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We present a detailed theoretical investigation of the effect of Coulomb interactions on electron
transport through quantum dots and double barrier structures connected to a voltage source via
an arbitrary linear impedance. Combining real time path integral techniques with the scattering
matrix approach we derive the effective action and evaluate the current-voltage characteristics of
quantum dots at sufficiently large conductances. Our analysis reveals a reach variety of different
regimes which we specify in details for the case of chaotic quantum dots. At sufficiently low energies
the interaction correction to the current depends logarithmically on temperature and voltage. We
identify two different logarithmic regimes with the crossover between them occurring at energies of
order of the inverse dwell time of electrons in the dot. We also analyze the frequency-dependent shot
noise in chaotic quantum dots and elucidate its direct relation to interaction effects in mesoscopic
electron transport.

I. INTRODUCTION

Low temperature electron transport in disordered con-
ductors with electron-electron interactions remains one of
the most intriguing topics in modern mesoscopic physics.
Interplay between charge discreteness, quantum coher-
ence, scattering and interactions yields a rich variety
of non-trivial effects, many of which can adequately be
described only within a rather complicated theoretical
framework.

One of the most successful theoretical approaches in
mesoscopic physics is the scattering matrix formalism1,2.
In the absence of interactions this method allows for a
complete and physically transparent analysis of electron
dynamics in coherent conductors which includes not only
electrical conductance but also shot noise3 and eventu-
ally all higher cumulants of the current operator4. For-
mally it is possible to generalize the Landauer formal-
ism to systems with interactions5. Within this approach,
however, the electron Green functions in the interacting
region still remain to be evaluated diagrammatically or
by other means.

An alternative way to tackle the problems with dis-
order and interactions is to employ non-perturbative
path-integral-based techniques6,7. Recently it was
demonstrated8,9,10 that the advantages of the path in-
tegral methods and the scattering matrix approach can
be conveniently combined within one formalism, thereby
providing a powerful tool to theoretically describe inter-
action effects in mesoscopic conductors. Several impor-
tant results have already been obtained in this way. For
instance, with the aid of the instanton technique it was
shown8 that – similarly to tunnel junctions11,12 – arbi-
trary coherent conductors can exhibit the phenomenon
of weak charge quantization. Unfortunately, in the limit
of large dimensionless conductances g ≫ 1 this effect is
rather weak and it gains importance only at exponen-
tially small temperatures and voltages. Furthermore,
weak charge quantization vanishes completely even at
T = 0 provided at least one of the conducting channels is

fully transparent8,13. The results8 were later confirmed
and extended in Refs. 14 and 15.

Another – much more robust – effect of electron-
electron interactions is the so-called interaction correc-
tion to the I − V curve. This interaction correction
is negative and its magnitude scales linearly with the
parameter9

β =

∑

n Tn(1 − Tn)
∑

n Tn
, (1)

where Tn is the transmission of the n-th conducting chan-
nel. In contrast to the effect of weak charge quantization,
even for large conductances g ≫ 1 the interaction correc-
tion remains clearly observable up to high temperatures
and it vanishes only for β → 0, i.e. provided all the
conducting channels in the system are fully transparent.
Moreover, as both temperature and voltage get lowered,
the interaction correction grows logarithmically9,16. As
a result, at sufficiently low energies the smallness ∼ 1/g
gets compensated by a large logarithm and the system
enters a non-perturbative regime where terms of all or-
ders in the interaction need to be evaluated. Let us also
recall that for a particular case of highly conducting tun-
nel junctions this logarithmic enhancement of the inter-
action correction is already well known for single- and
double-junction systems17,18 as well as for tunnel junc-
tion arrays19,20.

It is interesting to observe that both interaction correc-
tion to the conductance and the shot noise spectrum3 are
proportional to the same parameter β (1). This obser-
vation illustrates a close relation between quantum noise
and interaction effects in coherent conductors9,16. Pro-
ceeding further along these lines one can investigate the
effect of electron-electron interactions on current noise10.
The interaction correction to the Nyquist noise was again
found to scale with the parameter (1) (in accordance with
the fluctuation-dissipation theorem) while the same cor-
rection to the shot noise turned out to be proportional
to the third cumulant of the current operator. It was
conjectured10 that the same rule should apply for higher
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cumulants as well, i.e. the interaction correction to the
n-th cumulant should be proportional to the (n + 1)-th
cumulant for all values of n. A general proof of this con-
jecture was very recently provided in Refs. 21,22.

Throughout the analysis8,9,10 it was assumed that in
the absence of interactions the conductor is described by
an energy independent (though otherwise general) scat-
tering matrix23. While in a number of important cases
the above assumption indeed applies, in various other
physical situations it turns out to be insufficient. There-
fore it would be highly desirable to develop a generaliza-
tion of the path integral technique9,10 to conductors de-
scribed by energy dependent scattering amplitudes. This
generalization is the primary goal of our present paper.

In physical terms our analysis should now effectively
account for internal dynamics of coherent conductors or,
in other words, for a finite dwell time of electrons. This
effect should be combined with that of electron-electron
interactions. Below we will accomplish this program for
an important and widely studied class of conductors –
the so-called quantum dots2,24.

The structure of the paper and our main results are as
follows.

In Sec. 2 we describe our general real time path in-
tegral formalism and derive the effective action of inter-
acting quantum dots, Eqs. (17-22) of our paper. The ef-
fect of electron-electron interactions is treated in a stan-
dard manner by the Hubbard-Stratonovich decoupling
of the Coulomb term in the Hamiltonian and reducing
the problem to that of an electron interacting with the
fluctuating quantum electromagnetic field defined on the
Keldysh contour. In order to handle the fermionic part
of the problem we combine our path integral analysis
with the scattering matrix approach. For the model of a
quantum dot adopted here the latter approach allows to
exactly integrate out all the electron paths and express
the effective action only in terms of the fluctuating fields
which are then treated within an effective quasiclassical
approximation suitable for highly conducting quantum
dots with g ≫ 1.

In Sec. 3 we derive a general expression for the current
noise in chaotic quantum dots as a function of frequency,
voltage and temperature. Although this expression itself
does not include interactions, it turns out to be very use-
ful for better understanding of the relation between shot
noise and interaction effects in mesoscopic conductors.

Sec. 4 is devoted to a detailed description of the
current-voltage characteristics of interacting quantum
dots. In the most simple voltage-biased limit the cor-
responding general expressions are presented in Sec. 4A
by Eqs. (53)-(61). Further analysis of these expressions
for chaotic quantum dots in the leading non-trivial order
in 1/g is carried out in Sec. 4B and 4C. A more general
case of an arbitrary external impedance is considered in
Sec. 4D. It is demonstrated that, as one goes away from
the voltage-biased limit, the interaction correction to the
current gets substantially modified and new regimes be-
come possible.

Further discussion of our results and their compari-
son to several recent experiments can be found in Sec.
5. In Appendices we present various technical details of
our derivation of the effective action (Appendices A and
B), details of our averaging procedure (Appendix C) and
general expressions for the current in interacting quan-
tum dots (Appendix D).

II. EFFECTIVE ACTION AND CURRENT

OPERATOR

A. General formalism

Let us consider a system of interacting electrons de-
scribed by the Hamiltonian

H =

∫

drψ†
σ(r)

[

−∇2

2m
− µ+ U(r)

]

ψσ(r)

+
1

2

∫

dr

∫

dr′ ψ†
σ(r)ψ†

σ′(r
′)

e2

|r − r′|ψσ′(r′)ψσ(r). (2)

Here the operator ψ†
σ(r)

(

ψσ(r)
)

creates (annihilates) an
electron with the coordinate r and the spin projection σ.
In Eq. (2) the summation over σ is assumed. The time
evolution of the density matrix of the whole system ρ(t)
is determined by the equation

ρ(t) = T exp [−iHt]ρ(0)T̃ exp [iHt] . (3)

Applying the Hubbard-Stratonovich transformation we
rewrite this equation in the form

ρ(t) =

∫

DVj Te−i
∫

t

0
dt′H1(t′)

ρ(0)T̃ei
∫

t

0
dt′H2(t′)eiSem

∫

DVj eiSem
, (4)

where

Sem =
∑

j=1,2

(−1)j+1

∫ t

0

dt′
∫

dr

(

∇Vj(t
′, r)

)2

8π
. (5)

is the electromagnetic contribution to the action, the
symbols T and T̃ imply ordering respectively in the for-
ward and backward time directions and

Hj =

∫

dr ψ†
σ(r)

[

−∇2

2m
− µ+ U(r) − eVj(t

′, r)

]

ψσ(r).

As usually, the expectation value of any physical op-
erator is obtained by taking the trace of this opera-
tor multiplied by ρ(t). Here we are mainly interested
in the expectation value of the current operator. This
operator, which we will specify later, can be obtained
by taking the functional derivatives of the combination

T(T̃) exp
[

±i
∫ t

0 dt
′H1,2(t

′)
]

with respect to the fluctu-

ating fields V1,2(t). For this reason there is no need to
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deal with the whole expression (4), the kernel of the cur-
rent operator can be obtained from the effective action
S, which is defined by the equation

eiS = Tr
{

Te−i
∫

t

0
dt′H1(t

′)
ρ(0)T̃ei

∫

t

0
dt′H2(t′)

}

eiSem . (6)

The effective action S can be expressed through the
Keldysh Green function matrix Ǧ−1

V1,V2
,

iS = 2Tr ln Ǧ−1
V1,V2

+ iSem, (7)

and the matrix Ǧ−1
V1,V2

satisfies the equation

[(

i
∂

∂t
+

∇2

2m
+ µ− U(r) + eV +(t, r)

)

1̌ + δǦ−1

]

× ǦV1,V2
(tt′, rr

′) = σ̌zδ(t− t′)δ(r − r
′), (8)

Here we defined δǦ−1 = (eV −(t′, r)/2)σ̌z (where σ̌z is
one of the Pauli matrices) and introduced symmetric and
anti-symmetric combinations of the fluctuating fields:

V + = (V1 + V2)/2, V − = V1 − V2. (9)

As we have already discussed, in the interesting for us
limit of large dot conductances fluctuations of the fields
V1,2 remain relatively small. In this case one can expand
the exact effective action in V − keeping only the first and
the second orders. Then one finds

iS = iSem + 2Tr[ǦV +δǦ−1] − Tr[(ǦV +δǦ−1)2], (10)

where ǦV + is the solution of Eq. (8) with δǦ−1 = 0.
From (10) we obtain

iS = iSem + e

∫ t

0

dt′
∫

d3
r
(

GV +,11(t
′ − 0, t′, r, r)

+GV +,22(t
′ + 0, t′, r, r)

)

V −(t′, r)

− e2
∫ t

0

dt′
∫ t

0

dt′′
∫

d3
r
′d3

r
′′GV +,12(t

′, t′′, r′, r′′)

×V −(t′′, r′′)GV +,21(t
′′, t′, r′′, r′))V −(t′, r′). (11)

Note that at this stage it is important not to expand in
V + keeping the exact nonlinear dependence of (10) on
this field.

The components of the Green function ǦV + can be ex-
pressed through the initial single particle electron density

matrix ρ̂0 and the single particle evolution operator Ûϕ+

.
These are the matrices in the channel space denoted by

a hat here and below. The operator Ûϕ+

is evaluated in
the Appendix A. We have

ĜV +,11(t1, t2) = −iθ(t1 − t2)Û
ϕ+

(t1, t2)

+ iÛϕ+

(t1, 0)ρ̂0Ûϕ+(0, t2),

ĜV +,22(t1, t2) = −iθ(t2 − t1)Û
ϕ+

(t1, t2)

+ iÛϕ+

(t1, 0)ρ̂0Ûϕ+(0, t2),

ĜV +,12(t1, t2) = iÛϕ+

(t1, 0)ρ̂0Û
ϕ+

(0, t2),

ĜV +,21(t1, t2) = −iÛϕ+

(t1, 0)[1̂ − ρ̂0]Û
ϕ+

(0, t2).(12)

CL

Cg

CR

V/2 -V/2

Vg

V = /eL Lj

V = /eR Rj

SL SR

+

++-

-

-

Z ( )/2S wZ ( )/2S w

.
.

.
jg/e

FIG. 1: Schematics of the quantum dot.

Here for future purposes we have defined

ϕ±(t′) =

∫ t′

0

dt′′eV ±(t′′). (13)

B. Effective action

The above analysis is rather general and can be ap-
plied to a variety of mesoscopic structures with disorder
and interactions. Our primary goal here is to consider
electron transport through a system which contains an
interacting quantum dot. This system is schematically
displayed in Fig. 1.

A quantum dot can be viewed as an island in-between
two barriers connected to a voltage source via metallic
leads with an arbitrary impedance Z(ω). Electrons can
enter the dot through one of the barriers, spend some
time there propagating between the barriers and being
reflected, and finally leave the dot through another bar-
rier. Details of the electron motion inside the dot will
not be important for us: Electrons can either propagate
ballistically from one barrier to the other or suffer addi-
tional scattering inside the dot, e.g. from the outer walls
or otherwise.

Electron-electron interactions are taken into account
by means of the effective capacitance model. Here we
introduce capacitances of the left and right barriers CL,R

and the gate capacitance Cg. Making use of this model
we can specify the expression for the effective action fur-
ther. Namely, we will assume that strong changes of the
fluctuating voltage fields V ± in space are allowed only in
the vicinity of the barriers where they suffer jumps V ±

L

and V ±
R (see Fig. 1). Additional voltage drop inside the

dot is neglected, i.e. there only the time dependence of
the fields V ± is taken into account. In the leads these
fields are assumed to vary slowly in space.
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Let us introduce the fluctuating potentials of the left
and right leads V ±

l,r and of the dot V ±
d . Then we define

the (time dependent) voltages across the barriers, V ±
L =

V ±
l − V ±

d and V ±
R = V ±

d − V ±
r , and find the electromag-

netic potentials in the rest of our system by minimizing
the action (11). Afterwards we substitute the result back
into Eq. (11) and arrive at the expression which depends

only on the phase jumps ϕ±
L,R(t′) =

∫ t′

0 dt′′eV ±
L,R(t′′). In

this way two contributions to the total effective action
can be identified,

iS = iSdot + iSext. (14)

Here the term iSdot comes from the last two terms of
Eq. (11) where the space integrals run over the inner

part of the dot and the barrier area. The second con-
tribution iSext comes from the integrals over the remote
parts of the system (leads). Making use of a slow co-
ordinate dependence of the fields V ± in the leads one
can expand the action iSext in these fields and keep the
first and the second order terms in this expansion. We
arrive at the standard form of the action25 describing
fluctuations produced by an arbitrary environment with
a linear impedance. Above we introduced the two leads
with identical impedances ZS(ω)/2. The fluctuating part
of the voltage across the left lead is (ϕ̇+

L − ϕ̇+
g )/e, the

corresponding value for the right lead is (ϕ̇+
R + ϕ̇+

g )/e.
The corresponding contributions to the action need to
be added and we arrive at the following expression

iSext = − i

e2

∫ t

0

dt′
(

CLϕ̈
+
Lϕ

−
L + CRϕ̈

+
Rϕ

−
R + Cgϕ̈

+
g ϕ

−
g

)

− 2i

e2

∫ t

0

dt1dt2 Z
−1
S (t1 − t2)

[

(ϕ−
L (t1) − ϕ−

g (t1))(ϕ̇
+
L (t2) − ϕ̇+

g (t2)) + (ϕ−
R(t1) + ϕ−

g (t1))(ϕ̇
+
R(t2) + ϕ̇+

g (t2))
]

− 1

e2

∫ t

0

dt1dt2 ZS(t1 − t2)
[

(ϕ−
L (t1) − ϕ−

g (t1))(ϕ
−
L (t2) − ϕ−

g (t2)) + (ϕ−
R(t1) + ϕ−

g (t1))(ϕ
−
R(t2) + ϕ−

g (t2))
]

,

Z−1
S (t) =

∫

dω

2π

e−iωt

ZS(ω)
, ZS(t) =

∫

dω

2π
ω coth

ω

2T
e−iωt Re

(

1

ZS(ω)

)

. (15)

The term iSem is evaluated within the capacitance model
and included in the above expression for iSext (15).

Now let us specify the effective action of the quantum
dot. In what follows we will assume that the left (right)
lead containsNL (NR) conducting channels. Every chan-
nel is characterized by the velocity vn (which may also be
different in different leads). In the absence of electron-
electron interactions quantum transport through the dot
can be fully described by the scattering matrix1,2. As
we have already pointed out in Sec. 1 a convenient way
to include interaction effects is to combine the scatter-
ing matrix approach with the path integral technique.
As compared to Refs. 8,9,10 here we are dealing with
a more complicated situation because the scattering ma-
trix of the dot can now depend on the energy E of in-
coming electrons. Therefore, the action9,10 cannot be
directly used and a proper generalization is required for
our problem.

Let us define the scattering matrix describing electron
transport through our quantum dot in the absence of
interactions:

Ŝ(E) =

(

r̂(E) t̂′(E)
t̂(E) r̂′(E)

)

. (16)

For our derivation it is also convenient to perform the

Fourier transformation of the S−matrix. We introduce

Ŝ(t) =

∫

dE

2π
Ŝ(E)e−iEt, Ŝ†(t) =

∫

dE

2π
Ŝ†(E)eiEt,

and the functions r̂(t), r̂′(t), t̂(t), t̂′(t) defined analo-
gously. In accordance with the causality principle one
has Ŝ(t < 0) = Ŝ†(t < 0) ≡ 0.

It turns out that one can find an explicit expression

for the evolution operator Ûϕ+

in terms of the scatter-
ing matrix, construct the Green functions (12) and then
derive the effective action of the quantum dot Sdot from
Eq. (11). This program is carried out in Appendices A
and B. The final result can be expressed in the form

iSdot = iSR − SI . (17)

As usually, the part SR describes dissipative effects. It
reads (see Appendix B):

iSR = −2i

∫ t

0

dz

∫ ∞

0

dxdy tr
{

[δ(z − y)ϕ̂−(z)δ(z − x)

− Ŝ†(z − y)ϕ̂−(z)Ŝ(z − x)]ρ̂(y, x)
}

. (18)
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where

ϕ̂−(z) =

(

−1̂ϕ−
L (z) 0

0 1̂ϕ−
R(z)

)

,

ρ̂(y, x) = ρ0(y − x)

(

1̂ ei[ϕ+

L
(y)−ϕ+

L
(x)] 0

0 1̂ ei[ϕ+

R
(x)−ϕ+

R
(y)]

)

(19)

(1̂ is the unity matrix), and

ρ0(x) =

∫

dE

2π

eiEx

1 + eE/T
=

1

2
δ(x) − iT

2 sinh[πTx]
(20)

is the equilibrium density matrix of non-interacting elec-
trons.

The second term SI in (17) accounts for quantum
noise. This term is also evaluated in Appendix B. As
a result we obtain

SI =

∫ t

0

dx1dx2

∫ ∞

0

dy1dy2

∫ ∞

0

dz1dz2

× tr
{[

δ(x1 − z1)ϕ̂
−(x1)δ(x1 − y1)

− Ŝ†(x1 − z1)ϕ̂
−(x1)Ŝ(x1 − y1)

]

ρ̂(y2, y1)

×
[

δ(x2 − y2)ϕ̂
−(x2)δ(x2 − z2)

−Ŝ†(x2 − y2)ϕ̂
−(x2)Ŝ(x2 − z2)

]

ĥ(z1, z2)
}

.(21)

Here we defined

ĥ(z1, z2) = h0(z1 − z2)

(

ei[ϕ+

L
(z1)−ϕ+

L
(z2)] 0

0 ei[ϕ+

R
(z2)−ϕ+

R
(z1)]

)

,(22)

and h0(z) = δ(z) − ρ0(z). We also note that in the long
time limit the integration over x, y in Eq. (18) and over
x1,2, y1,2 in Eq. (21) can be extended to the interval
(−∞,+∞).

The expressions (17-22) for the effective action of the
quantum dot represent the main technical result of our
paper. This effective action is defined by essentially
nonlocal in time expressions which account for electron-
electron interaction effects in the presence of a non-zero
dwell time τD of electrons in the quantum dot. Should
τD be much shorter than any other relevant time scale
in our problem, the time dependence of the scattering
matrices Ŝ(t) and Ŝ+(t) can be approximated by the δ-

function, Ŝ(t) ∝ Ŝ+(t) ∝ δ(t), in which case the action
(17-22) reduces to one derived in Ref. 9.

C. Averaging of the action

If one is not interested in mesoscopic fluctuations of the
effective action one can simplify the above expressions
by averaging Eqs. (18) and (21) over energy intervals
exceeding the dot level spacing δ. Consider first the term
SR (18). Let us illustrate the main idea by treating the
average tr〈t̂†(x)t̂(y)〉. We have

tr〈t̂†(x)t̂(y)〉 =

∫

dE1,2

(2π)2
tr〈t̂†(E1)t̂(E2)〉eiE1x−iE2y. (23)

In a broad interval of energies the average tr〈t̂†(E1)t̂(E2)〉
should depend only the energy difference E1−E2.Making
use of this observation let us define the function uRL

ω =
tr〈t̂†(E)t̂(E + ω)〉 and its Fourier transform uRL(t) =
∫

dω
2π u

RL
ω e−iωt. The function uRL

ω satisfies the property

uRL
−ω = uRL

ω
∗
, therefore uRL(t) is real. Other averages are

defined analogously. We find

tr〈[δ(x)δ(y)1̂ − r̂†(x)r̂(y)]〉 = δ(x− y)uLL(y),

tr〈t̂′†(x)t̂′(y)〉 = δ(x− y)uLR(y),

tr〈[δ(x)δ(y)1̂ − r̂′
†
(x)r̂′(y)]〉 = δ(x− y)uRR(y),

tr〈t̂†(x)t̂(y)〉 = δ(x− y)uRL(y). (24)

Averaging of Eq. (18) with the aid of (24) yields

iSav
R = − i

π

∑

i,j=L,R

t
∫

0

dz

z
∫

0

dxϕ−
i (z)uij(z − x)ϕ̇+

j (x).(25)

We note that Sav
R – unlike the non-averaged action SR

(18) – is bilinear in both ϕ+ and ϕ−.
Now let us average the term SI . We first notice that,

since this term is already quadratic ϕ−, in the averaged
version of SI one can neglect fluctuations of the phases
ϕ±

L,R and set ϕ+
L,R(t) = eVL,Rt. After that the voltages

VL,R can be absorbed as energy shifts of the Fermi dis-
tribution functions in the leads. Averaging of the com-
ponents of the scattering matrix entering into Eq. (21) is
carried out as above. We first proceed to the energy rep-
resentation. Then we will get a sum of terms containing
combinations of a similar structure, such as, e.g.,
∫

dE

2π
f(E + ω − eVL)(1 − f(E − eVL))

×tr
〈

[1̂ − r̂†(E)r̂(E + ω)][1̂ − r̂†(E + ω)r̂(E)]
〉

,(26)

where f(E) = (1 + exp(E/T ))−1 is the Fermi function.
Since the averages should not depend on E, in all these
combinations one can integrate over this variable. Col-
lecting all terms we arrive at the final result

Sav
I =

∑

i,j

∫ t

0

dx1

∫ t

0

dx2 ϕ
−
i (x1)vij(x1 − x2)ϕ

−
j (x2).(27)

Here the kernels v are defined as vij(t) =
∫

dω
2π v

ij
ω e−iωt,

where

vij
ω =

ω

2π
coth

ω

2T
Reuij

ω +

[

ω − eV

4π
coth

ω − eV

2T

+
ω + eV

4π
coth

ω + eV

2T
− ω

2π
coth

ω

2T

]

ṽij
ω ,(28)

V = VL + VR and

ṽLL
ω = tr〈r̂(E)r̂†(E)t̂′(E + ω)t̂′

†
(E + ω)〉,

ṽRL
ω = −tr〈r̂(E)t̂†(E)r̂′(E + ω)t̂′

†
(E + ω)〉,

ṽLR
ω = −tr〈t̂(E)r̂†(E)t̂′(E + ω)r̂′

†
(E + ω)〉,

ṽRR
ω = tr〈t̂(E)t̂†(E)r̂′(E + ω)r̂′

†
(E + ω)〉. (29)
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This concludes our derivation of the effective action for
interacting quantum dots.

D. Current operator

In order to complete our general analysis let us define
the kernel of the current operator for our problem. One
can choose calculating the current either in the left or in
the right junction, obviously in the stationary limit the
result should remain the same in both cases. One can
also use a symmetrized version of the current operator.
One finds

I =

∫

Dϕ−Dϕ+ I(t, ϕ±) eiSext+iSR−SI

∫

Dϕ−Dϕ+ eiSext+iSR−SI
, (30)

where

I(t, ϕ±) =
1

2

(

−ieδ(iSR − SI)

δϕ−
L (t)

− ie
δ(iSR − SI)

δϕ−
R(t)

)

= − ie
2

δ(iSR − SI)

δ
(

ϕ−

L
(t)+ϕ−

R
(t)

2

)

∣

∣

∣

∣

∣

∣

ϕ−

L
−ϕ−

R
=const

. (31)

Since here we are interested in a stationary situation,
the result for the current should not depend on time.
Therefore one can choose an arbitrary value of t at which
the above functional derivative is taken, with the only
requirement that t should be sufficiently large. Inserting
Eqs. (18) and (21) into (31), and defining the matrix

Λ̂ =

(

1̂ 0

0 −1̂

)

,

we obtain

I(t, ϕ±) = I0(t, ϕ
+) + δI(t, ϕ±), (32)

where

I0(t, ϕ
+) = e

∫

dxdy tr
{

[δ(t− x)Λ̂δ(t− y)

− Ŝ†(t− x)Λ̂Ŝ(t− y)]ρ̂(x, y)
}

, (33)

and

δI(t, ϕ±) = − ie
2

∫ t

0

dx

∫ ∞

0

dy1dy2

∫ ∞

0

dz1dz2 Tr
{

[

δ(t− z1)Λ̂δ(t− y1) − Ŝ†(t− z1)Λ̂Ŝ(t− y1)
]

ρ̂(y2, y1)

×
[

δ(x− y2)ϕ̂
−(x)δ(x − z2) − Ŝ†(x− y2)ϕ̂

−(x)Ŝ(x− z2)
]

ĥ(z1, z2)
}

− ie

2

∫ t

0

dx

∫ ∞

0

dy1dy2

∫ ∞

0

dz1dz2 Tr
{

[

δ(x− z1)ϕ̂
−(x)δ(x − y1) − Ŝ†(x− z1)ϕ̂

−(x)Ŝ(x− y1)
]

ρ̂(y2, y1)

×
[

δ(t− y2)Λ̂δ(t− z2) − Ŝ†(t− y2)Λ̂Ŝ(t− z2)
]

ĥ(z1, z2)
}

. (34)

III. NOISE OF A QUANTUM DOT

The general expression for the term SI (21) in the ac-
tion enables one to easily evaluate the current correlators
at the barriers in the absence of interaction:

Sij(ω) =

∫

dt eiωt〈δIi(t)δIj(0) + δIj(0)δIi(t)〉, (35)

where i, j = L,R. One finds

Sij(ω) = 2e2
∫

dt eiωt
δ2SI [ϕ

−
α , ϕ

+
β = eVβt]

δϕ−
i (t)ϕ−

j (0)
. (36)

In this way one recovers the well known general expres-
sion for the noise in terms of the scattering amplitudes3.
Averaging the result over mesoscopic fluctuations we get

Sij(ω) =
2e2

π

(

Reuij
ω − ṽij

ω

)

ω coth
ω

2T
+
e2

π
ṽij

ω

×
(

(ω − eV ) coth
ω − eV

2T
+ (ω + eV ) coth

ω + eV

2T

)

(37)

Following the standard procedure26 let us express the
scattering matrix of the dot in the form

Ŝ(E) = R̂+ T̂ ′[1 − Û(E)R̂′]−1Û(E)T̂ , (38)

where the energy independent matrices

R̂ =

(

r̂L 0
0 r̂′R

)

, R̂′ =

(

r̂′L 0
0 r̂R

)

(39)

and

T̂ =

(

t̂L 0
0 t̂′R

)

, T̂ ′ =

(

t̂′L 0
0 t̂R

)

(40)

account for scattering properties of the left and right
barriers while Û(E) is the unitary matrix which effec-
tively describes scattering in the “internal” part of the
dot. Further analysis requires specifying the model for
our quantum dot. Here we will mainly address chaotic

quantum dots in which case Û(E) belongs to the circular
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ensemble. The averages uij
ω and vij

ω are evaluated with
the aid of the diagrammatic technique26,28. We obtain

uLL,RR
ω =

gL,R

2
−

g2
L,R

2g(1 − iωτD)
,

uLR
ω = uRL

ω =
gLgR

2g(1 − iωτD)
. (41)

The details of the derivation are presented in Appendix
C. Here we defined the dimensionless conductances of
the left and right barriers gL,R = 2tr〈t̂†L,R(E)tL,R(E)〉 =

2π/e2RL,R, their sum g = gL + gR, and the electron
dwell time in the quantum dot τD = 4π/gδ. The general
expressions for ṽij

ω can also be obtained with the aid of
the results derived in Appendix C. One finds

ṽLL
ω =

g2
LgR

2g3

(

gL
ω2τ2

D

1 + ω2τ2
D

+ gR

)

+
gLg

2
R

2g4

(gL + gR)2ω2τ2
D + g2

R

1 + ω2τ2
D

βL

+
g4

LgR

2g4(1 + ω2τ2
D)
βR,

ṽRL
ω =

g2
Lg

2
R

2g3(1 + ω2τ2
D)

+
gLg

3
R(iωτDgL + (1 + iωτD)gR)

2g4(1 + ω2τ2
D)

βL

+
g3

LgR((1 − iωτD)gL − iωτDgR)

2g4(1 + ω2τ2
D)

βR. (42)

Here we introduced the Fano factors of the barriers

βj =
tr
(

t̂j t̂
†
j r̂

′
j r̂

′
†

j

)

tr
(

t̂j t̂
†
j

) , j = L,R.

The functions ṽRR
ω and ṽLR

ω are recovered by interchang-
ing the indices L ↔ R in the expressions (42) for ṽLL

ω

and ṽRL
ω .

In the low frequency limit ω → 0 one finds ṽLL =
ṽRR = ṽLR = ṽRL and, hence, SLL(0) = SRR(0) = S,
where S is the noise spectrum of the dot,

S =
4T

Rq

(

gLgR(g2 − gLgR)

g3
− gLg

4
RβL + g4

LgRβR

g4

)

+
2eV

Rq
coth

eV

2T

(

g2
Lg

2
R

g3
+
gLg

4
RβL + g4

LgRβR

g4

)

. (43)

Here and below Rq = h/e2 is the quantum resistance
unit.

In the leading approximation the dot conductance is
G0 = gLgR/gRq. Hence, for chaotic quantum dots the

total Fano factor β̃ (defined in a standard manner as a
ratio between the shot noise spectrum and its Schottky
value 2eI) reads

β̃ =
gLgR

(gL + gR)2
+
g3

RβL + g3
LβR

(gL + gR)3
. (44)

We note that Eq. (43) agrees with the results for zero
frequency noise of chaotic cavities previously derived in
different limits by various authors3,29. It is also satisfac-
tory to observe that in the particular case of two diffusive
conductors βL = βR = 1/3 Eq. (44) again yields β̃ = 1/3
for any gL and gR.

Our analysis also allows to generalize the results for
the current noise in chaotic cavities to the case of finite
frequencies. In order to find the noise correlator S(ω) it
is in general necessary to account for the barrier capaci-
tances. Assuming for simplicity Cg = 0, we obtain

S(ω) = |YL(ω)|2SLL(ω) + |YR(ω)|2SRR(ω)

+ 2Re
(

YL(ω)SLR(ω)YR(ω)
)

, (45)

where

YL(ω) =
−iωCR + e2

π

(

uRR
ω − uRL

ω

)

−iω(CL + CR) + e2

π

(

uLL
ω + uRR

ω − uLR
ω − uRL

ω

) ,

YR(ω) =
−iωCL + e2

π

(

uLL
ω − uLR

ω

)

−iω(CL + CR) + e2

π

(

uLL
ω + uRR

ω − uLR
ω − uRL

ω

)

and uij
ω are defined in (41). The above equations demon-

strate that in a general case the noise spectrum (45) de-
pends on frequency in a complicated manner. However,
for fully symmetric quantum dots, i.e. for CL = CR,
gL = gR and βL = βR = β, one find YL(ω) = YR(ω) =
1/2. In this case all frequency dependent contributions
contained in the functions ṽij

ω (42) cancel out and Eq.
(45) reduces to the standard form3

S(ω) = 2(1 − β̃)G0ω coth
ω

2T

+ β̃G0

∑

±

(ω ± eV ) coth
ω ± eV

2T
(46)

with the Fano factor β̃ = (1 + β)/4 in accordance with
Eq. (44).

IV. CURRENT-VOLTAGE CHARACTERISTICS

AND CONDUCTANCE

Let us now turn to the interaction effects. In order to
evaluate the current-voltage characteristics we should av-
erage the above expressions for the phase-dependent cur-
rent I(t, ϕ±) (32)-(34) over the fluctuating phase fields
ϕ±. In addition to that – provided one is not interested
in the effect of mesoscopic fluctuations – one can also
average the result over such fluctuations. We proceed
exactly in this order and first perform averaging over the
phase fluctuations.

A. Averaging over fluctuating phase fields

Let us combine Eqs. (32)-(34) with (30) and carry
out functional integration over ϕ±. We notice that in
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the interesting for us limit of large dot conductances it is
parametrically justified to perform this integration with
the averaged effective action

Sav = Sext + Sav
R + iSav

I

instead of the exact one. This observation simplifies the
whole procedure enormously because the action Sav is
quadratic in ϕ±. Hence, the integrals become Gaussian
and can be handled exactly.

Since in all the integrals only linear combinations
of the phases ϕ+ enter into the exponent, it is con-
venient to first integrate out this variable. This in-
tegration yields functional δ-functions. For example,

one of the terms in Eq. (34) contains the exponent

ei[ϕ+

L
(y2)−ϕ+

L
(y1)+ϕ+

R
(z2)−ϕ+

R
(z1)], in which case the averag-

ing over ϕ+
L,R fixes the variables ϕ− in the form

ϕ−
j (τ) = −KjL(z1 − τ) +KjL(z2 − τ) −KjR(y1 − τ)

+KjR(y2 − τ), j = L,R, g. (47)

The Fourier transform of the functions Kij(t) reads

Kij
ω =

e2

−iω + 0
A−1

ij (ω), (48)

where the matrix A(ω) has the form

A(ω) =







−iωCL + 2
ZS(ω) + e2

π uLL(ω) e2

π uRL(ω) − 2
ZS(ω)

e2

π uLR(ω) −iωCR + 2
ZS(ω) + e2

π uRR(ω) 2
ZS(ω)

− 2
ZS(ω)

2
ZS(ω) −iωCg + 4

ZS(ω)






. (49)

Other terms of Eq. (34) are treated analogously.
The above expressions hold for an arbitrary external
impedance ZS(ω). Further general expressions for the
current are presented in Appendix D.

Let us now focus our attention on the important limit
of vanishing external impedance ZS(ω) → 0. In this limit
one finds

Kij
ω = Kω





1 −1 1
−1 1 −1
1 −1 1



 , (50)

where we defined

Kω =
e2

−iω + 0

1

−iωCΣ + e2

π u(ω)
, (51)

u(ω) = uLL
ω + uRR

ω − uLR
ω − uRL

ω

= tr〈1̂ − Ŝ†(E)Ŝ(E + ω)〉. (52)

and CΣ = CL + CR + Cg. What remains is to integrate
out the variable ϕ−. Because of the obtained functional
δ-functions this integration becomes trivial as well. One
should just substitute the trajectories (47) into Sav

I , into
the imaginary part of Sext and into the term δI. Tak-
ing the unitarity of the S−matrix into account, in the

voltage-biased limit ZS(ω) → 0 one finds

I(V ) = I0(V ) + δI(V ). (53)

For the sake of convenience we present the expression for
the term I0(V ) in two equivalent forms:

I0(V ) = 2e

∫

dxρ0(x)T (x) e−F (x)
(

eieVLx − e−ieVRx
)

= e

∫

dEdω

(2π)2
tr{[Λ̂ − Ŝ†(E + ω)Λ̂Ŝ(E + ω)]ρ̂E}

×
(∫

dx eiωx−F (x)

)

. (54)

Here we have defined T (x) =
∫

dE
2π tr[t̂†(E)t̂(E)] e−iEx,

and

ρ̂E =

(

1̂f(E − eVL) 0

0 1̂f(E + eVR)

)

, (55)

where f(E) = 1/(1 + exp(E/T )) is the Fermi function.

The interaction correction to the current δI(V ) takes
the form

δI = −eIm
∫

dx

∫

dy1dy2

∫

dz1dz2 F(y1, y2, z1, z2)
(

K(−y1) −K(−z1)
)

× tr
{[

δ(z1 + x)Λ̂δ(y1 + x) − Ŝ†(z1 + x)Λ̂Ŝ(y1 + x)
]

ρ̂0(y1 − y2)
[

δ(y2)δ(z2) − Ŝ†(y2)Ŝ(z2)
]

ĥ0(z2 − z1)
}

,(56)

where we have set

F(y1, y2, z1, z2) = e−F (y1−y2)−F (z1−z2)−F (y1−z1)

× e−F (y2−z2)+F (y1−z2)+F (y2−z1).(57)

In the limit ZS(ω) → 0 we have Re(iSext) = 0 and the
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function F (x) is simply equal to F (x) = Sav
I evaluated

for ϕ−
L (τ) = −ϕ−

R(τ) = K(x − τ) −K(−τ). In this case
we find

F (x) = 2

∫

dω

2π
|Kω|2(1 − cosωx)(vLL

ω + vRR
ω

− vLR
ω − vRL

ω ), (58)

where the functions vij
ω are defined in Eqs. (28)-(29).

As we shall see below, for a wide range of parameters
the function (57) in Eq. (56) can be approximated by
unity F → 1. Under this approximation one can con-
veniently perform the Fourier transformation and reduce
the expression (56) to the form

δI = eIm

∫

dEdω

(2π)2
Kωtr

{

[1 − Ŝ†(E)Ŝ(E + ω)]ĥE+ω

× [Ŝ†(E + ω)Λ̂Ŝ(E + ω) − Ŝ†(E)Λ̂Ŝ(E)]ρ̂E

}

, (59)

where ĥE = 1̂ − ρ̂E .
Employing the above general expressions one can also

define the zero bias conductance of the dot. In doing so,
we express the voltages VL,R in the form VL,R = (V ±
VG)/2,where VG is the effective potential of the dot tuned
through the gate, and find the linear in V correction to
the current. The voltage VG can be removed by shifting
the energy and performing a proper re-definition of the
S−matrix. Thus we find G = GF + δG, where

GF = −e
2

2

∫

dEdω

(2π)2
Tr
{

1̂ − Ŝ+(E + ω)Λ̂Ŝ(E + ω)Λ̂
}

×
(∫

dx e−iωx−F (x)

)

∂f

∂E
, (60)

and

δG =
e2

2
Im

∫

dEdω

(2π)2
Kω[1 − 2f(E + ω)]

∂f(E)

∂E

× tr
{

[Ŝ+(E)Λ̂Ŝ(E)Λ̂ − Ŝ+(E + ω)Λ̂Ŝ(E + ω)Λ̂]

× [1 − Ŝ+(E)Ŝ(E + ω)]
}

. (61)

In Eq. (61) we again set F = 1. This is sufficient in the
perturbative regime to be studied below.

B. Perturbation theory and renormalization of the

S-matrix

The above general expressions allow to conveniently
proceed with the perturbation theory in the interac-
tion. In order to obtain the first order correction to
the conductance one should expand GF (60) in F (x)
and combine linear in F (x) terms of this expansion
with the interaction correction δG (61). Then one finds
G = GL + δG1 + δG2, where G = GL is the Landauer
conductance of the dot in the absence of interactions,

GL = −e
2

2

∫

dE

2π
tr[1̂ − Ŝ†(E)Λ̂Ŝ(E)Λ̂]

∂f

∂E
, (62)

and the two corrections δG1,2 read

δG1 =
e2

2
Im

∫

dEdω

(2π)2
Kω

(

coth
ω

2T
− tanh

E + ω

2T

)

× tr
{

Ŝ†(E + ω)Λ̂Ŝ(E + ω)Λ̂ − Ŝ†(E)Λ̂Ŝ(E)Λ̂
}∂f(E)

∂E
, (63)

δG2 = −e
2

2
Im

∫

dEdω

(2π)2
Kω tanh

E + ω

2T

∂f(E)

∂E

× tr
{

Ŝ†(E)Λ̂Ŝ(E)Λ̂Ŝ†(E)Ŝ(E + ω)

− Ŝ†(E)Λ̂Ŝ(E + ω)Λ̂
}

. (64)

We note that in Eq. (63) the terms containing
coth(ω/2T ) come from the expansion of (60) while all
the tanh-terms originate from Eq. (61).

It is easy to see that δG1 ≡ 0 for any Ŝ(E) and at
any temperature. Indeed, making a shift E + ω → E
in the term involving the product Ŝ†(E+ω)Λ̂Ŝ(E+ω)Λ̂
one reduces the expression under the integral to the form
ImKω B(E,ω), where

B(E,ω) =

(

coth
ω

2T
− tanh

E

2T

)

∂f(E − ω)

∂E

−
(

coth
ω

2T
− tanh

E + ω

2T

)

∂f(E)

∂E
.(65)

Since f(E) is the Fermi function, one has B(E,ω) =
B(E,−ω). At the same time, as follows from Eq. (51),
ImKω is an odd function of ω. Hence, the integral over ω
vanishes identically, the term δG1 drops out and only the
combination (64) needs to be taken into consideration.

Let us make a shift Ŝ(E) → Ŝ(E) + δŜ(E) in the
Landauer formula (62). Then the corresponding linear

in δŜ(E) correction to the conductance becomes

δGL =
e2

2

∫

dE

2π
tr[δŜ†(E)Λ̂Ŝ(E)Λ̂

+ Ŝ†(E)Λ̂δŜ(E)Λ̂]
∂f

∂E
. (66)

Comparing this formula to the first order correction (64)

we can choose δŜ(E) and δŜ†(E) in the form:

δŜ =
1

2i

∫

dω

2π
Kω

[

tanh
E + ω

2T
[Ŝ(E + ω) − Ŝ(E)]

+ tanh
E − ω

2T
Ŝ(E)[Ŝ†(E − ω) − Ŝ†(E)]Ŝ(E)

]

,

δŜ† =
−1

2i

∫

dω

2π
K∗

ω

[

tanh
E + ω

2T
[Ŝ†(E + ω) − Ŝ†(E)]

+ tanh
E − ω

2T
Ŝ†(E)[Ŝ(E − ω) − Ŝ(E)]Ŝ†(E)

]

. (67)

Although this choice is obviously not a unique one, we
will stick to it for the reasons which will become clear
below. Making use of the property K−ω = K∗

ω, it is
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easy to check that the conditions
(

δŜ†(E)
)†

= δŜ(E)

and δŜ†(E)Ŝ(E) + Ŝ†(E)δŜ(E) = 0 are identically ful-
filled, i.e. the first order renormalization (67) preserves
the unitarity of the S−matrix.

In order find the function Kω (51) for chaotic quantum
dots one needs to perform the average of the product of
two S−matrices at different energies (52). Neglecting
small localization corrections, and applying the formula
(C3) we obtain

tr〈1̂ − Ŝ†(E)Ŝ(E + ω)〉 =
−iωτDg

2(1 − iωτD)
. (68)

Combining (68) with (51,52), we get

Kω =
e2

(−iω + 0)
(

−iωCΣ + e2

2π g
−iωτD

1−iωτD

) (69)

and after the the Fourier transformation we arrive at the
expression

K(t) =
2π

g
θ(t)

(

τ2
D(1 − e−t/τ )

(τD + τ0)2
+

t

τ0 + τD

)

. (70)

Here we have defined the classicalRC−time of the central
island τ0 = 2πCΣ/(e

2g) and τ = τDτ0/(τD + τ0). For
large quantum dots one typically has τ0 ≪ τD and, hence,
τ ≈ τ0.

Eq. (70) allows to specify the necessary condition of
applicability for our analysis. Let us recall that during
our derivation we have expanded the effective action in
powers of the fluctuating phase field ϕ−. The least action
condition fixes this field to be equal to ϕ−(t) = K(t).
Since all the available time integrals are effectively cut at
times exceeding τD, it is sufficient to require ϕ−(τD) =
K(τD) ≪ 2π. Then from Eq. (70) we conclude that our
expansion of the exact effective action in powers of the
field ϕ−(t) is justified in the “metallic” limit

g ≫ 1. (71)

We also note that this condition is necessary but in gen-
eral not a sufficient one in order to justify the perturba-
tive expansion in the interaction employed in this subsec-
tion. An additional condition will be established below
in Sec. 4C.

Consider the most relevant physical limit τD ≫ τ0. In

this case one has Kω ≈ 2π
g

(

1
−iω − 1

1/τ0−iω

)

. Since the

integral in Eqs. (67) is taken over a wide range of en-
ergies, the main logarithmic correction to the scattering
matrix can be obtained if one replaces Ŝ(E + ω) by its

energy independent average 〈Ŝ(E)〉 = R̂. Then one finds

δŜ(E) =
ln(1/Eτ0)

g

[

〈Ŝ〉 − Ŝ(E)

− Ŝ(E)
(

〈Ŝ†〉 − Ŝ†(E)
)

Ŝ(E)
]

. (72)

Eq. (72) can be used to derive renormalization group
(RG) equations for the energy dependent scattering ma-
trix of a quantum dot. Following the standard procedure

let us fix an infinitesimal energy interval between E and
E − dE. From Eq. (72) one easily finds the correspond-

ing correction dŜ(E) to the scattering matrix. Lowering
the energy and repeating this procedure many times one
arrives at the following RG equations

dŜ(E)

d ln(1/Eτ0)
=

〈Ŝ〉 − Ŝ(E)〈Ŝ†〉Ŝ(E)

g
, (73)

where the effective conductance g is expressed via the
renormalized scattering matrix at a given energy by
means of the Landauer formula. Making use of Eqs. (38-
40) we define

g = trT̂ †T̂ . (74)

Hence, g itself gets renormalized and becomes energy de-
pendent. Finally, substituting Ŝ(E) in the form (38) we

observe that Û(E) remains unchanged in the course of
renormalization. Thus Eq. (73) describes the renor-
malization of the barrier transmissions connecting the
chaotic cavity to the ideal leads. After simple manipula-
tions and making use of Eq. (74) we arrive at the scaling

equations for the transmission matrices T̂+T̂ :

dT̂ †T̂

d ln(Eτ0)
=

2
(

1̂ − T̂ †T̂
)

T̂ †T̂

trT̂ †T̂
. (75)

Eq. (75) coincides with that recently derived in Ref. 22
by means of a different approach.

Let us emphasize again that the whole analysis of the
present subsection is valid within the first order pertur-
bation theory in the interaction. Hence, the above RG
equation can be applied only as long as the renormalized
conductance g(E) remains large.

C. I-V curve in the voltage-biased limit

Provided temperature and/or voltage exceed the level
spacing in the dot and provided one is not interested in
resolving subtle details of the I−V curve related to meso-
scopic fluctuations, it is convenient to perform averaging
of the above general expressions for the current over such
fluctuations. The average values of the products of re-
flection and transmission matrices depend only on ω, not
on E. Hence, one can integrate over E and derive the
current-voltage characteristics of a quantum dot in the
presence of interactions. In particular, the term I0 in
Eq. (54) acquires the standard Landauer form

I0 =
e2

π
tr〈t̂†(E)t̂(E)〉V = G0V. (76)

In the case of chaotic quantum dots one finds26:

tr〈t̂†(E)t̂(E)〉 =
gLgR

2g

+ ν
gLg

2
R(1 − βL) + g2

LgR(1 − βR)

g3
, (77)
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where ν = −1, 0 or 1/2 respectively for circular orthogo-
nal, unitary and symplectic ensembles. The second term
in Eq. (77) represents the weak localization (WL) correc-
tion. For the model under consideration this correction
is parametrically (∼ 1/g) small as compared to the first
term in (77). Below we will concentrate on the interac-
tion correction to the current δI, which is of the same
order in 1/g, but nevertheless strongly exceeds the WL
correction at sufficiently low energies.

Let us consider the perturbative in the interaction
regime. After averaging over mesoscopic fluctuations the
interaction correction (59) takes the form

δI = − e

π

∫

dω

2π
Im
(

KωD(ω)
)

(ω − eV ) coth
ω − eV

2T
,

(78)
where we defined

D(ω) = tr〈
[

r̂+(E + ω)t̂′(E + ω) − r̂+(E)t̂′(E)
]

×
[

t̂′
+
(E)r̂(E + ω) + r̂′

+
(E)t̂(E + ω)

]

〉.(79)

All other contributions to the interaction correction van-
ish upon averaging. An explicit evaluation of the function
D(ω) (79) is easily performed with the aid of Eq. (C9).
Here we only quote the result:

D(ω) =
gLgR(gRβL + gLβR)

2(gL + gR)2
ω2τ2

D

(1 − iωτD)2
. (80)

Combining Eqs. (78), (69) and (80), we obtain

δI = −eB
2

∫

dω

2π

1

ω

(

1

1 + ω2τ2
− 1

1 + ω2τ2
D

)

×
[

(ω + eV ) coth
ω + eV

2T
− (ω − eV ) coth

ω − eV

2T

]

,(81)

where we defined

B = gLgR(gLβR + gRβL)/(gL + gR)3. (82)

One can also rewrite Eq. (81) in the form

δI = −eB
π

∫ ∞

0

dt
π2T 2

sinh2 πT t
e−t/τD (1 − e−t/τ0) sin eV t.

(83)
The integral can be evaluated analytically. We find

δI = −eB
π

Im

[(

1

τ
+ ieV

)

Ψ

(

1 +
1

2πTτ
+ i

eV

2πT

)

−
(

1

τD
+ ieV

)

Ψ

(

1 +
1

2πTτD
+ i

eV

2πT

)]

,(84)

where Ψ(x) is the digamma function. This is a complete
expression for the first order interaction correction to the
current in chaotic quantum dots with large conductances
in the voltage-biased regime.

We will now analyze the above general expression in
various specific limits. At T → 0 the I−V curve reduces
to the following simple form

dI

dV
= G0 −

B

Rq
ln

τ2
D(1 + (eV τ)2)

τ2(1 + (eV τD)2)
. (85)

Provided the voltage is large eV τ ≫ 1 the interaction
correction turns out to be small. In the limit τ0 ≪ τD
one finds

dI

dV
= G0 −

Bg2E2
C

πRqe2V 2
, (86)

where EC = e2/2CΣ is the charging energy. In the in-
termediate range of voltages 1/τD ≪ eV ≪ 1/τ0 the
interaction correction becomes logarithmic in V

dI

dV
= G0 +

2B

Rq
ln (eV τ0) (87)

and at lower voltages and temperatures eV, T ≪ 1/τD
we obtain

dI

dV
= G0 −

2B

Rq

[

ln
τD
τ

−
(

(eV )2

2
+
π2T 2

3

)

(τ2
D − τ2)

]

.

(88)
The latter expression demonstrates that in the regime
under consideration the linear conductance of the quan-
tum dot remains non-zero down to zero temperature.

Taking the limit V → 0 in the general results (83,84)
one can derive the linear conductance of the dot at arbi-
trary temperatures. Evaluating the integrals, we obtain

G = G0 −
2B

Rq
[L(Tτ) − L(TτD)] , (89)

where we defined

L(x) = Ψ

(

1 +
1

2πx

)

+ γ +
1

2πx
Ψ′

(

1 +
1

2πx

)

(90)

and γ ≃ 0.577 is the Euler constant. As before, this
general expression can be simplified further in various
limits. At high temperatures T ≫ gEC we find

G = G0 −
Bg

Rq

{

EC

3T
− 3ζ(3)g

2π4

(

EC

T

)2
}

, (91)

where ζ(3) ≃ 1.202. In the regime 1/τD ≪ T ≪ 1/τ0 we
again arrive at the logarithmic interaction correction to
the conductance

G = G0 +
2B

Rq
ln (Tτ0) (92)

which crosses over to Eq. (88) as T becomes smaller than
the inverse dwell time 1/τD.

The above results completely describe perturbative in-
teraction correction to the current-voltage characteris-
tics of highly conducting chaotic quantum dots in the
voltage-biased regime. We also note that in certain limits
these results reduce to ones obtained previously9,22,24,30

by means of different techniques. For instance, the log-
arithmic behavior of the interaction correction (92) can
easily be recovered from the RG approach22 which we
also discussed in Sec. 4B. On the other hand, some other
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results, e.g., Eqs. (86,91), cannot be obtained within this
RG scheme.

Under which conditions do the above perturbative re-
sults remain valid? At high temperatures the validity of
the result (91) is guaranteed by the inequality T ≫ gEC .
In this limit no additional requirement (71) is needed,
i.e. Eq. (91) applies also for g ∼ 1. The same is true
for the result (86) derived in the limit of large voltages.
On the other hand, at lower temperatures and voltages
T, eV ≪ gEC the condition (71) should be satisfied en-
suring that fluctuations of the phase ϕ−(t) remain weak.

An additional applicability condition for the above re-
sults is obtained if one requires fluctuations of the phase
ϕ+(t) to be small. Let us recall that in the course of
our derivation we have approximated the function F (57)
by unity. This approximation is appropriate as soon as
the function F (t) = 〈(ϕ+(t) − ϕ+(0))2〉/2 remains much
smaller than one and fluctuations of the phase ϕ+(t) can
be disregarded. Hence, the condition

F (τF ) ∼ 1 (93)

defines yet one more time scale in our problem, τF , which
restricts the applicability of the above perturbative re-
sults.

In order to determine the time scale τF it suffices to
evaluate the function F (t) in the limit of low voltages
V → 0. In this limit Eq. (58) reduces to a simple expres-
sion

F (t) =

∫

dω

2π
Im(Kω) coth

ω

2T
(1 − cosωt). (94)

Combining this expression with Eq. (69) one finds

F (t) =
πT t2

g(τ0 + τD)
+

2κ

g

∫ ∞

0

dω
ω coth ω

2T

1 + ω2τ2

1 − cosωt

ω2
,

(95)
where κ = τ2

D/(τD + τ0)
2. In the most interesting limit

T → 0 the integral in Eq. (95) yields within the loga-
rithmic accuracy F (t) ≃ (2κ/g) ln(t/τ). Then from Eq.
(93) we obtain

τF ∼ τ exp(g/2κ). (96)

Thus fluctuations of the phase ϕ+(t) can be neglected
at all temperatures and voltages only provided the dwell
time τD is much smaller than the parameter τF (96).
More generally, the results presented in this subsection
are correct under the condition

max(T, eV, τ−1
D ) ≫ τ−1

F . (97)

It is easy to check that in this case the interaction cor-
rection in Eqs. (87), (88) and (92) remains small as com-
pared to G0. If the condition (97) is violated the system
enters an essentially non-perturbative regime in which
case more accurate analysis becomes necessary. This
analysis is beyond the scope of the present paper. Let us
also point out that, while the non-perturbative regime is
important from a theoretical point of view, it does not
seem to be of much practical relevance for quantum dots
with g ≫ 1 considered here.

D. Effect of external impedance

So far all our final results have been formulated for
the case of ideally conducting external leads ZS(ω) → 0.
In many experimental situations, however, this voltage-
biased model is not appropriate since the impedance of
external leads remains non-zero in the relevant frequency
range. For this reason it is important to find out how the
above results for the I−V curve are modified in the case
ZS(ω) 6= 0.

In order to answer this question we will make use of
the general expressions for the current derived in Ap-
pendix D. Averaging these expressions over mesoscopic
fluctuations we arrive at the result

I(V ) = I0(V ) + δItot(V ), (98)

where I0(V ) remains the same and is given by Eq. (76),
while δItot(V ) represents the total interaction correction
which takes the form:

δItot(V ) = − e

2π

∫

dω

2π

(

(ω + eV ) coth
ω + eV

2T

− (ω − eV ) coth
ω − eV

2T

)

Im
∑

ij

Kij(ω)Dji(ω), (99)

where

DRL(ω) = tr〈t̂′(E + ω)t̂′
†
(E)r̂(E + ω)r̂†(E + ω)〉,

DLL(ω) = tr〈r̂†(E)t̂′(E)t̂′
†
(E)r̂(E + ω)〉,

DRR(ω) = tr〈t̂(E + ω)t̂†(E + ω)r̂′(E + ω)r̂′
†
(E)〉,

DLR(ω) = tr〈t̂(E + ω)t̂†(E)r̂′(E)r̂′
†
(E)〉. (100)

The above expressions are still rather cumbersome. For
the sake of simplicity below we will analyze the case of
symmetric quantum dots with gL = gR = g/2, βL =
βR = β, RL = RR = R and CL = CR = C. We will also
assume the external impedance to be Ohmic ZS(ω) = RS

at all relevant frequencies. In this case by virtue of Eq.
(C9) we find

DLL = DRR =
gβ

16
+

g(1 − 2β)

32(1 − iωτD)
+

gβ

32(1 − iωτD)2
,

DLR = DRL =
g(1 + 2β)

32(1 − iωτD)
− gβ

32(1 − iωτD)2
. (101)

From Eqs. (48, 49) we also obtain KLL = KRR = KS +
K, KLR = KRL = KS −K, where

K =
e2

(−iω + 0)
(

−2iωC +
−iωCg

1−iωRSCg/4 + 2
R

−iωτD

1−iωτD

) ,

KS =
e2

(−iω + 0)(−2iωC + 4
RS

+ 2
R )
. (102)

To simplify the analysis further let us replace 1 −
iωRSCg/4 by 1 in the denominator of the expression for
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K (102). This is appropriate either for Cg → 0 or in the
limit RS ≪ 2R. Then we get

δItot(V ) = δI(V ) + δIS(V ), (103)

where δI(V ) is the interaction correction evaluated for
ZS = 0 and δIS(V ) represents an additional contribution
due to the external shunt. The term δI(V ) is defined by
Eqs. (81,83,84), whereas for δIS(V ) one finds

δIS(V ) = − eg

16π

∫

dω

2π
Im

(

KS(ω)

(

β +
1

1 − iωτD

))

×
[

(ω + eV ) coth
ω + eV

2T
− (ω − eV ) coth

ω − eV

2T

]

. (104)

This formula can also be transformed to the following
expression

δIS(V ) = − e

4π

g

g + 4gS

∫ ∞

0

dt
π2T 2

sinh2 πT t
sin eV t

×
[

β(1 − e−t/τS) + 1 − τDe−t/τD − τSe−t/τS

τD − τS

]

, (105)

where we defined τS = RRSC/(RS +2R). As before, this
integral can be expressed in terms of the Ψ-functions.
For the sake of brevity we will omit the corresponding
expressions here.

Let us concentrate on the linear in voltage regime.
Making use of the above general results one can easily
determine the total linear conductance G of the dot in
the presence of an external Ohmic shunt. It reads

G = G0 −
1

2Rq

{

β
(

L(Tτ) − L(TτD)
)

+
g

g + 4gS

×
[

τD
(

L(TτD) − L(TτS)
)

τD − τS
+ (β + 1)L(TτS)

]}

, (106)

where the function L(x) was defined in Eq. (90).
For large quantum dots one typically has τD ≫ τ0 >

τS . In this case at sufficiently low temperatures TτD ≪ 1
the whole quantum dot can be considered as a single
scatterer, and we find

G = G̃0 −
2β̃

Rq

g

g + 4gS

(

γ + 1 + ln
1

2πTτD

)

,(107)

where

G̃0 = G0 −
β

2Rq

(

ln
τD
τ

+
g

g + 4gS
ln
τD
τS

)

(108)

and β̃ = (β + 1)/4 is the effective total Fano factor of a
symmetric chaotic quantum dot, see also Eq. (44). Eqs.
(107), (108) smoothly match with the result9 derived for
a single coherent scatterer with τD <∼ τ0.

In the opposite high temperature limit TτD ≫ 1, albeit
Tτ0 ≪ 1, we obtain

G ≈ G0 −
β

2Rq

g

g + 4gS
ln
τ0
τS

− β

Rq

g + 2gS

g + 4gS

(

γ + 1 + ln
1

2πTτ0

)

. (109)
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FIG. 2: Conductance of a symmetric quantum dot, as given
by Eq. (106). The Fano factor of each barrier is chosen to
be β = 1/3, its conductance is 200/Rq (hence G0 = 100/Rq)
and τD/τ0 = 104. Different curves correspond to different
values of the shunt resistor: (a) RS = 2.5 × 10−5 Rq, (b)
RS = 0.0025 Rq, (c) RS = 0.005 Rq, (d) RS = 0.025Rq , and
(e) RS = 0.25Rq . A crossover between the two logarithmic
regimes is clearly observed at TτD ∼ 1.

Let us compare the results (107) and (109). In both
temperature regimes we observe that the interaction cor-
rection depends logarithmically on temperature, though
with different prefactors in front of the logarithm. At
high temperatures TτD ≫ 1 this prefactor is determined
by a sum of two different contributions originating from
the terms δI and δIS . In this regime the two barriers
of the quantum dot behave as independent ones. In the
other regime TτD < 1 the first logarithmic term sat-
urates and does not depend on T anymore providing
effective renormalization of the non-interacting conduc-
tance (108). On the contrary, the logarithmic tempera-
ture dependence (107) in the second term survives down
to exponentially small temperatures. In this regime the
quantum dot behaves as a single coherent scatterer. Its
internal structure becomes insignificant in this case and
the interaction correction scales with the total Fano fac-
tor β̃. A crossover between the two logarithmic regimes
is clearly observed in Fig. 2. It is also important to em-
phasize that, while the logarithmic in T correction (107)
vanishes for RS → 0, in the opposite limit RS ≫ R it
becomes practically independent of the shunt resistance.

The presence of two different logarithmic regimes can
also be understood bearing in mind a close relation be-
tween shot noise and interaction effects in mesoscopic
conductors. At high temperatures TτD ≫ 1, i.e. in the
regime of independent barriers, the noise at each of them
determines the corresponding contribution to the inter-
action correction. Hence, the latter is proportional to
the parameter β. In the opposite limit TτD ≪ 1 the bar-
riers are not anymore independent. In this regime the
temperature dependent part of the interaction correction
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should be related to the total shot noise of the quantum
dot which, as we discussed in Sec. 3, depends on the
parameter β̃. The high frequency noise ωτD >∼ 1 now
only provides the renormalization of G0 which is again
proportional to β.

We will continue the discussion of the above results
and their experimental relevance in the next section.

V. DISCUSSION AND CONCLUSIONS

The analysis presented here provides a general theo-
retical description of electron transport through disor-
dered interacting quantum dots in the “metallic” limit of
large conductances. Our formalism combines real time
path-integral-based influence functional technique with
the scattering matrix approach. The main technical re-
sult of the present work is the derivation of the effec-
tive action for quantum dots described by arbitrary en-
ergy dependent scattering matrices. Due to this partic-
ular feature our technique allows to investigate quantum
transport of interacting electrons in a very wide class of
conductors which includes, e.g., structures with resonant
transmission and many others. This formalism is a di-
rect generalization of our earlier approach9,10 which em-
braced structures described by energy independent scat-
tering matrices and did not account for internal dynamics
of disordered conductors.

Although our analysis is mainly aimed at interaction
effects, the first and immediate result of our derivation
is the expression for frequency-dependent current noise
in non-interacting quantum dots. In fully symmetric
dots the shot noise spectrum turns out to be defined by
the standard expression (46) with the total Fano factor

β̃ = (β + 1)/4. For asymmetric quantum dots the corre-
sponding expression becomes far more complicated.

Turning to interaction effects, let us briefly summarize
our main results for the linear conductance G of chaotic
quantum dots (characterized by dimensionless conduc-
tance g ≫ 1 and charging energy EC) connected to the
voltage source via an Ohmic resistor RS . The conduc-
tance G is expressed in a general form

G = G0 + δG(T ),

where G0 is the conductance of a non-interacting dot and
δG is the interaction correction. This correction is neg-
ative, i.e. electron-electron interactions tend to suppress
the conductance of quantum dots.

For the situation under consideration one typically has
τD ≫ τ0 ∼ 1/gEC > τS = RSC/2(1 +G0RS). For sim-
plicity we quote the results for symmetric quantum dots.
At high temperatures Tτ0 ≫ 1 in the leading approxi-
mation one finds

δG/G0 ≃ −βχEC

3T
, (110)

where β is the Fano factor of a single barrier (1) and
the parameter χ is defined below. At lower temperatures

Tτ0 ≪ 1 the power law dependence (110) crosses over
into the logarithmic one

δG ≃ βχ

2Rq
ln(Tτ0). (111)

The parameter χ in Eqs. (110), (111) depends on the
relation between RS and the dot resistance Rd ≡ 1/G0.
For RS → 0 one has χ = 1, while in the opposite limit
RS ≫ Rd this parameter is χ = 2. Thus, in both limits
(110) and (111) the magnitudes of the interaction cor-
rection δG evaluated in the current- and voltage-biased
regimes differ by the factor 2. The magnitude of δG is
smaller in the latter regime because voltage fluctuations
across the dot are suppressed in this case.

Eq. (111) applies down to temperatures T ∼ 1/τD.
At lower temperatures another logarithmic regime sets
in and the difference between current- and voltage-biased
situations becomes more dramatic. In the limit TτD ≪ 1
one finds

G ≃ G̃0 +
2β̃

Rq

1

1 + 4Rd/RS
ln(TτD), (112)

where

G̃0 ≃ G0 −
βχ

2Rq
ln
τD
τ0
. (113)

Eq. (113) describes an effective renormalization of G0

by electron-electron interactions. This renormalization
is again twice as big in the current-biased regime as it is
in the voltage-biased one. More importantly, as follows
from Eq. (112), for any non-zero RS no saturation of the
the logarithmic dependence of the interaction correction
on temperature is expected at TτD <∼ 1. We also observe
that at TτD >∼ 1 the interaction correction δG always
scales with β and, hence, vanishes completely for fully
transparent barriers β → 0. By contrast, at lower tem-
peratures TτD <∼ 1 only the T -independent renormaliza-
tion of G0 disappears in this limit, while the correction
(112) scales with β̃ and remains finite even for β = 0.
This fact illustrates a direct relation between shot noise
and interaction effects in mesoscopic conductors, cf. Eqs.
(46) and (112). We also observe that in the limit β → 0
the conductance (112) becomes completely independent
of the charging energy EC .

Similar results can be obtained for a non-linear I −
V characteristics of our system. In particular, at T →
0 the corresponding expressions are reproduced if one
substitutes G→ dI/dV and T → eV in Eqs. (110-113).

Both logarithmic regimes in the dependence of the
interaction correction on temperature and voltage dis-
cussed above were observed in many experiments on var-
ious mesoscopic structures. Here we will briefly discuss
only a few examples. In the experiment31 this depen-
dence was found in short diffusive metallic bridges at
temperatures (voltages) T <∼ 1K. No saturation was ob-
served down to the lowest temperature < 100 mK. Es-
timating the Thouless energy ∼ 1/τD for the parame-
ters of Ref. 31 one arrives at the value of order few
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Kelvin. Hence, this experiment was performed in the
regime TτD < 1 (112).

Recently it was argued30 that in order to explain
the experimental results31 it is necessary to assume
the presence of insulating barriers at interfaces between
the bridge and the reservoirs. We note, however, that
this assumption can hardly be justified because for the
samples31 it would inevitably lead to values of g 10÷100
times smaller than actually measured. The presence
of insulating barriers can also be ruled out on the ex-
perimental grounds32. This controversy is eliminated if
one recalls that the calculation30 was performed within
the voltage-biased model RS → 0. For this reason
the authors30 have overlooked the logarithmic depen-
dence (112) and attributed the observations31 to the
regime TτD ≫ 1, hence, requiring much smaller values of
1/τD < 100 mK. Since the voltage-biased model does not
strictly apply to the experiments31, no such requirement
is actually needed.

Note, that in some other experiments, e.g., ones with
multiwalled carbon nanotubes33,34,35, the voltage-biased
model appears to be applicable. Both the logarith-
mic temperature dependence36 of δG at larger T and
its saturation at temperatures of order few Kelvin were
clearly observed. The latter temperature range is con-
sistent with the estimates of the parameter 1/τD for the
nanotubes33,34,35.

More recently, the logarithmic temperature depen-
dence of the conductance was observed in strongly disor-
dered multiwalled carbon nanotubes37,38. No saturation
of this dependence was found down to the lowest mea-
surement temperature T ∼ 100 mK. Although estimates
of the parameter 1/τD for the samples37,38 yield values
below 100 mK, it is not easy to interpret these observa-
tions in terms of the high temperature logarithmic regime
(111) because LT ∼

√

D/T (D is the diffusion coeffi-
cient) remains shorter than the length of the nanotube
L at all relevant temperatures T >∼ 0.1 K. In this situa-
tion our zero-dimensional description cannot be applied
to the nanotube as a whole.

An alternative explanation is based on viewing the
nanotube as a chain of N connected in series statisti-
cally independent segments of the length Ls ≈ L/N . For
LT

>∼ Ls each of the N segments should behave as a zero-
dimensional coherent scatterer shunted by an external
impedance effectively produced by the remaining N − 1
segments. This scenario applies provided the scale Ls

exceeds an effective transversal dimension of the system
Ltr. In the opposite case Ls < Ltr a slightly more gen-
eral picture of an array of M ×N independent scatterers
can be introduced, where the number M depends on the
ratio Ltr/Ls. Applying the result (112) for each of the
segments and assumingN ≫ 1, at temperatures TτD <∼ 1
one finds the conductance of the system in the form39

G(T ) ≈ G̃0 +
2β̃

Rq

M

N
ln(TτD), (114)

where G̃0 represents its conductance at T ∼ 1/τD, M = 1

for Ls > Ltr and M > 1 otherwise. For diffusive nan-
otubes one has β̃ ≈ 1/3 and τD ∼ L2

s/D. The crucial
point of this scenario is that at sufficiently low T the
scale Ls does not depend on temperature and is set by
interactions.

Note that a similar effect was also observed in disor-
dered metallic wires40. Clear deviations from the stan-
dard 1d behavior of the interaction correction δG ∝
1/

√
T were reported at temperatures T <∼ 1/τϕ, where

τϕ is the low temperature dephasing time measured in
the same experiment. For the parameters40 one can ver-
ify that both the observed magnitude and temperature
dependence of the interaction correction are consistent
with Eq. (114), where Ls ∼ Lϕ =

√

Dτϕ and M = 1.

Turning again to the data38 let us recall that in this
case the observed values of Lϕ were considerably smaller
than the nanotube circumference πd. Therefore we can
assume Ls < πd and define41 M ∼ πd/Ls. Then we

obtain M/N ≃ πd/L, i.e. Ls drops out and for β̃ = 1/3
the prefactor in front of the logarithmic term in Eq. (114)
becomes ≃ 2.1d/RqL. This universal value fits well with
the observations38 at T <∼ 10 K. Finally, we note that
the latter inequality is also consistent with the condition
Tτϕ <∼ 1 because the measured values of τϕ were found to
be in the range τϕ ∼ 10−12 sek. Hence, the assumption
Ls ∼ Lϕ and τD ∼ τϕ appears to be supported by the
data38 as well.

Further experimental and theoretical investigations of
the effect of interactions on low temperature electron
transport in disordered conductors are warranted.
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gGmbH.

APPENDIX A: EVOLUTION OPERATOR

For non-interacting systems the relation between the
S−matrix and the Green functions, or, which is the same,
the evolution operator is known since the work by Fisher
and Lee42. Here we use the inverse form of this rela-
tion, namely we express the evolution operator in terms
of the S−matrix. We introduce the components of the
evolution operator Uij(t, 0; r, r′), where i, j label the left
(l) and the right (r) leads as well as the dot (d). The
component Ull reads

Uαβ
ll (t, 0; r, r′) =

1
√

vl
αv

l
β

∫

dE

2π
e−iEt+iE(r/vl

α−r′/vl
β)

×
[

δαβ + θ(r)θ(−r′)(rαβ(E) − δαβ)

+ θ(−r)θ(r′)(r+αβ(E) − δαβ)
]

.
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Here α, β are the channel indices, vj
α is the velocity in the

α−th channel of j−th lead. Three other components of
the evolution operator Urr, Ulr and Url are expressed
analogously. It is convenient to introduce the “flight
times” in the α−th channel x = r/vj

α, y = r′/vj
α and

express the wave functions and the evolution operator
via these new variables. The velocities vj

α then disap-
pear, and we can conveniently rewrite the above relation
in the matrix form

Û(t, 0;x, y) = 1̂δ(t− x+ y)

+ θ(x)θ(−y)[Ŝ(t− x+ y) − 1̂δ(t− x+ y)]

+ θ(−x)θ(y)[Ŝ+(−t+ x− y) − 1̂δ(t− x+ y)]. (A1)

Note that here we present Û in the form of a 2×2 (rather
than 3×3) matrix leaving out the components describing
transitions (e.g. from the dot to the dot and some others)
which turn out to be unimportant for our analysis. We
will return to this point in Appendix B.

The operator (A1) has the following properties: (i)

Û †(t, 0) = Û(0, t), and (ii) lim
t→+∞

Û †(t, 0)Û(t, 0) = 1̂. At

any finite time t this operator does not obey the unitarity
condition. This is quite natural because the components
describing the evolution in the dot are missing in Eq.
(A1). However the operator Û(t, 0;x, y) becomes unitary
in the limit t→ ∞.

Let us now introduce the fluctuating potential V (r, t)
and, as we have already discussed in Sec. 3, assume that
this potential is spatially constant both inside the metal-
lic leads and inside the dot, and it suffers jumps at the
junctions between the dot and the leads. In other words,
we consider three different fluctuating in time potentials
Vj(t), where the index j labels the left lead, the dot and
the right lead.

The wave functions are then modified in two
ways. First, they acquire additional phase factors

exp
{

i
∫ t

0 dt
′ eVj(t

′)
}

= exp{ϕj(t)}. These phase factors

can be eliminated by a gauge transformation, and we
will omit them in what follows. In addition to that,
the phase of the wave function changes every time the
electron crosses one of the junctions. The corresponding
additional phase factors acquired by the electron are:

e−iϕ+

L left junction, from left to right,

eiϕ+

L left junction, from right to left,

e−iϕ+

R right junction, from left to right,

eiϕ+

R right junction, from right to left. (A2)

Below we will restrict ourselves to the case t > 0. This is
sufficient, since the evolution operator at negative times
is just a conjugate operator. Taking the phase factors
(A2) into account we find Û in the presence of fluctuating
voltages V +

j (t) :

Ûϕ+

(t, 0;x, y) = Â(t− x)Û(t, 0;x, y)Â∗(−y) (A3)

where the matrix Â reads

Â(t) =

(

eiϕ+

L
(t)1̂ 0

0 e−iϕ+

R
(t)1̂

)

. (A4)

The relation (A3) turns out to be remarkably simple since
every classical path – though being scattered arbitrarily
many times inside the dot and from the outer barriers –
can cross these barriers only twice: when it enters and
leaves the dot. The times of these two events are related
in a trivial way to the total time of the evolution and
to the initial and final coordinates: For any x and y the
path enters the dot at a time −y and leaves it at a time
t−x.We also note that this property holds only for struc-
tures with two barriers. In systems with three and more

barriers no such a simple relation between Ûϕ+

(t, 0;x, y)

and Û(t, 0;x, y) exist.

APPENDIX B: EFFECTIVE ACTION

Let us now use the above expressions for the evolution
operator and derive the effective action of a quantum dot.
We start from the term SR which is defined by the second
term in Eq. (11) as

iSR = e

∫ t

0

dt′
∫

d3
r
(

GV +,11(t
′ − 0, t′, r, r)

+GV +,22(t
′ + 0, t′, r, r))V −(t′, r

)

. (B1)

Here the space integrals are taken over the dot and both
leads. As we have already discussed, we will adopt the
model assuming that the fluctuating voltage fields inside
the leads do not depend on coordinates. Making use of
Eqs. (12,13) let us transform Eq. (B1) to the following
form

iSR = 2i

∫ t

0

dt′
∫

d3
rd3

r
′d3

r
′′Uϕ+

(t′0, rr
′)

× ρ0(r
′, r′′)Uϕ+

(0t′, r′′
r)ϕ̇−(t′, r). (B2)

Let us split this expression by distinguishing each of the
three coordinates r, r

′ and r
′′ to be in the left lead, in the

dot or in the right lead. Altogether we obtain 33 = 27
terms. Without loss of generality this number can be
reduced substantially by means of the following steps.
First, we choose the initial density matrix ρ0 in the form
corresponding to zero transmissions of both junctions.
For such a choice initially we have three isolated systems,
in which case the coordinates r

′ and r
′′ always belong

to the same electrode. This step already reduces the
total number of terms down to nine. Second, we restrict
ourselves to the limit of sufficiently long times, which is
of a primary interest in our problem. In this limit the
initial form of the density matrix inside the dot does not
matter at all, electron transfer and relaxation processes
will eventually lead to some final density matrix in the
dot which will be independent of the initial one. Hence,
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in the interesting limit of long times our effective action
should not depend on the initial density matrix inside
the dot and we can safely exclude the dot region from
the integration over r

′ and r
′′ extending this integration

only at the two reservoirs. After that we are left with
only six terms43, and the action SR takes the form

iSR = 2i
∑

s=l,d,r

∑

s′=l,r

∫ t

0

dt′
∫

s′

d3
r
′d3

r
′′ ρs′

0 (r′, r′′)

×
∫

s

d3
rUϕ+

ss′ (t′0, rr
′)Uϕ+

s′s (0t′, r′′
r)ϕ̇−

s (t′).(B3)

In order to proceed further, we will make use of the
unitarity of the evolution operator. It yields

∑

s=l,d,r

∫

s

d3
rUϕ+

ss′ (t′0, rr
′)Uϕ+

s′s (0t′, r′′
r) ≡ δ(r′ − r

′′).(B4)

With the aid of this identity one can express the integrals
over r in the dot region through the integrals over the
coordinate in the leads, where an explicit form of the
evolution operator (A3) is already available. We find

iSR = 2i

∫ t

0

dt′ ϕ̇−
d (t′)

∑

s′=l,r

∫

s′

d3
r
′ ρs′

0 (r′, r′)

+ 2i
∑

s,s′=l,r

∫ t

0

dt′
∫

s′

d3
r
′d3

r
′′ ρs′

0 (r′, r′′)

×
[∫

l

d3
rUϕ+

s′l (0t′, r′′
r)Uϕ+

ls′ (t′0, rr
′)ϕ̇−

L (t′)

−
∫

r

d3
rUϕ+

s′r (0t′, r′′
r)Uϕ+

rs′ (t
′0, rr

′)ϕ̇−
R(t′)

]

,

where ϕ−
L = ϕ−

l − ϕ−
d , ϕ

−
R = ϕ−

d − ϕ−
r . The first term

in this equation is proportional to the total number of
electrons in the leads. Because of the charge neutrality
this term should be exactly canceled by the analogous
term from the ion background. For this reason we will
omit this term in our further consideration.

In order to evaluate the remaining terms we switch to
the channel representation. Since we assume that the
density matrix in the leads corresponds to the equilib-
rium Fermi distribution of electrons, both this density
matrix and the matrix of the phases ϕ− are diagonal in
the channel space

ρ̂0(x− y) = ρ0(x− y)1̂, ˆ̇ϕ(t′) =

(

−1̂ϕ̇L(t′) 0

0 1̂ϕ̇R(t′)

)

.

(B5)
The action SR acquires the following form:

iSR = −2i

∫

dxdy tr

[

ρ̂0(x− y)

∫ t

0

dt′
∫

dzÂ(−y)

× Û(0, t′; y, z)Â∗(t− z) ˆ̇ϕ−(t′)Â(t− z)

× Û(t′, 0; z, x)Â∗(−x)
]

. (B6)

We also notice that the matrices ˆ̇ϕ(t′) (B5) and Â (A4)

commute, hence Â∗(t − z) and Â(t − z) drop out. Per-
forming the change of the integration variables x→ −x,
y → −y, we obtain

iSR = −2i

∫

dxdy tr
[

Â∗(x)ρ̂0(y − x)Â(y)B̂(t, y, x)
]

.

(B7)
Here we defined the matrix

B̂(t, y, x) =

∫ t

0

dt′
∫

dz Û(0, t′;−y, z) ˆ̇ϕ−(t′)Û(t′, 0; z,−x).
(B8)

With the aid of Eq. (A1) this matrix can be evaluated
explicitly. For our purposes it is sufficient to set ϕ̂−(t) =
ϕ̂−(0) = 0. Then we get

B̂(t, y, x) = θ(x)θ(y)

∫ t

0

dz
[

δ(z − y)ϕ̂−(z)δ(z − x)

− Ŝ+(z − y)ϕ̂−(z)Ŝ(z − x)
]

. (B9)

Making use of this expression together with (A4) and
(B5) one can now directly multiply matrices in Eq. (B7)
and arrive at the final result for SR presented in Eq. (18).

Let us now turn to the expression for SI which is de-
fined by the last term in Eq. (11)

SI = e2
∫ t

0

dt′
∫ t

0

dt′′
∫

d3
r
′d3

r
′′GV +,12(t

′, t′′, r′, r′′))

×V −(t′′, r′′)GV +,21(t
′′, t′, r′′, r′))V −(t′, r′).

The whole consideration is completely analogous to that
carried out above for the term SR. Making use of Eq.
(12), we find

SI = e2
∫ t

0

dt1

∫ t

0

dt2

∫

d3
x1d

3
x2d

3
y1d

3
y2d

3
z1d

3
z2

×Uϕ+(t10,x1y1)ρ0(y1,y2)Uϕ+(0t2,y2x2)V
−(t2,x2)

×Uϕ+(t20,x2z2)h0(z2, z1)Uϕ+(0t1, z1,x1)V
−(t1,x1).

where h0(z2, z1) = 1 − ρ0(z2, z1). As before we identify
the contributions containing the initial density matrix in
the dot. Such terms can again be omitted in the inter-
esting limit of long times. We again apply the unitarity
condition (B4) and explicitly introduce the channel in-
dices. Then after some straightforward manipulations
we obtain

SI =

∫ t

0

dt1

∫ t

0

dt2

∫

dx1dx2dy1dy2dz1dz2

× tr

{

Û(0, t1; z1, x1) ˆ̇ϕ−(t1)Û(t1, 0;x1, y1)Â
∗(−y1)

×ρ̂0(y1 − y2)Â(−y2)Û(0, t2; y2, x2) ˆ̇ϕ−(t2)

×Û(t2, 0;x2, z2)Â
∗(−z2)ĥ0(z2 − z1)Â(−z1)

}

.
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With the aid of the matrix (B9) this expression can be
transformed further and eventually takes the form

SI =

∫

dy1dy2

∫

dz1dz2tr

{

B̂(z1, y1)Â
∗(y1)ρ̂0(y2 − y1)

× Â(y2)B̂(y2, z2)Â
∗(z2)ĥ0(z1 − z2)Â(z1)

}

. (B10)

Multiplying matrices in Eqs. (B10) we arrive at the final
expressions for SI defined in Eq. (21).

APPENDIX C: AVERAGING OVER CIRCULAR

ENSEMBLE OF S−MATRICES

Here we will evaluate the following average

W = tr〈ÂŜ†(E1)B̂Ŝ(E2)ĈŜ
†(E3)D̂Ŝ(E4)〉. (C1)

Let us use the representation (38) and split the S−matrix
into two parts

Ŝ(E) = R̂+ δŜ(E), δŜ(E) = T̂ ′[1 − Û(E)]−1Û(E)T̂ .
(C2)

One can show that 〈δŜ(E)〉 = 0. At any given energy E

the matrix Û(E) belongs to the circular ensemble.
In a semi-classical limit averaging of the products of

such matrices taken at the same energy can be performed
with the aid of the diagram technique26. Here we need a
more general version of this technique which would also
allow to average the products of matrices taken at differ-
ent energies. Appropriate modifications of the rules can
be formulated with the aid of the results28. In short,
using the terminology26, every U−cycle involving two
matrices Û(E1) and Û †(E2) carries an additional fac-
tor M/(M − iE12t0) as compared to the situation26.
Here M = NL + NR, where NL(R) is the number of

channels in the left (right) barrier/lead, t0 = 2π/δ and
Eij = Ei − Ej . An U−cycle involving four matrices

Û †(E1), Û(E2), Û
†(E3) and Û(E4) gives an additional

factor

M3(M − i(E23 + E41)t0)

(M − iE41t0)(M − iE21t0)(M − iE23t0)(M − iE43t0)
.

Higher order U−cycles do not contribute in the semi-
classical limit M → ∞, and we will not consider them
here.

Employing Eq. (C2) one can express the average (C1)
as a sum of 10 non-vanishing terms. The first of them
is trivial and equals tr(ÂR̂†B̂R̂ĈR̂†D̂R̂). Several terms

are bilinear in the matrices δŜ and δŜ†. Such terms are
evaluated with the aid of the formula

tr〈ÂδŜ(E1)B̂δŜ
†(E2)〉 =

(trT̂ ′
†
ÂT̂ ′)(trT̂ B̂T̂ †)

M − trR̂′R̂′
† − iE12t0

=
2(trT̂ ′

†
ÂT̂ ′)(trT̂ B̂T̂ †)

g(1 − iE12τD)
. (C3)

Here we have used the identityM−trR̂′R̂′
†

= trT̂ T̂ † = g,
and defined the dwell time τD = 2t0/g. Eq. (C3) is a
direct generalization of the analogous formula26 derived
for the case E1 = E2. This formula allows to evaluate
the averages uij

ω (24). For example, uRL
ω = tr〈t̂†(E)t̂(E+

ω)〉 = tr〈Ĉ1Ŝ
†(E)Ĉ2Ŝ(E + ω)〉, where we defined the

matrices

Ĉ1 =

(

1̂ 0
0 0

)

, Ĉ2 =

(

0 0

0 1̂

)

. (C4)

Employing Eq. (C3) we arrive at (41).

The terms involving three matrices δŜ and/or δŜ† are
slightly more complicated. They read

tr〈ÂδŜ(E1)B̂δŜ(E2)ĈδŜ
†(E3)〉 =

4(trT̂ ′
†
ÂT̂ ′)(trT̂ ĈT̂ †)(trT̂ B̂T̂ ′R̂′

†
)

g2(1 − iE13τD)(1 − iE23τD)
,

tr〈ÂδŜ(E1)B̂δŜ
†(E2)ĈδŜ

†(E3)〉 =
4(trT̂ ′

†
ÂT̂ ′)(trT̂ B̂T̂ †)(trR̂′T̂ ′

†
ĈT̂ †)

g2(1 − iE12τD)(1 − iE13τD)
. (C5)

The derivation of Eqs. (C5) is straightforward, and we will not discuss the corresponding details here.

What remains is to evaluate the average

w = tr〈ÂδŜ†(E1)B̂δŜ(E2)ĈδŜ
†(E3)D̂δŜ(E4)〉. (C6)

This average is given by the combination of five diagrams shown in Fig. 3:

w = D1 +D2 +D3 +D4 −D5. (C7)

The diagram D5 is subtracted in order to compensate for double counting of certain graphs in the diagrams D3 and
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+

T’ DT’
+

TCT
+

* **

* * *

E1

E3

E4 E2

TAT
+
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+
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+
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+
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+
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+
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+
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+
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+
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+

T’ DT’
+
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+
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+
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+
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+
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+

* *
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D4 D5

FIG. 3: Five diagrams contributing to tr〈ÂδŜ†(E1)B̂δŜ(E2)ĈδŜ†(E3)D̂δŜ(E4)〉. We refer to Ref. 26 for the definition of the
graphical objects presented here.

D4. The contributions of the diagrams read

D1 =
(trF̂A)(trF̂C)(trF̂BF̂D)

(M − iE41t0)(M − iE23t0)
, D2 = − (trF̂A)(trF̂B)(trF̂C)(trF̂D)(M − i(E23 + E41)t0)

(M − iE41t0)(M − iE21t0)(M − iE23t0)(M − iE43t0)
,

D3 =
(trF̂AT̂ ĈT̂

†)(trF̂B)(trF̂D)

(M − iE21t0)(M − iE43t0)
, D4 =

(trT̂ ÂT̂ †F̂C)(trF̂B)(trF̂D)

(M − iE21t0)(M − iE43t0)
, D5 =

(trT̂ ÂT̂ †T̂ ĈT̂ †)(trF̂B)(trF̂D)

(M − iE21t0)(M − iE43t0)
.(C8)

Here we have introduced the ladder blocks defined in Fig. 4:

F̂A = T̂ ÂT̂ † +
∞
∑

n=0

(trT̂ ÂT̂ †)R̂′R̂′
† (trR̂′R̂′

†
)n

(M − iE41t0)n+1
= T̂ ÂT̂ † +

2trT̂ ÂT̂ †

g(1 − iE41τD)
R̂′R̂′

†
,

F̂B = T̂ ′
†
B̂T̂ ′ +

2trT̂ ′
†
B̂T̂ ′

g(1 − iE21τD)
R̂′R̂′

†
, F̂C = T̂ ĈT̂ † +

2trT̂ ĈT̂ †

g(1 − iE23τD)
R̂′R̂′

†
, F̂D = T̂ ′

†
D̂T̂ ′ +

2trT̂ ′
†
D̂T̂ ′

g(1 − iE43τD)
R̂′R̂′

†
.
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FIG. 4: The ladder block F̂A appearing in the diagrams shown in Fig 3. The blocks F̂B , F̂C and F̂D are defined analogously.

Eventually we arrive at an important – though rather lengthy – formula

W = trÂR̂†B̂R̂ĈR̂†D̂R̂+
2(trT̂ ′

†
B̂T̂ ′)(trT̂ ĈR̂†D̂R̂ÂT̂ †)

g(1 − iE21τD)
+

2(trT̂ ′
†
B̂R̂ĈR̂†D̂T̂ ′)(trT̂ ÂT̂ †)

g(1 − iE41τD)

+
2(trT̂ ′

†
D̂R̂ÂR̂†B̂T̂ ′)(trT̂ ĈT̂ †)

g(1 − iE23τD)
+

2(trT̂ ′
†
D̂T̂ ′)(trT̂ ÂR̂†B̂R̂ĈT̂ †)

g(1 − iE43τD)

+
4(trT̂ ′

†
B̂T̂ ′)(trT̂ ĈT̂ †)(trR̂′T̂ ′

†
D̂R̂ÂT̂ †)

g2(1 − iE21τD)(1 − iE23τD)
+

4(trT̂ ′
†
B̂T̂ ′)(trT̂ ÂT̂ †)(trT̂ ĈR̂†D̂T̂ ′R̂′

†
)

g2(1 − iE21τD)(1 − iE41τD)

+
4(trT̂ ′

†
D̂T̂ ′)(trT̂ ÂT̂ †)(trR̂′T̂ ′

†
B̂R̂ĈT̂ †)

g2(1 − iE41τD)(1 − iE43τD)
+

4(trT̂ ′
†
D̂T̂ ′)(trT̂ ĈT̂ †)(trT̂ ÂR̂†B̂T̂ ′R̂′

†
)

g2(1 − iE43τD)(1 − iE23τD)

+
4(trT̂ ÂT̂ †)(trT̂ ĈT̂ †)tr(T̂ ′

†
B̂T̂ ′T̂ ′

†
D̂T̂ ′)

g2(1 − iE41τD)(1 − iE23τD)
+

4(trT̂ ′
†
B̂T̂ ′)(trT̂ ′

†
D̂T̂ ′)(trT̂ ÂT̂ †T̂ ĈT̂ †)

g2(1 − iE21τD)(1 − iE43τD)

+
8(trT̂ ÂT̂ †)(trT̂ ĈT̂ †)(trT̂ ′

†
D̂T̂ ′)(trT̂ ′

†
B̂T̂ ′R̂′

†
R̂′)

g3(1 − iE43τD)(1 − iE41τD)(1 − iE23τD)
+

8(trT̂ ÂT̂ †)(trT̂ ĈT̂ †)(trT̂ ′
†
B̂T̂ ′)(trT̂ ′

†
D̂T̂ ′R̂′

†
R̂′)

g3(1 − iE21τD)(1 − iE41τD)(1 − iE23τD)

+
8(trT̂ ′

†
B̂T̂ ′)(trT̂ ′

†
D̂T̂ ′)(trT̂ ÂT̂ †)(trT̂ ĈT̂ †R̂′R̂′

†
)

g3(1 − iE21τD)(1 − iE43τD)(1 − iE41τD)
+

8(trT̂ ′
†
B̂T̂ ′)(trT̂ ′

†
D̂T̂ ′)(trT̂ ĈT̂ †)(trT̂ ÂT̂ †R̂′R̂′

†
)

g3(1 − iE21τD)(1 − iE43τD)(1 − iE23τD)

− 16(trT̂ ÂT̂ †)(trT̂ ĈT̂ †)(trT̂ ′
†
B̂T̂ ′)(trT̂ ′

†
D̂T̂ ′)(M − trR̂′R̂′

†
R̂′R̂′

† − i(E23 + E41)t0)

g4(1 − iE21τD)(1 − iE43τD)(1 − iE41τD)(1 − iE23τD)
. (C9)

One can demonstrate that the result (C9) is consistent
with the unitarity of the S−matrix. For this purpose
let us put E4 = E3 and D̂ = 1. Due to the unitarity of
S−matrices of the barriers almost all of the terms cancel
out and the result reduces to

W = trÂR̂†B̂R̂Ĉ +
2(trT̂ ′

†
B̂T̂ ′)(trT̂ ĈÂT̂ †)

g(1 − iE21τD)

= tr〈ÂŜ†(E1)B̂Ŝ(E2)Ĉ〉. (C10)

The last equation is a consequence of Eq. (C3). This
is just the expression expected from the definition (C1)
and the unitarity of the S−matrix.

With the aid of Eq. (C9) one can find the averages ṽij
ω

defined in Eq. (29). We transform them to the form

ṽLL
ω = tr〈Ĉ1Ŝ

†(E)Ĉ1Ŝ(E + ω)Ĉ2Ŝ
†(E + ω)Ĉ1Ŝ(E)〉

ṽRL
ω = tr〈Ĉ1Ŝ

†(E)Ĉ2Ŝ(E + ω)Ĉ1Ŝ
†(E + ω)Ĉ1Ŝ(E)〉 (C11)

and similarly for ṽRR
ω and ṽLR

ω . Making use of Eq. (C9)
we arrive at Eqs. (42). Analogously, we derive the ex-
pressions (101).

APPENDIX D: GENERAL EXPRESSIONS FOR

THE CURRENT

In Sec. 4A we focused on the expression for the current
in the limit of zero external impedance ZS → 0. Our
analysis also allows to establish more general expressions
valid for arbitrary ZS(ω). We obtain

I(V ) = I0(V ) + δILR + δILL + δIRR, (D1)

where
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I0(V ) = 2e

∫

dx ρ0(x) T (x)
(

e−FLL(x) eieVLx − e−FRR(x) e−ieVRx
)

, (D2)

δILR = 2e Im

∫

dx

∫

dy1dy2dz1dz2 [ρ0(y2 − y1)h0(z1 − z2) + ρ0(y1 − y2)h0(z2 − z1)]

×FLR(y1, y2, z1, z2)e
−i[eVR(y1−y2)+eVL(z1−z2)]Tr

{

r̂†(x + z1)t̂
′(x+ y1)

×
[

(KLR(−y1) +KLL(−z1))t̂′
†
(y2)r̂(z2) − (KRR(−y1) +KRL(−z1))r̂′

†
(y2)t̂(z2)

]

}

, (D3)

δILL = −2e Im

∫

dx

∫

dy1dy2dz1dz2 ρ0(y1 − y2)h0(z2 − z1)FLL(y1, y2, z1, z2)e
i[eVL(y1−y2−z1+z2)]

×Tr
{

t̂†(x+ z1)t̂(x + y1)
[

(KLL(−y1) −KLL(−z1))
(

δ(y2)δ(z2)1̂ − r̂†(y2)r̂(z2)
)

+ (KRL(−y1) −KRL(−z1))t̂†(y2)t̂(z2)
]}

, (D4)

δIRR = 2e Im

∫

dx

∫

dy1dy2dz1dz2 ρ0(y1 − y2)h0(z2 − z1)FRR(y1, y2, z1, z2)e
−i[eVR(y1−y2−z1+z2)]

×Tr
{

t̂′
†
(x+ z1)t̂

′(x+ y1)
[

(KRR(−y1) −KRR(−z1))
(

δ(y2)δ(z2)1̂ − r̂′
†
(y2)r̂

′(z2)
)

+ (KLR(−y1) −KLR(−z1))t̂′
†
(y2)t̂

′(z2)
]}

. (D5)

Here we defined

FLR(y1, y2, z1, z2) = e−FRR(y1−y2)−FLL(z1−z2)+FLR(y1−z1)+FLR(y2−z2)−FLR(y1−z2)−FLR(y2−z1), (D6)

FLL(y1, y2, z1, z2) = e−FLL(y1−y2)−FLL(z1−z2)−FLL(y1−z1)−FLL(y2−z2)+FLL(y1−z2)+FLL(y2−z1), (D7)

Fij(x) =

∫

dω

2π
ImKij(ω) coth

ω

2T
(1 − cosωx)

+

∫

dω

(2π)2

(

∑

±

(ω ± eV ) coth
ω ± eV

2T
− 2ω coth

ω

2T

)

(1 − cosωx)
∑

k,n=L,R

K∗
ik(ω)δvkn(ω)Knj(ω).(D8)

δvkn(ω) are defined in Eq. (29). The function FRR is obtained by substituting FLL(x) → FRR(x) into Eq. (D7).
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