http://www.mathematik.uni-karlsruhe.de/~semlv
Seminar LV, No. 20, 13 pp., 28.02.2005

PARTIAL ISOMETRIES ON BANACH SPACES

CHRISTOPH SCHMOEGER

1. Introduction and terminology

Throughout this paper, X shall denote a complex Banach space and £(X)

the algebra of all bounded linear operators on X. For an operator 7' € £(X)

we write N(T') for its kernel and T'(X) for its range. The spectrum, the

resolvent set and the spectral radius of T € £L(X) are denoted by o(T"), p(T)

and 7(T), respectively. The reduced minimum modulus of T is defined by
v(T) = inf{||Tx| : dist(z, N(T)) =1} (y(T) =00 if T'=0).

It is well known that v(7") > 0 if and only if T'(X) is closed.
We will say that T € L£(X) is relatively regular if there exists an operator
S € L(X) for which

TST =T.

In this case S is called a pseudo inverse of T. If T € L(X) is relatively
regular and S € £(X) such that

TST =T and STS = S,

then S is called a generalized inverse of T. Observe that if S is a pseudo
inverse of T', then Sy = ST'S is a generalized inverse of T'. We recall that
in general a pseudo inverse is not unique, and that 7T is relatively regular if
and only if N(T') and T'(X) are closed and complemented subspaces of X
(see for instance [4]).

If T'e £(X) has a generalized inverse S, then
TS,ST,I—-TS and I — ST
are projections and
(T'S)(X) = T(X), (ST)(X) = S(X),
(I —=ST)(X)=N(T)and (I —TS)(X) = N(S).

In the following proposition a useful relation between the reduced minimum
modulus and generalized inverses is established. A proof can be found in
[10].
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1.1. Proposition. Let T € L(X), T # 0, and S be a generalized inverse of
T. Then
1 TS| ST
L <o) < EERIIST

151l 151l
A bounded linear operator T on a complex Hilbert space is said to be a
partial isometry provided that ||Tz| = ||z|| for every € N(T)*, that is,
T* is a generalized inverse of T (i.e. TT*T = T). In this case ||T|| <1 (see
Chapter 13 of [6] for details).

M. Mbekhta has given in [10] the following characterization of partial isome-
tries:

1.2. Theorem. IfT is a bounded linear operator on a complex Hilbert space
with ||T|| < 1, then the following are equivalent:

(1) T is a partial isometry,
(2) T has a generalized inverse S with ||S|| < 1.

Since assertion (2) of the above theorem does not depend on the structure
of a Hilbert space, Theorem 1.2 suggests a definition (due to M. Mbekhta)
of a partial isometry in the algebra of operators on Banach spaces:

1.3. Definition. A bounded linear operator T on a Banach space is called a
partial isometry if T' is a contraction and admits a generalized inverse which
is a contraction.

Remarks.

(1) Partial isometries are investigated in [10].

(2) In Definition 1.3, the contractive generalized inverse is in general not
unique (see [10, page 776].

(3) One of the disadvantages of Definition 1.3 is that, in general, an
arbitrary isometry T' € L(X) (i.e. ||Tz| = ||z| for all z € X) does
not need to be a partial isometry (indeed an isometry may not have
generalized inverse), but we have the following result ([10, Corollary
4.3)):

An isometry T € L(X) is a partial isometry, in the sense of Defi-
nition 1.3, if and only if there exists a projection onto T(X) of norm
1.

There are certain Banach spaces (other than Hilbert spaces) in
which all isometries are “partial”, including LP(u) (1 < p < 00), as
shown in [1] and [3].

(4) IfT € L(X) is a partial isometry and S is a contractive generalized
inverse of T', then

X = S(X)® N(T)

and

|ITz| = ||z]|| for every x € S(X).
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Indeed, we have X = (ST)(X) & (I — ST)(X) = S(X) & N(T).
Furthermore, suppose © = Sy € S(X). Then

z]| = ISyl = [[STSyl| < [IS[ TSyl = [|T=|| < T l«[| < [,
thus ||Tz|| = ||z||.

1.4. Proposition. If T € L£(X) is a non-zero partial isometry and S is a
contractive generalized inverse of T', then

1T = IS} = [ITS|| = [[ST[| = +(T) = 1

Proof. ||T|| = TST|| < |TI[[SIIT| < [IT|[[|S]] implies [|S] > 1, and so
|S]| = 1. Since (T'S)?> =TS and TS # 0, 1 < [|TS| < ||T||||S]| < 1, thus
|TS|| = 1. The same arguments give ||T|| = ||ST|| = 1. Finally we obtain
~(T') = 1, by Proposition 1.1. O

The next result is shown in [10, Proposition 4.2]:

1.5. Proposition. For T € L(X) the following conditions are equivalent:

(1) T is a partial isometry;
(2) there are two projections P and Q such that P(X) =T(X), N(Q) =
N(T), [P =[1Ql =1 and

| TQz| = ||Qz|| for every x € X.

Examples.

(1) If P € L£(X) is a projection and P # 0, then P is a partial isometry
if and only if |P|| = 1.

(2) Let T be the bounded operator on the Banach space !(N) defined
by

T(l’l,xg,xg,...) = (372,373,...).
Let the operator S on I}(N) be given by
S(l’l,l’g,l’g,...) = (0,1’1,1’2,...),

then it is easy to see T'ST =T and STS = S. Since ||T|| = ||S| = 1,
T is a partial isometry.

2. Spectral properties of partial isometries

In this section we always assume that T € L(X) is a non-zero partial isom-
etry and that S is a contractive generalized inverse of T. Recall that then
IT[] = 1IS]l = 1.

Let D={A€C: |\ <1}andD = {\ € C: |\ < 1}. By £L(X)! we
denote the group of all invertible operators in £(X).
2.1. Proposition. If T € L(X)™! then S =T~ and

o(T) CoD.
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Proof. Since T € £L(X)~!and T'ST = T, it follows that ST = I and T'S = I.
Hence 0 € p(T). Now let A € C and 0 < |A| < 1. Then |\~ > ||| > r(9),
thus A=! € p(9). Therefore we get from

(1/M — S) (=AT) = A\ — T,

that \I — T € £(X)™!, hence A € p(T). This shows that D C p(T). Since
A€ p(T) if |A] > 1 =T, we derive that o(T") C 9D. O

An operator U € L(X) is called decomposably regular if U is relatively
regular and admits a pseudo inverse V € £(X)~1.

A proof of the next result can be found in [7, Chapter 3.8].

2.2. Proposition. Suppose that U € L(X) is relatively reqular. Then the
following assertions are equivalent:

(1) U is decomposably regular;

(2) N(U) and X/U(X) are isomorphic;

(3) there are P, V € L(X) such that P2 = P,V € L(X)™! andU = V P;

(4) there are Q, W € L(X) such that Q> = Q, W € L(X)™! and U =
QW.

Examples.

(1) Each projection P € £(X) is decomposably regular, since P = PIP.

(2) Proposition 2.2 (2) shows that if dim X < oo, then each operator on
X is decomposably regular.

(3) For U € L(X) let a(U) = dimN(U) and S(U) = codimU (X). U is
called a Fredholm operator if a(U) < oo and B(U) < oco. In this case

ind(U) = a(U) - B(U)
is called the index of U. It follows from [8, §74] that a Fredholm
operator U is relatively regular and Proposition 2.2 (2) shows that
U is decomposably regular <= ind(U) = 0.

(4) In [14, Theorem 2.1] we have shown that an operator U is an interior
point of the set of all decomposably regular operators if and only if
U is a Fredholm operator with ind(U) = 0.
2.3. Theorem.

(1) IfDNp(S) # 0 or DNp(T) # 0, then T and S are both decomposably
reqular.
(2) Suppose that T is not decomposably regular, then

o(T) = o(S) =D.
Proof. (1) Assume that DN p(S) # 0. Take A\g € DN p(S). Then [[NT|| =

Mol T]] = |Xol < 1, thus \gT — I € L(X)™!. Since \gI — S € L(X)7!, the
operator

R=MNT -1t (I-95)eL(Xx)t
From
(MNT — I)ST = NTST — ST = X\gT — ST = (Ao — S)T
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we see that
ST = (\T —I)™' (\oI — S)T = RT,
hence T' = T(ST) = TRT. Therefore T is decomposably regular. On the
other hand
S =(ST)S=RTS = R(TS),

thus, by Proposition 2.2 (3), S is decomposably regular.
If DN p(T) # ), the same arguments show that 7" and S are decomposably
regular.

(2) By (1) we must have D C o(T") and D C o(S). Since the spectrum of
an operator is always closed, we derive D C o(T) and D C o(S). From
IT|| = [|S]| = 1, we see that o(T), o(S) C D. O

2.4. Corollary.

(1) If r(T) < 1 orr(S) < 1 then both T and S are decomposably regular.
(2) If T is a Fredholm operator and ind(T") # 0, then

o(T)=0(S)=D.

Remark. Since each projection with norm 1 is a partial isometry and de-
composably regular we see that in general the implication in Corollary 2.4
(1) cannot be reversed.

2.5. Corollary. Suppose that T is not decomposably reqular. Then
{r(R) : R is a pseudo inverse of T} = [1,00).

Proof. Let M = {r(R) : Ris a pseudo inverse of T} and o = inf M. Assume
that o < 1. Hence there is R € £(X) such that TRT =T and r(R) < 1.
Take a complex number Ao with 7(R) < |[Ag| < 1. Then Ay € p(R) and
Aot € p(T), since r(T) = 1, by Theorem 2.3 (2). Therefore

V=0T —1)(NI—-R)cL(X)™"

As in the proof of Theorem 2.3 (1) we conclude that TVT = T, thus T
is decomposably regular, a contradiction. Therefore o > 1. Theorem 2.3
(1) shows that r(S) = 1, hence 1 = min M, thus M C [1,00). Now take
B €[l,00). Since T ¢ L(X)™L, TS # I or ST # I. Then it follows from [12,
Corollary 4] that there is a pseudo inverse B of T' with r(B) = . Hence
B € M, and so M =[1,00). d

2.6. Proposition. Suppose that T & L(X)~'. Then

{IIR| : R is a pseudo inverse of T} = [1,00).
Proof. Let M = {||R]| : Ris a pseudo inverse of T'}. If R € £(X) and
TRT =T, then 1 = ||T|| = | TRT| < |T|*|R|| = | R|, thus M C [1,00).

Theorem 4 in [12] shows that [||.S]|,c0) € M. Since ||S|| = 1, we get M =
[1,00). O

Now we introduce a further class of relatively regular operators: an operator
U € L(X) is called holomorphically regular if there is a neighbourhood
2 C C of 0 and a holomorphic function F':  — £(X) such that

(U= XI)F(\) (U = XI) = U — AI for all A € Q.
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2.7. Proposition. For U € L(X) the following assertions are equivalent:
(1) U is holomorphically reqular;

(2) U is relatively regular and N(U) C ﬂ U"(X).
n=1

Proof. cf. [13, Theorem 1.4]. O

Examples.

(1) If U € L£(X) is right or left invertible in £(X), then U is holomor-
phically regular. Indeed, suppose that V is a right inverse of U,
thus UV = I. It follows that U"V™ = I for all n € N. Hence
L < |U™M™| V™™ for all n € N, and so 1 < r(U)r(V), thus
r(U) #0#7(V). Let Q ={A € C: |\ <r(V) '} and F(\) =
V(I —AV)~1 (X € Q). Then it it easy to see that

(U—-A)F\)(U—-X)=U— A

for every A € Q.
Similar arguments show that U is holomorphically regular if U is left
invertible.

(2) Let U € L(X) be a Fredholm operator, then it is well-known that
there is p > 0 such that U — Al is a Fredholm operator for |A| < p
and that there are non-negative integers ag and 3y such that

ag=a(U—-XN) <a(U), Bo=6U— ) <BU) for 0 < || < p.
It is shown in [15] that U is holomorphically regular if and only if
a(U = M) =«a(U) and (U — XI) = (U) for |A| < p.

We say that U € L(X) is holomorphically decomposably regular if there is a
neighbourhood 2 C C of 0 and a holomorphic function F': © — £(X) such
that F(\) € £(X)~! for all A € Q and

(U= XI)F(\) (U = \XI) = U — AI for all A € Q.

2.8. Theorem. If T is holomorphically regular and if T ¢ L(X)™!, then

(1) o(T) =D and r(S) = 1;
(2) if F(\) = (I — \S)™LS for A € D, then

(T—AN)FN)(T—=X)=T-)\I
and
FA) (T —X)F(\) =F(\)

for every A € D;

(3) if DN p(S) # 0, then S is decomposably regqular and T is holomor-
phically decomposably reqular;

(4) for each m € N, T™ is a non-zero partial isometry and a contractive
generalized inverse of T™ is given by S™T™S™.
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Proof. (1) Let Q@ = {\ € C: |A\r(S) < 1} and F(\) = (I — AS)™1S. We
have shown in [13, Corollary 1.5] that
(%) (T —X)F(\) (T —AI) for X\eQ.

Now take \g € 2 and assume that \g € p(T). By (%), F(\o) = (T — \oI) 71,
thus

S(I —XS)™L = (I =XS)™'S = (T — NI)7},

therefore S(T'— Xol) = (T' — X\oI)S = I — XS, and so T'S = ST = I,
contradiction, since T ¢ £(X)~!. Hence we have shown that Q C o(T).
Since o(T) is bounded, 7(S) > 0, r(7") > 0 and

G-—{reC: |/\|§T(1—S)}go(T)g@.

JFrom this it follows that r(S) > 1, consequently (S) = 1 and o(T') = D.
(2) The proof of (1) shows that 2 =D and that

(T — M) F(\) (T — XI) =T — M for \ € D.
Now take A € D. Then

FON(T=X)F(\) = (I-AS)"' (ST —\S)F()\)

(

(I—=AS)™ (I —AS—(I—ST))F())
(I—(I-\S)"\(I—ST))S(I—A\S)™!
= FQA)—(IT-XS)L (I-8T)S(I—-\S)™!
=0

= F(N.

(3) Theorem 2.3 (1) shows that 7" and S are decomposably regular. Take
R e L(X)with TRT =T and R € £(X)™'. As in the proof of (1), r(R) > 0.
Let Qg = {A € C: |\ < r(R)™'} and G(\) = (I — AR)"!'R for X € Q.
Then G(\) € L(X)™! for A € Qo and as above

(T=X)GA\) (T =AXI) =T =X (X € Q).

(4) By Proposition 9 in [12], T"S"T™ = T™ for all n € N. Let S, =
SPT"S™ (n € N). Then

™8, 7" =T" and S,T"S, =S, (n€N).

Since r(T) = 1, T™ # 0. Furthermore we have [|[T"| < [|T]|* = 1 and
1Sl < IS [IT™ [1S]™" = 1. 0

For U € L(X) let 0,(U) denote the set of eigenvalues of U.

2.9. Corollary. Suppose that T is right or left invertible but not invertible.
(1) o(T) = o(S) =D;
(2) if T is right invertible, then D C o,(T) and DN op(S) = 0;
(3) if T is left invertible, then D C 0,,(S) and DN op(T) = 0.
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Proof. (1) If T is right (left) invertible, then S is left (right) invertible, hence
T and S are holomorphically regular. Theorem 2.8 (1) gives the result.

(2) Let R € £(X) with TR = I. From T'ST = T we derive I = TR =
TSTR=TS. Let A € D. Then (T—X)S(I-\S)™' = (I-\S)(I-\S)"! =
I and N(T — X)) = (I — S(I —\S)™1 (T — \I))(X). Since X € o(T), I —
S(I —\S)~Y (T — \I) # 0, therefore N(T — \I) # {0}. If Sz = Az for some
x € X, then z = TSz = AT, hence Tx = A'2. Since |\~ > 1 = »(T),
we derive x = 0, thus A & 0,,(5).

(3) Similar. O
2.10. Corollary. If T is holomorphically regular and T ¢ L(X)™! then
{r(R): R is a pseudo inverse of T} = [1,00).
Proof. Let M = {r(R) : R € £(X) and TRT = T} and o = inf M. If
R € L£(X) and TRT =T, then, by [12, Proposition 9],
T"R"T" =T" (n € N),
thus || 77|/ < |T"(|?/"||R™||'/™ for n € N. This gives, since r(T) = 1
(Theorem 2.8 (1)),
1=r(T) <r(T)*r(R) =r(R),

thus @ > 1. By Theorem 2.8 (1), r(S) = 1, hence @« = 1 = min M, and so
M C [1,00). Now proceed as in the proof of Corollary 2.5 to derive that
[1,00) C M. O

3. Partial isometries with an index

Recall that for an operator U € £(X), the dimension of N(U) is denoted by
a(U) and the codimension of U(X) is denoted by S(U). If a(U) and SB(U)
are not both infinite, we say that U has an index. The index ind(U) is then
defined by
ind(U) = a(U) - A(U),
with the understanding, that for any real number r,
oco—r=00 and r—00=—00

(we agree to let —(—o0) = 00).

We say that U € L(X) is a semi-Fredholm operator, if U(X) is closed and
U has an index.

Observe that if T € £(X) is a partial isometry with an index, then T is
semi-Fredholm.

We write SF(X) for the set of all semi-Fredholm operators on X (see [5] or
[8] for properties of this class of operators).

3.1. Proposition. Let T' € L(X) be a non-zero partial isometry and U €
L(X).
(1) If o(T) < a(U) then |T —U| > 1.
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(2) If U has closed range and B(T) < B(U) then | T —UJ| > 1.

Proof. (1) By Lemma V.1.1 in [5] there is z € N(U) such that 1 = |jz|| =
dist(z, N(T)), hence, by Proposition 1.4,

1L=A(T) <|Tal| =Tz - Uz|| <|T = Ul [lz|| = [T - U]|.

(2) We denote by X* the dual space of X and by R* the adjoint of R €
L(X). By [5, Theorem 1V.2.3], 8(T) = a(T*) and B(U) = a(U*), therefore
a(T*) < a(U*). Since T* is a non-zero partial isometry, it follows from (1)
that 1 < |T* - U*|| = ||T — U]]. O

3.2. Corollary. If Ty and Ty are partial isometries on X and if |Th —Tz|| <
1, then

o(Ti) = a(Tz) and B(T1) = B(T2).

Proof. If T} = 0, then ||T2|| < 1, hence T = 0 (since T3 is partial isometry)
and we are done. So we can assume that 77 # 0. ;From Proposition 3.1 we
derive (let T'=T} and U = T3) that a(11) > a(T3) and 5(11) > 5(12). By
symmetry we also get a(T) > a(T1) and (1) > B(T1). O

Remark. Corollary 3.2 generalizes [6, Problem 101].

In the following proposition we collect some properties of semi-Fredholm
operators.

3.3. Proposition. Let U € L(X).
(1) If U is relatively regular and V is a generalized inverse of U, then
a(V)=pU) and p(V)=a(U).
Furthermore,
UeSF(X)«—=VeSFX)
and in this case
ind(U) = —ind(V).
(2) If U € SF(X) then
U—-MeSF(X) and ind(U — ) =ind(U)

for all A € C with |A\| < v(U) and there are integers ag and By such
that

ap=a(U ~AI) < a(U) and By = B(U — A) < B(U)

for A € C with 0 < |A\| < ~(U).
(3) If U is a relatively regular semi-Fredholm operator, then U is holo-
morphically regular if and only if

a(U—-XN)=aU) and BU—-X)=pU)
for all X € C with |\| < ~(U).
Proof. (1) Since
X=UV)(X)o(I-UV)(X)=UX)DdN((V)
and
X=(VU)(X)e(I-VU)X)=V(X)® N(),
the result follows.
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(2) is shown in [5, Theorem V.1.6] and a proof of (3) is given in [15]. O
3.4. Corollary. Suppose that T is a holormorphically regular partial isome-
try with an index and that S is a contractive generalized inverse of T'. Then:
(1) T—X € SF(X) and
a(T —A)=a(S) and BT — M) =p(5)
Jor each A € D.
(2) o(T)=0(S)=Dif T ¢ L(X) .
Proof. (1) Since T' € SF(X), T # 0. Thus v(T) = 1, by Proposition 1.4.
The assertions follow now from Proposition 3.3.
(2) T ¢ £(X)™!, then S ¢ £(X)™!, hence (1) shows that a(T — AI) >0
forall A € D or B(T" — AI) > 0 for all A € D. Therefore D C o(7T), and so
o(T) = D. By symmetry, we also derive o(S) = D. O
3.5. Corollary. Let T} and Ty be partial isometries such that ||T1 —Ts|| < 1.
(1) T € S}-(X) <— 1T € Sf(X)
(2) If Ty € SF(X) and ind(T7) # 0, then
Ty — M, Ty — M € SF(X)
and
ind(T} — AI) = ind(Th — AI) # 0

for all A € D.
Furthermore

o(Th) =o(Tz) =D.

Proof. (1) follows from Corollary 3.2.
(2) Use (1), Corollary 3.2 and Proposition 3.3 (2). O

3.6. Corollary. Suppose that T is a partial isometry with an index ind(T") #
0. Then

IT -5 >1

for each contractive generalized inverse S of T.

Proof. Assume to the contrary that S is a contractive generalized inverse
of T such that |7 — S|| < 1. Proposition 3.3 (1) shows that S € SF(X)
and ind(S) = —ind(7). But ind(S) = ind(7T), by Corollary 3.5. Hence
ind(T") = 0, a contradiction. O

Remark. The condition ind(7T") # 0 in Corollary 3.6 can not be dropped
without changing the conclusion. Indeed, if P € £(X) is a projection with
|P|| =1 and a(P) < oo, then P is a partial isometry. ;From X = P(X) @&
N(P) we see that a(P) = B(P) < oo, thus ind(P) = 0. But there is a
contractive generalized inverse S with ||P — S|| < 1: take S = P.

3.7. Corollary. If T is a partial isometry with an index ind(T") # 0 on a
Hilbert space, then | T —T*| > 1.
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4. Orthogonality and Moore-Penrose inverses

Recall that a bounded linear operator T' on a Hilbert space H is a partial
isometry if and only if TT*T = T'. In this case the ranges of T" and T* are
closed, hence

(%) N(T)* =T*(H) and N(T*)' =T(H).
Furthermore T has a unique contractive generalized inverse S = T™* (see [10,
Corollary 3.3]).
Now let « and y be vectors in a Banach space X. Following R. C. James
[9], we say that x and y are orthogonal if

|lz|| < |l 4+ ay|| for each « € C.
In this case we write z_Ly. For M, N C X we define the relation M LN by
xly for all x € M and all y € N.

For our next result recall that if T" is a non-zero partial isometry on the
Banach space X and if S is a contractive generalized inverse of T, then
1T = IISIl = TS|l = [|ST|| = 1 and

S(X)® N(T) = X = T(X) & N(S).

4.1. Theorem. Let T' € L(X) be a non-zero partial isometry and S a
contractive generalized inverse of T

(1) If N(T) # {0}, then
N(T)LS(X) < ||[I — ST| = 1.
(2) If N(S) £ {0}, then
NOLT(X) <= I - TS| = 1.
Proof. (1) First suppose that N(7)LS(X). Let x € X. Then z = u+ v
with u € S(X) and v € N(T'). Hence
I-ST)x=(I-ST)u+v=nw.
Since vl u, we derive
I(I = ST)z|| = [Jv]| < [lu+ vl = [l].
Therefore || —ST|| < 1. Since I —ST is a non-zero projection, ||[I—ST|| > 1,
and so ||I — ST|| = 1.
Now assume that || — ST|| = 1. Take x € S(X) and y € N(T'). Then, for
all o € C,
[yl = (I = ST)(y + ax) < [T = ST ||y + az|| = |ly + az].
(2) can be proved analogously. O

An operator U € L(X) is called hermitian if || exp(itU)|| = 1 for every real
numbert ¢.

Let T € L(X) be a relatively regular operator. We will say that an operator
T+ € L(X) is the Moore-Penrose inverse of T if T is a generalized inverse
of T and the projections TT" and T T are hermitian.
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4.2. Proposition.

(1) If U,V € L(X) are hermitian and o, € R, then aU + BV is her-
mitian.

(2) If U € L(X) is hermitian, then ||U| = r(U).

(3) If P € L(X) is a hermitian projection then |P| =0 or || P| = 1.

(4) If T € L(X) is relatively regaular, then T has at most one Moore-
Penrose inverse.

Proof. (1) follows from [2, Lemma 38.2].

(2) is shown in [2, Theorem 11.17].

(3) If P #0, then 1 € o(P) C {0, 1}, thus r(P) = 1, hence ||P|| = 1, by (2).
(4) is shown in [11]. O

The following class of partial isometries is introduced in [10]:

Let T € L(X) be a partial isometry. T is called an MP-partial isometry if
T admits a contractive Moore-Penrose inverse.

Remarks.

(1) Every hermitian projection is an MP-partial isometry.

(2) If T is an MP-partial isometry, then T is a partial isometry in the
sense of Definition 1.3. Moreover, these two notions are equivalent
in the case of a Hilbert space, since T = T*, by Proposition 4.2

(4).
4.3. Corollary. Let T € L(X) be a non-zero MP-partial isometry. Then
N(T)LTY(X) and N(TT)LT(X).

Proof. If N(T) = {0} or N(T") = {0}, then there is nothing to prove. So
we assume that N(T') # {0} and N(T") # {0}, hence T(X) # X # TH(X).
Let P=I-TT%and Q = I-T7"T. Thus P and @ are non-zero projections.
Since TT+ and T™T are hermitian, P and ) are hermitian, by Proposition
4.2 (1). Because of Proposition 4.2 (3) we derive that ||P|| = ||Q| = 1. The
result follows now from Theorem 4.1. O
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