http://www.mathematik.uni-karlsruhe.de/~semlv
Seminar LV, No. 20, 13 pp., 28.02.2005

PARTIAL ISOMETRIES ON BANACH SPACES

CHRISTOPH SCHMOEGER

1. Introduction and terminology

Throughout this paper, X shall denote a complex Banach space and $\mathcal{L}(X)$ the algebra of all bounded linear operators on X. For an operator $T \in \mathcal{L}(X)$ we write $N(T)$ for its kernel and $T(X)$ for its range. The spectrum, the resolvent set and the spectral radius of $T \in \mathcal{L}(X)$ are denoted by $\sigma(T), \rho(T)$ and $r(T)$, respectively. The reduced minimum modulus of T is defined by

$$
\gamma(T)=\inf \{\|T x\|: \operatorname{dist}(x, N(T))=1\} \quad(\gamma(T)=\infty \text { if } T=0)
$$

It is well known that $\gamma(T)>0$ if and only if $T(X)$ is closed.
We will say that $T \in \mathcal{L}(X)$ is relatively regular if there exists an operator $S \in \mathcal{L}(X)$ for which

$$
T S T=T
$$

In this case S is called a pseudo inverse of T. If $T \in \mathcal{L}(X)$ is relatively regular and $S \in \mathcal{L}(X)$ such that

$$
T S T=T \text { and } S T S=S
$$

then S is called a generalized inverse of T. Observe that if S is a pseudo inverse of T, then $S_{0}=S T S$ is a generalized inverse of T. We recall that in general a pseudo inverse is not unique, and that T is relatively regular if and only if $N(T)$ and $T(X)$ are closed and complemented subspaces of X (see for instance [4]).

If $T \in \mathcal{L}(X)$ has a generalized inverse S, then

$$
T S, S T, I-T S \text { and } I-S T
$$

are projections and

$$
\begin{aligned}
& (T S)(X)=T(X),(S T)(X)=S(X) \\
& (I-S T)(X)=N(T) \text { and }(I-T S)(X)=N(S)
\end{aligned}
$$

In the following proposition a useful relation between the reduced minimum modulus and generalized inverses is established. A proof can be found in [10].

[^0]1.1. Proposition. Let $T \in \mathcal{L}(X), T \neq 0$, and S be a generalized inverse of T. Then
$$
\frac{1}{\|S\|} \leq \gamma(T) \leq \frac{\|T S\|\|S T\|}{\|S\|} .
$$

A bounded linear operator T on a complex Hilbert space is said to be a partial isometry provided that $\|T x\|=\|x\|$ for every $x \in N(T)^{\perp}$, that is, T^{*} is a generalized inverse of T (i.e. $T T^{*} T=T$). In this case $\|T\| \leq 1$ (see Chapter 13 of [6] for details).
M. Mbekhta has given in [10] the following characterization of partial isometries:
1.2. Theorem. If T is a bounded linear operator on a complex Hilbert space with $\|T\| \leq 1$, then the following are equivalent:
(1) T is a partial isometry,
(2) T has a generalized inverse S with $\|S\| \leq 1$.

Since assertion (2) of the above theorem does not depend on the structure of a Hilbert space, Theorem 1.2 suggests a definition (due to M. Mbekhta) of a partial isometry in the algebra of operators on Banach spaces:
1.3. Definition. A bounded linear operator T on a Banach space is called a partial isometry if T is a contraction and admits a generalized inverse which is a contraction.

Remarks.

(1) Partial isometries are investigated in [10].
(2) In Definition 1.3, the contractive generalized inverse is in general not unique (see [10, page 776].
(3) One of the disadvantages of Definition 1.3 is that, in general, an arbitrary isometry $T \in \mathcal{L}(X)$ (i.e. $\|T x\|=\|x\|$ for all $x \in X$) does not need to be a partial isometry (indeed an isometry may not have generalized inverse), but we have the following result ([10, Corollary 4.3]):

An isometry $T \in \mathcal{L}(X)$ is a partial isometry, in the sense of Definition 1.3, if and only if there exists a projection onto $T(X)$ of norm 1.

There are certain Banach spaces (other than Hilbert spaces) in which all isometries are "partial", including $L^{p}(\mu)(1 \leq p \leq \infty)$, as shown in [1] and [3].
(4) If $T \in \mathcal{L}(X)$ is a partial isometry and S is a contractive generalized inverse of T, then

$$
X=S(X) \oplus N(T)
$$

and

$$
\|T x\|=\|x\| \text { for every } x \in S(X)
$$

Indeed, we have $X=(S T)(X) \oplus(I-S T)(X)=S(X) \oplus N(T)$. Furthermore, suppose $x=S y \in S(X)$. Then

$$
\|x\|=\|S y\|=\|S T S y\| \leq\|S\|\|T S y\|=\|T x\| \leq\|T\|\|x\| \leq\|x\|
$$

thus $\|T x\|=\|x\|$.
1.4. Proposition. If $T \in \mathcal{L}(X)$ is a non-zero partial isometry and S is a contractive generalized inverse of T, then

$$
\|T\|=\|S\|=\|T S\|=\|S T\|=\gamma(T)=1
$$

Proof. $\|T\|=\|T S T\| \leq\|T\|\|S\|\|T\| \leq\|T\|\|S\|$ implies $\|S\| \geq 1$, and so $\|S\|=1$. Since $(T S)^{2}=T S$ and $T S \neq 0,1 \leq\|T S\| \leq\|T\|\|S\| \leq 1$, thus $\|T S\|=1$. The same arguments give $\|T\|=\|S T\|=1$. Finally we obtain $\gamma(T)=1$, by Proposition 1.1.

The next result is shown in [10, Proposition 4.2]:
1.5. Proposition. For $T \in \mathcal{L}(X)$ the following conditions are equivalent:
(1) T is a partial isometry;
(2) there are two projections P and Q such that $P(X)=T(X), N(Q)=$ $N(T),\|P\|=\|Q\|=1$ and

$$
\|T Q x\|=\|Q x\| \text { for every } x \in X
$$

Examples.

(1) If $P \in \mathcal{L}(X)$ is a projection and $P \neq 0$, then P is a partial isometry if and only if $\|P\|=1$.
(2) Let T be the bounded operator on the Banach space $l^{1}(\mathbb{N})$ defined by

$$
T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)
$$

Let the operator S on $l^{1}(\mathbb{N})$ be given by

$$
S\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)
$$

then it is easy to see $T S T=T$ and $S T S=S$. Since $\|T\|=\|S\|=1$, T is a partial isometry.

2. Spectral properties of partial isometries

In this section we always assume that $T \in \mathcal{L}(X)$ is a non-zero partial isometry and that S is a contractive generalized inverse of T. Recall that then $\|T\|=\|S\|=1$.

Let $\mathbb{D}=\{\lambda \in \mathbb{C}:|\lambda|<1\}$ and $\overline{\mathbb{D}}=\{\lambda \in \mathbb{C}:|\lambda| \leq 1\}$. By $\mathcal{L}(X)^{-1}$ we denote the group of all invertible operators in $\mathcal{L}(X)$.
2.1. Proposition. If $T \in \mathcal{L}(X)^{-1}$ then $S=T^{-1}$ and

$$
\sigma(T) \subseteq \partial \mathbb{D}
$$

Proof. Since $T \in \mathcal{L}(X)^{-1}$ and $T S T=T$, it follows that $S T=I$ and $T S=I$. Hence $0 \in \rho(T)$. Now let $\lambda \in \mathbb{C}$ and $0<|\lambda|<1$. Then $|\lambda|^{-1}>\|S\| \geq r(S)$, thus $\lambda^{-1} \in \rho(S)$. Therefore we get from

$$
(1 / \lambda I-S)(-\lambda T)=\lambda I-T
$$

that $\lambda I-T \in \mathcal{L}(X)^{-1}$, hence $\lambda \in \rho(T)$. This shows that $\mathbb{D} \subseteq \rho(T)$. Since $\lambda \in \rho(T)$ if $|\lambda|>1=\|T\|$, we derive that $\sigma(T) \subseteq \partial \mathbb{D}$.

An operator $U \in \mathcal{L}(X)$ is called decomposably regular if U is relatively regular and admits a pseudo inverse $V \in \mathcal{L}(X)^{-1}$.

A proof of the next result can be found in [7, Chapter 3.8].
2.2. Proposition. Suppose that $U \in \mathcal{L}(X)$ is relatively regular. Then the following assertions are equivalent:
(1) U is decomposably regular;
(2) $N(U)$ and $X / U(X)$ are isomorphic;
(3) there are $P, V \in \mathcal{L}(X)$ such that $P^{2}=P, V \in \mathcal{L}(X)^{-1}$ and $U=V P$;
(4) there are $Q, W \in \mathcal{L}(X)$ such that $Q^{2}=Q, W \in \mathcal{L}(X)^{-1}$ and $U=$ $Q W$.

Examples.

(1) Each projection $P \in \mathcal{L}(X)$ is decomposably regular, since $P=P I P$.
(2) Proposition 2.2 (2) shows that if $\operatorname{dim} X<\infty$, then each operator on X is decomposably regular.
(3) For $U \in \mathcal{L}(X)$ let $\alpha(U)=\operatorname{dim} N(U)$ and $\beta(U)=\operatorname{codim} U(X)$. U is called a Fredholm operator if $\alpha(U)<\infty$ and $\beta(U)<\infty$. In this case

$$
\operatorname{ind}(U)=\alpha(U)-\beta(U)
$$

is called the index of U. It follows from $[8, \S 74]$ that a Fredholm operator U is relatively regular and Proposition 2.2 (2) shows that
U is decomposably regular $\Longleftrightarrow \operatorname{ind}(U)=0$.
(4) In $[14$, Theorem 2.1] we have shown that an operator U is an interior point of the set of all decomposably regular operators if and only if U is a Fredholm operator with $\operatorname{ind}(U)=0$.

2.3. Theorem.

(1) If $\mathbb{D} \cap \rho(S) \neq \emptyset$ or $\mathbb{D} \cap \rho(T) \neq \emptyset$, then T and S are both decomposably regular.
(2) Suppose that T is not decomposably regular, then

$$
\sigma(T)=\sigma(S)=\overline{\mathbb{D}}
$$

Proof. (1) Assume that $\mathbb{D} \cap \rho(S) \neq \emptyset$. Take $\lambda_{0} \in \mathbb{D} \cap \rho(S)$. Then $\left\|\lambda_{0} T\right\|=$ $\left|\lambda_{0}\right|\|T\|=\left|\lambda_{0}\right|<1$, thus $\lambda_{0} T-I \in \mathcal{L}(X)^{-1}$. Since $\lambda_{0} I-S \in \mathcal{L}(X)^{-1}$, the operator

$$
R=\left(\lambda_{0} T-I\right)^{-1}\left(\lambda_{0} I-S\right) \in \mathcal{L}(X)^{-1}
$$

From

$$
\left(\lambda_{0} T-I\right) S T=\lambda_{0} T S T-S T=\lambda_{0} T-S T=\left(\lambda_{0} I-S\right) T
$$

we see that

$$
S T=\left(\lambda_{0} T-I\right)^{-1}\left(\lambda_{0} I-S\right) T=R T
$$

hence $T=T(S T)=T R T$. Therefore T is decomposably regular. On the other hand

$$
S=(S T) S=R T S=R(T S)
$$

thus, by Proposition 2.2 (3), S is decomposably regular.
If $\mathbb{D} \cap \rho(T) \neq \emptyset$, the same arguments show that T and S are decomposably regular.
(2) By (1) we must have $\mathbb{D} \subseteq \sigma(T)$ and $\mathbb{D} \subseteq \sigma(S)$. Since the spectrum of an operator is always closed, we derive $\overline{\mathbb{D}} \subseteq \sigma(T)$ and $\overline{\mathbb{D}} \subseteq \sigma(S)$. From $\|T\|=\|S\|=1$, we see that $\sigma(T), \sigma(S) \subseteq \overline{\mathbb{D}}$.

2.4. Corollary.

(1) If $r(T)<1$ or $r(S)<1$ then both T and S are decomposably regular.
(2) If T is a Fredholm operator and $\operatorname{ind}(T) \neq 0$, then

$$
\sigma(T)=\sigma(S)=\overline{\mathbb{D}}
$$

Remark. Since each projection with norm 1 is a partial isometry and decomposably regular we see that in general the implication in Corollary 2.4 (1) cannot be reversed.
2.5. Corollary. Suppose that T is not decomposably regular. Then

$$
\{r(R): R \text { is a pseudo inverse of } T\}=[1, \infty)
$$

Proof. Let $M=\{r(R): R$ is a pseudo inverse of $T\}$ and $\alpha=\inf M$. Assume that $\alpha<1$. Hence there is $R \in \mathcal{L}(X)$ such that $T R T=T$ and $r(R)<1$. Take a complex number λ_{0} with $r(R)<\left|\lambda_{0}\right|<1$. Then $\lambda_{0} \in \rho(R)$ and $\lambda_{0}^{-1} \in \rho(T)$, since $r(T)=1$, by Theorem 2.3 (2). Therefore

$$
V=\left(\lambda_{0} T-I\right)\left(\lambda_{0} I-R\right) \in \mathcal{L}(X)^{-1}
$$

As in the proof of Theorem 2.3 (1) we conclude that $T V T=T$, thus T is decomposably regular, a contradiction. Therefore $\alpha \geq 1$. Theorem 2.3 (1) shows that $r(S)=1$, hence $1=\min M$, thus $M \subseteq[1, \infty)$. Now take $\beta \in[1, \infty)$. Since $T \notin \mathcal{L}(X)^{-1}, T S \neq I$ or $S T \neq I$. Then it follows from [12, Corollary 4] that there is a pseudo inverse B of T with $r(B)=\beta$. Hence $\beta \in M$, and so $M=[1, \infty)$.
2.6. Proposition. Suppose that $T \notin \mathcal{L}(X)^{-1}$. Then

$$
\{\|R\|: R \text { is a pseudo inverse of } T\}=[1, \infty)
$$

Proof. Let $M=\{\|R\|: R$ is a pseudo inverse of $T\}$. If $R \in \mathcal{L}(X)$ and $T R T=T$, then $1=\|T\|=\|T R T\| \leq\|T\|^{2}\|R\|=\|R\|$, thus $M \subseteq[1, \infty)$. Theorem 4 in [12] shows that $[\|S\|, \infty) \subseteq M$. Since $\|S\|=1$, we get $M=$ $[1, \infty)$.

Now we introduce a further class of relatively regular operators: an operator $U \in \mathcal{L}(X)$ is called holomorphically regular if there is a neighbourhood $\Omega \subseteq \mathbb{C}$ of 0 and a holomorphic function $F: \Omega \rightarrow \mathcal{L}(X)$ such that

$$
(U-\lambda I) F(\lambda)(U-\lambda I)=U-\lambda I \text { for all } \lambda \in \Omega
$$

2.7. Proposition. For $U \in \mathcal{L}(X)$ the following assertions are equivalent:
(1) U is holomorphically regular;
(2) U is relatively regular and $N(U) \subseteq \bigcap_{n=1}^{\infty} U^{n}(X)$.

Proof. cf. [13, Theorem 1.4].

Examples.

(1) If $U \in \mathcal{L}(X)$ is right or left invertible in $\mathcal{L}(X)$, then U is holomorphically regular. Indeed, suppose that V is a right inverse of U, thus $U V=I$. It follows that $U^{n} V^{n}=I$ for all $n \in \mathbb{N}$. Hence $1 \leq\left\|U^{n}\right\|^{1 / n}\left\|V^{n}\right\|^{1 / n}$ for all $n \in \mathbb{N}$, and so $1 \leq r(U) r(V)$, thus $r(U) \neq 0 \neq r(V)$. Let $\Omega=\left\{\lambda \in \mathbb{C}:|\lambda|<r(V)^{-1}\right\}$ and $F(\lambda)=$ $V(I-\lambda V)^{-1}(\lambda \in \Omega)$. Then it it easy to see that

$$
(U-\lambda I) F(\lambda)(U-\lambda I)=U-\lambda I
$$

for every $\lambda \in \Omega$.
Similar arguments show that U is holomorphically regular if U is left invertible.
(2) Let $U \in \mathcal{L}(X)$ be a Fredholm operator, then it is well-known that there is $\rho>0$ such that $U-\lambda I$ is a Fredholm operator for $|\lambda|<\rho$ and that there are non-negative integers α_{0} and β_{0} such that

$$
\alpha_{0}=\alpha(U-\lambda I) \leq \alpha(U), \beta_{0}=\beta(U-\lambda I) \leq \beta(U) \text { for } 0<|\lambda|<\rho
$$

It is shown in [15] that U is holomorphically regular if and only if

$$
\alpha(U-\lambda I)=\alpha(U) \text { and } \beta(U-\lambda I)=\beta(U) \text { for }|\lambda|<\rho
$$

We say that $U \in \mathcal{L}(X)$ is holomorphically decomposably regular if there is a neighbourhood $\Omega \subseteq \mathbb{C}$ of 0 and a holomorphic function $F: \Omega \rightarrow \mathcal{L}(X)$ such that $F(\lambda) \in \mathcal{L}(X)^{-1}$ for all $\lambda \in \Omega$ and

$$
(U-\lambda I) F(\lambda)(U-\lambda I)=U-\lambda I \text { for all } \lambda \in \Omega
$$

2.8. Theorem. If T is holomorphically regular and if $T \notin \mathcal{L}(X)^{-1}$, then
(1) $\sigma(T)=\overline{\mathbb{D}}$ and $r(S)=1$;
(2) if $F(\lambda)=(I-\lambda S)^{-1} S$ for $\lambda \in \mathbb{D}$, then

$$
(T-\lambda I) F(\lambda)(T-\lambda I)=T-\lambda I
$$

and

$$
F(\lambda)(T-\lambda I) F(\lambda)=F(\lambda)
$$

for every $\lambda \in \mathbb{D}$;
(3) if $\mathbb{D} \cap \rho(S) \neq \emptyset$, then S is decomposably regular and T is holomorphically decomposably regular;
(4) for each $n \in \mathbb{N}, T^{n}$ is a non-zero partial isometry and a contractive generalized inverse of T^{n} is given by $S^{n} T^{n} S^{n}$.

Proof. (1) Let $\Omega=\{\lambda \in \mathbb{C}:|\lambda| r(S)<1\}$ and $F(\lambda)=(I-\lambda S)^{-1} S$. We have shown in [13, Corollary 1.5] that

$$
\begin{equation*}
(T-\lambda I) F(\lambda)(T-\lambda I) \quad \text { for } \quad \lambda \in \Omega \tag{*}
\end{equation*}
$$

Now take $\lambda_{0} \in \Omega$ and assume that $\lambda_{0} \in \rho(T)$. By $(*), F\left(\lambda_{0}\right)=\left(T-\lambda_{0} I\right)^{-1}$, thus

$$
S\left(I-\lambda_{0} S\right)^{-1}=\left(I-\lambda_{0} S\right)^{-1} S=\left(T-\lambda_{0} I\right)^{-1}
$$

therefore $S\left(T-\lambda_{0} I\right)=\left(T-\lambda_{0} I\right) S=I-\lambda_{0} S$, and so $T S=S T=I$, a contradiction, since $T \notin \mathcal{L}(X)^{-1}$. Hence we have shown that $\Omega \subseteq \sigma(T)$. Since $\sigma(T)$ is bounded, $r(S)>0, r(T)>0$ and

$$
\bar{\Omega}=\left\{\lambda \in \mathbb{C}:|\lambda| \leq \frac{1}{r(S)}\right\} \subseteq \sigma(T) \subseteq \overline{\mathbb{D}}
$$

¿From this it follows that $r(S) \geq 1$, consequently $r(S)=1$ and $\sigma(T)=\overline{\mathbb{D}}$.
(2) The proof of (1) shows that $\Omega=\mathbb{D}$ and that

$$
(T-\lambda I) F(\lambda)(T-\lambda I)=T-\lambda I \text { for } \lambda \in \mathbb{D} \text {. }
$$

Now take $\lambda \in \mathbb{D}$. Then

$$
\begin{aligned}
F(\lambda)(T-\lambda I) F(\lambda) & =(I-\lambda S)^{-1}(S T-\lambda S) F(\lambda) \\
& =(I-\lambda S)^{-1}(I-\lambda S-(I-S T)) F(\lambda) \\
& =\left(I-(I-\lambda S)^{-1}(I-S T)\right) S(I-\lambda S)^{-1} \\
& =F(\lambda)-(I-\lambda S)^{-1} \underbrace{(I-S T) S}_{=0}(I-\lambda S)^{-1} \\
& =F(\lambda) .
\end{aligned}
$$

(3) Theorem 2.3 (1) shows that T and S are decomposably regular. Take $R \in \mathcal{L}(X)$ with $T R T=T$ and $R \in \mathcal{L}(X)^{-1}$. As in the proof of $(1), r(R)>0$. Let $\Omega_{0}=\left\{\lambda \in \mathbb{C}:|\lambda|<r(R)^{-1}\right\}$ and $G(\lambda)=(I-\lambda R)^{-1} R$ for $\lambda \in \Omega_{0}$. Then $G(\lambda) \in \mathcal{L}(X)^{-1}$ for $\lambda \in \Omega_{0}$ and as above

$$
(T-\lambda I) G(\lambda)(T-\lambda I)=T-\lambda I \quad\left(\lambda \in \Omega_{0}\right) .
$$

(4) By Proposition 9 in [12], $T^{n} S^{n} T^{n}=T^{n}$ for all $n \in \mathbb{N}$. Let $S_{n}=$ $S^{n} T^{n} S^{n}(n \in \mathbb{N})$. Then

$$
T^{n} S_{n} T^{n}=T^{n} \text { and } S_{n} T^{n} S_{n}=S_{n} \quad(n \in \mathbb{N})
$$

Since $r(T)=1, T^{n} \neq 0$. Furthermore we have $\left\|T^{n}\right\| \leq\|T\|^{n}=1$ and $\left\|S_{n}\right\| \leq\|S\|^{n}\|T\|^{n}\|S\|^{n}=1$.

For $U \in \mathcal{L}(X)$ let $\sigma_{p}(U)$ denote the set of eigenvalues of U.
2.9. Corollary. Suppose that T is right or left invertible but not invertible.
(1) $\sigma(T)=\sigma(S)=\overline{\mathbb{D}}$;
(2) if T is right invertible, then $\mathbb{D} \subseteq \sigma_{p}(T)$ and $\mathbb{D} \cap \sigma_{p}(S)=\emptyset$;
(3) if T is left invertible, then $\mathbb{D} \subseteq \sigma_{p}(S)$ and $\mathbb{D} \cap \sigma_{p}(T)=\emptyset$.

Proof. (1) If T is right (left) invertible, then S is left (right) invertible, hence T and S are holomorphically regular. Theorem 2.8 (1) gives the result.
(2) Let $R \in \mathcal{L}(X)$ with $T R=I$. From $T S T=T$ we derive $I=T R=$ $T S T R=T S$. Let $\lambda \in \mathbb{D}$. Then $(T-\lambda I) S(I-\lambda S)^{-1}=(I-\lambda S)(I-\lambda S)^{-1}=$ I and $N(T-\lambda I)=\left(I-S(I-\lambda S)^{-1}(T-\lambda I)\right)(X)$. Since $\lambda \in \sigma(T), I-$ $S(I-\lambda S)^{-1}(T-\lambda I) \neq 0$, therefore $N(T-\lambda I) \neq\{0\}$. If $S x=\lambda x$ for some $x \in X$, then $x=T S x=\lambda T x$, hence $T x=\lambda^{-1} x$. Since $\left|\lambda^{-1}\right|>1=r(T)$, we derive $x=0$, thus $\lambda \notin \sigma_{p}(S)$.
(3) Similar.
2.10. Corollary. If T is holomorphically regular and $T \notin \mathcal{L}(X)^{-1}$ then

$$
\{r(R): R \text { is a pseudo inverse of } T\}=[1, \infty) .
$$

Proof. Let $M=\{r(R): R \in \mathcal{L}(X)$ and $T R T=T\}$ and $\alpha=\inf M$. If $R \in \mathcal{L}(X)$ and $T R T=T$, then, by [12, Proposition 9],

$$
T^{n} R^{n} T^{n}=T^{n} \quad(n \in \mathbb{N})
$$

thus $\left\|T^{n}\right\|^{1 / n} \leq\left\|T^{n}\right\|^{2 / n}\left\|R^{n}\right\|^{1 / n}$ for $n \in \mathbb{N}$. This gives, since $r(T)=1$ (Theorem 2.8 (1)),

$$
1=r(T) \leq r(T)^{2} r(R)=r(R),
$$

thus $\alpha \geq 1$. By Theorem $2.8(1), r(S)=1$, hence $\alpha=1=\min M$, and so $M \subseteq[1, \infty)$. Now proceed as in the proof of Corollary 2.5 to derive that $[1, \infty) \subseteq M$.

3. Partial isometries with an index

Recall that for an operator $U \in \mathcal{L}(X)$, the dimension of $N(U)$ is denoted by $\alpha(U)$ and the codimension of $U(X)$ is denoted by $\beta(U)$. If $\alpha(U)$ and $\beta(U)$ are not both infinite, we say that U has an index. The index $\operatorname{ind}(U)$ is then defined by

$$
\operatorname{ind}(U)=\alpha(U)-\beta(U),
$$

with the understanding, that for any real number r,

$$
\infty-r=\infty \quad \text { and } \quad r-\infty=-\infty
$$

(we agree to let $-(-\infty)=\infty$).
We say that $U \in \mathcal{L}(X)$ is a semi-Fredholm operator, if $U(X)$ is closed and U has an index.

Observe that if $T \in \mathcal{L}(X)$ is a partial isometry with an index, then T is semi-Fredholm.

We write $\mathcal{S F}(X)$ for the set of all semi-Fredholm operators on X (see [5] or [8] for properties of this class of operators).
3.1. Proposition. Let $T \in \mathcal{L}(X)$ be a non-zero partial isometry and $U \in$ $\mathcal{L}(X)$.
(1) If $\alpha(T)<\alpha(U)$ then $\|T-U\| \geq 1$.
(2) If U has closed range and $\beta(T)<\beta(U)$ then $\|T-U\| \geq 1$.

Proof. (1) By Lemma V.1.1 in [5] there is $x \in N(U)$ such that $1=\|x\|=$ $\operatorname{dist}(x, N(T))$, hence, by Proposition 1.4,

$$
1=\gamma(T) \leq\|T x\|=\|T x-U x\| \leq\|T-U\|\|x\|=\|T-U\|
$$

(2) We denote by X^{*} the dual space of X and by R^{*} the adjoint of $R \in$ $\mathcal{L}(X)$. By [5, Theorem IV.2.3], $\beta(T)=\alpha\left(T^{*}\right)$ and $\beta(U)=\alpha\left(U^{*}\right)$, therefore $\alpha\left(T^{*}\right)<\alpha\left(U^{*}\right)$. Since T^{*} is a non-zero partial isometry, it follows from (1) that $1 \leq\left\|T^{*}-U^{*}\right\|=\|T-U\|$.
3.2. Corollary. If T_{1} and T_{2} are partial isometries on X and if $\left\|T_{1}-T_{2}\right\|<$ 1, then

$$
\alpha\left(T_{1}\right)=\alpha\left(T_{2}\right) \quad \text { and } \quad \beta\left(T_{1}\right)=\beta\left(T_{2}\right)
$$

Proof. If $T_{1}=0$, then $\left\|T_{2}\right\|<1$, hence $T_{2}=0$ (since T_{2} is partial isometry) and we are done. So we can assume that $T_{1} \neq 0$. ¿From Proposition 3.1 we derive (let $T=T_{1}$ and $U=T_{2}$) that $\alpha\left(T_{1}\right) \geq \alpha\left(T_{2}\right)$ and $\beta\left(T_{1}\right) \geq \beta\left(T_{2}\right)$. By symmetry we also get $\alpha\left(T_{2}\right) \geq \alpha\left(T_{1}\right)$ and $\beta\left(T_{2}\right) \geq \beta\left(T_{1}\right)$.

Remark. Corollary 3.2 generalizes [6, Problem 101].
In the following proposition we collect some properties of semi-Fredholm operators.
3.3. Proposition. Let $U \in \mathcal{L}(X)$.
(1) If U is relatively regular and V is a generalized inverse of U, then

$$
\alpha(V)=\beta(U) \quad \text { and } \quad \beta(V)=\alpha(U)
$$

Furthermore,

$$
U \in \mathcal{S F}(X) \Longleftrightarrow V \in \mathcal{S F}(X)
$$

and in this case

$$
\operatorname{ind}(U)=-\operatorname{ind}(V)
$$

(2) If $U \in \mathcal{S F}(X)$ then

$$
U-\lambda I \in \mathcal{S F}(X) \quad \text { and } \quad \operatorname{ind}(U-\lambda I)=\operatorname{ind}(U)
$$

for all $\lambda \in \mathbb{C}$ with $|\lambda|<\gamma(U)$ and there are integers α_{0} and β_{0} such that

$$
\alpha_{0}=\alpha(U-\lambda I) \leq \alpha(U) \quad \text { and } \quad \beta_{0}=\beta(U-\lambda I) \leq \beta(U)
$$

for $\lambda \in \mathbb{C}$ with $0<|\lambda|<\gamma(U)$.
(3) If U is a relatively regular semi-Fredholm operator, then U is holomorphically regular if and only if

$$
\alpha(U-\lambda I)=\alpha(U) \quad \text { and } \quad \beta(U-\lambda I)=\beta(U)
$$

for all $\lambda \in \mathbb{C}$ with $|\lambda|<\gamma(U)$.
Proof. (1) Since

$$
X=(U V)(X) \oplus(I-U V)(X)=U(X) \oplus N(V)
$$

and

$$
X=(V U)(X) \oplus(I-V U)(X)=V(X) \oplus N(U)
$$

the result follows.
(2) is shown in [5, Theorem V.1.6] and a proof of (3) is given in [15].
3.4. Corollary. Suppose that T is a holormorphically regular partial isometry with an index and that S is a contractive generalized inverse of T. Then:
(1) $T-\lambda I \in \mathcal{S F}(X)$ and

$$
\alpha(T-\lambda I)=\alpha(S) \quad \text { and } \quad \beta(T-\lambda I)=\beta(S)
$$

for each $\lambda \in \mathbb{D}$.
(2) $\sigma(T)=\sigma(S)=\overline{\mathbb{D}}$ if $T \notin \mathcal{L}(X)^{-1}$.

Proof. (1) Since $T \in \mathcal{S F}(X), T \neq 0$. Thus $\gamma(T)=1$, by Proposition 1.4. The assertions follow now from Proposition 3.3.
(2) If $T \notin \mathcal{L}(X)^{-1}$, then $S \notin \mathcal{L}(X)^{-1}$, hence (1) shows that $\alpha(T-\lambda I)>0$ for all $\lambda \in \mathbb{D}$ or $\beta(T-\lambda I)>0$ for all $\lambda \in \mathbb{D}$. Therefore $\mathbb{D} \subseteq \sigma(T)$, and so $\sigma(T)=\overline{\mathbb{D}}$. By symmetry, we also derive $\sigma(S)=\overline{\mathbb{D}}$.
3.5. Corollary. Let T_{1} and T_{2} be partial isometries such that $\left\|T_{1}-T_{2}\right\|<1$.
(1) $T_{1} \in \mathcal{S F}(X) \Longleftrightarrow T_{2} \in \mathcal{S F}(X)$.
(2) If $T_{1} \in \mathcal{S F}(X)$ and $\operatorname{ind}\left(T_{1}\right) \neq 0$, then

$$
T_{1}-\lambda I, T_{2}-\lambda I \in \mathcal{S F}(X)
$$

and

$$
\operatorname{ind}\left(T_{1}-\lambda I\right)=\operatorname{ind}\left(T_{2}-\lambda I\right) \neq 0
$$

for all $\lambda \in \mathbb{D}$.
Furthermore

$$
\sigma\left(T_{1}\right)=\sigma\left(T_{2}\right)=\overline{\mathbb{D}}
$$

Proof. (1) follows from Corollary 3.2.
(2) Use (1), Corollary 3.2 and Proposition 3.3 (2).
3.6. Corollary. Suppose that T is a partial isometry with an index $\operatorname{ind}(T) \neq$ 0. Then

$$
\|T-S\| \geq 1
$$

for each contractive generalized inverse S of T.
Proof. Assume to the contrary that S is a contractive generalized inverse of T such that $\|T-S\|<1$. Proposition 3.3 (1) shows that $S \in \mathcal{S} \mathcal{F}(X)$ and $\operatorname{ind}(S)=-\operatorname{ind}(T)$. But $\operatorname{ind}(S)=\operatorname{ind}(T)$, by Corollary 3.5. Hence $\operatorname{ind}(T)=0$, a contradiction.

Remark. The condition $\operatorname{ind}(T) \neq 0$ in Corollary 3.6 can not be dropped without changing the conclusion. Indeed, if $P \in \mathcal{L}(X)$ is a projection with $\|P\|=1$ and $\alpha(P)<\infty$, then P is a partial isometry. ¿From $X=P(X) \oplus$ $N(P)$ we see that $\alpha(P)=\beta(P)<\infty$, thus $\operatorname{ind}(P)=0$. But there is a contractive generalized inverse S with $\|P-S\|<1$: take $S=P$.
3.7. Corollary. If T is a partial isometry with an index $\operatorname{ind}(T) \neq 0$ on a Hilbert space, then $\left\|T-T^{*}\right\| \geq 1$.

4. Orthogonality and Moore-Penrose inverses

Recall that a bounded linear operator T on a Hilbert space H is a partial isometry if and only if $T T^{*} T=T$. In this case the ranges of T and T^{*} are closed, hence
(*)

$$
N(T)^{\perp}=T^{*}(H) \quad \text { and } \quad N\left(T^{*}\right)^{\perp}=T(H)
$$

Furthermore T has a unique contractive generalized inverse $S=T^{*}$ (see [10, Corollary 3.3]).

Now let x and y be vectors in a Banach space X. Following R. C. James [9], we say that x and y are orthogonal if

$$
\|x\| \leq\|x+\alpha y\| \quad \text { for each } \quad \alpha \in \mathbb{C} .
$$

In this case we write $x \perp y$. For $M, N \subseteq X$ we define the relation $M \perp N$ by $x \perp y$ for all $x \in M$ and all $y \in N$.

For our next result recall that if T is a non-zero partial isometry on the Banach space X and if S is a contractive generalized inverse of T, then $\|T\|=\|S\|=\|T S\|=\|S T\|=1$ and

$$
S(X) \oplus N(T)=X=T(X) \oplus N(S)
$$

4.1. Theorem. Let $T \in \mathcal{L}(X)$ be a non-zero partial isometry and S a contractive generalized inverse of T.
(1) If $N(T) \neq\{0\}$, then

$$
N(T) \perp S(X) \Longleftrightarrow\|I-S T\|=1
$$

(2) If $N(S) \neq\{0\}$, then

$$
N(S) \perp T(X) \Longleftrightarrow\|I-T S\|=1
$$

Proof. (1) First suppose that $N(T) \perp S(X)$. Let $x \in X$. Then $x=u+v$ with $u \in S(X)$ and $v \in N(T)$. Hence

$$
(I-S T) x=(I-S T) u+v=v
$$

Since $v \perp u$, we derive

$$
\|(I-S T) x\|=\|v\| \leq\|u+v\|=\|x\|
$$

Therefore $\|I-S T\| \leq 1$. Since $I-S T$ is a non-zero projection, $\|I-S T\| \geq 1$, and so $\|I-S T\|=1$.

Now assume that $\|I-S T\|=1$. Take $x \in S(X)$ and $y \in N(T)$. Then, for all $\alpha \in \mathbb{C}$,

$$
\|y\|=\|(I-S T)(y+\alpha x) \leq\| I-S T\| \| y+\alpha x\|=\| y+\alpha x \|
$$

(2) can be proved analogously.

An operator $U \in \mathcal{L}(X)$ is called hermitian if $\|\exp (i t U)\|=1$ for every real numbert t.

Let $T \in \mathcal{L}(X)$ be a relatively regular operator. We will say that an operator $T^{+} \in \mathcal{L}(X)$ is the Moore-Penrose inverse of T if T^{+}is a generalized inverse of T and the projections $T T^{+}$and $T^{+} T$ are hermitian.

4.2. Proposition.

(1) If $U, V \in \mathcal{L}(X)$ are hermitian and $\alpha, \beta \in \mathbb{R}$, then $\alpha U+\beta V$ is hermitian.
(2) If $U \in \mathcal{L}(X)$ is hermitian, then $\|U\|=r(U)$.
(3) If $P \in \mathcal{L}(X)$ is a hermitian projection then $\|P\|=0$ or $\|P\|=1$.
(4) If $T \in \mathcal{L}(X)$ is relatively regaular, then T has at most one MoorePenrose inverse.

Proof. (1) follows from [2, Lemma 38.2].
(2) is shown in [2, Theorem 11.17].
(3) If $P \neq 0$, then $1 \in \sigma(P) \subseteq\{0,1\}$, thus $r(P)=1$, hence $\|P\|=1$, by (2).
(4) is shown in [11].

The following class of partial isometries is introduced in [10]:
Let $T \in \mathcal{L}(X)$ be a partial isometry. T is called an MP-partial isometry if T admits a contractive Moore-Penrose inverse.

Remarks.

(1) Every hermitian projection is an MP-partial isometry.
(2) If T is an MP-partial isometry, then T is a partial isometry in the sense of Definition 1.3. Moreover, these two notions are equivalent in the case of a Hilbert space, since $T^{+}=T^{*}$, by Proposition 4.2 (4).
4.3. Corollary. Let $T \in \mathcal{L}(X)$ be a non-zero MP-partial isometry. Then

$$
N(T) \perp T^{+}(X) \quad \text { and } \quad N\left(T^{+}\right) \perp T(X)
$$

Proof. If $N(T)=\{0\}$ or $N\left(T^{+}\right)=\{0\}$, then there is nothing to prove. So we assume that $N(T) \neq\{0\}$ and $N\left(T^{+}\right) \neq\{0\}$, hence $T(X) \neq X \neq T^{+}(X)$. Let $P=I-T T^{+}$and $Q=I-T^{+} T$. Thus P and Q are non-zero projections. Since $T T^{+}$and $T^{+} T$ are hermitian, P and Q are hermitian, by Proposition 4.2 (1). Because of Proposition 4.2 (3) we derive that $\|P\|=\|Q\|=1$. The result follows now from Theorem 4.1.

References

[1] T. Ando, Contractive projections in L_{p} spaces, Pac. J. Math. 17 (1966), 391-405.
[2] F. F. Bonsall, J. Duncan, Complete Normed Algebras, Springer (1973).
[3] S. L. Campbell, G. D. Faulkner, Isometries, projections and Wold decompositions, Res. Notes in Math., 38, Pitman, Boston (1979), 85-114.
[4] S. R. Caradus, Generalized inverse and operator theory, Queen's papers in pure and appl. math. 50, Queen's Univ. Kingston, Ont., 1978.
[5] S. Goldberg, Unbounded linear operators, McGraw-Hill (1966).
[6] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand (1967).
[7] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York - Basel, 1988.
[8] H. Heuser, Funktionalanalysis, 3. ed. Teubner, Stuttgart, 1991.
[9] R. C. James, Orthogonality and linear functionals in normed linear space, Trans. Amer. Math. Soc. 61 (1947), 265-292.
[10] M. Mbekhta, Partial isometries and generalized inverses, Acta Sci. Math. (Szeged) 70 (2004), 767-781.
[11] V. Rakocevic, Moore-Penrose inverse in Banach algebras, Proc. Roy. Irish Acad., Sect. A, 88 (1988), 57-60.
[12] Ch. Schmoeger, Spectral properties of generalized inverses, Demonstratio Math. 37 (2004), 137-148.
[13] Ch. Schmoeger, The punctured neighbourhood theorem in Banach algebras, Proc. Roy. Irish Acad., Sect. A, 91 (1991), 205-218.
[14] Ch. Schmoeger, On decomposably regular operators, Port. Math. 54 (1997), 41-50.
[15] T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad., Sect. A, 87 (1987), 137-146.

Christoph Schmoeger, Mathematisches Institut I, Universität Karlsruhe (TH), Englerstrasse 2, 76128 Karlsruhe, Germany
E-mail address: christoph.schmoeger@math.uni-karlsruhe.de

[^0]: 2000 Mathematics Subject Classification. 47 A 53.
 Key words and phrases. generalized inverse, partial isometry.

