PARTIAL ISOMETRIES ON BANACH SPACES

CHRISTOPH SCHMOEGER

1. Introduction and terminology

Throughout this paper, X shall denote a complex Banach space and $\mathcal{L}(X)$ the algebra of all bounded linear operators on X. For an operator $T \in \mathcal{L}(X)$ we write N(T) for its kernel and T(X) for its range. The spectrum, the resolvent set and the spectral radius of $T \in \mathcal{L}(X)$ are denoted by $\sigma(T)$, $\rho(T)$ and r(T), respectively. The reduced minimum modulus of T is defined by

$$\gamma(T) = \inf\{||Tx|| : \text{dist}(x, N(T)) = 1\} \quad (\gamma(T) = \infty \text{ if } T = 0).$$

It is well known that $\gamma(T) > 0$ if and only if T(X) is closed. We will say that $T \in \mathcal{L}(X)$ is relatively regular if there exists an operator $S \in \mathcal{L}(X)$ for which

$$TST = T$$
.

In this case S is called a pseudo inverse of T. If $T \in \mathcal{L}(X)$ is relatively regular and $S \in \mathcal{L}(X)$ such that

$$TST = T$$
 and $STS = S$,

then S is called a generalized inverse of T. Observe that if S is a pseudo inverse of T, then $S_0 = STS$ is a generalized inverse of T. We recall that in general a pseudo inverse is not unique, and that T is relatively regular if and only if N(T) and T(X) are closed and complemented subspaces of X (see for instance [4]).

If $T \in \mathcal{L}(X)$ has a generalized inverse S, then

$$TS$$
, ST , $I - TS$ and $I - ST$

are projections and

$$(TS)(X) = T(X), (ST)(X) = S(X),$$

 $(I - ST)(X) = N(T) \text{ and } (I - TS)(X) = N(S).$

In the following proposition a useful relation between the reduced minimum modulus and generalized inverses is established. A proof can be found in [10].

²⁰⁰⁰ Mathematics Subject Classification. 47 A 53.

Key words and phrases. generalized inverse, partial isometry.

1.1. Proposition. Let $T \in \mathcal{L}(X)$, $T \neq 0$, and S be a generalized inverse of T. Then

$$\frac{1}{\|S\|} \le \gamma(T) \le \frac{\|TS\| \|ST\|}{\|S\|}.$$

A bounded linear operator T on a complex Hilbert space is said to be a partial isometry provided that ||Tx|| = ||x|| for every $x \in N(T)^{\perp}$, that is, T^* is a generalized inverse of T (i.e. $TT^*T = T$). In this case $||T|| \le 1$ (see Chapter 13 of [6] for details).

- M. Mbekhta has given in [10] the following characterization of partial isometries:
- **1.2. Theorem.** If T is a bounded linear operator on a complex Hilbert space with $||T|| \le 1$, then the following are equivalent:
 - (1) T is a partial isometry,
 - (2) T has a generalized inverse S with $||S|| \le 1$.

Since assertion (2) of the above theorem does not depend on the structure of a Hilbert space, Theorem 1.2 suggests a definition (due to M. Mbekhta) of a partial isometry in the algebra of operators on *Banach* spaces:

1.3. Definition. A bounded linear operator T on a Banach space is called a partial isometry if T is a contraction and admits a generalized inverse which is a contraction.

Remarks.

- (1) Partial isometries are investigated in [10].
- (2) In Definition 1.3, the contractive generalized inverse is in general not unique (see [10, page 776].
- (3) One of the disadvantages of Definition 1.3 is that, in general, an arbitrary isometry $T \in \mathcal{L}(X)$ (i.e. ||Tx|| = ||x|| for all $x \in X$) does not need to be a partial isometry (indeed an isometry may not have generalized inverse), but we have the following result ([10, Corollary 4.3]):

An isometry $T \in \mathcal{L}(X)$ is a partial isometry, in the sense of Definition 1.3, if and only if there exists a projection onto T(X) of norm

There are certain Banach spaces (other than Hilbert spaces) in which all isometries are "partial", including $L^p(\mu)$ $(1 \le p \le \infty)$, as shown in [1] and [3].

(4) If $T \in \mathcal{L}(X)$ is a partial isometry and S is a contractive generalized inverse of T, then

$$X = S(X) \oplus N(T)$$

and

$$||Tx|| = ||x||$$
 for every $x \in S(X)$.

Indeed, we have $X = (ST)(X) \oplus (I - ST)(X) = S(X) \oplus N(T)$. Furthermore, suppose $x = Sy \in S(X)$. Then

$$||x|| = ||Sy|| = ||STSy|| \le ||S|| ||TSy|| = ||Tx|| \le ||T|| ||x|| \le ||x||,$$
thus $||Tx|| = ||x||.$

1.4. Proposition. If $T \in \mathcal{L}(X)$ is a non-zero partial isometry and S is a contractive generalized inverse of T, then

$$\|T\| = \|S\| = \|TS\| = \|ST\| = \gamma(T) = 1$$

Proof. $||T|| = ||TST|| \le ||T|| ||S|| ||T|| \le ||T|| ||S||$ implies $||S|| \ge 1$, and so ||S|| = 1. Since $(TS)^2 = TS$ and $TS \ne 0$, $1 \le ||TS|| \le ||T|| ||S|| \le 1$, thus ||TS|| = 1. The same arguments give ||T|| = ||ST|| = 1. Finally we obtain $\gamma(T) = 1$, by Proposition 1.1. □

The next result is shown in [10, Proposition 4.2]:

- **1.5. Proposition.** For $T \in \mathcal{L}(X)$ the following conditions are equivalent:
 - (1) T is a partial isometry;
 - (2) there are two projections P and Q such that P(X) = T(X), N(Q) = N(T), ||P|| = ||Q|| = 1 and

$$||TQx|| = ||Qx||$$
 for every $x \in X$.

Examples.

- (1) If $P \in \mathcal{L}(X)$ is a projection and $P \neq 0$, then P is a partial isometry if and only if ||P|| = 1.
- (2) Let T be the bounded operator on the Banach space $l^1(\mathbb{N})$ defined by

$$T(x_1, x_2, x_3, \dots) = (x_2, x_3, \dots).$$

Let the operator S on $l^1(\mathbb{N})$ be given by

$$S(x_1, x_2, x_3, \dots) = (0, x_1, x_2, \dots),$$

then it is easy to see TST = T and STS = S. Since ||T|| = ||S|| = 1, T is a partial isometry.

2. Spectral properties of partial isometries

In this section we always assume that $T \in \mathcal{L}(X)$ is a non-zero partial isometry and that S is a contractive generalized inverse of T. Recall that then ||T|| = ||S|| = 1.

Let $\mathbb{D} = \{\lambda \in \mathbb{C} : |\lambda| < 1\}$ and $\overline{\mathbb{D}} = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}$. By $\mathcal{L}(X)^{-1}$ we denote the group of all invertible operators in $\mathcal{L}(X)$.

2.1. Proposition. If
$$T \in \mathcal{L}(X)^{-1}$$
 then $S = T^{-1}$ and $\sigma(T) \subset \partial \mathbb{D}$.

Proof. Since $T \in \mathcal{L}(X)^{-1}$ and TST = T, it follows that ST = I and TS = I. Hence $0 \in \rho(T)$. Now let $\lambda \in \mathbb{C}$ and $0 < |\lambda| < 1$. Then $|\lambda|^{-1} > ||S|| \ge r(S)$, thus $\lambda^{-1} \in \rho(S)$. Therefore we get from

$$(1/\lambda I - S)(-\lambda T) = \lambda I - T,$$

that $\lambda I - T \in \mathcal{L}(X)^{-1}$, hence $\lambda \in \rho(T)$. This shows that $\mathbb{D} \subseteq \rho(T)$. Since $\lambda \in \rho(T)$ if $|\lambda| > 1 = ||T||$, we derive that $\sigma(T) \subseteq \partial \mathbb{D}$.

An operator $U \in \mathcal{L}(X)$ is called *decomposably regular* if U is relatively regular and admits a pseudo inverse $V \in \mathcal{L}(X)^{-1}$.

A proof of the next result can be found in [7, Chapter 3.8].

- **2.2. Proposition.** Suppose that $U \in \mathcal{L}(X)$ is relatively regular. Then the following assertions are equivalent:
 - (1) U is decomposably regular;
 - (2) N(U) and X/U(X) are isomorphic;
 - (3) there are $P, V \in \mathcal{L}(X)$ such that $P^2 = P, V \in \mathcal{L}(X)^{-1}$ and U = VP;
 - (4) there are $Q, W \in \mathcal{L}(X)$ such that $Q^2 = Q, W \in \mathcal{L}(X)^{-1}$ and U = QW.

Examples.

- (1) Each projection $P \in \mathcal{L}(X)$ is decomposably regular, since P = PIP.
- (2) Proposition 2.2 (2) shows that if $\dim X < \infty$, then each operator on X is decomposably regular.
- (3) For $U \in \mathcal{L}(X)$ let $\alpha(U) = \dim N(U)$ and $\beta(U) = \operatorname{codim} U(X)$. U is called a *Fredholm operator* if $\alpha(U) < \infty$ and $\beta(U) < \infty$. In this case

$$\operatorname{ind}(U) = \alpha(U) - \beta(U)$$

is called the *index* of U. It follows from [8, §74] that a Fredholm operator U is relatively regular and Proposition 2.2 (2) shows that

U is decomposably regular \iff ind(U) = 0.

(4) In [14, Theorem 2.1] we have shown that an operator U is an interior point of the set of all decomposably regular operators if and only if U is a Fredholm operator with $\operatorname{ind}(U) = 0$.

2.3. Theorem.

- (1) If $\mathbb{D} \cap \rho(S) \neq \emptyset$ or $\mathbb{D} \cap \rho(T) \neq \emptyset$, then T and S are both decomposably regular.
- (2) Suppose that T is not decomposably regular, then

$$\sigma(T) = \sigma(S) = \overline{\mathbb{D}}.$$

Proof. (1) Assume that $\mathbb{D} \cap \rho(S) \neq \emptyset$. Take $\lambda_0 \in \mathbb{D} \cap \rho(S)$. Then $\|\lambda_0 T\| = |\lambda_0| \|T\| = |\lambda_0| < 1$, thus $\lambda_0 T - I \in \mathcal{L}(X)^{-1}$. Since $\lambda_0 I - S \in \mathcal{L}(X)^{-1}$, the operator

$$R = (\lambda_0 T - I)^{-1} (\lambda_0 I - S) \in \mathcal{L}(X)^{-1}.$$

From

$$(\lambda_0 T - I)ST = \lambda_0 TST - ST = \lambda_0 T - ST = (\lambda_0 I - S)T$$

we see that

$$ST = (\lambda_0 T - I)^{-1} (\lambda_0 I - S)T = RT,$$

hence T = T(ST) = TRT. Therefore T is decomposably regular. On the other hand

$$S = (ST)S = RTS = R(TS),$$

thus, by Proposition 2.2 (3), S is decomposably regular.

If $\mathbb{D} \cap \rho(T) \neq \emptyset$, the same arguments show that T and S are decomposably regular.

(2) By (1) we must have $\mathbb{D} \subseteq \sigma(T)$ and $\overline{\mathbb{D}} \subseteq \sigma(S)$. Since the spectrum of an operator is always closed, we derive $\overline{\mathbb{D}} \subseteq \sigma(T)$ and $\overline{\mathbb{D}} \subseteq \sigma(S)$. From ||T|| = ||S|| = 1, we see that $\sigma(T)$, $\sigma(S) \subseteq \overline{\mathbb{D}}$.

2.4. Corollary.

- (1) If r(T) < 1 or r(S) < 1 then both T and S are decomposably regular.
- (2) If T is a Fredholm operator and $ind(T) \neq 0$, then

$$\sigma(T) = \sigma(S) = \overline{\mathbb{D}}.$$

Remark. Since each projection with norm 1 is a partial isometry and decomposably regular we see that in general the implication in Corollary 2.4 (1) cannot be reversed.

2.5. Corollary. Suppose that T is not decomposably regular. Then

$$\{r(R): R \text{ is a pseudo inverse of } T\} = [1, \infty).$$

Proof. Let $M = \{r(R) : R \text{ is a pseudo inverse of } T\}$ and $\alpha = \inf M$. Assume that $\alpha < 1$. Hence there is $R \in \mathcal{L}(X)$ such that TRT = T and r(R) < 1. Take a complex number λ_0 with $r(R) < |\lambda_0| < 1$. Then $\lambda_0 \in \rho(R)$ and $\lambda_0^{-1} \in \rho(T)$, since r(T) = 1, by Theorem 2.3 (2). Therefore

$$V = (\lambda_0 T - I)(\lambda_0 I - R) \in \mathcal{L}(X)^{-1}.$$

As in the proof of Theorem 2.3 (1) we conclude that TVT = T, thus T is decomposably regular, a contradiction. Therefore $\alpha \geq 1$. Theorem 2.3 (1) shows that r(S) = 1, hence $1 = \min M$, thus $M \subseteq [1, \infty)$. Now take $\beta \in [1, \infty)$. Since $T \notin \mathcal{L}(X)^{-1}$, $TS \neq I$ or $ST \neq I$. Then it follows from [12, Corollary 4] that there is a pseudo inverse B of T with $r(B) = \beta$. Hence $\beta \in M$, and so $M = [1, \infty)$.

2.6. Proposition. Suppose that $T \notin \mathcal{L}(X)^{-1}$. Then

$$\{\|R\|: R \text{ is a pseudo inverse of } T\} = [1, \infty).$$

Proof. Let $M = \{ \|R\| : R \text{ is a pseudo inverse of } T \}$. If $R \in \mathcal{L}(X)$ and TRT = T, then $1 = \|T\| = \|TRT\| \le \|T\|^2 \|R\| = \|R\|$, thus $M \subseteq [1, \infty)$. Theorem 4 in [12] shows that $[\|S\|, \infty) \subseteq M$. Since $\|S\| = 1$, we get $M = [1, \infty)$.

Now we introduce a further class of relatively regular operators: an operator $U \in \mathcal{L}(X)$ is called *holomorphically regular* if there is a neighbourhood $\Omega \subseteq \mathbb{C}$ of 0 and a holomorphic function $F: \Omega \to \mathcal{L}(X)$ such that

$$(U - \lambda I) F(\lambda) (U - \lambda I) = U - \lambda I$$
 for all $\lambda \in \Omega$.

- **2.7. Proposition.** For $U \in \mathcal{L}(X)$ the following assertions are equivalent:
 - (1) U is holomorphically regular;
 - (2) U is relatively regular and $N(U) \subseteq \bigcap_{n=1}^{\infty} U^n(X)$.

Proof. cf. [13, Theorem 1.4].

Examples.

(1) If $U \in \mathcal{L}(X)$ is right or left invertible in $\mathcal{L}(X)$, then U is holomorphically regular. Indeed, suppose that V is a right inverse of U, thus UV = I. It follows that $U^nV^n = I$ for all $n \in \mathbb{N}$. Hence $1 \leq \|U^n\|^{1/n}\|V^n\|^{1/n}$ for all $n \in \mathbb{N}$, and so $1 \leq r(U)r(V)$, thus $r(U) \neq 0 \neq r(V)$. Let $\Omega = \{\lambda \in \mathbb{C} : |\lambda| < r(V)^{-1}\}$ and $F(\lambda) = V(I - \lambda V)^{-1}(\lambda \in \Omega)$. Then it it easy to see that

$$(U - \lambda I) F(\lambda) (U - \lambda I) = U - \lambda I$$

for every $\lambda \in \Omega$.

Similar arguments show that U is holomorphically regular if U is left invertible.

(2) Let $U \in \mathcal{L}(X)$ be a Fredholm operator, then it is well-known that there is $\rho > 0$ such that $U - \lambda I$ is a Fredholm operator for $|\lambda| < \rho$ and that there are non-negative integers α_0 and β_0 such that

$$\alpha_0 = \alpha(U - \lambda I) \le \alpha(U), \ \beta_0 = \beta(U - \lambda I) \le \beta(U) \text{ for } 0 < |\lambda| < \rho.$$

It is shown in [15] that U is holomorphically regular if and only if

$$\alpha(U - \lambda I) = \alpha(U)$$
 and $\beta(U - \lambda I) = \beta(U)$ for $|\lambda| < \rho$.

We say that $U \in \mathcal{L}(X)$ is holomorphically decomposably regular if there is a neighbourhood $\Omega \subseteq \mathbb{C}$ of 0 and a holomorphic function $F : \Omega \to \mathcal{L}(X)$ such that $F(\lambda) \in \mathcal{L}(X)^{-1}$ for all $\lambda \in \Omega$ and

$$(U - \lambda I) F(\lambda) (U - \lambda I) = U - \lambda I$$
 for all $\lambda \in \Omega$.

- **2.8. Theorem.** If T is holomorphically regular and if $T \notin \mathcal{L}(X)^{-1}$, then
 - (1) $\sigma(T) = \overline{\mathbb{D}}$ and r(S) = 1;
 - (2) if $F(\lambda) = (I \lambda S)^{-1}S$ for $\lambda \in \mathbb{D}$, then

$$(T - \lambda I) F(\lambda) (T - \lambda I) = T - \lambda I$$

and

$$F(\lambda) (T - \lambda I) F(\lambda) = F(\lambda)$$

for every $\lambda \in \mathbb{D}$;

- (3) if $\mathbb{D} \cap \rho(S) \neq \emptyset$, then S is decomposably regular and T is holomorphically decomposably regular;
- (4) for each $n \in \mathbb{N}$, T^n is a non-zero partial isometry and a contractive generalized inverse of T^n is given by $S^nT^nS^n$.

Proof. (1) Let $\Omega = \{\lambda \in \mathbb{C} : |\lambda|r(S) < 1\}$ and $F(\lambda) = (I - \lambda S)^{-1}S$. We have shown in [13, Corollary 1.5] that

(*)
$$(T - \lambda I) F(\lambda) (T - \lambda I) \text{ for } \lambda \in \Omega.$$

Now take $\lambda_0 \in \Omega$ and assume that $\lambda_0 \in \rho(T)$. By (*), $F(\lambda_0) = (T - \lambda_0 I)^{-1}$, thus

$$S(I - \lambda_0 S)^{-1} = (I - \lambda_0 S)^{-1} S = (T - \lambda_0 I)^{-1},$$

therefore $S(T - \lambda_0 I) = (T - \lambda_0 I)S = I - \lambda_0 S$, and so TS = ST = I, a contradiction, since $T \notin \mathcal{L}(X)^{-1}$. Hence we have shown that $\Omega \subseteq \sigma(T)$. Since $\sigma(T)$ is bounded, r(S) > 0, r(T) > 0 and

$$\overline{\Omega} = \{ \lambda \in \mathbb{C} : |\lambda| \le \frac{1}{r(S)} \} \subseteq \sigma(T) \subseteq \overline{\mathbb{D}}.$$

From this it follows that $r(S) \geq 1$, consequently r(S) = 1 and $\sigma(T) = \overline{\mathbb{D}}$.

(2) The proof of (1) shows that $\Omega = \mathbb{D}$ and that

$$(T - \lambda I) F(\lambda) (T - \lambda I) = T - \lambda I \text{ for } \lambda \in \mathbb{D}.$$

Now take $\lambda \in \mathbb{D}$. Then

$$F(\lambda) (T - \lambda I) F(\lambda) = (I - \lambda S)^{-1} (ST - \lambda S) F(\lambda)$$

$$= (I - \lambda S)^{-1} (I - \lambda S - (I - ST)) F(\lambda)$$

$$= (I - (I - \lambda S)^{-1} (I - ST)) S(I - \lambda S)^{-1}$$

$$= F(\lambda) - (I - \lambda S)^{-1} \underbrace{(I - ST)S}_{=0} (I - \lambda S)^{-1}$$

$$= F(\lambda).$$

(3) Theorem 2.3 (1) shows that T and S are decomposably regular. Take $R \in \mathcal{L}(X)$ with TRT = T and $R \in \mathcal{L}(X)^{-1}$. As in the proof of (1), r(R) > 0. Let $\Omega_0 = \{\lambda \in \mathbb{C} : |\lambda| < r(R)^{-1}\}$ and $G(\lambda) = (I - \lambda R)^{-1}R$ for $\lambda \in \Omega_0$. Then $G(\lambda) \in \mathcal{L}(X)^{-1}$ for $\lambda \in \Omega_0$ and as above

$$(T - \lambda I) G(\lambda) (T - \lambda I) = T - \lambda I \quad (\lambda \in \Omega_0).$$

(4) By Proposition 9 in [12], $T^nS^nT^n=T^n$ for all $n\in\mathbb{N}$. Let $S_n=S^nT^nS^n$ $(n\in\mathbb{N})$. Then

$$T^n S_n T^n = T^n$$
 and $S_n T^n S_n = S_n$ $(n \in \mathbb{N}).$

Since r(T) = 1, $T^n \neq 0$. Furthermore we have $||T^n|| \leq ||T||^n = 1$ and $||S_n|| \leq ||S||^n ||T||^n ||S||^n = 1$.

For $U \in \mathcal{L}(X)$ let $\sigma_p(U)$ denote the set of eigenvalues of U.

- **2.9.** Corollary. Suppose that T is right or left invertible but not invertible.
 - (1) $\sigma(T) = \sigma(S) = \overline{\mathbb{D}};$
 - (2) if T is right invertible, then $\mathbb{D} \subseteq \sigma_p(T)$ and $\mathbb{D} \cap \sigma_p(S) = \emptyset$;
 - (3) if T is left invertible, then $\mathbb{D} \subseteq \sigma_p(S)$ and $\mathbb{D} \cap \sigma_p(T) = \emptyset$.

Proof. (1) If T is right (left) invertible, then S is left (right) invertible, hence T and S are holomorphically regular. Theorem 2.8 (1) gives the result.

(2) Let $R \in \mathcal{L}(X)$ with TR = I. From TST = T we derive I = TR = TSTR = TS. Let $\lambda \in \mathbb{D}$. Then $(T - \lambda I) S(I - \lambda S)^{-1} = (I - \lambda S) (I - \lambda S)^{-1} = I$ and $N(T - \lambda I) = (I - S(I - \lambda S)^{-1} (T - \lambda I))(X)$. Since $\lambda \in \sigma(T)$, $I - S(I - \lambda S)^{-1} (T - \lambda I) \neq 0$, therefore $N(T - \lambda I) \neq \{0\}$. If $Sx = \lambda x$ for some $x \in X$, then $x = TSx = \lambda Tx$, hence $Tx = \lambda^{-1}x$. Since $|\lambda^{-1}| > 1 = r(T)$, we derive x = 0, thus $\lambda \notin \sigma_p(S)$.

(3) Similar.
$$\Box$$

2.10. Corollary. If T is holomorphically regular and $T \notin \mathcal{L}(X)^{-1}$ then

$$\{r(R): R \text{ is a pseudo inverse of } T\} = [1, \infty).$$

Proof. Let $M = \{r(R) : R \in \mathcal{L}(X) \text{ and } TRT = T\}$ and $\alpha = \inf M$. If $R \in \mathcal{L}(X)$ and TRT = T, then, by [12, Proposition 9],

$$T^n R^n T^n = T^n \quad (n \in \mathbb{N}),$$

thus $||T^n||^{1/n} \le ||T^n||^{2/n} ||R^n||^{1/n}$ for $n \in \mathbb{N}$. This gives, since r(T) = 1 (Theorem 2.8 (1)),

$$1 = r(T) \le r(T)^2 r(R) = r(R),$$

thus $\alpha \geq 1$. By Theorem 2.8 (1), r(S) = 1, hence $\alpha = 1 = \min M$, and so $M \subseteq [1, \infty)$. Now proceed as in the proof of Corollary 2.5 to derive that $[1, \infty) \subseteq M$.

3. Partial isometries with an index

Recall that for an operator $U \in \mathcal{L}(X)$, the dimension of N(U) is denoted by $\alpha(U)$ and the codimension of U(X) is denoted by $\beta(U)$. If $\alpha(U)$ and $\beta(U)$ are not both infinite, we say that U has an index. The index ind(U) is then defined by

$$\operatorname{ind}(U) = \alpha(U) - \beta(U),$$

with the understanding, that for any real number r,

$$\infty - r = \infty$$
 and $r - \infty = -\infty$

(we agree to let $-(-\infty) = \infty$).

We say that $U \in \mathcal{L}(X)$ is a *semi-Fredholm operator*, if U(X) is closed and U has an index.

Observe that if $T \in \mathcal{L}(X)$ is a partial isometry with an index, then T is semi-Fredholm.

We write SF(X) for the set of all semi-Fredholm operators on X (see [5] or [8] for properties of this class of operators).

3.1. Proposition. Let $T \in \mathcal{L}(X)$ be a non-zero partial isometry and $U \in \mathcal{L}(X)$.

(1) If
$$\alpha(T) < \alpha(U)$$
 then $||T - U|| \ge 1$.

(2) If U has closed range and $\beta(T) < \beta(U)$ then $||T - U|| \ge 1$.

Proof. (1) By Lemma V.1.1 in [5] there is $x \in N(U)$ such that 1 = ||x|| = dist(x, N(T)), hence, by Proposition 1.4,

$$1 = \gamma(T) \le ||Tx|| = ||Tx - Ux|| \le ||T - U|| \, ||x|| = ||T - U||.$$

- (2) We denote by X^* the dual space of X and by R^* the adjoint of $R \in \mathcal{L}(X)$. By [5, Theorem IV.2.3], $\beta(T) = \alpha(T^*)$ and $\beta(U) = \alpha(U^*)$, therefore $\alpha(T^*) < \alpha(U^*)$. Since T^* is a non-zero partial isometry, it follows from (1) that $1 \leq \|T^* U^*\| = \|T U\|$.
- **3.2. Corollary.** If T_1 and T_2 are partial isometries on X and if $||T_1 T_2|| < 1$, then

$$\alpha(T_1) = \alpha(T_2)$$
 and $\beta(T_1) = \beta(T_2)$.

Proof. If $T_1 = 0$, then $||T_2|| < 1$, hence $T_2 = 0$ (since T_2 is partial isometry) and we are done. So we can assume that $T_1 \neq 0$. From Proposition 3.1 we derive (let $T = T_1$ and $U = T_2$) that $\alpha(T_1) \geq \alpha(T_2)$ and $\beta(T_1) \geq \beta(T_2)$. By symmetry we also get $\alpha(T_2) \geq \alpha(T_1)$ and $\beta(T_2) \geq \beta(T_1)$.

Remark. Corollary 3.2 generalizes [6, Problem 101].

In the following proposition we collect some properties of semi-Fredholm operators.

- **3.3. Proposition.** Let $U \in \mathcal{L}(X)$.
 - (1) If U is relatively regular and V is a generalized inverse of U, then

$$\alpha(V) = \beta(U)$$
 and $\beta(V) = \alpha(U)$.

Furthermore,

$$U \in \mathcal{SF}(X) \iff V \in \mathcal{SF}(X)$$

and in this case

$$\operatorname{ind}(U) = -\operatorname{ind}(V).$$

(2) If $U \in \mathcal{SF}(X)$ then

$$U - \lambda I \in \mathcal{SF}(X)$$
 and $\operatorname{ind}(U - \lambda I) = \operatorname{ind}(U)$

for all $\lambda \in \mathbb{C}$ with $|\lambda| < \gamma(U)$ and there are integers α_0 and β_0 such that

$$\alpha_0 = \alpha(U - \lambda I) \le \alpha(U)$$
 and $\beta_0 = \beta(U - \lambda I) \le \beta(U)$

for $\lambda \in \mathbb{C}$ with $0 < |\lambda| < \gamma(U)$.

(3) If U is a relatively regular semi-Fredholm operator, then U is holomorphically regular if and only if

$$\alpha(U - \lambda I) = \alpha(U)$$
 and $\beta(U - \lambda I) = \beta(U)$

for all $\lambda \in \mathbb{C}$ with $|\lambda| < \gamma(U)$.

Proof. (1) Since

$$X = (UV)(X) \oplus (I - UV)(X) = U(X) \oplus N(V)$$

and

$$X = (VU)(X) \oplus (I - VU)(X) = V(X) \oplus N(U),$$

the result follows.

- (2) is shown in [5, Theorem V.1.6] and a proof of (3) is given in [15]. \Box
- **3.4. Corollary.** Suppose that T is a holormorphically regular partial isometry with an index and that S is a contractive generalized inverse of T. Then:

(1)
$$T - \lambda I \in \mathcal{SF}(X)$$
 and

$$\alpha(T - \lambda I) = \alpha(S)$$
 and $\beta(T - \lambda I) = \beta(S)$

for each $\lambda \in \mathbb{D}$.

(2)
$$\sigma(T) = \sigma(S) = \overline{\mathbb{D}} \text{ if } T \notin \mathcal{L}(X)^{-1}.$$

- *Proof.* (1) Since $T \in \mathcal{SF}(X)$, $T \neq 0$. Thus $\gamma(T) = 1$, by Proposition 1.4. The assertions follow now from Proposition 3.3.
- (2) If $T \notin \mathcal{L}(X)^{-1}$, then $S \notin \mathcal{L}(X)^{-1}$, hence (1) shows that $\alpha(T \lambda I) > 0$ for all $\lambda \in \mathbb{D}$ or $\beta(T \lambda I) > 0$ for all $\lambda \in \mathbb{D}$. Therefore $\mathbb{D} \subseteq \sigma(T)$, and so $\sigma(T) = \overline{\mathbb{D}}$. By symmetry, we also derive $\sigma(S) = \overline{\mathbb{D}}$.
- **3.5. Corollary.** Let T_1 and T_2 be partial isometries such that $||T_1 T_2|| < 1$.
 - (1) $T_1 \in \mathcal{SF}(X) \iff T_2 \in \mathcal{SF}(X)$.
 - (2) If $T_1 \in \mathcal{SF}(X)$ and $\operatorname{ind}(T_1) \neq 0$, then

$$T_1 - \lambda I, T_2 - \lambda I \in \mathcal{SF}(X)$$

and

$$\operatorname{ind}(T_1 - \lambda I) = \operatorname{ind}(T_2 - \lambda I) \neq 0$$

for all $\lambda \in \mathbb{D}$.

Furthermore

$$\sigma(T_1) = \sigma(T_2) = \overline{\mathbb{D}}.$$

Proof. (1) follows from Corollary 3.2.

- (2) Use (1), Corollary 3.2 and Proposition 3.3 (2).
- **3.6. Corollary.** Suppose that T is a partial isometry with an index $\operatorname{ind}(T) \neq 0$. Then

$$||T - S|| > 1$$

for each contractive generalized inverse S of T.

Proof. Assume to the contrary that S is a contractive generalized inverse of T such that ||T - S|| < 1. Proposition 3.3 (1) shows that $S \in \mathcal{SF}(X)$ and $\operatorname{ind}(S) = -\operatorname{ind}(T)$. But $\operatorname{ind}(S) = \operatorname{ind}(T)$, by Corollary 3.5. Hence $\operatorname{ind}(T) = 0$, a contradiction.

Remark. The condition $\operatorname{ind}(T) \neq 0$ in Corollary 3.6 can not be dropped without changing the conclusion. Indeed, if $P \in \mathcal{L}(X)$ is a projection with $\|P\| = 1$ and $\alpha(P) < \infty$, then P is a partial isometry. From $X = P(X) \oplus N(P)$ we see that $\alpha(P) = \beta(P) < \infty$, thus $\operatorname{ind}(P) = 0$. But there is a contractive generalized inverse S with $\|P - S\| < 1$: take S = P.

3.7. Corollary. If T is a partial isometry with an index $\operatorname{ind}(T) \neq 0$ on a Hilbert space, then $||T - T^*|| \geq 1$.

4. Orthogonality and Moore-Penrose inverses

Recall that a bounded linear operator T on a *Hilbert* space H is a partial isometry if and only if $TT^*T = T$. In this case the ranges of T and T^* are closed, hence

(*)
$$N(T)^{\perp} = T^*(H) \text{ and } N(T^*)^{\perp} = T(H).$$

Furthermore T has a unique contractive generalized inverse $S=T^*$ (see [10, Corollary 3.3]).

Now let x and y be vectors in a Banach space X. Following R. C. James [9], we say that x and y are orthogonal if

$$||x|| \le ||x + \alpha y||$$
 for each $\alpha \in \mathbb{C}$.

In this case we write $x \perp y$. For $M, N \subseteq X$ we define the relation $M \perp N$ by $x \perp y$ for all $x \in M$ and all $y \in N$.

For our next result recall that if T is a non-zero partial isometry on the Banach space X and if S is a contractive generalized inverse of T, then ||T|| = ||S|| = ||TS|| = ||ST|| = 1 and

$$S(X) \oplus N(T) = X = T(X) \oplus N(S).$$

- **4.1. Theorem.** Let $T \in \mathcal{L}(X)$ be a non-zero partial isometry and S a contractive generalized inverse of T.
 - (1) If $N(T) \neq \{0\}$, then

$$N(T) \perp S(X) \iff ||I - ST|| = 1.$$

(2) If $N(S) \neq \{0\}$, then

$$N(S) \perp T(X) \iff ||I - TS|| = 1.$$

Proof. (1) First suppose that $N(T) \perp S(X)$. Let $x \in X$. Then x = u + v with $u \in S(X)$ and $v \in N(T)$. Hence

$$(I - ST)x = (I - ST)u + v = v.$$

Since $v \perp u$, we derive

$$||(I - ST)x|| = ||v|| < ||u + v|| = ||x||.$$

Therefore $||I-ST|| \le 1$. Since I-ST is a non-zero projection, $||I-ST|| \ge 1$, and so ||I-ST|| = 1.

Now assume that ||I - ST|| = 1. Take $x \in S(X)$ and $y \in N(T)$. Then, for all $\alpha \in \mathbb{C}$,

$$||y|| = ||(I - ST)(y + \alpha x)| \le ||I - ST|| \, ||y + \alpha x|| = ||y + \alpha x||.$$

(2) can be proved analogously.

An operator $U \in \mathcal{L}(X)$ is called *hermitian* if $\|\exp(itU)\| = 1$ for every real number t.

Let $T \in \mathcal{L}(X)$ be a relatively regular operator. We will say that an operator $T^+ \in \mathcal{L}(X)$ is the *Moore-Penrose inverse* of T if T^+ is a generalized inverse of T and the projections TT^+ and T^+T are hermitian.

4.2. Proposition.

- (1) If $U, V \in \mathcal{L}(X)$ are hermitian and $\alpha, \beta \in \mathbb{R}$, then $\alpha U + \beta V$ is hermitian.
- (2) If $U \in \mathcal{L}(X)$ is hermitian, then ||U|| = r(U).
- (3) If $P \in \mathcal{L}(X)$ is a hermitian projection then ||P|| = 0 or ||P|| = 1.
- (4) If $T \in \mathcal{L}(X)$ is relatively regardar, then T has at most one Moore-Penrose inverse.

Proof. (1) follows from [2, Lemma 38.2].

- (2) is shown in [2, Theorem 11.17].
- (3) If $P \neq 0$, then $1 \in \sigma(P) \subseteq \{0, 1\}$, thus r(P) = 1, hence ||P|| = 1, by (2).

(4) is shown in [11].

The following class of partial isometries is introduced in [10]:

Let $T \in \mathcal{L}(X)$ be a partial isometry. T is called an MP-partial isometry if T admits a contractive Moore-Penrose inverse.

Remarks.

- (1) Every hermitian projection is an MP-partial isometry.
- (2) If T is an MP-partial isometry, then T is a partial isometry in the sense of Definition 1.3. Moreover, these two notions are equivalent in the case of a Hilbert space, since $T^+ = T^*$, by Proposition 4.2 (4).
- **4.3. Corollary.** Let $T \in \mathcal{L}(X)$ be a non-zero MP-partial isometry. Then

$$N(T) \perp T^+(X)$$
 and $N(T^+) \perp T(X)$.

Proof. If $N(T) = \{0\}$ or $N(T^+) = \{0\}$, then there is nothing to prove. So we assume that $N(T) \neq \{0\}$ and $N(T^+) \neq \{0\}$, hence $T(X) \neq X \neq T^+(X)$. Let $P = I - TT^+$ and $Q = I - T^+T$. Thus P and Q are non-zero projections. Since TT^+ and T^+T are hermitian, P and Q are hermitian, by Proposition 4.2 (1). Because of Proposition 4.2 (3) we derive that ||P|| = ||Q|| = 1. The result follows now from Theorem 4.1.

References

- [1] T. Ando, Contractive projections in L_p spaces, Pac. J. Math. 17 (1966), 391-405.
- [2] F. F. Bonsall, J. Duncan, Complete Normed Algebras, Springer (1973).
- [3] S. L. Campbell, G. D. Faulkner, *Isometries, projections and Wold decompositions*, Res. Notes in Math., 38, Pitman, Boston (1979), 85-114.
- [4] S. R. Caradus, Generalized inverse and operator theory, Queen's papers in pure and appl. math. 50, Queen's Univ. Kingston, Ont., 1978.
- [5] S. Goldberg, Unbounded linear operators, McGraw-Hill (1966).
- [6] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand (1967).
- [7] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York - Basel, 1988.
- [8] H. Heuser, Funktionalanalysis, 3. ed. Teubner, Stuttgart, 1991.
- [9] R. C. James, Orthogonality and linear functionals in normed linear space, Trans. Amer. Math. Soc. 61 (1947), 265-292.

- [10] M. Mbekhta, Partial isometries and generalized inverses, Acta Sci. Math. (Szeged) 70 (2004), 767-781.
- [11] V. Rakocevic, Moore-Penrose inverse in Banach algebras, Proc. Roy. Irish Acad., Sect. A, 88 (1988), 57-60.
- [12] Ch. Schmoeger, Spectral properties of generalized inverses, Demonstratio Math. 37 (2004), 137-148.
- [13] Ch. Schmoeger, *The punctured neighbourhood theorem in Banach algebras*, Proc. Roy. Irish Acad., Sect. A, 91 (1991), 205-218.
- [14] Ch. Schmoeger, On decomposably regular operators, Port. Math. 54 (1997), 41-50.
- [15] T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad., Sect. A, 87 (1987), 137-146.

CHRISTOPH SCHMOEGER, MATHEMATISCHES INSTITUT I, UNIVERSITÄT KARLSRUHE (TH), ENGLERSTRASSE 2, 76128 KARLSRUHE, GERMANY

 $E ext{-}mail\ address: christoph.schmoeger@math.uni-karlsruhe.de}$