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Abstract. Spintronics devices rely on spin-dependent transport behavior evoked by
the presence of spin-polarized electrons. Transport through nanostructures, on the
other hand, is dominated by strong Coulomb interaction. We study a model system
in the intersection of both fields, a quantum dot attached to ferromagnetic leads. The
combination of spin-polarization in the leads and strong Coulomb interaction in the
quantum dot gives rise to an exchange field acting on electron spins in the dot. De-
pending on the parameter regime, this exchange field is visible in the transport either
via a precession of an accumulated dot spin or via an induced level splitting. We review
the situation for various transport regimes, and discuss two of them in more detail.

1 Introduction

The study of spin-dependent tunneling through quantum dots resides in the
intersection of two active and attractive fields of physics, namely spintronics [1–
3] and transport through nanostructures [4–6]. Both the investigation of spin-
dependent electron transport on the one hand and the study of strong Coulomb
interaction effects in transport through nanostructures on the other hand de-
fine by now well-established research areas. The combination of both concepts
within one system is, however, a very new field which is still in its early stages.
Its attractiveness originates from the rich physics expected from the combina-
tion of two different paradigms. A suitable model system for a basic study of
the interplay of spin-dependent transport due to spin polarization in ferromag-
netic electrodes and Coulomb charging effects in nanostructures is provided by
a quantum dot attached to ferromagnetic leads.

1.1 Some Concepts of Spintronics

The field of spin- or magnetoelectronics [1–3] has attracted much interest, for
both its beautiful fundamental physics and its potential applications. A famous
example, which has already proven technological relevance, is the spin valve
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based on either the giant magnetoresistance effect (GMR) in magnetic multi-
layers or the tunnel magnetoresistance (TMR) in magnetic tunnel junctions. In
both cases, the transport properties depend on the relative magnetization orien-
tation of the involved magnetic layers or leads, an information conveyed by the
spin polarization of the transported electrons. In the case of a single magnetic
tunnel junction, the tunneling current is maximal for parallel alignment of the
leads’ magnetization orientations, while it is minimal for antiparallel alignment.
This can be easily understood within a non-interacting-electron picture, as pro-
posed by Jullière [7]: the tunnel current of electrons with given spin direction
is proportional to the product of the corresponding spin-dependent densities of
states in the source and drain electrode, which leads to a reduction of transport
in the case of antiparallel alignment.

This concept has been extended [8] to describe also noncollinear arrange-
ments, as depicted in Fig. 1(a), where the magnetization directions of the leads
enclose an arbitrary angle φ. In this situation, the φ-dependent part of the tunnel-
ing current is proportional to the overlap of the spinor part of the majority-spin
wave functions in the source and drain electrode, i.e. proportional to cosφ, as it
has been experimentally confirmed recently [9].

In heterostructures that consist of a nonmagnetic metal sandwiched by ferro-
magnetic electrodes, the concept of spin accumulation becomes important. Once
the spin diffusion length is larger than the size of the nonmagnetic region, the in-
formation about the relative orientation of the leads’ magnetization is mediated
through the middle part. In the antiparallel configuration an applied bias voltage
leads to a pile up of spin in the nonmagnetic metal, since electrons with one type
of spin (say spin up) are preferentially injected from the source electrode, while
electrons with the other type of spin (spin down) are pulled out from the drain
electrode. This piling up of spin splits the chemical potentials for spin-up and
spin-down electrons in the normal metal such that electrical transport through
the whole device is reduced.

As spin is a vector quantity, transport through a ferromagnetic-nonmagnetic-
ferromagnetic heterostructure can be tuned by manipulating the direction of the
spins in the middle part. The prototype for such a concept is the spin field-effect
transistor proposed by Datta and Das [10]. Spin-polarized electrons are injected
from a ferromagnetic metal into a ballistic conducting channel provided by a two-
dimensional electron gas in a semiconductor heterostructure. Due to the Rashba
effect, the electrons in the semiconductor experience a spin-orbit coupling, whose
strength can be tuned by a gate voltage. This spin-orbit coupling leads to a
rotation of the spins in the conducting channel as they move along towards the
drain electrode. The total transmission through the device, then, depends on the
relative orientation of the rotated spins and the magnetization direction of the
drain electrode.

1.2 Transport Through Nanostructures

Tunneling transport through nanostructures, such as semiconductor quantum
dots (Fig. 1(b)) or small metallic islands, is strongly affected by Coulomb in-
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Fig. 1. a) Spin valve: a single tunnel junction between two ferromagnets (FM) with
magnetization orientations n̂L and n̂R, respectively. b) Quantum dot. c) Quantum-dot
spin valve: a quantum dot is connected to two ferromagnetic leads (FM)

teraction, and a non-interacting electron picture is no longer applicable [4–6].
Coulomb-blockade phenomena arise at low temperature, such that the corre-
sponding energy scale is smaller than the charging energy, the energy scale for
adding or removing one electron from the dot or island. Small quantum dots
with a size of the order of the Fermi wavelength have a discrete level spectrum.
If the level spacing is large enough, transport through single levels is possible.
This situation defines a simplest but very generic model, the Anderson-impurity
model, for studying Coulomb interaction in nanostructures.

When the level is occupied with one electron since double occupancy is pro-
hibited by charging energy, the dot possesses a local spin. At low temperature
and large dot-lead tunnel-coupling strength, a ground state with complex many-
body correlations forms, which manifests itself in the so-called Kondo effect [11].
The local spin is screened by the spins of the conduction electrons in the leads,
and accompanied with this, electrical transport through the quantum dot is
strongly enhanced.
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1.3 Quantum-Dot Spin Valves

The scheme of a quantum-dot spin valve, a quantum dot attached to ferromag-
netic leads, is illustrated in Fig. 1(c). Successful fabrication of either quantum-
dot systems or magnetic heterostructures has been achieved by a large number
of experimental groups. To attach ferromagnetic electrodes to quantum dots,
though, is quite a challenging task, and only very recently first results have been
reported.

Let us start with metallic single-electron devices. Both spin-dependent tun-
neling and Coulomb blockade has been found in magnetic tunnel junction with
embedded Co clusters [12]. All-ferromagnetic metallic single-electron transis-
tors have been manufactured, using either single-island [13,14], or multi-island
structures [15,16]. Magnetoresistance of single-electron transistors with a normal
metallic island in a cobalt-aluminum-cobalt structure has been measured [17].
In all these examples, the level spectrum on the island is continuous, and many
levels are involved in transport.

Our focus, however, is on single-level quantum dots. The difficulty lies in
the incompatibility of the usual materials showing ferromagnetism (metals) and
those usually forming quantum dots (semiconductors). There are different strate-
gies to overcome this problem. One possibility is the use of ferromagnetic semi-
conductors (Ga,Mn)As as lead electrodes coupled to, e.g., self-assembled InAs
quantum dots [18]. A very promising approach is to contact an ultrasmall alu-
minum nanoparticle, which serves as a quantum dot, to ferromagnetic metallic
electrodes. In this way, quantum dots with one magnetic (nickel or cobalt) and
one nonmagnetic (aluminum) electrodes have been fabricated [19]. Another im-
portant system is a magnetic impurity inside the tunneling barrier of ferromag-
netic tunnel junction [20]. An alternative route is to use carbon nanotubes as
quantum dots and to place them on metallic contacts. Coulomb-blockade phe-
nomena and even the Kondo effect has been observed in such systems [21,22].
Spin-dependent transport through carbon nanotubes attached to ferromagnetic
electrodes has been investigated in [23,24]. A more challenging scheme is a fer-
romagnetic single-molecule transistor [25], where a single molecule is attached
to ferromagnetic electrodes. To some extent, there is also a relation between the
quantum-dot spin valve and a single magnetic-atom spin on a scanning tunnel-
ing microscope tip. For the latter, precession of the single spin in an external
magnetic field has been detected in the power spectrum of the tunneling current
[26].

This progress on the experimental side has stimulated a number of theoretical
activities [27–40] on spin-dependent transport through either metallic single-
electron transistors or quantum dots.

The motivation for studying quantum-dot spin valves can be formulated from
two different perspectives, depending on from which side one starts to approach
the problem. Coming from the spintronics side, one may ask how the concepts
introduced there, such as spin accumulation and spin manipulation, manifest
themselves in quantum dots, and how the presence of strong Coulomb interaction
gives rise to qualitatively new behavior as compared to non-interacting electron
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systems. On the other hand, when starting from Coulomb-interaction effects
in quantum dots, one may ask how the spin-polarization of the leads changes
the picture. As mentioned above, the screening of a local spin on the quantum
dot by the lead-electron spins is crucial for the Kondo effect to develop. This
screening behavior is affected by spin asymmetry introduced due to a finite spin
polarization of the lead. In this case, it is a priori not clear whether a Kondo-
correlated state can still form or not.

To comprise all this in a single question, we ask whether the combination of
strong Coulomb interaction and finite spin-polarization gives rise to qualitatively
new phenomena that are absent for either non-interacting or unpolarized elec-
trons. The answer is: yes, it does. We predict that single electrons on the quantum
dot experience an exchange field, which effectively acts like a local magnetic field.
The main goal of this paper is to illustrate the origin of this exchange field, its
properties, and its implications on transport. Of course, the latter depends on
the considered transport regime, and the observable consequences can be quite
different. In the present paper, we concentrate on two particular regimes, the
case of weak dot-lead coupling but noncollinear magnetization directions and
the case of very strong coupling but collinear configuration. Other limits will
only be commented on shortly, as for these cases work is still in progress and
will be presented elsewhere.

2 The Model

We consider a small quantum dot with one energy level ǫ participating in trans-
port. The dot is coupled to ferromagnetic leads, see Fig. 1(c). The left and right
lead are magnetized along n̂L and n̂R, respectively. The total Hamiltonian is

H = Hdot + HL + HR + HT,L + HT,R . (1)

The first part, Hdot = ǫ
∑

σ c†σcσ + Un↑n↓, describes the dot energy level
plus the charging energy U for double occupation. In the presence of an ex-
ternal magnetic field, the energy level experiences a Zeeman splitting, i.e., be-
comes spin-dependent. The leads are modeled by Hr =

∑
kσ ǫkσa†

rkσarkσ with
r = L, R. In the spirit of a Stoner model of ferromagnetism [41], there is a
strong spin asymmetry in the density of states ρrσ(ω) for majority (σ = +) and
minority (σ = −) spins. Throughout all of our calculations presented here, we
approximate the density of states to be energy independent, ρrσ(ω) = ρrσ. Real
ferromagnets will have a structured density of states [42]. This fact, however, will
only modify details of the results and not the main physical picture. The ratio
p = (ρr+ − ρr−)/(ρr+ + ρr−) characterizes the degree of spin polarization in the
leads. For simplicity, we assume here ρL+ = ρR+ ≡ ρ+ and ρL− = ρR− ≡ ρ−.
Nonmagnetic leads are described by p = 0, and p = 1 represents half metallic
leads, which accommodate majority spins only. We emphasize that the magne-
tization directions of leads can differ from each other, enclosing an angle φ.

Tunneling between leads and dot is described by the standard tunneling
Hamiltonian. For the left tunnel barrier we get
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HT,L = t
∑

kσ=±

(
a†
Lkσcσ + h.c.

)
, (2)

where c± are the Fermi operators for an electron on the quantum dot with
spin along ±n̂r. For the right barrier, an analogous expression holds. As n̂L may
differ from n̂R, an ambiguity arises in the definition of c±. This is no problem
for collinear, i.e., parallel or antiparallel, configuration of the leads. In this case,
n̂L = ±n̂R provides a natural quantization axis for the dot spin.
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Fig. 2. Choice of the used coordinate system: a) For collinear configuration of the
leads’ magnetization, i.e., parallel (solid arrow for n̂R) or antiparallel (dashed arrow),
the z-axis is along n̂L. In this case, we use the tunneling Hamiltonian in the form of
(2). b) For noncollinear arrangements, the z-axis is perpendicular to both n̂L and n̂R.
Here, the tunneling Hamiltonian in the form of (3) is used. The quantum-dot spin is
always quantized along the z-axis

For noncollinear leads, however, the form (2) of the tunnel Hamiltonian is
no longer useful. To describe the scenario properly, we find it convenient to
quantize the dot spin neither along n̂L nor n̂R, but along the axis perpendicular
to both n̂L and n̂R. To be explicit, we choose the coordinate system defined
by êx = (n̂L + n̂R)/|n̂L + n̂R|, êy = (n̂L − n̂R)/|n̂L − n̂R|, and êz = (n̂R ×
n̂L)/|n̂R × n̂L|, and quantize the dot spin along the z-direction, see Fig. 2. The
tunnel Hamiltonian, then, becomes

HT,L =
t√
2

∑

k

(a†
Lk+, a†

Lk−)

(
eiφ/4 e−iφ/4

eiφ/4 −e−iφ/4

) (
c↑
c↓

)
+ h.c. , (3)

and HT,R is the same but with L → R and φ → −φ. The special choice
of the coordinate system implies that both up and down spins of the dot are
equally-strongly coupled to the majority and minority spins of the leads. There,
are, however, phase factors e±iφ/4 are involved, similar to multiply-connected
quantum-dot systems dubbed Aharonov-Bohm interferometers [43]. The two
spin directions ↑ and ↓ in the dot correspond to the quantum dots placed in
the two arms of the Aharonov-Bohm interferometer, and the angle φ plays the
role of the Aharonov-Bohm phase, which measures the total magnetic flux en-
closed by the arms of the interferometer in units of the flux quantum. We note,
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however, that our model translates to a very special kind of Aharonov-Bohm
interferometer: the dot in each interferometer arm accommodates only a sin-
gle level instead of a doubly-degenerate one, and Coulomb interaction occurs
between the two dots, instead of within each of them.

The two different choices we use for the collinear and noncollinear configura-
tion, in which we use either (2) or (3), respectively, are illustrated in Fig. 2. In
both cases, the tunnel coupling leads to a finite width of the dot level. Its energy
scale is given by Γ =

∑
r Γr with Γr = π|t|2 ∑

σ=± ρσ [44].

3 Exchange Field

As pointed out in the introduction, the qualitative new physics introduced by
the combination of spin-polarized leads and strong Coulomb interaction in the
dot, is the existence of an exchange field acting on electron spins in the dot.
This exchange field is intrinsically present in the model described by the Hamil-
tonian (1) together with the spin-dependent density of states. It is, therefore,
automatically contained in any consistent treatment of the model for a given
transport regime, as we will see in the subsequent sections. Nothing has to be
added by hand. Nevertheless, we find it instructive to derive an explicit analytic
expression by making use of the following heuristic procedure.

Each of the two leads will contribute to the exchange field separately. To
keep the discussion transparent, we consider the effect of one lead only. The
total exchange field is, then, just the sum over both leads. The first step is
to derive an effective Hamiltonian for the subspace of the total Hilbert space
in which the quantum dot is singly occupied. This is the regime of interest,
as far as the exchange field in concerned, since both an empty and a doubly-
occupied dot have zero total spin, and an exchange field would be noneffective.
By taking into account virtual excitations to an empty or doubly-occupied dot
within lowest-order perturbation theory in the tunnel coupling, in analogy to the
Schrieffer-Wolff transformation [11] employed in the context of Kondo physics
for magnetic impurities in nonmagnetic metals, we arrive at an effective spin
model for the dot spin operators S± and Sz (quantized along the magnetization
direction of the considered lead),

Hspin = S+|t|2
∑

kq

(
1

U + ǫ − ǫq
+

1

ǫk − ǫ

)
a†

rk↓arq↑

+S−|t|2
∑

kq

(
1

U + ǫ − ǫk
+

1

ǫq − ǫ

)
a†

rq↑ark↓

+Sz|t|2



∑

qq′

1

U + ǫ − ǫq′

a†
rq↑arq′↑ −

∑

kk′

1

U + ǫ − ǫk′

a†
rk↓ark′↓




−Sz|t|2



∑

qq′

1

ǫq − ǫ
arq′↑a

†
rq↑ −

∑

kk′

1

ǫk − ǫ
ark′↓a

†
rk↓



 . (4)
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Note, that the information about the different densities of states for up- and
down-spins is included in the summation over q, q′ (used for spin-up electrons)
and k, k′ (used for spin down), respectively. In addition, there is a term describing
potential scattering, but this does not contribute to the exchange field we are
aiming at.

In a second step we employ in (4) a mean-field approximation for the lead-

electron states, making use of 〈a†
rkσark′σ′ 〉 = fr(ǫkσ)δkk′δσσ′ and 〈arkσa†

rk′σ′〉 =
[1 − fr(ǫkσ)]δkk′δσσ′ , where fr(ω) is the Fermi function of lead r. The terms
proportional to S± drop out. The resulting effective Hamiltonian, then, reads
Heff = −SzBr with the exchange field (for simplicity we include the gyromag-
netic factor in the definition)

Br =

∫ ′

dω(ρ+ − ρ−)|t|2
(

1 − fr(ω)

ω − ǫ
+

fr(ω)

ω − ǫ − U

)
(5)

= −pΓr

π
Re

[
Ψ

(
1

2
+ i

β(ǫ − µr)

2π

)
− Ψ

(
1

2
+ i

β(ǫ + U − µr)

2π

)]
, (6)

where Ψ(x) denotes the digamma function, µr is the electrochemical poten-
tial of lead r, and the prime at the integral sign in (5) symbolizes Cauchy’s
principal value. For illustration, we plot the exchange field as a function of the
level position in Fig. 3.

-15 -10 -5 0 5
ε / k

B
T

-1

-0.5

0

0.5

1

B
r [

 Γ
r]

-15 -10 -5 0 5

0

Fig. 3. The exchange field as a function of the level position ǫ for U/kBT = 10 and
p = 1

From the explicit form (6) of the exchange field we derive the following prop-
erties:

(i) It vanishes in the case of a non-interacting quantum dot, U = 0.
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(ii) The exchange field is proportional to the degree of spin-polarization p in
the lead. This means that both strong Coulomb interaction and finite spin-
polarization are required to generate the exchange field.

(iii) It depends on the tunnel coupling strength Γ . In the treatment lined out
above, Γ enters linearly as a global prefactor.

(iv) The magnitude and even the sign of the exchange field depends on the level
position ǫ. In particular, there is a value of ǫ at which the exchange field
vanishes (in our model with flat density of states this happens at ǫ − µr =
U/2, i.e., when the total system is particle-hole symmetric).

Furthermore, we notice from (5) that not only electronic states around the
Fermi energy of the lead are involved. Instead, it is rather the full band that
matters. This means, that a precise simulation of realistic materials requires a
knowledge of the detailed density of states, to be inserted in the integral in (5).
This will modify the details of the exchange field such as its precise dependence
on the level position ǫ.

4 Transport Regimes

After introducing the notion of the exchange field, the question of how it affects
the transport behavior arises immediately. The answer to this question depends
on the transport regime under consideration. In particular, we will identify two
mechanisms by which the exchange field enters. One scenario is the generation
of a level splitting between up and down spins in the quantum dot, with the level
splitting given by the exchange field (6). But this is not the only possibility. Even
in situations, in which the generated level splitting is negligible, the exchange
field can affect the dot state and, thus, the transport behavior by rotating an
accumulated spin on the dot, which can pile up there in non-equilibrium due to an
applied bias voltage. A complete picture of the various different transport regimes
goes beyond the scope of the present paper. Instead, we will concentrate on two
specific limits, namely weak dot-lead coupling but noncollinear magnetization
in linear response, and strong coupling but collinear configuration of the leads.
For some other regimes, that are currently under investigation, we will only give
some short comments and refer the reader to forthcoming publications.

In the limit of weak dot-lead coupling, Γ ≪ kBT , referred to as sequential-
tunneling regime, transport is dominated by processes of first order in Γ (unless
both ǫ and ǫ + U are shifted into the Coulomb-blockade region). First-order
transport probes the state of the quantum dot to zeroth order (since the tun-
neling between dot and leads necessary for transport already trivially involves
a factor Γ ). Therefore, the level splitting generated by the exchange field can-
not be probed by first-order transport. Nevertheless, the exchange field plays a
role via the second of the above mentioned mechanisms. Once a finite spin is
accumulated on the quantum dot, with a direction noncollinear to the exchange
field, the latter will induce a precession of the accumulated spin. For this to hap-
pen, a noncollinear configuration of the leads’ magnetic moments is required, as
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otherwise accumulated spin, if any, and exchange field are pointing in the same
direction.

In the Coulomb-blockade regime, sequential tunneling is exponentially sup-
pressed, and transport is dominated by cotunneling, which are second-order pro-
cesses. But also on resonance, second-order corrections become important for
intermediate coupling strengths, Γ ∼ kBT . Second-order transport is affected
by the generated level splitting, and the exchange field plays a role even for a
collinear arrangement of the leads’ magnetization.

A very dramatic signature of the level splitting generated by the exchange
field is predicted for the limit of low temperature and large coupling strength,
kBT ≤ kBTK ≪ Γ , for which the Kondo effect can appear (TK is the Kondo
temperature). Since a finite level splitting, e.g., due to a Zeeman term induced
by an external magnetic field, quickly destroys the Kondo effect, the exchange
field has quite an important, at first glance destructive, consequence. As we will
see below in more detail, however, by applying an appropriately-tuned external
magnetic field one can compensate for the induces level splitting and, thus,
recover the Kondo effect. For this discussion, we restrict ourselves to collinear
configurations.

4.1 First-Order Transport in Linear Response

Here, we only present the major steps and main results. Details of the calcula-
tions can be found in Refs. [30,31]. The first step is to relate the linear conduc-
tance Glin = (∂I/∂V )

∣∣
V =0

to the Green’s functions of the dot. For first-order
transport, we obtain

Glin =
e2

h
Γ

∫
dω

{
Im Gret

↓↓ (ω)f ′(ω)

+p sin
φ

2

[
f(ω)

∂G>
↓↑(ω)

∂(eV )
+ [1 − f(ω)]

∂G<
↓↑(ω)

∂(eV )

]}
. (7)

Here, f(ω) is the Fermi function, Gσσ′ (ω) are the Fourier transforms of the
usual retarded, greater and lesser Green’s functions. Contributions involving the
Green’s functions G↑↑(ω) and G↑↓(ω) are accounted for in a prefactor 2. Since
Γ already appears explicitly in front of the integral, all Green’s functions are
to be taken to zeroth order in Γ . In this limit, we find −(1/π)ImGret

↓↓ (ω) =

(P 0
0 + P ↓

↓ )δ(ω − ǫ) + (P ↑
↑ + P d

d )δ(ω − ǫ − U), G>
↓↑(ω) = 2πiP ↓

↑ δ(ω − ǫ − U), and

G<
↓↑(ω) = 2πiP ↓

↑ δ(ω − ǫ), where Pχ
χ′ = 〈|χ′〉〈χ|〉 are elements of the stationary

density matrix (to zeroth order in Γ ) of the quantum-dot subsystem, with χ, χ′ =
0 (empty dot), ↑, ↓ (singly-occupied dot), and d (doubly-occupied dot).

The main task is now to determine the density-matrix elements to zeroth
order in Γ . They contain the information about the average occupation and
spin on the quantum dot. The diagonal matrix elements, Pχ

χ , are nothing but
the probabilities to find the quantum dot in state χ, i.e., the dot is empty with
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probability P0 ≡ P 0
0 , singly occupied with P1 ≡ P ↑

↑ + P ↓
↓ , and doubly occupied

with Pd ≡ P d
d . A finite spin can only emerge for single occupancy. The aver-

age spin h̄S with S = (Sx, Sy, Sz) is related to the matrix elements Pχ
χ′ via

Sx = Re P ↓
↑ , Sy = Im P ↓

↑ , and Sz = (1/2)(P ↑
↑ − P ↓

↓ ). To obtain the density-
matrix elements by using the real-time transport theory developed in Ref. [45],
we solve a kinetic equation formulated in Liouville space. The details are found
in Refs. [30,31].

It is remarkable that on the r.h.s of (7), derivatives of Green’s function with
respect to bias voltage V appear. As a consequence, the linear conductance is
not only determined by equilibrium properties of the quantum dot, but linear
corrections in V are involved as well. This is consistent with the observation
that, in equilibrium, the density matrix is diagonal with the matrix elements
determined by the Boltzmann factors, i.e., the average spin on the quantum dot
vanishes at V = 0 [46]. With applied bias voltage, though, a finite spin can
accumulate. Therefore, to be sensitive to the relative magnetization direction of
the leads, the linear conductance has to be connected to the differential spin
accumulation (dS/dV )

∣∣
V =0

.
The results we find can be summarized as follows. At finite bias voltage, spin

accumulated on the dot. Here, we only need its contribution linear in V and find

∂|S|
∂(eV )

∣∣∣∣
V =0

=
pP1

4kBT
cosα(φ) sin

φ

2
, (8)

where P1 is the equilibrium probability for a singly occupied dot. The spin
is lying in the y-z-plane enclosing an angle α with the y-axis, where

tan α(φ) = − B

Γ [1 − f(ǫ) + f(ǫ + U)]
cos

φ

2
. (9)

In the absence of an exchange field, the accumulated spin is oriented along
n̂L − n̂R, i.e., it has a y-component only, α = 0. The exchange field B, though,
leads to a precession of the spin about the x-axis. The factor 1/Γ [1 − f(ǫ) +
f(ǫ + U)] in (9) can be identified as the life time of the dot spin, limited by
tunneling out of the dot electron or by tunneling in of a second electron with
opposite spin. Since both this life time and the exchange field are of first order
in Γ , the angle α acquires a finite value.

The differential spin accumulation dS/d(eV ) in units of kBT is illustrated in
the middle panel of Fig. 4. It is clear that single occupation of the dot is required
for spin accumulation, i.e., the plotted signal is high in the valley between the
two conductance peaks. The lower panel of Fig. 4 shows the evolution of the
rotation angle α as a function of the level energy ǫ. This angle is large in the
valley between the conductance peaks, getting close to ±π/2. A special point
is ǫ = −U/2, at which, due to particle-hole symmetry, the exchange interaction
vanishes. As a consequence, α shows a sharp transition from positive to negative
values, accompanied with a peak in the accumulated spin.

The linear conductance is given by
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Glin = Glin,max

(
1 − p2 cos2 α(φ) sin2 φ

2

)
. (10)

The conductance is maximal for parallel magnetization, φ = 0. Its value is
Glin,max = (πe2/h)(Γ/kBT )[1−f(ǫ+U)]f(ǫ)[1−f(ǫ)+f(ǫ+U)]/[f(ǫ)+1−f(ǫ+
U)]. The upper panel of Fig. 4 depicts the linear conductance for five different
values of the angle φ. For parallel magnetization, φ = 0, there are two conduc-
tance peaks located near ǫ = 0 and ǫ = −U , respectively. With increasing angle
φ, transport is more and more suppressed due to the spin-valve effect. However,
this suppression is not uniform, as would be in the absence of the exchange field.
In contrast, the spin-valve effect is less pronounced in the valley between the
two peaks, where the rotation angle α is large. A large angle α reduces both the
magnitude of the accumulated spin, as discussed above, and the relative angle to
the magnetization of the drain electrode. Both enhance transport as compared to
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the situation without the exchange field. As a consequence, the two conductance
peaks move towards each other with increasing φ.
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Fig. 5. Normalized linear conductance as a function of φ for U/kBT = 10, p = 1, and
four different values of the level position

Another way to illustrate the influence of the exchange field is to plot the φ-
dependence of the linear conductance, see Fig. 5. For values of the level position
ǫ at which the rotation angle α is small, ǫ/kBT = 3 and 1, the φ-dependence of
the conductance is almost harmonic, as it is for single magnetic tunnel junction.
For ǫ/kBT = −1 and −3, however, the spin-valve effect is strongly reduced, and
conductance is enhanced, except in the regime close to antiparallel magnetiza-
tion, φ = π. The conductance, then, stays almost flat over a broad range, and
then establishes the spin-valve effect only in a small region around φ = π.

4.2 First-Order Transport in Nonlinear Response

A rather complete analysis of first-order transport through quantum-dot spin
valves, which covers both the linear- and nonlinear-response regime is presented
in Ref. [31]. There, we derive generalized rate equations for the dot’s occupation
and accumulated spin, which provide the basis of quite an intuitive understand-
ing of the behavior of the quantum-dot state.

In the non-linear-response regime, the physics of spin accumulation is more
involved as for linear response. The accumulated spin tends to align anti-parallel
to the drain electrode, leading to a spin blockade, i.e., a stronger spin-valve ef-
fect. This contrasts with the exchange field which, by rotation of the accumulated
spin, tends to weaken the spin-valve effect. By the interplay of these two coun-
tersteering mechanisms, a very pronounced negative differential conductance is
predicted.
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4.3 Second-Order Transport

While first-order transport does not probe the spin splitting generated by the
exchange field, second-order transport does. Therefore, in second-order trans-
port, the exchange splitting plays a role even for collinear configuration of the
leads’ magnetizations. For parallel alignment, the exchange field gives rise to
a gate-voltage dependent, finite spin polarization of the dot, n↑ 6= n↓, even at
zero bias. This polarization vanishes (at zero bias) for antiparallel orientation
and symmetric coupling, since, in this case, the total exchange field adds up to
zero. A detailed analysis of this transport regime will be presented in Ref. [32],
which includes, among other things, the prediction and explanation of a peculiar
zero-bias behavior for some circumstances.

4.4 The Kondo Effect

A very sensitive probe to the exchange field is provided by the Kondo effect,
which occurs in singly-occupied quantum dots below a characteristic tempera-
ture, kBT ≤ kBTK ≪ Γ . The singly-occupied dot defines a local spin with two
degenerate states, spin up and down. The local spin can be flipped by higher-
order tunneling processes, in which the electron tunnels out of the dot, and
another one with opposite spin enters from one of the leads. By these processes,
the dot- and the lead-electron spins are coupled to each other. At low tem-
perature, a highly-correlated state is formed, in which the local spin is totally
screened. This Kondo-correlated state is accompanied with an increased trans-
mission through the dot, and gives rise to a sharp zero-bias anomaly in the
current-voltage characteristics.

How does a finite spin polarization in the leads modify this picture? As it
turns out, there are two mechanisms influencing the Kondo effect. First, the
exchange field lifts the spin degeneracy on the quantum dot. This is analogous
to the situation of a Kondo dot in the presence of an external magnetic field. For
the latter it is well known, that the zero-bias anomaly splits by twice the Zeeman
energy. Due to the same reason, the exchange-field induces a splitting of the
zero-bias anomaly for our model system, but now in the absence of an external
magnetic field. In the presence of an external magnetic field both exchange- and
magnetic-field induced splittings contribute. In particular, for a properly-tuned
magnetic field the level splitting is compensated, and a single zero-bias anomaly
is recovered.

The second mechanism by which the finite spin-polarization influences the
Kondo effect is the screening of the quantum-dot spin. Naturally, both up- and
down-spin electrons in the leads are crucial for the screening. An imbalance
of majority and minority spins in the leads, therefore, weakens the screening
capability. As we will see below, this leads to a reduced Kondo temperature
TK(p), which even vanishes for p = 1.

Recently, the possibility of the Kondo effect in a quantum dot attached to
ferromagnetic electrodes was discussed in a number of publications [33–39], and
it was shown, that the Kondo resonance is split and suppressed in the presence of
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ferromagnetic leads [37–39]. It was shown that this splitting can be compensated
by an appropriately tuned external magnetic field to restore the Kondo effect
[37,38], as we discuss in detail below.

In the following, we mainly concentrate on the case of parallel alignment of
the leads’ magnetization. For antiparallel alignment and symmetric coupling to
the left and right lead, the exchange field vanishes (at zero bias voltage), and
the usual Kondo resonance as for nonmagnetic electrodes forms.

Perturbative-Scaling Approach. An analytical access to the problem, which
provides an intuitive picture of the involved physics, is the perturbative-scaling
approach. For detail of the following calculations we refer to Ref. [37]. We make
use of the poor man’s scaling technique [47], performed in two stages [48]. In the
first stage, when high-energy degrees of freedom are integrated out, charge fluc-
tuations are the dominant. Afterwards, in the second stage, we map the resulting
model to a Kondo Hamiltonian, and integrate out the degrees of freedom involv-
ing spin fluctuations. As we will see, each of the two stages will account for one
of the two above mentioned different mechanisms by which the spin-polarized
leads influence the Kondo effect, respectively.

The scaling procedure starts at an upper cutoff D0, given by the onsite
repulsion U . Charge fluctuations lead to a renormalization of the level position
ǫσ according to the scaling equations

dǫσ

d ln(D0/D)
= |t|2ρσ̄ , (11)

where σ̄ is opposite to σ. Since the renormalization is spin dependent, a spin
splitting is generated. In the presence of a magnetic field, this generated spin
splitting simply adds to the initial Zeeman splitting ∆ǫ. We obtain the solution
∆ǫ̃ = ǫ̃↑ − ǫ̃↓ = −(1/π)pΓ ln(D0/D) + ∆ǫ. The scaling of (11) is terminated [48]

at D̃ ∼ −ǫ̃. When plugging in D0 = U and D = ǫ, we recover that the generated
level splitting exactly reflects the zero-temperature limit of the exchange field
(6).

To reach the strong-coupling limit, we tune the external magnetic field Bext

such that the total effective Zeeman splitting vanishes, ∆ǫ̃ = 0. In the sec-
ond stage of Haldane’s procedure [48], spin fluctuations are integrated out. To
accomplish this, we perform a Schrieffer-Wolff transformation [11] to map the

Anderson model (with renormalized parameters D̃ and ǫ̃) to a Kondo Hamilto-
nian, see (4). Since we are interested in low-energy excitations only, we neglect
the energy dependence of the coupling constants and arrive at

HKondo = J+S+
∑

rr′kq

a†
rk↓ar′q↑ + J−S−

∑

rr′kq

a†
rq↑ar′k↓

+Sz



Jz↑

∑

rr′qq′

a†
rq↑ar′q′↑ − Jz↓

∑

rr′kk′

a†
rk↓ar′k′↓



 , (12)



16 Jürgen König, Jan Martinek, Józef Barnaś, and Gerd Schön

plus terms independent of either dot spin or lead electron operators, with
J+ = J− = Jz↑ = Jz↓ = |t|2/|ǫ̃| ≡ J0 in the large-U limit. Although initially
identical, the three coupling constants J+ = J− ≡ J±, Jz↑, and Jz↓ are renor-
malized differently during the second stage of scaling. The scaling equations are

d(ρ±J±)

d ln(D̃/D)
= ρ±J±(ρ↑Jz↑ + ρ↓Jz↓) (13)

d(ρσJzσ)

d ln(D̃/D)
= 2(ρ±J±)2 (14)

with ρ± =
√

ρ↑ρ↓, ρσ ≡
∑

r ρrσ. To solve these equations we observe that
(ρ±J±)2 − (ρ↑Jz↑)(ρ↓Jz↓) = 0 and ρ↑Jz↑ − ρ↓Jz↓ = J0p(ρ↑ + ρ↓) is constant as
well. I.e., there is only one independent scaling equation. All coupling constants
reach the stable strong-coupling fixed point J± = Jz↑ = Jz↓ = ∞ at the Kondo
energy scale, D ∼ kBTK . For the parallel configuration, the Kondo temperature
in leading order,

TK(P ) ≈ D̃ exp

{
− 1

(ρ↑ + ρ↓)J0

artanh(p)

p

}
, (15)

depends on the polarization p in the leads. It is maximal for nonmagnetic
leads, p = 0, and vanishes for p → 1.

The unitary limit for the P configuration can be achieved by tuning the
magnetic field appropriately, as discussed above. In this case, the maximum
conductance through the quantum dot is GP

max,σ = e2/h per spin, i.e., the same
as for nonmagnetic leads.

Numerical Renormalization Group. Although perturbative scaling provides
an instructive insight in the relevant physical mechanisms, it is a approximate
method, and its reliability is, a priori, not clear. The numerical renormalization-
group (NRG) technique [11], on the other hand, is one of the most accurate
methods available to study strongly-correlated systems in the Kondo regime.
Recently, it was adapted to the case of a quantum dot coupled to ferromagnetic
leads [38,39].

The NRG study [38,39] confirms the predictions of the perturbative scaling
analysis. The Kondo resonance is split, as a consequence of the exchange field.
By appropriately tuning an external magnetic field, this splitting can be fully
compensated and the Kondo effect can be restored [38]. Precisely at this field,
the occupancy of the local level is the same for spin up and down, 〈n↑〉 = 〈n↓〉,
a fact that follows from the Friedel sum rule. Moreover, the Kondo effect has
unusual properties such as a strong spin polarization of the Kondo resonance and
for the density of states. Nevertheless, the quantum dot conductance is found to
be the same for each spin channel, G↑ = G↓. Furthermore, by analyzing the spin
spectral function, the Kondo temperature can be determined, and the functional
dependence on p as given by (15) has been confirmed.
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More recently, the NRG scheme has been extended to account for structured
densities of states [40]. The generated spin splitting found in this case is found
to coincide with the exchange field defined in (6), when the energy-dependent
density of states is included in the integral.

Nonequilibrium Transport Properties. To get a qualitative understand-
ing of how the exchange field appears in nonlinear transport, we employ an
equations-of-motions scheme with the usual decoupling scheme [49], but gener-
alized by a self-consistent determination of the level energy to account for the
exchange field in a correct way. We skip all technical details here (they are given
in Ref. [37]), and go directly to the discussion of the results.
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Fig. 6. Total differential conductance (solid lines) as well as the contributions from the
spin up (dashed) and the spin down (dotted-dashed) channel vs. applied bias voltage
V at zero magnetic field Bext = 0 (a,c,e) and at finite magnetic field (b,d,f) for normal
(a,b) and ferromagnetic leads with parallel (c,d) and antiparallel (e,f) alignment of the
lead magnetizations. The degree of spin polarization of the leads is p = 0.2 and the
other parameters are: kBT/Γ = 0.005 and ǫ/Γ = −2

In Fig. 6 we show the differential conductance as a function of the trans-
port voltage. For nonmagnetic leads, there is a pronounced zero-bias maximum
[Fig. 6(a)], which splits in the presence of a magnetic field [Fig. 6(b)]. For mag-
netic leads and parallel alignment, we find a splitting of the peak in the absence
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of a magnetic field [Fig. 6(c)], which can be tuned away by an appropriate ex-
ternal magnetic field [Fig. 6(d)]. In the antiparallel configuration, the opposite
happens, no splitting at Bext = 0 [Fig. 6(e)] but finite splitting at Bext > 0
[Fig. 6(f)] with an additional asymmetry in the peak amplitudes as a function
of the bias voltage.

We conclude by mentioning that very recent experimental results [24,25]
indicate confirmation of our theoretical predictions.

5 Summary

The interplay of charge and spin degrees of freedom in quantum dots coupled
to ferromagnetic leads is investigated theoretically. The simultaneous presence
of both spin polarization in the leads and strong Coulomb interaction in the
quantum dot generates an exchange field that acts on the quantum-dot electrons.
We analyze its influence on the dot state and the conductance for different
transport regimes. Two mechanisms, which can be important, are identified. The
exchange field can precess an accumulated quantum-dot spin, and it generates a
level splitting. In the limit of weak dot-lead coupling, the spin precession leads to
a nontrivial dependence of the linear conductance on the angle between the leads’
magnetization. For strong dot-lead coupling, the exchange field is detectable in
a splitting of the Kondo resonance, which can be tuned away by additionally
applying an external magnetic field.
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Phys. Rev. Lett. 91, 247202 (2003)
39. M.S. Choi, D. Sanchez, R. Lopez: Phys. Rev. Lett. 92, 056601 (2004)
40. J. Martinek, M. Sindel, L. Borda, J. Barnaś, R. Bulla, J. König, G. Schön,
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