〈Ŝz〉 = ±S in contrast to the classical spin (dis-
cussed in Ref. [3]) for which it depends only on S2

z be-
cause S̃(t) · S̃(0) = (S2 − S2

z ) cosωLt + S2
z .

We note, that other strategies of spin measurement
could also be considered. E.g., a Josephson junction with
a spin could be inserted into a superconducting ring, a

voltage across the junction could be induced by chang-
ing magnetic flux across the ring and the alternating flux
induced by Josephson oscillations could be measured by
a secondary circuit coupled inductively to the supercon-
ducting ring. This will be studied elsewhere.

In conclusion, we have shown that the nondemolition
measurements of a quantum spin are possible using the
Josephson oscillations. The average amplitude of Joseph-
son oscillations depends on the initial state of the spin af-
ter the tunneling or voltage is switched on and the voltage
exceeds the dissipative threshold. This amplitude can be
found measuring the dc-current in the circuit with a resis-
tor. Use of the singlet-pair tunneling as an intermediate
nondissipative system allows us to obtain information on
the initial value of the z component of the spin without
flipping the spin. Thus a QND tunneling measurement
of spin is performed.
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