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Abstract

Evolution programs and their relatives have succeeded more and more in attacking hard
optimization and learning problems during the last years. There are immense numbers of
successful applications, which justify their importance in practice. One of the first attempts
to explain the way they work was Holland’s conjecture of schema propagation during
evolution. Although his theory based on that is still contested, it has been developed further
by many researchers and is still one of the pillars of the theory of evolution programs. But
until now there is no empirical evidence of the relevance of this theory.

In this thesis Holland’s conjecture of schema propagation during evolution is picked up
and combined with other approaches that also explore the mechanics of artificial evolution.
A comprehensive analysis of all these models and their deficiencies is given and their
relations to the models of natural evolution are considered. As a result, a simple but
tractable and rigorous theoretical model of schema propagation during evolution is formed.
To show the relevance of this model empirically, suitable indices have been developed first
to measure the schema reach in an artificial population and to generally describe its state.
Using the new indices then the schema reach is monitored in practice during the run of an
example evolution program on different instances of the traveling salesman problem.

Both the theoretical models and the performed experiments show the tight relation of
schema propagation and successful evolution. Schema propagation is indeed a prerequisite
for the improvement of the objective values during evolution but no guarantee. However,
it can easily be obstructed by higher mutation and crossover rates. The driving force
behind selection is the diversity of the population, which causes the selection pressure.
The genetic drift induced by the randomness of the selection process cannot be neglected
in the theoretical models. It drastically reduces the survival probability of new superior
individuals and also promotes the schema propagation, despite of only small differences of
the objective values in the population. Consequently, special cases can be constructed, for
which a deterministic model of the evolution process leads to totally wrong results.





“The urge to understand is paired with the urge for truth. But the perception
still need not be the truth at all.”

Donald Brinkmann
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Chapter 1

Introduction

Today evolution programs and their relatives have set up themselves to be suitable to at-
tack hard optimization and learning problems. There are immense numbers of successful
applications, which justify their importance in practice. Related to the still increasing
spread of evolution programs, the investigation of the way they work became an impor-
tant topic of research. Due to their practical success, most of the research is focused on
experimental work. Since evolution programs have many parameters, and data structures
and evolutionary operators may be related to a specific problem class, this is a very wide
research area. Nevertheless theoretical research has also been performed. Already Holland,
who introduced genetic algorithms, which are a root of evolution programs, explained their
success by the propagation of schemata in the artificial population during evolution [46]
and also presented a theoretical model of the propagation process. Later on, other re-
searchers tried to improve this model or to modify its interpretation. Although this theory
is contested, it is still a pillar for explanations of the way evolution programs work. But
there are no experimental observations of schema propagation in practical applications
and, consequently, there is no evidence for its applicability. The theory of Markov chains
has been independently applied to evolution programs [69]. Since nearly all approaches
start from the most general case, only general statements about evolution programs can
be derived from them and an application of this theory to a specific case is very difficult.
Especially, there seems to be no attempt to relate Holland’s schema propagation theory
to the Markov models. Although evolution programs are inspired by the example of nat-
ural evolution, the results gained by it mathematically are used only rarely for research
about evolution programs. This is very astonishing, because mathematical models had
been developed in genetics a long time before the introduction of evolution programs. The
foundations were laid by Wright [103] and Fisher [27], who both focused their work on the
role of selection in the evolution process. Later their models were improved and extended
by other researchers, which led to the theory of population genetics.

The aim of this work is to combine the different approaches mentioned above, to point
out their relations and to fill their deficiencies. Holland’s conjecture of schema propagation
is taken up and shown to be a prerequisite of a successful evolution. To elucidate some
points of the consideration also empirically, the traveling salesman problem is used as an
example problem because of its clarity. The text also gives a concise but rigorous basic
introduction to the working of evolution programs, also summing up many results scattered
throughout the literature.

1
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Chapter 2

Hard Problems

2.1 Overview

In this chapter the motivation is given to use evolutionary algorithms. Despite the advances
in providing faster and faster computers many problems can not be solved as fast as
one would wish. Since of its simplicity as an example of this problems the traveling
salesman problem is proposed and its properties are considered. Extending the discussion
the relations to other hard problems are explored and some approaches to compute at least
admissible approximations or to improve them are proposed. The consideration follows
and summarizes mostly the clear articles of Johnson and Papadimitriou [49, 50], which
can be recommended a lot as a starting point for a deeper understanding of this subject.
Alternatively one may read chapter 34 of Cormen’s et aliorum nice textbook [17, p. 966ff ].

2.2 The Traveling Salesman Problem

The traveling salesman has to visit every city in his territory exactly once and then to
return to the starting point. Given the costs to travel between all cities he wants to
minimize his total expenses. The problem has been named according to the title of an
ancient German book [70] instructing real world traveling salesmen how to succeed in their
business. Euler [24] already struggled with the same problem when he tried to solve the
knight’s tour problem: a knight should visit each of the 64 squares of a chessboard exactly
once in a single tour.

The mathematical formulation of the problem is more complicated than the informal
description given above [68, p. 442ff ]. In the most general version there is a weighted,
directed and complete graph G = (V ,E, C). The vertices V = {1, . . . , n} represent the
cities, the edges E the paths between the cities, and the distance matrix C = 〈cij〉 the
nonnegative costs to travel from city i to j with cij ∈ Z. If the costs of a path between two
cities depend on the tour direction the problem is called the asymmetric traveling salesman
problem. If the relation cij = cji holds, which relaxes the general case to have distances
independent from the tour direction, it is called the symmetric traveling salesman problem.
Now, a binary integer programming problem has to be solved. The variables

xij :=

{

1, if in the tour city j follows city i
0, else

∀i, j ∈ {1, . . . , n}

3



4 CHAPTER 2. HARD PROBLEMS

determine the course of the tour. Therefore, the function of the traveling expenses

f(x) =
n
∑

i=1

n
∑

j=1

cijxij

has to be minimized while satisfying the conditions

n
∑

i=1

xij = 1 ∀j ∈ {1, . . . , n}

and
n
∑

j=1

xij = 1 ∀i ∈ {1, . . . , n}.

So far, the requirements only describe the assignment problem that would allow a solu-
tion consisting of several disjoint subtours. Thus a tour also has to satisfy the one-cycle
conditions

∑

i∈U

∑

j∈U

xij ≤ |U | − 1, ∀U ⊂ V , U 6= ∅.

They ensure that in a subset U of the vertices the number of edges of the related subtour
is shorter than required for a cycle. There are 2n − 2 of these restrictions and there are
furthermore other formulations of these one-cycle conditions possible [22, section 3.1].

The traveling salesman problem (TSP) is a member of the class of combinatorial op-
timization problems. I. e. there is a problem domain Zn on which an objective function
f : Zn 7→ Z is defined, which has to be maximized or minimized. Furthermore, there may
be a set of m constraints r1, . . . , rm, which have to hold, defined also on the same domain as
the objective function. Any X ∈ Zn that satisfies all m constraints is called an admissible
solution of the optimization problem. Finally, there are one or more admissible solutions,
which are optimal. In case of a maximization problem, there is no higher objective value
possible than the objective value of the optimal solution(s), or in case of a minimization
problem, there is no lower objective value possible than the objective value of the optimal
solution(s).

Corresponding to the original optimization problem there is also the traveling salesman
decision problem. Given again a graph G like above and additionally a bound, then the
question is, whether there is a tour visiting each vertex exactly once with a length lower
than the given bound.

2.3 Growth of Functions

In many situations only the asymptotic behavior of a function is of interest. The function
then can be approximated or bounded by a another function easier to deal with [17,
p. 966ff ].

A function f(x) is bounded asymptotically from above by a second function g(x) if
there are positive constants c1 and n0 such that

0 ≤ f(n) ≤ c1 g(n)
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holds for all n ≥ n0. This fact is abbreviated by the notation f(x) = O(g(x)). Equivalently
the ratio of the two functions

f(n)

g(n)
= c1

must be bounded from above for all n ≥ n0. Analogously a function f(x) is bounded
asymptotically from below by a second function g(x) if there are positive constants c2 and
n0 such that

0 ≤ c2 g(n) ≤ f(n)

holds for all n ≥ n0. This fact is abbreviated by the notation f(x) = Ω(g(x)). Equivalently
the inequality

0 <
f(n)

g(n)
= c2

has to hold for all n ≥ n0. If for two functions f(x) and g(x) both conditions f(x) = O(g(x))
and f(x) = Ω(g(x)) hold, then this is noted by f(x) = Θ(g(x)). Then the function g(x) is
an asymptotically tight bound of the function f(x). If especially

lim
n→∞

f(n)

g(n)
= 1(2.1)

holds, then g(n) is called an asymptotic approximation of f(n).
Generally the asymptotic upper bound given by the O-notation may or may not be

asymptotically tight. E. g. the bound 2n = O(n2) is not tight. Consequently the func-
tion g(x) is called to be of lower order than the function f(x) if for any positive constant
c > 0 there exists a constant n0 > 0 such that

0 ≤ f(n) < c g(n)

holds for all n ≥ n0. This fact is abbreviated by the notation f(x) = o(g(x)). Consequently
then for the ratio of the two functions

lim
n→∞

f(n)

g(n)
= 0

holds. Analogous definitions can be performed for the lower bound.
The above considerations also can be used to characterize the behavior of a function if

its argument approaches a certain point. From equation 2.1 then

lim
n↓n0

f(n)

g(n)
= 1(2.2)

follows for a function g(n) to be an asymptotic approximation of the function f(n) for
n ↓ n0. The compliance is denoted by f(n) ∼ g(n) [47, p. 7]. Finally the approximation
error

e(n) = f(n) − g(n)
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is of some interest. For it

lim
n↓n0

e(n)

g(n)
= lim

n↓n0

f(n)

g(n)
−

g(n)

g(n)
= lim

n↓n0

f(n)

g(n)
− 1

holds. For f(n) ∼ g(n) then with equation (2.2)

lim
n↓n0

e(n)

g(n)
= 0

follows and finally e(n) = o(g(n)). Then near n0 the error induced by the approximation
becomes insignificant in relation to the approximating function.

2.4 Computational Complexity

In theoretical computer science the worst case running time of a program solving a given
problem depending on its size is an important property. Generally there are two classes
of problems, the tractable and the intractable respectively hard ones, which can be further
divided into subclasses.

Problems are called tractable if the worst case running time of the best known algorithm
is asymptotically bounded from above by a polynomial function of the problem size n. Ab-
breviated these problems are solvable in polynomial time and consequently they are called
to belong to the class P . All other problems not solvable in polynomial time belong to the
class of intractable respectively hard problems. Two prominent subclasses are problems
solvable only in exponential time and problems, which are provable unsolvable. Unfortu-
nately, for the traveling salesman problem no polynomial time algorithm is known until
now. The chances to find one in the future are also extremely low, because the traveling
salesman problem belongs to the class NP of closely related problems, which has been
investigated very intensively during the last decades. If a polynomial time algorithm for
one of the problems would be found, also all other problems of that class could be solved
in polynomial time. On the other hand, these problems until now could not be proved
to require exponential time in relation to the problem size. Thus there is the conjecture
of P ⊂ NP and consequently P 6= NP . In the following some of the properties of the
problems belonging to the class NP are considered informally and shortly.

For the present the consideration is restricted to decision problems like the traveling
salesman decision problem presented above. There the related question can be affirmed by
giving an appropriate tour. Then one can check the claim by computing the tour length.
The tour is called a succinct certificate, because in the case of the traveling salesman
decision problem the length of the certificate is a linear function of the problem size and
the claim can by proved in polynomial time. Correspondingly, a definition is possible
by the introduction of nondeterministic algorithms, which are unrealistic but theoretically
ingenious. There the computation can be divided into different branches which are executed
in parallel. Repeating this, the computation can spread to a tree which at most can grow
as much as an exponential function of the number of division levels. If the computation
of any of the branches leads to a result that can be used as a certificate to a positive
decision, the answer is affirmative, else negative. Now a problem belongs to the class NP
of problems if it can be solved by a nondeterministic algorithm in polynomial time.
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The considerations above can be further extended. If a problem is in the class NP and
any other problem of that class can be reduced to it in polynomial time, then it is called
to be in NP-complete. Thus one can solve any problem of this class by transforming
it to any other member, solve that and retransform the solution to that of the original
problem. Since this is a class property it is sufficient for the membership of a new problem
to show that it is in NP and one of the problems already known to be members of
the class can be reduced in polynomial time to it. E. g. the traveling salesman decision
problem can be proved to be in NP-complete by the reduction of the Hamilton cycle
problem to it. The original traveling salesman problem is not in NP-complete because it
is not a decision problem although it is of even algorithmic complexity as the members
of that class. Furthermore there are problems not known to be members of NP but all
problems belonging to NP can be reduced to them in polynomial time. These two sets
are summarized in the class NP-hard.

2.5 Approximation Algorithms

Since there is no hope to find a deterministic polynomial time algorithm for an optimization
problem belonging to the class NP , one at least will pursue to find an approximation
algorithm that will calculate a near optimal admissible solution in polynomial time. Thus
given a constant factor r with 1 ≤ r < ∞ for each problem instance I the approximative
solution A(I) should satisfy

A(I) ≤ r O(I)

with O(I) being the optimal solution. Unfortunately this claim can not be satisfied, because
e. g. such an approximation for the traveling salesman problem could be used to solve the
Hamiltonian cycle problem, which is proven to be in the class NP-complete.

The situation relaxes a little, if the traveling salesman problem is restricted to conform
to the triangle inequality. Thus for the distances cij between the cities i and j the inequality

cij ≤ cik + ckj

holds for a third city k and for all i, j, k ∈ {1, . . . , n}. The inequality is satisfied e. g. for
planar problems and euclidean distance and ensures a roundabout way not to be an abbre-
viation. Then polynomial approximation algorithms at least for the symmetric traveling
salesman problem exist. They are based on the construction of a minimal spanning tree,
which then is modified to become a valid tour. Both operations can be performed in a time
polynomial in relation to the problem size. The best known algorithm has been proposed
by Christofides [16] that calculates a tour with a length C(I) holding

C(I) ≤
3

2
O(I).

There may exist better approximation algorithms, and also there may exist an approxima-
tion scheme. This is an algorithm which takes an instance I and an error bound ε > 0 as
inputs an returns an a solution to the problem with value A(I, ε) such that

|A(I, ε) − O(I)|

O(I)
≤ ε.
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(a) (b)

2 3

1

8 7 6

5

4 2 3

1

8 7 6

5

4

Figure 2.1: 2-change example: (a) current tour, (b) after exchange.

It would be useful to have a fully polynomial time approximation schema, i. e. a determinis-
tic algorithm that calculates an approximative solution within a relative bound ε and that
is polynomial in both the number of cities n and 1/ε. Unfortunately it can be proved that
no such scheme can exist for the traveling salesman problem assuming that P 6= NP .

2.6 Improvement Strategies

Improvement strategies start from an already existing admissible solution and try to im-
prove it by local search. The local search requires a neighborhood in which the algorithm
searches. If during the search a better admissible solution is found, it is taken as new
starting point. The procedure is repeated until no further improvement is possible. The
algorithm is more primitive than a hillclimbing algorithm, that searches for the maximal
possible improvement before taking the related admissible solution as a new starting point.

In the case of the traveling salesman problem, a neighborhood can be defined to be the
set of tours that can be created by exchanging a limited number of edges already in the
tour with edges not in the tour. Then the distance between two tours can be defined to
be the minimal number of exchange steps required to transform a tour into the other and
vice versa. In the simplest case two edges are replaced, which is shown in figure 2.1 for
a graph with vertices in a horizontal plane and consequently with an euclidean distance
function. The replacement of the edges e3,6 and e4,7 by e3,4 and e6,7 shortens the distance
of the new tour by eliminating the intersection. As a side effect of this 2-change the
subtour between vertices 6 and 4 is reversed. This limits the usefulness of the approach to
symmetric traveling salesman problems.

If the neighborhood is determined by the replacement of k edges the resulting final tour
is called k-optimal [57]. Since higher values of k do not increase the quality of the resulting
solutions as much as they raise the number of operations, values of k = 2 and k = 3 are
most often used [51, p. 541]. An advanced algorithm by Lin and Kernighan [58] varies the
number of exchanged edges k in an an ingenious manner. For many test problems it finds a
tour, which can be proved to be optimal by other approaches. But generally a local search
can not be guarantied to find a tour whose length is bounded by a constant multiple of



2.7. CLASSIFICATION OF APPROACHES 9

the tour length, provided that the neighborhood is bounded polynomially in relation to
the problem size and that P 6= NP .

2.7 Classification of Approaches

Since there is no hope to find a deterministic polynomial time algorithm besides the pro-
posed approximation and improvement algorithms a lot of other approaches have been
tried besides the improvement strategies proposed above. Generally the algorithms to at-
tack intractable problems can be divided into two classes, ones with provable success and
ones without.

Branch and cut algorithms belong to the first group. They use polyhedral theory [37]
and their running time also for large problems is acceptable although clearly not polyno-
mial. Most of the known best tours of special test problems have been calculated using
this approach and it can be applied to many other combinatorial optimization problems.

The approaches of the second group usually are called heuristics, although this label is
controversial. In the strict sense a heuristic finds the optimal solution of non pathological
problem instances, but special instances can be constructed, that deceive it. A typical
example is the Lin-Kernighan algorithm mentioned above, which in many cases computes
the optimal tour for a symmetric traveling salesman problem. In the wide sense a heuristic
is just an algorithm calculating an admissible solution which hopefully may be close to
the optimum. In his book Reinelt gives an overview about this class of algorithms for the
traveling salesman problem and a comparison of their performance [84, Chapter 3, p. 31ff ].

2.8 Problem Instances

Although a problem generally belongs to the class of NP-hard problems, there are differ-
ences in the solubility of certain instances. E. g. for the traveling salesman problem one
can construct an instance with all cities on a circle. Clearly each improvement strategy
like the 2-change algorithm will quickly find the optimum tour. This can be rendered more
difficult by constructing special instances that require hillclimbing respectively a greedy
strategy. I. e. the optimum can only be found if in each improvement step a local search
is performed and the highest possible improvement is chosen. Depending on the used al-
gorithm, it is often also possible to construct special instances obstructing the algorithm
totally which conforms with the properties considered above. Finally, in experiments pro-
posed to illustrate the power of a new solution strategy often instances created at random
are used. Unfortunately these are not very suitable for testing, because they usually are
easy to solve for most heuristics in the strict sense.

2.9 Summary

The traveling salesman problem is a typical and clear example of a NP-hard problem.
In spite of the results found until now it is not definitively clear why it is so difficult to
solve [38, p. 85]. Since it is very improbable to find an efficient deterministic algorithm,
many other solution approaches besides the proposed ones have been tried. Furthermore,
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there are a lot of general stochastic algorithms like simulated annealing [9, p. 305ff ], which
usually also are labeled heuristics and which can be applied also to the traveling salesman
problem. One further approach to attack intractable optimization problems is to use
evolution programs, which will be presented in the next chapter.



Chapter 3

Evolution Programs

3.1 Motivation

In this chapter a short and mostly informal introduction to evolution programs is given.
Evolution programs are inspired by the process of natural evolution and mimic lots of
the structure and working found there. Thus first some aspects of natural evolution are
considered. Then genetic algorithms are proposed and generalized to evolution programs.
Several aspects needed later are further explored. Clearly the consideration lacks the
generality of a full size introduction to evolution programs because of this concentration.
The reader may refer to the textbooks of Michalewicz [63], Bäck [4], Mitchell [64] and
Goldberg [32] for a wider survey although the theoretical parts should be taken with care
as will be considered later. Alternatively Beasly, Bull and Martin [5, 6] provide a reasonable
short introduction into the subject.

3.2 Natural Evolution

The natural evolution has been the inspiration to develop evolution programs and their
related variants. It is a very complicated process, which can be considered on several levels
of abstraction. The first observations about changes of species over time in nature have
been published by Jean-Baptiste Pierre Antoine de Monet, Chevalier de Lamarck [65].
But wrongly he conjectured that adaptations of individuals are transmitted to the next
generation by heredity. Later on Charles Darwin laid a large part of the foundations of the
evolutionary theory. He recognized the combination of reproduction, small changes and
selection to be the source of the development of the species and the adaption to different
environments [20]. A very similar model has been developed independently by Alfred
Russel Wallace [98] and been proposed together with Darvin’s one. Independently from
this research the second branch of the theory of natural evolution has been founded by
the monk Johann Gregor Mendel. From his experiments to breed flowers in the garden
of his monastery at Brünn he conjectured that the combination of information stored and
transmitted in the flowers determines certain of their properties. By deducing the laws
of heredity he founded genetics [62]. His consideration has not been taken seriously for
a quiet long time and temporarily also been lost. From around 1900 genetics succeeded
and the process culminates in the discovery of the dual helix structure of the DNA by

11
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Figure 3.1: Flow chart of the classical genetic algorithm

James D. Watson and Francis H. C. Crick [100]. Both proposed branches of research
have been joint to the synthetic evolutionary theory, which has been mainly influenced
by Theodosius Dobzhansky [21] and Ernst Mayr [60]. A nice introduction into natural
evolution with a detailed presentation of the history of the research is given by Storch,
Welsch and Wink [93].

Neglected by most considerations about evolution from the biological point of view
is the development of mathematical models for the propagation of genes. This field of
population genetics has been mainly initiated by the work of Ronald H. Fisher [27] and
Sewall Wright [103].

3.3 Genetic Algorithms

Genetic algorithms are one approach to use the elements of the natural evolution to attack
hard problems. In their original version introduced by Holland [46], the domain space of
the problem corresponds to a fixed length binary string. A candidate solution is encoded
in it and the code is called an individual. The genetic algorithm then works on a set or
population of such individuals. In figure 3.1 the process is visualized in a flow chart. First
a start set is generated at random or by another heuristic. Then the process enters a loop.
The individuals are evaluated to give some measure of their “fitness”. Depending on it,
individuals are selected randomly from the population for reproduction. Those with a high
fitness get a better chance to be selected than those with a low fitness and an individual
may be selected multiple times. The selected individuals are randomly modified by the
genetic operations crossover or mutation or both. Crossover cuts two individuals at one or
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Figure 3.2: Binary encoded individual

more randomly chosen crossings and swaps the corresponding sections whereas mutation
randomly changes single bits of an individual. Finally the set of newly created individuals
replaces the current population either partly or completely forming a new population.
This evolution process recurs until it reaches a stop criterion. During the run the fitness of
the individuals should get improved so that both the fitness of the best individual and the
average fitness increase. If there is no more improvement, the algorithm may be terminated.
Thus the genetic algorithm tries to generate subsequent new and better solution sets by
employing genetic operations on the individuals in each turn or generation.

The proposed genetic algorithm can be used to attack combinatorial optimization prob-
lems. Then usually each variable xi corresponds to a substring of an individual. An exam-
ple is depicted in figure 3.2 for the variables x1, . . . , x6. The length of the substrings may
vary depending on the domain sizes as shown in the example. The individual’s fitness is
calculated by a fitness function f(x1, x2, . . . , xn), that takes the related objective value into
account and also transforms a minimization to a maximization problem if required. If the
possible solutions have to satisfy additional restrictions also, two approaches are possible.
On one hand the fitness function may be modified to penalize violations of the restrictions
by reducing the fitness of the individual. This may lead to additional local optima and the
generated final solution candidates may not necessarily conform to all restrictions. On the
other hand the new individuals may be repaired if necessary to conform to all restrictions
before they replace the old individuals. This may lead to a lot of modifications of the
solution candidates.

The original genetic algorithm has been extended in many different ways. There are
several additional different types of crossover, e. g. two-point and uniform crossover and
many selection methods like proportional and tournament selection. Finally the portion
of the population being replaced by the newly created individuals can be varied.

Two important disadvantages of the proposed approach should be mentioned here. First
the effect of a mutation depends on the position of the related bit in the substring and
the used encoding. I. e. changing a single bit in a substring may have a higher effect then
changing several bits. Second, a crossover point may also be located inside a substring,
which would change the related variable instead of to exchange information. The recogni-
tion of these problems and the pursuit to avoid them has motivated some researchers to
modify and to improve the original genetic algorithm.

3.4 Evolution Programs

It was Michalewicz [63] who first abstracted and generalized genetic algorithms to evolu-
tion programs. He modified the concept of genetic algorithms in several aspects. First the
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internal encoding is extended to be any, but problem adequate data structure, consisting of
several parts each representing a solution component. Second the genetic operations muta-
tion and crossover are generalized to be problem specific. The unary mutation introduces
new elements of the domain space and the binary crossover swaps corresponding solution
elements between solution alternatives. Ideally, the encoding and the specific genetic oper-
ations of an evolution program respect the restrictions of the problem by generating only
admissible solutions. Hence penalty functions and repair algorithms become superfluous.

In most cases, evolution programs outperform ordinary genetic algorithms [63, p. 9].
But each problem requires an especially adapted evolution program with an adequate solu-
tion encoding and mutation and crossover operators, which increases the implementation
expense. One possible solution is, to use object-oriented programming languages and a
design with extensibility and adaptability in mind [29].

As an example in the next section an evolution program is proposed to attack the
symmetric traveling salesman problem.

3.5 An Evolution Program for the TSP

A variety of approaches have been attempted so far to generate near optimal solutions
with genetic algorithms or other evolution inspired techniques for the Traveling Salesman
Problem also. They vary in the used representations, the genetic operators, whether they
use penalty functions, repair algorithms or avoid both, and whether they use additional
improvement strategies on newly generated individuals. Michalewicz [63, Chapter 10,
p. 211ff ] proposes the most important approaches and discusses their pros and cons. The
program TSPGA uses a different approach aiming to tackle symmetric traveling salesman
problems the simplest possible way [30].

The edges visited by a tour provide the important information for a tour description.
Each used edge contributes its length to the total tour length. Thus TSPGA also empha-
sizes the edges used in a specific tour by representing a tour of n cities as an adjacency
list A = [a1, . . . , an] with ai = j, if and only if the tour leads directly from city i to city j.
I. e. the index of a list value represents the start city of an edge and the value at this index
its destination. A drawback of this approach is, that the representation of a tour on the
encoding level depends on its direction. Thus for each tour there are two totally differ-
ent encoded representations, one for each direction. But both can quickly be transformed
into one another by simply exchanging index and value. Nevertheless, for instances up to
1000 cities this is the best known tour representation, whereas for larger problems other
representations are more efficient [28].

Unfortunately, a crossover produced by simply swapping the remainder following a
randomly chosen crossing leads to illegal tours in this representation. Generally it is also
not possible to incorporate a subtour of one admissible solution into another admissible
solution without modifying it deeply to maintain the admissibility. Furthermore, for many
other problems the simple one-point crossover performs not as well as the so called uniform
crossover [94], which swaps corresponding parts of the candidate solutions separately. Thus,
the aim is to find a crossover operator to exchange some edges between the individuals
and a mutation operator to introduce new edges. Additionally, the resulting tours must
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Figure 3.3: Effect of a 2-change operation on the tour representations

comply with the restrictions for admissible tours. Both operators require an operation that
incorporates any given edge into a tour without destroying it.

TSPGA provides this facility by using Lin’s 2-change algorithm [57] presented already
in section 2.6. If the edge eij should be incorporated into the tour with the adjacency list
A = [a1, . . . , an], Then the edges ei,ai

and ej,aj
are replaced by the chosen edge eij and a

new edge eai,aj
in order to satisfy the tour restrictions. Furthermore, the edges between

the vertices ai to aj have to be reversed in the adjacency list, because this part of the
old tour is visited in reverse in the new tour. As an example the situation in figure 2.1
is reemphasized in figure 3.3. To introduce the new edge e3,4 into the tour the edges e3,6

and e4,7 have to be removed and the second new edge e6,7 closes the tour and ensures the
admissibility. The enclosed subtour has to be reversed. On the phenotype and the encoding
levels this changes the representation as shown in figure 3.3. Using the algorithm above,
mutation and crossover are easily derived. For each position h = 1, . . . , n in the adjacency
list the mutation operator checks whether it should change the accompanying edge or not.
In this case, it randomly determines a new destination vertex k and incorporates the new
edge eh,k into the tour. Similarly, for each position i = 1, . . . , n in the adjacency list the
crossover operator checks whether it should take over a new destination vertex j from the
individual to mate with. If so, it incorporates the new edge ei,j into the tour.

As a major advantage both randomized 2-change genetic operators process the essential
information, i. e. which edges are used in the tour. Furthermore, in every stage the oper-
ators guarantee a tour meeting all restrictions. However, both operations introduce new
edges into a tour to preserve its admissibility and the necessary reversion of the subtour
between the new edges changes its representation completely. But similar problems are
related to every known tour encoding and generally can not be circumvented.

3.6 Notation and Terminology

After proposing genetic algorithms and evolution programs rather fuzzily and by example
now the situation and notation is refined and formalized.

In the following an evolution program is assumed to act on a population P of N individ-
uals I1, . . . , IN . An individual Ii representing a solution candidate of the related problem
has an array of M different attributes Ai,1, . . . , Ai,M and each value Ai,j is taken from its
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Figure 3.4: The relations between genotype, solution, phenotype and objective value and
the different domain levels.

domain Aj = {aj,1, . . . , aj,nj
}. Usually this is called a string type representation. The com-

bination of all attribute domains A1 × A2 × . . . × AM = A is called the encoding domain
of the evolution program. If the attribute domains are restricted to the set {0, 1}, then the
encoding is called binary, which is characteristic for genuine genetic algorithms. Finally,
here each combination of attributes is called a class.

Using the decoding function d : A 7→ Zn, an individual is decoded into a solution in the
problem domain. In evolution programs the solution usually is required to be admissible
and there may be several different solutions, which in fact are equivalent. E. g. a tour
belonging to a symmetric traveling salesman problem can start at each node and into both
directions, thus it may have a lot of “different” but in fact equivalent representations on the
problem and depending on the chosen representation also on the encoding domain. Finally
from the solution in the problem domain the objective value belonging to the individual
can be calculated and from that its fitness. By the way, choosing a suitable encoding
heavily influences the performance of an evolution program. It may also be possible to
omit the distinction between genotype level and problem domain. Then no decoding is
necessary.

Analogously to the terms used in genetics a substring of the attribute array, which
encodes a variable in the problem domain, is called a gene, its combination of values
allele and its position locus. The whole attribute array corresponds to the genotype in
genetics, whereas its partition into separate chromosomes in evolutionary computing is
used only rarely. In evolution programs usually each attribute in the encoding domain
maps to a variable in the problem domain, i. e. an attribute corresponds to a gene and its
position j to the locus. Here this is assumed generally for convenience in the notation and
terminology, but this does not restrict the generality of the consideration1. The real world
representation of a solution or of a set of equivalent solutions is called phenotype of the
individual. In figure 3.4 the relations between the different domain levels considered above
and the terminology are presented.

3.7 Schema Propagation Conjecture

Already some approaches have been made to explain why genetic algorithms and evolution
programs in many cases produce near optimal solutions. Already Holland [46, chapter 6,

1Sometimes also in genetic algorithms a single bit is called a gene and its position locus.
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p. 89ff ] tried to explain the improvement of the objective values respectively fitnesses
during an evolution by introducing the notion of a schema, which otherwise would be
called a pattern. In his considerations he took only a binary encoding into account but his
argumentation can be transferred analogously to any string based representation like the
one proposed above, which is performed in the following.

A schema consists of some fixed attribute values at certain positions of the attribute
array whereas the other positions are arbitrary, which is denoted by the ∗ symbol. E. g. a
population consisting of the four individuals having the chromosomes

I1: 1 3 4 3 6 1
I2: 2 3 8 2 6 4
I3: 1 3 9 4 6 2
I4: 5 3 8 1 1 3

may be assumed. Then all chromosomes match the schema ∗ 3 ∗ ∗ ∗ ∗, the chromosomes of
the individuals I1, I2 and I3 the schema ∗ 3 ∗ ∗ 6 ∗ and the chromosomes of I1 and I3 the
schema 1 3 ∗ ∗ 6 ∗. Formalized a schema S describes a subspace of the encoding domain A,
i. e. S ⊆ A holds. Then an individual matches a schema if it is in the related subspace, and
the most specialized schema is a certain genotype. In an actual population the individuals
belonging to genotypes matching a schema form a subset of the population.

Holland conjectured that the propagation of schemata in a population during the evo-
lution is the main source of the improvement of the average and of the best individual’s
fitness during evolution. He also presents a rudimentary mathematical model and gives
some proofs of an approximation for the schema propagation [46, chapter 6, p. 89ff ]. Until
now there is an ongoing discussion about the significance of his work. Conversely to the
attention payed to Holland’s conjecture there are only rare attempts to develop indices
that describe the state and the reach of schemata in a population. Thus until now there is
no empirical evidence for the propagation of schemata in a population during the run of
an evolution program or genetic algorithm.

3.8 Consequences and Tasks

Picking up Holland’s conjecture of schema propagation three tasks have to be performed
to get deeper insight into the working of evolution programs and genetic algorithms.

1. A rigorous but clear theoretical model of the schema propagation process during
evolution is needed. Although since Holland’s initial work many articles have been
published both supporting and doubting his conjecture, most of them are at least
incomplete, only approximative, fuzzy or to complex. The model should incorporate
also the approaches used already in population genetics. Then its properties have
to be explored theoretically and compared with the existing models for evolution
programs.

2. Until now there are no suitable indices to monitor the propagation of schemata in a
population during a run of an evolution program. The schema reach in a population
is one component of the state of the population. Consequently suitable indices have
to be found that describe the state of a population and measure the schema reach in
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it. In the existing work usually only the average fitness and the fitness of the best
individual is recorded. Since the problem is similar to that of identifying patterns in
multivariate sets by machine learning, the relations to indices used in that area of
research also have to be explored.

3. Experiments have to be performed using the new indices to observe what really
happens during the run of an evolution program. Although so many experiments
have been performed, there are no observations supporting or refuting Holland’s
conjecture because of the missing suitable indices. The resulting observations have
then to be compared with the properties of the theoretical model. Hopefully then
there are no contradictions between the observations and the theoretical forecasts.

In the next chapter the first task is performed by considering a simplified model of evolution
as a stochastic process.



Chapter 4

A Theoretical Model of Evolution

4.1 Introduction

As stated above, one component of evolution is selection. In natural evolution this is
often referred to by the phrase “survival of the fittest”, which has been introduced by
Spencer [91] but often is attributed to Darwin. In nature an individual has no fitness
property by himself, fitness turns out by survival and reproduction of an individual over
the time. Nevertheless selection models have been proposed, assuming individuals having
a fitness value. In evolutionary computation, fitness is related to the objective value of the
generated solution candidates. To imitate the natural selection, often a stochastic selection
process is used similar to that found in simple models of natural evolution. A further
component of evolution is mutation. Usually it is applied stochastically to the selected
individuals modifying some of their properties. A modified individual then belongs to a
different species, which also may change its fitness. The selected and modified individuals
then can be used to replace the old ones.

In population genetics mathematical models of the evolution process incorporating
both components mentioned above have a long tradition. Fisher [27] introduced a model
suitable for large populations, whereas Wright [103] investigated the influence of a small
population size. As mentioned already above, in evolutionary computation Holland [46,
p. 89ff ] independently also tried to model the evolution in his algorithms mathematically
to support his conjecture of propagation of better schemata as a main source of the success
of evolution. Later on, other researchers extended his model and tried to modify its
interpretation. But it is still one of the foundations of evolutionary computing and proposed
in every introductory book of this subject.

The models used in both disciplines are very similar and can be used to form a uni-
fied approach, which then can be attached by standard methods developed for stochastic
and deterministic dynamic systems. The results of both approaches have to be compared
against each other and with that of existing other models. Finally, relations to the propa-
gation of schemata must be proposed.

In the next section an evolution process is proposed using the variant fitness propor-
tional random selection neglecting mutation and crossover or any other manipulation of
the individuals, which is a simplification of the process taking place in many evolutionary
algorithms.

19
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Figure 4.1: Roulette-wheel for selection out of four species. The slots are attached to a
species Sj proportional to its relative fitness.

4.2 The General Model of Selection

A population P is a multiset of N individuals1. Each individual i belongs to a species Sj of
the set S of M different species. Consequently, a species Sj is represented by nj equivalent
individuals in the population and the equation

M
∑

j=1

nj = N(4.1)

holds. Each unique combination of frequencies n
(l)
1 , . . . , n

(l)
M is called a state l of the pop-

ulation. Furthermore each individual i has a fitness F (i) determined by its affiliation to
one of the species. If individual i belongs to species Sj, the equation F (i) = Fj holds.

An individual is selected randomly for reproduction from the population in state l
according to its fitness in relation to the sumfitness

Φ =
N
∑

i=1

F (i) =
M
∑

k=1

n
(l)
k Fk.

Then the probability ps(Sj, l) to select an individual belonging to species Sj equals

ps(Sj, l) =
n

(l)
j Fj

Φ
=

n
(l)
j Fj

M
∑

k=1

n
(l)
k Fk

.(4.2)

Goldberg [32, p. 10ff ] has visualized this fitness proportional random selection by a
roulette-wheel like the one depicted in figure 4.1. The wheel has a number of slots and
to a species j belongs a portion corresponding to the sum of the fitness of its members
n

(l)
j F (j) in relation to the sum of the individuals’ fitness. Throwing the ball, it will stop

randomly in one of the slots with equal probability and an individual of the related species
is selected.

1In population genetics usually a population size 2N is considered because individuals are assumed to
be diploid.
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In the model of evolution considered here, the selection process from a given popula-
tion P (t) at time t is repeated N times and the chosen individuals are copied to form the a
population P (t + 1). In evolutionary computation this is known as generational approach
in contrast to the non generational or steady-state approach, where in each generation
one individual of the population is replaced by a new one, that is created by evolutionary
operators from the current population [88]. In probability theory the generational selection
process used here corresponds to sampling with replacement. Consequently, the frequencies
n1(t + 1), . . . ,nM(t + 1) at generation t + 1 are stochastic variables just as the state n is

one. The conditional probability to select as new population P (t+1) exactly m
(k)
1 , . . . ,m

(k)
M

individuals of the species S1, . . . , SM forming the actual state k depending on the current
population P (t) at generation t in actual state l with frequencies n

(l)
1 , . . . , n

(l)
M follows a

multinomial distribution and consequently is given by

p(n1(t + 1) = m
(k)
1 , . . . ,nM(t + 1) = m

(k)
M |n1(t) = n

(l)
1 , . . . ,nM(t) = n

(l)
M )(4.3)

=
N

m
(k)
1 ! · · ·m(k)

M !
pm

(k)
1

s (S1, l) · · · p
m

(k)
M

s (SM , l).

This conditional probability depends not on the generation number respectively time t.
Consequently the evolution is a homogeneous Markov chain and the sequence of populations
forms a homogeneous Markov chain.

Following combinatorial theory there are

v =

(

N + M − 1

N

)

(4.4)

different states [69, p. 81], which are too many for a clear analysis. Consequently, in
the following, the model is restricted to a set of two different species S = {S1, S2}. There
species S2 corresponds to the species under consideration and species S1 combines all other
individuals. By doing so the evolution can be explored without complicating the situation
unnecessarily by considering further species. In evolutionary computation this approach
sometimes is called a “coarse grained” model of the evolution process [92]. Then from
equation (4.1)

n1 + n2 = N(4.5)

follows. Furthermore, the fitness F2 of the individuals of species S2 here is assumed to be
related to the fitness F1 of the individuals of the species S1 by the equation F2 = α F1 with
the fitness factor α ≥ 0. Using that and equation (4.5) the equation (4.2) of the selection
probability in state l is simplified to

ps(Sj, l) =
n

(l)
j Fj

n
(l)
1 F1 + n

(l)
2 F2

=
n

(l)
j Fj

(n
(l)
1 + α(N − n

(l)
1 ))F1

.(4.6)

Since there are only two species, it is sufficient to consider only species S2. Then the number
of individuals n

(l)
2 belonging to it equals the actual state l of the population, which in the

following will be noted by n. The probability ps(S2, l) to select an individual belonging to
species S2 then is a function of the actual state l = n only and from equation (4.6) for the
selection probability

ps(n) =
nα

N + (α − 1)n
(4.7)
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follows.
Analogous to the situation of M species, here the state n(t + 1) of the new popula-

tion P (t+1) is a binomially distributed stochastic variable depending on the actual state n
of the old population P (t). With equation (4.7) the conditional transition probability

P{n(t + 1) = j|n(t) = i} =

(

N

j

)

pj
s(i)(1 − ps(i))

N−j(4.8)

=

(

N

j

)(

iα

N + (α − 1)i

)j (
N − i

N + (α − 1)i

)N−j

.(4.9)

follows. Equation (4.8) is the restriction of equation (4.3) to only two species. Consistently
to the above formulas two special cases are defined:

P{n(t + 1) = 0|n(t) = 0} = 1 and P{n(t + 1) = N |n(t) = N} = 1.(4.10)

Thus, if a population consists of individuals belonging to only one species, then this state
will be preserved because there is no mutation in the considered model.

The model proposed until now in fact is the Wright-Fisher model, which is widely
used in population genetics [25, p. 16ff ], restricted here to haploid individuals and with
a special emphasis on its Markovian nature. It is also used sometimes in the theory of
evolutionary computation, e. g. by Goldberg and Segrest [34] and Chakraborty, Deb and
Chakraborty [15], but mostly without referring to its roots. One can also deduce it by
restricting the model of Nix and Vose [69] and Vose [97] to consider only two species.

In the next section the probabilistic selection model is approximated to form a deter-
ministic model, the properties of which then are discussed.

4.3 A Deterministic Selection Model

4.3.1 Approximation of the Selection Process

To characterize the evolution of the proposed model the development of the expected values
respectively central moments is of special interest. To remember, depending on the current
state n(t), which is an abbreviation of n(t) = n, the new state n(t + 1) is a binomially
distributed random variable with parameter N and selection probability ps(n(t)). Then
for the conditional expected value of the state

E{n(t + 1)|n(t)} = ηn(t + 1)|n(t) = ps(n(t)) N(4.11)

and for the conditional variance of the state

σ2
n
(t + 1)|n(t) = ps(n(t))(1 − ps(n(t))) N(4.12)

hold [9, p. 20], where the last index measures the sampling error of the repeated stochastic
selection. Using ps(n(t)) from equation (4.7)

E{n(t + 1)|n(t)} =
n(t)αN

N + (α − 1)n(t)
(4.13)



4.3. A DETERMINISTIC SELECTION MODEL 23

and

σ2
n
(t + 1)|n(t) =

n(t)αN(N − n(t))

(N + (α − 1)n(t))2
(4.14)

follow. Introducing the portion of individuals of species S2 in the population

r(t) =
n(t)

N
(4.15)

from equation (4.11) for the conditional expected value of the portion

E{r(t + 1)|r(t)} = ηr(t + 1)|r(t) = ps(r(t)) =
αr(t)

1 + (α − 1)r(t)
(4.16)

follows and from equation (4.12) for the conditional variance of the portion

σ2
r
(t + 1)|r(t) =

1

N
ps(r(t))(1 − ps(r(t))).(4.17)

Clearly limN→∞ σ2
r
(t + 1)|r(t) = 0 holds independently from the selection function ps(r(t)).

Thus values of r(t + 1) different from E{r(t + 1)|r(t)} are very unlikely for sufficiently
large populations and the portion r(t + 1) in the generation t + 1 can be approximated by
its conditional expected value, i. e.

r(t + 1) ≈ E{r(t + 1)|r(t)}.(4.18)

Then the errors caused by the probabilistic sampling are neglected and the portion in the
new generation is determined by the selection probability, which picks up Fisher’s [27] point
of view. Finally, the domain of the state is transformed from a discrete to a continuous one.
This introduces further errors, which only for large populations can be neglected. Often the
use of this approximation is not stated explicitly but paraphrased by assuming an infinite
population size. From the mathematical point of view this assumption is problematic, since
then not only sampling errors are neglected but also other implicit assumptions about the
population are no longer valid.

Using the above approximation from equation (4.16) the first order difference equation

r(t + 1) = g(r(t)) =
αr(t)

r(t)(α − 1) + 1
(4.19)

follows. It is well known as logistic Pielou difference equation [75, p. 22] and can be solved
exactly, which is proposed in the next section. The deterministic selection easily can be
extended for more than two species [13, p. 29f ], which equals the approximation of the
original multi species model of the previous section.

4.3.2 Properties of the Approximating Recursion Equation

By setting r(t + 1) = r(t) = z the fixed points of the recursive equation (4.19) can be found.
Doing so

z(z − 1)(1 − α) = 0(4.20)
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follows. If α = 1 holds, it is valid for all 0 ≤ z ≤ 1, i. e. each z is a fixed point. If α 6= 1
holds, then equation (4.20) is valid only for z = 0 and z = 1.

A fixed point z of a first order recursion equation

x(t + 1) = g(x(t))

is asymptotically stable, if
∣

∣

∣

∣

dg

dx
(z)

∣

∣

∣

∣

= |g′(z)| < 1(4.21)

holds [45, p. 6f ].
Transferred to equation (4.19) the inequality
∣

∣

∣

∣

dg

dr
(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

d

dr

αr

r(α − 1) + 1

∣

∣

∣

∣

r=z

=

∣

∣

∣

∣

α

(z(α − 1) + 1)2

∣

∣

∣

∣

< 1

has to hold for a fixed point z to be asymptotically stable. For 0 ≤ α < 1 this is true only
for the fixed point z = 0 and for α > 1 only for the fixed point z = 1. For α = 1

∣

∣

∣

∣

dg

dr
(r)

∣

∣

∣

∣

=

∣

∣

∣

∣

α

(r(α − 1) + 1)2

∣

∣

∣

∣

= 1

follows and all higher derivatives are zero. Consequently each z is stable, because a single
small disturbance of the system remains and increases not over the time.

But for α = 1 a small variation of the parameter α changes the behavior of the model
totally depending on its direction. Thus this situation is called structural unstable.

The recursion equation (4.19) can be generalized to

r(t + 1) =
ar(t)

cr(t) + d
(4.22)

and easily solved by repeated insertion. For the transition from generation t + 1 to gener-
ation t + 2 the equation

r(t + 2) =
ar(t + 1)

cr(t + 1) + d

follows. Inserting there equation (4.22) gives

r(t + 2) =
a2r(t)

c(a + d)r(t) + d2

and analogously

r(t + 3) =
a3r(t)

c(a2 + ad + d2)r(t) + d3
.

Repeating this insertion, for r(t + w) the equation

r(t + w) =
awr(t)

c(aw−1 + aw−2d + . . . + dw−1)r(t) + dw
=

awr(t)

c
∑w−1

j=0 ajdw−1−jr(t) + dw
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Figure 4.2: Development of the portion r(t) with increasing generation number for α = 1.1
and r(0) = 0.01 of equation (4.24).

follows. Setting t = 0 and using the sum formula (A.2) and some transformations the
solution

r(t) =
r(0)at(a − d)

r(0)c(at − dt) + dt(a − d)
(4.23)

is obtained and with resubstitution of the parameters the solution

r(t) =
αtr(0)

1 + r(0)(αt − 1)
(4.24)

of equation (4.19). It includes the trivial solutions r(t) = r(0) = 0 and r(t) = r(0) = 1,
which always are fixed points. For a start portion 0 < r(0) < 1 the limit of function (4.24)
is

lim
t→∞

αtr(0)

1 + r(0)(αt − 1)
=







1 : α > 1
r(0) : α = 1
0 : 0 ≤ α < 1

depending on the sign of the fitness factor α.
Thus corresponding with the fixed points and their stability the development of the

portion depends on both the fitness factor α and the start portion r(0). For α = 1 the
start portion persists resulting in r(t) = r(0) and one orbit. If α 6= 1 holds, then there are
two orbits depending on the start portion. One orbit is yielded, if the start portion is the
unstable fixed point, which persists, the second one, which tends to the asymptotic stable
fixed point, from all other start portions.

In contrast to the general solution method proposed here Goldberg and Deb [33] solve
equation (4.19) with a trick applicable only in this special case leading to the same result.
Figure 4.2 shows its plot for a fitness factor α = 1.1 and a start portion r(0) = 0.01.

The function (4.24) is continuous and differentiable. Differentiating it, the logistic
Verhulst-Pearl differential equation [75, p. 20]

ṙ = r(1 − r) ln α(4.25)
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Figure 4.3: Development of the diversity DH
s of equation (4.28) with increasing generation

number for α = 1.1 and r(0) = 0.01.

is obtained. Differentiating it again,

r̈ = (1 − 2r) ln α

follows. For a turning point of equation (4.24) r̈ = 0 has to hold, which is true only
for rs = 1/2. Setting t = ts and r(ts) = rs = 1/2 in equation (4.24) and applying some
transformations leads to

ts =
ln1−r(0)

r(0)

lnα
.

Consequently ṙ is maximum for t = ts and axial symmetrical to the ordinate at ts. Then
r(t) must be point symmetrical to (ts, 0.5).

The derivative ṙ on the left side of equation (4.25) is called the selection pressure. It is
determined by the two components on the right side. One component is the logarithm of
the fitness factor α. Thus increasing α increases the selection pressure only less than pro-
portional. The second component r(1 − r) plays an important role in population ecology,
because

r(1 − r) =
1

2
[1 − r2 − (1 − r)2] =

1

2

(

1 −
M
∑

j=1

rj

)

=
1

2
DGS

s (r)(4.26)

holds with M = 2 here. But DGS
s (r) is the Gini-Simpson-index of species diversity [81],

which is widely used in population ecology to measure the heterogeneity of a population of
an ecological system. It denotes the probability that two individuals drawn independently
with replacement from the population belong to different species. Here the rate of change
is maximum, if the heterogeneity of the population is also maximum, which is an analogy
to the second part of Fisher’s fundamental theorem [25, p. 14]. In population genetics this
index is also called heterozygosity.

Depending on the portion r furthermore the current average fitness f̄(r) and the vari-
ance s2

f (r) of the fitness in the population can be calculated using statistical standard
formulas. Between these three descriptive indices generally the relation

1 − DGS
s (r) =

1

N

(

s2(r)

f̄ 2(r)
+ 1

)

(4.27)
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holds [12, p. 192]. In the next chapter indices based on respectively describing the state
will be proposed in depth. For convenience in the following the species diversity index

DH
s = r(1 − r) =

1

2
DGS

s

is used to indicate the heterogeneity of a population2. Then with equation 4.24 here for
the diversity

DH
s (t) =

αtr(0)(1 − r(0))

(1 + r(0)(αt − 1))2
(4.28)

follows. In figure 4.3 its development over the generation is shown with identical initial
values as for figure 4.2.

For small portions r(t) equation (4.24) can be approximated asymptotically. To do so,
the portion r(0) is substituted by the parameter ε, from which the function

f(ε) =
αtε

1 + ε(αt − 1)

follows. Then for small t the function φ(ε) = εαt is an asymptotic approximation of f(ε)
near ε0 = 0. To show this, from condition (2.2) the equation

lim
ε↓ε0

1

1 + ε(αt − 1)
= 1

has to hold, which is satisfied just for ε0 = 0 and small t. Thus for small t and r(0)
equation (4.24) is asymptotically approximated by

φ(t) = r(0)αt.(4.29)

Although the portion r(t) grows exponentially for small values, the real increase is only
modest. Differentiating the function φ(t) in equation (4.29) according to t

ṙ =
dr

dt
∼ αtr(0) ln α ∼ r(t) ln α

follows. For 0 < r(t) � 1 and 1 < α � e then the absolute increase per generation step
of the portion r(t) is very small. This can also be seen in the graph plotted in figure 4.2.
If a new species is introduced in a population with a small start portion, it lasts many
generations until it spreads. Consequently, in a real evolution a new individual has not
only to survive this stage but also not to be mutated or crossed over. Thus exponential
increase in this situation may be not sufficient.

In the next section the corresponding differential equation is proposed and its properties
are considered.

2The status indices based on the current portion r introduced here should not be confused with the
indices related to the state n introduced earlier! Here the indices are calculated from the deterministic
portion and thus are descriptive whereas that of the state characterize some properties of the related
stochastic variable.
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4.3.3 Approximating Differential Equation and its Properties

Since differential equations are more wide-spread then difference equations and there are a
lot more techniques to tackle them, many researchers usually try to transform discrete time
into continuous time models, e. g. like in the article of Wright and Rowe [101]. Inverting
the Euler approach [45, p. 25] from a first order difference a corresponding differential
equation can be established. With the constant step size h, usually set to h = 1, between
the two moments t and t + 1 then

r(t + 1) = r(t) + h ṙ(t)(4.30)

is obtained. Inserting equation (4.19) and setting r(t) = r the first order differential equa-
tion

ṙ =
1

h

r(1 − r)(α − 1)

r(α − 1) + 1
= f(r)(4.31)

follows. The whole approach is only valid, if it can be shown, that the corresponding dif-
ferential approximates the difference equation, which may be very difficult. The condition
is true here, because the differential equation (4.31) approximates equation (4.25) asymp-
totically for α ≈ 1, which can be shown by using again the condition (2.2). Applying it
results in

lim
α↓1

r(1 − r) ln α
1
h

r(1−r)(α−1)
r(α−1)+1

= lim
α↓1

h
ln α

α − 1
.

Since counter and denominator both approach zero, L’Hospital’s rule [47, p. 4] can be
applied. Doing so one gets

lim
α↓1

h
1

α
= h.

Consequently setting h = 1 yields the desired result.
The fixed points of equation (4.31) can be found by setting ṙ = 0. Then analogously

to the discrete model in the last section also equation (4.20) follows with the same fixed
points. To consider their stability the differential equation (4.31) has to be linearized
around them.

According to Hartman’s and Grobman’s theorem [40, p. 244] a differential equation

ẋ = f(x)(4.32)

at a point x = w behaves locally like its linearized form

ẏ =
df

dx
(w) y

at y = 0, if for the first derivative

f ′(w) =
df

dx
(w) 6= 0

holds. Inferring from the properties of the linearized system the fixed point z is asymptot-
ically stable if f ′(z) < 0 holds.
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Consequently for the differential equation (4.31), at an fixed point r = z the inequality

df

dr
(z) = f ′(z) < 0

with

f ′(r) =
1

h

d

dr

r(t)(1 − r(t))(α − 1)

r(t)(α − 1) + 1
(4.33)

has to hold for asymptotic stability. With some transformations

f ′(r) =
1

h

α − 1

(r(α − 1) + 1)2
[1 − 2r − (α − 1)r2](4.34)

follows. For r = 0 and α 6= 1 then

f ′(0) =
α − 1

h
< 0.(4.35)

has to hold. This is true for 0 ≤ α < 1 and h > 0 as well as for α > 1 and h < 0. For r = 1
and α 6= 1

f ′(1) = −
α − 1

hα
< 0.(4.36)

has to hold. This is true for a > 1 and h > 0 as well as for 0 ≤ a < 1 and h < 0. The case
h = 0 generally is of no interest.

For α = 1 the equality f ′(r) = 0 holds for all r. Consequently Hartman’s and Grob-
man’s theorem can not be applied. But then all higher derivatives also equal zero and
ṙ = f(r) = 0 holds for all r. A small singular perturbation then remains and increases
not over the time and therefore the system is stable. Conversely the system is structural
unstable in this situation, because a small perturbation of the fitness factor α changes the
stability of the fixed points totally.

The differential equation (4.31) can be solved by separation of the variables. The
separation leads to the equation

α − 1

h
dt =

1 + (α − 1)r

r(1 − r)
dr,

which can be integrated on the left side from t1 to t2 and on the right side from r(t1) to
r(t2). Doing so

α − 1

h
(t2 − t1) =

r(t2)
∫

r(t1)

(α − 1)
1

1 − r
+

1

(1 − r)r
dr

follows and using Bronstein’s formula 32 [11, p. 36]

α − 1

h
(t2 − t1) = −(α − 1) ln(1 − r)

∣

∣

∣

∣

r(t2)

r(t1)

+ ln
r

1 − r

∣

∣

∣

∣

r(t2)

r(t1)

.
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Setting t1 = 0, t2 = t, r1 = r(0) and r2 = r(t) together with some simplifications

α − 1

h
t = ln

r(t)

r(0)
− α ln

r(t) − 1

r(0) − 1

results and finally with some further transformations

γ(r, t) = e−t α−1
h (1 − r(0))αr(t) − (1 − r(t))αr(0) = 0.(4.37)

This implicit equation has the trivial solutions r(t) = r(0) for α = 1 and r(t) = r(0) = 0
and r(t) = r(0) = 1 for α 6= 1, which are obviously the fixed points already calculated. A
general solution could not be obtained explicitly, but there is exactly one, which is proved
in the following.

The implicit equation (4.37) is continuous in the interval 0 < r < 1. Differentiating
with respect to r

dγ(r, t)

dr
= γ′(r, t) = e−t α−1

h (1 − r(0))α + α(1 − r(t))α−1r(0)

follows. This derivative is also a continuous function and for 0 < r(0), r(t) < 1 the in-
equality γ ′(r, t) > 0 holds. Furthermore for t = 0 equation (4.37) has the start solution
r(t) = r(0). Then according to the implicit function theorem [11, p. 282] there is exactly
one function r = δ(t), that is defined in a neighborhood U(0) around t = 0 with

δ(0) = r(0) , ∀t ∈ U(0) : γ(δ(t), t) = 0.

Thus there is only one numerical solution r(t). Since

γ(0, t) = −r(0) < 0 and γ(1, t) = e−t α−1
h (1 − r(0))α > 0

hold for finite t and r(t) is continuous, the solution has to be in the interval 0 < r(t) < 1,
which follows from the intermediate value theorem for continuous functions [11, p. 258].
The numerical value can be found easily using Newton’s approach (e. g. with Maple) be-
cause of the strict monotony of the function γ(r, t).

The derivative in equation (4.31) is not axial symmetrical to a particular r because the
denominator is a strictly increasing function of the portion r. Hence the solution of the
implicit equation (4.37) can not be symmetrical also.

The limit values for t → ∞ and 0 < r(0) < 1 depend on

lim
t→∞

e−t α−1
h =

{

0 : α > 1, h > 0 or 0 ≤ α < 1, h < 0
∞ : α > 1, h < 0 or 0 ≤ α < 1, h > 0

.

In the first case from equation (4.37) follows immediately

lim
t→∞

r(t) = 1.

For the second case equation (4.37) has to be transformed to

(1 − r(0))α

r(0)

r

(1 − r)α
= et α−1

h .
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Figure 4.4: Development of the portion r(t) with increasing generation number for α = 1.1
and r(0) = 0.01 of the solution of equation (4.37).

For t → ∞ the right side also approaches 0 and thus

lim
t→∞

r(t) = 0

holds. Finally, α = 1 implies r(t) = r(0). The case h = 0 is of no interest.
Consequently for α = 1 there is one constant orbit and for α 6= 1 there are two orbits.

If the process starts in an unstable fixed point, this state persist. From all other states the
portion converges to the asymptotic stable fixed point. Figure 4.4 shows the development
of the portion r(t) with increasing generation number for α = 1.1 and r(0) = 0.01 of the
solution of equation (4.37). The plot shows a high similarity to that of figure 4.2, which
conforms to the approximation stated at the beginning of this section.

4.3.4 Discrete versus Continuous Approximation

In both models the individuals with inferior fitness extinct and only the individuals of the
species with the highest fitness survive and spread. Randomly inserted superior individuals
intersperse their species to take over the population, because of the instability of the fixed
point referring to the existence of only inferior individuals in the population. If there are
two species of equal fitness, then their portions remain constant but perturbations prevail
because then each state is stable. Thus repeated perturbations in one direction may lead to
the extinction of one species. This phenomenon is called genetic drift and will be discussed
in more detail in section 4.4.3. Finally in both models the system is structurally unstable in
this configuration. In appendix A.2 the relation of corresponding difference and differential
equations in general is explored further.

Interestingly, in the considered model the difference equation (4.19) has an explicit
solution but the corresponding differential equation (4.31) has not. Normally, the reverse
is true and the differential equation is used, because there is a lot more knowledge how to
solve a differential equation explicitly than a difference equation. Furthermore the proof of
the applicability of the approximation uses the solution of the difference equation. Since
that usually is not known, it is generally difficult to show the applicability of the reversed
Euler approach. Consequently, for proportional generational selection the continuous ap-
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proximation of the process should be abandoned altogether, which is a very important
result.

4.4 Evolution as Markov-Chain

4.4.1 General Notes

Until now simplified models of the selection process have been discussed neglecting the
variance of the state caused by sampling. In the following this simplification is dropped
and the Markov chain proposed in section 4.2 is considered. A lot is already well known [25,
p. 75ff ], but needed later for a comparison with the deterministic models. Thus it is only
stated without proof.

As considered above, the state n(t + 1) in the next generation t + 1 is a stochastic vari-
able depending only on the current state n(t) = n and some fixed parameters, as has been
proposed already above. But from the distribution of the states in the current generation t
the distribution of the states in the next generation t + 1 and from that additional indices
like expected value and variance of the state can be calculated. With pi,t = p(n(t) = i)
and the transition probabilities πi,j = P{n(t + 1) = j|n(t) = i} from equation (4.8) re-
spectively from the definitions (4.10) the equation

pj,t+1 =
N
∑

i=0

πi,j pi,t(4.38)

follows using the total probability theorem [71, p. 30].
The notation can be simplified using matrices and vectors. The column vectors P (t)

consists of the state probabilities pi,t in generation t and the transition matrix Π of the
state transition probabilities πi,j. Then from equation (4.38)

P T (t + 1) = P T (t) Π(4.39)

follows and from the Markov property for the generation t + k

P T (t + k) = P T (t) Πk.(4.40)

To maintain consistency, Π0 = I is defined with the identity matrix I. The column vectors
V T = (0, . . . , k, . . . , N), W T = (0, . . . , k2, . . . , N 2) and UT = (0, . . . , N(N − k)/N 2, . . . , 0)
are defined to calculate the expected value and the variance of the state and the expected
value of the diversity. Then from the definitions the formulas

ηn(t) = V T P (t), σ2
n
(t) = W T P (t) − η2

n
(t) and DH(t) =

1

2
DGS = UT P (t)(4.41)

follow. Using equation (4.40) and the above formulas one can calculate the probability
distribution, the expected value and the variance of the state and the expected value
of the diversity at each generation k starting from a given state distribution P (0) at
generation t = 0.

If the population consists of only one species, which corresponds to the states n = 0 or
n = N , then in the considered model this state will remain forever because of the defini-
tions (4.10). Thus an extinction of a species is irreversible and consequently both states
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are called absorbing. Since they are accessible from all the remaining non absorbing states,
following the theory of Markov chains [9, p. 149ff ] for a finite number of states N + 1 the
process will end up in one of them and stay there. To them the two terminal distributions
P̃ T

1 = (1, 0, . . . , 0) and P̃ T
2 = (0, . . . , 0, 1) correspond, which are eigenvectors from the left

of the eigenvalue λ = 1 because they satisfy the equation

P T = P T Π.(4.42)

Clearly the above equation also holds for each linear combination P̃ = βP̃1 + (1 − β)P̃2

with 0 ≤ β ≤ 1, which results in the terminal distribution P̃ T = (β, 0, . . . , 0, 1 − β). Thus
β denotes the probability to be absorbed in state n = 0 and is a function of the initial
distribution P (0). It can be calculated using the first step analysis [9, p. 65ff ] just as the
expected number of generations until absorption. For the terminal expected value of the
state then follows

η̃n = N(1 − β)(4.43)

and for the terminal variance of the state

σ̃2
n

= N2(1 − β) − N 2(1 − β)2 = N2β(1 − β) = η̃n(N − η̃n).(4.44)

4.4.2 First Step Analysis

Defining si = P{n(t) = 0|n(0) = i}, i. e. the probability to end up in state 0 after starting
in state i, from the total probability theorem [71, p. 30] for each state i the equation

si =
N
∑

j=0

πi,jsj(4.45)

holds, since from state i the process switches to state j with probability πi,j and then ends
up in state 0 with probability sj. Finally for the absorbing states also

s0 = 1 and sN = 0,

hold. Defining the vector S consisting of the si the probability β to end up in state 0
starting from the initial distribution P (0) is given by

β = ST P (0).(4.46)

Analogously the average time until absorption τi after starting in state i can be cal-
culated. If the process currently is in state i, it transfers to state j in one time unit and
then needs on an average additional τj time units until absorption. Using again the total
probability theorem [71, p. 30] for the states 1 ≤ i ≤ N − 1 the formula

τi = 1 +
N−1
∑

j=1

πi,jτj(4.47)

with the absorption conditions

τ0 = 0 and τN = 0



34 CHAPTER 4. A THEORETICAL MODEL OF EVOLUTION

follows. Defining the vector T consisting of the τi the equation

τ = T T P (0).

gives the average time τ until absorption in state 0 or N starting from the initial distribu-
tion P (0)3.

Alternatively the probabilities of absorption and the average time to absorption can
be calculated via the fundamental matrix [34]. Unfortunately in the general case only a
numerical evaluation of the formulas proposed above is possible. For α = 1 at least β can
be calculated based on the development of the expected value, which is considered in the
next section. Ewens [25, p. 75f ] gives an approximation of equation (4.47) for α = 1 and
fixed start portion r(0), which equals the mean absorption time got from the diffusion
approximation of the process.

4.4.3 Development of the Moments

Until now only limits for certain indices of the considered Markov chain have been cal-
culated. Now the aim is to find recursive equations for both the expected value and
the variance of the state. The following consideration extends that of Hofbauer and Sig-
mund [44, p. 26ff ] to cover also the case α 6= 1.

The expected value ηn(t + 1) of the state n(t + 1) in the generation t + 1 is defined to
be

ηn(t + 1) = E{n(t + 1)} =
N
∑

i=0

i pi,t+1.

Using equation (4.38)

ηn(t + 1) =
N
∑

i=0

i
N
∑

j=0

πj,ipj,t

follows and changing the sum order

ηn(t + 1) =
N
∑

j=0

pj,t

N
∑

i=0

iπj,i =
N
∑

j=0

pj,t E{n(t + 1)|n(t) = j}.(4.48)

The conditional expected value E{n(t + 1)|n(t) = j} already has been calculated in equa-
tion (4.13). Using it the equation

ηn(t + 1) =
N
∑

j=0

jpj,t

Nα

N + (α − 1)j
(4.49)

is obtained.
For the special case α = 1 the above formula can be simplified to

ηn(t + 1) =
N
∑

j=0

jpj,t = ηn(t),(4.50)

3Ewens [25, p. 71] additionally gives a formula for the variance of the time to absorption.
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i. e. the expected value of the state is constant, which also holds for the expected por-
tion ηr(t). In the theory of stochastic processes such a process is called a martingale [9,
p. 179]. Finally from the equations (4.50) and (4.43) for the probability of extinction

β = 1 −
ηn(0)

N
= 1 − ηr(0)

follows.
In the general case α 6= 1 the recursion of equation (4.49) can not be solved explicitly,

since then the expected value of the state in the next generation depends on the distribution
of states in the current generation. Thus the equation

ηn(t + 1) = f(ηn(t))(4.51)

is impossible. But from the first step analysis in section 4.4.2 it is known, that the process
converges to a terminal distribution P̃ with the expected value η̃n. Furthermore for α > 1

α ≥
Nα

N + (α − 1)j
≥ 1

for all j holds, with equality on the left side only for j = 0 and on the right side only for
j = N . Using that, from equation (4.49)

αηn(t) > ηn(t + 1) > ηn(t)(4.52)

follows, if the process at time t is not in a terminal distribution P̃ . Consequently, the
expected state ηn(t) is a strictly monotonous increasing function of the time t, limited
from above by an geometric increase, which clearly is never reached. Since it approaches
the limit value η̃n from below, for sufficiently large t it has to be quasi concave.

The development of the variance of the state is more difficult to consider, since it also
depends on the expected value of the state. Therefore first the development of E{n2(t)}
is explored. From its definition for the generation t + 1

E{n2(t + 1)} =
N
∑

i=0

i2 pi,t+1.

with equation (4.38)

E{n2(t + 1)} =
N
∑

i=0

i2
N
∑

j=0

πj,ipj,t

follows and by exchanging the sum order

E{n2(t + 1)} =
N
∑

j=0

pj,t

N
∑

i=0

i2πj,i =
N
∑

j=0

pj,t E{n2(t + 1)|n(t) = j}

=
N
∑

j=0

pj,t[η
2
n
(t + 1)|n(t)=j + σ2

n
(t + 1)|n(t)=j].(4.53)
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Figure 4.5: Development of the variance of the state for equal fitness against its limit in a
population of size N = 10 starting with equal portions.

The conditional expected value ηn(t + 1)|n(t)=j has been calculated already above in equa-
tion (4.13) and the conditional variance of the state σ2

n
(t + 1)|n(t)=j in equation (4.14).

Using both formulas with some transformations, it follows that

E{n2(t + 1)} =
N
∑

j=0

pj,tj
N2α

(N + (α − 1)j)2
+

N
∑

j=0

pj,tj
2 Nα(αN − 1)

(N + (α − 1)j)2
.(4.54)

For the special case α = 1 the above equation is simplified to

E{n2(t + 1)} = ηn(t) +

(

1 −
1

N

)

E{n2(t)} = ηn(0) +

(

1 −
1

N

)

E{n2(t)},(4.55)

since then from equation (4.50) ηn(t) = ηn(0) follows. The recursion can be solved ana-
logously to equation (4.19). Equation (4.55) is of the type

x(t + 1) = a + b x(t).(4.56)

Continuing this way

x(t) = a
(

1 + b + b2 + · · · + bt−1
)

+ btx(0)

follows. Using the sum formula (A.1) with some transformations

x(t) = bt

(

x(0) −
a

1 − b

)

+
a

1 − b
(4.57)

is obtained and from that with resubstitution

E{n2(t)} =

(

1 −
1

N

)t
(

E{n2(0)} − ηn(0)N
)

+ ηn(0)N.

With the equations E{n2(t)} = σ2
n
(t) + η2

n
(t) and ηn(t) = ηn(0) then

σ2
n
(t) = (N − ηn(0))ηn(0) +

(

1 −
1

N

)t
(

σ2
n
(0) − ηn(0)(N − ηn(0))

)

(4.58)
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follows leading to the limit

lim
t→∞

σ2
n
(t) = σ̃2

n
= (N − ηn(0))ηn(0)

conforming with equation (4.44). For the portion r analogously

σ2
r
(t) = (1 − ηr(0))ηr(0) +

(

1 −
1

N

)t
(

σ2
r
(0) − ηr(0)(1 − ηr(0))

)

holds. Thus the variance of the state n is a strictly monotonously increasing and quasi
concave function of the generation t, converging against σ̃2

n
. Its increase during the evolu-

tion usually is called genetic drift and finally causes the extinction of one of the species.
In figure 4.5 an iteration for a population of ten individuals is plotted, starting from the
state n = 5. The average time to absorption calculated using the first step analysis in this
case is τ5 = 12.6. Although the population is very small the convergence to the limit is
very slow and the time until approaching it is approximately five times longer than the
average time to absorption.

For α 6= 1 the recursive equation (4.54) could not be solved explicitly. Nevertheless
some statements about the development of the variance of the state are possible based on
properties for α = 1 and the limits. The evolution ends up in a terminal distribution P̃ ,
having the expected value η̃n and according to equation (4.44) the variance of the state

σ̃2
n

= η̃n(N − η̃n).(4.59)

Clearly the limit variance of the state is concave in η̃n and maximum for η̃n = N/2. Gen-
erally here the variance σ2

n
is limited from above by the inequality

σ2
n
(t) ≤ ηn(t)(N − ηn(t))

with equality only, if the distribution is one of the two terminal ones. Finally ηn(t) for
α > 1 has been shown above to be a strictly monotonous increasing function of the time t.
In the following α > 1 is assumed and a start distribution being not a terminal distribution.

If ηn(0) > N/2 holds, the selection reduces the final variance of the state compared to
the case of equal fitness, since η̃n > ηn(0) holds and according to equation (4.59) the final
variance of the state is a strictly monotonous decreasing function of η̃n for η̃n > N/2.

If ηn(0) < η̃n < N/2 holds, then the final variance of the state is higher compared
to the case of equal fitness, because according to equation (4.59) the final variance of
the state is a strictly monotonous increasing function of η̃n for η̃n < N/2. Summed up,
N2/4 > σ̃2

n
> (N − ηn(0))ηn(0) follows. There the last term equals the limit variance of

the state for α = 1.

4.4.4 Development of the Diversity

Additionally to the development of the variance the development of the expected value of
the diversity is of interest. In section 4.3.2 the Gini-Simpson index has been noted to be an
appropriate measure, whose half DH(t) here is used for convenience. First the conditional
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expected value of the diversity assuming a given portion r(t) is considered. Again the
notion r(t) is an abbreviation of r(t) = r. Using equation (4.26) and some transformations

E
{

DH(t + 1)
∣

∣

∣
r(t)

}

= E {r(t + 1)(1 − r(t + 1))|r(t)}

= E{r(t + 1)} − E2{r(t + 1)} − σ2
r
(t + 1)|r(t)

follows and with equations (4.16) and (4.17) finally

E
{

DH(t + 1)|r(t)
}

= p(r(t))[1 − p(r(t))]

(

1 −
1

N

)

(4.60)

with p(r(t)) given also by equation (4.16). Ewens [25, p. 17f ] already has proposed a
specialization of this formula for α = 1 and infers from it an extreme slow decrease of the
expected value of the diversity. In fact, this statement assumes

E{DH(t + 1)|r(t)} ≈ r(t + 1)(1 − r(t + 1))(4.61)

analogously to the approximation (4.18) to get a recursion equation. But with the results of
the last section at least for the special case α = 1 also an exact formula for the development
of the expected expected value of the diversity is possible. Clearly

E{DH(t + 1)} = E{r(t + 1)(1 − r(t + 1))} =
1

N
E{n(t + 1)} −

1

N2
E{n2(t + 1)}(4.62)

holds. With equations (4.50) and (4.55) from that

E{DH(t + 1)} =
1

N
E{n(t)} −

1

N2

(

E{n(t)} +

(

1 −
1

N

)

E{n2(t)}

)

follows and with some transformations

E{DH(t + 1)} =

(

1 −
1

N

)

E{r(t)(1 − r(t))} =

(

1 −
1

N

)

E{DH(t)}.(4.63)

This again is a recursion equation which also proves the approximation (4.61) to be in fact
exact. Thus for α = 1.0 the evolution reduces the expected value of the diversity of the
population very slowly, which conforms to the slow convergence of the variance against
its limit. The development from the initial state n = 5 for a population size N = 10 is
shown in figure 4.6. Again there is a notable delay between the average time to absorption
τ5 = 12.6 and the approach of the function to zero. Unfortunately for α 6= 1.0 no explicit
solution could be found. But because always one species extincts, the limit of the expected
value of the diversity for large t always is zero.

From equation (4.60) for the leading non unit eigenvalue λ3 = 1 − 1/N follows [25,
p. 305]. Interestingly this eigenvalue depends not on the selection probability ps(r(t))
as long as the two absorbing states prevail, but it is caused by the the sampling with
replacement, which leads to a binomial distribution. Both in equation (4.58) and (4.63)
the leading non unit eigenvalue determines the speed of the geometric convergence of the
variance of the state respectively of the expected value of the diversity.
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Figure 4.6: Development of the expected value of the diversity for equal fitness in a popu-
lation of size N = 10 starting with equal portions.

4.4.5 Survival Probability of a Single New Individual

During evolution sometimes an individual of a new species is created. Then the question
arises, whether the new species will prevail and replace the other one or whether it will
extinct. In evolutionary computation the probability, that a single individual of a new
species survives and its descendants finally replace the whole population, is called takeover
probability [88]. It is a very important special case, because a new species is introduced
usually only with a single individual. The takeover probability is also used as an index
of the selection pressure of an evolutionary algorithm. If a superior new species can not
extinct, then the same purpose can be achieved with the takeover time, which measures
the time until the extinction of all other species.

First the probability of extinction of a new individual in the next generation after its
introduction is considered. From equation (4.8) for n = 1 and k = 0

P{n(t + 1) = 0|n(t) = 1} =

(

N

0

)

p0
s(1 − ps)

N = (1 − ps)
N

follows with

ps =
α

N + α − 1
and qs = 1 − ps =

N − 1

N + α − 1

and with that finally

P{n(t + 1) = 0|n(t) = 1} =

(

N − 1

N − 1 + α

)N

.

This term can be approximated further. For the selection probability ps the limit

lim
N→∞

ps = lim
N→∞

α

N − 1 + α
= 0

holds and furthermore for the expected number of selected individuals

lim
N→∞

Nps = lim
N→∞

Nα

N − 1 + α
= α.
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Both expressions are the conditions to be satisfied for the application of the Poisson-
Theorem [71, p. 56]. Using it

lim
N→∞

(

N

k

)

pk
s(1 − ps)

N−k = e−α αk

k!
.(4.64)

follows and finally for k = 0

P{n(t + 1) = 0|n(t) = 1} ≈ e−α.(4.65)

If α = 1.1 holds, then P{n(t + 1) = 0|n(t) = 1} ≈ 0.33 is obtained. I. e. in a sufficiently
large population a new individual having a fitness α = 1.1 times higher than the remaining
other individual will be removed with probability 0.33 in the next selection step.

To calculate the general extinction probability again two cases have to be distinguished.
If α = 1 holds, from equation (4.50) 1 = ηn(0) = η̃n follows. Then from equation (4.43) the
probability of extinction β = 1 − 1/N follows. Conversely the probability to be absorbed
in state N and to take over the population is 1/N . Finally the limit of the variance of
the state is σ̃2

n
= N − 1 according to equation (4.44). If α 6= 1 holds, only a numerical

solution can be calculated using the first step analysis proposed in section 4.4.2. Like
above a fitness factor α = 1.1 is assumed. This is realistic, because in the final stage of
the run of an evolution program the individuals forming the population will differ only
slightly in their fitness. Furthermore again a population size N = 10 is used. Then a limit
of the expected value η̃n = 2.05 and of the variance σ̃2

n
= 16.27 is obtained and an average

time to absorption τ1 = 6.70. The probability of extinction is β = 0.795. For α = 1.0 one
gets β = 0.9, η̃n = 1, σ̃2

n
= 9 and τ1 = 5.75. Thus although the population size is low and

consequently the fitness of a new superior individual covers a high portion of the total
fitness of the population, the probability to take over the population is relatively low.
Furthermore the final variance of the state has increased compared to the case of equal
fitness. In figures 4.7 and 4.8 the development of the expected value and the variance of the
state during numerical iteration and their limits are plotted. The graphs are quasi concave
and converge very slowly compared to the average time to absorption. The development
of the expected value of the diversity in this case is shown in figure 4.9. A higher fitness
coefficient retards the decrease to zero slightly. Also in this situation there is a notable
delay between the average time to absorption and the approach of the indices to their
limits.

Furthermore the dependence of survival probability and average absorption time from
the population size are considered. Again both quantities are calculated using the first
step analysis proposed in section 4.4.2.

In figure 4.10 the probability of a single new individual to take over the population is
plotted over the logarithm of the population size for a fitness factor α = 1.1. Increasing
the population size lowers the survival probability slightly to a limit, a result which is
different from that obtained by Rudolph [88] for tournament selection and non-generational
population replacement. Additionally the survival probability for α = 1.0, 1/N , is also
plotted.

Finally the average time to absorption (not to confuse with the takeover time) in
relation to the logarithm of the population size is shown in figure 4.11. For α = 1.0 the
slope is lower than for α = 1.1 and both graphs are nearly straight lines. Thus if a single
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Figure 4.7: Development of the expected value of the state with its limit for α = 1.1
starting at n(0) = 1 in a population of size N = 10.
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Figure 4.8: Development of the variance of the state for α = 1.0 and α = 1.1 with their
limits starting at n(0) = 1 in a population of size N = 10.
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Figure 4.9: Development of the expected value of the diversity for α = 1.0 and α = 1.1
starting at n(0) = 1 in a population of size N = 10.



42 CHAPTER 4. A THEORETICAL MODEL OF EVOLUTION

0

0.05

0.1

0.15

0.2

su
rv

iv
al

 p
ro

ba
bi

lit
y

10 20 40 70 100
population size

Figure 4.10: Dependence of the survival probability of a single new individual for α = 1.0
(dotted line) and α = 1.1 (solid line) from the population size.
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Figure 4.11: Dependence of the average time to absorption starting with a single new
individual for α = 1.0 (dotted line) and α = 1.1 (solid line) from the population size.
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new individual is slightly superior than the others, the increased drift to the state N also
increases the time to absorption in sufficiently large populations4.

Summed up, increasing the population size only increases the average time to absorp-
tion, but does not improve the survival probability of a single new superior individual as
one would expect. In evolution programs large populations should be avoided, because it
takes to long until a slightly superior new individual takes over a sufficiently high portion of
the population, if at all it survives the selection process. During this long time its portion
is likely to be reduced by mutation and crossover which is not taken into account here.

4.4.6 Selection in Large Populations

The main result of the last subsection has been, that if a single superior new individual
enters a population, then its survival probability is very low. The situation changes if
a sufficiently high number of new superior individuals is introduced in the population,
respectively the start state n(0) is high enough. Then the probability of extinction of
the superior species is negligible and the development of the expected value of the state
resembles that of the state in the deterministic models. Thus there is a threshold of a
critical number of individuals of the superior species above which the superior species
takes over the population with high probability. Furthermore, if the start fraction is
small enough, with increasing population size the plot approaches the logistic shape of
the deterministic approximation. E. g. for a population size N = 200 starting in state
n = 20 the development of the expected value of the state is shown in figure 4.12. The
variance of the state and the expected value of the diversity in this case show an interesting
development. The development of the variance of the state is shown in figure 4.13 and that
of the expected value of the diversity in figure 4.14. After an immediate very high peak
caused by the strengthening interaction of drift and selection in the initial stage of the
process both indices rapidly approach their final values, which is typical for such stochastic
processes. Furthermore there is nearly no delay between the average time to absorption
τ20 = 68 and the approach of the indices to their limits. In both plots for comparison also
the development for equal fitness is shown, in which case τ20 = 275 holds.

4.5 Evolution with Mutation

4.5.1 General Model

Until now in the proposed model only selection has been considered. But in natural and
artificial evolution there is usually also mutation and crossover. Both may lead to superior
individuals, but also from superior individuals inferior ones may be derived. Generally it
can be assumed, that it is much more probable to get inferior descendants then superior
ones. This is especially true for the evolution used in genetic algorithms, if the tackled
problem is hard. Since it is much to complicated to incorporate mutation and crossover

4For their diploid model Wright and Fisher propose an approximation of the time to absorption derived
by another approach for equal fitness of the individuals [25, p. 18f ]. For different fitness they propose a
complicated approximation which can only be evaluated numerically [25, p. 19f ]. They also give a formula
for 1 − β derived from that.
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Figure 4.12: Development of the expected value of the state in a population of size N = 200
with start portion r(0) = 0.1.
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Figure 4.13: Development of the variance of the state in a population of size N = 200 with
start portion r(0) = 0.1.
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Figure 4.14: Development of the expected value of the diversity in a population of size
N = 200 with start portion r(0) = 0.1.
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in the model considered until now, only mutation is added in a manner, that reflects the
different probabilities discussed above and thus subsumes any modification of the individ-
uals. Consequently, after selection of an individual from the population there may happen
a mutation. The probability depends on the species it belongs to. If an individual of the
superior species is selected, then with probability u a mutation takes place resulting in an
individual of the worse species. Analogously with probability v an individual of the worse
species is transformed to one of the superior one. As stated above generally here v � u
is assumed to hold and clearly 0 < u, v < 1. Finally for convenience 0 < u + v < 1, which
for practical cases usually is no relevant constraint, and α ≥ 1 is asserted, i. e. the second
species is as least as fit as the first one.

Following the conventions used until now the probability is required, to get an individual
of the second and superior species after selection and mutation. The desired result can be
performed by first selecting a superior individual with the probability ps(n), which then
is not mutated with probability 1 − u, or by selecting a worse individual with probability
1 − ps(n), which then is mutated with probability v. Since selection and mutation are
stochastically independent, the effective selection probability

p̂s(n) = ps(n)(1 − u) + (1 − ps(n))v = ps(n)(1 − u − v) + v(4.66)

follows to get an individual of the second and superior species. This selection probability
with mutation is bounded from above by the selection probability without mutation, which
is proved by the following short calculation:

p̂s(n) = ps(n)(1 − u − v) + v

≤ ps(n)(1 − u − v) + v = ps(n) − ups(n) + v

≤ ps(n) − u + v

≤ ps(n).(4.67)

Using the selection probability of equation (4.7) from equation (4.66)

p̂s(n) =
n(α(1 − u) − v) + vN

N + (α − 1)n
(4.68)

follows. Analogously to the original model the selection process is repeated N times,
which again implies a binomial distribution of the state in the next generation. Clearly,
the process is also a homogeneous Markov chain and corresponding to equation (4.8) the
transition probability is given by

P{n(t + 1) = j|n(t) = i} =

(

N

j

)

p̂j
s(i)(1 − p̂s(i))

N−j

=

(

N

j

)

(ps(i)(1 − u − v) + v)j (1 − ps(i)(1 − u − v) − v)N−j .

For the equations (4.10) there are no correspondences due to the missing absorbing states.
Goldberg and Segrest [34, p. 4ff ] propose a different model to incorporate mutation by
multiplying the original selection matrix by a special mutation matrix.
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4.5.2 Deterministic Approximation

Establishing the Recursion

Since the introduction of mutation has only changed the selection probability from ps(n) to
p̂s(n), the analysis of the process can be performed similarly to the case without mutation.
Modifying equation (4.11) for the conditional expected value of the state

E{n(t + 1)|n(t)} = ηn(t + 1)|n(t) = p̂s(n(t)) N =
n(t)N(α(1 − u) − v) + vN 2

N + (α − 1)n(t)
(4.69)

follows and using equation (4.15)

E{r(t + 1)|r(t)} = ηr(t + 1)|r(t) = p̂s(r(t)) =
r(t)(α(1 − u) − v) + v

1 + (α − 1)r(t)
.(4.70)

With the approximation (4.18) the first order difference equation

r(t + 1) = g(r(t)) =
r(t)(α(1 − u) − v) + v

r(t)(α − 1) + 1
(4.71)

follows, which is of the type

r(t + 1) = g(r(t)) =
a r(t) + b

c r(t) + d
.(4.72)

Properties of the Recursion Equation

By setting r(t + 1) = r(t) = z the fixed points of the recursive equation (4.72) can be found.
Doing so

cz2 + z(d − a) − b = 0(4.73)

follows. Now two different cases have to be considered.
If c = 0 holds, which implies α = 1, then equation (4.73) has only one solution

z =
b

d − a
=

v

u + v
.(4.74)

Its asymptotic stability can be proved analogous to section 4.3.2. From equation (4.72)

r(t + 1) = g(r(t)) =
a

d
r(t) +

b

d
= (1 − u − v)r(t) + v(4.75)

follows. Applying the inequality (4.21) leads to

∣

∣

∣

∣

d

dr
((1 − u − v)r + v)

∣

∣

∣

∣

r=z

= |1 − u − v| < 1,

because 0 < u, v < 1 has been asserted, which proves the asymptotic stability of the fixed
point.
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The recursion equation (4.75) is of the same type as equation (4.56). Consequently its
solution is

r(t) = (1 − u − v)t

(

r(0) −
v

u + v

)

+
v

u + v
(4.76)

with the limit

lim
t→∞

r(t) =
v

u + v
= z.

The term in the parenthesis in equation (4.76) denotes the distance between start portion
and fixed point. The geometric convergence is very slow because u and v usually are very
small and consequently the factor 1 − u − v, which in this case is the leading non unit
eigenvalue of the transition matrix Π [25, p. 82], is close to one.

If c 6= 0 holds, which implies α 6= 1, then equation (4.73) generally has exactly two
solutions

z1 =
a − d

2c
+

√

(a − d)2

4c2
+

b

c
and z2 =

a − d

2c
−

√

(a − d)2

4c2
+

b

c
(4.77)

The constraint α ≥ 1 given initially implies c > 1, and additionally v = b > 0 has been
assumed. Consequently, the inequality

∣

∣

∣

∣

a − d

2c

∣

∣

∣

∣

<

√

(a − d)2

4c2
+

b

c
(4.78)

holds. Since also the constraint 0 ≤ z ≤ 1 has to be hold, z1 is the only valid solution.
If the constraints are relaxed to include the case v = b = 0, then for this special case

n = 0 becomes an absorbing state in the Markov model and from equation (4.77) it follows
that

z1 =
a − d

c
= 1 −

αu

α − 1
and z2 = 0.(4.79)

Consequently, for the mutation rate

u ≤ 1 −
1

α
(4.80)

has to hold to ensure z1 ≥ 0 and thus to be a valid solution. Setting α ≤ 1 contradicts this
condition and consequently only z2 remains.

Finally, if u = 0 is set, then z1 = 1 follows and n = N becomes an absorbing state in
the Markov model.

To prove the asymptotic stability of the solutions, the inequality (4.21) has to be hold
for the general recursion equation (4.72). Consequently

∣

∣

∣

∣

d

dr
g(r(t))

∣

∣

∣

∣

r(t)=z

=

∣

∣

∣

∣

d

dr

a r(t) + b

c r(t) + d

∣

∣

∣

∣

r(t)=z

=

∣

∣

∣

∣

ad − bc

(c z + d)2

∣

∣

∣

∣

=
α(1 − u − v)

((α − 1)z + 1)2
< 1

must be satisfied, from which the condition

α(1 − u − v) < ((α − 1)z + 1)2(4.81)
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follows. The right side is a strong monotonous increasing function of z. Thus, to prove
stability it is sufficient to show, that the last inequality holds for an estimator of z from
below. From inequality (4.78) for z1

a − d

c
=

α − 1 − αu − v

α − 1
≤ z1(4.82)

follows. Inserting the left side into inequality (4.81)

α(1 − u − v) < ((α(1 − u − v) + (α − 1)v)2

follows. Clearly the inequality holds for α(1 − u − v) ≥ 1. If this condition is not satisfied,
then asymptotic stability follows from inequality (4.81) for any z ≥ 0. This is especially
the case if α ≤ 1. Consequently, under the given constraints the system is structurally
stable in relation to α, i. e. a change over the point α = 1, which is critical for the model
without mutation, generally only changes the value of the fixed point but not the overall
behavior. Setting u = 0 also does not change this situation.

If b = v = 0 is set, then z1 is asymptotically stable for α > 1 and from the condi-
tion (4.81) for z2 = 0 follows the condition

u > 1 −
1

α
,

which is the opposite of condition (4.80). Thus z2 = 0 is solely stable if it is the only fixed
point.

Summed up, if the selection is strong enough then there is a stable fixed point with a
balance of selection and mutation. If selection is not strong enough, the system can not
escape from the otherwise unstable state r(t) = 0, which thus is then a stable fixed point.
The border is given by

u = 1 −
1

α
,

where both fixed points are equal. This situation is very similar to a situation in the model
of Eigen, McCaskill and Schuster [23, p. 174ff ]. It also models an evolution process with
selection and mutation deterministically. But their approach is continuous in time and
there are no explicit solutions of the related differential equations. In their terminology
the coexistence of both species is called organization.

In the case considered here the general difference equation (4.72) is reduced to

r(t + 1) =
a r(t)

c r(t) + d
,

which already has been solved in section 4.3.2. Resubstituting the parameters into the
solution (4.23) leads to

r(t) =
r(0)αt(1 − u)t(α(1 − u) − 1)

r(0)(α − 1)(αt(1 − u)t − 1) + α(1 − u) − 1
(4.83)

with the special solution r(t) = r(0) = 0.
Unfortunately an explicit solution of the general recurrence equation (4.71) can not be

given, only a numerical iteration is possible. In figure 4.15 the development of the portion
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Figure 4.15: Development of the portion r(t) with increasing generation number for deter-
ministic selection combined with mutation.

is plotted using the start value r(0) = 0.001, the mutation rates u = 0.01 and v = 0.001
and the fitness factor α = 1.1. The logistic development resembles that of the deterministic
models without mutation except for the limit portion due the fixed point z, which is smaller
than one. Setting v = 0 does not change the plot significantly, only the limit respectively
fixed point is lowered. Of course, then also the special solution r(t) = r(0) = 0 is possible.
The development of the diversity also is very similar to the case without mutation already
shown in figure 4.3. Again the most prominent difference is the limit value depending on
the fixed point.

Since for the model without mutation the investigation of the corresponding differential
equation model leads to unsatisfying results, the related considerations have not been per-
formed. Furthermore, the difference equation can not be solved explicitly and consequently
no corresponding exact differential equation can be deduced from its solution.

4.5.3 Markov Model with Mutation

General Notes

Opposed to the model without mutation, in the general case with mutation in both di-
rections there are no absorbing states, and the Markov matrix is positive. Thus, one is a
unique eigenvalue, to which a stationary respectively balance distribution P̃ corresponds.
Consequently, P̃ also satisfies equation (4.42), which can be used to calculate it together
with the constraint

N
∑

i=0

p̃i = 1.

But trying to solve the resulting homogeneous system of linear equations

P T (Π − I) = P T Π♥ = 0(4.84)

with 0T = (0, . . . , 0) usually only leads to the trivial solution P = 0 due to numerical in-
accuracies. But the homogeneous system of linear equations can be transformed into an
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inhomogeneous one, which can be solved, and from which the solution of the original ho-
mogeneous system can be obtained. From the theory of linear equations the rank of the
matrix Π♥ with dimension N in equation (4.84) has to be N − 1 to have a solution different
from the trivial one, which always is true for a positive Markov matrix. Consequently, the
column vectors Π♥

j are linearly dependent and with λj 6= 0 the equation

N
∑

j=0

λjΠ
♥
j = 0(4.85)

holds. There one of the λj can be chosen arbitrarily, on which then the others depend.
Clearly, P T = λT = (λ0, . . . , λN) is a solution of equation (4.84). Now the corresponding
inhomogeneous equation

N−1
∑

j=0

ξjΠ
♥
j + ξNΥ = −Π♥

N(4.86)

with ΥT = (1, . . . , 1) is considered. It has exactly one solution Ξ = (ξ0, . . . , ξN ), because
the rank of the new matrix

Π? = (Π♥
0 Π♥

1 . . . Π♥
N−1Υ)

is N . To insure the correspondence of equations (4.85) and (4.86) λN = 1 and ξN = 0 have
to hold, from which ξj = λj for j = 0, . . . , N − 1 follows. Thus by solving the inhomoge-
neous equation (4.86) one can obtain a solution Λ of the homogeneous equation (4.85),
which normed by the sum of its components is a valid stationary distribution P̃ . Usually
in practical calculations due to numerical inaccuracies ξN = 0 holds only approximately
but sufficiently accurate.

According to the Perron Frobenius Theorem [9, p. 197ff ], no matter in which dis-
tribution of states the process starts, it will converge to the stationary distribution. The
convergence is approximately geometric, and the relative speed is determined by the second
highest eigenvalue. Unfortunately, in most cases it is difficult to calculate the eigenvalues
of a transition matrix. Then as without mutation alternatively one can iterate the Markov
chain and calculate the expected value of the state, its variance and the expected value
of the diversity. The development of these indices is sufficient to rate the behavior of the
process and sometimes explicit solutions can be found for them.

Development of the Indices

Proceeding analogous to section 4.4.3 first the development of the expected value of the
state is considered. From equation (4.48) together with equation (4.69) for the expected
value of the state

ηn(t + 1) =
N
∑

j=0

pj,tp̂(j)N =
N
∑

j=0

pj,t

jN(α(1 − u) − v) + vN 2

N + (α − 1)j
(4.87)
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follows. Since already for the corresponding deterministic recursion equation (4.71) no
explicit solution could be found, this is true also here. But for the special case α = 1 the
recursion can be solved. Then from equation (4.87)

ηn(t + 1) = vN + (1 − u − v)
N
∑

j=0

jpj,t = vN + (1 − u − v)ηn(t)(4.88)

follows, which corresponds to the deterministic recursion equation (4.75). Analogous the
solution is

ηn(t) = (1 − u − v)t

(

ηn(0) −
v

u + v

)

+
v

u + v
.(4.89)

Thus for α = 1 generally the development of the portion in the deterministic model equals
that of the expected value in the probabilistic model. The geometric convergence deter-
mined by the highest non unit eigenvalue also is a correspondence to the Perron Frobenius
theorem. Ewens [25, p. 70] also in fact got the recursion equation (4.88), but only used it
to calculate the limit. Finally it should be emphasized that the convergence speed does
not depend on the population size N .

Since the following calculations are lengthy, equation (4.89) is simplified to

ηn(t) = dt(ηn(0) − f) + f = dte + f.(4.90)

The development of the variance of the state and of the expected value of the diversity
again only can be calculated indirectly by first considering E{n2(t)}. From equation (4.53)
together with equations (4.11) and (4.12)

E{n2(t + 1)} =
N
∑

j=0

pj,tNps(n(t))[ps(n(t))(N − 1) + 1]

follows. Taking mutation into account, p̂s(n) from equation (4.68) is used instead of ps(n)
and with some transformations

E{n2(t + 1)} =
N
∑

j=0

pj,t

jN(α(1 − u) − v) + vN 2

(j(α − 1) + N)2
(j[Nα − (N − 1)(αu − v) − 1] + N(v(N − 1) + 1))

follows. This stochastic recursion equation is quadratic in both counter and denominator.
Clearly, no general explicit solution could be found. But again for equal fitness the equa-
tion is simply enough to be solved explicitly. Thus setting α = 1 and performing some
transformations

E{n2(t + 1)} =
N
∑

j=0

pj,tj
2(1 − u − v)2N − 1

N
+ j(1 − u − v)[2(N − 1)v + 1] + vN 2(v(N − 1) + 1)
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follows and finally

E{n2(t + 1)} = E{n2(t)}(1 − u − v)2N − 1

N
+E{n(t)}(1 − u − v)[2(N − 1)v + 1] + vN 2(v(N − 1) + 1).

To simplify the further calculations, in the above equation the factors are combined to
symbolic constants, which leads to

E{n2(t + 1)} = a E{n2(t)} + b E{n(t)} + c

and using equation (4.90) finally to

E{n2(t + 1)} = a E{n2(t)} + bedt + fb + c,

which can be further combined to

E{n2(t + 1)} = a E{n2(t)} + gdt + h.(4.91)

This recursive equation again can be solved by repeated insertion. For t + 2

E{n2(t + 2)} = a E{n2(t + 1)} + gdt+1 + h

and using equation (4.91)

E{n2(t + 2)} = a2 E{n2(t)} + dtg(a + d) + h(a + 1).

Repeating this procedure leads to

E{n2(t)} = at E{n2(0)}+gt(at−1+at−2g+at−3g2+. . .+gt−1)+h(at−1+at−2+. . .+1).(4.92)

Now the sum formulas (A.1) and (A.2) can by applied. Doing so and performing some
further simplifications

E{n2(t)} = at

(

E{n2(0)} −
g

d − a
+

h

a − 1

)

+ dt g

d − a
−

h

a − 1

follows and finally resubstituting g and h

E{n2(t)} = at

(

E{n2(0)} −
be

d − a
+

fb + c

a − 1

)

+ dt be

d − a
−

fb + c

a − 1
.(4.93)

Since

a = (1 − u − v)
N − 1

N
< 1 and d = (1 − u − v) < 1(4.94)

hold, the limit

lim
t→∞

E{n2(t)} =
fb + c

1 − a

is obtained. Using the intermediate results now the remaining indices can be calculated.
With the general formula

σ2
n(t) = E{n2(t)} − E2{n(t)}
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and equations (4.93) and (4.90) with some transformations

σ2
n(t) = at

(

E2{n(0)} + σ2
n(0) −

b E{n(0)} − bf

d − a
+

fb + c

a − 1

)

+dt (E{n(0)} − f)

(

b

d − a
− 2f

)

− d2t (E{n(0)} − f)2 −
fb + c

a − 1
+ f 2

follows. With the same argumentation as above the limit is

lim
t→∞

σ2
n(t) = f 2 −

fb + c

a − 1
.

Finally from equation (4.62) together with (4.93) and (4.90)

E{DH(t)} = dt (E{n(0)} − f)
1

N

(

1 −
1

N

b

d − a

)

−at 1

N2

(

E{n2(0)} − (E{n(0)} − f)
b

d − a
+

fb + c

a − 1

)

+
f

N
−

1

N2

fb + c

a − 1

is obtained for the expected value of the diversity. Analogous the limit is

lim
t→∞

E{DH(t)} =
f

N
−

1

N2

fb + c

a − 1
.

Although the resulting above formulas are complicated, it is easy to see using the equa-
tions (4.94), that the leading non unit eigenvalue 1 − u − v again plays an important role.
Thus not only the development of the expected value of the state but also of the variance
of the state and the expected value of the diversity is controlled by it.

As an example a population of size N = 10 is considered. The mutation rates are
v = 0.001 and u = 0.01 and initially both species have equal portions. In figure 4.16 the
development of the expected value of the state is presented according to equation (4.89).
The limit is given by the mutation rates only. The development of the variance of the state
is shown in figure 4.17. After a rapid increase to the maximum the variance of the state
decreases geometrically to its limit. Corresponding the development of the expected value
of the diversity is presented in figure 4.18. It shows an initial rapid decrease followed by
a slow final convergence. Increasing the population size slows down the development both
of the variance of the state and the expected value of the diversity and raises their limit
values, but the general shape of the plots remains. Clearly, the variance of the portion
decreases according to equation (4.17), but preserves its general shape.

As noted above for α 6= 1 closed explicit formulas for the indices can not be found.
Consequently an evaluation of the stationary distribution and an iteration of the process
is possible only numerically. Again here a single new superior individual in an otherwise
uniform population with a fitness factor α = 1.1 is considered. The mutation rates still are
v = 0.001 and u = 0.01.

For large populations of size N ≥ 200 the development of the expected value resembles
that of the portion in the deterministic model already shown in figure 4.15. In contrast,
for a small population of size N = 10 the development of the expected value of the state is
shown in figure 4.19, which does not show a logistic shape as in figure 4.15. Generally the
final expected portion of the superior species for small populations is a lot lower than the
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Figure 4.16: Development of the expected value of the state for equal fitness for a popula-
tion of size N = 10 starting with equal portions.
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Figure 4.17: Development of the variance of the state for equal fitness for a population of
size N = 10 starting with equal portions.
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Figure 4.18: Development of the expected value of the diversity for equal fitness for a
population of size N = 10 starting with equal portions.
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Figure 4.19: Development of the expected value of the state for different fitness for a
population of size N = 10 starting with a single superior individual.
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Figure 4.20: Development of the variance of the state for a population of size N = 10
starting with a single superior individual.
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Figure 4.21: Development of the expected value of the diversity for a population of size
N = 10 starting with a single superior individual.
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fixed point of the deterministic model, to which it converges with increasing population
size. This is due to the genetic drift caused by sampling errors, which for small populations
has an important impact. If the number of individuals of the superior species is small, the
genetic drift may lead to a temporary extinction which is improbable otherwise. Starting
with the same portions, the initial number of superior individuals is a linear function of
the population size which explains the differences.

The development of the variance of the state and of the expected value of the diversity
in this setup also changes significantly with the population size. For a small population
of size N = 10 the development of the variance of the state is depicted in figure 4.20 and
of the expected value of the diversity in figure 4.21. Increasing the population size to
N = 200 leads to a development of the variance of the state shown in figure 4.22 and of
the expected value of the diversity shown in figure 4.23. Both changes are also due to the
different influence of the genetic drift. Generally the final variance of the portion decreases
with the population size whereas the final expected value of the diversity increases as
expected.

Finally the important special case v = 0 is considered, where mutation and selection
work against each other. Then the resulting Markov chain has a single absorbing state at
n = 0, in which it finally will end always, and to which the asymptotically unstable fixed
point z2 = 0 corresponds. But there is no absorbing state related to the asymptotically
stable fixed point z1 of equation (4.79). The average time to absorption again can be
calculated using the first step analysis. The behavior of the process also shows up in the
plot of an numerical iteration depicted in figure 4.24. The population size is N = 20, the
fitness factor α = 1.1, the mutation rate u = 0.01 and the process starts with the portion
r(0) = 0.1. After a short initial increase the expected value of the portion converges to
zero as expected because of the related absorbing state. But in contrast to the extremely
slow convergence of the plot the average time to absorption calculated with the first step
analysis is approximately 214 generations.

4.6 Discussion

4.6.1 Comparison of the Two Species Models

In the two species model considered here the genetic drift generally plays an important
role. It is caused by the sampling errors of the random selection of individuals transforming
one generation to the next and can not be neglected especially for small populations. Its
impact is maximum if there is no mutation and the fitness of the individuals of both species
is equal. Then it leads to the extinction of one of the species because of the related two
absorbing states. The absorption or takeover probabilities depend on the start distribution
of the state. In contrast, the expected value remains constant pretending the preservation
of the start configuration. The first step analysis of the Markov model indicates a short time
to absorption, which in evolution programs is called premature convergence. It contradicts
the very low convergence speed of the variance of the state and the expected diversity, a
discrepancy which already has been recognized by Ewens [25, p. 79]. In the corresponding
deterministically approximated system each state is a stable fixed point, which preserves
the current state in the absence of disturbances and prevents the further increase of single
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Figure 4.22: Development of the variance of the state for a population of size N = 200
starting with a single superior individual.
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Figure 4.23: Development of the expected value of the diversity for a population of size
N = 200 starting with a single superior individual.
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Figure 4.24: Development of the expected value of the portion for stochastic selection
against mutation in a population of size N = 20.
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disturbances. But the stability is not asymptotic, thus the system is not led back to
the state prior to the disturbance, which thus prevails. Consequently sampling errors are
not corrected but accumulate. Finally the whole system is structural unstable in respect
to the fitness factor α, since a small change away from α = 1 respectively equal fitness
changes the fixed points and their stability totally. Summed up, although the constant
development of the expected value of the portion in the Markov model and of the portion
in the deterministic models coincide, alone they are not sufficient to describe the system.
But the structural instability of the system and the missing asymptoticly stability of the
fixed points correspond very well with the genetic drift.

If the species specific fitness differ, then in the deterministic system there are only two
fixed points corresponding to the absorbing states of the Markov model. The fixed point
related to an uniform population of superior individuals is asymptotically stable, whereas
the other one is unstable. Due to these properties the deterministic portion will always
converge to the stable fixed point unless the system starts in the unstable fixed point.
If the fitness factor crosses α = 1, the stability of the fixed points changes as considered
already above. Finally the plot of the portion shows a typical logistic shape induced by the
underlying Verhulst-Pearl differential equation. The selection pressure is determined both
by the logarithm of the fitness factor and the diversity in the population. Thus the diversity
is a moving force of the selection process. In the Markov model the development depends
on the population size and the start state respectively number of individuals of the superior
species. If the population is large and the start number of individuals of the superior species
is sufficiently high, then the probability of the extinction of the superior species is negligible
and it will prevail one self with high probability. This property corresponds to many real
world processes, where also a critical threshold has to be passed to ensure success with
high probability. Furthermore, then there is also nearly no delay between the average time
to absorption and the approach of the indices to their limit values. Unfortunately this
situation is of little practical relevance. Finally in this situation the development of the
expected portion equals that of the portion of the deterministic model. Thus the genetic
drift can be neglected, which conforms also to the vanishing conditional variance of the
portion for large populations.

If an individual of a new species with slightly superior fitness is introduced in an
otherwise uniform population, then its probability to survive and to prevail is only slightly
increased compared to the case of equal fitness. The cause is the genetic drift, which in one
direction supports the prevalence of the new species and in the other one its extinction. If
the amount of the considered species is low, then the probability that a sampling error will
lead to extinction is not negligible, which is true especially for a single individual. This is a
severe problem in the final stage of an evolutionary algorithm, where fitness differences are
very small and an innovation usually is introduced by a single individual. Informally the
considered selection process is called to have a low selection pressure [3]. Again the average
time to absorption is much shorter than the time the indices take to approach their limit
values, leading rapidly to uniform populations. In evolution programs this premature loss
of diversity frequently is tried to be prevented by fitness scaling. The fitness of superior
individuals is reduced compared to that of inferior ones (here the fitness coefficient α would
be changed to be closer to one). Clearly this does not remedy the cause but reduces the
already low chances of single superior individuals to survive. Finally, in the deterministic
model the selection pressure is only proportional to the logarithm of the fitness coefficient α.
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Thus, to influence the selection process significantly, fitness scaling must be strong enough.
Unfortunately the survival probability of a single superior individual can not be improved
by an increasing population size. Thus to insure the survival, the selection mechanism has
to be modified, e. g. by using elitist selection, which introduces some determinism. Summed
up, in this situation the deterministic approximation of the process is not adequate. Yet
the discrete and the continuous deterministic models resemble each other very closely.
But the transformation of the difference to a differential equation does not simplify the
solubility, since the differential equation has no explicit solution, which is the opposite
one would expect. Consequently, the transformation is inadequate especially also for more
complicated variants of this model.

The situation gets worst if mutation from individuals of the superior species to individ-
uals of the worse one with probability u is added. Then the absorbing state corresponding
to a uniform population of individuals of the superior species vanishes. If the fitness factor
is high enough in relation to the mutation rate, then in the deterministic model there are
two fixed points, one asymptotic stable caused by a balance of selection and mutation
and one unstable corresponding to the remaining absorbing state, which is equivalent to
a uniform population of individuals of the worse species. If the fitness factor is to low in
relation to the mutation rate, the only stable fixed point is a uniform population of the
worse species. But due to the properties of the Markov process, the expected value of the
portion of the superior species converges very slowly to its extinction, whereas the first step
analysis indicates a rapid absorption. Thus in this special case there is a contradiction not
only between the deterministic and the Markov approach, but also within the latter one.
At least, the deterministic model here is totally unsuitable.

Adding mutation also from individuals of the worse species to individuals of the superior
one with probability v solves the unpleasant situation. Then in the Markov model there
is a stationary distribution, to which the process converges, but no more absorbing states.
Thus, the behavior of the process changes totally. Correspondingly, the deterministic
model generally has a single asymptotic stable fixed point. If the individuals of both
species exhibit equal fitness then the development of the expected portion of the Markov
model and of the portion in the deterministic model are equal. The drift induced by the
sampling errors only causes the final variance and an expected diversity different from the
final diversity of the corresponding deterministic model. If the fitness differs, for small
populations the stationary portions of the Markov model are lower than the deterministic
fixed point and converge to it with increasing population size. Thus the deterministic
model overestimates the stationary expected value of the portion for small populations
and the drift obstructs the prevalence of the superior species in small populations in the
presence of mutation.

Compared to the case with no mutation in the Markov model with different fitnesses
the final expected portion in the case with mutation may also be higher although following
equation 4.67 the effective selection probability is lower. This is again due to the missing
extinction probability of the superior species. An example is the development of the
expected value of the portion in figures 4.7 and 4.19. Both cases mentioned already earlier
differ only by the mutation present in the second one.

Summed up, the mutation stabilizes the system by partly compensating the genetic drift
and guaranties the prevalence of the superior species. If the population size is high and
the mutation rates are very low, then the development of the expected value of the Markov
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model with mutation also is approximated by the discrete deterministic model neglecting
mutation, which could be solved explicitly. Since the selection probability with mutation p̃s

is lower than without it as shown in equation (4.67), this approximation overestimates the
expected value of the portion.

4.6.2 Multi Species Extension

In the preceding sections a very simplified model consisting only of two species has been
explored. The main reason of the simplification has been to get a model simply enough to
be tractable as a stochastic process. Fortunately most results can be transferred directly
to the case of more than two species, which has been the starting point in section 4.2.

Considering only selection without mutation the extension back to more than two
species results in a transition of the conditional distribution of the states from binomial to
multinomial5. Then the conditional expected value of the frequency of species Sj is

E{nj(t + 1)|n(l)
1 (t), . . . , n

(l)
M (t)} = ps(Sj, l) N(4.95)

corresponding to equation (4.11) and the conditional variance of the frequency of species Sj

is

σ2
nj

(t + 1)|
n

(l)
1 (t),...,n

(l)
M

(t)
= ps(Sj, l)(1 − ps(Sj, l)) N(4.96)

corresponding to equation (4.12) for the two species case. In both equations the selection
probability ps(Sj, l) in generation t is given by equation (4.2) depending on the current

state l at generation t given by the frequencies n
(l)
1 (t), . . . , n

(l)
M (t). The further proceeding

is the same as for two species. Especially from equation (4.95)

E{nj(t + 1)|n(l)
1 (t), . . . , n

(l)
M (t)} =

n
(l)
j (t)Fj

M
∑

k=1

n
(l)
k (t)Fk

N(4.97)

follows. Consequently also here for large populations the actual portion rj(t + 1) of a
species Sj in generation t + 1 can be approximated by the related conditional expected
value, i. e.

rj(t + 1) ≈ E{rj(t + 1)|r1(t), . . . , rM(t)}.(4.98)

holds corresponding to equation (4.18). Using this approximation one can construct a
system of first order multidimensional difference equations, which behaves like its special
case of two dimensions already discussed above [1].

If there is no mutation, the fittest species contained in the start population takes over
the population, since one can think of the less fit species to be combined in one inferior
species. If there are two or more equal fit species having the highest fitness value, the
evolution will end up in a combination of them with portions depending on their start
portions. Analogous to the two species case then this balance point will be structurally
unstable. Finally, if the start portions are small enough, the development of the best

5In fact the binomial distribution is just a special case of the multinomial one.
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species also shows a logistic shape. These statements can be proved easily by using multi-
dimensional extensions of the techniques used in section 4.3 for the two species case. Also
if mutation is taken into account, there is no principle difference to the two species case.
If there is mutation from each species to each other, then there is exactly one fixed point,
which is asymptotically stable. If there is a species, whose individuals can not be mutated,
this results in a fixed point corresponding to a uniform population consisting only of that
species, which may be asymptotically stable, if the selection pressure away from it is not
strong enough.

The Markov model also does not change its behavior by extending the number of
possible species beyond two. If there are absorbing states, the process finally will be
absorbed in one of them with probabilities depending on the start state. If there is no
absorbing state or class of states, then there also will be one stationary distribution of the
states and the related expected value corresponds to the asymptotically stable fixed point of
the approximating differential equation system. A general analysis of the properties of the
Markov matrix including further special cases has been already proposed by Rudolph [87].

4.6.3 Schema Propagation

The models considered until now easily can be extended to calculate the propagation of
a schema during the evolution. In the population a schema W is just the set of differ-
ent species matching the related pattern. Clearly the probability to select an individual
belonging to a schema then is the sum of the selection probabilities of the related species
depending on the actual state l. Neglecting mutation from equation (4.2) the selection
probability

ps(W , l) =
∑

j∈W

ps(Sj, l) =

∑

j∈W
n

(l)
j Fj

M
∑

k=1

n
(l)
k Fk

(4.99)

follows, Combining this with equation (4.95) leads to the conditional expected value of the
frequency

E{nW (t + 1)|n(l)
1 , . . . , n

(l)
M} =

∑

j∈W
n

(l)
j Fj

M
∑

k=1

n
(l)
k Fk

N(4.100)

of a schema W in the next generation t + 1. Then proceeding analogously to equa-
tion (4.48) for the expected value

E{nW (t + 1)} =
v
∑

l=1

E{nW (t + 1)|n(l)
1 (t), . . . , n

(l)
M (t)} p(n

(l)
1 (t), . . . , n

(l)
M (t))(4.101)

= N

v
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(l)
j Fj

M
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k Fk

p(n
(l)
1 (t), . . . , n

(l)
M (t))

follows, whereby the index l again denotes the actual state given by the related frequen-
cies n

(l)
1 , . . . , n

(l)
M . The equation exactly denotes the expected value of the frequency of a
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schema W in the next generation and corresponds to equation (4.48) for the two species
case. Analogously it is not sufficient to know the expected value of the frequency of a
schema in the current population to calculate the expected number in the next generation
if all fitnesses are not equal. Thus here also a formula analogous to equation (4.51) gener-
ally is not possible. Instead the distribution of states in the current generation t is needed,
which usually is not known. Adding mutation further complicates the whole approach,
since it must be taken into account whether the source and the target species belong to the
schema or not. But since the selection of a schema works analogously to that of a single
species, its propagation can be treated like that and consequently be abstracted like in the
two species model. Then also mutation can be considered, since there is only mutation
away from and to the schema.

4.6.4 Comparison with Existing Models

Already Holland tried to support his conjecture of schema propagation by a theoretical
model [46, p. 89ff ]. It seems, that he has realized the stochastic nature of the sampling
with replacement during the random selection, since he claims to estimate from below the
“expected proportion” P (ξ, t + 1) of a schema ξ in generation t + 1 depending on P (ξ, t),
which consequently is the “expected proportion” of schema ξ in generation t. This clearly
contradicts the considerations of the last section and especially equation (4.101). In his
formulas Holland did not take the sampling into account, which then he would have had
to specify. In fact, although he claims to consider expected values Holland’s formulas gen-
erally imply that he uses a deterministic approximation of the selection process and under
this modification his formulas are correct. Finally, since Holland seems not to have been
aware of these problems, he also did not show the applicability of his implicit approxima-
tion. As has been shown earlier, deterministic approximations may have solutions totally
different from the related stochastic ones. Especially, all deterministic approximation he
uses to estimate the portion of a superior schema in the next generation from below corre-
spond to Markov models with an absorbing state related to extinction of the schema under
consideration like in the case of selection against mutation presented above.

Similar problems are evident in the presentations of Holland’s model in Bäck’s [4,
p. 123ff ], Mitchell’s [64, p. 27ff ] and Michalewicz’s [63, p. 43ff ] textbooks, who altogether
seem not have detected the problems of Holland’s approach. They claim to consider ex-
pected values but do not even mention the sampling problem and in fact present deter-
ministic approximations although they claim to consider expected values.

Goldberg [32, p. 30] picks up Holland’s considerations and proposes them in a slightly
different manner. He also claims to consider expected values but in fact presents a de-
terministic approximation of the selection process. Using the notation of section 4.2 he
introduces the assumption

Fj = (1 + β)
Φ

N

with β > 0 for a superior species Sj (or schema). From the above equation he infers an
exponential propagation of the considered species or schema. Clearly, Goldberg’s assump-
tion implies an increase of the fitness of the species or schema Sj under consideration per
generation due to the feedback of its increasing portion to the total fitness Φ, which also
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is a function of the generation t. This complicates the model a lot, which to discuss is
beyond the scope of the current consideration. In a later article together with Deb [33] he
recognizes at least the logistic nature of the recursion for constant fitnesses but states the
difference equation to hold for the expected value of the portion, which above already has
been shown to be incorrect.

Also in later publications authors claim to consider the development of expected values
of the portion of a superior species or schema while in fact they consider a deterministic
approximation of the selection process, e. g. Wright [102] and Stephens and Waelbroeck [92].

Generally the models mentioned above and those based on them neglect the effects of
sampling and the special properties of Markov chains. It is very important to consider the
state as a stochastic variable depending on the generation and distinguish it from its actual
value. Furthermore, its expected value has to be discriminated from the conditional one
depending on some prerequisites. E. g. Reeves and Rove [83, p. 68] in fact calculate the
conditional expected value of the number of descendants depending on the current state,
although they call it the expected value. In the general case for a species or schema under
consideration it is only possible to calculate that conditional expected value of its portion
or frequency in the next generation assuming a given state in the current generation.
To calculate the expected value the distribution of the state in the current generation
has to be known, the expected value alone is not sufficient. For large populations, a
deterministic approximation is possible, but its applicability has to be shown, which may
be very difficult. If the number of states is small enough like in the cases proposed here, then
a numerical calculation of the Markov model is possible, which can show the applicability
of the approximation. At least Poli [76] recognized some of the problems mentioned above,
but also did not take the properties of the Markov chains into account.

The above argumentation can be transfered analogously to the results of Rogers and
Prügel-Bennett [86], who in fact also calculate the conditional expected sample variance of
the fitness in the next generation using neutral selection depending on the current state.
Thus their result corresponds to equation (4.60) due to equation (4.27), which denotes the
relation between diversity and sample variance.

4.6.5 Consequences for Evolution Programs

In a real world evolution program during its run new species are created from the existing
ones by applying crossover and mutation. In the models considered above this process is
subsumed by mutation only. If the problem is complex enough it can be assumed that after
its extinction a species is newly created only after a relative long time due to low mutation
rates. This behaviors can be characterized by calling the related class of states “temporary
absorbing”. Consequently, if the mutation rates are low enough for the introduction of a
new species the proposed stochastic two species model neglecting mutation can be used,
which overestimates the survival respectively takeover probability somewhat. Generally,
the random fitness proportional selection process leads to an almost uniform population,
which in the model shows up by a low final expected species diversity. The survival of
single individuals of superior species can not be assured and especially after reaching an
almost uniform population single individuals of new but only slightly superior species have
only low chances to survive and to spread. Then drift is the dominating process. The same
considerations can be transferred to the propagation of a schema. Consequently, it can be
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expected that in a real world evolution program after a sufficiently number of generations
one schema is dominating and the individuals are very similar. Thus Holland’s schema
propagation conjecture is correct. Without mutation the takeover probability of a new
superior individual is very low. Consistently with mutation in reality it may take a lot of
time until the best species dominates the population, because the may be very long periods
of its extinction.

The question is, whether a deterministic fitness proportional selection in evolutionary
algorithms would be better suited than a random one. Especially in small populations
the deterministic selection combined with mutation causes a higher final portion of the
superior species. Furthermore the running time of the algorithms may be shortened, since
the time consuming stochastic sampling is omitted. To ensure the survival of a superior
species over the time at least some elitism has to be introduced, as already has been shown
by Rudolph [87].

4.7 Conclusions

Deterministic models in many cases are not suitable to model the random selection, because
they neglect the genetic drift and the probability of extinction. If mutation and selection
work against each other without mutation the deterministic model pretends a development
of the portion, that is totally different from that of the expected value of the the portion
in the Markov model. Additionally, then the first step analysis result contradicts the slow
convergence of the indices. Generally here mutation stabilizes the selection process and
compensates the genetic drift at least partly. Then a deterministic approximation for large
populations is possible. Summed up, one first has to compare the different models and
only then can decide, whether the deterministic model is sufficiently accurate or not.

The considered two species model can be extended by additional species. Then the
conditional distribution of states changes from binomial to multinomial, the number of
states increases extremely and the situation becomes more complex than necessary but
the approach and the results do not change. But especially the logistic growth of the
portion of the best species in the deterministic model caused by the negative feedback of
the propagation in this case is difficult to discover [13, p. 29f ]. These problems have been
the main reasons to limit the consideration to a simple but tractable model.

The propagation of a schema in a population behaves much like that of a single species
and thus deserves no special treatment. It is not possible to calculate the expected value
of the portion of a a species or schema in the next generation depending solely on that
in the current generation as many authors claim. In fact their models are determinis-
tic approximations although not stated, whereas they left open the applicability of the
approximation.

Finally an approximation by a diffusion model is possible. This approach is already
used in population genetics and leads to explicit solutions [25].



Chapter 5

Population State Indices

5.1 Introduction

In the last chapter theoretical models of schema propagation have been considered very
deeply. Although they are very simple compared to what is happening in a real evolution
program, it can be conjectured, that a similar propagation process happens there. As
already stated in the beginning, to observe schema propagation in experiments, the reach
of the schemata has to be measured. But until now this subject has not been payed a lot of
attention to and there are no suitable indices. Thus although a large number of experiments
has been performed already, there are hardly observations available that support Holland’s
conjecture because of the missing suitable indices.

Consequently indices have to be found to monitor a possible schema propagation in the
population during the run of an evolution program. This task can be extended to generally
find suitable indices to describe the state of a population. Until now usually with some
exceptions only the fitness of the best individual, the average fitness and sometimes the
variance of the fitness of the current population is recorded, which all provide not enough
information. Since in ecology there are similar problems, the indices used there have to be
considered for their applicability and suitability for evolution programs and the differences
between both situations have to be explored.

5.2 Convergence versus Improvement and Assimila-

tion

5.2.1 Convergence

During the execution of an evolution program the objective values of the individuals should
approach the optimum. To measure the distance to the optimal objective value, the differ-
ence between the best objective value or the average objective value of the population and
the optimal objective value can be used. This works well, if the optimal solution is known,
i. e. the evolution program runs on a test problem instance, which already has been solved
by an algorithm that calculates a provable optimal solution. Furthermore, during the run
of the evolution program there may be stages of deterioration after which the improvement
of the objective values respectively fitnesses is resurrected. This causes a jagged output

65



66 CHAPTER 5. POPULATION STATE INDICES

when plotting the graph. One can interpret the jags to be noise which is superposed on
the “true” improvement process. If the distance to the optimal objective value approaches
zero, then this is normally called convergence. Here this will be referred to as convergence
in objective. In contrast to the strict definition of convergence in analysis or in stochastic
processes, the definition given here is very sloppy.

To transfer the considerations above related to the objective value also to the encoding
and problem domain, first a distance function has to be defined on both. The notion of
distance is an important topic and can be defined in different ways. In the following the
approach of Bergmann and Richter [85, Chapter 6] is proposed with some supplements.

Considering a set M of arbitrary elements a distance function ∆ : M × M 7→ R+ is
defined to hold the following properties:

Minimality: ∀x, y ∈ M ∆(x, y) ≥ ∆(y, y)

Symmetry: ∀x, y ∈ M ∆(x, y) = ∆(y, x)

Reflexivity: ∀x, y ∈ M ∆(x, x) = ∆(y, y)

It is called a metric1, if the additional properties

Identity: ∀x, y ∈ M ∆(x, y) = 0 iff x = y

Triangle Inequality: ∀x, y, z ∈ M ∆(x, y) + ∆(y, z) ≥ ∆(x, z)

hold. Alternatively, there are other requirements possible based on psychological models
of similarity, which subsume the properties claimed above [96].

The above model can be transferred to the genotype level of an artificial population P

and equivalently on the problem domain. Then the distance function can be separated
into two components. First, there are local distance functions δj : A2

j 7→ R for each at-
tribute index or locus j of two individuals Ik, Il, which depend on the attribute type.
Second, an amalgamation (or constructor) function F : RM 7→ R calculates the global dis-
tance ∆(x, y) = F (δ1(Ik, Il), . . . , δM(Ik, Il)) depending on the local distances δj(Ik, Il). To
conform to the above requirements, F has to be monotonous in each argument, i. e. an
increase of a single argument does not decrease the function value, and the constraint
F (0, . . . , 0) = 0 has to be hold.

Both in artificial populations and in genetics it is only appropriate to decide whether
the values of an attribute respectively the alleles of a gene of two individuals are equal or
not [80, p. 27], because it is not possible to establish an order or scale. Thus the local
distance of a nominal scaled attribute is defined to be

δj(Ik, Il) =

{

0 : Ak,j = Al,j

1 : Ak,j 6= Al,j.
(5.1)

Since each attribute has the same importance, F can be defined to be the sum of the local
distances, resulting in the global distance function

∆(Ik, Il) = F (δ1(Ik, Il), . . . , δM(Ik, Il)) =
M
∑

j=1

δj(Ik, Il).(5.2)

1The Greek word µέτ%oν in fact means measure. Thus a distance function holding not all of the
requirements is better called an index.
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This is in fact the Hamming distance counting simply the number of different attribute
values and establishing a metric on the attribute space, which easily can be verified us-
ing the properties presented above. Standardized on the number of attributes M it is
called generalized M-coefficient in multivariate statistics [26, p. 446]. If the generalized
M-coefficient of two individuals is close to zero, both are called to be similar 2.

Now using the Hamming distance the distance between the genotype of an individual
to a genotype, that represents an optimal solution, can be calculated or its population
average. Again this is only possible, if an optimal solution is known and also can be
done on the problem domain level. The approach of the average distance between the
genotypes and an optimal solution genotype to zero is referred here as convergence in
domain. Further problems arise, if there is more than one optimal solution, and as for the
convergence in objective, the observed convergence process may have stages of deterioration
and resurgence.

Convergence in objective and convergence in domain generally may not imply each
other. Especially for hard problems there may be admissible solutions with objective
values close to the optimum value but with a high distance on the genotype level to the
representation of an optimum. Conversely, there may be admissible solutions very close to
an optimal solution on the genotype level but with a high distance between their objective
values.

5.2.2 Improvement and Assimilation

If an evolution program approaches a problem which has no known optimal solutions, the
convergence criteria proposed above can not be applied. Then other criteria have to be
taken into account to characterize the state of the evolution, which are of general interest
also.

Usually the smoothed proceeding of the objective value of the best individual and the
average objective value of the population shows an improvement with increasing generation
number during the evolution. Thus the approach to zero of the gradient of the best
or average objective value with respect to the generation number, i. e. the end of the
improvement process, can be taken as an indicator of “convergence”. To not confuse this
with the definition of convergence in objective, it will be named saturation in objective.
Furthermore the variance of the objective values of the individuals in the population can
be monitored during the run.

Unfortunately the criterion introduced above can not be transferred directly to the
genotype or solution level. However the average or mean distance

DG(P ) =
1

N(N − 1)

N
∑

k=1

N
∑

l=1

∆(Ik, Il),(5.3)

2There may be situations, in which the approach presented above is not appropriate and a more detailed
rating depending on both values is necessary. Clearly, to set the distance of an attribute value to all other
values with the value one is a severe restriction.
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between the individuals of the population can be calculated. Equivalently, the different
classes of equivalent genotypes can be considered. Having n different classes and a class i
has Ni specimens this results in

DG(P ) =
1

N(N − 1)

n
∑

k=1

n
∑

l=1

NkNl∆(Sk, Sl)(5.4)

Incorporating the additive distance function defined in equation (5.2) gets

DG(P ) =
1

N(N − 1)

M
∑

j=1

n
∑

k=1

n
∑

l=1

NkNlδj(Sk, Sl).(5.5)

The value of an attribute may be the same for more than one class of genotypes, thus each
attribute can be considered separately. Using the local distance function of equation (5.1)
for nominal attributes, each of the Nj,k individuals having attribute value aj,k at position
or locus j has the local distance of one to the remaining N − Nj,k individuals having a
different value. From this relation the equation

n
∑

l=1

Nj,kNj,lδj(Sk, Sl) = Nj,k(N − Nj,k)

follows and using that from equation (5.5) the average Hamming distance

DH(P ) =
1

N(N − 1)

M
∑

j=1

nj
∑

k=1

Nj,k(N − Nj,k)(5.6)

of the population P . Here nj denotes the number of different possible allele at locus j.
With the definition of the relative frequency

rj,k =
Nj,k

N

and some simple transformations

DH(P ) =
N

N − 1

M
∑

j=1

(

1 −

nj
∑

k=1

r2
j,k

)

(5.7)

is obtained finally. Divided by the number of attributes respectively loci the average
generalized M-coefficient

dM(P ) =
N

M(N − 1)

M
∑

j=1

(

1 −

nj
∑

k=1

r2
j,k

)

between zero and one follows.
An important property of the average Hamming distance DH(P ) is concavity. Thus if

there are two populations P1 and P2 of size N1 and N2, then with

λ =
N1

N1 + N2

(5.8)
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the inequality

DH(P1 ∪ P2) ≥ λDH(P1) + (1 − λ)DH(P2)(5.9)

holds. Since of the additivity and nonnegativity with respect to the loci it is sufficient to
show concavity for only a single attribute. Then from equation (5.6) for the population Pi

DH(Pi) =
1

Ni(Ni − 1)

n
∑

k=1

Ni,k(N − Ni,k)

follows and with

Ni =
n
∑

k=1

Ni,k

for their union P

DH(P ) =
1

(N1 + N2)(N1 + N2 − 1)

n
∑

k=1

(N1,k + N2,k)(N − N1,k − N2,k).

By insertion of these identities and some transformations equation (5.9) finally is proved.
Knowing the average Hamming distance may not be sufficient, because it would be inter-

esting to calculate a virtual individual, having the same minimal distance to all individuals
of the population. Unfortunately, this problem is NP-hard [43]. Thus it is intractable to
determine the current center of representation during the run of an evolution program,
even if it is not claimed to be an admissible solution.

Summarized, the mean distance and the average generalized M-coefficient are indices
of the dissimilarity of a population, and if they decreases during the run of an evolution
program, the individuals become more similar on the average and the whole process can
be called assimilation. The reduction of the gradient of the average Hamming distance
with respect to the generation number is called here saturation in similarity.

Besides the indices proposed until now, other indices may be used to monitor the state
of a population. One important index is diversity, which already plays an important role
in ecology and population genetics but also can be used for evolution programs. Thus in
the next section it is discussed in detail.

5.3 Diversity

5.3.1 Definition

In the context of evolutionary computation diversity is rarely defined even verbally, al-
though many authors use the term extensively, e. g. Burke, Gustafson and Kendall [14]. In
ecology it is related primarily to the species found in an ecological community. To elucidate
the term more deeply first some desirable properties of a diversity index are considered.

According to Hurlbert [48], species diversity should be both a function of the number of
species present (species richness or species abundance) and the evenness of the distribution
of the individuals into these species (species evenness or species equitability). Furthermore
a diversity index should not presume a specific distribution and be without any external
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parameters. Thus a species diversity D(P ) generally is a function only of the frequencies
of the species or the number of individuals and the relative frequencies of the species

D(P ) = D(N1, . . . , Nn) = D(N, r1, . . . , rn−1).(5.10)

These sloppy claims can be refined to the following ones:

Minimality: The diversity has to be zero iff all individuals belong to the same species.

Maximality: For a given number of individuals N and a given number of species s,
diversity reaches its maximum, if the distribution of the individuals into the species
is as even as possible. That is, if N is a multiple of s, when Ni = N/s = m for all i,
or, if N = sm′ + r (with m′ and r whole numbers and r < s), when s − r of the
values are represented by m′ individuals each and the remaining r values by m′ + 1
individuals each [73, p. 372]. This in fact is equivalent to the Pigou-Dalton transfer
principle [2, p. 5].

Concavity: If there are two populations P1 and P2 of size N1 and N2, then the inequality

D(P1 ∪ P2) ≥ λD(P1) + (1 − λ)D(P2)

holds with

λ =
N1

N1 + N2

.

Monotony: For a given number of individuals N and a given number of species n the
diversity increases, if a single species Si is replaced by m different new species S ′

k,
so that

∑m

k=1 N ′
k = Ni, N ′

k > 0 and n′ = n − 1 + m is the new number of possible
species. Thus, the diversity increases as the classification is refined.

Insensitivity to non present species: The diversity is unchanged if new species are
introduced but none of the individuals in the population actually belongs to one of
them.

Invariance under cloning: For given relative frequencies rj = Nj/N the diversity is not
a function of the population size N . Usually this property is called replication ax-
iom [53, p. 110]. It is not intuitively reasonable for many people, i. e. Pielou regards
a small population less diverse than a large one [73, p. 373].

Symmetry: For each permutation of the attachment of the given frequencies N1, . . . , Nn

to the species S1, . . . , Sn of the population P the diversity D(P ) remains unchanged.

There are further ingenious requirements and there is an ongoing discussion which of them
have to hold [48, 72, 80]3.

3If symmetry and concavity hold for a diversity function, then it is also Schur-concave [53, p. 107], i. e.
from D(P1) ≤ D(P2) follows that P1 majors P2 [2, p. 16].
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5.3.2 Indices

Based on the above requirements now some diversity indices already proposed by various
authors are considered.

Often the diversity of a population P is synonymous with the number s of different
species found in it. Forming a diversity index leads to

DNC(P ) = s − 1 =
1

N

n
∑

j=1

N − Nj

with Nj being the frequency of species j and n the number of possible species. The index
can be transformed easily to the coefficient

dNC(P ) =
DNC(P )

N − 1
=

1

N(N − 1)

n
∑

j=1

(N − Nj)

between zero and one. The diversity index DNC satisfies all claims except maximality
because it does not depend on the evenness of the distribution.

Simpson [90] proposed a parameterless index of concentration, the opposite of diversity,

C(P ) =
1

N2

n
∑

j=1

N2
j =

n
∑

j=1

r2
j ,

which has been proposed independently also by Herfindahl [42]. Using it, an index of
diversity

DGS(P ) = 1 − C(P ) = 1 −
1

N2

n
∑

j=1

N2
j = 1 −

n
∑

j=1

r2
j =

1

N2

n
∑

j=1

Nj(N − Nj)(5.11)

can be defined [81]. Since it already has been proposed earlier by Gini [31], it is usually
called Gini-Simpson index. From that a coefficient

dGS(P ) =
N

N − 1
DGS(P ) =

1

N(N − 1)

n
∑

j=1

Nj(N − Nj)

between zero and one can be derived, which is exactly the average distance of a single
locus j in equation (5.6). By using the Gini-Simpson-index the species diversity can be
interpreted to be the average distance between two individuals drawn independently at
random with replacement, at which the distance between two species is set always to one
analogously to the definition in equation (5.1) for each attribute. As already stated there,
this is a very severe restriction. But the Gini-Simpson-index DGS satisfies all of the above
claims which is easy to prove.

Rao [80, p. 25ff ] generalized the concept of diversity to be an average distance to the
definition

DD(P ) =
1

N2

N
∑

k=1

N
∑

l=1

∆(Ik, Il).(5.12)
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Then using the Hamming distance of equation (5.2) analogously to equation (5.7) the
formula

DRH(P ) =
1

N2

M
∑

j=1

nj
∑

k=1

Nj,k(N − Nj,k) =
M
∑

j=1

(

1 −

nj
∑

k=1

r2
j,k

)

(5.13)

follows. Clearly, this is the sum of the Gini-Simpson-indices of the M attributes.
Generally it is an important question, which properties have to hold for the distance

function ∆(Ik, Il) to insure at least concavity. It is not sufficient to claim the distance
function to be a metric if there are more then four distinctive species [79, p. 72]. The
requirements can be further extended to form Rao’s quadratic entropy, from which finally
a metric on a set of populations can be established [82].

Finally Shannon’s entropy H [89] can be used as a diversity index by substituting the
probabilities pj of the different alternative outcomes by their relative frequencies rj [59, 74].
Then the definition

DS(P ) = −
n
∑

j=1

rj ln rj = −
n
∑

j=1

Nj

N
ln

Nj

N
(5.14)

follows4. The Shannon diversity DS satisfies all properties claimed above [67] and easily
the corresponding Shannon diversity coefficient

dS(P ) =
DS

ln N
= −

1

ln N

n
∑

j=1

rj ln rj

between zero and one can be deduced, because DS gets maximum for rj = 1/N for all j,
from which

max DS(P ) = −
n
∑

j=1

1

N
ln

1

N
= ln N(5.15)

follows.
Additionally an estimation from below [53, p. 100ff ] can be performed. Using the

inequality

− ln x ≥ 1 − x

from equation (5.14) the inequality

DS(P ) = −
n
∑

j=1

rj ln rj ≥
n
∑

j=1

rj(1 − rj) = 1 −
n
∑

j=1

r2
j(5.16)

follows, where the right side equals the Gini-Simpson-index DGS of equation (5.11).
In ecology the properties of a population usually have to be estimated from a small

sample. I. e. the whole population can not be censused, but only a random subset can be
observed and thus estimators for the proposed indices and coefficients have to be used,
which often are hard to find. Fortunately, in the field of evolutionary computation this is
not a problem because here a population is always censused.

4In this work the natural logarithm ln is used. In information theory the base usually is two, because
there digital signals are considered. Since a transformation between different bases is equivalent to a
multiplication by a constant factor, the base only influences the numerical values.
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5.3.3 Diversity Indices in Evolution Programs

The above indices related to species in ecology also can be applied to evolution programs
and genetic algorithms. To do so, each different class of artificial genotypes is treated
analogously to a natural species and vice versa. Thus a species is equivalent to a class in
the following. Consequently, the species diversity DS(P ) of an artificial population P is
defined to be

DS(P ) = D(N1, N2, · · · , Nn)(5.17)

with Ni being the number of individuals belonging to class or species i and n the number of
possible different classes or species, which are given by the combinations of the M attributes
or loci. Furthermore both a distance based diversity index like the Gini-Simpson-index DGS

or the entropy based DS can be used as specialization of the general diversity index D.
The species diversity is required for a successful evolution and determines several prop-

erties of the selection process.
In the Verhulst-Pearl differential equation (4.25), which approximates the selection

process between two species deterministically and continuously, the selection pressure is
proportional to the species diversity given by the Gini-Simpson-index, which has been
shown in equation (4.26). The rate of change is maximum, if the species diversity of the
population is also maximum, which is an analogy to the second part of Fisher’s fundamental
theorem [25, p. 14]. Thus beneath the logarithm of the fitness factor α, which denotes the
relation of the fitnesses, the diversity is the moving force that causes selection pressure.

Until now the species diversity usually is not evaluated. The only exception known by
the author is Hatjimihail’s work [41].

But a diversity index can be applied not only with respect to the species respectively
class of genotype affiliation but also to each separate attribute respectively locus. Conse-
quently the population diversity DP (P ) of a population P consisting of individuals having
genotypes with M loci is defined to be

DP (P ) =
M
∑

j=1

D(Nj,1, . . . , Nj,i, . . . , Nj,nj
),(5.18)

where Nj,i is the number of individuals having attribute value respectively allele ai at
locus j. I. e. it is the sum of the attribute diversities of each locus j. This corresponds
to the average distance of equation (5.7) and the distance based diversity of a population
using the Gini-Simpson-index in equation (5.13). Clearly, all these quantities consider the
attributes independently from each other. Thus the population diversity also can be called
the genetic potential of the population.

The population diversity also is an important factor for a successful evolution, because
an operative crossover requires differing individuals. Without mutation the offspring indi-
viduals can differ from the parent individuals only as much as these differ themselves. If
the parent individuals respectively their genotypes are very similar, the resulting offspring
individuals also are very similar to their parents and mutation remains to be the only
force to explore new solution alternatives. The population diversity calculated using the
Gini-Simpson-index is a suitable index to measure the dissimilarity, because it equals Rao’s
generalized average distance of equation (5.13). But that in fact is the average distance of
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two individuals drawn randomly with replacement from the population, which is just the
method used by many selection algorithms. Since following inequality (5.16) the Shannon
diversity DS bounds the Gini-Simpson-index DGS from above, also using Shannon’s index
the population diversity indicates the average dissimilarity analogously to Rao’s generalized
average distance.

Thus generally a decrease of the population diversity during the run of an evolution
program indicates assimilation and the reduction of the gradient of the population di-
versity with respect to the generation number can also be called saturation in similarity
analogously to the terminology for the objective value. If an assimilation happens before
near optimum solutions have been found respectively the improvement of the objective
values is nearly finished, this usually is called premature convergence in genetic algorithms
and evolution programs [32, p. 73ff ]. To avoid confusion with the convergence in objective
discussed earlier, it is suggested to label this phenomenon premature assimilation, which
is more appropriate. It should be avoided, because during the search the whole domain of
each locus should be “covered” by the alleles to explore the whole search space not only
by mutation. Consequently the population diversity should be as high as possible at least
in the initial stage.

The average dissimilarity indicated by the population diversity or the average distance
is related also to the appearance of schemata. To remember from above, if some indi-
viduals belong to a schema, then they share some alleles at certain positions and form a
subset. Thus within a schema the distance between the related individuals is lower than
the maximum and consequently the average generalized M-coefficient is lower than one.
If a schema spreads in the population, then the average distance and the average gener-
alized M-coefficient decrease indicating an assimilation. On the other hand assimilation
clearly reduces the number of schemata present in the population. If the N individuals
differ pairwise in each of the M loci, then there are (N + 1)M − M + 1 different schemata,
whereas there are only 2M schemata, if the population is totally uniform, i. e. there is only
one species.

The population diversity or deduced indices already have been used sometimes in evo-
lutionary computation to keep track of what is happening during the run of an evolution
program. Grefenstette [36] has evaluated an index similar to the population diversity
based on Shannon’s formula normalized by the number of loci M , i. e. in fact an index
equivalent to the average diversity per locus respectively attribute. Mori et al. [66] have
introduced a similar formula, although their approach was inspired by the role of entropy
in thermodynamics. They also try to preserve the population diversity by using special
operations. Generally both approaches use Shannon’s formula as diversity indices without
any justification, explanation or references to the vast literature in mathematical biology.

5.3.4 Limitations

As stated above in the population diversity indices proposed until now each attribute is
evaluated independently. But there may be dependences between attribute values. Then
considering a randomly selected individual from the values of some attributes the values
of some of the remaining attributes can be determined independently from its species
affiliation respectively the uncertainty about their values is reduced. In genetics such
a relation is called a linkage. This property also is related closely to the properties of
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a schema. If a schema covers more than one species, which generally is not required
by the definition of a schema, then from the fixed attribute values at certain positions
neither the values of the remaining attributes not constituting the schema nor the species
affiliation can be determined. To the extreme, if in a population schemata have spread
maximally among the species, then all attributes have to be evaluated to determine the
species respectively class affiliation of an individual. On the other hand, if the evaluation
of any single attribute is sufficient to determine also the values of the remaining attributes
and the species affiliation, then no schema has spread across different species. Using
only the population diversity, that treats the attributes respectively loci independently, a
dependence and thus schema propagation among different species or classes of genotypes
can not be detected. Consequently, an index is needed, which is capable of that.

Since different species respectively classes of genotypes are distinguished by their dif-
ferent attribute values respectively alleles, there must be a relation between the species
diversity and the diversities of the attributes shaping the species respectively classes of
genotypes in artificial populations, whose sum has been defined to be the population diver-
sity. Until now this relation has not been explored, that therefor has to be also performed.
This is not an issue in ecology, because there a species is determined by more than a limited
set of attributes.

5.4 Relation between Diversities versus Dependence

5.4.1 The Relation of the Diversities for Two Attributes

First the relation between species and population diversity is explored. Recapitulating the
considerations of section 3.6 in artificial populations each combination of attributes forms
a class or species. Thus an individual or object is classified into a species by evaluation of
its attribute values. For the sake of simplicity first the consideration is limited to a popula-
tion P of N objects having two attributes A1 and A2 of the domains A1 = {a1,1, . . . , a1,n1}
and A2 = {a2,1, . . . , a2,n2}. Then Ni,j is the number of individuals having value a1,i of
attribute A1 and value a2,j of attribute A2 together, which forms the class or species Si,j .
Conforming to the definition of equation (5.10) the species diversity DS(A1A2) of the
population is defined to be

DS(P ) = D(A1A2) = D(N1,1, N1,2, . . . , Nn1,n2−1, Nn1,n2).(5.19)

The number of individuals having value a1,i of attribute A1 is

Ni,∗ =

n2
∑

j=1

Ni,j

and the number of individuals having value a2,j of attribute A2 is

N∗,j =

n1
∑

i=1

Ni,j.

Using these definitions the attribute diversities

D(A1) = D(N1,∗, . . . , Nn1,∗) and D(A2) = D(N∗,1, . . . , N∗,n2)(5.20)
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are defined analogously. Furthermore the diversity of attribute A1 under the condition
A2 = a2,j is

D(A1|A2 = a2,j) = D(N1,j, . . . , Nn1,j).(5.21)

A corresponding formula can be obtained for D(A2|A1 = a1,i). Using equation (5.21) the
conditional diversity D(A2|A1) is defined to be the average of D(A1|A2 = a2,j) over all a2,j,
i. e.

D(A1|A2) =

n2
∑

j=1

N∗,j

N
D(A1|A2 = a2,j).

Again a corresponding formula for D(A2|A1) can be obtained. Now using the above defi-
nitions the relation

D(A1A2) = D(A1) + D(A2|A1) = D(A1|A2) + D(A2)(5.22)

can be proved for using the Shannon diversity DS as diversity function D [71, p. 551].
Unfortunately this relation is generally not true for the Gini-Simpson-index DGS. From
its definition in equation (5.11) follows

DGS(A1A2) = 1 −
n1
∑

i=1

n2
∑

j=1

(

Ni,j

N

)2

= 1 −
n1
∑

i=1

n2
∑

j=1

(

Ni,j

N∗,j

)2(
N∗,j

N

)2

= 1 −
n2
∑

j=1

(

N∗,j

N

)2 n1
∑

i=1

(

Ni,j

N∗,j

)2

+

n2
∑

j=1

(

N∗,j

N

)2

−
n2
∑

j=1

(

N∗,j

N

)2

= 1 −
n2
∑

j=1

(

N∗,j

N

)2

+

n2
∑

j=1

(

N∗,j

N

)2
(

1 −
n1
∑

i=1

(

Ni,j

N∗,j

)2
)

(5.23)

= DGS(A2) +

n2
∑

j=1

(

N∗,j

N

)2

DGS(A1|A2 = a2,j)(5.24)

6= DGS(A2) + DGS(A1|A2).

unless

n2
∑

j=1

(

N∗,j

N

)2

= 1(5.25)

holds. This condition can only be satisfied by claiming DGS(A2) = 0. Consequently using
the Gini-Simpson-index it is not possible to specify the relation between the species diver-
sity and the diversities of the attributes generally. This a very disenchant result, which is
reemphasized later in section 5.4.2.

For the Shannon diversity from equation (5.22) the inequalities

DS(A1) ≤ DS(A1A2) and DS(A2) ≤ DS(A1A2)(5.26)
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follow, because diversities are nonnegative. Furthermore, DS(A1|A2) ≤ DS(A1) respec-
tively DS(A2|A1) ≤ DS(A2) hold, because conditioning can not increase diversity. Thus,
the inequalities

0 ≤ DS(A1|A2) ≤ DS(A1) ≤ DS(A1A2)(5.27)

and

0 ≤ DS(A2|A1) ≤ DS(A2) ≤ DS(A1A2)(5.28)

are obtained. Combined with equation (5.22) the inequality

max(DS(A1), D
S(A2)) ≤ DS(A1A2) ≤ DS(A1) + DS(A2) ≤ 2 DS(A1A2)(5.29)

follows. Thus the sum of the attribute diversities is the maximum obtainable species
diversity. But itself it is limited by the twofold of the species diversity.

5.4.2 Statistical Independence of Attributes

After considering the relation between species and population diversity now the dependence
of the attribute values is explored. To do so a special situation needs some additional
consideration.

If the relative frequencies of the attribute values satisfy the condition

ri,j = ri,∗ r∗,j(5.30)

or equivalently the absolute frequencies the condition

Ni,j =
Ni,∗ N∗,j

N
,(5.31)

then for the Shannon diversity DS the equation

DS(A1A2) = DS(A1) + DS(A2)(5.32)

holds analogously to the relation for the entropies of two independent stochastic vari-
ables [71, p. 551]. Therefore property (5.31) is called statistical independence here. Equiv-
alently

DS(A2|A1) = DS(A2) = DS(A2|A1 = ai)(5.33)

holds for all i, because from condition (5.31) for the conditional relative frequencies

Ni,j

Ni,∗

=
N∗,j

N
= r∗,j = const(5.34)

follows for each i with Ni,∗ > 0. Corresponding relations can be obtained for DS(A1|A2).
Then knowing one attribute does not reduce the diversity of the second one and thus gives
no advantage for estimating the second attribute. A special case of the above situation
arises if one attribute is the same for all individuals, e. g. A1 = a1,i. Then Ni,∗ = N follows
for that i and from that DS(A1) = 0 and DS(A1A2) = DS(A2). Consequently an attribute
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having no diversity is always statistically independent to the remaining attribute and vice
versa.

Although equation (5.33) also holds for the Gini-Simpson-index DGS in case of sta-
tistical independence of the attributes, equation (5.32) generally does not, because equa-
tion (5.23) and (5.24) imply

DGS(A1A2) = DGS(A2) +

n2
∑

j=1

(

N∗,j

N

)2
(

1 −
n1
∑

i=1

(

Ni,j

N∗,j

)2
)

and with equation (5.31)

DGS(A1A2) = DGS(A2) +

n2
∑

j=1

(

N∗,j

N

)2
(

1 −
n1
∑

i=1

(

N∗,j

N

)2
)

= DGS(A2) +

n2
∑

j=1

(

N∗,j

N

)2

DGS(A1)

6= DGS(A2) + DGS(A1)

unless again the condition (5.25) holds. Thus the diversity DS based on Shannon’s entropy
remains the only known index to be generally additive for two statistical independent at-
tributes. For measuring economic inequality at least Cowell has recognized the importance
of this fact [19, p. 48], whereas Rao seems to ignore this subject altogether.

If nothing else is stated explicitly in the following the diversity D is synonymous with
the Shannon diversity DS.

5.4.3 Mutual and Redundant Information

Continuing from inequality (5.29) the function

I(A1, A2) = D(A1) + D(A2) − D(A1A2)(5.35)

is defined to be the mutual information of the attributes A1 and A2 [18, p. 18ff ]. From
equation (5.22)

I(A1, A2) = D(A1) − D(A1|A2) = D(A2) − D(A2|A1)(5.36)

and furthermore

D(A1A2) = D(A1|A2) + I(A1, A2) + D(A2|A1)(5.37)

follow. The equations (5.35) and (5.36) combined with the inequalities (5.27) and (5.28)
directly lead to

0 ≤ I(A1, A2) ≤ min(D(A1), D(A2)) ≤ D(A1A2).(5.38)

Clearly the mutual information I(A1, A2) also equals the redundant information Θ(A1, A2),
which is gained twice if both attributes A1 and A2 are evaluated separately. Thus

I(A1, A2) = Θ(A1, A2)(5.39)
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I(A1, A2)D(A1|A2) D(A2|A1)

D(A1) D(A2)

Figure 5.1: Venn diagram of the relationship between the diversities respectively entropies
and the mutual information [18, p. 20].

holds and both terms can be used synonymously here. From equation (5.38) the coefficient

ϑ =
Θ(A1, A2)

D(A1A2)

between zero and one can be defined. The term γ = 1 − ϑ equals Rajski’s metric coefficient
of independence [78].

Cover and Thomas [18, p. 20] have tried to elucidate the above equations using the
Venn diagram in figure 5.1. Clearly, from equation (5.36)

D(A1|A2) + I(A1, A2) = D(A1)

follows, which corresponds to the set operations

(D(A1) \ D(A2)) ∪ (D(A1) ∩ D(A2)) = D(A1)

in the Venn diagram. Consequently, the mutual information of the attributes A1 and A2

corresponds to the intersection of the sets representing them. The whole area in the dia-
gram can be partitioned corresponding to equation (5.22) and (5.37) into non overlapping
parts. But there is no related set operation for equation (5.35) possible, because the set
theoretic union operator ∪ does not take into account whether an element is included in
both sets or only in one. Thus it corresponds to the + operator only, if both related sets
are disjoined. But if the diversities are treated to be areas in the Venn diagram, then in
the addition in equation (5.35) the area corresponding to I(A1, A2) respectively Θ(A1, A2)
is contained both in the areas representing D(A1) and D(A2) and therefore has to be sub-
tracted to get the area corresponding to the species diversity D(A1A2). Thus the species
diversity is free of redundancy. This is an analogy to the probability of the occurrence
of two events. The probability, that at least one of them happens, is the sum of their
single probabilities of occurrence reduced by the probability of their combined occurrence.
Unfortunately until now there is no algebraic interpretation of this situation5.

Mutual information can also be introduced from another point of view. Analogously to
the relative entropy or Kullback Leibler distance between two probability mass functions

5Maybe the situation can be elucidated better by the use of multisets [7], which are also called bags.
Their elements also have a cardinality, which can help to manage the problems pointed out above.
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in information theory [18, p. 18] the relative diversity between two arbitrary distributions
of the relative frequencies ri and si of an attribute i is defined to be

D(r||s) =
n
∑

i=1

ri ln
ri

si

.(5.40)

It is always nonnegative and zero iff ri = si for all i. Thus it is an index of the similarity
of the distributions of the two variables r and s but not a true distance function because
it is not symmetric as claimed in section 5.2.1.

Starting from equation (5.36) applying some transformations the equation

I(A1, A2) = D(A1) − D(A1|A2) =

n1
∑

i=1

n2
∑

j=1

ri,j ln
ri,j

ri,∗r∗,j
= D(ri,j||ri,∗r∗,j)(5.41)

can be deduced [18, p. 19]. Finally, from the above equation

I(A1, A2) = I(A2, A1) and I(A1, A1) = D(A1)

follows.

5.4.4 Statistical Dependence of Attributes

Transferred to the initial problem the mutual information here measures the dependence
between the values of the two considered attributes, which will be eventually elucidated
by the consideration of the two limit situations.

If the value of the attribute A1 of an individual implies the value of attribute A2, then
D(A2|A1) = 0 holds and from equation (5.22) D(A1A2) = D(A1) follows. Combining this
again with equation (5.22) the inequality

D(A1) = D(A2) + D(A1|A2) ≥ D(A2)

and thus min(D(A1), D(A2)) = D(A2) results. In fact, this is the maximum of I(A1, A2)
set by inequality (5.38). Furthermore D(A2|A1) = 0 substituted in equation (5.36) yields
I(A1, A2) = D(A2), thus it reaches its maximum just calculated. If also attribute A2 implies
the value of attribute A1, then

I(A1, A2) = D(A1) = D(A2) = D(A1A2)(5.42)

and thus ϑ = 1 hold, i. e. two individuals of different species differ in both attributes and
the relative frequencies of the attributes equal the relative frequencies of the species. Thus
from the observation of one attribute value the value of the second attribute and also the
species affiliation are clearly determined.

Conversely, if the attributes are statistically independent, then equation (5.32) holds
and from equation (5.35) I(A1, A2) = 0 and thus ϑ = 0 follows. The sum of the attribute
diversities has reached its minimum, which at least is needed to provide the species diver-
sity D(A1A2) and there is no redundant information. In this situation also equation (5.33)
is valid. Consequently, observing one attribute does not reduce the diversity respectively
uncertainty of the second one and the species affiliation. As already stated in section 5.4.2
this situation also arises if one attribute has only one value for all objects.
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Taking this into account also equation (5.41) can be interpreted. The mutual informa-
tion compares the observed distribution of the combinations of both attributes with their
fictive distribution under the hypothesis of their statistical independence using the relative
diversity.

5.4.5 Multiple Attribute Extension

The considerations proposed until now can be extended to more than two attributes. For
the sake of simplicity first only three attributes A1, A2, A3 are considered. Starting from
D(A1A2A3) using the chain rules [18, p. 21ff ] the transformation

D(A1A2A3) = D(A1) + D(A2A3|A1)

= D(A1) + D(A2|A1) + D(A3|A2A1)(5.43)

= D(A1) + D(A2|A1) + D(A2) − D(A2) +

D(A3|A1A2) + D(A3) − D(A3)

= D(A1) + D(A2) + D(A3) − I(A1, A2) − I(A3, A1A2)(5.44)

= D(A1) + D(A2) + D(A3) − Θ(A1, A2, A3).(5.45)

can be carried out. Thus the redundant information Θ(A1, A2, A3) combines the mutual
information between the attributes. Using equation (5.41) the transformation

Θ(A1, A2, A3) = I(A1, A2) + I(A3, A1A2)(5.46)

=

n1,n2
∑

i=1,j=1

ri,j ln
ri,j

ri,∗r∗,j
+

n1,n2,n3
∑

i=1,j=1,k=1

ri,j,k ln
ri,j,k

r∗,∗,kri,j,∗

=

n1,n2,n3
∑

i=1,j=1,k=1

ri,j,k ln
r∗,∗,kri,j,∗

r∗,∗,kri,∗,∗r∗,k,∗

+

n1,n2,n3
∑

i=1,j=1,k=1

ri,j,k ln
ri,j,k

r∗,∗,kri,j,∗

=

n1,n2,n3
∑

i=1,j=1,k=1

ri,j,k ln
ri,j,k

ri,∗,∗r∗,j,∗r∗,∗,k

follows. Thus again the real joined distribution of the attributes is compared against the
fictive joined distribution assuming statistical independence using the relative diversity.
Since for two attributes redundant information and mutual information are equal, then
the comparison also gives the mutual information as in equation (5.41). This is not true
for more than two attributes. The situation is depicted in the Venn diagram of figure 5.2.
The mutual information I(A1, A2, A3) is common to all three attributes, thus is gained by
evaluating any one of them. Consequently it is defined to be

I(A1, A2, A3) = I(A1, A2) − I(A1|A3, A2|A3) = I(A1, A2) − I(A1, A2|A3)(5.47)

From that with some transformations

I(A1, A2, A3) = I(A1, A2) + I(A1, A3) − I(A1, A2A3)

follows. There are corresponding formulas for the other permutations of the attributes. In
the Venn diagram of figure 5.2 this corresponds to the set operation

I(A1, A2, A3) = I(A1, A2) ∩ I(A1, A3).
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I(A1, A2, A3)D(A1|A2A3)

D(A1) D(A3)

D(A2) I(A1|A3, A2|A3)

Figure 5.2: Venn diagram of the relationship between three diversities.

From that correspondence one normally would infer the inequality

0 ≤ I(A1, A2, A3),(5.48)

which unfortunately does not hold [61], because contradictory examples can be found [71,
problem 8-2, p. 237]. Thus for more than two attributes a graphical representation of the
dependence structure is only possible for special cases. But without further proof from
figure 5.2 at least

I(A1, A2, A3) ≤ min(I(A1, A2), I(A2, A3), I(A1, A3)).(5.49)

follows. Consequently any independence between the attributes implies the non positivity
of the triple mutual information. The redundant information Θ(A1, A2, A3) can not even be
shown in the situation depicted in figure 5.2, because expanding the mutual informations
in equation (5.44) shows, that the triple mutual information I(A1, A2, A3) is contained
twice in the redundant information.

The equations (5.43), (5.45) and (5.47) can be further extended from three to M at-
tributes. Consequently

D(A1 · · ·AM) = D(AM) + D(AM−1|AM) + · · · + D(A1|A2 · · ·AM)(5.50)

and

D(A1 · · ·AM) =
M
∑

l=1

D(Al) − Θ(A1, . . . , AM)(5.51)

follow with

Θ(A1, . . . , AM) = I(A1, A2) + I(A3, A1A2) + . . . + I(AM , A1 · · ·AM−1).

Finally for the mutual information

I(A1, . . . , AM) = I(A1, . . . , AM−1) − I(A1, . . . , AM−1|AM)

= I(A1, A2) − I(A1, A2|A3) − . . . − I(A1, . . . , AM−1|AM)
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holds.
Analogously the inequalities deduced until now for two attributes also can be extended

for M attributes. Using corresponding argumentation as for two attributes from equa-
tion (5.50) and (5.51) the inequality

max(D(A1), . . . , D(AM)) ≤ D(A1 · · ·AM) ≤
M
∑

l=1

D(Al) ≤ M D(A1 · · ·AM)(5.52)

follows analogously to inequality (5.29) and the inequality

0 ≤ Θ(A1, . . . , AM) ≤ (M − 1)D(A1 · · ·AM).(5.53)

analogously to inequality (5.38). From that the coefficient

ϑ =
Θ(A1, . . . , AM)

(M − 1)D(A1 · · ·AM)
=

∑M

l=1 D(Al) − D(A1 · · ·AM)

(M − 1)D(A1 · · ·AM)
(5.54)

with 0 ≤ ϑ ≤ 1 can be derived. For the mutual information

I(A1, . . . , AM) ≤ min(I(A1, A2), . . . , I(A1, AM), I(A2, A3), . . . , I(AM−1, AM))

follows. Its further properties are not considered here, because they are of no interest for
the main subject of this work. Nevertheless their exploration will be worthwhile.

5.4.6 Dependence versus Schema Reach

Like for two attributes in section 5.4.3, where it equals the mutual information, the re-
dundant information Θ(A1, . . . , AM ) and the corresponding coefficient ϑ measure not only
the redundancy but also the dependence respectively determination between the values of
the M attributes. If ϑ = 1 respectively Θ(A1, . . . , AM) = (M − 1)D(A1 · · ·AM) hold, then
individuals from different species respectively classes differ in each attribute. Furthermore
the distributions of the attribute values are the same for all attributes. Conversely, if
Θ(A1, . . . , AM) = ϑ = 0 holds, then the attributes are statistical independent. Thus, like
in section 5.4.2 the sum of the attribute diversities has reached its minimum which at least
is needed to provide the species diversity D(A1 · · ·AM).

The above considerations can be combined with the notion of a schema proposed in
section 3.7. Clearly, if ϑ = 1 holds, then in the population there is no schema reaching
across species borders. Conversely, if ϑ = Θ(A1, . . . , AM) = 0 holds, then the attributes are
statistical independent and the schemata have spread among the different species in the
population as much as possible with respect to the species diversity D(A1 · · ·AM) and the
number of attributes M . Particularly, there may be attributes having the same value for all
classes respectively species. Clearly the propagation of schemata across species borders in a
population reduces the diversity of the related attributes respectively genes. If the species
diversity in spite of this remains constant, then the redundant information Θ(A1, . . . , AM)
and the dependence coefficient ϑ decrease. Consequently both are indices of the hetero-
geneity of the different species with respect to the species diversity D(A1 · · ·AM). If further
attributes are introduced, which have the same value for all species, then Θ(A1, . . . , AM)
remains constant, but ϑ decreases, as it is expected, because M increases. Summed up,
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schema propagation always leads to a reduction of the sum of the attribute diversities and
thus the population diversity. But such a reduction does not guarantee a schema propa-
gation between species. It may be induced also by the increase of the portions of some
dominating species, which manifests itself by a reduction of the species diversity.

Finally, the dependence respectively determination coefficient ϑ can replace the normed
contingency coefficient in statistics6. It also compares the real joint distribution against the
fictive distribution assuming statistical independence, but uses relative diversity instead of
χ2 statistics [54, p. 155ff ]. Furthermore it can be used easily for more than two dimensions,
which is a great advantage.

Having explored the relation between species and population diversity to dependence
and schema propagation, finally the application to evolution programs has to be considered,
which is performed in the next section.

5.5 Status Indices for Evolution Programs

To monitor the reach of schemata during evolution the use of the population diversity is
needed. Since schemata usually are not required to reach across genotype class borders,
to use the Gini-Simpson-index is sufficient. But then it is not possible to decide whether
only dominant classes of genotypes spread or whether there is an assimilation between the
classes. Additional information can be obtained by monitoring also the species diversity.
Using it, uniformity in the population can be detected. If the species and the population
diversity are evaluated using Shannon’s index, then using the number of loci M the de-
pendence coefficient ϑ can be calculated, which is based on the relation of both diversity
indices. A value near one indicates that the schemata in the population have hardly spread
across different classes, whereas a value near zero indicates a near maximum possible as-
similation of the different classes. Generally using Shannon’s index the species diversity
limits the population diversity from below, which follows from inequality (5.52) and cor-
responds to a dependence coefficient ϑ = 0. Conversely the population diversity is limited
from above by the M fold of the species diversity, which follows from the same equation
and corresponds to a dependence coefficient ϑ = 1.

Usually an evolution program or genetic algorithm starts from a randomly generated
start population of size N . Then a species diversity close to the maximum Dmax

S (P ) = ln N
given by equation (5.15) can be expected, because it is improbable that there are identical
individuals in the population and assumed that the number of possible classes of genotypes
is larger than the population size N . Furthermore each allele of a locus should occur with
the same relative frequency. If the population size N is smaller than the number of possible
alleles nj at a specific locus j then not all possible alleles can occur in the population simul-
taneously. Thus on the encoding level not the whole domain can be covered. Considering
this restriction, from equations (5.14) and (5.18) the maximum population diversity

Dmax
P (P ) =

M
∑

j=1

ln min(nj, N)(5.55)

6The term contingency is misleading in this context because for independence the related coefficient in
statistics has to be zero. In fact then there is no dependence, thus it also should be named dependence
coefficient.
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follows and the start population should have a population diversity close to it. If nj > N
holds, then the dependence coefficient ϑ should be close to one, because then the diver-
sities of the loci equal approximately the species diversity. Conversely, if the opposite
holds, then the initial diversities of the attributes are smaller than the species diversity
and consequently the dependence coefficient ϑ will be significantly lower than one. Conse-
quently, in such a random population already some schemata reach across different classes
of genotypes and their number increases with the population size N .

During the run of an evolution program a propagation of schemata will reduce the pop-
ulation diversity, whereas the species diversity should not decrease significantly, because
that would indicate the propagation of equivalent individuals respectively an increase of
uniformity, which is not intended. Consequently a significant reduction of ϑ can be ex-
pected during a run.

Using a binary encoding, which is a characteristic of the genuine genetic algorithm, a
complete coverage of the encoding domain always can be achieved despite of a relatively
small population size, because already a population consisting of two individuals differing
at each bit achieves the maximum possible population diversity. But trying to preserve the
coverage needs appropriate operators and is expensive not only with respect to the com-
puting time [66]. From the considerations proposed above also follows that in a randomly
created binary encoded population always a lot of schemata should cover different classes
of genotypes.

It is also advantageous to partition a population into several subpopulations and to
process them separately, because the diversity of the whole population always is at least as
high as the average of the subpopulations, which follows from the concavity of the diversity.
This advantage is used implicitly already e. g. in the program “Asparagos” [35].

5.6 Summary

In this chapter the species and the population diversity have been introduced to be suitable
indices to monitor the state of a population. A reduction of the population diversity
during the run of an evolution program indicates the propagation of schemata and an
assimilation, whereas a reduction of the species diversity indicates an increase of uniformity.
If both indices are calculated using Shannon’s entropy as diversity index, then from them
the new dependence coefficient ϑ also can be calculated. It indicates the presence of
dependences in the population, which is related to the reach of schemata across different
classes of genotypes. If the dependence coefficient decreases during the run of an evolution
program or genetic algorithm, schemata spread in the population between different classes
of genotypes and thus cause an assimilation without an increase of uniformity. Shannon’s
entropy function has to be used here because it is the only diversity index providing
additivity in the case of statistical independence, which is needed to identify dependences.
The Gini-Simpson-index favored by Rao does not have this property and thus is not capable
to detect dependences.

Using the proposed indices having a strong theoretical background the relation between
a successful improvement of the objective values close to the optimum during evolution
and a propagation of schemata in general and especially across genotype classes can be
explored.
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The properties of the dependence coefficient ϑ have not been explored to the end until
now. Furthermore its statistic has to be considered to use it also for statistical tests on
independence. Finally the properties of the mutual information for more than two variables
have to be explored more deeply.



Chapter 6

Sample Experimental Observations

6.1 Introduction

Due to missing suitable indices exact observations of schema propagation in experiments
could not be performed until now. Thus there is hardly an evidence of the relevance of the
theoretical models supporting that conjecture. Using the new indices developed in the last
chapter this gap can be filled. In the following observations are proposed gained with an
improved version of TSPGA [30] on some sample instances of the traveling salesman prob-
lem. TSPGA has been extended to calculate both the species and the population diversity
using Shannon’s index and from that the dependence coefficient. In the experiments the
objective has been to explore schema propagation and other phenomena expected from the
theoretical selection model, but not to show the superiority of TSPGA over other evolution
programs for the symmetric traveling salesman problem. All experiments proposed in the
following have been performed with fitness proportional selection, although TSPGA due
to its use of PGAPack [56] provides also other selection methods.

As stated already above, three classes of instances are considered. First, there are in-
stances especially constructed to mislead heuristics. Second, there are problem instances
created at random. Normally in this case most heuristics find at least near optimal solu-
tions. Third, there are trivial instances, where the optimum can be found by any deter-
ministic improvement strategy or at least by a greedy algorithm.

Since the problem size respectively number of cities M in the chosen sample instances
varies from 100 to 159 two population sizes of 50 and 300 individuals have been selected for
presentation. This results in maximum species diversities of Dmax

S (P ) = ln 50 ≈ 3.91 and
Dmax

S (P ) = ln 300 ≈ 5.70 and for a random initial population the observed values of this
indices can be expected to be close to that values, because each individual should belong
to a separate species.

The population size of 50 individuals is lower than number of cities and consequently the
attribute values at each locus can not cover the whole domain, which is a usual situation for
very large instances. Then according to equation 5.55 the maximum population diversity
is Dmax

P (P ) = M ln 50 and again for a random initial population the observed value can
be expected to be close to that value. Following the argumentation of section 5.5 in this
situation the dependence coefficients of a random initial population ϑ(P (0)) should be
close to one and two randomly drawn individuals should differ in almost every locus.

87
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The population size of 300 individuals is higher than the number of cities. Thus the
whole domain can be covered at each locus. According to equation 5.55 the maximum
population diversity is Dmax

P (P ) = M ln M , which implies a uniform distribution of the
possible attribute values at each locus. But the population size of 300 individuals is to
small in relation to the number of different possible attribute values respectively cities to
approach a uniform distribution closely. Consequently here in a random initial population
the observed value can be expected to be significantly lower than that value. Following the
argumentation of section 5.5 in this situation the dependence coefficients of a random initial
population ϑ(P (0)) should significantly lower than one, because the species diversity is not
limited by of the problem size, as considered already above. Thus although a population is
generated at random, there are already schemata reaching across different species. Clearly,
the dependence coefficient for random populations decreases for populations sizes greater
than the tourlength, because then the population diversity retains its near maximum value,
but the species diversity increases under the condition, that each individual belongs to a
different species, which generally should hold for a random population.

In the following observations with three sample problem instances are proposed. All
experiments have been finished after 5000 generations, which seems to be long enough to
observe all important effects.

6.2 Constructed Instance

6.2.1 General Observations

Now the observations with instance u159, a 159 cities planar problem instance from the
traveling salesman problem collection TSPlib95 [84] are proposed. The length of the op-
timal tour of this instance is 42081. As expected in all experiments the initial popula-
tion P (0) exhibits a species diversity DS(P (0)) close to the maximum possible value stated
above. Thus normally each individual belongs to a separate species and two individuals dif-
fer at least in one locus. From the considerations above for the population size of 50 individ-
uals a maximum population diversity Dmax

P (P ) = 159 ln 50 ≈ 622 follows and for the popu-
lation size of 300 individuals a maximum population diversity Dmax

P (P ) = 159 ln 159 ≈ 806.
The initial population diversities always are slightly lower than these maximum possible
values. For the populations of 50 individuals DP (P (0)) ≈ 590 and for the populations
of 300 individuals DP (P (0)) ≈ 757 have been observed, which meets the conjecture of
imperfect uniform distribution. The initial diversity values result in dependence coeffi-
cients of ϑ(P (0)) ≈ 0.9 for the 50 individuals populations and of ϑ(P (0)) ≈ 0.8 for the
300 individuals populations, which also meet the expectations. Finally, the populations
exhibit a tourlength of the best individual of approximately 400,000 and an average of
approximately 450,000.

6.2.2 Example Experiments

In the first considered series an elitist evolution program is realized by taking over the
10 % best individuals from the old population to the new one. As a general example ex-
periment 53 with crossover probability 0.8, uniform crossover probability of 0.1, mutation
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Figure 6.1: The development of best and average tourlengths in experiment 53 with a
population of 300 individuals using an elitist replacement strategy.
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Figure 6.2: The development of the species diversity in experiment 53 with a population
of 300 individuals using an elitist replacement strategy.
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Figure 6.3: The development of the population diversity in experiment 53 with a population
of 300 individuals using an elitist replacement strategy.
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Figure 6.4: The development of the dependence coefficient in experiment 53 with a popu-
lation of 300 individuals using an elitist replacement strategy.



6.2. CONSTRUCTED INSTANCE 91

probability 0.025 and population of 300 individuals is considered. Figure 6.1 shows the
development of the tourlength of the best individual and the population average during
the run. Both values decrease strongly during the first stage and approach a value rela-
tively close to the optimum although they do not reach it and remarkably they are always
relatively close together. This improvement close to the optimum in the context of evo-
lutionary computing is called convergence, but which has been defined above to be called
saturation in objective. The development of the species diversity is shown in figure 6.2.
First it stays close to the maximum possible value and then decreases with some jags to
approximately half of the initial value. This indicates an increase of uniformity during
the evolution. Conversely, figure 6.3 shows an initial drastic reduction of the population
diversity to a limit value followed by a nearly constant continuation. This indicates an
assimilation of the individuals to a specific level, which has been defined above to be sat-
uration in domain. The assimilation is finished significantly before the tourlength values
have approached their limit. The finish of the assimilation process coincides with the start
of the decrease of the species diversity. From the species and the population diversities,
the dependence coefficient ϑ can be calculated, whose development is shown in figure 6.4.
The strong reduction caused by the assimilation indicates a propagation of schemata in
the population between different species respectively classes of genotypes, which reaches
its limit already before the improvement process has been finished. This phenomenon is
the premature assimilation discussed already above. Later on there is a slight increase,
which is caused by the decrease of the species diversity.

Summed up, these observations are more or less what is expected from a standard
evolution program. Changing the parameters results in slightly different plots of the species
diversity and the dependence coefficient.

Reducing the population size in experiment 52 to 50 individuals retards the improve-
ment process significantly, which is shown in figure 6.5. The species diversity is reduced
similarly as for the larger population size but with more jags, which is shown in figure 6.6.
The development of the population diversity is shown in figure 6.7. It is reduced quickly
to nearly the same level as for a population of 300 individuals. Due to the decreasing
species diversity and its jags the dependence coefficient shown in figure 6.8 after its strong
initial reduction increases slightly and also the plot becomes a lot more jaggy than for
300 individuals.

Generally changes of the parameters do not affect the saturation both in fitness and
domain strongly, i. e. the fitness and population diversity plots do not change principally.
Most importantly the time gap between the end of the assimilation and the improvement
changes. Summed up fitness proportional selection with elitist population replacement is
very robust against parameter and population size changes. Schemata propagate rapidly
and using appropriate parameter values the species diversity can be preserved at least
partly preventing uniformity from domination.

But increasing the population replacement fraction to one changes the behavior totally.
Then there is no more elitism, but the algorithm becomes totally generational. With oth-
erwise identical parameter setting as in experiment 53 with a population of 300 individuals
proposed above, in experiment 65 nearly no improvement takes place, which is shown in
figure 6.9. The species diversity shown in figure 6.10 remains nearly constant and the pop-
ulation diversity is only hardly reduced, which is shown in figure 6.11. Consequently also
the dependence coefficient presented in figure 6.12 remains on a very high level. Thus there
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Figure 6.5: The development of best and average tourlengths in experiment 52 with a
population of 50 individuals using an elitist replacement strategy.
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Figure 6.6: The development of the species diversity in experiment 52 with a population
of 50 individuals using an elitist replacement strategy.



6.2. CONSTRUCTED INSTANCE 93

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
op

ul
at

io
n 

D
iv

er
si

ty

Iterations

Problem: u159

Figure 6.7: The development of the population diversity in experiment 52 with a population
of 50 individuals using an elitist replacement strategy.
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Figure 6.8: The development of the dependence coefficient in experiment 52 with a popu-
lation of 50 individuals using an elitist replacement strategy.
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is nearly no improvement and no schema propagation during the evolution. A reduction
of the population size to 50 individuals improves the behavior somewhat. Then there is
a noticeable improvement and the population diversity is lowered slightly more than for
300 individuals.

If the mutation and the uniform crossover rates are lowered enough like in experi-
ment 70, then the population diversity is reduced to an intermediate level, as shown in
figure 6.15. Since the species diversity remains nearly constant, which is shown in fig-
ure 6.14, also the dependence coefficient is reduced to an intermediate level as shown in
figure 6.16. Thus now there is schema propagation and it takes place between differ-
ent species respectively classes of genotypes. Related to that there is a reduction of the
tourlengths, but unfortunately not to a near optimum level. This incomplete improvement
is shown in figure 6.13.

If both mutation and and crossover rates are further reduced and tuned, then the
improvement process can be enforced. In experiment 73 the population diversity is reduced
almost instantly to the same level as with elitist selection, as shown in figure 6.19. Since the
species diversity remains nearly constant, which is shown in figure 6.18, also the dependence
coefficient is reduced to a low level as shown in figure 6.20. Thus schemata spread already
in the initial stage and reach also across different species respectively classes of genotypes.
Related to that there is a strong reduction of the tourlengths, but unfortunately not to a
near optimum level within the monitored number of generations, as shown in figure 6.17.
The improvement respectively saturation in objective is very slow. Consequently there is
a large generation gap between the instant assimilation and the improvement. Generally
the behavior changes very smoothly, i. e. small changes of the parameters do not induce a
drastic change of the behavior.

6.2.3 Summary

Summed up, without the help of elitist population replacement the propagation of schemata
using fitness proportional selection is easily obstructed and the improvement is insufficient.
On the other hand elitism slightly promotes the propagation of uniformity in the popu-
lation after assimilation has finished, which is indicated by a decreasing species diversity.
Generally, all experiments showing final tourlengths close to the optimum value also ex-
hibit an initial reduction of the population diversity to a low value, which indicates a strong
assimilation of the individuals on the average. On the other hand a missing assimilation
always indicates a missing improvement process.

6.3 Random Instance

6.3.1 General Observations

In the following the observations with instance rd100, a random 100 cities planar prob-
lem instance taken also from the traveling salesman problem collection TSPlib95 [84] are
proposed. The length of the optimal tour of this instance is 7910. For a population
size of 50 individuals a maximum population diversity Dmax

P (P ) = 100 ln 50 ≈ 391 and for
300 individuals a maximum population diversity of Dmax

P (P ) = 100 ln 100 ≈ 461 follows.
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Figure 6.9: The development of best and average tourlengths in experiment 65 with a
population of 300 individuals using a non elitist replacement strategy.
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Figure 6.10: The development of the species diversity in experiment 65 with a population
of 300 individuals using a non elitist replacement strategy.
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Figure 6.11: The development of the population diversity in experiment 65 with a popu-
lation of 300 individuals using a non elitist replacement strategy.
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Figure 6.12: The development of the dependence coefficient in experiment 65 with a pop-
ulation of 300 individuals using a non elitist replacement strategy.
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Figure 6.13: The development of best and average tourlengths in experiment 70 with a
population of 300 individuals using a non elitist replacement strategy.
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Figure 6.14: The development of the species diversity in experiment 70 with a population
of 300 individuals using a non elitist replacement strategy.
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Figure 6.15: The development of the population diversity in experiment 70 with a popu-
lation of 300 individuals using a non elitist replacement strategy.
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Figure 6.16: The development of the dependence coefficient in experiment 70 with a pop-
ulation of 300 individuals using a non elitist replacement strategy.
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Figure 6.17: The development of best and average tourlengths in experiment 73 with a
population of 300 individuals using a non elitist replacement strategy.
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Figure 6.18: The development of the species diversity in experiment 73 with a population
of 300 individuals using a non elitist replacement strategy.
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Figure 6.19: The development of the population diversity in experiment 73 with a popu-
lation of 300 individuals using a non elitist replacement strategy.
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Figure 6.20: The development of the dependence coefficient in experiment 73 with a pop-
ulation of 300 individuals using a non elitist replacement strategy.
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Analogous to the observations for problem instance u159 presented earlier, the initial
species diversities are close to the maxima, whereas the population diversities are slightly
lower. Furthermore the dependence coefficients are on the same levels and the populations
exhibit a tourlength of the best individual of approximately 49,160 and an average of
approximately 55,370.

6.3.2 Example Experiments

Again first an elitist evolution program is realized by taking over the 10 % best individu-
als from the old population to the new one. As an example, experiment 53 with crossover
probability 0.8, uniform crossover probability of 0.1, mutation probability 0.025 and a pop-
ulation of 300 individuals is considered. The plots are very similar to that of instance u159
with the same parameter setting presented above. Figure 6.21 shows the development of
the tourlength of the best individual and the population average during the run, figure 6.22
the development of the species diversity, figure 6.23 the development of the population di-
versity and figure 6.24 the development of the dependence coefficient ϑ. The most notable
difference to the behavior with instance u159 is the better and faster saturation in fit-
ness. I. e. the shortest tourlength in the population here is closer to the optimum than
for instance u159 and it takes less generations to finish the improvement process. Again
uniformity increases after the finish of the assimilation.

Reducing the population size in experiment 52 to 50 individuals again retards the
improvement process significantly, which is shown in figure 6.5. The plot of the development
of the species diversity in figure 6.6 shows more jags than for instance u159. This also leads
to a plot of the dependence coefficient with more jags shown in figure 6.8, because the
development of the population diversity shown in figure 6.7 remains relatively noise free.
Again the gap between the finish of assimilation and that of the improvement increases
with reduced population size.

Switching to a non elitist population replacement scheme again leads to results very
similar to that proposed already for instance u159. As an example again the plots of
experiment 73 are proposed. The development of the tourlengths is shown in figure 6.29,
that of the species diversity in figure 6.30, that of the population diversity in figure 6.31
and that of the dependence coefficient in figure 6.32. The improvement is not as successful
as with elitist selection and a lot slower, and there is a large generation gap between the
instant assimilation and the improvement to a near optimal level. But again the species
diversity remains on the initial near maximum level.

6.3.3 Summary

Summed up, the results for instance rd100 are very similar to that for instance u159. The
improvement process is slightly stronger and faster, which probably is caused not only by
the smaller problem size but also by the random distribution of the cities, which usually
facilitates the working of heuristics.
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Figure 6.21: The development of best and average tourlengths in experiment 53 with a
population of 300 individuals using an elitist replacement strategy.
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Figure 6.22: The development of the species diversity in experiment 53 with a population
of 300 individuals using an elitist replacement strategy.
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Figure 6.23: The development of the population diversity in experiment 53 with a popu-
lation of 300 individuals using an elitist replacement strategy.
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Figure 6.24: The development of the dependence coefficient in experiment 53 with a pop-
ulation of 300 individuals using an elitist replacement strategy.
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Figure 6.25: The development of best and average tourlengths in experiment 52 with a
population of 50 individuals using an elitist replacement strategy.
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Figure 6.26: The development of the species diversity in experiment 52 with a population
of 50 individuals using an elitist replacement strategy.
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Figure 6.27: The development of the population diversity in experiment 52 with a popu-
lation of 50 individuals using an elitist replacement strategy.
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Figure 6.28: The development of the dependence coefficient in experiment 52 with a pop-
ulation of 50 individuals using an elitist replacement strategy.
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Figure 6.29: The development of best and average tourlengths in experiment 73 with a
population of 300 individuals using a non elitist replacement strategy.
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Figure 6.30: The development of the species diversity in experiment 73 with a population
of 300 individuals using a non elitist replacement strategy.



6.3. RANDOM INSTANCE 107

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
op

ul
at

io
n 

D
iv

er
si

ty

Iterations

Problem: rd100

Figure 6.31: The development of the population diversity in experiment 73 with a popu-
lation of 300 individuals using a non elitist replacement strategy.
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Figure 6.32: The development of the dependence coefficient in experiment 73 with a pop-
ulation of 300 individuals using a non elitist replacement strategy.
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6.4 Trivial Instance

6.4.1 General Observations

Finally the observations with instance cc100, a 100 cities planar problem instance are
proposed. In this instance all cities are placed on a circle and the length of the optimal
tour of this instance is 6300. The initial diversities exhibit values analogous to that for the
last instance. The tourlength of the best random individual is approximately 104,000 and
the average random tourlength is approximately 129,000.

6.4.2 Example Experiments

Again first an elitist evolution program is realized by taking over the 10 % best individu-
als from the old population to the new one. As an example experiment 53 with crossover
probability 0.8, uniform crossover probability of 0.1, mutation probability 0.025 and a pop-
ulation of 300 individuals is considered. The plots are very similar to that of the instances
u159 and rd100 with the same parameter setting presented above. Figure 6.33 shows the
development of the tourlength of the best individual and the population average during
the run. Fortunately TSPGA is able to find the optimal tour with this parameter setting.
Figure 6.34 shows the development of the species diversity, figure 6.35 the development of
the population diversity and figure 6.36 the development of the dependence coefficient ϑ.

Reducing the population size in experiment 52 to 50 individuals again retards the
improvement process significantly, which is shown in figure 6.37. But still the optimum tour
is found, although it takes a lot of generations. The species diversity is reduced similarly
as for instance rd100 with many jags, which is shown in figure 6.38. The development of
the population diversity is shown in figure 6.39. It is reduced quickly to nearly the same
level as for a population of 300 individuals. Due to the decreasing species diversity and
its jags the dependence coefficient shown in figure 6.40 after its strong initial reduction
increases slightly and also the plot becomes very jaggy.

Switching to a non elitist population replacement scheme again leads to results very
similar to that proposed already for the instances u159 and rd100. As an example again the
plots of experiment 73 are proposed. The tourlengths are improved only very slowly and
the algorithm fails to find the optimal tour within the limit number of generations, which
is shown in figure 6.41. The development of the species diversity is shown in figure 6.42,
that of the population diversity in figure 6.43 and that of the dependence coefficient in
figure 6.44.

6.4.3 Summary

Summed up, using an elitist population replacement scheme the optimal solution of this
trivial problem instance can be found. If the population size is small, this may take
many generations. Without the help of elitism within the limit number of generations the
optimum tour could not be found.
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Figure 6.33: The development of best and average tourlengths in experiment 53 with a
population of 300 individuals using an elitist replacement strategy.
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Figure 6.34: The development of the species diversity in experiment 53 with a population
of 300 individuals using an elitist replacement strategy.
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Figure 6.35: The development of the population diversity in experiment 53 with a popu-
lation of 300 individuals using an elitist replacement strategy.
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Figure 6.36: The development of the dependence coefficient in experiment 53 with a pop-
ulation of 300 individuals using an elitist replacement strategy.
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Figure 6.37: The development of best and average tourlengths in experiment 52 with a
population of 50 individuals using an elitist replacement strategy.
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Figure 6.38: The development of the species diversity in experiment 52 with a population
of 50 individuals using an elitist replacement strategy.
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Figure 6.39: The development of the population diversity in experiment 52 with a popu-
lation of 50 individuals using an elitist replacement strategy.
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Figure 6.40: The development of the dependence coefficient in experiment 52 with a pop-
ulation of 50 individuals using an elitist replacement strategy.
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Figure 6.41: The development of best and average tourlengths in experiment 73 with a
population of 300 individuals using a non elitist replacement strategy.
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Figure 6.42: The development of the species diversity in experiment 73 with a population
of 300 individuals using a non elitist replacement strategy.
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Figure 6.43: The development of the population diversity in experiment 73 with a popu-
lation of 300 individuals using a non elitist replacement strategy.
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Figure 6.44: The development of the dependence coefficient in experiment 73 with a pop-
ulation of 300 individuals using a non elitist replacement strategy.
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6.5 Discussion

The experiments show some interesting behavior and relations between the development
of the different indices. In fact three effects have been observed:

improvement (emendation): the development of the best and average fitness in direc-
tion to the optimum.

assimilation: the reduction of the population diversity to a low value.

schema propagation between different species: the reduction of the dependence co-
efficient to a small value.

The last two effects are related by the development of the species diversity. If it remains
constantly close to its maximum possible value, both effects coincide.

Elitist population replacement is very robust against a bad choice of parameter values.
Also provoked by high mutation and uniform crossover probabilities the experiments show a
good improvement behavior and finally tours with lengths close to the optimum are found.
For the trivial instance even the optimum is found. Related to the improvement is a strong
assimilation which is completed already before the improvement process has finished. Thus
there may be a quite long time lag between the completion of both processes. Also during
the initial stage schemata are propagated and the reached high amount persists until the
program is aborted. But after assimilation has finished the species diversity decreases
significantly indicating an increase of uniformity in the population.

Non elitist population is not that successful. The performance of the improvement
depends on the parameter values and the population size. If the mutation and uniform
crossover probabilities are too high, then there is nearly no improvement and no assim-
ilation. Reducing the probabilities there is a smooth transition from this behavior to
successful improvement, assimilation and schema propagation across species borders. But
within the monitored number of generations the found solutions are a lot worse than that
found with elitist population replacement. Also for the trivial problem the optimum has
not been found. Furthermore the species diversity remains nearly constantly on the initial
near maximum level. Consequently there is no increase of uniformity during evolution.

The observations of the development of the dependence coefficient ϑ clearly indicate the
propagation of schemata across species borders during a successful evolution. It is caused by
the assimilation because in the stage of schema propagation the species diversity remains
nearly constantly close to the maximum possible value. But for non elitist population
replacement the propagation of schemata easily can be obstructed by a bad parameter
choice. Also the schema propagation is no guarantee of a good improvement performance,
because although there is a strong assimilation there may be an unsatisfactory convergence
in fitness due to a non elitist population replacement scheme. But in all experiments
performed for this work, assimilation has been a prerequisite of improvement. Thus if
there is no assimilation, there will also be no improvement.

The working of the simple evolution program is to focus the search on a specific part
of the domain by schema propagation. This is indicated by the straight reduction of
the population diversity and the dependence coefficient in the first stage of a successful
evolution. The area of constant population diversity then is shifted to further improve the
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objective value. Especially for relatively small populations and low mutation and uniform
crossover probabilities there is a time lag between the concentration of the search and the
approach of the objective value to the optimum, which is the already considered premature
assimilation. Thus the propagation of schemata goes ahead of the improvement process.
After the assimilation has finished, one can assume that a balance of population diversity
increasing and reducing processes has established itself. Mutation increases the population
diversity if a change of a gene leads to a more uniform distribution at the respective locus.
The probability to do so increases as the diversity of the corresponding locus decreases.
Crossover normally does not influence the population diversity because it changes only
the affiliation of attribute values to individuals of the population. In TSPGA however the
diversity is influenced because the reversion of a subtour in a 2-change step changes the
representation at loci not involved directly in the edge exchange. But several sequential
steps may be without any effect to the diversity. Both processes also increase the species
diversity, because the resulting new individuals may belong to species not present in the
population. Finally selection removes individuals and therefore also their genes from the
population whereas already existing are copied, which reduces the diversities and promotes
uniformity, because copied individuals may not be altered by mutation or crossover.



Chapter 7

Conclusions

In this work, two approaches to evolution programs have been presented until now to
explore schema propagation during evolution. First, a theoretical model of the random
fitness proportional selection process has been considered deeply and in several directions.
Second, experiments have been performed using the indices developed earlier to monitor
the schema reach in a population. Now the relationship between theory and experimental
observations must be confirmed.

Generally in all experiments the genetic drift seems to play an important role, because
the fitness of the best individual is close to the average fitness of the population. Thus
transferred to the theoretical model of two species selection the fitness coefficient is close
to one. In the experiments a uniform population is prevented by the genetic operators
mutation and crossover, which constantly introduce small changes that retain species di-
versity. But the genetic drift promotes the dominance of a few schemata in the population
reaching across different species if mutation and crossover rates are low enough, which
is indicated by the final low dependence coefficient of approximately 0.2 after successful
evolution. This also gives rise to the assumption that the schemata are very similar. Con-
sequently, the genetic drift mainly causes one main direction of search to be there also if
the fitness differences in a population are low. In fact, the genetic drift is the main cause of
premature assimilation, which is therefore an unavoidable accompaniment of the random
fitness proportional selection process.

The genetic drift also causes the low survival chance of a new but superior individual in
the Markov model without mutation, which corresponds to the relatively bad performance
of the evolution program TSPGA in the experiments without elitism. There the probability
to recreate an individual of an extincted class from a persisting one by mutation and
crossover decreases with an increasing dissimilarity to the remaining population. Thus
the real world selection process without elitism can be suitably modeled by the Markov
selection model for two species without mutation. At least some superior classes will
randomly survive and spread, which then improves the fitness of the population. But
this process can easily be obstructed by setting the crossover and mutation rates to high.
Then individuals of a superior class are destroyed before they can spread, which inhibits
evolution and also assimilation. Consequently also from a theoretical point of view, a
missing assimilation is an indicator of an unsuccessful evolution. If an assimilation takes
place, then that happens immediately after the start and takes only a relative small number
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of generations, which corresponds to the low average time to absorption in the Markov
model without mutation.

Using elitist population replacement the effects considered above are inhibited at least
partly. Then the fraction of the best individuals is always copied unchanged to the new
population. Consequently, a new superior individual can no longer be eliminated by genetic
drift or changed by the genetic operators. Also in the following generations it repeatedly
has the chance to spread, which explains the better performance of TSPGA when using an
elitist population replacement scheme. After improvement has finished, the persistence of
the best fraction leads to an increase of uniformity, because if a copy of the best individual
is randomly not changed by the genetic operators, it will also persist. This effect has
been observed in the experiments with elitism by the decreasing species diversity. In the
fraction not covered by the elitist population replacement, all effects mentioned earlier are
also working. Thus, there is also a rapid assimilation caused by the genetic drift, which
eliminates classes randomly from the population and promotes the dominance of a few
schemata, which are closely related.

The final balance distribution of the two species Markov model with mutation corre-
sponds to the steady respectively saturated state, to which the evolution process converges.
The mutation and crossover destroys existing individuals as long as they are not persistent
due to elitism. From them, individuals belonging to other possibly new classes are created,
which counteracts the genetic drift trying to enforce uniformity. Consequently, there is a
balance of creation and elimination, which has been modeled in the two species model by
the different mutation rates.

Summed up, in evolution schema propagation is a prerequisite of improvement. With-
out schema propagation the evolution cannot focus on a subdomain of the problem domain,
from which then a further search starts. Schema propagation can be observed during the
run of an evolution program or genetic algorithm by monitoring the suitable indices pro-
posed in this work. The different variants of the theoretical model proposed here can be
used to explain the experimental results. But the simplification to two species, that enables
the tractability of the proposed model, always requires a careful decision, which variant
must be used to explain a certain effect. Since there are not even explicit solutions for
the the simple Markov models with different fitnesses, only a numerical analysis will be
possible for more complicated situations.
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Mathematical Prerequisites

A.1 Sum Formulas

The sum

t−1
∑

j=0

ajbt−1−j = at−1 + at−2b + at−3b2 + . . . + bt−1

often needs to be calculated. It can be transformed easily to

t−1
∑

j=0

ajbt−1−j = at−1

t−1
∑

j=0

(

d

a

)j

.

Now the well known sum formula [45, p. 27]

w−1
∑

j=0

αj =
αw − 1

α − 1
(A.1)

can be applied, which leads to

t−1
∑

j=0

ajbt−1−j =
at − bt

a − b
.(A.2)

A.2 Difference versus Differential Equations

Generally corresponding differential and difference equations have the same fixed points,
but their asymptotic stability properties may differ [45, p. 25]. As stated above, to a
first order differential equation (4.32) with equation (4.30) and constant step size h the
differential equation

x(t + 1) = x(t) + h f(x(t)) = g(x(t))(A.3)

corresponds. As already noted, this is a reversal of Euler’s approach to solve a differential
equation numerically, which can not be solved explicitly.
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Since of the stability criterion (4.21) an asymptotically stable fixed point z of the
difference equation has to satisfy the inequality

∣

∣

∣

∣

dg

dx
(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

1 + h
df

dx
(z)

∣

∣

∣

∣

< 1.

From that with a case separation for h > 0

−
2

h
<

df

dx
(z) < 0

follows for a fixed point z of the differential equation to be stable also for the corresponding
difference equation. Consequently the step size h has to be chosen small enough to ensure
asymptotic stability in this case.

In the selection model considered in section 4.3 the approach is reversed. Asymptotic
stability of a fixed point of the difference equation generally ensures that also for the
corresponding differential equation independently of the step size h > 0.

But generally there must be no similarity of the solutions of a difference equation and
its corresponding differential equation constructed using the approach of equation (A.3).
E. g. to the difference equation

y(t + 1) = 1 + y(t) + y2(t),

which has no singularities, the differential equation

ẏ =
1

h

(

1 + y2
)

corresponds. Clearly its solution is y(t) = 1
h

tan t, which is even, i. e. y(t) = −y(−t) holds,
periodic, i. e. y(t) = y(t + nπ) holds with n ∈ Z, and has singularities for t = π

2
+ nπ. Con-

sequently, the solutions of the corresponding difference and differential equations are totally
different. Thus the similarity of the difference equation (4.19) and the corresponding dif-
ferential equation given by equation (4.31) at least for α ≈ 1 is remarkable. The theory
behind this subject in depth is considered by Kato [52, p. 509–515], which is mainly based
on Trotter’s article [95].



Appendix B

Extensions to the Population State
Indices

B.1 Information Theoretic Additions

B.1.1 From Information to Entropy

The consideration of information is closely related to the notion of a message. A message M
is an ordered sequence of symbols s1 s2 . . . sN . Each symbol si of the message is taken
from a domain or alphabet A = {a1, . . . , an}. Alternatively this is often called a string.
Now following Brillouin [10, Chapter 1] the information of a message is defined to be

I = K ln P(B.1)

with P being the number of different messages that can be composed from the symbols con-
tained in the message and K an arbitrary constant. But the number of different messages P
is the number of permutations of M with repetitions, thus by following combinatorial the-
ory [11, p. 110]

P =
N !

N1!N2!· · ·Nn!
(B.2)

with Nj being the frequency of symbol aj in the message. Combining equations (B.1) and
(B.2) leads to the information

I = K ln
N !

∏n

j=1 Nj!
.(B.3)

If two separate messages are concatenated, then each permutation of the first message can
be combined with each of the second. Doing so, the number of possible combined messages
is

P = P1 · P2

giving

I = K ln(P1 · P2) = I1 + I2(B.4)

121



122 APPENDIX B. EXTENSIONS TO THE POPULATION STATE INDICES

with

I1 = K ln P1 and I2 = K ln P2

for their individual informations. Thus an important property of the information is its
additivity under the condition of the independence of the related messages. In section B.1.2
this property will be reexamined and some consequences be considered.

Setting K = 1 from equation (B.3) the average information per symbol

HB =
1

N
ln

N !
∏n

j=1 Nj!
.(B.5)

follows, which will be referred as Brillouin entropy in the following. If all the Nj are very
large, then the approximation

ln n! ≈ n(ln n − 1)(B.6)

can be applied. Doing so with some transformations leads to Shannon’s entropy H [89] of
equation (5.14) with the relative frequencies rj in the message instead of the probabilities pj.

Brillouin’s average information per symbol HB also is used as species diversity index [59,
74], but it does not satisfy invariance under cloning [53, p. 113]. Instead for fixed relative
frequencies rj it is an increasing function of the number of symbols N of the message [73,
p. 372].

Finally the Brillouin diversity coefficient

dB =
N DB

ln N !
=

1

ln N !
ln

N !
∏n

j=1 Nj!

between zero and one can be deduced. Its properties here are not explored any further.

B.1.2 Diversity of Combined Sets

The combination of two submessages to a message in equation (B.4) shall be reconsidered
here to be the combination of subpopulations to a population using two attributes. Then
the diversity of the first attribute A1 is examined and a second attribute A2 specifies the
affiliation of an individual to a subpopulation. Thus D(A1|A2 = aj) is the diversity of
attribute A1 in subpopulation aj, which equals the information per character in the corre-
sponding submessage. Combining the subpopulations the average subpopulation diversity
D(A1|A2) is obtained, which is equivalent to the information per character of a whole mes-
sage combined from the submessages under the condition of their independence. Contrary,
the diversity of attribute A1 respectively information per character in the whole population
is D(A1). From equation (5.36) using the Shannon diversity

DS(A1) − DS(A1|A2) = I(A1, A2) ≥ 0(B.7)

follows, which also proves the concavity of the Shannon diversity used here.
Analogously to the considerations in the last section these relations can be inter-

preted. If the subpopulations are statistical independent, then DS(A1|A2) = DS(A1) and
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I(A1, A2) = 0 hold. Consequently, with equation (5.34) the relative frequencies of the con-
sidered attribute A1 in each subpopulation must be constant. Thus the subpopulations
share the same structure.

Conversely, if in each subpopulation there is only one unique value of the considered at-
tribute A1 and therefore DS(A1|A2 = aj) = 0 for all subpopulations 1 ≤ j ≤ m, then there
is a strict one to one dependence between attribute A1 and attribute A2, which specifies the
affiliation of an individual to a subpopulation. Consequently, DS(A1|A2) = DS(A2|A1) = 0
follows. Furthermore because of equations (5.22) and (5.36) the equation

DS(A1) = DS(A2) = DS(A1A2) = I(A1, A2)

holds. Thus, the increase of diversity is limited by the diversity of attribute A2, which
specifies the decomposition of the set into subsets. Consequently

DS(A1) ≤ DS(A1|A2) + DS(A2) and I(A1, A2) ≤ DS(A2)

hold. Unfortunately, knowing only DS(A1|A2) and DS(A2) it is impossible to calculate
DS(A1) directly from both quantities.

If the diversities D are calculated using an index based on a generalized average dis-
tance, e. g. the Gini-Simpson-index, then the average distance of the whole set can also
be separated into distance portions within the subsets and among them. Rao called that
apportionment of diversity [79, p. 72ff ]. Doing so, the distance portion among the sets
corresponds to the mutual information considered above.

Summed up, the increase of diversity resulting from a combination of sets depends on
their heterogeneity, i. e. here the dissimilarity of their attribute value distributions. Using
the Shannon diversity it is measured by the mutual information, which is limited by the
diversity of the subset assignment. If the considered attribute has the same value within
a subset, then the diversity of the union equals the heterogeneity of the subsets. Since
each set can be partitioned into subsets of uniform individuals, the heterogeneity and the
diversity of a population are synonymous.

B.2 Application to Classification Theory and Cluster

Analysis

B.2.1 Heterogeneity

In classification theory and cluster analysis the heterogeneity of a set of multivariate objects
often is defined to be the average distance of equation (5.3) [8, p. 91f ], which can be
generalized to Rao’s diversity of equation (5.12) alternatively. Thus also there heterogeneity
in fact is equivalent to diversity. For sets of objects with nominal scaled attributes then
the Hamming distance of equation (5.2) is the natural distance function, which results in
the heterogeneity indices of equation (5.7) respectively (5.13). This fact generally has not
been recognized [53, p. 96ff ]. E. g. Bock [8, p. 99f ] has proposed the Gini-Simpson index
of equation (5.11), but has not considered its relation to the average distance. Instead he
has recommended the information content or total information

I(P ) = N

M
∑

j=1

DS(Nj,1, . . . , Nj,i, . . . , Nj,nj
)(B.8)
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to measure the heterogeneity of the set or population P of size N [8, p. 95]. Clearly,
this quantity does not satisfy the properties of invariance under cloning [53, p. 103] and of
concavity, which have been claimed for diversities in section 5.3. Instead from the concavity
of the Shannon diversity

I(P ) ≥
n
∑

i=1

I(Pi)

follows, which is called superadditivity. Consequently the total information is not a suitable
heterogeneity index.

B.2.2 Patterns versus Schemata

In machine learning one important task is to identify patterns in a dataset of objects having
multiple nominal attributes and then to infer classification rules or cluster the dataset. In
fact a pattern is equivalent to a schema in evolution programs. But the heterogeneity
indices used in machine learning usually are distance based or similar to the population
diversity like the total information proposed above. Thus they consider each attribute
independent from the remaining. This situation is very schizophrenic because the task is
to identify dependences. But until now no index has been proposed in machine learning
to measure the dependences and pattern reach in a data set.

The considerations made for populations processed by evolution programs also can be
applied here. Consequently, it is impossible to extract any rules from a set of objects
having ϑ = 1 and easiest if ϑ = 0 holds. Thus it is now possible to rate the performance
of rule extraction of a machine learning algorithm in relation to the dependencies inherent
in the set of objects on which it acts. The heterogeneity also can be interpreted to be
the redundancy during a classification process. If ϑ = 1 holds then each attribute is suf-
ficient for the classification and the remaining can be used to correct errors. Conversely,
if ϑ = 0 holds then all attributes have to be evaluated and an error always leads to a false
classification.

Finally an application to cluster analysis and classification theory is possible. An
approach based on ideas similarly to the one introduced in this article already has been
proposed by Watanabe [99, p. 409ff ] and later been adopted by Guiaşu [39, p. 72ff ].
But their realization is very strange, because it results in the subadditivity of the entropy
respectively diversity in case of the union of the subsets. Also Bock was not very convinced
of this approach [8, p. 99], although he esteemed it worth to discuss.

B.2.3 Combining Sets

Now the situation of combining subsets of objects in section B.1.2 is reconsidered and
extended to three attributes A1, A2, A3, where A3 specifies the affiliation to a subset. Then
for each of the subpopulations Pk from equation (5.35)

D(A1A2|A3 = a3,k) = D(A1|A3 = a3,k) + D(A2|A3 = a3,k) − I(A1, A2|A3 = a3,k)

follows. Forming the average leads to

D(A1A2|A3) = D(A1|A3) + D(A2|A3) − I(A1, A2|A3)
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and combining the subpopulations to equation (5.35)

I(A1, A2) = D(A1) + D(A2) − D(A1A2).

For each diversity the heterogeneity between the subsets is defined to be the increase
induced by unconditioning respectively combining because of the concavity of the diversity.
For the redundant information

Θ(A1, A2) − Θ(A1, A2|A3) = I(A1, A2, A3)

follows from equation (5.47) because of the equivalence of mutual and redundant informa-
tion for two arguments. For a successful classification the conditional dependence, which
equals the average dependence of the subsets, should be lower than the dependence in the
whole set, because a low dependence indicates a high reach of patterns. Thus I(A1, A2, A3)
has to be positive. From this consideration new classification and clustering algorithms
can be inferred, which is beyond the scope of this work. Preuss and Vorkauf [77] already
proposed an approach based on concepts similar to those presented above.
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