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Dephasing of solid-state qubits at optimal points
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Motivated by recent experiments with Josephson-junction circuits, we analyze the influence of
various noise sources on the dynamics of two-level systems at optimal operation points where the
linear coupling to low-frequency fluctuations is suppressed. We study the decoherence due to non-
linear (quadratic) coupling, focusing on the experimentally relevant 1/f and Ohmic noise power
spectra. For 1/f noise strong higher-order effects influence the evolution.
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For quantum-information processing it is crucial to
reserve phase coherence. Recent experiments ﬂ, E, E, E,
ﬁ] with Josephson-junction circuits demonstrated long-
lived coherent oscillations. They showed resolution, suf-
ficient for detailed studies of the dephasing times and de-
cay laws, stressing the need for the theory analysis of the
dissipative dynamics of qubits subject to relevant noise
sources.

In solid-state systems decoherence is potentially strong
due the host of microscopic modes. In Josephson qubits
the noise is dominated by material-dependent sources,
such as background-charge fluctuations or variations of
critical currents and magnetic fields, with power spec-
trum peaked at low frequencies, often 1/f. A further
relevant contribution is the electromagnetic noise of the
control circuit, typically Ohmic at low frequencies. The
1/f noise appears difficult to suppress and, since the de-
phasing is dominated by low-frequency noise, it is par-
ticularly destructive. On the other hand, Vion et al. ﬂ}
showed that the effect of this noise can be substantially
reduced by tuning the linear longitudinal qubit-noise cou-
pling to zero. The same strategy, suppressing the linear
qubit-detector coupling, was used to minimize the effect
of the quantum detector in the off-state. The achieved
coherence time was 2—-3 orders of magnitude longer than
in earlier experiments.

The 1/f noise (more generally, strong low-frequency
noise) plays a major role in many solid-state systems.
The long-range correlations in time make the analysis of
its effect difficult. In this letter we analyze the dynamics
of a qubit subject to singular noise, with a focus on non-
linear coupling and higher-order effects. We also apply
the developed formalism to an environment with regular
(e.g., Ohmic thermal) noise.

The dynamics of a dissipative two-level system (spin
1/2, qubit) can be described by the Hamiltonian:

1
H:_§(50Z+VO'Z+UUm)+Hbath- (1)

The longitudinal (V) and transverse (U) fluctuations
may result from various microscopic noise sources, de-
scribed by Hpath. In this letter we analyze the dephasing

in the situation of quadratic longitudinal coupling,

V =\X2, U=0, (2)

to a source of Gaussian noise X (t), with noise power
Sx(w). Here X(t) is a basic physical quantity (e.g.,
voltage or magnetic field), which controls the qubit’s
Hamiltonian [15]. This model is relevant to a Josephson
qubit at an optimal point, investigated in recent experi-
ments ﬂa] To emphasize specific features of this model,
we first recall the description of the dissipative qubit dy-
namics when the noise is either short-correlated or Gaus-
sian longitudinal. Then we motivate model @) and show
that it can describe the effect of both longitudinal and
transverse low-frequency noise. We discuss the statistics
of X and V, and then analyze dephasing in model ({@).

For weak short-correlated noise the dynamics is de-
scribed by the Bloch equations, regardless of the noise
statistics. The weak dissipative effects from many uncor-
related time intervals ~ 7. (the correlation time) accu-
mulate and the effect of both longitudinal and transverse
noise can be described by the markovian Bloch equa-
tions. The dissipative rates are given by the golden rule:
the o,-relaxation rate 1/T7 = Sy(w = €)/2 and the rate
of dephasing (decay of o, ) 1/T> = 1/(2T1) + 1/T5, the
‘pure’ dephasing rate 1/Ty = Sy (w = 0)/2 being dom-
inated by low w. This approach applies for weak noise
with a short correlation time 7. < T, T5.

One can still rely on the lowest order of the cumulant
expansion (but beyond the golden rule) for Gaussian lon-
gitudinal noise V' (U = 0), even for long correlations. The
coherence (o_(t)) (here o_ = (0, —i0y)/2) decays then

o0l = (-3 [ 22 svi) BB g

where Sy = (([V(t),V(0)]4))e is the noise power.
For instance, for a linear coupling, V(X) = aX, to
a Gaussian-distributed 1/f (flicker) noise X, when T4
defined above vanishes, one finds the dephasing law
exp(—a? X7t?| In(wi,t)|/27) (cf. Refs. i, [). Here X? sets

the magnitude of the noise,

Sx(w) = X¢/lul, (4)

sin?(wt/2)
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and may depend on the external conditions, such as tem-
perature. The infra-red cutoff w;, may be set, and con-
trolled, by the details of an experiment. For instance,
when a measurement of dephasing, performed over a
short time ¢, is averaged over many runs, the fluctu-
ations with frequencies down to the inverse of the to-
tal signal acquisition time contribute to the phase ran-
domization [1] (this averaging improves the accuracy and
is needed to monitor the oscillations of expectation val-
ues [, 12, 3, 4, H]). In an echo-type experiment the con-
tribution of slow fluctuations can be suppressed [6]. The
controlled frequency of the compensating echo pulses sets
wiy (in Ref. 8 wi, ~ 1/t but it can be varied). Here we
focus on the case wit 2 1.

Typically, in the mentioned regime of linear coupling to
1/f noise dephasing is strong. To increase the coherence
time one tunes the system to a point where the linear
term vanishes, a = 0 |2]. The effect of the remaining
quadratic coupling is described by the model [ ). More-
over, this model can also account for low-frequency trans-
verse fluctuations Ujys. Indeed, in the adiabatic approx-
imation we diagonalize (M) to —3/(c +V)?+ UZ 0. =
—3(e+Vegt) 02, where Veg = V +Uj/(2¢). Hence as long
as the relaxation due to the resonant (w ~ €) part of U
is negligible, it is sufficient to analyze the model ).

This analysis requires an account of higher orders, and
thus the knowledge not only of Sy (w) but of the full
statistics of V. The latter depends on the statistics of the
basic quantity X as well as on the qubit-noise coupling.
In this letter we consider a Gaussian-distributed X (see
below), but due to the nonlinear coupling in Eq. @) the
qubit is subject to non-Gaussian fluctuations V = A X2
In combination with long correlations of 1/f noise, this
shows that further analysis is needed.

The statistics of the low-frequency fluctuations of the
basic quantity X deserves further discussion. The as-
sumed Gaussian statistics is generic for noise produced
by many microscopic modes, due to the central limit the-
orem and regardless of the noise mechanism. As for the
flicker (‘1/f’) noise in mesoscopic circuits, it may be dom-
inated by only a few modes (bistable fluctuators) or con-
tain comparable contributions of many of those, depend-
ing on the sample, and one may expect non-Gaussian
resp. Gaussian noise. This was demonstrated in experi-
ments at kHz- and lower frequencies [§]. While the noise
at higher frequencies MHz—GHz, relevant for the dephas-
ing of qubits, is less explored, recent data suggest that it
may have the same nature |4, |, [9]. Here we focus on the
analysis of the influence of Gaussian noise X; the effect of
a few bistable systems was discussed recently in Ref. [10.
Our analysis on one hand, indicates interesting features
of decoherence for quadratic coupling; on the other hand,
one can consider the qubit as a probe of the noise, thus
our findings may help in identifying the noise mechanism.

Analysis of dephasing in model @). To be definite,
we assume that A > 0; the sign change has no effect

on the dephasing laws, but reverses the phase accumu-
lated due to the nonzero average of V. We follow the
evolution of the off-diagonal entry of the qubit’s density
matrix (o_(t)) = (STo_S), with the evolution opera-
tor S = Texp(—%fot Vo.dt'), which yields (o_(t)) =
P(t)et/"(5_(0)), where

P(t) = <Texp (% /Ot th’) Texp (% /Ot th’>> ., (5)

with averaging over noise realizations. T and T denote
time resp. reverse-time ordering; their combination in
Eq. (@) corresponds to the Keldysh-time ordering. Note
the same signs in T exp and T exp, selected by the oper-
ator o_.

Gaussian approximation. In the lowest-order pertur-
bative analysis one can use Eq. @) [11]. For Ohmic fluc-
tuations of X, with noise power Sx (w) = rw coth(w/2T),
one finds Sx2(w) = (r?/3m)w(w? + 472T?) coth(w/2T)
and Eq. @) yields for weak noise ArT < 1 the exponen-
tial decay with rate

1 A2 4am
— =9 =0)= —(\ 2T3. 6
75 = 5 Sele =00 = () (6)
This dephasing is stronger suppressed by cooling com-
pared to the case of linear coupling, when 1/T5 ~ T.

For 1/f noise one finds Sxz = (4/7)X{ In |w/wi|/|w]
and P(t) = exp(—[Tst In(wi,t)/7]?), where

Iy = AX?. (7)

Higher orders: results and discussion. Below we ana-
lyze effects beyond this Gaussian approximation. For the
Ohmic noise we confirm that Eq. @) holds at all relevant
times, yielding the decay rate (@). In contrast, for the
1/ f noise corrections are strong:

o7 —1/4
|P(t)] = [1+ (%Fftlnﬁ) ] , I'et<1, (8)

— efl‘ft/27

Tt >1. (9)

At short times we find a very slow decay with time scale
(T¢Lr)~*t, where Lr = In(I'¢ /w;;) and we assume L > 1
(our qualitative results persist down to Lp ~ 1): At very
short times it reduces to 1 — [[¢t In(w;t)/7]? and coin-
cides with the result of the Gaussian approximation. This
slow initial decay may be advantageous for application of
quantum error correction. At longer times ¢ ~ (I'Lr)~*
the decay crosses over to a power law o 1/v/t. Finally,
at the (parametrically longer) time ¢ ~ I';! the decay
becomes exponential ([{@), due to the high-frequency con-
tribution. For large Lr > 1 a substantial decay occurs
already in the range of Eq. [ ).

This unusual decay law translates into a peculiar line
shape of the transverse spin susceptibility x_ (w) =
Pw—¢)/2 (at T < ¢€), shown in Fig. [ Eq. @) gives



FIG. 1: Line shape x,, (w), in units of 1/(I'tLr) and as a
function of (w —¢)/(I'tLr). Eq. @) sets a singular universal
shape, o (w—&)~ /2. The high-frequency contribution (@ [Z)
washes out this singularity on scale I't (Lp ! in these units)
and shifts the peak. The dashed line shows the result of the
Gaussian approximation F» combined with the phase shift .

a singular peak o¢ (w —¢)7'/2, and the term () washes
it out on the scale I, setting the peak height ~ 1/y/T%.
Apart from the dephasing, we find a phase contribution
which shifts the peak by I't In(w,/T'¢)/7 (if this logarithm
exceeds In Lr; w, is the unltraviolet cutoff).

Derivation. The Keldysh-time-ordered exponent (&)
may be expanded into the linked-cluster series:

oo

P(t) = exp <Z % Fn> ) (10)

n=1

F,, representing the contribution of all connected dia-
grams of order n in the perturbation V' (the Gaussian
approximation (Bl) neglects F,~2). For the model ) they
are visualized in Fig. Bh, with a single cluster in each or-
der. Here the solid lines represent the bare 2 x 2 Keldysh
Green functions of the bath D = —i(TxX (£)X(0)),
whose Keldysh and retarded components [12, [13] are re-
lated to the noise power and the response function of the
bath, respectively: DX = —2iSx, DR = —X - Each ver-
tex contributes a factor A and integration over the time
interval (0;¢). Thus we find in the n-th order:

_ n t t
( )\) tI’/ dtl / dtg e
2 0 0

D(ty —t) 1 D(ty —t3)1...
= (_;) tr/dwldwg...

D(wl)ét(wl —WQ)D(W2)5t(w2—w3> e ,(11)

Fn(t) =

where §;(w) = sin(wt/2)/(nw). The vertices contribute
the identity matrices 1 in the Keldysh space, rather than
the familiar 7., as a result of the sign structure in Eq. (H);
such a perturbation is called ‘quantum’ [13]. For the cou-
pling @) the averaging in () reduces to a Gaussian in-
tegral and thus to a determinant of an integral operator.
From this standpoint our calculation may be viewed as
determinant regularization.

Tractable regimes. The series (), ([Tl) should be eval-
uated for each particular time . In general, it is difficult

Ut oy

FIG. 2: a. Linked-cluster expansion. The factor d;(Aw) =
sin(Aw/2)/(rAw) at each vertex violates the frequency con-
servation. b. ‘High’- and ‘low’-frequency regions dominating
the integration in the cluster diagrams.

due to its complex structure: the propagators D are di-
agonal in frequency and the vertices are diagonal in time.
However, one can evaluate the dephasing in certain lim-
its: (a) at long times (the exact condition to be speci-
fied) §; =~ 0, and frequency is conserved at the vertices;
(b) at short times the lines become time-indepednent,
D(t; — tiy1) ~ D(At = 0). These ideas are used below
for the case of 1/f noise, when D(At = 0) diverges, to
find the short- and long-time behavior of P(t).

1/f noise: (a) higher frequencies. For the 1/f noise
it is technically more convenient to discuss the contribu-
tions of two frequency ranges at given ¢ (see Fig. Bb),
rather than the short- and long-time limits.

We begin with higher frequencies: In the integral ([[T)
the adjacent frequencies may differ by ~ 1/t due to the
vertex factors §;. In the (t-dependent) range |w| > 1/t
such a shift does not change much the propagators (noise
power), and &;(Aw) =~ J(Aw) at each vertex. Thus we
find the contribution of high frequencies:

In PM(t) = —t /OO dw In(1-2iASx(w)) . (12)

~1/t 2T

The contribution of frequencies of order 1/t is only es-
timated by this expression. However, at long times
T'st > 1, when Eq. (@) dominates P(t) (as we find
below), this contribution is negligible, and we obtain
Eq. @): In|PM(t)| = —Twt, where

* dx 1 1
I'ew =T —In{l+— ) ==T%. 13
f/o 2ﬁn(+x2) ot (13)

As for the phase shift, to the logarithmic accuracy in the
limit In(T¢t) > 1 we find Im In P (¢) = ¢t In(T¢t) /7.
1/f noise: (b) lower frequencies. For the analysis of
the contribution of low frequencies |w| < 1/t one may
replace the vertex factor d;:(Aw) by its value, /27, at
Aw = 0, and the correlations between frequencies of ad-
jacent lines are irrelevant. Thus the series [[0) gives [16]:

o2 [~V Tedw T 1/2 1\"
Fif — i/ ) = (2 — ),(14)
2\ 7 J, |w] 2\ 7 wirt

ir

1 2 1
In P¥(t) = -3 In (1 — —itI'fIn t) . (15)
e Wir



Again, the contribution of frequencies close to the upper
limit, w ~ 1/, is not given reliably by Eq. (), but it is
negligible to the logarithmic accuracy at In(1/wit) > 1.

The low and high (and intermediate) frequencies con-
tribute at all times, but at short times In |P(¢)| is dom-
inated by low frequencies and at long times by high fre-
quencies. These leading terms yield Eqs. (), @). (The
susceptibility x x (w) enters the analysis, but in the final
results we assumed a regular and hence negligible .)

Ohmic noise. Let us apply the developed approach
to equilibrium thermal noise with quadratic longitudinal
coupling, considering the example of an Ohmic bath. Its
low-frequency spectral density X’)’{ (w) = i(DR—DA)/2 =
rw is related by the fluctuation-dissipation theorem to
the noise power: DX = (D® — D*)coth(w/2T). The
variation scale of the latter is set by temperature, 1/7. ~
T. Hence at times t > 1/T changing the frequency by ~
1/t has little effect on DX, and one may use the long-time
approach, with frequency conservation in the diagrams
(analysis of D®/A does not change this conclusion).

We consider the case of weak-coupling and begin
with the lowest order Fy. Evaluation of this Gaus-
sian cluster involves tr D2 = (DR)2 + (DA)2 + (DR —
D*)?[coth?(w/2T) — 1]. The frequency integral of the
first two terms (analytic in the upper/lower half-plane)
vanishes, and we find exponential decay with rate (@) at
t>1/T (incl. t ~ T3).

As expected for weak noise, the higher orders provide
only a small correction to Eq. (@), of order (Mrw.)?. In-
deed, only the even orders contribute to dephasing, for
which tr D?* = (DR)2 4 (D*)?* 4 terms localized at
w S T. One finds that it is sufficient to evaluate the

second-order contribution provided )\f)(w =0 <« 1
In the Ohmic case this weak-coupling condition reads
Al drwe < 1.

Higher (non-Gaussian) orders as screening. The ex-
ponential decay law (@l) appears surprising for 1/ f noise,
with long-time correlations. In fact, it develops due to
the screening of the long-time (low-w) fluctuations, in-
teracting via the term (B), similar to the screening of
interaction in the Coulomb gas. Moreover, the calcula-
tion of P(t) parallels that of the correlation energy of
the Coulomb gas [14]. The result can be found from
the lowest-order cluster F, with the solid lines replaced
by the properly renormalized (screened) Keldysh prop-
agators D. Diagrammatically this appears natural: the
diagrams F),~2 in Fig. Bh may be viewed as Fy with ad-
ditional vertices on the lines.

As a result of the screening, qualitatively, the 1/f di-
vergence is cut off at w ~ I't, and the white low-w noise
produces the exponential decay. We omit the detailed
discussion but mention a specific property of the screened
D: unlike the bare D it is ¢t-dependent (due to the t-
dependent vertices). In other words, the screening sets
in gradually, with the mentioned saturation at ¢ 2 I'y L

Preparation effects. So far we worked under the as-
sumption that at ¢ = 0 the bath and spin were disentan-
gled and the bath was prepared in the thermal state of
Hyatn- To see, if it can change our conclusions, we con-
sidered a typical experiment, in which one monitors the
decay of a superposition of the spin states in the pres-
ence of permanent spin-bath coupling. We found that
for 1/ f noise with a non-singular low-frequency suscepti-
bility x(w) our conculsions about the dephasing persist.

In conclusion, we have analyzed the decay laws of co-
herence of a qubit coupled quadratically to the environ-
ment. We have shown that higher-order effects become
important for certain noise spectra (notably, for 1/f),
and found the dephasing times (@)—(@) in various regimes.
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