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We present a theory of collective spin excitations in diluted-magnetic-semiconductor quantum
wells in which local magnetic moments are coupled via a quasi-two-dimensional gas of electrons or
holes. In the case of a ferromagnetic state with partly spin-polarized electrons, we find that the
Goldstone collective mode has anomalous k4 dispersion and that for symmetric quantum wells odd
parity modes do not disperse at all. We discuss the gap in the collective excitation spectrum which
appears when spin-orbit interactions are included.

PACS numbers: 75.50.Pp, 75.30.Ds, 73.43.-f

I. INTRODUCTION

In the emerging field of spin- or magneto-electronics,1,2

the role of the spin degree-of-freedom in the properties of
electronic systems is exploited in the design of new func-
tional devices. The recognition of this additional degree
of freedom suggests possibilities for electrical manipula-
tion beyond the tool-set of conventional electronics which
is based entirely on coupling to the electronic charge. The
effort to generate and manipulate spin-polarized carri-
ers in a controllable environment, preferably in semicon-
ductors, has triggered the discovery of carrier-induced
ferromagnetism3,4 in diluted magnetic semiconductors
(DMSs).5 In these systems a few percent of the cations
in III-V or II-VI semiconductor compounds are randomly
substituted by magnetic ions, usually Mn, which have lo-
cal magnetic moments. The effective coupling between
these local moments is mediated by free carriers in the
host semiconductor compound (holes for p-doped ma-
terials and electrons for n-doped ones) and can lead to
ferromagnetic long-range order. Curie temperatures Tc

in excess of 100 K have been found in bulk (Ga,Mn)As
systems.5,6,7

One approach to understand the magnetic and opti-
cal properties of DMSs is based on a phenomenological
model of the relevant low-energy degrees of freedom.8,9

In this picture, local S = 5/2 spins10 from Mn2+ ions
are exchange coupled to itinerant carriers of a metallic
nature. In typical samples, the density of free carriers
is much smaller than the Mn ion concentration. For n-
doped materials, the exchange is due to ferromagnetic
s-d coupling, while for p-doped ones it is due to antifer-
romagnetic p-d coupling, as illustrated schematically in
Fig. 1. In both cases, the free carriers are believed to
mediate an effective ferromagnetic coupling between the
Mn spins, which is typically stronger than the shorter-
range antiferromagnetic direct exchange coupling present
in undoped systems.

The reliability of this phenomenological approach has
been tested by comparing theoretical predictions with
experimental findings. The tendency towards ferromag-

(ferromagnetic)< 0exJ

n−doped

> 0exJ (antiferromagnetic)

p−doped

FIG. 1: Schematic representation of the exchange coupling
between itinerant-carrier and localized magnetic-impurity
spins in n-doped and p-doped DMSs. When the local mo-
ments are parallel to each other and the band system is spin-
polarized, the exchange energy can be minimized for either
ferromagnetic or antiferromagnetic interactions.

netic order and trends in the observed Tc’s, domain struc-
ture properties, the anomalous Hall effect, and magneto-
optical properties, have been successfully described by
treating this phenomenological model in a mean-field
approximation (MFT),13,14,15,16,17,18,19,20,21,22 which is
analogous to the Weiss mean-field approach for lattice
spin models. In the mean-field theory the local Mn ions
are treated as independent but subject to an effective
magnetic field which originates from their exchange in-
teractions with spin-polarized free carriers. Similarly,
the itinerant-carrier system sees an effective field propor-
tional to the Mn density and polarization. This picture
does not account, however, for correlations between Mn
spin configurations and the itinerant carrier state which
reduce the energy cost of local-moment spin fluctuations
that have slow spatial variations. As a consequence,
MFT systematically overestimates the Curie tempera-
ture, a problem which is severe for systems with re-
duced dimensionality,23 including the quantum well sys-
tems that will be discussed here.

One prediction that follows from the phenomenologi-
cal model is that the system’s collective excitations in-
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volve correlated dynamics of local moment and itiner-
ant spins. In the case of bulk DMS systems, we have
predicted two branches of collective spin waves and dis-
cussed their properties24 as well as their impact on lim-
iting the Curie temperature.25 This analysis of collec-
tive excitations requires a theoretical description beyond
MFT, which neglects correlations, and beyond the famil-
iar Ruderman-Kittel-Kasuya-Yoshida (RKKY) theory of
pair-wise carrier-mediated interactions, which fails for
the systems under consideration because it assumes a
carrier-band spin splitting that is small compared to the
Fermi energy. This assumption is not typically satisfied
in doped DMS systems,26 in part because the itinerant-
carrier concentration is usually much smaller than the
Mn impurity density.27 Moreover, the RKKY picture also
assumes an instantaneous static interaction between the
magnetic Mn ions, neglecting the retarded character of
the itinerant-carrier response that mediates the interac-
tions.

An indication28 that the spin excitations of doped
DMS systems have collective local-moment and car-
rier character, even in paramagnetic systems, has been
provided by recent electron paramagnetic resonance
experiments29 in n-doped DMS quantum wells. The aim
of the present paper is to extend the previous theoreti-
cal work to describe the full dispersion of all collective
spin excitations in quantum wells, their dependence on
the magnetic-ion doping concentration and profile, and
on the free-carrier density. This is a first step toward the
theoretical study of quantum and thermal fluctuations in
the magnetism of nanostructured DMSs which are start-
ing to receive increased attention, partially because of
the possibility of quantum confinement control of mag-
netic properties as in the recent experimental study of
a DMS quantum well in Ref. 30. Quantum confinement
is expected to drastically affect the magnetic properties
of nanostructures.31,32,33,34,35,36,37,38,39,40 In Ref. 28 only
the long-wavelength limit of the lowest spin-wave branch,
the mode that electron paramagnetic resonance probes,
was considered.

The article is organized as follows. In Sec. II we
develop the theoretical tools necessary to address col-
lective excitations in doped DMS quantum wells in a
general way. After introducing the many-body quan-
tum Hamiltonian (Sec. II A) we derive an effective ac-
tion (Sec. II B) that leads to an independent spin-wave
theory for low temperatures in multi-subband quantum
wells (Sec. II C). Sec. III is dedicated to the evaluation
and discussion of collective spin excitations, concentrat-
ing on the case in which a single electronic subband is
occupied and subband mixing is negligible. We find that
odd-parity collective modes of doped quantum-well DMS
systems are dispersionless in this limit, and that the low-
est energy Goldstone collective mode of ferromagnetic
systems has anomalous k4 dispersion when the quantum-
well carrier system is not half-metallic (i.e. when the car-
riers are not fully spin-polarized). Results for dilute and
moderate Mn doping are shown in Secs. III C and III D,

respectively. The role of spin-orbit coupling, which gives
rise to magnetic anisotropy and creates a gap in the ex-
citation spectrum of a ferromagnetic system, is discussed
in Sec. III E. A summary and discussion of our results is
presented in Sec. IV.

II. DERIVATION OF THE THEORY

A. Hamiltonian

We consider a symmetric quantum well of uniform
width d that confines the motion of itinerant carriers
in the z-direction (see Fig. 2; we later comment the
case of asymmetric quantum wells). The carriers move
freely in the x-y plane, occupying one or several trans-
verse modes or subbands. The quantum-well geometry
makes it convenient to split the three-dimensional (3D)
spatial coordinate into (r, z), where r corresponds to the
two-dimensional (2D) x-y-projection. The field opera-

tor for the itinerant carriers Ψ̂(r, z) can be written as

Ψ̂(r, z) =
∑M

m=1 ψ̂m(r)χm(z), where m = 1, . . . ,M la-

bels the subband number, χm(z) =
√

2/d sin(mπz/d) is
the real wave function for subband m, which satisfy the

orthonormality condition
∫ d

0
dz χm(z)χm′(z) = δm,m′ ,

and ψ̂m(r) is a spinor with components ψ̂σ,m(r). As in-
dicated above we will adopt particle-in-a-box wavefunc-
tions for explicit calculations, although this approxima-
tion plays no critical role in our theory and can easily
be relaxed. The transverse wave function χm(z) degree-
of-freedom will later be taken to be frozen in its ground
state; this is normally a good approximation except in
wide quantum wells. The in-plane degrees of freedom

are described by fluctuating spinor fields ψ̂σ,m(r). The
magnetic impurities are randomly distributed within the
quantum well.

The fact that the Mn density in typical quantum well
systems is very much larger than the carrier density sug-
gests the replacement of the random distribution of local
Mn magnetic moments by a continuous density NMn(z),
thereby neglecting disorder in the Mn ion locations.41

This leaves us with a situation in which a growth di-
rection degree of freedom exists for the local moment
spins, but not for the quantum well electrons. It is the
quasi-3D character of local moments that are coupled
together by quasi-2D electrons that is responsible for un-
usual aspects of the collective excitation spectrum that
we will discuss later. The Debye-like continuum approx-
imation we use for the Mn ion density distribution will,
of course, fail for modes that involve either in-plane or
growth-direction spatial variation on a scale shorter than
the distance between Mn ions, as we discuss later. The
dependence of NMn(z) on the growth-direction coordi-
nate z allows for the possibility of a non-uniform doping
profile in the quantum well. The two-component spinors
we use for the quantum-well electron fields restrict our
attention to circumstances in which the electric subbands
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occur in pairs with identical orbital wavefunctions, i.e. to
hole quantum-well subbands with small heavy-light mix-
ing or to electron subbands. Generalizing to arbitrarily
spin-orbit coupled systems considerably complicates the
notation we use below and, in the case of an external
field, complicates the theory considerably because of the
interplay between orbital and Zeeman coupling. We will
for the most part restrict our attention to n-doped quan-
tum wells.

∆d

z

d

NMn

χ
2(z)

(z)χ
1

FIG. 2: Sketch of a DMS quantum well. Itinerant carriers
move freely in the x-y plane, occupying subbands χn(z) due to
quantum confinement along the z-axis (intersubband energy-
gap ∆d). The magnetic-ion doping profile is represented by a
continuous Mn-density distribution NMn(z).

The total Hamiltonian H consist of four terms: H =
Hkin + HZ + Hex + HD. In the presence of a magnetic
field B = ∇× A, the kinetic term for carriers of charge
e reads

Hkin =

∫

d2r

∫ d

0

dz × (1)

Ψ̂†(r, z)

[−~
2

2m∗
∇̃2 + V (z) − µ

]

Ψ̂(r, z)

=

∫

d2r

M
∑

m=1

∑

σ

ψ̂†
σ,m(r)

[−~
2

2m∗
∇̃2

r − µ′
m

]

ψ̂σ,m(r),

where ∇̃(r) = ∇(r) − (ie/~c)A, V (z) is the quantum-well
confining potential, and µ′

m = µ − ǫm is the effective
subband-dependent chemical potential of the quasi-2D
carrier gas, with ǫm the subband quantization energy.
Here, we assumed a parabolic dispersion for the free carri-
ers, with an effective massm∗. This is well justified for n-
doped systems, which have s-band conduction electrons.
For hole doped systems, which have p-band valence car-
riers, this approximation is often useful for qualitative
discussions. The Zeeman term is

HZ = µBB ·
∫

d2r

∫ d

0

dz [geŝ(r, z) + gMnS(r, z)] , (2)

where µB > 0 is the Bohr magneton,

ŝ(r, z) =
1

2
Ψ̂†(r, z) τ Ψ̂(r, z) (3)

=
∑

m,m′

∑

σ,σ′

χm(z)χm′(z) ψ̂†
σ,m(r)

τ σσ′

2
ψ̂σ′,m′(r)

is the quantum-well carrier spin density (with Pauli ma-
trix vector τ ), and S(r, z) is the spin density of the Mn
subsystem. The coupling between the carrier spins and
the local Mn spins is described by

Hex = Jex

∫

d2r

∫ d

0

dz S(r, z) · ŝ(r, z), (4)

where Jex < 0 corresponds to ferromagnetic and Jex > 0
to antiferromagnetic coupling (i.e. to n- and p-doped
host semiconductors, respectively). In symmetric quan-
tum wells spin-orbit interactions are described by the
Dresselhaus Hamiltonian43

HD = γ

∫

d2r

∫ d

0

dz Ψ̂†(r, z) k2
z (−τxkx + τyky) Ψ̂(r, z)

= γ

∫

d2r
M
∑

m,m′=1

∑

σ,σ′

〈k2
z〉m,m′ ×

ψ̂†
σ,m(r) (−τxkx + τyky)σσ′ ψ̂σ′,m′(r), (5)

where 〈k2
z〉m,m′ =

∫ d

0
dz χm(z) k2

z χm′(z) = 〈k2
m〉δm,m′

with 〈k2
m〉 = (mπ/d)2 when particle-in-a-box orbitals are

used. The above spin-orbit Hamiltonian HD leads to a z-
oriented magnetic easy-axis as we have shown in earlier
work28 and discuss later. For comments on spin-orbit
coupling in the case of asymmetric quantum wells see
Sec. III E.

B. Effective action

In analogy to our earlier work24 on bulk DMS ferro-
magnets, we want to describe elementary spin excita-
tions in the DMS quantum well in a language where the
itinerant-carrier degrees of freedom are integrated out.
This leads to a retarded free-carrier mediated interac-
tion between the Mn-ion S = 5/2 spins. We are in-
terested in small spin fluctuations about the mean-field
magnetic state. The ground state of experimental doped
quantum well DMS systems have sometimes been found
to be ferromagnetic,30,31,32,33,34,35,36,37,38,39,40 and some-
times exhibit complex spin-glass behavior. It is quite pos-
sible that the complex spin-glass states that sometimes
occur are due to disorder effects that are not essential
and can in principle be avoided, due for example to in-
homogeneities in the Mn ion distribution, substitutional
Mn ions, or other defects. In any event, the theory we
discuss assumes a mean-field state in which all Mn ions
are aligned. When this simple state is not the ground
state of the system, or when we want to describe the col-
lective excitations of a system that is above its ferromag-
netic transition temperature, our theory will apply only
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in an external magnetic field that is strong enough to
achieve substantial Mn ion spin polarization. We choose
this field to be oriented in the ẑ direction: B = (0, 0, B).
Because gMn > 0, the Mn spins then tend to align along
the opposite direction. In the case of ferromagnets with
anisotropy, we choose the ẑ direction to be along an easy-
axis.

It is convenient to represent the S = 5/2 spins
by Holstein-Primakoff (HP)44 bosons. For small fluc-
tuations around the mean-field state the spin density
S(r, z) is approximated by S+ ≈ ω̄

√

2NMn(z)S, S− ≈
ω
√

2NMn(z)S, and Sz = ω̄ω−NMn(z)S, where the com-
plex variables ω̄, ω are boson creation and annihilation

operators that become bosonic coherent state labels in
the path-integral formalism we employ. The vacuum with
no HP bosons corresponds to full (negative) polarization
of the Mn system, while the creation of a HP boson de-
scribes an increase in the total Mn spin by one unit. The
partition function Z of the compound system is calcu-
lated using a coherent-state path integral representation

Z =

∫

D(ψ̄ψ)D(ω̄ω) e−
∫

β

0
dτ L(ψ̄ψ,ω̄ω) (6)

with D(ψ̄ψ) ≡ D(ψ̄1ψ1) . . .D(ψ̄MψM ) and the La-
grangian

L(ψ̄ψ, ω̄ω) =

∫

d2r

[

M
∑

m=1

ψ̄m(r, τ )∂τψm(r, τ ) +

∫ d

0

dz ω̄(r, z, τ)∂τω(r, z, τ)

]

+H(ψ̄ψ, ω̄ω), (7)

where the Grassmann numbers ψ̄ = (ψ̄1, . . . , ψ̄M ) and
ψ = (ψ1, . . . , ψM ) describe fermion (itinerant carrier)
fluctuations within each of the M subbands.

Since the Hamiltonian is bilinear in the fermionic fields,

we can integrate them out and arrive at a represen-
tation for the bosonic partition function of the form
Z =

∫

D(ω̄ω) exp(−Seff [ω̄ω]), with an effective action

Seff [ω̄ω] =

∫ β

0

dτ

∫

d2r

∫ d

0

dz [ω̄(r, z, τ)∂τω(r, z, τ) + gMnµBB · S(ω̄ω)] − ln[detG−1(ω̄ω)]. (8)

The total kernel G−1(ω̄ω) can be split into a mean-field
part, which does not depend on the bosonic (Mn spin ex-
citation) fields ω̄ and ω, and a fluctuating part by writing
G−1(ω̄ω) = G−1

MF + δG−1(ω̄ω), with

(

G−1
MF

)

m,m′
=

[

∂τ −
~

2

2m∗
∇̃2

r − µ′
m

]

δm,m′ (9)

+
1

2
(geµBBδm,m′ − ∆m,m′) τz

+ γ〈k2
m〉 (−τxkx + τyky) δm,m′ ,

δG−1
m,m′(ω̄ω) =

Jex

2

∫ d

0

dz χm(z)χm′(z) × (10)

[

√

2NMn(z)S (ω̄ τ− + ω τ+) + ω̄ωτz

]

.

The exchange coupling contributes to the conduction
band spin-splitting in GMF through the mean-field in-
teraction ∆m,m′ = Jex(N̄Mn)m,m′S, where (N̄Mn)m,m′ =
∫ d

0
dz χm(z)χm′(z)NMn(z).

45 We recognize here that
coupling to a Mn-spin system with an inhomogeneous
doping profile NMn(z) leads to mixing of the quantum-
well subbands. These intersubband interactions are
present at the mean-field level, as seen in Eq. (9), but

also appear in the term which expresses the coupling be-
tween carriers and local moment fluctuations, Eq. (10).

C. Quantum-well subband decoupling and

independent spin-wave theory

The above picture simplifies considerably when
quantum-well subband mixing is negligible,46 i.e. when
the energy gap ∆d (see Fig. 2) is much larger than
the spin-splitting energies ∆m,m′ . This regime can be
reached either by narrowing the quantum well (∆d →
∞), or by diluting the Mn doping (∆m,m′ → 0), indepen-
dently of the number of occupied subbands M , which is
controlled by the carrier density. In this limit we arrive
at a Green’s function that is diagonal in subband space,
with G−1

m = (G−1
MF)m + δG−1

m ,

(G−1
MF)m =

[

∂τ −
~

2

2m∗
∇̃2

r − µ′
m

]

(11)

+
1

2
(geµBB − ∆m)τz

+ γ〈k2
m〉 (−τxkx + τyky) ,
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δG−1
m (ω̄ω) =

Jex

2

∫ d

0

dz χ2
m(z) × (12)

[

√

2NMn(z)S (ω̄ τ− + ω τ+) + ω̄ωτz

]

.

Here ∆m = ∆m,m is the subband-dependent exchange
contribution to the itinerant carrier mean-field splitting.
This approximation leads to a convenient subband sepa-

ration ln[detG−1] =
∑M

m=1 ln[detG−1
m ] in Eq. (8).

Expanding ln[detG−1
m ] up to second order in δG−1

m ,
ln[detG−1

m ] = tr[ln(G−1
MF)m] + tr[(GMF)mδG

−1
m ] −

(1/2)tr[(GMF)mδG
−1
m (GMF)mδG

−1
m ] + . . ., and collecting

all contributions up to quadratic order in ω̄ and ω we ar-
rive at an independent spin-wave theory where the spin
excitations are treated as non-interacting HP bosons.
This is a good approximation for temperatures well be-

low the maximum of the ferromagnetic transition tem-
perature and/or the temperature defined by Zeeman cou-
pling to the external field, in which case spin excitation
amplitudes are small. Fourier transforming the resulting
spin-wave action (keeping z in real space and defining
bosonic Matsubara frequencies νn) we obtain

Seff [ω̄ω] =
1

β

∑

n

∫

d2k

(2π)2

∫

d2k′

(2π)2

∫ d

0

dz

∫ d

0

dz′ ×

ω̄(k, z, νn)D
−1(k,k′, z, z′, νn)ω(k′, z′, νn).(13)

The kernel of the quadratic action (13) is the inverse of
the spin-wave propagator D(k,k′, z, z′, νn) and is given
by

D−1(k,k′, z, z′, νn) =

[

−iνn + gMnµBB − Jex

2

M
∑

m=1

(n↓
m − n↑

m)χ2
m(z)

]

δ(z − z′)δ(k − k′)

+
J2

ex

2
S
√

NMn(z)NMn(z′)

M
∑

m=1

χ2
m(z)χ2

m(z′)
∑

α,α′

f(ǫ↓m,α) − f(ǫ↑m,α′)

iνn + ǫ↓m,α − ǫ↑m,α′

Φα,α
′∗

m (k) Φα,α
′

m (k′). (14)

We arrive at Eq. (14) by introducing a wave-function rep-
resentation of the mean-field Green’s function of Eq. (11)

(GMF)σm(r′, r, νn) =
∑

α

φσm,α(r′)φσ∗m,α(r)

iνn − ǫσm,α
, (15)

where φσm,α(r) are the 2D mean-field itinerant carrier
eigenstates for spin σ and subbandm, with energy ǫσm,α =

ǫα + (σ/2)(geµBB − ∆m)
√

1 + 4ǫsom,α/(geµBB − ∆m) −
µ′
m.47 The index α accounts for quantum-numbers asso-

ciated with orbital motion, with kinetic and spin-orbit
energies ǫα and ǫsom,α = |〈↓,m, α|γk2

z(−τxkx + τyky)| ↑
,m, α〉|2/(geµBB − ∆m), respectively. To first order in
spin-orbit coupling (ǫsom,α ≪ (geµBB−∆m)), the eigenen-
ergy is ǫσm,α = ǫα + (σ/2)(geµBB − ∆m) + σǫsom,α − µ′

m.
In Eq. (14) f(ǫ) is the Fermi distribution, nσm is the 2D
mean-field itinerant carrier spin density for the m,σ sub-
band obtained by summing over occupied states, and we
have introduced Fourier-transform factors defined by

Φα,α
′

m (k) =

∫

d2r exp(ik · r) φ↑m,α(r)φ↓∗m,α′(r). (16)

The first line on the r.h.s. of Eq. (14) is local in
space. It represents the mean-field expression for the
exchange field that the Mn spins experience. The sec-
ond line is nonlocal in space and describes correlation
effects that occur because of the (space- and m-subband-
dependent) response of the quantum-well carriers to Mn
spin orientations. We note that D−1 is not a function of

z − z′ only, because of the absence of translational sym-
metry in the z-direction. Additionally, a 2D Debye cutoff
k2
D = 4πNMn/(N/d) ensures that our continuum approx-

imation has the correct number of magnetic-impurity de-

grees of freedom. [Here, NMn =
∫ d

0
dzNMn(z)/d

48 and
N is the number of growth-direction modes included in
the theory as we explain below. We associate N with the
mean number of Mn ions encountered on crossing the

quantum well; e.g. for isotropic doping N ∼ N
1/3
Mn d.]

We comment now on the factors Φα,α
′

m (k) which are
trivial for the plane-wave functions of field-free systems.
They are included to allow us to simply account for the
consequences of orbital coupling of itinerant carriers to
magnetic fields. The index α includes both the Landau
levels index and the gauge-dependent index for states
within a Landau level. At zero field the mean-field eigen-
states φσm,α(r) are plane waves with momentum α ≡ q,

kinetic energy ǫq = ~
2q2/(2m∗) and spin-orbit energy

ǫsom,q = γ2〈k2
m〉2q2/(geµBB−∆m). In either case Eq. (14)

is diagonal in the in-plane momentum k and we denote
its diagonal elements by D−1(k, z, z′, iνn). The case of
a uniform magnetic field was considered in Ref. 28 and
will not be discussed further in this paper.

III. ELEMENTARY SPIN EXCITATIONS

Even the bulk-like epitaxially grown thin film samples
studied in typical experiments do not contain a very large
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number of occupied 2D carrier subbands. Our formal-
ism could in principle be used to calculate the collective
modes of thin films, taking account of the variation in Mn
density across the film, although the approach becomes
numerically cumbersome when more than a few sub-
bands are occupied. It is likely, though, that greater in-
sight into vertical inhomogeneity effects in thin-films can
be obtained with more approximate approaches.49 We
limit the discussion here to true quantum-well samples in
which a single subband is occupied (M = 1) and subband
mixing can be neglected. For definiteness we concentrate
on the case of constant Mn density NMn(z) = NMn. Sim-
ilarly we assume that the state we are studying is an or-
dered ferromagnetic phase with the ẑ-direction magnetic
easy-axis that is favored by (weak) spin-orbit coupling.
The situation in which the magnetization direction has
been reoriented by an external magnetic field is readily
included in the formalism as explained above. General-
izations to the cases of multiple subbands, and inhomo-
geneous Mn density are straightforward.

Collective spin excitation dispersion Ω(k) branches are
located by finding the frequencies at which the determi-
nant, det[D−1(k, z, z′, iνn = Ω)], of the quadratic ac-
tion kernel in Eq. (13) vanishes. The continuum of
spin-flip particle-hole (Stoner) excitations is located by
identifying the k-dependent frequency range over which
Im[D−1(k, z, z′, iνn)] is non-zero after the analytic con-
tinuation iνn → Ω + i0+.

A. Stoner continuum

We start by evaluating the continuum of Stoner exci-
tations introduced above. They correspond to flipping
a single spin in the itinerant carrier subsystem and typ-
ically have relatively large energies of the order of the
itinerant carrier mean-field spin splitting ∆ = JexNMnS.
The continuum is obtained by determining the condi-
tions for Im[D−1(k, z, z′,Ω + i0+)] 6= 0. With this aim
it is convenient to define the dimensionless carrier spin-
polarization p = (n↑−n↓)/(n↑+n↓) and the Fermi energy
of the majority-spin carrier band ǫs = µ′ + |∆|/2, where
µ′ is the effective chemical potential of the 2D carrier gas.
For half-metallic carriers (|p| = 1, ǫs ≤ |∆|, see Appendix
A) these excitations carry spin Sz = ±1, depending on
the sign of ∆ (i.e. on whether the coupling between
carriers and Mn ions is ferromagnetic or antiferromag-
netic). On the other hand, for partly polarized carriers
(|p| < 1, ǫs > |∆|, see Appendix A) excitations carrying
both Sz = 1 and Sz = −1 contribute, independent of the
sign of ∆. In the absence of spin-orbit coupling (γ = 0),
one finds a continuum of excitations with dispersion lying
between the curves −∆−sign[∆]ǫk±2

√
ǫsǫk for ǫs ≤ |∆|,

and also between −∆ + sign[∆]ǫk ± 2
√

(ǫs − |∆|)ǫk for
ǫs > |∆|. For small spin-orbit coupling, the energy width
of the Stoner continuum does not vanish at k = 0, instead

approaching the width

∆Ω = 4
γ2〈k2

z〉2m∗ǫs
~2|∆| . (17)

In the case of multi-subband quantum wells (M > 1)
multiple continua arise, each of them associated with the
corresponding subband by means of ∆m, 〈k2

m〉 and µ′
m.

B. Spin-wave modes

The number of collective modes that appear in our the-
ory depends on the doping concentration and the width of
the quantum well. It is natural to choose the mean num-
ber N of Mn ions along the z-direction as a dimensional
cutoff for the representation of the inverse propagator
D−1(k, z, z′,Ω). This motivates the choice of an appro-
priate basis ofN orthonormal excitation profiles {ωn(z)},
with 0 ≤ n ≤ N − 1 and

∫ d

0
dz ωn(z)ωn′(z) = δnn′ , for

expanding Eq. (14), i.e.,

D−1
nn′(k,Ω) =

d
∫

0

dz

d
∫

0

dz′ωn(z)D
−1(k, z, z′,Ω)ωn′(z′).(18)

We later solve det[D−1
nn′(k,Ω)]N×N = 0 for Ω and

obtain a set of N + 1 solutions {Ω(l)(k)} with the

mode profiles ω(l)(z) =
∑

n c
(l)
n ωn(z). The coeffi-

cients c(l) = (c
(l)
0 , c

(l)
1 , . . . , c

(l)
N−1) are obtained from

[D−1
nn′(k,Ω(l))]N×Nc(l) = 0. We combine this procedure

with a Debye cut-off of the 2D wavevectors to get the
correct number of magnetic degrees of freedom. This ap-
proximate procedure, a silent partner of the continuum
Mn density approximation that we use to avoid dealing
with disorder, obviously breaks down to some degree for
the shortest wavelength modes which must be sensitive
to the discreteness of the magnetic degrees of freedom.
The procedure should be accurate for longer wavelength
modes, however, and we believe that it gives a good qual-
itative description of the overall spectrum. We employ it
without further comment in the rest of the paper.

We assume that the magnetization direction of the Mn
spins located at the borders of the quantum well is not
fixed by an anisotropy field or magnetic coupling to an
adjacent layer. Then we can use free-end boundary con-
ditions for the magnetic excitations, dωn(z)/dz = 0 at
z = 0, d. This determines the choice of the basis func-
tions

ωn(z) = an cos
(nπz

d

)

, an =

{ √

1/d for n = 0
√

2/d for n ≥ 1
. (19)

We now calculate the matrix elements D−1
nn′(k,Ω) us-

ing Eqs. (14)-(19) for M = 1 and constant NMn in the
absence of an external magnetic field. The quantum-
well subband is defined by the wave function χ(z) =
√

2/d sin(πz/d). We find

D−1
nn′(k,Ω) = −Ωδnn′ + xs|∆| [M1 + I(k,Ω)M2]nn′ , (20)
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with the N ×N -matrices

M1 =



















1 0 −1/
√

2 0 0 . . .
0 1/2 0 −1/2 0 . . .

−1/
√

2 0 1 0 −1/2 . . .
0 −1/2 0 1 0 . . .
0 0 −1/2 0 1 . . .
...

...
...

...
...

. . .



















N×N

(21)

M2 =















1 0 −1/
√

2 0 . . .
0 0 0 0 . . .

−1/
√

2 0 1/2 0 . . .
0 0 0 0 . . .
...

...
...

...
. . .















N×N

. (22)

In Eq. (20) we have defined the ratio of the free-
carrier spin-density to the Mn spin density xs = |n↑ −
n↓|/(2NMnSd), which typically satisfies xs ≪ 1, and the
dimensionless integral

I(k,Ω) =
|∆|

|n↑ − n↓|

∫

d2q

(2π)2
f(ǫ↓q) − f(ǫ↑q+k)

Ω + ǫ↓q − ǫ↑q+k

. (23)

The last can be evaluated analytically for T = 0 in the
absence of spin-orbit coupling, as described briefly in Ap-
pendices A and B.

The term containing M1 corresponds to the term pro-
portional to Jex in Eq. (14) and describes the mean-
field exchange interaction between Mn spins with free-
carrier spins. The appearance of off-diagonal matrix el-
ements, indicating a mixing of basis functions for the
Mn spin excitations, is of geometric origin, determined

by the projection
∫ d

0 dz χ2(z)ωn(z)ωn′(z). The nonlo-
cal correlations are accounted for by the term contain-
ing M2, which corresponds to the term proportional to
J2

ex in Eq. (14). Mixing appears here also, determined

this time by [
∫ d

0 dz χ2(z)ωn(z)][
∫ d

0 dz χ2(z)ωn′(z)].
The structure of the matrices in Eqs. (21) and
(22) shows that basis functions with different par-
ity {ωn(z)} do not mix.50 This allows us to write
the expanded kernel (20) as the (external) product
of two matrices corresponding to even (+) and odd
(−) modes: [D−1

nn′(k,Ω)]N×N = [D−1
nn′(k,Ω)]+N+×N+ ⊗

[D−1
nn′(k,Ω)]−N−×N−

, with N+ + N− = N . Spin

modes obtained as solutions of det[D−1
nn′(k,Ω)]N×N =

0 can now be classified according to their parity
by solving separately det[D−1

nn′(k,Ω)]+N+×N+ = 0 and

det[D−1
nn′(k,Ω)]−N−×N−

= 0, respectively. This leads to

N+ + 1 even modes and N− odd ones. Moreover, it is
possible to see from Eq. (20) that [D−1

nn′(k,Ω)]−N−×N−

is independent of I(k,Ω). This means that correlations
between local moment and band configurations do not
influence spin modes of odd parity. As a consequence
these modes are dispersionless,50 as we see explicitly be-
low. More interesting are the even modes for which cor-
relation effects due to the coupling to itinerant carriers
show up.

In the following we apply the above formulation to the
cases of dilute and moderate Mn doping in the limit
of vanishing spin-orbit coupling (γ → 0). We then
(Sec. III E) comment on how these results are altered
by a finite γ.

C. Dilute Mn doping

For illustration we start discussing the limiting case of
dilute Mn doping or, equivalently, narrow quantum wells.
This corresponds to very few Mn ions across the quan-
tum well leading in our approach to a low-dimensional
kernel [D−1

nn′(k,Ω)]N×N (Eq. (20)) with N of order one.
In this situation we can easily approach the problem an-
alytically. We choose for simplicity N+ = N− = 1 (i.e.
N = 2). In this case the dispersion relations of even
and odd spin modes (corresponding to ω0(z) and ω1(z),
respectively; see Eq. (19)) are obtained by solving

det[D−1
nn′(k,Ω)]+ = [1 + I(k,Ω)]xs|∆| − Ω = 0, (24)

det[D−1
nn′(k,Ω)]− = xs|∆|/2 − Ω = 0 . (25)

Eq. (25) leads to a single odd mode with flat dispersion
Ω− = xs|∆|/2. For the calculation of the even modes
we limit ourselves for now to the case of ferromagnetic
coupling (∆ < 0) at T = 0; the difference between ferro-
magnetic and antiferromagnetic cases is commented on
later in Sec. IV. We solve Eq. (24) for long and short
wavelengths (i.e. long and short range correlations), us-
ing the expansions (B2) and (B3) up to first order in ǫk
and 1/ǫk, respectively. This leads to two solutions: one
soft mode Ω+

soft < xs|∆|, and one hard mode Ω+
stiff ∼ |∆|,

where typically Ω+
soft ≪ Ω+

stiff . For half-metallic carriers
(|p| = 1, ǫs ≤ |∆|, see Appendix A) we obtain for the
small-and large-momentum limit

Ω+
soft(k) =

xs

1 + xs

(

1 − ǫs
|∆|

)

ǫk +O(ǫ2k) (26)

= xs|∆|
(

1 − |∆|
ǫk

)

+O(1/ǫ2k), (27)

Ω+
stiff(k) = (1 + xs)|∆| + 1

1 + xs

(

1 +
ǫs

xs|∆|

)

ǫk +O(ǫ2k),

(28)

respectively. Correspondingly, for partly polarized carri-
ers (|p| < 1, ǫs > |∆|, using the results summarized in
Appendix A) we find

Ω+
soft(k) = 0 +O(ǫ2k) (29)

= xs|∆|
(

1 +

(

1 − 2ǫs
|∆|

) |∆|
ǫk

)

+O(1/ǫ2k),(30)

Ω+
stiff(k) = (1 + xs)|∆| + 1

xs

(

2ǫs
|∆| − 1

)

ǫk +O(ǫ2k),(31)

for small and large momenta, respectively.
The branch Ω+

soft corresponds to a gapless Goldstone-
mode reflecting the spontaneous breaking of rotational
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symmetry for the Mn spins subsystem, as expected
generically in ferromagnets and found in bulk magnetic
semiconductors.24 At long wavelengths (ǫk → 0) the dis-
persion in bulk isotropic ferromagnets is proportional to
the spin stiffness ρ divided by the magnetization M (i.e.
Ω = (ρ/M)k2). Similarly, in the adiabatic limit ǫs ≪
|∆|, our long wavelength result for quantum wells (26)
shows a spin stiffness due only to the increase in kinetic
energy of the fully spin-polarized band when the spin
orientation is spatial dependent, ρ = ~

2n↓/(4m∗). The
magnetization, with parallel contributions from Mn ions
and itinerant carriers coupled ferromagnetically, reads
M = SNMnd + n↓/2 = SNMnd(1 + xs). However, un-
like bulk systems the spin stiffness vanishes as ǫs → |∆|,
Eq. (26), and stays equal to zero for ǫs > |∆|, Eq. (29).
This unusual feature should lead to some non-standard
phenomenology in these ferromagnets, for example in
the physics that controls domain wall widths and finite-
temperature magnetization suppression. For short wave-
lengths (ǫk → ∞), Eqs. (27) and (30), the excitation en-
ergy Ω+

soft tends to a mean-field value xs|∆|, correspond-
ing to the magnetic-ion spin splitting.

The branch of stiff excitations Ω+
stiff , Eqs. (28) and

(31), is primarily band-like in character and is centered
around the much larger energy scale of the itinerant car-
rier mean-field spin splitting |∆|.

D. Moderate Mn doping

We now switch to the case of higher dimensions
(N+, N− > 1), which corresponds to several Mn ions
across the quantum well. As in the previous Sec. III C
dedicated to dilute Mn doping, we consider Mn spins cou-
pled ferromagnetically to the itinerant carriers (∆ < 0)
at T = 0. Comments regarding the antiferromagnetic
coupling case will be introduced later in Sec. IV. As
an example we choose N+ = N− = 5 with a relative
spin density xs = 0.05. The dispersions corresponding to
even and odd modes are obtained numerically by solving
det[D−1

nn′(k,Ω)]+5×5 = 0 and det[D−1
nn′(k,Ω)]−5×5 = 0, re-

spectively. This leads to a set of six even modes, five rela-
tively soft (Ω+

(l)) and one hard (Ω+
stiff), and five odd modes

(Ω−
(l)). The index l (1 ≤ l ≤ 5) orders the modes from

the bottom (l = 1) to the top (l = 5) of the spectrum
in each case. Our results for Ω+

(l) (solid lines) and Ω−
(l)

(dashed lines) are summarized in Fig. 3(a)-(c) for three
characteristic ratios ǫs/|∆| = 0.9, 0.975, and 1.5, respec-
tively. Panels (a) and (b) correspond to half-metallic car-
riers while panel (c) depicts results for the case of partly
polarized carriers. Related results for Ω+

stiff are shown in
Fig. 4. In all plots the shaded zones represents the Stoner
continuum. For each case, the normalized excitation en-
ergies Ω/|∆| are plotted as a function of the normalized

k-vector
√

ǫk/|∆| = A(k/kD), where A =
√

ǫkD
/|∆|.

For typical DMS quantum well systems we estimate that
A > 10. Hence, the results shown in Figs. 3 and 4 cor-

respond to k/kD ≪ 1, the regime well below the Debye
cut-off in which the continuum approximation is most
reliable.

 0

 0.05

 0.1
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 0.1
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 0.1
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 Ω
/|∆

|

 ε  /|∆| k

 

 (a)

 (b)

 (c)

FIG. 3: Dispersion of low-energy spin excitations in a single-
subband DMS quantum well with ferromagnetic coupling
(∆ < 0) and dimensional cut-off N+ = N− = 5 (see text).
Panels (a) and (b) correspond to half-metallic (i.e. fully po-
larized) carriers (ǫs/|∆| = 0.9 and 0.975, respectively). Panel
(c) depicts results for partly polarized carriers (ǫs/|∆| = 1.5).
The even modes Ω+

(l)
are denoted by solid lines and the disper-

sionless odd modes Ω−

(l) by dashed lines. The spatial profiles

of the even and odd modes are illustrated in Fig. 5(a)-(e) and
Fig. 7, respectively. The integer labels order the modes by
increasing frequency. The shaded zones indicate the Stoner
continuum.

We start by discussing the properties of the relatively
soft even modes Ω+

(l) depicted in Fig. 3 by solid lines.

Panel (a) corresponding to ǫs/|∆| = 0.9 is representa-
tive of results for half-metallic cases with ǫs/|∆| ≪ 1.
There we find a set of modes at k = 0 that are dis-
tributed in the small energy window 0 ≤ Ω < 2xs|∆| and
have k2 dispersion at finite wavevectors, corresponding
to a finite spin-stiffness. The upper limit in this spec-
trum is twice the mean-field value predicted in the case
of bulk systems.24 This is due to the fact that the car-
rier spin density is modulated by χ(z) =

√

2/d sin(πz/d)
across the quantum well (lower density close to the border
z = 0, d and higher density close to the center z = d/2).
Spin modes with large relative amplitude near the center
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/|∆

|
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FIG. 4: Dispersion of high-energy spin excitations in a single-
subband DMS quantum well with ferromagnetic coupling
(∆ < 0) and dimensional cut-off N+ = 5 (see text) for half-
metallic (i.e. fully polarized) carriers with ǫs/|∆| = 0.9. Sim-
ilar features appear for partly polarized carriers (ǫs/|∆| > 1).
The stiff branch Ω+

stiff (solid lines) corresponds to the mode
ω+

stiff (Fig. 5(f)). The Stoner continuum is represented by the
shaded zone. Ferromagnetic interactions with the local mo-
ments peel a collective mode off the particle-hole continuum.

of the quantum well see a carrier spin density which is
effectively higher than in the uniform spin-density bulk
case.

The first branch Ω+
(1) corresponds to a gapless

Goldstone-mode ω+
(1)(z) = ω0(z), Fig. 5(a), similar to the

one discussed above for the dilute Mn doping case, in Sec.
III C. For the l > 1 modes, the spatial structure ω+

(l)(z)

is not constant within the quantum well (see Figs. 5(b)-
(e)) and the energies Ω+

(l)(k) therefore approach a finite

value as |k| → 0. The dependence of the excitation en-
ergies Ω+

(l)(k = 0) on l is not obvious, since the gap is

not simply related to the effective transverse momentum

k
+(l)
z =

∫ d

0
dz ω+

(l)∂ω
+
(l)/∂z associated to each mode. In-

stead, the local excitation density ω+2
(l) (z) and its cor-

relation with the carrier density, proportional to χ2(z),
is more relevant. (See Fig. 5 for a comparison). We
illustrate the l-dependence of Ω+

(l)(k = 0) in Fig. 6 for

N+ = 20 (full circles). We observe a spin-mode accu-
mulation close to the boundaries of the spectrum that
is not evident for small N+. Furthermore, the inset in
Fig. 6 shows that the dispersion does not appear to be
quadratic for small l. Since Ω+

(1)(k = 0) = 0, a quadratic

fit has a single free parameter. The dashed (dotted) line
corresponds to a quadratic fit between the l = 1-mode
and the l = 2- (l = 5) one. The curves differ by a (rela-
tively large) factor of order 3.5.

As ǫs/|∆| increases (Fig. 3(b)) and the Stoner contin-
uum meets the different Ω+

(l) branches, the correspond-

ing spin stiffness drops to zero. For ǫs/|∆| ≥ 1 (partly
spin-polarized carriers, Fig. 3(c)) all branches are nearly
dispersionless until they enter the particle-hole contin-
uum; the softness of these excitations is certain to have
an impact on the magnetic properties of these ferromag-
nets. The spectral density shows that the relatively soft

 0
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 0  0.5  1
−1

 3

 0  0.5  1
−1.5

 2.5

 0  0.5  1

−2

 2

 0  0.5  1
−1.5

 3

 0  0.5  1
 0

 2

 0  0.5  1

(c)(a) (b)

(d) (e) (f)

 ω

 ω  ω  ω

 ω  ω

 +
 (1)

 +
 (2)

 +
 (4)

 +
 (5)

 (3)
 +

    stiff
 +

FIG. 5: Spatial profiles across a single-subband DMS quan-
tum well for even parity collective modes (solid lines). The
well has width d (0 ≤ z/d ≤ 1), ferromagnetic coupling
(∆ < 0), and the dimensional cut-off N+ = 5 (see text). The
carrier density χ2(z) (dashed line) is shown for comparison.
Note that the Goldstone mode, panel (a), is constant in space
corresponding to uniform spin rotation. The other modes
tend to have higher energy when they have higher weight
toward the middle of the quantum well, where exchange in-
teractions are stronger.

 0
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Ω
/|∆

|

mode index   l

0

0.01
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0

FIG. 6: Dispersion of low-energy spin excitations in a single-
subband DMS quantum well for in-plane momentum k = 0,
ferromagnetic coupling (∆ < 0), and dimensional cut-off
N+ = N− = 20, as a function of the mode index l (see text).
The full circles depict the excitation energies Ω+

(l)
(k = 0)

of even modes ω+
(l), while the empty circles correspond to

Ω−

(l)
(k = 0) for odd modes ω−

(l)
. The inset corresponds to

two extreme quadratic fittings (dashed and dotted curves, see
text) to the dispersion of even modes (full circle) for small l.
The curves differ by a prefactor of order 3.5.

modes survive in the midst of the Stoner continuum, but
the stiff mode does not as discussed below.

Regarding Mn doping and kernel dimensionality, N+

increases with higher magnetic-ion density and quantum
well width. In this situation, new, relatively soft, modes
arise from the top of the spectrum squeezing the rest to
the bottom in order to satisfy 0 ≤ Ω+

(l) < 2xs|∆|. This

happens because increasing the dimension of the kernel
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admits the presence of higher order Fourier components
in our expansion and allows lower energy modes to aquire
a larger relative amplitude at the borders of the quantum
well, where the free-carrier density is reduced and the Mn
spin splitting is consequentially weaker. The same con-
sideration applies to the odd mode (see below) behavior
as a function of N−.

In addition to the relatively soft modes we find one
even, stiff branch Ω+

stiff (Fig. 4) lying above the Stoner
continuum. Its properties are similar to those discussed
for the stiff mode in the dilute Mn doping case, Sec. III C.
The mode is restricted to relatively large wavelengths if
compared with the case of soft modes. This is due to
the proximity of the Stoner continuum and their strong
interaction. The corresponding excitation profile ω+

stiff(z)
is shown in Fig. 5(f) (solid line). Its similarity to the
carrier density profile χ2(z) (dashed line) demonstrates
that this mode is primarily associated with the itinerant-
carrier subsystem dynamics.

We continue discussing briefly the properties of the
dispersionless odd modes Ω−

(l) depicted in Fig. 3 (dashed

lines). As pointed out above, the flat dispersions have
their origin in the absence of correlation effects related
to spin reorientations. Odd mode fluctuations of the lo-
cal moment give rise to effective fields that are averaged
to zero by χ2(z) and are consequently not correlated with
carrier spin fluctuations. This makes the odd modes
transparent to the Stoner excitations (they do not in-
teract with the particle-hole continuum, unlike the even
modes) and independent of the ratio ǫs/|∆| (that is, of
the carrier spin polarization). Moreover, all modes are
lodged within the (low) energy window 0 < Ω < 2xs|∆|
and present a finite gap whose magnitude depends on
the particular excitation profile ω−

(l)(z) (Fig. 7). This

behavior is similar to that found for the relatively soft
even modes except that there is no Goldstone mode in
the odd spectrum; the higher the weight at the border
of the quantum well, the lower the gap (see e.g. ω−

(1)(z),

Fig. 7(e), which corresponds to Ω−
(1) in Fig. 3). As in the

even case, the dependence of Ω−
(l) on l is nontrivial. See

Fig. 6 (empty circles) for an illustration of this depen-
dence in the case N− = 20.

We further note that, as can be seen from Eq. (20), in
the limit of a large number of vertical modes (N+, N− ≫
1) it holds Ω−

(l) ≈ Ω+
(l+1)(k = 0), provided that xs ≪ 1.

The even and odd mode pairs are then nearly degener-
ate even and odd combinations of excitations at opposite
edges of the quantum well.51

Our analysis holds for symmetric quantum wells only.
We comment shortly on how an asymmetry of the
quantum-well potential will affect or results. On the one
hand, a gapless Goldstone mode as found for symmetric
quantum wells when neglecting spin-orbit coupling (see
also Sec. III E) still exists. On the other hand, the spin-
wave modes will have no definite parity anymore, and
the above classification into even (dispersive) and odd
(nondispersive) modes no longer holds. The particular

excitation profiles (Figs. 5 and 7) and energies (Fig. 6)
will depend on the local-carrier density χ2(z).

−3
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−2.5
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FIG. 7: Spatial profiles for spin excitation modes with odd
parity (solid lines) across a single-subband DMS quantum well
of width d (0 ≤ z/d ≤ 1) with ferromagnetic coupling (∆ < 0)
and dimensional cut-off N− = 5 (see text). The transverse
carriers density χ2(z) (dashed line) is shown for comparison.

E. Effect of spin-orbit coupling

The presence of spin-orbit coupling described by the
Dresselhaus Hamiltonian HD, Eq. (5), introduces easy-
axis magnetic anisotropy which is, of course, necessary
for long-range magnetic order in a quantum well. When
the anisotropy, which explicitly breaks rotational invari-
ance for the magnetization orientation, is accounted for
a finite energy-gap Ωso appears in the lowest lying collec-
tive mode branch and several of the lower-lying branches
in Figs. 3 and 6 are shifted to higher energies. We calcu-
late Ωso for the lowest even mode of constant excitation
profile ω+

(1), Fig. 5(a). With this aim we follow the proce-

dure of Sec. III B and calculate Ω+
(1) for small spin-orbit

coupling and k = 0. We find that

Ωso =
γ2〈k2

z〉2k2
Fn

SNMnd max{|∆|, 2ǫF}
, (32)

where ǫF = (~2/2m∗)k2
F is the Fermi energy of the 2D

electron gas paramagnetic state and n = n↑ + n↓. This
coincides with our previous result28 obtained by using
perturbation theory.

The above result and discussion holds for symmetric
quantum wells. In asymmetric quantum wells, spin-orbit
coupling is not only described by the Dresselhaus terms,
but has also a Rashba52 spin-orbit contribution. For elec-
trons in the conduction band, the Rashba Hamiltonian is
linear in the in-plane momentum k. This will affect the
magnetic anisotropy and the energy gap in the spectrum
of collective spin excitations. The interplay of these two
types of spin-orbit coupling will complicate the disper-
sion of the spin waves (Fig. 3). In particular, they will
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become anisotropic, analogous to the anisotropic trans-
port properties discussed in Ref. 53. For heavy holes
in the valence band the leading Rashba term is cubic
in momentum.54 This complicates the evaluation of the
spin-wave dispersions even more.

IV. COMMENTS AND CONCLUSION

We have developed a theory of collective spin excita-
tions in DMS quantum wells by extending the approach
that we used previously for bulk systems.24 The theory
goes beyond mean-field and RKKY approaches and ac-
counts for both finite itinerant carrier spin-splitting and
dynamical correlations. We applied this tool to the study
of spin excitations in the ordered magnetic state at zero
temperature. As in the bulk case, we have recognized two
different energy scales on which the spin excitation spec-
trum depends: one hard scale |∆| principally related to
the itinerant-carrier subsystem, and one soft scale xs|∆|
for the magnetic-ion spin excitations, where xs|∆| ≪ |∆|.
In addition, a continuum of Stoner excitations (corre-
sponding to flipping a single spin in the itinerant-carrier
band) also emerges from the theory. Although most rele-
vant to DMS ferromagnet properties in circumstances for
which the magnetic moments have a high degree of spin
alignment, this theory of the elementary excitation spec-
trum of the system sheds considerable light on the nature
of the magnetic state and on the physics that controls the
critical temperature of the system.

The excitation spectrum of this magnetic system is
quite unusual because of its ambiguous dimensionality.
A slab of magnetic ions is coupled by a 2D electron sys-
tem that is frozen into a single growth direction electronic
subband and cannot distort its z-dependence to accom-
modate magnetic fluctuations. We find that the excita-
tion spectrum of this system has multiple 2D branches.
The number of reasonably well-defined branches of ex-
citations that have primarily local moment character is
close to the width of the quantum well measured in units
of the mean-separation between Mn ions, as expected by
analogy with a reference systems in which the local mo-
ments are placed on a lattice with the same volume per
Mn and a finite number of layers. On the other hand, we
find that there is only one 2D branch of collective exci-
tations that have primarily electronic character. When
spin-orbit interactions are neglected, the gapless Gold-
stone mode branch has quartic rather than quadratic dis-
persion, implying that the spin-stiffness vanishes, except
when the carrier system is half-metallic. Unless, that is,
ǫs < |∆| and the mean-field carrier spins are consequently
fully spin-polarized. This property arises somewhat ac-
cidentally from the particular features of effective inter-
actions mediated by carriers in 2D parabolic bands and
has partly been noted for the RKKY limit (ǫs ≫ |∆|) in
previous work.35 If we had included carrier-carrier inter-
actions in our theory, the spin-stiffness would not vanish
but, depending on the carrier density, might have a neg-

ative sign implying that the ferromagnetically ordered
state is unstable. When spin-orbit interactions are in-
cluded, however, the collective excitation spectrum has a
small gap and negative dispersion in the lowest-lying col-
lective mode, while unusual, does not necessarily imply
instability. Finally, we remark that the excitation spec-
trum includes a large number of even and odd weakly dis-
persive or non-dispersive branches in which fluctuations
in the local moments are concentrated in particular parts
of the quantum well and do not couple strongly to fluc-
tuations in the band-electron spin-orientation. In these
modes, the excitation energy is determined primarily by
the local strength of the mean-field interaction between
the Mn moments and the band electrons, which becomes
small because of carrier quantum-size effects toward the
edges of the quantum well.

The results summarized above for the collective exci-
tation spectrum suggest that thermodynamic properties,
the temperature dependence of the magnetization for ex-
ample, are likely to be quite unusual in DMS ferromag-
nets, particularly when the carriers are in the conduction
band where spin-orbit interactions are rather weak. The
influence of thermal fluctuations on the magnetization
will be enhanced not only by the reduced dimension23,
but also by the small and possibly even negative spin stiff-
ness mentioned above. (Fluctuations in the Goldstone
mode branch have a relative importance that goes like
1/N , where N is the effective number of Mn layers in the
film that we have discussed previously.) In the case of va-
lence band DMS quantum well ferromagnets, strong mag-
netic anisotropy55 should lead to ferromagnetism that is
essentially Ising in character. The magnetization should
then be fairly constant over a wide interval of tempera-
ture before dropping fairly rapidly to zero near the crit-
ical temperature. In the conduction band case for which
the model we have studied applies most directly, how-
ever, the gap in the excitation spectrum will be quite
small, much smaller than the mean-field ferromagnetic
critical temperature, as we have discussed earlier.28 The
true critical temperature is likely to be determined in
large measure by long length scale fluctuations and to be
substantially smaller than the mean-field temperature.
Since the stiffness of this system is very small, it will be
significantly altered by spin-orbit interactions; this part
of the physics is something that we have not addressed
here.

Furthermore, the model we have studied ignores dis-
order, which is likely to play an important role in adju-
dicating the way in which these subtle competitions are
resolved. We believe that careful study of the magne-
tization and other properties of electron quantum well
DMS ferromagnets at low temperatures will reveal a lot
of subtle, unusual, and interesting physics.

Finally we emphasize that the numerical results pre-
sented here are for the case of ferromagnetic interactions
between the carriers and the local moments (∆ < 0),
which is expected to apply for n-doped semiconductors.
Since we have taken the local-moment spins to point
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down in their ground state, this means that the up spins
are the minority spins and the down spins are the ma-
jority spins in the ferromagnetic case while their roles
are interchanged in the antiferromagnetic case. It fol-
lows that the only change in Eq. 14 when ∆ changes sign
is that iνn changes sign. This change has a number of
consequences that are fairly subtle when xs is small, but
can in principle be more consequential. The most impor-
tant differences are that the collective mode with dom-
inant carrier character which appears above the Stoner
particle-hole continuum in the case of ferromagnetic in-
teractions, lies below the Stoner continuum in the case of
antiferromagnetic interactions. In addition 1/(1+xs) fac-
tors which appear in expressions for the collective mode
energies, factors that express the band electron contribu-
tion to the total spin density of the system, are replaced
by 1/(1−xs) factors in the antiferromagnetic case. These
factors are not present in a RKKY description of the car-
rier mediated interactions.
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APPENDIX A: MEAN-FIELD ITINERANT

CARRIER SPIN POLARIZATION

The 2D mean-field itinerant carrier spin density for
spin σ and subband spin-splitting ∆ = JexNMnS in

the presence of weak Dresselhaus spin-orbit coupling
at B = 0 is given by nσ =

∫

d2k/(2π)2f(ǫσk), where
ǫσk = ǫk − (σ/2)∆ + σǫsok − µ′, ǫk = ~

2k2/(2m∗), ǫsok =
−γ2〈k2

z〉2k2/∆, µ′ is the effective chemical potential of
the 2D carrier gas, and f(ǫ) is the Fermi distribution.
For zero temperature we find

nσ =
µ′ + (σ/2)∆

4π(~2/2m∗ − σγ2〈k2
z〉2/∆)

θ(µ′ + (σ/2)∆), (A1)

where we have used f(ǫ)T=0 = θ(−ǫ). The difference
between up and down contributions determines the net
carrier spin density defined as p = (n↑ − n↓)/(n↑ + n↓).
Denoting the Fermi energy of the majority-spin carrier
band by ǫs = µ′ + |∆|/2, we see from Eq. (A1) that the
carrier system is fully spin-polarized or half-metallic (i.e.
|p| = 1) when ǫs ≤ |∆|. On the other hand, partly spin-
polarized carriers (i.e. |p| < 1) correspond to ǫs > |∆|.

APPENDIX B: CORRECTION DUE TO

CORRELATION EFFECTS

Correlation effects due to the response of quantum
well carriers to Mn spin reorientations are taken into ac-
count in the kernel D−1(k, z, z′,Ω) by the second term of
Eq. (14). This is manifested by the momentum and en-
ergy dependence of the integral I(k,Ω), Eq. (23). In the
absence of magnetic field and spin-orbit coupling we find
for zero temperature (see Appendix A for definitions)

∫

d2q

(2π)2
[f(ǫ↓q) − f(ǫ↑q+k)]T=0

Ω + ǫ↓q − ǫ↑q+k

=
m∗

4π~2ǫk

[

θ(µ′ − ∆/2) (Ω + ∆ − ǫk)

(

1 −
√

1 − 4(µ′ − ∆/2)ǫk
(Ω + ∆ − ǫk)2

)

− θ(µ′ + ∆/2) (Ω + ∆ + ǫk)

(

1 −
√

1 − 4(µ′ + ∆/2)ǫk
(Ω + ∆ + ǫk)2

)]

(B1)

=
n↓ − n↑

Ω + ∆
+
n↓ (µ′ + ∆/2 + Ω) − n↑ (µ′ − ∆/2 − Ω)

(Ω + ∆)3
ǫk +O(ǫ2k) (B2)

= −(n↑ + n↓)/ǫk +O(1/ǫ2k), (B3)

where the integral has to be considered as a Cauchy prin-
cipal value. Eqs. (B2) and (B3) correspond to first or-
der expansions in ǫk and 1/ǫk, respectively. The prefac-

tors that express the z-dependence in the second term of
Eq. (14) contain information on the quantum well geom-
etry and lead to M2 in Eq. (20).
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