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We propose an application of a single Cooper pair box (Josephson qubit) for active cooling of
nanomechanical resonators. Latest experiments with Josephson qubits demonstrated that long
coherence time of the order of microsecond can be achieved in special symmetry points. Here we
show that this level of coherence is sufficient to perform an analog of the well known in quantum
optics “laser” cooling of a nanomechanical resonator capacitively coupled to the qubit. By applying
an AC driving to the qubit or the resonator, resonators with frequency of order 100 MHz and quality
factors higher than 103 can be efficiently cooled down to their ground state, while lower frequency
resonators can be cooled down to micro-Kelvin temperatures. We also consider an alternative setup
where DC-voltage-induced Josephson oscillations play the role of the AC driving and show that
cooling is possible in this case as well.

INTRODUCTION

Recently, fabrication of nanomechanical resonators
with fundamental frequencies in the microwave range
(100 MHz to 1GHz) has been achieved [1]. For such res-
onators, the quantum mechanical level spacing is a few
micro-eV, which is comparable to the lowest achievable
cryogenic temperatures. Freezing out the mechanical de-
grees of freedom is favorable for ultra sensitive detection
applications [2] due to reduced effects of thermal fluctu-
ations. Even more spectacular applications can be en-
visioned if it is possible to cool the mechanical systems
down to their motional ground states with high probabil-
ity. Creation of exotic non-classical states, entanglement
with other quantum objects, e.g. spins or atoms, co-
herent quantum information transfer between quantum
sub-systems are just a few possibilities. However, reach-
ing the motional ground state using conventional passive
cooling techniques is practically unfeasible, and there-
fore other approaches need to be explored. Fortunately,
the cooling problem is not unique to nanomechanics; a
similar problem has been encountered and successfully
solved in the field of ultra-cold atoms, where by using
active cooling approaches it was possible to quench the
vibrational motion of atoms and reach effective nano-
Kelvin temperatures [3]. The connection to quantum op-
tics has been recently explored in several works. Hopkins
et al. [4] applied the quantum feedback control ideas to
nanomechanical resonator cooling. Wilson-Rae et al. [5]
proposed an analogue of resolved sideband laser cooling
by coupling the resonator displacement to the level spac-
ing of an attached semiconductor quantum dot, which
is being irradiated by red-detuned laser. An advantage
over the feedback-based techniques is that the sideband
cooling does not require on-the-fly analysis of the out-
put of a nearly ideal detector. On the other hand, direct
implementation of the Ref. [5] approach appears rather
challenging, from the fabrication stand point and due to

stringent constraints on the quantum dot relaxation rate,
which needs to be slower than the resonator frequency for
the vibrational sidebands to be resolved.

In this work we study an alternative realization of the
laser-like cooling for nanomechanical resonators, where
the role of the two-state system is played by a supercon-
ducting qubit (Cooper Pair Box, or CPB) capacitively
coupled to the resonator. Interaction between the qubit
and the resonator leads to splitting of the qubit states
into equidistant vibrational sidebands. Latest experi-
ments with Josephson qubits showed that long coher-
ence time of the order of microsecond can be achieved
in special symmetry points [6]. When the qubit relax-
ation and dephasing rates are smaller than the oscilla-
tor frequency, one reaches the resolved sideband regime,
favorable for cooling. By tuning microwave source fre-
quency into the first red sideband (qubit level spacing
minus the oscillator frequency), one can ensure that the
microwave photon absorption processes are preferentially
accompanied by simultaneous phonon emission from the
resonator. The cooling cycle is completed when a photon
is spontaneously emitted at the qubit natural frequency
into an external bath. The emitted photon is blue-shifted
relative to the source, as it carries away one resonator
phonon energy. The exact reverse of this process is ex-
ponentially suppressed if the qubit level spacing is large
relative to temperature, and hence the heating is deter-
mined by other – non-resonant or driving-induced – pro-
cesses which are much slower than the dominant cooling
mechanism. This makes cooling possible. A suggestion
to use coupled nanoresonator-qubit system for laser-like
cooling has been first made by Irish and Schwab [7]. Here
we consider two implementation of this scheme that use
different AC driving sources: (1) microwaves directly ap-
plied to the CPB or the resonator, in the form of AC
flux or voltage; (2) the AC Josephson effect on an aux-
iliary Josephson junction of the qubit. The advantage
of the second approach is that it only requires DC bias
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FIG. 1: The system with AC driving.

for cooling; however, we find that it is not as effective
as the AC biasing scheme. In the opposite limit of fast
CPB relaxation when the vibrational sidebands are not
resolved, we demonstrate that another type of laser cool-
ing, “Doppler” cooling [3], can be performed down to
the temperature defined by the quantum dot level width.
Although ground state cooling in this regime is impos-
sible, this technique could be practically attractive for
noise reduction in local probe applications (e.g., AFM,
MFM, and MRFM), where typical resonator frequencies
are below 1 MHz.

AC COOLING

System. The system under consideration is shown in
Fig. 1. A mechanical resonator (horizontal beam) is cou-
pled to a Cooper pair box (yellow rectangle) through ca-
pacitance Cx(x), which depends on the resonator dis-
placement x. The charge, and hence the state, of CPB
is separately controlled by the gate voltage Vg applied to
capacitor Cg. CPB is coupled to a large superconductor
through two Josephson junctions. The SQUID geometry
is chosen to allow for application of an external AC flux
to the system to provide the AC driving needed for cool-
ing. Similar systems were considered in Refs. [7, 8]. The
Hamiltonian of the system without dissipation reads

H =
(Q− CgVg − Cx(x)Vx)2

2CΣ
− EJ(Φx) cos θ +Hx , (1)

where Q is the charge on the island, CΣ ≡ C + Cg +
Cx(x) is the total capacitance of the island, and Hx ≡
p2

2m +
mω2

0x2

2 . The total Josephson energy of the SQUID
controlled by an external flux Φx is given by EJ(Φx) =
2E0

J cos(πΦx/Φ0), where E0
J is the Josephson energy of

each of the junctions (we consider a symmetric setup)
and Φ0 = h/2e is the (superconducting) flux quantum.
We assume the total gate charge Qg ≡ CgVg + Cx(x)Vx

to be close to an odd number of electron charges, i.e.,
Qg = 2e(N + 1/2) + 2eδN , where |δN | ≪ 1/2. Then we

can use a two state approximation, i.e., |↑〉 ≡ |Q = 2eN〉
and |↓〉 ≡ |Q = 2e(N + 1)〉 and rewrite the Hamiltonian
using the Pauli matrices as

H = 4EC(x) δN(x)σz + EC(x)(1 + 4δN2(x))

− EJ

2
σx +Hx , (2)

where EC(x) ≡ e2/2CΣ. The second term in the first
line of Eq. (2) depends on x and, thus, added to the os-
cillator Hamiltonian Hx, renormalizes (slightly) the os-
cillator parameters. This term is also responsible for
the direct coupling of the oscillator to the dissipation
in the circuitry (see below). We, first, drop this term
for clarity but later reintroduce it when discussing the
direct coupling between the oscillator and the gate volt-
age fluctuations. Assuming that fluctuations of x are
small relative to the resonator-CPB distance d, we obtain
Cx(x) ≈ Cx−Cx x/d. Thus δN(x) ≈ δN−Nx x/d, where
Nx ≡ CxVx/2e, and EC(x) ≈ EC + EC (Cx/CΣ) (x/d).
Then the Hamiltonian simplifies to

H = 4EC δN σz − EJ

2
σx + λ (a† + a)σz + h̄ω0a

†a , (3)

where λ ≡ −4EC [Nx − δN(Cx/CΣ)] (∆x/d) and ∆x ≡
√

h̄/(2mω0) is the amplitude of zero point motion, x =
∆x(a† + a). To increase the coupling one usually applies
high gate voltage Vx so that Nx ≫ 1. Thus, approxi-
mately

λ ≈ −4ECNx
∆x

d
. (4)

Both gate voltages, Vg and Vx, as well as the exter-
nal flux Φx fluctuate as they are provided by dissipa-
tive sources. This makes δn and EJ in Eq. (3) fluctuate.
Moreover, in all real systems there are 1/f charge and
flux noises. The charge 1/f noise can effectively be added
to the noise of the gate charge δN . Experimentally, 1/f
noise is the most severe factor limiting coherence. Long
coherence times have been achieved in Ref. [6] by operat-
ing in a special point where the 1/f noise is less harmful.
In the special point, the total energy splitting of the qubit
∆E ≡

√

(8EC)2 δN2 + E2
J is not sensitive to the fluctu-

ations of δN and Φx in the linear order. This implies
〈δN〉 = 0 and ∂EJ/∂Φx = 0. The fluctuations of δN
are, nevertheless, still there and we obtain the following
Hamiltonian characterizing the special point

H = − EJ

2
σx + h̄ω0a

†a+ λ (a† + a)σz

− X

2
σz + g (a† + a)X , (5)

where X ≡ − 4EC

e (CgδVg + CxδVx). By construc-
tion the coupling constant λ also contains a fluctuating
part. We neglect this higher order effect. The fluctu-
ations of voltages δVg and δVx are caused by external
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impedances Z(ω) of the circuits that supply the voltages.
The (unsymmetrized) noise power is given by 〈δV 2

ω 〉 ≡
〈δV (t)δV (0)〉ω = [ReZ(ω)]h̄ω(coth(h̄ω/2kBT )+1). Thus
the term Xσz/2 represents the coupling of the system to
the harmonic (Gaussian) electromagnetic bath. The situ-
ation is similar to the quantum optics one where an atom
is coupled to electromagnetic vacuum. The main differ-
ences are that in our case the coupling is longitudinal, i.e.,
it does not cause spin flips in the natural (charge) basis,
and the bath temperature cannot always be neglected.
The last term in Eq. (5) is the direct coupling between
the bath and the oscillator. It originates from the second
term in Eq. (2), and g = Nx∆x/d at the symmetry point.
In the weak coupling case that we consider, the bath is
fully characterized by its spectral function, and hence we
do not need to include the self-Hamiltonian of the bath
explicitly. The non-electromagnetic bath acting on the
resonator is later introduced through a phenomenologi-
cal quality factor Q.

Equilibrium transition rates. To proceed, we first need
to determine the resonator-qubit system relaxation rates
caused by the electromagnetic environment. It is con-
venient to perform a π/2 rotation in the x − z plane,
σx ↔ σz , to the eigenbasis of the qubit at the symmetry
point. The Hamiltonian becomes

H = − EJ

2
σz + h̄ω0a

†a+ λ (a† + a)σx

− X

2
σx + g (a† + a)X . (6)

We choose EJ ≫ ω0, λ, T . This ensures that without the
driving the spin is all the time in the ground state |↑〉.
The qubit relaxation rate is

Γr ≡ Γ↓→↑ =
〈X2

ω=EJ
〉

4h̄2 ≈ παgEJ , (7)

where 〈X2
ω〉 = 2πh̄2αgω[coth(h̄ω/2kBT ) + 1], αg ≈

C2
x+C2

g

C2
Σ

R
RQ

, RQ ≡ h/4e2 (here we assumed independent

δVg and δVx with similar external impedances ReZ(ω) ≡
R ∼ 50 Ω). The opposite excitation rate is exponentially
suppressed.

The direct coupling between the bath and the oscil-
lator gives the dissipative rates between the oscillator
states |n〉: Γn→n−1 ≈ g2〈X2

ω=ω0
〉n/h̄2 and Γn→n+1 ≈

g2〈X2
ω=−ω0

〉(n + 1)/h̄2. In addition, the oscillator can
relax via the virtual excitations of the qubit. The cor-
responding processes are shown in Fig. 2. The rates for
these processes are given by

Γn→n−1 ≈ λ2

E2
J

〈X2
ω=ω0

〉
4h̄2 n , (8)

Γn→n+1 ≈ λ2

E2
J

〈X2
ω=−ω0

〉
4h̄2 (n+ 1) . (9)

/2/2

FIG. 2: Dissipative processes due to the presence of the qubit:
a) n→ n− 1; b) n→ n+1. The spectra of the oscillator and
the qubit are superimposed.

These rates are bigger than those due to the direct cou-
pling by a factor (2EC/EJ)

2, and hence the direct cou-
pling term in the Hamiltonian (∝ g) can be discarded.
The above transition rates translate into the resonator
quality factor caused by the coupling to the electromag-
netic bath,

1

Qem
=
πλ2

E2
J

αg. (10)

The charge noise at the (relatively low) frequency
ω = ω0 may be dominated by the 1/f contribution.
The symmetrized correlator of this contribution has been
studied, e.g., in echo experiments [9], and one can as-
sume SX(ω) = (〈X2

ω〉 + 〈X2
−ω〉)/2 = E2

1/f/|ω|, where

E1/f ≡ 4EC
√
α1/f and typically α1/f ≈ 10−7. We are

not aware of any study of the unsymmetrized correla-
tors. Thus, we will introduce a phenomenological tem-
perature T1/f for the particular frequency ω = ω0 via

exp
[

−h̄ω0/(kBT1/f )
]

≡ 〈X2
−ω0

〉/〈X2
ω0
〉. Then, for the

corresponding quality factor we obtain

1

Q1/f
≈ λ2

E2
J

8E2
C

(h̄ω0)2
α1/f tanh

h̄ω0

2kBT1/f
. (11)

It is reasonable to assume that the effective 1/f noise
temperature is not lower than the environment temper-
ature. For further analysis we will assume T1/f ≈ T .

Cooling by applying flux driving

For cooling we need to drive the system out of equi-
librium. We propose to apply an external AC flux,
Φx(t) = Φx,0 + DΦ0 cosωd t, to the qubit. As we op-
erate at the special point where ∂EJ/∂Φx = 0, linear
driving is impossible. In the quadratic order, we obtain
EJ → EJ + (πD/2)2EJ(cos 2ωdt+ 1). This gives

H = − EJ + Ω

2
σz − X

2
σx + h̄ω0a

†a

+ λ (a† + a)σx − Ω

2
σz cos 2ωd t , (12)
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FIG. 3: The cooling process.

where Ω = (πD/2)2EJ. To describe the cooling process
we use the Floquet picture. In other words, we count
the number of energy quanta taken from the pumping
source. This amounts to substituting the factors e±2ωd t

by raising/lowering operators e±χ (eiχ|m〉 = |m + 1〉)
and subtracting the energy taken from the source, 2h̄ωm,
from the Hamiltonian. Then the new Hilbert space of the
problem is extended as |σ〉|n〉|m〉, where |σ〉 is the state of
the qubit (|↑〉 or |↓〉), while n is the number of quanta in
the resonator. Due to the new term in the Hamiltonian,
−2h̄ωdm, an unbound staircase of states appears. Each
step of the staircase (Floquet zone) is characterized by
a number m and spans the Hilbert space |σ〉 |n〉. The
neighboring zones are shifted by energy 2h̄ωd relative to
each other. The states |σ〉 |n〉 |m〉 are the eigenstates of
the Hamiltonian

H0 ≡ −(EJ + Ω)σz/2 + h̄ω0a
†a− 2h̄ωdm. (13)

The other three terms form the perturbation

H ′ = −X
2
σx + λ (a† + a)σx − Ω

2
σz cosχ . (14)

This perturbation H ′ causes transitions inside of each
zone and also down and up the staircase. At finite (non-
infinite) temperature of the bath the down transitions
prevail and the system propagates down the staircase.
This corresponds to the flow of energy from the driving
source to the bath. During this flow, the driving source
quanta of energy can be up- or down-converted in fre-
quency by amount ω0, that is, photons with frequency
2ωd ± ω0 are emitted into the bath. The former case
corresponds to cooling while the latter to heating.

We first consider the up-conversion cooling process
shown in Fig. 3. We choose the optimal detuning so
that 2ωd = EJ + Ω − ω0 and the levels |↑, n,m〉 and
|↓, n− 1,m+ 1〉 are degenerate (in what follows we use
the units h̄ = 1 for brevity). Thus we have to be careful
when calculating the rates. First, we obtain the second
order matrix element between these two states equal to

/2

FIG. 4: The heating process.

∆
√
n where

∆ ≡ Ωλ

2EJ
. (15)

Note that the two paths shown in Fig. 3 interfere con-
structively. Then, the cooling rate depends on the re-
lation between ∆

√
n and Γr/2. For the weak driving

case ∆
√
n < Γr/2 we have the cooling rate ΓΩ

n→n−1 ≈
(4∆2/Γr)n (the superscript Ω is to emphasize that this
rate is due to the driving). To justify this result we con-
sider this process as tunneling from the level |↑, n,m〉
to the broadened level |↓, n− 1,m+ 1〉. The retarded
Green’s function of the second level is then given by
GR(ω) = 1/(ω + iΓr/2). Using the Golden rule (the
adiabatic elimination technique[10]), we obtain

ΓΩ
n→n−1 = 2π∆2 n

(

− 1

π
ImGR(ω = 0)

)

=
4∆2

Γr
n . (16)

In the opposite, strong driving case, ∆
√
n > Γr/2, there

are coherent oscillations between the two levels. The
appropriate description is then to say that doublets of
new eigenstates, are formed which are split in energy by
2∆

√
n, see Fig. 5. The doublets are defined for n ≥ 1

as ψ±
n ≡ (|n, ↑〉 ± |n− 1, ↓〉)/

√
2 and for n = 0 we

have a single state ψn=0 ≡ |0, ↑〉. There are four pos-
sible transitions between each state of the doublet and
each state of another doublet shifted as n → n − 1 and
m → m + 1. All four rates are equal Γr/4. In total this
gives ΓΩ

n→n−1 ≈ Γr/2. To summarize,

ΓΩ
n→n−1 =

{

(4∆2/Γr)n if ∆
√
n < Γr/2

Γr/2 if ∆
√
n > Γr/2

. (17)

Note that in the strong driving regime n denotes the
doublet rather than the oscillator’s level (see discussion
below).

In addition to cooling, the AC driving induces compet-
ing heating processes. One, shown in Fig. 4, is a stan-
dard in quantum optics off-resonance process. Indeed,
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FIG. 5: Level structure of the strong driving for ac cooling.
Here ψ±

n
≡ (|n, ↑〉 ± |n− 1, ↓〉)/

√
2.

FIG. 6: Level structure of the strong driving for ac heating.
The two shown processes interfere constructively.

the states |↑, n,m〉 and |↓, n+ 1,m+ 1〉 are connected
in the second order by the matrix element ∆

√
n+ 1.

These states are off-resonance (we restrict ourselves to
the values of n such that level splitting 2ω0 ≫ ∆

√
n+ 1).

Thus, in the case ∆
√
n < Γr/2 we obtain ΓΩ

n→n+1 ≈
(∆/2ω0)

2 Γr (n + 1). In the strong driving case ∆
√
n >

Γr/2 we use again the basis of doublets, Fig. 6, and arrive
at ΓΩ

n→n+1 ≈ (∆/4ω0)
2 Γr (n+ 1) (1 + δn,0). In this case

the rates are between doublets as a whole. The factor
(1 + δn,0) is due to the fact that there is only one state
in the “doublet” n = 0. To summarize,

ΓΩ
n→n+1 =

∆2

4ω2
0

Γr (n+ 1)

{

1 if ∆
√
n < Γr/2

1+δn,0

2 if ∆
√
n > Γr/2

.

(18)

Another driving-induced heating process, not charac-
teristic for quantum optics, is due to the fact that in solid
state systems there is strong noise at low frequencies (1/f
noise). Thus, processes like the one shown in Fig. 7 be-
come relevant. This process excites the qubit with the
rate

Γe ≡ Γ↑→↓ =
Ω2

4E2
J

〈X2
ω=−ω0

〉
4h̄2 . (19)

Since at ω = −ω0 the noise is dominated by the 1/f con-
tribution, rate (19) might dominate the heating. With
this process, the heating is also resonant and, in analogy

/2

/2

FIG. 7: Qubit heating induced by the applied drive.

to Eq. (17), still assuming that Γe ≪ Γr, we obtain

ΓΩ
n−1→n =

{

Γe (4∆2/Γ2
r )n if ∆

√
n < Γr/2

Γe

2 (1 + δn,0) if ∆
√
n > Γr/2

.

(20)

Master equation. Taking into account the internal dis-
sipation of the resonator with quality factorQ, one can [5]
write down the master equation for the probability Pn to
find the resonator in the state |n〉. First, we analyze the
(strong driving) limit, ∆ > Γr/2. Then, it is convenient
to write the rate equation in terms of the probabilities
Dn to find the system in the doublet ψ±

n (n ≥ 1). The
probability D0, then, is the for the system to be in the
(non-degenerate) ground state ψ0 = |↑, 0〉. The probabil-
ities Pn are given by

Pn =
1

2
(Dn +Dn+1) +

1

2
Dnδn,0 . (21)

The master equation reads

Ḋn =
1

2
Γr [Dn+1 −Dn(1 − δn,0)]

+
∆2

8ω2
0

Γr [nDn−1 (1 + δn,1) − (n+ 1)Dn (1 + δn,0)]

+
1

2
Γe [Dn−1(1 − δn,0)(1 + δn,1) −Dn (1 + δn,0)]

+
ω0(nB(ω0) + 1)

Q
×

[

(n+
1

2
)Dn+1 − (n− 1

2
)Dn(1 − δn,0)

]

+
ω0nB(ω0)

Q

[(

n− 1

2

)

Dn−1(1 − δn,0)(1 + δn,1)

−
(

n+
1

2

)

Dn (1 + δn,0)

]

. (22)

The unusual form of the second part of this master equa-
tion is due to the structure of the matrix elements be-
tween the different states of the doublets.
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Multiplying Eqs. (22) by and summing over n we ob-
tain

d

dt
〈ñ〉 =

− 1

2
Γr(1 −D0) +

1

2
Γe(1 +D0) +

∆2

8ω2
0

Γr(1 +D0)

−
(

ω0

Q
− ∆2

8ω2
0

Γr

)

〈ñ〉 +
ω0

2Q
(1 −D0) +

ω0 nB(ω0)

Q
,

(23)

where 〈ñ〉 ≡ ∑

n nDn. We rewrite the RHS of Eq. (23)
in terms of the phonon occupation expectation value

〈n〉 =

∞
∑

n=1

nPn =

∞
∑

n=1

(n− 1

2
)Dn = 〈ñ〉 − 1 −D0

2
. (24)

We, then, obtain

d

dt
〈ñ〉 =

− 1

2
Γr(1 −D0) +

1

2
Γe(1 +D0) +

∆2

16ω2
0

Γr(3 +D0)

−
(

ω0

Q
− ∆2

8ω2
0

Γr

)

〈n〉 +
ω0

Q
nB(ω0) .

(25)

There are two main cooling regimes in (25). If the
coefficient in front of 〈n〉 is positive, i.e., if ω0/Q ≫
(∆2/8ω2

0) Γr, we obtain the usual cooling with the cooling
rate slowing down with decreasing 〈n〉. As this is the rel-
evant regime for realistic parameters we will analyze only
this case. Interestingly, however, in the opposite case of
very high Q, when ω0/Q≪ (∆2/8ω2

0) Γr, the cooling rate
accelerates until 〈n〉 ≈ 1.

If 〈ñ〉 ≫ 1 (to be checked for self-consistency) the prob-
ability to be in the ground state is negligible, D0 ≪ 1.
Then

〈n〉 ≈ nB(ω0) −
(Γr − Γe)Q

2ω0
. (26)

This regime, thus, is realized when nB(ω0) > (Γr −
Γe)Q/(2ω0). Clearly, for at least some cooling we need
(Γr − Γe) ≫ (2ω0)/Q. At lower temperatures, Eq. (26)
gives negative 〈n〉 which means that the approximation
breaks down and 〈n〉 ∼ 1 or less. Then, for an estimate
we can use 1 −D0 ∼ 〈ñ〉. In this regime 〈ñ〉 ≈ 2〈n〉 (see
Eq.(24)), therefore 1 −D0 ∼ 2〈n〉. Thus, for Γr ≫ Γe

〈n〉 ≈
Γe + ω0nB(ω0)

Q

Γr
. (27)

For nB(ω0) > ΓeQ/ω0 we then obtain

〈n〉 ≈ ω0nB(ω0)

QΓr
, (28)

while in the opposite case the average occupation satu-
rates at

〈n〉 ≈ Γe

Γr
. (29)

From Eq. (23) it is clear that for nB(ω0) ≫ 1, the cool-
ing is initially exponential in time, 〈n〉t ≈ nB(ω0) −
ΓrQ/(2ω0) [1 − exp(−γt)], with the decay rate deter-
mined by the oscillator bare damping, γ = ω0/Q. Only
when the low occupancy regime (〈n〉t < 1) is reached,
the rate of exponential decay increases to

γ =
Γr − Γe

2
− ω0

2Q
, (30)

If the driving is weaker, then for some low values of n
the following master equation holds (see Refs. [3, 5])

Ṗn =

(

A− +
ω0(nB(ω0) + 1)

Q

)

[(n+ 1)Pn+1 − nPn]

+

(

A+ +
ω0nB(ω0)

Q

)

[nPn−1 − (n+ 1)Pn] , (31)

where A− ≡ 4∆2/Γr and A+ ≡ (∆/2ω0)
2 Γr +

Γe (4∆2/Γ2
r ). For the average occupation number 〈n〉 in

the stationary state we obtain

〈n〉 =
A+ + ω0nB(ω0)

Q

A− − A+ + ω0

Q

. (32)

Regimes similar to Eqs. (28) and (29) are clearly identi-
fied. However, a regime similar to Eq. (26) is not pos-
sible within master equation (31). The expression for
the oscillator occupancy Eq. (32) can be naturally in-
terpreted in terms of two independent heat baths acting
on the resonator, one being the equilibrium environment
at the nominal external temperature T , coupled to the
resonator by a coupling strength γ0 = ω0/Q, while the
other bath being introduced by the cooling process itself.
The effective temperature of the latter, T ∗, can be de-
fined through A−/A+ = exp(ω0/T

∗), and the effective
coupling strength is γ∗ = ω0/Q

∗ = A− −A+. Then, the
final resonator occupancy can be re-expressed as

〈n〉 =
γ0nB(ω0) + γ∗n∗

B(ω0)

γ0 + γ∗
, (33)

where n∗
B is the Bose distribution function at tempera-

ture T ∗. Clearly, T ∗ is the lowest possible temperature
for a given cooling process, which is achieved for γ∗ ≫ γ0.
The combined damping coefficient γ = γ0+γ

∗ determines
the rate of relaxation to the new stationary state.

Example. We consider a nanomechanical resonator
with fundamental frequency 100 MHz (ω0 = 2π ×
100 MHz = 0.5 µeV) and quality factor Q = 105. It
is coupled to the qubit, which is characterized by the
Josephson energy EJ ≈ 50 µeV and Coulomb charging
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FIG. 8: Cooling diagram for a 100 MHz resonator (detailed
parameters in text).

energyEC ≈ 160 µeV (corresponds to CΣ ≈ 500 aF). The
coupling strength between the resonator and the qubit
is determined by the mutual capacitance Cx ≈ 20 aF,
and the gate voltage Vx ≈ 1 V, such that nx ≈ 60
Cooper pairs (see Ref. [8]). The gap between the res-
onator and the CPB is d ≈ 100 nm. For these parame-
ters, from Eq. 4, the resonator-CPB coupling strength is
λ ≈ 0.1 µeV. Assuming that Cg < Cx, for the relaxation
rate of CPB we find Γr = 3 · 10−3 µeV.

The circuit-induced quality factor of the resonator is
Qem ≈ 4 ·109, which is significantly higher than the qual-
ity factors of typical resonators. For the 1/f contribu-
tion at T1/f > 10ω0 we obtain Q1/f > 107, which is
still higher than a typical value. Hence this modification
of the oscillator damping can be neglected compared to
other environmental effects.

For cooling, we take Ω ≈ 1 µeV, which corresponds
to the modulation depth D = 0.1. We thus obtain
∆ ≈ 10−3 µeV, and hence for all n we have ∆

√
n >

Γ/2 and ΓΩ
n→n−1 ≈ Γr/2 (strong driving regime). The

heating is indeed dominated by 1/f noise, with Γe =
(Ω/2EJ)

2 (E2
1/f/4ω0) ≈ 1.8 ·10−6 µeV. In this regime we

get the following results for cooling:

〈n〉 =







nB(ω0) − 300 if nB(ω0) > 300
1.5 · 10−3nB(ω0) if 0.33 < nB(ω0) < 300

0.5 · 10−3 if nB(ω0) < 0.33

The exact numerical solution of the rate equations
Eq. (22) is shown in Figure 8.

Cooling by applying voltage driving

Another way to achieve AC cooling is by applying radio
frequency voltage bias to the gates. In Fig. 1, apply a
driving voltage Vx = V0 cosωd t on the resonator and
another driving voltage Vg = −(Cx/Cg)Vx on the CPB.

The ac voltage Vx generates resonant coupling between
the mechanical resonator and the CPB when ωac = EJ −
ω0, which corresponds to the first red sideband coupling
in quantum optics. The voltage Vx also generates an
oscillating charge bias on the CPB with δNx

g = CxVx/2e;
however, it is balanced by the bias Vg, which prevents
harmful ac pumping of the CPB.

The scheme. The Hamiltonian of the voltage driving
scheme is

H = −EJ

2
σz + h̄ω0â

†â+ 4Ecδngσx

+λ cosωd t
(

â† + â
)

σx − X̂

2
σx (34)

where the qubit works at the optimal point of δng = 0
to avoid the 1/f noise. The coupling is

λ = −4Ec
CxV0

2e

∆x

d
. (35)

Similar to the ac flux driving setup, we analyze the side-
band cooling (ω0 ≫ λ,Γr) in the regimes of weak driving
and the strong driving; both can be reached in experi-
ments.

The analysis is essentially the same as that in the flux
driving case. Instead of the second order matrix element
∆ (see Eq. (15)), we have the direct coupling λ/2. Thus
to obtain the cooling and the heating rates we substitute
∆ → λ/2 into Eqs. (17) and (18). In this scheme there
is no driving induced contribution of the low frequency
(1/f) noise similar to (20).

Strong driving. The strong driving regime is achieved
for λ

√
n/2 ≫ Γr/2. As the 1/f noise does not con-

tribute to the heating, i.e., the rates (20) do not appear,
the leading heating mechanism is the off-resonance cou-
pling (see Eq. (18)). Thus, the dynamics is described
by the rate equation (22) with Γe = 0. We obtain the
cooling results as follows: For nB > Q(Γr/2ω0) we ob-
tain 〈n〉 ≈ nB −Q(Γr/2ω0). In the intermediate regime
Q(Γr/2ω0) > nB > Q(Γr/ω0)(λ/4ω0)

2 the result is
〈n〉 ≈ ω0nB/QΓr. Finally, for nB < Q(Γr/ω0)(λ/4ω0)

2,
the occupation number saturates at 〈n〉 ≈ (λ/4ω0)

2.
For example, let Γr = 5 · 10−3µeV, λ = 25 · 10−3µeV

(with the voltage bias V0 ∼ 50 mV ) and Q = 105. We
have (λ/4ω0)

2Γr ≈ 8 · 10−7µeV. The stationary occupa-
tion number is

〈n〉 ≈











nB (ω0) − 500 if nB(ω0) > 500

10−3nB(ω0) if 0.15 < nB(ω0) < 500

1.5 · 10−4 if nB(ω0) < 0.15

which gives 〈n〉 = 2.5 ·10−3 at the temperature of 20 mK.
Weak driving. For λ

√
n/2 ≪ Γr/2, the dynamics

of the resonator is described by the rate equation (31)
with A− = λ2/Γr and A+ = (λ/4ω0)

2Γr. Note that
the low frequency noise doesn’t appear in this scheme
(Γe = 0), which improves the cooling efficiency. For
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nB(ω0) < A+Q/ω0 the average occupation is given by
〈n〉 = A+/A−; for nB(ω0) > A+Q/ω0 we obtain 〈n〉 =
nB(ω0)ω0/A−Q. As an example, let Γr = 50 · 10−3µeV,
λ = 5 · 10−3µeV (with the bias voltage of V0 ∼ 10 mV
) and Q = 105. We have A− = 0.5 · 10−3µeV and
A+ = 3 · 10−7µeV. Then, the cooling results are as fol-
lows:

〈n〉 =

{

10−2nB(ω0), nB(ω0) > 0.06

6 · 10−4, nB(ω0) < 0.06
(36)

where at the temperature of 20 mK with nB(ω0) = 5, we
have 〈n〉 = 0.05. Thus better cooling can be achieved in
the strong driving regime than that in the weak driving
regime.

Discussion. The relaxation rate Γr can be adjusted
by varying the external circuit of the CPB. For example,
by varying the gate capacitance Cg, the relaxation rate
changes as Γr ∝ C2

g . The coupling constant λ can be ad-
justed by varying the bias V0. In this scheme, we choose
V0 to be in the range of 10 . . .100 mV and Γr in the range
of (1 . . . 100) · 10−3µeV, which includes both the weak
driving regime (λ

√
n/2 ≪ Γr/2) and the strong driving

regime (λ
√
n/2 ≫ Γr/2). These parameter regimes have

been realized in charge qubit experiments.
One practical issue of this scheme concerns the ac-

curacy of the gate compensation. Both gate voltages
generate an extra part of the CPB’s charging energy
δH = 4Ecδngσx, with δng = (CxVx + CgVg) /2e. By
controlling the voltage with an accuracy of microvolts,
which can be achieved with standard technology, the os-
cillating bias on the CPB can be neglected.

Compared with the ac flux driving cooling scheme in
this paper, the resonator can now be cooled to a lower
temperature because the heating process only involves
the electromagnetic noise of the circuit at frequency EJ ,
while the low frequency noise, which is the dominant
heating factor in the previous scheme, doesn’t affect the
system.

DC COOLING

Effectively, AC driving can be achieved applying a DC
transport voltage to an auxiliary Josephson junction. We
modify the system as shown in Fig. 9 so that it becomes
effectively an SET transistor. Dissipative Cooper pair
and quasi-particle transport is similar systems was con-
sidered in Refs. [11, 12]. The Hamiltonian in the charge
basis reads

H =
(Q− CRV − CgVg − Cx(x)Vx)2

2CΣ

− EJ,L cos θ − EJ,R cos(θ + 2eV t/h̄) +Hx , (37)

where θ is the phase on the island (and simultaneously
on the left junction as the left lead is grounded), CΣ ≡

FIG. 9: The system with DC driving.

CL +CR +Cg +Cx(x). Due to the transport voltage V ,
the Hamiltonian is time dependent and, thus, represents
a driven system. We repeat the steps described above
and arrive (in the charge basis) at

H = − EJ,L

2
σx − X

2
σz + h̄ω0a

†a+ λ (a† + a)σz

− EJ,R

2
(σ+ e

iωJt+iδφ + h.c.) , (38)

where X ≡ − 4EC

e (CRδV + CgδVg + CxδVx), δφ ≡
(2e/h̄)

∫

δV dt, and the Josephson frequency ωJ ≡
2eV/h̄. We see that the right junction’s Josephson energy
assumes the role of pumping amplitude Ω, while ωJ is the
pumping frequency. Unfortunately V is noisy and, thus,
the pumping source has a substantial line-width. The
transport voltage should not be sensitive to the back-
ground charges, therefore V is assumed to have Ohmic
noise spectrum (no 1/f component).

After a π/2 rotation in the x − z plane, σx ↔ σz, we
obtain

H = − EJ,L

2
σz − X

2
σx + h̄ω0a

†a+ λ (a† + a)σx

− EJ,R

4

(

(σz + iσy) eiωJt+iδφ + h.c.
)

. (39)

While the Hamiltonians (12) and (39) look similar,
there are two important differences. One, already dis-
cussed, is the fact that the pumping frequency ωJ in
(39) is fundamentally noisy, while ωd in (12) can be
made coherent. The second (very important) difference
is that in (12) the pumping is applied to σz only, while
in (39) it couples to σz and σy. Both these facts hin-
der the cooling. Indeed, the coupling to σy gives a di-
rect matrix element EJ,R/4 between the states |↑, n,m〉
and |↓, n,m+ 1〉. This interaction repels the levels and
we must choose EJ,R ≪ 4ω0 so that the resonant de-
tuning as in Fig. 3 is possible. In addition, the noise
of the transport voltage translates into the line width
for the transition |↑, n,m〉 → |↓, n− 1,m+ 1〉 equal to
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Γϕ = 2παtrkBT/h̄, where αtr ≡ R/RQ. The fluctuations
of the transport voltage are not screened by the ratio of
capacitances as it happens for the gate charge. There-
fore αtr ≈ 10−2. Because of these additional constraints
the applicability of the DC cooling scheme is limited to
higher frequency/quality factor resonators. For an esti-
mate, consider an oscillator with ω0 = 2π × 1 GHz ≈
5 µeV ≈ 50 mK at temperature T = 50 mK. We then
obtain Γϕ ≈ 0.3 µeV, which significantly exceeds Γr.
Hence, we have to substitute Γr by Γϕ in all formu-
las. For the Josephson coupling in the right junction
we take EJ,R = 2 µeV. Then, instead of Eq. (15), we find
∆ ≈ EJ,Rλ/(2EJ,L) ≈ 2 · 10−3 µeV (we assume EJ,L ≈
50 µeV). The cooling rate can again be represented as
A−n, where A− ≈ 2∆2/Γϕ ≈ 2 · 10−5µeV. Thus, cooling
becomes possible only if Q > ω0/A− ≈ 2.5 · 105.

DISCUSSION AND COMPARISON WITH

QUANTUM OPTICS.

For comparison with quantum optics cooling schemes,
we present here an analysis of some of the processes de-
scribed above using the quantum optics language. In
quantum optics literature one usually employs the trans-
formation to the rotating frame and/or other canon-
ical transformations together with the Rotating Wave
Approximation (RWA) in order to single out the near
resonant terms responsible for the studied transitions.
We start with Hamiltonian (12) and transform it into
the interaction representation with respect to H0(t) ≡
−[EJ + Ω + Ω cos 2ωd t]σz/2 + ω0a

†a. This amounts to

σ+ → σ+e
−i(EJt+Ωt+ Ω

2ωd
sin 2ωd t)

and a → ae−iω0t .
(40)

As Ω ≪ 2ωd ∼ EJ we can expand the factor
exp(−i(Ω/2ωd) sin 2ωd t). The near resonant (RWA)
parts of the coupling term Hλ ≡ λ(a† + a)σx read, then,
after the transformation as

HRWA
λ = − Ωλ

4ωd
(aσ− + a†σ− e

2ω0t + h.c.) , (41)

where the resonance condition 2ωd = EJ + Ω − ω0 was
assumed. The first term of (41) clearly corresponds to
the resonant transition provided by the matrix element
∆
√
n (see Eq. (15)). The second term corresponds to the

off-resonant transition. In analogy with atom optics [3],
we can introduce Lamb-Dicke parameter η ≡ λ/2ωd ≈
λ/EJ. Note that, unlike the case of trapped atoms/ions
we do not have near resonant terms flipping just the spin,
∼ Ωσ± exp(±iω0). Such an interaction would repel the
levels, and, for a resonant detuning, one would need Ω ≪
ω0. In our case, a much stronger driving is allowed. We
do, however, encounter this limitation in the DC cooling
scheme due to the presence of the near-resonant term in
the Hamiltonian Eq. (39) which is proportional to σy.

 
 

 
 

 

 

FIG. 10: Level structure of the voltage driving scheme for ac
cooling. The solid lines indicate the cooling process; and the
dotted lines indicate the heating process.

Also, in the dissipative term HX ≡ −(X/2)σx, we find
a slow contribution:

Hslow
X =

X

2

Ω

4ωd

(

σ−e
iω0t + h.c.

)

, (42)

which is responsible for the heating process (18) dom-
inated by the low frequency noise. In quantum optics
this contribution is typically neglected as there are no
strong low frequency sources.

In the case of ac voltage cooling, in the rotating wave
approximation the Hamiltonian is

HRWA = − h̄ω0

2
σz + h̄ω0â

†â

+
λ

2

(

â†σ+ + âσ− + â†σ− + âσ+

)

(43)

− X̂
2

(

σ+e
−iωd t + σ−e

iωd t
)

where the interaction includes the resonant coupling
â†σ+ + âσ− between the states |↑, n〉 and |↓, n− 1〉, and
the off resonant coupling â†σ− + âσ+ between the states
|↑, n〉 and |↓, n+ 1〉 with an energy difference of 2h̄ω0.
The time dependence in the last term shows that only
high frequency fluctuations on the order of EJ induces
relaxation.

The voltage driving scheme for ac cooling presents a
direct analogue to the laser cooling of quantum optics
systems as is obvious from Fig. 10; however, it is a sim-
pler scheme as the coupling is a direct bilinear coupling
instead of the polaron coupling in quantum optics.

“DOPPLER” COOLING

For smaller oscillator frequencies ω0 and/or larger
qubit relaxation rates Γr, it may happen that the vi-
brational sidebands are no longer resolved, i.e., Γr > ω0.
Then, cooling to the ground state is impossible but the
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less effective “Doppler” cooling is still feasible. In the
standard Doppler cooling, cold atoms moving in a laser
field experience different light pressure depending on
their velocity. For instance, if the laser is red-detuned
relative to the atomic transition, then atom moving to-
wards the light source will be absorbing photons more
than an atom moving away from the source, which will
result in a velocity-dependent force on the atom. By
properly arranging multiple lasers it is then possible to
achieve significant reduction of the atom’s effective tem-
perature. The same reasoning applies to an atom in
a trap, when the trap frequency is much smaller than
the atomic transition line width. Equivalently, in this
case, the Doppler cooling can be reinterpreted in terms
of the cooling and heating transition rates for the oscil-
lating atom. For red-detuned laser, photon absorption
processes with simultaneous phonon emission dominate
the ones where an additional phonon is created. One can
show that, similar to the free atom case, this leads to
cooling down to temperatures proportional to the atomic
transition line width. In this section we will demonstrate
that an analog of Doppler cooling can be performed in
both AC and DC cooling setups described in the previous
sections in the regime of non-resolved sidebands.

AC cooling scheme. We start with the AC-driving
scheme described by Hamiltonian (12). In the Doppler
case it is enough to study, first, the spin’s dynamics with-
out the oscillator. We perform the following transforma-
tion

σ+ → σ+e
−i(2ωd t+ Ω

2ωd
sin 2ωdt)

, (44)

and keep only the RWA terms in the coherent part of the
Hamiltonian but all the terms in the part describing the
interaction with the bath. The transformed Hamiltonian
reads

HRWA
spin =

δω

2
σz − X

2
(σ+e

−2iωdt + h.c.) +
Ω

4ωd

X

2
σx ,

(45)

where δω is the detuning δω ≡ 2ωd − EJ − Ω. The last
term in the Hamiltonian, as before (see Eqs. (19) and
(18)), generates transitions between the ground and ex-
cited states of the qubit. The corresponding rate, how-
ever, is typically much smaller than the relaxation rate
generated by the second term of the Hamiltonian, and
hence can be neglected. This is in contrast to the AC
ground states cooling scheme discussed above, where the
qubit heating rate determined the lowest possible occu-
pation number of the resonator. The slow (RWA) part
of the interaction Hamiltonian reads

Hslow
λ = − Ω

4ωd
λ (a† + a)σx . (46)

With Hamiltonian (45) we write down the Bloch-Redfield
equations [13, 14] for the spin’s density matrix ρ̇ = Rρ,

where R is the Redfield tensor. In this equation, the
density matrix is treated as a four-vector. We choose the
representation ρ = (1/2)sσ0 + γσz + ασ+ +α∗σ−, which
gives ρ = (s, γ, α, α∗) and Trρ = s. For proper density
matrices s = 1. In this representation

R =









0 0 0 0
Γr

2 −Γr 0 0

0 0 −iδω − Γr

2 0

0 0 0 iδω − Γr

2









. (47)

The rate Γr originates from the second term of (45),

Γr =
〈X2

ω=2ωd
〉

4h̄2 , (48)

(cf. Eq. 7). For simplicity we have assumed that at high
frequency 2ωd the temperature is effectively zero, i.e.,
〈X2

ω=−2ωd
〉 ≪ 〈X2

ω=2ωd
〉.

Next we employ the “quantum regression theorem”
(approximation) to obtain (for t > 0) the correlator

Cx(t) ≡ 〈σx(t)σx(0)〉 = Tr
(

σx e
Rt σx ρ∞

)

, (49)

where ρ∞ is the stationary density matrix, Rρ∞ = 0.
For t < 0 we can use Cx(−t) = C∗

x(t). In the four-vector
representation the operator σx multiplying from the left
is given by

σx =









0 0 1 1
0 0 −1/2 1/2

1/2 −1 0 0
1/2 1 0 0









. (50)

Finally, after the Fourier transform we obtain

Cx(ω) = −2ReTr
(

σx [R+ iω]−1 σx ρ∞
)

, (51)

which is easy to calculate (using Mathematica). Expand-
ing near ω = 0 we obtain Cx(ω) = Sx + ηxω, where

Sx =
4Γr

4δω2 + Γ2
r

, (52)

and

ηx = − 32δω Γr

(4δω2 + Γ2
r )

2
. (53)

From the spin correlation functions, we can now de-
termine the transition rates for the resonator, A± =
(Ωλ/4ω)2Cx(∓ω0). Note, that the same expressions for
A± can be obtained from Eq. (16) generalized to arbi-
trary detuning. Then, the secondary “heat bath” intro-
duced by cooling is characterized by the effective tem-
perature

T ∗ ≡ Sx

2ηx
= −4δω2 + Γ2

r

16δω
. (54)
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Optimizing with respect to the detuning δω, we find
that the minimum (positive) temperature Tmin ≈ Γr/4
is reached for the optimal red detuning δωopt ≈ −Γr/2.
For the effective quality factor due to the spin we obtain

1

Q∗
=
A− −A+

ω0
=

Ω2λ2ηx

8ω2
d

. (55)

The final resonator occupancy can now be obtained from
Eq. (33). Clearly, Q∗ must be smaller than the oscilla-
tor’s own quality factor in order for cooling to be effec-
tive. For the same parameters as used in the AC cooling
section, we find that at the optimal detuning Q∗ ∼ 1,
which corresponds to a nearly overdamped regime, simi-
lar to optical molasses in atom optics. Hence, a resonator
with a frequency ω0

<∼ Γr/2 = 300 kHz can be cooled
down to temperature Tmin ≈ Γr/4 ∼ 10 µK. Note, that
the effect of the dominant qubit heating mechanism due
to the 1/f noise, which we neglected here, if necessary,
can be managed by reducing the driving strength Ω (at
the expense of reduced cooling power, i.e. larger Q∗).

Similar analysis applies to the voltage driving scheme
for AC cooling in the Doppler regime. For λ

√
n/2 ≪

Γr/2, from Eq. (16)

A− =
λ2Γr

Γ2
r + 4 (δω + ω0)

2 A+ =
λ2Γr

Γ2
r + 4 (δω − ω0)

2 ,

(56)
where δω = ωd − EJ is the detuning of the driving fre-
quency from the qubit’s ground-to-excited-state transi-
tion. Cooling is achieved when δω < 0. Neglecting the
effect of the finite intrinsic Q-factor, the final phonon
number from Eq. (32) is

〈n〉f =
Γ2

r + 4 (δω + ω0)
2

16|δω|ω0
(57)

The scheme provides optimal cooling at δωopt = −Γr/2
with the temperature Tmin = Γr/4, same as the flux driv-
ing case.

DC cooling scheme. Analysis of the DC cooling scheme
proceeds analogously. We start with Hamiltonian (39)
and perform transformation

σ+ → σ+e
−i(ωJt+ Ω

ωJ
sin ωJt)

, (58)

where, for now, Ω ≡ EJ,R, and we remind that ωJ ≡
(2e/h̄)V . For simplicity we consider V noiseless now but
later will introduce the low-frequency (classical) noise of
V . Then, we obtain

HRWA
spin =

δω

2
σz − Ω

4
σx

− X

2
(σ+e

−V t + h.c.) +
Ω

2V

X

2
σx , (59)

where δω ≡ ωJ − EJ,L. The main differences with (45)
are: i) the second term of (59) is absent in (45) (recall

the extra matrix element in the DC scheme); ii) the de-
tuning δω is noisy due to the noise of V . This will give
an extra “pure” dephasing rate Γϕ = 2παtrkBT/h̄, where
αtr ≡ R/RQ. As in the AC Doppler case, neglecting the
excitation rate coming from the last term in the Hamil-
tonian, for the Redfield tensor we obtain

R =











0 0 0 0
Γr

2 −Γr − iΩ
4

iΩ
4

0 − iΩ
2 −iδω − Γ̃ 0

0 iΩ
2 0 iδω − Γ̃











(60)

where Γ̃ = Γϕ + Γr/2. The general expressions for Sx

and ηx are quite complicated. An analysis shows that the
simplest cooling regime is achieved when Ω ≪ Γr ≈ Γϕ.
That is, it does not make sense to keep small Γr when the
line width is anyway given by large Γϕ. The relaxation
rate Γr can easily be increased by choosing bigger gate
capacitances Cx and/or Cg. Assuming Γr = Γϕ and Ω ≪
Γϕ we obtain

Sx =
12 Γϕ

4δω2 + 9 Γ2
ϕ

, (61)

and

ηx = − 96δω Γϕ

(4δω2 + 9 Γ2
ϕ)2

. (62)

Optimizing with respect to δω, we find that the minimum
temperature Tmin ≈ (3/4)Γϕ is achieved for the optimal
detuning δω ≈ −(3/2)Γϕ. The effective quality factor
due to the cooling environment, similarly to (55), is

1

Q∗
=

Ω2λ2ηx

2ω2
J

. (63)

The regime Γr ≪ Γϕ is more subtle and requires further
analysis.

Example: Choosing Cx ≈ 200 aF instead of previously
assumed 20 aF, we obtain Γr ≈ 0.3 µeV ≈ Γϕ. We choose
Ω = EJ,R ≈ 0.1 µeV (note that this is quite a small value
for usual Josephson junctions). Then we obtain Tmin ≈
0.25 µeV ≈ 2.5 mK for δω ≈ 0.5 µeV ≈ 2π × 100 MHz.
Near optimal detuning point, we obtain ηx ≈ 6 (µeV)−2.
For the coupling constant λ we can take λ ≈ 1 µeV in-
stead of 0.1 µeV as we have allowed ten times bigger ca-
pacitance Cx. Then we obtain Q∗ ≈ 0.8 · 105. Thus, for
cooling to be effective, resonator Q-factor should exceed
105 and the final resonator temperature is determined
according to Eq. (33) with T ∗ = 2.5 µK.

CONCLUSIONS

We considered several approaches to active cooling of
mechanical resonators using a coupling to a supercon-
ducting Josephson qubit. In the resolved vibrational
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sideband regime, when the qubit level width is smaller
than the resonator frequency, we proposed two schemes
for ground-state cooling of the resonator. In the first
scheme, the AC driving required for cooling is provided
by an external microwave source. We find that for a 100
MHz oscillator coupled to a practically realizable Joseph-
son qubit, at the external temperatures below 1 K, it is
possible to reduce the thermal occupancy of the oscillator
mode by three order of magnitude. In the second scheme,
the AC driving is generated by the AC Josephson oscilla-
tions on an auxiliary junction of the qubit. This scheme
is attractive since there is no need for an external AC
driving source; however, in the present realization, we
find that it is not as effective as the one with an explic-
itly applied AC driving. We also demonstrate that even
in the regime when the vibrational sidebands are not re-
solved, it is possible to perform an analogue of Doppler
cooling with the final resonator temperature limited by
the qubit line width.
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