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We evaluate the full current statistics (FCS) in the low dimensional ( 1D and 2D ) diffusive
conductors in the incoherent regime, eV ≫ETh = D/L2, ETh being the Thouless energy. It is shown
that Coulomb interaction substantially enhances the probability of big current fluctuations for short
conductors with ETh≫1/τE, τE being the energy relaxation time, leading to the exponential tails
in the current distribution. The current fluctuations are most strong for low temperatures, provided

ETh ∼ [(eV )2/Dν2

1

]1/3

for 1D and ETh ∼ (eV/g) ln g for 2D, where g is a dimensionless conductance
and ν1 is a 1D density of states. The FCS in the ”hot electron” regime is also discussed.

PACS numbers: 73.23.-b, 72.70.+m, 05.40.-a, 73.50.Td

The influence of the Coulomb interaction onto the
transport properties of low-dimensional diffusive systems
has been a subject of extensive research for more than
twenty years [1, 2]. Initially, the conductance only was a
main object of study. The powerful alternative to that is
to investigate a quantum noise [3, 4], or, more generally,
the full current statistics (FCS) [5].

In the short diffusive wires with ETh ≫ eV , where
ETh = D/L2 is the Thouless energy, the shot noise
equals to S = 2|e|IF , F = 1/3 being the Fano fac-
tor [6, 7]. In this case the conductor is coherent and ef-
fectively zero-dimensional so that all effects of Coulomb
interaction come from the external electromagnetic en-
vironment. It modifies the conductance, noise [8] and
generally the FCS [9, 10].

Much less is known about the role of Coulomb inter-
action onto the FCS in the quasi- 1D and 2D diffusive
systems, when ETh ≪ eV . Under this condition the in-
elastic electron-electron scattering inside the conductor is
important. This subject has recently attracted the atten-
tion in Ref. [11, 12, 13], where the ”hot electron” regime
in the FCS was discussed. In this regime ETh ≪ 1/τE,
τE being the energy relaxation time, and the electron dis-
tribution function relaxes to the local Fermi distribution.
This changes the Fano factor F from 1/3 to

√
3/4 [14],

that was confirmed experimentally [7].

The microscopic theory [15] of electron-electron inter-
action in low-dimensional disordered conductors predicts,
however, two different time scales, τφ and τE , where
τφ ≪ τE is a dephasing time (See Table I). It is usually
believed [16] that classical phenomena described by the
Boltzmann equation are governed by τE . While the time
τφ manifests itself in essentially quantum-mechanical
phenomena. Since the FCS is a classical quantity one
might expect it to cross over between the coherent and
the ”hot electron” regime on the scale ETh ∼ 1/τE .

In this paper we consider the FCS in the low dimen-
sional ( d = 1, 2 ) diffusive conductors, taking into ac-
count the Coulomb interaction. We show that the time
τE is indeed responsible for the smooth crossover between
the coherent and the ”hot electron” limits if one consid-

ers the noise and the 3d cumulant. However it is not the
case for the higher order cumulants of charge transfer in
the shot noise limit eV ≫ T . Moreover, in this limit
the smooth crossover in the FCS does not exist. The
Coulomb interaction drastically enhances the probability
of current fluctuations for short conductors ETh ≫ 1/τE.
In this regime the higher order cumulants are given by

〈〈n2k,2k+1〉〉 ∝ 〈n〉
g

( eV

ETh

)d/2(eV

ω∗

)k−1−d/2

, k > 2 (1)

where 〈n〉 ≫ 1 is the average number of electrons trans-
fered, g ≫ 1 is a dimensionless conductance, ω∗ =
max{ETh, T, ǫ∗} and the scale ǫ∗ reads

ǫ∗(V ) ≃
{

(eV )2/g2 ETh, 1D

eV exp{−g ETh/eV }, 2D.
(2)

Eq.(1) shows that each (k + 1)-th cumulant of charge
transfer is parametrically enhanced versus the k-th one
by the large factor eV/ω∗ ≫ 1. It also follows from Eq.(1)
that the higher cumulants grow with increasing the volt-
age at ETh > 1/τ∗ and decay at ETh < 1/τ∗, where the
new time scale τ∗(eV, T ) is parametrically smaller than
τE , τ∗ ≪ τE . (See Table I). The current fluctuations
are most strong, provided T <∼ ETh ∼ 1/τφ(V ). There-
fore at the strongly non-equilibrium situation the time τφ

rather than τE governs the crossover in the FCS between
the coherent and the ”hot electron” limits.

Model and the effective action. We consider a quasi-
one-dimensional (1D) diffusive wire of a length L and a
quasi- two-dimensional (2D) film of a size L×L, with di-
mensionless conductance g ≫ 1 and diffusion coefficient

TABLE I: The electron scattering times for low-dimensional
(1D and 2D) diffusive conductors, E = max{T, eV }. At T <

∼
τ−1

φ (V ), we get τ∗ = τφ(V ).

d 1/τE 1/τφ 1/τ∗, T >
∼ τ−1

φ (V )

1 (E/D)1/2ν−1

1
(E2/Dν2

1 )1/3 (eV/T )1/2 τ−1

E (V )

2 E/g (E/g) ln g ln(eV/T ) τ−1

E (V )
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D. They are attached to two reservoirs with negligi-
ble external impedance which are kept at voltages ±V/2.
The current flows along z direction. We assume the in-
coherent regime, max{eV, T } ≫ ETh, and disregard the
possible electron-phonon scattering, so that L ≪ Le−ph.

Our goal is to evaluate the cumulant generating func-
tion (CGF) S(χ). The Fourier transform of exp(−S) with
respect to the ”counting filed” χ gives the current prob-
ability distribution P (I) (See [5]). The derivatives of S
give the average value of current, shot-noise and higher
order moments 〈〈nk〉〉 of charge transfer during the obser-
vation time t0.

To evaluate the CGF, taking into account the Coulomb
interaction, we have used the Keldysh technique and em-
ployed the low-energy field theory of the diffusive trans-
port [17] with the action

F [χ, Q,A] =
1

8
gL2−d

∫
d drTr

(
∇Q − i[Â, Q]

)2

+(3)

2iπνd

∫
d drTr

(
i∂tQ

)
− i

8πe2

+∞∫

−∞

d t

∫
d3r

(
Ȧ2

1 − Ȧ2
2

)

Here Â = diag(A1(t, r),A2(t, r)) is the 2 × 2 matrix in
Keldysh space, where A1,2 stand for fluctuating vector
potentials in the conductor. Hereafter we use a longitu-
dinal photon field, curlA = 0, thus neglecting the rela-
tivistic effects.

The matrix Q̂(r, t1, t2) accounts for the electron de-
grees of freedom and obeys the semi-classical con-
strain Q̂(r) ◦ Q̂(r) = δ(t1 − t2). The action F de-
pends on χ via the boundary conditions imposed on
the field Q at the boundaries with the left(L) and
right(R) reservoirs [18]: Q

∣∣
r=R

= ĜR and Q
∣∣
r=L

=

ĜL(χ) = exp(iχτ̂3/2)ĜL exp(−iχτ̂3/2). Here GL,R are
the Keldysh Green functions in the leads.

With action (3) the CGF should be evaluated as a
path integral over all possible realization A1,2 and Q̂.
We proceed along the lines of Ref.[17] and employ the
parameterization Q = eiW Ĝe−iW , WĜ + ĜW = 0. Here
field W accounts for the rapid fluctuations of Q with
typical frequencies ω ≫ ETh and momenta q ≫ 1/L,
while Ĝ(ǫ, r) is the stationary Green function varying in
space on the scale ∼ L. First we integrate out the field
W in the Gaussian approximation to obtain the non-
linear action F̃ (χ, Ĝ,A) of the screened electromagnetic

fluctuations. We keep only quadratic terms to F̃ that is
equivalent to the random phase approximation (RPA).
At the second step one can integrate the photon field A

and arrive to the effective action Feff [χ, Ĝ]. Then the
saddle point approximation, δFeff [χ, Ĝ]/δĜ = 0 yields
the kinetic equation for Ĝ(ǫ, r).

For the rest we restrict consideration to the universal
limit of a short screening radius r−1 = (4πe2ν3)

1/2 ≫

FIG. 1: The sketch of voltage dependence of the 6th cumulant
of charge transfer. Left plot - 1D, conductance g = 100, right
plot - 2D, g = 103. The temperature changes from up to
down, T/ETh = 1, 2, 4, 8.

√
eV/D. In this limit we get the answer

Feff [χ, Ĝ] =
t0
8

gL2−d

∫
d dr

∫
d ǫ

2π
Tr

(
∇Ĝǫ(r)

)2

+ (4)

+
t0
2

∫
d dr

∫
dω d dq

(2π)
d+1

ln

[
Det

∣∣∣∣D−1
ω (r,q)

∣∣∣∣
−

(
(Dq2)2 + ω2

)
]

where Dω is 2×2 matrix operator in Keldysh space, cor-
responding to the non-equilibrium diffuson propagator:

Dα β
ω (r,q) =

[
Dq2 τα β

1 + (5)

i

4

∫
dǫ Tr

(
γαγβ − γαĜǫ+ω/2(r)γ

βĜǫ−ω/2(r)
)]−1

with γ0 = 1̂, γ1 = τ̂3. To derive the action (4) we have
used a local approximation, i.e. we neglected gradient
corrections proportional to (∇Ĝ ∼ 1/L) ≪ ∇W .

Minimizing the action Feff under constrain Ĝ(ǫ, r)2 = 1
one can obtain the non-linear kinetic equation for G(ǫ, r)

in the form D∇
(
Ĝǫ(r)∇Ĝǫ(r)

)
=

[
Îǫ(r), Ĝǫ(r)

]
, where

Îǫ(r) =
i

8νd

∑

α,β

∫
dω d dq

(2π)d+1
Dα β

ω (r,q) (6)

×
(
γαĜǫ−ω(r)γβ + γβĜǫ+ω(r)γα

)

is the matrix collision integral. This kinetic equation
should be supplemented by the χ-dependent boundary
conditions at the interfaces with the leads. The action (4,
5) is one of the central results of the paper. In the
absence of ”counting” field our matrix kinetic equation
reduces to the standard kinetic equation for the distri-
bution function with a singular kernel K(ω) ∝ ω d/2−2

(See [15, 16, 17]). We also note that only real inelas-
tic processes with energy transfer ω <∼ max{eV, T } con-
tribute to the action (4). In the rest of the paper we
consider the shot-noise limit eV ≫ T only and proceed
with

Incoherent ”cold electron” regime, ETh ≫ 1/τE. In
this regime the collision term in kinetic equation is small
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and one can try to find the Green function perturba-
tively around the coherent solution which obeys the Us-

adel equation ∇z

(
Ĝ 0

ǫ (z)∇zĜ
0
ǫ (z)

)
= 0. In the first or-

der in 1/(EThτE) the CGF can be found by substituting
Ĝ0 in the action (4). The main contribution comes from
frequencies T < ω < eV . After some algebra we obtain

S(χ) = − t0
8π

eV g θ2
χ(ǫ) + FColl(χ). (7)

Here θχ = ln(u +
√

u2 − 1), u = 2eiχ − 1 and

FColl =
t0L

d

2

∫ 1

0

dz

∫

ω∗<
∼

ω<eV

dω d dq

(2π)d+1
ln

{
1 − Nω ω2Π(χ, z)

(Dq2)2 + ω2

}

(8)

Π(χ, z) = −4 Lχ(z)Rχ(z)eiχ
{
1−Lχ(z)−Rχ(z) −

[zLχ(z)+(1 − z)Rχ(z)
]
(eiχ−1)

}
(9)

where Nω = (eV/|ω|−1), Lχ(z) = sinh(1−z) θχ/ sinh θχ,
Rχ(z) = sinh z θχ/ sinh θχ and ω∗ = max{ETh, T }. The
presence of Thouless energy in the low frequency cut-off
ω∗ is due to the fact that the lowest allowed momenta q in
the diffusion propagator equals to 1/L, while T takes into
account the smearing of a step in the Fermi distribution.

The result (8) with the above defined cut-off ω∗ ceased
to be valid at sufficiently high voltages. Indeed, substi-
tuting a zero order distribution function f0(ǫ) = (1 −
z)fF (ǫ − eV/2) + zfF (ǫ + eV/2) to the collision integral,
one estimates the 1st order correction

δf(1)(ǫ±) ∼ L2/D

τE(V )

∫ eV

ǫ±

dω

ω

(
eV

ω

)(2−d)/2

(10)

if ǫ± = |ǫ ± eV/2| ≪ eV and ǫ± > max{ETh, T }. By
virtue of Pauli principle this correction may not exceed
unity, δf(1)

<∼ 1, which is true for ǫ± >∼ ǫ∗ only, where the
scale ǫ∗ is given by Eq. (2). Therefore a simple perturba-
tion theory is valid provided ǫ∗ < max{ETh, T }. Resolv-
ing this condition we obtain that it is the case of relatively
short conductors, or small voltages, ETh > 1/τ∗.

The time τ∗ decreases with increasing the voltage and
the 1st order perturbation theory finally breaks down at
ETh < 1/τ∗. However, in this situation we can obtain the
result up to the factor of order of unity using the cut-off
ω∗ ≃ ǫ∗ in Eq. (8). The point is that the role of higher
orders terms in the perturbation series is to smear the
step in the distribution function f(ǫ) around ǫ = ±eV/2
on the scale ǫ∗, while at ǫ ≫ ǫ∗ the 1st order perturbation
theory is still applicable. Therefore the overall effect is
similar to the increase of the temperature in the system.

The result (7, 8, 9) with the cut-off ω∗ =
max{ETh, T, ǫ∗} enables to evaluate all irreducible cumu-
lants 〈〈nk〉〉 = ik(∂k/∂χk)S(χ) of a number of electrons
transfered. The expansion of Π(χ, z) in χ starts from χ2.

FIG. 2: The log of probability to measure the big non-
equilibrium current fluctuations (eV ≫ T ). Curve (1) - coher-
ent regime, (2) - incoherent ”cold electron” regime, γ = 0.2
(3) - ”hot electron” regime.

Thus there is no correction to the current on the clas-
sical level. The interaction correction to the noise and
to the 3d cumulant is small by the parameter 1/(EThτE)
and it is dominated by inelastic collisions with the energy
transfer ω ∼ eV . On the contrary, the leading contribu-
tion to the higher order cumulants is due to Coulomb
interaction and it is dominated by quasi-elastic collisions
with small energy transfers ω∗ <∼ ω ≪ eV . Up to the
numerical constant the result is given by Eq. (1). The
sketch of the voltage dependence for the 6th cumulant at
different temperatures is shown in Fig.1. The cumulants
grow with voltage in the range ETh > 1/τ∗ and decay
if ETh < 1/τ∗. The enhancement of higher order cumu-
lants are most strong at small temperatures T <∼ ETh. In
this case their maximum occurs at eV/ETh ∼ g for 1D
and at eV/ETh ∼ g/ ln g for 2D.

With result (7, 8) we can also explore the current
probability distribution P (I) = (2π)−1

∫ π

−π exp{−S(χ)+
i(It0/e)χ} in the long time limit (It0/e) ≫ 1. The
action S(χ) has two branch points χ = ±iγ, where
γ ∼ (ω∗/eV )1/2 ≪ 1. The points ±iγ give two
threshold currents, I± = (e/t0)∂S/∂χ

∣∣
χ=±iγ

, which read

(I± − 〈I〉)/〈I〉 = ±γ/3.
Provided I− < I < I+ the probability can be evalu-

ated with a saddle point method. Due to the smallness of
parameter 1/EThτE we found that P (I) only slightly de-
viates from the probability P0(I) of current fluctuations
in the non-interacting limit. For larger current fluctua-
tions the potential Ω(χ) = −S(χ) + i(It0/e)χ does not
possess the saddle point any more and one should use
the contour C0 of a zero phase, ImΩ(χ)

∣∣
χ∈C0

= 0 for the

asymptotic analysis of the integral P (I). This contour
is pinned by the branch point χ = ±iγ, that yields the
exponential tails in the current probability distribution

P (I) ≈ exp{−S(±γ)−γ|I|t0/e}, I < I− or I > I+ (11)

The results for the probability distribution are displayed
in Fig.2. The Coulomb interaction does not affect the
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Gaussian fluctuations. However the tails of P (I) drasti-
cally differ from those in the absence of interaction.

The FCS of this type can be understood as the statis-
tics of the random current of electron-hole pairs which
are excited by the low frequency fluctuations of the elec-
tromagnetic field, produced by all other electrons in the
system. To shed more light on this point we note that
at small frequencies ω ≪ eV the factor Nω

∼= eV/|ω|
in Eq.(8) can be associated with non-equilibrium pho-
ton distribution. This makes the FColl similar to the
photocount statistics studied recently by Kindermann et

al. in Ref. [19]. In the latter case each photon being
transmitted through the waveguide and absorbed by the
photo-detector produces a single count. In the given case
a single absorption of a photon by the electron gas gen-
erates the random current pulse in the circuit with a
zero mean value. The generating function of the current
distribution in this pulse is given by Π(χ, z). Due to
photon bunching, Nω ≫ 1, the pulse is strongly ampli-
fied thereby producing the long exponential tails in the
probability distribution P (I).

”Hot electron” regime, ETh ≪ 1/τE . In this limit the
collision term in the kinetic equations dominates. There-
fore the limiting saddle point of the action (4) should nul-
lify the collision integral. To find such solution we note
that the collision term in the action is invariant under the
gauge transformation G̃ǫ(r) = e−K̂ǫ(r)Gǫ(r)eK̂ǫ(r). Here
K̂ǫ(r) = 1

2 τ̂3[γ(r) + β(r)(ǫ − φ(r))] and γ, β and φ are
arbitrary functions in space. This leads to the conserva-
tion of a current density, and a density of the energy flow.
As well known, the physical Green function G(ǫ, r) with a
local Fermi distribution fǫ(r) = [e(ǫ−φ(r))/T (r)+1]−1 nul-
lifies the collision term in the conventional kinetic equa-
tion. Its gauge transform G̃ǫ(r) does the same for the
generalized matrix kinetic equation.

The unknown functions φ, γ, T and β can be found
from the extremum of the action Fhot which is obtained
by substitution of G̃ǫ(r) into the diffusive part of the
action Feff . The action Fhot reads

Fhot = (2π)−1gt0

∫ 1

0

dz
{
−T (∇γ − β∇φ)2 (12)

+(∇γ − β∇φ)∇φ − π2

3
T 3(∇β)2 +

π2

6
(∇T 2)∇β

}

Here T (z) and φ(z) are a local temperature and a chem-
ical potential, while β(z) and γ(z) are their quantum
counterparts. The action (12) implies boundary condi-
tions: φ(z)

∣∣
z=0,1

= ±eV/2, T (z)
∣∣
z=0,1

= T , iγ(0) = χ and

γ(1) = β(0) = β(1) = 0. With the use of integrals of
motion the Lagrange equations of this action can be re-
duced to two coupled second order differential equations
for T (z) and β(z). We are not aware of their analyti-
cal solutions under non-zero χ and solved them numer-
ically. The results for the probability distribution P (I)
are shown in Fig. 2. As in the previous section we have

evaluated it with the use of the saddle point method.
Fig.2 shows that the probability of positive current fluc-
tuations, ∆I > 0, is enhanced in the ”hot electron” limit
as compared to the coherent regime, while the probability
of negative fluctuations, ∆I < 0, is affected in the lesser
extent. We also note that the action (12) is equivalent
to the actions of Ref. [12, 13], which were derived with
the use of Boltzmann-Langevin approach. These actions
transforms to Fhot under appropriate change of variables.

To conclude we investigated the effect of Coulomb in-
teraction onto the FCS in the one- and two-dimensional
diffusive conductors. We have revealed the long exponen-
tial tails in the probability of non-equilibrium big current
fluctuations in short conductors with ETh ≫ 1/τE, τE

being the energy relaxation time. These tails arise from
the huge fluctuations of the current of electron-hole pairs
which are excited by the low frequency fluctuations of
the electromagnetic field, produced by all other electrons
in the system.

I acknowledge the useful discussions with A. Mirlin,
Yu. Nazarov, S. Sharov and A. Zaikin. This work is a
part of the CFN of the DFG and a research network of
the Landesstiftung Baden-Württemberg gGmbH.
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