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Determining the current polarization in Al/Co nanostructured point contacts
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1Physikalisches Institut, Universität Karlsruhe, D-76128 Karlsruhe, Germany
2Institut für Theoretische Festkörperphysik, Universität Karlsruhe, D-76128 Karlsruhe, Germany
3Laboratorium für Elektronenmikroskopie, Universität Karlsruhe, D-76128 Karlsruhe, Germany

4Forschungszentrum Karlsruhe, Institut für Festkörperphysik, D-76021 Karlsruhe, Germany

(Dated: July 24, 2009)

We present a study of the Andreev reflections in superconductor/ferromagnet nanostructured
point contacts. The experimental data are analyzed in the frame of a model with two spin-dependent
transmission coefficients for the majority and minority charge carriers in the ferromagnet. This
model consistently describes the whole set of conductance measurements as a function of voltage,
temperature, and magnetic field. The ensemble of our results shows that the degree of spin polar-
ization of the current can be unambiguously determined using Andreev physics.

PACS numbers: 74.45.+c, 72.25.-b, 74.78.Na

The field of spintronics is largely based on the abil-
ity of ferromagnetic materials to conduct spin-polarized
currents [1]. Thus, the experimental determination of
the degree of current polarization has become a key is-
sue. Recently the analysis of Andreev reflections in su-
perconductor/ferromagnet (S/F) point contacts has been
used to extract this spin polarization in a great vari-
ety of materials [2, 3, 4, 5, 6, 7]. The underlying idea
is the sensitivity of the Andreev process to the spin of
the carriers, which in a spin-polarized situation is man-
ifested in a reduction of its probability [8]. The theo-
retical analysis of these S/F point-contact experiments
has been mainly carried out following the ideas of the
Blonder-Tinkham-Klapwijk (BTK) theory [9]. Different
generalizations of this model to spin-polarized systems
have been proposed, in which with an additional phe-
nomenological parameter P , the spin polarization of the
ferromagnet, excellent fits to the experimental data have
been obtained [2, 3, 4, 5, 6, 7]. However, a microscopic
justification of these models is lacking [10, 11, 12]. Re-
cently, Xia et al. [13] have combined ab initio methods
with the scattering formalism to analyze the Andreev
reflection in spin-polarized systems. Their main conclu-
sion is that, in spite of the success in fitting the experi-
ments, these modified BTK models do not correctly de-
scribe the transport through S/F interfaces. Therefore,
at this stage several basic questions arise: what is the
minimal model that describes on a microscopic footing
the Andreev reflection in spin-polarized systems? And,
more importantly, can the current polarization be exper-
imentally determined using Andreev physics?

In this paper we address these questions both experi-
mentally and theoretically. We present measurements of
the differential resistance of nanostructured Al/Co point
contacts as a function of voltage, temperature, and mag-
netic field. To analyze the experimental data we have
developed a model based on quasiclassical Green func-
tions, the main ingredients of which are two transmis-
sion coefficients accounting for the majority and minor-

ity spin bands in the ferromagnet. We show that this
model consistently describes the whole set of data, which
unambiguously demonstrates that the spin polarization
of current in a ferromagnet can indeed be determined
employing Andreev reflection.

We have fabricated Al/Co point contacts following
the process described in Ref. [14]. Briefly, a bowl-
shaped hole is drilled through a 50-nm thick silicon ni-
tride (Si3+xN4−x) membrane by means of electron-beam
lithography and reactive ion etching. The smallest open-
ing in the insulating membrane has typically a diameter
of 5 nm. Finally, 200 nm of Al and dCo = 6, 12, 24 or
50 nm of Co plus (200 nm - dCo) of Cu are deposited
by electron-beam evaporation under ultra-high vacuum
conditions (∼ 10−9 mbar) on each side of the membrane.
A schematic of the samples is shown in Fig. 1(a). The
differential resistance R was measured with lock-in tech-
nique in a dilution refrigerator. A dc current was super-
imposed to the small measuring ac component and both
R and the voltage drop V were recorded simultaneously.

As a reference we show in Fig. 1(b) the Andreev spec-
trum, i.e. the differential conductance G as a function of
the voltage V , of an Al/Cu sample. In all the spectra in
this paper, G and V have been normalized by the nor-
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FIG. 1: (a) Schematic of an Al/Co nanocontact. (b) Andreev
spectrum of an Al/Cu contact at 95 mK (black circles). The
dashed line is the fit obtained with the BTK theory [9] yield-
ing the transmission τ = 0.781 and the gap ∆ = 206 µeV.
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FIG. 2: Andreev spectra of four Al/Co point contacts with
different Co film thickness dCo. The solid line is a fit to the
data with our model (see Table I).

mal state conductance GN and by the zero-temperature
superconducting gap ∆ of the Al electrode, respectively.
GN showed to be completely independent of V in the
range eV . 5−10 ∆. Since the estimated mean free paths
of the Cu and Al electrodes are ∼ 60 nm or longer at low
temperatures, all the contacts studied are in the ballistic
regime. In the Al/Cu case (Fig. 1(b)) the BTK theory
fits the experimental data very well (see figure caption for
details). In the case of Al/Co, the ferromagnetic layer
causes a reduction of the Andreev spectrum amplitude
as compared to the Al/Cu contacts (see Fig. 2). Notice
that, although both the normal state resistances and the
Co layer thicknesses of the samples differ strongly (see
Table I), the Andreev spectra are all quite similar. This
indicates that we are observing an intrinsic property of
Al/Co point contacts.

The minimal model necessary to describe transport
in S/F contacts should account for the spin-dependent
transmission, which is inherent to any junction where fer-
romagnets are involved. We have developed a model that
fulfills this requisite in the framework of the quasiclassi-
cal Usadel theory [15, 16], describing a system in terms of
two retarded Green functions, g(~r, ǫ) and f(~r, ǫ), which
depend on both space and energy and satisfy g2+f2 = 1.
For transport through interfaces this theory must be sup-
plemented with boundary conditions, which can be for-
mulated in terms of a normal-state scattering matrix Ŝ.
Our choice to model an S/F interface is given by (we
restrict ourselves to a single conduction channel)

Ŝ =

(

r̂ t̂
t̂† r̂′

)

; t̂ =

(

t↑ 0
0 t↓

)

, r̂ =

(

r↑ 0
0 r↓

)

, (1)

where t↑,↓ and r↑,↓ are the spin-dependent transmission
and reflection amplitudes, respectively. The transmission

sample dCo (nm) RN (Ω) T (mK) ∆ (µeV) τ↑ τ↓ P

#1 6 10.4 97 189 0.404 0.979 0.42

#2 6 6.69 90 199 0.403 0.979 0.42

#3 12 33.2 101 199 0.420 0.968 0.39

#4 12 13.3 100 188 0.415 0.970 0.40

#5 24 6.00 98 180 0.382 0.989 0.44

#6 24 3.58 97 193 0.399 0.983 0.42

#7 50 15.7 99 172 0.370 0.994 0.46

#8 50 3.59 97 198 0.392 0.986 0.43

TABLE I: Transmissions, τ↑,↓, polarization, P , and gap, ∆,
for the Al/Co samples as determined by a fit of the Andreev
spectra for T ≈ 100 mK with our model.

coefficients τ↑,↓ = |t↑,↓|2 are the central quantities of our
model. They contain the microscopic properties relevant
for transport, i.e. the spin-split band structure of the fer-
romagnet, the electronic structure of the superconductor
and the interface properties.

The current ISF through the S/F point contact is com-
puted following standard procedures [17]. It can be sep-
arated in two spin contributions, ISF = I↑ + I↓, where
each can be written in the BTK form [9]

Iσ =
e

h

∫ ∞

−∞

dǫ [nF (ǫ − eV ) − nF (ǫ)] [1 + Aσ(ǫ) − Bσ(ǫ)] ,

(2)
where nF is the Fermi function, and Aσ(ǫ) and Bσ(ǫ) are
the spin-dependent Andreev reflection and normal reflec-
tion probabilities, respectively. These are given by Aσ =
τστ−σ|f/D|2 and Bσ = |(rσ + r−σ) + (rσ − r−σ)g|2/|D|2,
where rσ =

√
1 − τσ and D = (1+rσr−σ)+(1−rσr−σ)g.

The Green functions are evaluated right at the interface
at the superconducting side. In the point-contact geome-
try we can ignore the proximity effect, which means that
g and f only contain properties of the superconducting
electrode. In the case of a BCS superconductor in zero
magnetic field g = iǫ/

√
∆2 − ǫ2 and f = −i(∆/ǫ)g, and

the zero-temperature conductance adopts the form [18]

GSF =
4e2

h











τ↑τ↓

(1+r↑r↓)2−4r↑r↓(eV/∆)2
; eV ≤ ∆

τ↑τ↓+(τ↑+τ↓−τ↑τ↓)
√

1−(∆/eV )2
[

(1−r↑r↓)+(1+r↑r↓)
√

1−(∆/eV )2
]

2 ; eV ≥ ∆
.

(3)

In the absence of spin polarization (τ↑ = τ↓) this formula
reduces to the BTK result [9]. The normal state conduc-
tance is given by GN = (e2/h)(τ↑ + τ↓), and the current
polarization is defined by P = |τ↑ − τ↓|/(τ↑ + τ↓). The
main approximation of this model is the assumption that
we can describe the point contact with a single pair of
transmission coefficients, τ↑,↓, which will be finally justi-
fied by the agreement with the experiment.
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FIG. 3: (a) Andreev spectrum for sample #2 for different temperatures. For clarity, the curves are shifted downwards
successively by 0.05 units with increasing temperature. The solid lines are the calculated spectra with our model. (b)
Normalized resistance R/RN as a function of temperature for three Al/Co samples. T is normalized to the gap ∆ as obtained
from the Andreev spectra (see Table I). The curves are shifted downwards successively by 0.12 units. The red lines are the
calculated R(T ). For sample #2, the dashed line has been calculated including the effect of a residual magnetic field of 5 mT.
As a reference, we also show this data for the Al/Cu contact of Fig. 1(b) (the theoretical result corresponds to the nonmagnetic
BTK theory). The shaded region is covered by a set of curves given by {τ↑ ± 0.01, τ↓ ± 0.01} for sample #3. (c) Andreev
spectrum for sample #4 measured at 100 mK for different magnetic fields. The curves are shifted upwards successively by 0.2
units. The inset shows the zero-bias conductance as a function of the field. The critical field of the sample is µ0Hc = 15.0 mT.
The red lines are the calculations using d/λ0 = 3.8.

As we show in Fig. 2, using τ↑,↓ and ∆ as free parame-
ters our model yields an excellent fit to the Andreev spec-
tra of the Al/Co contacts for temperatures T ≈ 100 mK.
These parameters for a total of eight contacts are listed
in Table I. Their deviations from sample to sample are
remarkably small, leading to small uncertainties in the
mean values given by τ̄↑ = 0.40 ± 0.02, τ̄↓ = 0.98 ± 0.01
and ∆̄ = (190 ± 10) µeV. The total current is of course
symmetric with respect to the exchange of τ↑ and τ↓,
which implies that we cannot assign a transmission co-
efficient to the majority or minority charge carriers in
Co. Nevertheless, we expect the high transmissive coeffi-
cient τ↓ to correspond to the minority electrons, because
of their higher density of states at the Fermi level corre-
sponding to the Co 3d band. In our contacts the mean
value of the current polarization is P̄ = 0.42 ± 0.02. An
analysis of our experimental data for T ≈ 100 mK with
the widely used model of Ref. [11] gives fits of similar
quality, but yields ∼ 15% smaller values for P . It is im-
portant to stress that this model cannot be mapped onto
ours, it is not rigorously founded, and misses the funda-
mental ingredient of a spin-dependent transmission.

The rest of the paper is devoted to illustrate the con-
sistency of the model, and in turn of the determination of
the polarization P . We show that fixing the set {τ↑, τ↓}
and ∆, as obtained from the spectra at T ≈ 100 mK,

the model describes without any additional fit parame-
ter the temperature and magnetic-field dependence of the
conductance. For instance, in Fig. 3(a) the temperature
dependence of the Andreev spectrum of the sample #2 is
depicted. As can be seen, the model describes the whole
temperature range by simply using the BCS tempera-
ture dependence of the gap. A more stringent test of our
model is shown in Fig. 3(b). Here, we compare the tem-
perature dependence of the zero-bias resistance with the
theoretical prediction. The agreement is excellent, apart
from the deviations close to the critical temperature. We
attribute them to the existence of a stray field (∼ 5 mT)
created by the Co film. This idea is supported by a calcu-
lation (see below for details) of R(T ) in the presence of an
external field (Fig. 3(b)). It is worth stressing that R(T )
is extremely sensitive to the transmission (see curve for
sample #3 in Fig. 3(b)), which illustrates the accuracy
in the determination of {τ↑, τ↓}.

We have also measured how a magnetic field, H , par-
allel to the insulating layer modifies the Andreev spec-
tra (see Fig. 3(c)). There are three main effects: (i) the
height of the two maxima diminishes with increasing field
and their positions are shifted to lower voltages. (ii) As
can be seen in the inset of Fig. 3(c), the zero-bias con-
ductance is constant for fields below the critical field.
(iii) The transition to the normal state is abrupt. To
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understand these features we now study how the order
parameter, ∆, is modified by the field. We use two ap-
proximations: (a) in the Al electrode the mean free path
(l ∼ 60 nm) is much smaller that the superconducting
coherence length (ξ0 ∼ 300 nm), which justifies the use
of the diffusive approximation (l ≪ ξ0) and the Usadel
theory. (b) For our Al films ξ0 is greater than the elec-
trode thickness, d, which means that we can assume that
∆ and the Green functions are constant throughout the
sample. With these approximations the Usadel equation
reduces to the generic equation that describes the effect
of different pair-breaking mechanisms such as magnetic
impurities, supercurrents or magnetic fields [19]

ǫ+iΓg(ǫ, H) = i∆
g(ǫ, H)

f(ǫ, H)
where Γ =

2De2

~c2
〈 ~A2〉, (4)

where D is the diffusion constant, Γ is a depairing en-
ergy, which contains the effect of the magnetic field,
and 〈 ~A2〉 is the average value of the square of the vec-
tor potential along the thickness of the Al film. Ad-
ditionally, the order parameter ∆ must be determined
self-consistently [16]. In Al the London penetration
depth is typically λ0 ∼ 50 nm, which in our case is
smaller than the thickness, d. This implies that the
external field is partially screened inside the sample.
Thus, the vector potential appearing in Eq. (4) must

be determined solving the Maxwell equation: ∇2 ~A =
−(4π/c)~j, where ~j is the supercurrent density given by
~j(~r) = −(2σN/~c) ~A(~r)

∫ ∞

0 dǫ tanh (βǫ/2) Im(f2), where
σN is the normal conductivity of the Al sample and
β = (kBT )−1. The solution of the Maxwell equation
yields the following expression for the depairing energy

Γ(H) =
6α

r2 cosh2(r/2)

(

sinh(r)

r
− 1

)

; α =
De2d2H2

6~c2
,

(5)

where r = (d/λ0)
[

(2/π)
∫ ∞

0
dǫ′ tanh

(

β′ǫ′

2

)

Im(f2)
]1/2

.

Here, the prime indicates that the energy variables
are measured in units of the zero-temperature gap in
the absence of field, ∆0, and λ0 =

√

~c2/(4π2σN∆0).
In Eq. (5) α is the pair-breaking parameter for a
thin film [19], which can also be written as α/∆0 =

(1/12π) [Hd/Hcbλ0]
2
, where Hcb is the bulk critical field.

For Al µ0Hcb = 9.9 mT. Notice that the ratio d/λ0 is
the only parameter that enters our analysis. Since d/λ0

determines the critical field of the Al films, Hc, we fix its
value by means of an independent measurement of R(B)
at T ≈ 100 mK. For our samples, we find Hc ≈ 1.5Hcb,
which in our theory corresponds to d ≈ 4λ0. Thus, us-
ing Eq. (2) with the self-consistent solution of Eq. (4)
for the Green functions, we calcute the magnetic field
evolution of the Andreev spectra, reproducing the main
experimental features without any additional parameter

(see Fig. 3(c)). The theoretical analysis of the critical
field reveals that for d > λ0, as in our case, both ∆ and
the spectral gap are finite up to the transition to the nor-
mal state. This naturally explains why this transition is
of first order and why the zero-bias conductance is not
modified by the field. The existence of this first order
transition in superconducting films was first discussed in
the frame of the Ginzburg-Landau theory [20].

In conclusion, we have presented a comprehensive
experimental study of the transport through Al/Co
nanocontacts. We have also introduced a model for the
description of the Andreev reflection in S/F interfaces.
While retaining the simplicity of BTK-type theories, our
model includes the effect of a spin-dependent transmis-
sion and allows the analysis of a great variety of realistic
ingredients. We have shown that such a model consis-
tently describes the whole set of measurements for ar-
bitrary voltage, temperature and magnetic field, which
demonstrates that the current polarization in ferromag-
nets can be determined using Andreev physics. More-
over, our data and analysis provide important input
for first principle calculations of electron transmission
through ferromagnetic interfaces.
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