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Abstract

We present a theoretical study of a spin field-effect transistor realized in a quantum well

formed in a p–doped ferromagnetic-semiconductor- nonmagnetic-semiconductor-ferromagnetic-

semiconductor hybrid structure. Based on an envelope-function approach for the hole bands in

the various regions of the transistor, we derive the complete theory of coherent transport through

the device, which includes both heavy- and light-hole subbands, proper modeling of the mode

matching at interfaces, integration over injection angles, Rashba spin precession, interference ef-

fects due to multiple reflections, and gate-voltage dependences. Numerical results for the device

current as a function of externally tunable parameters are in excellent agreement with approximate

analytical formulae.

PACS numbers: 85.75.Hh, 72.25.-b, 73.23.Ad
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I. INTRODUCTION

Spintronics has attracted great interest in the scientific community,1,2 advocating the use

of the spin degree of freedom in electronic devices. Combining this idea with mesoscopic

transport has stimulated investigations of coherent spin-dependent phenomena. Many pro-

posed device setups exploit the effect of spin-orbit coupling on the carrier motion.3,4,5,6,7,8,9

The most popular proposal for a coherent spintronic device is the spin field-effect tran-

sistor (spin FET) proposed by Datta and Das.10,11 It consists of a two-dimensional (2D)

electron gas confined in a semiconductor heterostructure that is attached to two ferromag-

netic contacts acting as source and drain. Majority–spin electrons injected from the source

experience a spin precession due to the Rashba effect12,13,14 if the magnetization direction

in the source contact is parallel to the direction of current flow or perpendicular to the

plane of the 2D electron gas. Tunability of the spin-orbit coupling strength by gate volt-

ages enables external control of this spin precession and, hence, manipulation of the current

transmitted at the second ferromagnetic contact. Besides gate–voltage control of the Rashba

spin-orbit coupling experienced by 2D electrons, which has been successfully demonstrated

experimentally,15,16,17 efficient injection of spin–polarized electrons from ferromagnetic con-

tacts into the nonmagnetic part of the spin FET is a key ingredient for device operation. The

obvious challenges involved in the fabrication of hybrid systems consisting of metallic and

semiconducting parts, as well as a physical limitation18 to the amount of spin injection that

can be achieved in the absence of tunnel barriers at the interfaces, have so far prevented the

realization of any spin FET device. A possible solution to circumvent these difficulties may

be provided by the use of diluted magnetic semiconductors19 as source and drain. This mo-

tivates our present study where we investigate transport through 2D hybrid structures with

ferromagnetic contacts realized in semiconductor heterostructures. An important aspect

of our work deals with the fact that ferromagnetic (III,Mn)V compounds are intrinsically

p-doped, implying that currents are carried by holes rather than electrons. The spin prop-

erties of carrier states in the intrinsically p-like valence bands of III-V semiconductors are

very different from that in the s-like conduction band. To begin with, several valence bands

with different effective masses exist. More importantly, however, spin-orbit coupling in the

valence bands has a more complicated structure than that of conduction–band electrons.20,21

The aim of this article is a detailed study of an all-semiconductor spin field-effect tran-

3



2DHG

V

�����������������������
�����������������������
�����������������������
�����������������������

AlGaAs

GaAs

MnGaAs MnGaAs

z 
ax

is

GaAs cap layer

G

����������������������������������������������

FIG. 1: Schematic illustration of the proposed device. The two-dimensional hole gas (2DHG) in

the GaAs part is attached to spin-polarized source and drain contacts, formed by 2DHGs in the

MnGaAs parts. The gate electrode on the top controls both the carrier concentration and the

Rashba spin-orbit coupling strength.

sistor in which the conducting channel is provided by a 2D hole gas (2DHG). The device

structure we propose is depicted in Fig. 1. A MnGaAs/GaAs/MnGaAs heterostructure is

overgrown22,23 in the z direction with AlGaAs such that a 2DHG forms at the interface.

In fact, Mn doping is only required within the quantum well formed at the interface to

the AlGaAs layer, but the Mn ions outside the well do not disturb. In the proposed setup,

source and drain are defined by 2D quantum wells accommodating spin polarized holes. The

carriers in the entire 2DHG are subject to the Rashba effect which leads to spin precession.

The strength of the Rashba spin-orbit coupling can be tuned by a gate voltage applied to

the top of the sample.24

The key ingredient for the functionality of the device is the tunable Rashba spin pre-

cession in the 2DHG. In Ref. 25, we studied this part within a simplified model allowing

for an analytic treatment, which enabled us to discuss features that are universal for both

electron and hole transport. In the present paper, we aim at a more complete numerical

treatment of transport through the entire device. This includes describing the semiconduc-

tor valence bands by a 4 × 4 Kohn-Luttiger Hamiltonian instead of restricting ourselves to

heavy-hole bands only. We take into account the matching properties of the modes at the

interfaces to the source and drain contacts, which automatically includes interference effects

due to multiple reflection. As in Ref. 25, we allow for all possible injection angles instead

of restricting to a quasi-one-dimensional setup. In our analysis we study the purely ballistic

regime. Scattering due to impurities or to the lateral finite size of the device due to the

functional form of the spin-orbit coupling Hamiltonian for holes affects the total angular
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momentum j and not only the spin. This leads to extra damping of spin-precession and

should be minimized to improve device functionality. Finally, for addressing the response

of transport to the gate voltage, we employ a capacitive model that takes the variation of

both the carrier density and the Rashba coupling strength into account.

The article is organized as follows. We introduce, in Sec. II, the Kohn-Luttinger Hamil-

tonian for the ferromagnetic and nonmagnetic parts of the semiconductor quantum well.

In the following Section III, we describe the mode-matching technique used to calculate

transmission coefficients for transport through the structure. Our results from numerical

simulations of transport are presented in Section IV. After discussing the case of only one

interface between a ferromagnetic and a nonmagnetic 2DHG, we turn our attention to the

full transistor geometry with two ferromagnetic contacts. In the latter case, interference

effects appear due to multiple reflections at the interfaces. In Section V, we describe an

analytical model that approximates the numerical simulations very well and helps us to

understand how the precession length Lso depends on the Fermi energy EF in the 2DHG.

In Section VI, we address the response to external gate voltages. The possibility to control

the spin precession by a single gate voltage VG that simultaneously modifies Fermi energy

and Rashba spin-orbit coupling is discussed in detail.

II. ENVELOPE-FUNCTION DESCRIPTION OF 2D VALENCE-BAND STATES

In this section, we obtain effective Hamiltonians that describe the valence bands in the

different regions of the spin FET, namely, the ferromagnetic source and drain contacts doped

with Mn2+ ions and the undoped nonmagnetic channel in between. In all these regions, holes

are confined within a 2D quantum well. We use an envelope-function description26,27,28 of

the 2D system. The Hamiltonian for the nonmagnetic semiconductor Hp is the sum of a 2D

quantum-well Hamiltonian H2D plus a Rashba term Hrs, which arises due to the asymmetry

of the confinement potential Vcon(z). On the other hand, the total Hamiltonian for the

ferromagnetic contacts Hf is given by Hp plus the term Hpd, which takes into account the

coupling between the p-like valence holes and the half-filled d-shell Mn2+ ions with spin

S = 5/2.

Bulk systems host heavy- and light-hole bands with total angular momentum j = 3/2.

These bands are degenerate at the band edge and are well separated, due to spin-orbit
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coupling, from the split-off bands with total angular momentum j = 1/2. In quantum wells,

each of these bands is transformed in a sequence of quasi–2D subbands, and the degeneracy

between heavy and light-hole bands is lifted. In the following, we are interested in the

situation at low carrier concentrations such that only the lowest subbands, one heavy–hole

band (HH1) and one light-hole band (LH1), have to be taken into account. This is the

simplest realistic case that occurs when the triangular quantum well is narrow enough to

sufficiently lift the energy of higher subbands. Inclusion of higher energy subbands, in

particular HH2, would be straightforward, but would only lead to higher order corrections.

Indeed, the low hole density typically present in experiments implies that the only occupied

propagating modes are in HH1, whose shape is influenced by the band mixing26 with LH1

and in a negligible way with HH2. Coupling with HH2 would affect the shape of LH1, and

therefore only evanescent modes. In the basis of total angular momentum,

|1〉 = |j = 3/2, jz = 3/2〉
|2〉 = |j = 3/2, jz = −1/2〉
|3〉 = |j = 3/2, jz = 1/2〉
|4〉 = |j = 3/2, jz = −3/2〉

, (1)

the Hamiltonian H2D reads26

H2D =















hh d 0 0

d∗ lh 0 0

0 0 lh d

0 0 d∗ hh















, (2)

with

hh = Ehh1 + h̄2

2mhh‖
k2

lh = Elh1 + h̄2

2mlh‖
k2

d = −
√

3h̄2

2m
γ N k2 e−i2α .

(3)

Here we have adopted the momentum-space representation in polar coordinates for the wave

vector k‖ = (k cosα, k sinα) in the 2D plane. The quantities Ehh1 and Elh1 in Eq. (3) are

the subband-bottom energies deriving from the solution of the Schrödinger problem for the

triangular well, and the factor N takes into account the scalar product between the envelope

functions fhh1,lh1 for the HH1 and LH1 subbands. We observe that in Eq. (2) there is no

coupling between LH and HH subbands with the same sign of jz since the corresponding

matrix element is proportional to the vanishing integral 〈fhh1|kz|f lh1〉.
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FIG. 2: Dispersion of the lowest quasi–2D subbands (HH1 and LH1) of a semiconductor quantum

well when no exchange field and no spin-orbit coupling are present. The subband-bottom energies

are computed using eEz equal to 4× 107 eV/m and vertical masses of mhhz = 0.38m0 and mlhz =

0.09m0.

The effective masses appearing in Eq. (3) are given by

mhh‖ = m/(γ1 + γ)

mlh‖ = m/(γ1 − γ)
, (4)

where the two coefficients γ1 and γ = (γ2 + γ3)/2 are the Luttinger parameters,29 taken

in the so-called axial approximation.30 In Fig. 2 we show the HH1 and the LH1 subband

dispersion relations as a function of the magnitude k of 2D wave vector.

The Rashba spin-orbit coupling arises from the structural inversion asymmetry12 due to

an asymmetric confining potential. It is described by the Hamiltonian Hrs = β(k × E) · j.
Here, E is the electric field due to the confining potential Vcon(z), and β is a material

parameter.20,21 In our system, E = Ez ẑ, and Hrs reads

Hrs = iβEzk















0 0
√

3
2
e−iα 0

0 0 −eiα
√

3
2
e−iα

−
√

3
2
eiα e−iα 0 0

0 −
√

3
2
eiα 0 0















. (5)

In Fig. 3 we show the HH and the LH subbands for the nonmagnetic semiconductor as a

function of k, obtained by diagonalization of Hp = H2D + Hrs. We see that the splitting

at small wave vectors is linear for the light-hole subbands but cubic for the heavy-hole

subbands.
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The Hamiltonian for the ferromagnetic-semiconductor part is given by Hf = H2D +

Hrs + Hpd. We use a phenomenological description of the ferromagnetic semiconductor,

in which local moments with S = 5/2 from Mn2+ ions are antiferromagnetically coupled

to the itinerant holes.31,32,33 In a mean-field treatment, combined with a virtual-crystal

approximation,34,35,36,37 itinerant holes experience an exchange field h = JpdNMn〈S〉, where

the average Mn-ion spin S has direction n̂ = (cosφ sin θ, sinφ sin θ, cos θ), NMn is the doping

concentration, and Jpd describes the coupling strength. This exchange-coupling field is

accounted for in Hpd = h · σ, where the spin matrices σ in the basis given in Eq. (1) are

σx =















0 0 1
2
√

3
0

0 0 1
3

1
2
√

3

1
2
√

3
1
3

0 0

0 1
2
√

3
0 0















, (6)

σy = i















0 0 − 1
2
√

3
0

0 0 1
3

− 1
2
√

3

1
2
√

3
−1

3
0 0

0 1
2
√

3
0 0















, (7)
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FIG. 3: The first subbands (HH1 and LH1) of a semiconductor quantum well in the presence of

Rashba spin-orbit coupling, which removes the spin degeneracy. The coupling constant 〈βEz〉 is

0.15 eV nm.
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FIG. 4: The ferromagnetic-semiconductor 2D quantum-well subbands for the case of magnetization

perpendicular to the 2DHG plane. The interaction constant is Jpd = 0.06 eV nm3, the Manganese

concentration is NMn = 1 nm−3, and 〈βEz〉 = 0.15 eV nm.

and

σz =















1
2

0 0 0

0 −1
6

0 0

0 0 1
6

0

0 0 0 −1
2















. (8)

In Fig. 4 we show the HH and the LH subbands in the ferromagnetic-semiconductor contacts

as a function of k, obtained by diagonalization of Hf. The splitting of the two heavy-hole

subbands for small values of k leads to full polarization at low densities. The magnetization

direction in the Figure is perpendicular to the 2DHG plane, n̂ = (0, 0, 1).

III. QUANTUM STATES FOR HOLES PROPAGATING THROUGH THE SPIN

FET

We calculate coherent transport through the spin FET using the scattering formalism

described, e.g., in Ref. 38. It relates the current to transmission amplitudes for scattering

states defined in the contacts. To obtain these, proper matching of wave functions at inter-

faces is required, that we describe in this section. The imposed conditions at the interface

are the continuity of the wave function and conservation of the component of probability

current that is perpendicular to the interface. To illustrate the subtleties associated with the

second condition, let us consider an interface between a ferromagnetic and a nonmagnetic
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region at x = x0. The continuity equation for the current is

vf
xψ

f(x0, y) = vp
xψ

p(x0, y), (9)

with

vf,p
x =

1

h̄

∂Hf,p

∂kx
, (10)

which derives from the operator relation v̂x = i
h̄
[Ĥ, x̂]. Note that, due to the presence of

spin-orbit coupling, the derivative of wave functions needs not to be continuous at x = x0.

Instead, Eq. (9) guarantees current conservation.

In both the ferromagnetic and nonmagnetic regions, four different channels are available,

i = 1, . . . , 4, associated with the four-dimensional Hilbert space of the valence-band subspace

under consideration. Let us consider a wave incoming from the ferromagnetic region with

wave vector kI
i = kI

i (cosα, sinα), which is in the ith subband. The wave is partially reflected

at the interface to the nonmagnetic region. The wave function in the ferromagnetic source

electrode is then

ψf(x, y) =
χf

i(k
I
i)

√

|vf
i(k

I
i)|
eikI

i
(x cos α+y sin α)

+
4

∑

n=1

ri,n
χf

n(kR
n )

√

|vf
n(kR

n )|
e−ikR

n
(x cos αR

n
+y sin αR

n
) , (11)

where χf
n are the eigenfunctions of Hf in k-space representation, the normalization factor

vf
n(kn) is the velocity expectation value computed for the state vector χf

n(kn), and ri,n are

the reflection coefficients to be determined from the matching. The wave vectors kR
n =

kR
n (cosαR

n , sinα
R
n ) of the reflected waves are determined by the following three conditions:

a) the modulus kR
n is the solution of the implicit equation ǫfn(kR

n ) = EF, where ǫfn(k) is the

dispersion relation;

b) the angles αR
n are derived from the continuity of the momentum parallel to the interface

due to translational invariance along that spatial direction;

c) among these solutions we allow those that satisfy {ℜ[vf
n(kR

n )] > 0 & ℑ[vf
n(kR

n )] = 0} or

{ℑ[vf
n(kR

n )] > 0}. The two possibilities correspond to propagating and evanescent modes,

respectively.

Similarly, the wave function in the nonmagnetic region is

ψp(x, y) =

4
∑

n=1

ti,n
χp

n(kT
n )

√

|vp
n(kT

n )|
eikT

n (x cos αT
n+y sin αT

n ) , (12)
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where ti,n are the transmission coefficients, and all the other quantities in Eq. (12) have the

same definitions given for the corresponding quantities in Eq. (11). The eight coefficients

ri,n and ti,n are determined by the two conditions of continuity of the wave function and

current conservation, Eq. (9), given that ψf,p has four components in the total momentum

space.

We emphasize that it is important to include all modes even when some of them are

evanescent since transmission and reflection at the interface are influenced by tunneling into

classically forbidden channels.

IV. RESULTS OF NUMERICAL SIMULATIONS

For our numerical simulations we take Jpd = 0.06 eV nm3, NMn = 1 nm−3 and S = 5/2.

The Rashba term is characterized by 〈βEz〉 = 0.05 eV nm, and the Fermi energy is taken

as EF = 0.08 eV, which corresponds to a hole density of 4 × 1016 m−2. We assume that the

leads’ magnetization direction is either perpendicular (θ = 0) or within the plane (θ = π/2)

of the quantum well.

To clarify the underlying physics, we will approach the full spin FET design step by step.

First, we consider Rashba spin precession for holes transmitted through a single interface

between a ferromagnetic and a nonmagnetic 2DHG for a fixed injection angle. Then, we

include a second interface with the magnetization of the source and drain electrode being

parallel, keeping the angle of incidence for spin-polarized holes still fixed. As a result of the

Rashba effect, the total transmission will oscillate as a function of the channel length in the

nonmagnetic 2DHG. Finally, we take the full 2D nature of the device into account by adding

up the current contributions for all injection angles.

Let us start by considering a single interface between a ferromagnetic and a nonmagnetic

2DHG. In Fig. 5 we show the spin-up and spin-down currents as a function of the distance

from the interface in the case of magnetization perpendicular to the plane (n̂ = (0, 0, 1)) and

perpendicular injection (α = 0) of spin-up current for two different values of EF. We find

that both the spin-up and spin-down current density oscillates with modulation length Lso,

indicating Rashba spin precession in the nonmagnetic region. With increasing Fermi energy,

the oscillation length decreases. This result is in clear contrast to the case of the spin FET

based on electrons, where the spin precession length is independent of the Fermi energy.10
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FIG. 5: Spin components of the current density in a nonmagnetic 2DHG plotted as a function of

the distance L from the interface with a ferromagnetic 2DHG. Results are shown for a half–metallic

ferromagnetic contact having magnetization direction n̂ = (0, 0, 1). The Fermi energy is equal to

0.09 eV in a) and to 0.045 eV in panel b). It is apparent that the period of current oscillations is

proportional to 1/EF. For both spin directions, the current is normalized to the incident hole flux.

Moreover, the modulation length Lso(α) depends also on the injection angle α (not shown

in Fig. 5). For a realistic sample, integration over all possible injection angles is required.

We will see later that, after integration, the overall modulation length is given by that for

perpendicular injection, Lso(0).

In Fig. 6 we show results for the case of magnetization direction in the ferromagnetic

2DHG being n̂ = (1/
√

2, 1/
√

2, 0). For in–plane magnetization in the half–metallic contact,

the amplitude of the current modulation in the nonmagnetic 2DHG depends on its azimuthal

angle φ. The largest oscillation amplitude occurs for φ = 0, i.e., when the magnetization di-

rection is perpendicular to the interface. No oscillations exist for φ = π/2, because majority
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FIG. 6: Same as Fig. 5 a) but for the case where the magnetization direction in the ferromagnetic

2DHG (and, hence, the quantization axis for spin components of the current) is equal to n̂ =

(1/
√

2, 1/
√

2, 0), i.e., lies in the 2DHG plane. Note the diminished amplitude of current oscillations

which would disappear altogether for n̂ = (0, 1, 0).

spins injected into the nonmagnetic 2DHG are then eigenstates of Hrs.

We now turn to the simulation of the spin FET transistor, consisting of a finite strip of

nonmagnetic 2DHG with two interfaces with ferromagnetic contacts, one at x = 0 and the

other one at x = L. Now we have to apply the mode-matching procedure for each interface.

In Fig. 7, we plot the total transmission through the entire device as a function of the width

L of the nonmagnetic region. We find a modulation of the transmission with modulation

 0
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 1

 0  50  100  150  200  250

L (nm)

θ=
0,

φ
T

ra
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m
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FIG. 7: The transmission probability of spin–up electrons for the case of two interfaces separated by

a distance L. The high–frequency oscillations are due to resonances arising from multiple reflections

between the two interfaces. It turns out (see below) that such features tend to be smeared out

when the transmission is averaged over the injection angle. Parameters are the same as in Fig. 5.
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FIG. 8: The total current density as a function of the quantity L/Lso in the 2D system treatment,

where L is the channel length and Lso is the total modulation length. The magnetization in the

contacts is perpendicular to the plane of the 2DHG.

length Lso, which is due to Rashba spin precession. This modulation is superimposed by

fast oscillations of the order of twice the Fermi wavelength λF which are due to interference

effects from multiple reflection within the double-barrier structure.39 As we will see below,

these fast oscillations will be almost always smeared out after integration over the injection

angles α, i.e., they will not appear in real 2D devices. Only in the limit of very low hole

densities, remnants of these oscillations will be visible.

Finally, we take into account the full 2D nature of the device, i.e., we add up the current

contributions for all injection angles. We assume an isotropic angular distribution of injected

holes since all our simulations are performed in the linear response regime. As a result, the

transmitted current density J/J0 is given by the formula

J/J0 =
∑

n,m

∫ π/2

−π/2

Tnm(α) cosα dα , (13)

where Tnm(α) is the transmission probability from channel n to m for holes injected at

an angle α. Since the modulation length Lso(α) of the transmission is α-dependent, one

might expect that the integration washes out the effects of the spin precession. It turns

out, however, that oscillations are still visible, although damped. The modulation length of

the resulting oscillations coincides with that for perpendicular incidence, Lso(0). In Fig. 8

we show the result of the integration operation corresponding to Eq. (13) for magnetization

direction in the contact 2DHGs being n̂ = (0, 0, 1).
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V. ANALYTICAL RESULTS FOR TRANSPORT

In this section we show that most features of the numerical results presented in the previ-

ous section can be understood within a simplified analytical model. In particular, we derive

analytic expressions for the precession length Lso(α) and the total current density. A similar

model has been already proposed in Ref. 25, where it was used to discuss universal fea-

tures of hole and electron spin precession. The approximate formulae derived in this section

clearly show how the precession length depends on system parameters and, therefore, allow

for a deeper understanding of the underlying physics than looking at the purely numerical

results presented in the previous Section can provide.

The model is developed following some approximations that are justified a priori by

physical considerations and a posteriori by the comparison between analytical and numerical

results. First, we make use of the fact that for typical parameters only the lowest heavy-

hole subband is occupied. As an approximation we can, therefore, omit all non-conducting

subbands from our model. Furthermore, we assume perfect transmission at the interfaces,

i.e., we neglect reflection. All Hamiltonians are now represented as 2×2 matrices, using the

basis (1) restricted to vectors |1〉 and |4〉. The off-diagonal matrix elements are obtained

from perturbation theory for the degenerate case.40 The nonmagnetic 2DHG region is then

described by

Hp =
h̄2k2

2mhh‖





1 0

0 1



 + i〈βhEz〉k3





0 e−i3α

ei3α 0



 , (14)

where βh is proportional to the spin-orbit coupling of holes and is different from the β defined

in Eq. (5).

The corresponding eigenenergies are

ǫ1,2(k) =
h̄2

2mhh‖
k2 ± 〈βhEz〉k3 (15)

with eigenvectors

χ1,2 =
1√
2





1

∓iei3α



 . (16)

The spin splitting of the eigenvalues (15), together with the conservation of the wave vector

parallel to the interface, implies the presence of a double refraction phenomenon39,41 where

a hole wave incident on the interface from the ferromagnet gives rise to two transmitted
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waves in the nonmagnetic 2DHG having slightly different wave vectors. Their magnitudes

k1,2 are obtained from the implicit equation ǫ1,2(k) = EF. Typically, spin-orbit coupling can

be treated as a perturbation, which means that we can linearize the expression of k1,2 in

the spin-orbit coupling strength, and arrive at k1,2 = k0 ∓ ∆k/2. Here k0 is the Fermi wave

vector in the absence of spin-orbit coupling, and

∆k =

(

2mhh‖

h̄2

)2

〈βhEz〉EF , (17)

which explicitly depends on the Fermi energy. The corresponding angles of the transmitted

waves’ propagation direction with the interface normal are found, again in the limit of weak

SO coupling, to be

α1,2 = α0 ± (∆k/2k0) tanα0 , (18)

where α0 is defined by

kF sinα = k0 sinα0 . (19)

Hence, the transmitted hole is described by the wave function

c1χ1e
ik1(x cos α1+y sinα1) + c2χ2e

ik2(x cos α2+y sin α2) . (20)

By assuming a perfectly transparent interface, we can compute the coefficients c1,2 simply by

matching the wave functions in the ferromagnet and in the nonmagnetic semiconductor. At

the interface at x = L to the second ferromagnet, for the case of its magnetization pointing

in positive z direction, only the |+〉 component will be transmitted. Hence, the outgoing

state in the right ferromagnet reads eikF(x cos α+y sin α) cos[∆kL/(2 cosα0)]|+〉. As a result, the

transmission probability is

T0,φ(α) = cos2

[

γ

cosα0

]

, (21)

where we have used the relation ∆k L/2 = γ, and the dependence on α is through α0

via Eq. (19). In a similar way we can obtain the transmission probabilities for arbitrary

magnetization direction in the ferromagnetic 2DHGs. The transmission probability for in-

plane magnetization reads

Tπ/2,φ(α) = cos2

[

γ

cosα0

]

+ sin2 [3α0 − φ] sin2

[

γ

cosα0

]

. (22)

Finally, we can write the transmission for arbitrary magnetization direction as

Tθ,φ(α) = cos2 θ T0,φ + sin2 θ Tπ/2,φ . (23)
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Equations. (21-23) cease to be valid once one of the transmitted states in the nonmagnetic

2DHG becomes evanescent, i.e., is totally reflected. This condition defines critical angles

αc,{1,2}, that in the limit of weak SO coupling read αc,{1,2} = k0/kF ∓ 1
2
∆k/kF ≈ k0/kF = αc.

We note that very similar formulae for the transmission can be obtained for electrons.25

From Eqs. (21) and (22) we find the precession length

Lso(α) =
2π

〈βhEz〉

(

h̄2

2mhh‖

)2
cosα0

EF
(24)

which depends on both the injection angle α and the Fermi energy EF. The physical reason

for the latter dependence is the cubic spin splitting of the heavy-hole subband. For a 2D

device under consideration in this paper, one has to integrate over all injection angles, see

Eq. (13). The final result reads then

J/J0 =
{

cos2 θF (γ) + sin2 θ

×
[

sin2 φ+ F (γ) cos2 φ+G(γ) cos(2φ)
]}

, (25)

where J0 is the injected current density, and the functions F (γ) and G(γ) are defined as

F (γ) = 1
2

∫
π

2

−π

2

cosα cos2
(

γ
cos α

)

dα , (26)

G(γ) = 1
2

∫
π

2

−π

2

cosα sin2 (3α) sin2
(

γ
cos α

)

dα . (27)

A good analytical approximation for F (γ) and G(γ) is given in Ref. 25. The result Eq. (25)

describes damped oscillations of the current density as a function of the length of the non-

magnetic part, where the modulation length is given, in agreement with our numerical

findings, by the precession length for perpendicular injection, Lso(α = 0).

VI. GATE-VOLTAGE MANIPULATION OF THE CURRENT: CAPACITANCE

MODEL

In this section we consider the response of the hole spin FET to external gate voltages

and point out important differences in its behavior compared to the electron version. With

standard densities of about 1016 m−2, only the lowest spin–split 2D HH subbands are oc-

cupied. Their k3 spin splitting leads to an inversely linear dependence on the Fermi energy

EF for the hole precession length Lh
so. Hence, variation of gate voltages will modify Lh

so by

changing, at the same time, the asymmetry of the hole confinement in the 2DHG and the
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VG VBG

CA CBG

CQ

VSV   =D

2DHG

A

FIG. 9: Linearized capacitance model for the influence of top and back–gate voltages on the spin

FET. The 2DHG is located at point A, VG is the voltage applied at the top gate, VBG that of the

back gate. The voltages at the drain (VD) and source (VS) contacts are assumed to be equal since

we consider the linear response regime.

Fermi energy. We analyze how the device performance changes when, instead of only a top

gate voltage, both top gate and back gate voltages are applied.

We model the effect of the top and back-gate voltages through a linearized capacitance

model as shown in Fig. 9. The capacitance per unit area between the top gate and the

point A, where the 2DHG is located, is CA = ǫ0ǫGaAs/dA ∼ 2 × 10−3 F/m2 for an effective

distance dA = 50 nm between top gate and 2DHG, while the capacitance associated to the

variation of the back-gate voltage is CBG = CA/2 for a distance of 100 nm from the 2DHG.

The capacitance between the 2DHG and the source and the drain is well approximated by

the quantum capacitance CQ = mhh‖e
2/πh̄2 ∼ 8×10−2 F/m2 and is due to the finite density

of states in the 2DHG.42 The variation of the voltage at the point A and of the electric field

Ez read then

dVA =
CA

CA + CQ + CBG

dVG +
CBG

CA + CQ + CBG

dVBG

dEz = −CQ + CBG

ǫ0ǫGaAs

(dVA − dVBG)

= −(CQ + CBG)[CAdVG − (CA + CQ)dVBG]

ǫ0ǫGaAs(CA + CQ + CBG)
,

while the variation of the Fermi energy reads

dEF = −e dVA =
−e (CAdVG + CBGdVBG)

CQ + CBG + CA
. (28)

It is clear that variation of only VG (i.e., keeping dVBG = 0) simultaneously changes Ez

and EF. In order to leave the Fermi level pinned, we have to manipulate both top and
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back-gate voltages such that dVBG = −(CA/CBG) dVG. Results of our simulation for the

case that only the top-gate voltage is varied (dVBG = 0) is shown in Fig. 10. Here the

current density obtained from Eq. (13) is plotted as function of the gate voltage VG for the

case when the magnetization direction in the contacts is perpendicular to the 2DHG. Spin–

precession–induced current oscillations are clearly visible. The oscillation period actually

varies with changing VG due to the induced variation of EF, as mentioned in Sec. III. Note

that, for the parameters of Fig. 10, the effect of the gate voltage on the position of subband

bottoms is negligible since the electric field is changed only by a few percent from its initial

value Ez ∼ ep/ǫ0ǫGaAs. (Here p is the hole density.) For comparison, we show results for

the case where both top and back-gate voltages are varied simultaneously such that the hole

density in the 2DHG remains unchanged in Fig. 11. Here the precession length changes only

due to the gate–voltage–induced variation of the structural inversion asymmetry, measured

here by the electric field Ez. Current oscillations have then a larger period as function of

VG than in the case where VBG is kept constant. In both cases, however, a clear modulation

of the current as a function of gate voltage VG is obtained. These are slightly damped due

to the superposition of current amplitudes for all possible angles of incidence.

 0.55

 0.65

 0.75

 0.85

GV   (V)

J/
J

0

 0  −0.1  −0.2  −0.3  −0.4  −0.5

FIG. 10: The modulation of the current density through the spin FET when the top-gate voltage

is varied. The magnetization direction in the ferromagnetic 2DHGs is given by n̂ = (0, 0, 1). The

Fermi energy for VG = 0 is EF = 0.09 eV, the Rashba coupling term 〈βEz〉 = 0.05 eV nm.
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FIG. 11: The modulation of the current density in the spin FET when the top-gate voltage and

the bulk-gate voltage are simultaneously varied in a way such that EF is unchanged. The contact

magnetization points along n̂ = (0, 0, 1).

VII. CONCLUSIONS

We have performed careful numerical and analytical studies of transport through a p-type

all–semiconductor spin FET. The design of such a device would overcome problems associ-

ated with the fabrication of hybrid devices involving metal–semiconductor contacts. Despite

the more complicated nature of spin splitting in 2D valence–band states, clear current mod-

ulation as a function of device parameters such as the width of the nonmagnetic region are

observed. Using a phenomenological model for the action of external gate voltages, we have

shown the possibility of current manipulation as was envisioned in the original electron spin

FET proposal by Datta and Das.10 Our numerical simulations that were performed for re-

alistic sample parameters, as well as analytical formulae reported in this work, should serve

as a useful basis for experimental realization and functional optimization of a p–type spin

FET.
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