Structure Splitting and Inheritance

Interner Bericht 2005-7

Gotz Lindenmaier

Institut fiir Programmstrukturen und Datenorganisation
Fakultat fiir Informatik
Universitat Karlsruhe
ISSN 1432-7864

goetz@ipd.info.uni-karlsruhe.de

Abstract

The increasing gap between memory and processor performance drives the re-
search for cache optimizations. Recently research concentrates on optimizing
pointer based applications. Structure splitting is an important enabling trans-
formation for optimizations that improve the layout of dynamic data struc-
tures. Previous work has shown the potential of structure splitting in runtime
optimizations. This paper discusses issues of structure splitting applied to in-
heritance hierarchies of object oriented languages. Inheritance requires similar
layout of compound types to simplify type casts. Structure splitting, in con-
trast, requires a layout that is tailored for a single type. Therefore compatibility
between the split type and its super and sub-types is lost. This issue was not
addressed by previous work. We explain several strategies to deal with this type
compatibility issue and implement two as a compiler optimization. Our exper-
iments show that a careful choice of the strategy is necessary, as they either
increase the overhead for accessing cache-neutral data, or they can not achieve
the full possible speed up for cache-critical data. Nevertheless, both approaches
show considerable speed ups of our tests.

0.1 Introduction

Research on cache optimizations tries to alleviate the effects of the increasing gap
between memory and processor performance. Where instruction cache perfor-
mance reaches a satisfying level, data cache performance still leaves adequate
room for improvements. Past years have seen many efforts to improve cache
performance of array based programs. More recently research concentrates on
optimizing pointer based applications.

This paper considers structure splitting, a fundamental enabling transforma-
tion for cache-optimizing pointer based applications. We explore how to apply
structure splitting in type systems with inheritance. We discuss the arising
problems and present two algorithms with different merits.

Unfortunately it is more difficult to capture the cache deficiencies of pointer
based programs than those of array based ones automatically. An analysis can
not give an account of the size of a data structure constructed during runtime
by looking at the declarations of types or root elements. This is only possible by
elaborate analyses or by using profiling data. Further alias problems complicate
the correct application of layout transformations, but if a language reduces
such problems it is feasible to apply them. Most research for pointer based
programs focuses on prefetching. Adding prefetch instructions is always correct
— in worst case a badly placed prefetch reduces the cache performance of a
program. But prefetching only hides the cost of cache misses instead of avoiding
them. Layout transformations, in contrast, reduce the number of cache misses
if applied properly.

Structure splitting[CDL99, FK98] is a layout transformation that splits a
compound data structure into two (or several) parts. The goal is to obtain a
smaller, hot structure that contains the cache critical parts, and to place this
part preferential in the cache. The other, cold, part can be reached by an extra
indirection from the hot part or by other mechanisms.

Structure splitting is an important enabling transformation needed to cache-
optimize pointer programs. Separating the cold and hot parts in a structure
allows to arrange memory regions that only contain hot parts thereby increasing
cache reuse. Structure splitting is only effective if the positive effects from
placing the hot part cache conscious outweigh the extra memory consumption
and computation effort caused by managing the split cold part.

We achieve structure splitting by parting the type that describes the com-
pound data structure into two. In addition we must adapt all allocations, deal-
locations and accesses to entities of the type to handle the two new types.

Inheritance poses several additional problems to structure splitting. Effi-
cient implementations of inheritance require a compatible layout of super- and
subtypes. Splitting a single type in an inheritance hierarchy breaks the compat-
ibility. The program must perform a field access differently depending on the
dynamic type of a data structure.

Splitting the subtypes of a split type accordingly establishes type compat-
ibility between these types. This can make sense beyond guaranteeing com-
patibility. The hot part of the type is inherited to all subtypes. If this part

also is hot accessing instances of the subtype the splitting will allow further
performance gains.

Super types of a split type can be treated as super types of the hot part or as
super types of the cold part. The first possibility allows full type compatibility,
but obscures the cache performance as the hot part increases in size by adding
potential cold, inherited fields. Inheriting the super types to the cold part
requires a dynamic type cast. Whenever the program casts an instance of the
split type to one of it’s super types, it must replace the reference pointing to
the hot part by a reference pointing to the cold part. This causes additional
computations. A third possibility is to apply a “fake” split to the super types:
They are split with an empty hot set. This must be applied to all further
subtypes, too, and therefore causes additional indirections for all accesses.

We implement the proposed optimizations as true compiler optimizations,
i.e., based on a high level intermediate representation. This reduces the overhead
caused by the splitting compared to a source to source transformation.

The next section explores the problems and possible solutions of structure
splitting with inheritance in detail. This Section gives algorithms to apply
structure splitting. Section 0.3 explains type clustering, an optimization that
profits from structure splitting. In Section 0.4 we introduce our implementation
of type clustering. Finally we present experimental numbers to evaluate the
different proposed solutions.

0.2 Structure Splitting and Inheritance

0.2.1 Premises: A Type Hierarchy

Given a program P and a set of types consisting of compound types and primitive
types.

A compound type is described by its name and a list of members. The type
of a member, the type it belongs to and further attributes describe a member.
We call the type a member belongs to the owner of the member.

A member is hot if it belongs to a type of which many instances are allocated
and if it is accessed frequently during runtime. All other members are cold.

The types form a directed, acyclic inheritance graph. The edges in the graph
are the inheritance relations. Each type inherits from a set of other types. If
type A inherits from type B, we say A is subtype of B and B is super type of A.

A member can overwrite a member of a direct super type. An instance of a
compound type comprises all members specified in the type and all members of
the super types of the type if they are not overwritten by a member of the type.
This expresses the inheritance of members from the super types. Replicating the
members in the subtype and installing an according overwrites relation makes
the inheritance explicit. We mark such replicated members as inherited. See
Fig. 1 for an example.

Given these definitions the type and inheritance system is described by
three relations: the inheritance relation, the owner-member relation and the

comp_tp | owner prim_tp comp_tp | owner prim_tp
ClassA { @) " @int) @ " @int)
inta
} member type member type
@ @
Class B extends A {

comp_tp

intb; comp_tp owner owner
} (B) overwrites type
type type|
member member H member };
(b) inﬁ?ited (b)
@ (b) (©

Figure 1: Inheritance representation. (a) shows a declaration of types in pseudo-
code. (b) shows the straight forward representation. Member a is inherited
to B implicitly. (c) shows the representation of explicit inheritance using the
overwrites relation.

overwrites-relation.

All accesses to members are explicit in P. This means each access specifies
explicitly the member accessed. During runtime an access either accesses this
member or a member that overwrites this member. The compiler generates
the proper access mechanism from the specification of this member. [Lin02]
describes an implementation of this type representation in the intermediate
representation Firm.

Finally all members are annotated with an access statistic that gives an
estimate over the number of accesses to this member during runtime. This
article does not deal with ways to compute this estimate.

0.2.2 Goal of the Optimization

Given a program P, a fixed type T in P and a subset My j0+ of the members
M7 of T. Mt ot contains only hot members. None of the members in My po¢
overwrites a member in a super type of T.

We want to split T into two parts so that one contains all members from
M7 hot, and the other contains the members My cota = Mz \ Mq pot. Effects
on P should be minimal with respect to additional computations and memory
consumption.

0.2.3 Structure Splitting

Structure splitting parts T into two types Tror and Tiorg- Thot emanates directly
from T by removing all members of T that are in Mz ¢,;q. We add the members

a_
e T o
Tcold

Thot
d C cold

8}

o

{1
3
a,

hot

@ (b)

Figure 2: Splitting of a single type T: (a) shows the original type, (b) shows the
split type.

of M7 coiq to a new type Teoq. Further we generate a new member m,.; that
can hold a reference to an instance of Tcoq and add my.p to Thor (Fig. 2).

We replace all allocations of an instance of T by two allocations of instances
of Thot and T.pq. After these allocations we add code that stores the address
of the instance of T, in the m,. field of the instance of T.¢. The allocation
returns the reference of the instance of Tj,;. Further we adapt all references to
members of T.yq to first follow the indirection m,.;. We change deallocations
so that the instance of T,,q and than that of Ty, are freed.

0.2.4 Structure Splitting and Subtypes

The members of T are inherited to or overwritten by its suBTypes BT;. To
guarantee that type conversions between T (respectively T, and T.oq) and its
subtypes still function we split each BT into BTj,; and BT.,q. Member sets
MB7,hot and Mpr,corq initially contain the members that overwrite members
in Mz pot and Mg corg, respectively. The relations (Thot, BThot) and (Teord,
BT.,i4) are added to the inheritance relation (Fig. 3). We adapt the code for
BT as described for T. Finally we do the same for all subtypes of BT.

If an m € Mr pq is inherited to BT we have no knowledge about the accesses
to m in its role as a part of a BT instance. We must assume that it is also hot
so that placing BT}, preferred in the cache delivers a performance gain. Else
splitting BT only adds further costs.

Each subtype may add new members to T. We must decide whether these
members remain in BT},,; or whether we move them to BT .,;4. If a new member
is hot, we expect a performance gain from splitting BT and leave all new hot
members of BT in BTj,;. We move all new, cold members to BT.,;4. If this
increases the size of BT}, materially we should reevaluate the hot set we started
off with by defining stronger thresholds.

0.2.5 Structure Splitting and Super Types

Super types of T have no hot members so that splitting a super type delivers
no performance gain. Else choose T to be this super type.

T inherits members from its suPer Types PT;. If we inherit these members to
Thot after splitting (adding (PT, Th.t) to the inheritance relation) T, contains

_ (a ho) a__hot
T T T
b cod hot cold

. c hot v T
-) e | BT e e
M ref
(€Y

(b)

Figure 3: Splitting of a subtype: (a) shows the original type, (b) shows the split
type. Field a is inherited to BTj,:. Field b is inherited to BT ;o;4-

cold fields. Casting instances of Tj.s to super types works without additional
hassle but we increase Tj,; unnecessarily, eventually destroying the possible
performance gains. We call this strategy type safe structure splitting.

Alternatively we can inherit these members to T..q after splitting (adding
(PT, T.01a) to the inheritance relation). In this case Tj has the intended small
extent. Unfortunately the access of members of PT now depends on the dynamic
type of the accessed entity. If it is a 'real’ instance of PT we can directly access
its members. If it is an instance of T cast to PT (i.e., the reference addresses
Thot) we need to follow the indirection m,s first.

There exist two solutions to this problem.

First we can split the super type into PT},: and PT.yq, where PTj,; is a
dummy that only contains the member m,.y. This achieves the exact layout for
Thot/Teota as described above. As a consequence it is necessary to split all other
types in the connected component containing T in the inheritance graph. For
languages, that define a common super type all types inherit from, this means
that all types are split. Then all field accesses pay the penalty of following the
indirection. Further this increases the memory requirement of each type.

The better solution is to insert an explicit cast whenever a reference is casted
from T to PT or vice versa. After the transformation each cast of a Tpot to
a PT dereferences m,.s so that the reference points to an instance of Tcyyq
that is type compatible with PT. Each cast of a PT to a T instance before
the transformation must now reestablish the reference to T}.:. For this we
needed another reference field mygcrrey added to Teoq and initialized with the
address of Tp¢ after allocation. This additional memory consumption is not
cache critical as the new field is added to the cold part of the split type. We
call this strategy optimal structure splitting.

Adding explicit casts only causes overhead in the order of magnitude of
casts, not in the order of magnitude of accesses. But adding the casts requires
knowledge of high level type information of reference values when we apply
structure splitting. Program P must guarantee type safety. The front end must
add a representation of high level type information as resulting from the type

analysis in the semantical analysis to the intermediate representation used for
optimization.

If T explicitly overwrites members of PT, we adapt M7 pot and My corq
according to the strategy before splitting T.

0.2.6 Handling Method Calling

Programming languages utilizing inheritance usually offer polymorphy. This
and other mechanisms require static allocated information (the dispatch table)
that is accessed depending on the dynamic type of an instance. Compilers
typically achieve this by adding a reference mg i to the dynamically allocated
part of a type that is initialized with the constant reference to the static part.

This reference typically is hot, as it is used in each polymorphic method call.
If super types are inherited to the hot split type we can keep mgtqti in the hot
part Tpot. If super types are inherited to the cold part it is necessary to move
Mgratic t0 the cold part. To avoid the double indirection for the split types we
can replicate mg;q¢ic in the hot part at the cost of another field.

0.2.7 Further Problems

T can be an interface to parts of the program P that are not compiled at the
same time as T. In this case we can not adapt the allocations, accesses and casts
in the other parts of P after deciding to split T.

We can avoid this by using encapsulation for all external interfaces of T.
This is only feasible if external interfaces are seldom so that the additional
overhead is negligible. If we can not utilize a functional interface an analysis
must find out whether the split type is visible out of the compilation unit before
applying structure splitting. A runtime optimizations environment renders this
issue obsolete as during runtime all parts of the program are known.

0.2.8 Implementation as True Compiler Optimization

A programmer or a tool can apply structure splitting as a source to source
transformation([CDL99]). A source to source transformation can easily apply
type safe structure splitting. No complex analyses are necessary to find accesses
to fields of the split type. Performing optimal type splitting requires a type
analyses to find the places where the explicit type casts must be added.

If structure splitting is implemented as a source to source transformation
the compiler adds administrative overhead for both parts of the split object.
In Java, for example, both classes resulting from a split will inherit from the
top class Object. We implemented our optimization as a true compiler pass
reducing this overhead.

0.3 Type Clustering

We use a technique we call type clustering to improve the cache performance
of pointer based applications. Type clustering is a coarse grained heuristic
based on the work by [GTZ98]. Type clustering places all instances of a cache
sensitive data type consecutively in memory, e.g, on a special heap. This causes
that frequently used instances are more likely to fall into common cache lines.
Further frequently used and seldom used instances are separated in memory.
This statistically reduces replacement of frequently used cache lines. Finally
type clustering can reduce page faults.

Type clustering profits materially from structure splitting. The type cluster
shall only contain hot memory locations. If a type has hot and cold fields the cold
fields are moved to the cache along with the hot ones if they fall into a common
cache line. They increase the overall size of the cluster without significantly
increasing the overall number of accesses to the cluster. This contradicts the
goal of creating a hot memory region. After applying structure splitting we only
apply type clustering to the part with the hot fields. This rules out the negative
effects of cold fields in the cluster.

0.4 Implementation

We implemented our experimental framework using the compiler infrastructure
CRS [CRS02]. CRS employs the intermediate representation Firm [TLB99].
Firm allows to keep a high level representation of the compiled source language
type system. The representation complies to the premises made in this paper —
especially are all address computations explicit. This allows easy application of
the algorithms proposed here. The compiler we configured for our experiment
uses a Java front end and generates a binary executable. The translation does
not comply fully with Java standards. The compiler does not support features
as dynamic class loading or the full range of reflection functionality. This is
sufficient to show the merits and pitfalls of structure splitting in type systems
with inheritance.

0.5 Experiments

We tested our implementation with a program that constructs a binary tree and
iterates over it. The program constructs the tree and fills it with data in a first
iteration. The height of the tree defines the problem size. A second iteration
simulates the search for a node by walking the whole tree and comparing an
argument with a key in each node.

The program defines four types: A small basic type PT contains two fields.
A subtype T of this type implements the tree data structure, and adds the key
and several further fields. This type again has two subtypes, BT; and BTs,
that each add two more fields. We mark the two fields referring to sons in the
tree and the key as hot fields.

Table 1: Cache performance of allocation. Numbers for problem size 20. Num-
bers for problem size 21 are similar.

Allocation Accesses Misses 1. level cache Misses 2. cache
absolute | relative | absolute | relative rate relative rate
no optimization 86061314 100 % 984187 100 % | 1.14 % 100 % | 1.14 %
type safe 103891382 120 % | 1047598 106 % | 1.01 % 106 % | 1.01 %
optimal 110193306 128 % | 1181331 120 % | 1.07 % 120 % | 1.07 %

We compiled three versions of the program. The first performs no cache op-
timization. The second performs type-safe structure splitting, the third optimal
structure splitting which requires dynamic casts. The dispatch pointer mgq¢c
is placed in the hot part. The second and third version also perform type clus-
tering. We executed the programs with a cache simulation and measured their
run times for two problem sizes (20 and 21).

0.5.1 Cache Effects

First we look at the effects of the optimization on the number of memory accesses
and cache misses. For this we employ the cache simulation cachegrind which
relies on valgrind [SN03]. cachegrind instruments all memory accesses and
simulates an adjustable cache hierarchy with dynamic addresses. The cache
hierarchy we simulate has a 64 KByte, 2-way associative first level data cache
and a 256 KByte, 8-way associative unified second level cache. Cache lines hold
64 Bytes of data.

Table 1 shows the number of accesses (both write and read) performed during
the allocation of the tree. Splitting the objects increases the number of accesses
by 20 %. The initialization of the m,.; field and the indirection through this
field for initialization of the split part account for these accesses. Optimal type
splitting increases the number of accesses by an other 8 %. The initialization of
the duplicated dispatch reference and the mpycrres field account for this over-
head. Further the initialization of the fields of type B performs a dynamic type
cast.

The misses increase less than the number of accesses as the additional ac-
cesses exploit reuse. The misses increase according to the increase of the size
of the data structure. Type safe splitting adds 1 field and 6.5 % of misses.
Optimal splitting adds two more fields and another 2*¥6.5 = 13 % of misses.
The allocation walks sequentially through memory and accesses all cache lines
a first time. Therefore all misses are compulsory and the miss rate depends
primarily on the cache line size and the reuse in the program, not on the cache
size. Therefore the rates are the same for both caches. The additional accesses
of type safe splitting have high reuse (m,.y is accessed frequently) reducing the
miss rate significantly.

Table 2: Cache performance of iteration. Numbers for problem size 20. Numbers
for problem size 21 are similar.

Iteration Accesses Misses 1. level cache Misses 2. cache
absolute | relative | absolute | relative rate relative rate
no optimization || 18350056 100 % 998282 100 % | 5.44 % 100 % | 5.43 %
type safe 18350056 100 % 532781 53 % | 2.90 % 53 % | 2.89 %
optimal 18350056 100 % 333515 33% | 1.82 % 33% | 1.81 %

Table 2 shows the corresponding numbers for the iteration. As the iteration
uses only fields in the hot part the optimization does not increase the number
of accesses. But it reduces the number of misses significantly. As a tree grows
exponentially the program contains few locality that can be exploited by the
second level cache so that we see similar miss rates for both caches.

The miss rate of the iteration is higher than that of the allocation, as it only
accesses the hot fields. The data layout for the unoptimized program mixes
hot and cold fields severely increasing the miss rate. The optimization clearly
improves the memory performance by separating the hot fields.

The simulation does not capture effects of type clustering on page faults.
Further experiments with the same program and only one optimization, struc-
ture splitting or type clustering, show now benefits of the individual optimiza-
tion.

0.5.2 Runtime Effects

Here we look at the run times of the three programs. The runtime is measured
with a function of the CRS runtime system that maps to the C function clock().
We executed the program on a 1400 MHz Athlon 1800+ with a 256 KB first level
cache running RedHat Linux8.0.

Table 3 shows the runtimes of the three programs. As expected the opti-
mization increases the cost of the allocation pass and reduces the cost of the
iteration. The reduction of the iteration runtime is significant - we measure
a speed ups of 1.75 to 2.63. In addition, optimal splitting shows a significant
speedup over type safe splitting. Further the larger problem size shows a larger
speedup. As the simulation gave similar numbers for the cache effects this is
either due to the usage of physical addresses in the cache or due to paging
effects.

0.5.3 Evaluation

We measured significant improvements by our optimization. This was to expect
according to existing literature [CDL99, FK98]. The performance differences

Table 3: Runtime of optimized programs in milliseconds for problem sizes 20
and 21.

Runtime Allocation Iteration
in ms absolute relative absolute relative

20 | 21 20 21 20 | 21 20 21
no optimization || 420 | 830 | 100 % | 100 % | 210 | 420 | 100 % | 100 %
type safe 450 | 890 | 107 % | 107 % | 120 | 230 | 57 % | 55 %
optimal 460 | 930 | 110 % | 112% | 90 | 160 | 43 % | 38 %

between the two versions of the optimization show the significance of consid-
ering inheritance for this optimization. Different handling of inheritance has
significant effects. Optimal splitting shows an advantage over type safe split-
ting when iterating over the data structure. On the other side optimal splitting
requires additional overhead during the allocations.

As this is a constructed test program the costs for the allocation and iteration
should not be added to overall evaluate the optimization. The difference between
the two optimizations and the cost of the allocation show, that it is necessary to
apply the optimization carefully. An analyses that drives the optimization must
compare the time a program spends in allocation and accesses to cold fields
with accesses to hot fields. It must also consider the number of casts to super
types. Depending on these measures it can apply type safe or optimal structure
splitting.

0.6 Related Work

In the following we summarize research about cache optimizations of pointer
based applications.

Structure splitting is a transformation that has been subject to previous re-
search. [CDL99] perform structure splitting for Java classes. They split classes
based on profiling information. Their transformation is performed on source
code. The split, cold class inherits from the Java top class Object. This resem-
bles our type safe splitting strategy, but experiences the draw-backs of a source
to source transformation discussed above. They do not discuss the problems
arising from super or subclasses.

[FK98] propose a variation of structure splitting that reduces the overhead
caused by the reference field. They split a type into several parts of equal size,
where the first part contains the hot fields. They place the parts at a constant,
large offset in memory. The offset affects that the hot parts are placed adjoint
in memory. An access to the split part must only add an offset to the reference
— far cheaper than following an indirection.

We easily can adapt our implementation of structure splitting for inheritance

10

to use the allocation strategy of [FK98]. A type cast then adds or subtracts
an offset to the casted reference. Such a type cast is probably cheaper than
dereferencing fields. We did not yet implement this variation.

Field reordering reorganizes a data structure so that frequently accessed
fields lie consecutively in memory. This intends to increase spatial locality.
Field reordering is a weak variation of structure splitting useful if splitting is
impossible. [CDL99] describe field reordering and propose bbcache, a tool that
profiles C programs and proposes an according reorganization of fields of struc-
tures.

Several efforts exist that try to improve the cache performance of hot data
structures. All these efforts exploit the feature that dynamic data structures
can be allocated anywhere without effect on the program semantics.

Clustering tries to place several instances that are used shortly after each
other in a common cache line. Clustering is a fine grain allocation scheme.

Coloring organizes the allocation so that a dedicated subset of all instances,
independent of their type, are mapped to an exclusive part of the cache. This
guarantees that the data in this set is not evicted from the cache by accesses of
the rest of the program.

Type clustering as we use it differs from clustering and coloring as it places
all instance of a certain type in a dedicated memory region.

[CHL99] propose the tools ccmorph and ccmalloc. These tools are linked to
C programs. Calls inserted in a program reorganize the data structures made
known to the tools according to the strategies clustering and coloring.

[CL98] use copying garbage collection to reorganize a data structure cache
conscious. They collect profiling information during program execution that
specifies which instances are used together. The copying phase then places such
objects next to each other establishing clustering. The approach has several
advantages: It can exploit profiling information of the actual data input. Further
the reorganization phase is relatively cheap, as the mere copying cost can not
be accounted for the optimization. [CHLOO] subsumes the research described in
[CHL99], [CL98] and [CDL99].

Other optimizations for pointer based applications examine prefetching.

[LSKR95] address pointer and call intensive programs. Their simple and
cheap heuristic assumes that instance references passed into a call will be deref-
erenced after the call. They prefetch such references before the call. Due to its
simplicity this approach is easy to implement as a compiler optimization, but it
leaves room for improvement.

[LM99] utilize an analysis to find references that are frequently dereferenced.
With this information they prefetch the referenced instance in time. They
propose several techniques to increase the time between executing the prefetch
and actually accessing the prefetched memory.

[CMO1] improve the analysis utilized by [LM99]. Their major achievement
is, that they formulate the analyses as an inter procedural data flow analysis.
They show how to apply the optimization to Java.

[SAG01] prefetch objects in linked lists. They recognize iterations through
the list by finding induction pointers. They predict the address of the next list

11

element by assuming that the list elements all lie next to each other in memory.
This means that they prefetch a memory location with the address of the actual
list element plus an offset.

0.7 Conclusion

We showed how to extend structure splitting to inheritance hierarchies and
implemented it as a true compiler optimization. We defined type safe and
optimal structure splitting. To apply optimal structure splitting knowledge of
high level type information is necessary.

We combined structure splitting with type clustering and executed experi-
ments for this combined optimization. The experiments show significant speed
ups for a simple test program. They also show that the way the optimization
handles inheritance has major effects on the performance.

Currently we are working on an analyses to drive our optimization. This
analyses has to find a trade off between the additional allocation costs, the
additional costs through indirections and explicit type casts, and the benefits of
accessing hot fields. Depending on the amount of overhead it can apply one of
the two versions of the optimization.

12

Bibliography

[CDL99]

[CHLYY]

[CHLOO]

[CL9g]

[CMO1]

[CRS02]

[FK98)

[GTZ98]

Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-
conscious structure definition. In Proceedings of the SIGPLAN ’99
Conference on Programming Language Design and Implementation,
Atlanta, GA, USA, 1999.

Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-
conscious structure layout. In Proceedings of the SIGPLAN ’99 Con-
ference on Programming Language Design and Implementation, At-
lanta, GA, USA, May 1999.

Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Making
Pointer-Based Data Structures Cache Conscious. IFEE Computer,
December 2000.

Trishul M. Chilimbi and James R. Larus. Using generational garbage
collection to implement cache-conscious data placement. In R. Jones,
editor, First International Symposium on Memory Management, vol-
ume 34 of ACM SIGPLAN Notices, pages 37-48, Vancouver, Canada,
October 1998. ACM Press.

Brendon Cahoon and Kathryn S. McKinley. Data Flow Analysis for
Software Prefetching Linked Data Structures in Java. In The 2001
International Conference on Parallel Architectures and Compilation
Techniques, Barcelona, Spain, September 2001.

CRS: Compiler Research System. Website, Fakultit fiir
Informatik, University of Karlsruhe, http://www.info.uni-
karlsruhe.de/projects.php/id=56, 2002.

Michael Franz and Thomas Kistler. Splitting data objects to increase
cache utilization. Technical Report 98-34, Department of Informa-
tion and Computer Science, University of California, Irvine, October
1998.

Daniela Genius, Martin Trapp, and Wolf Zimmermann. An approach
to improve locality using sandwich types. In Proceedings of the
2nd Types in Compilation Workshop, pages 194-214, Kyoto, Japan,
March 1998.

13

[Lin02]

[LMO99]

[LSKRO5]

[SAG*01]

[SNO3]

[TLB9Y]

Gotz Lindenmaier. libFIRM — A Library for Compiler Optimization
Research Implementing FIRM. Interner Bericht 2002-5, Dept. of
Computer Science, University of Karlsruhe (TH), September 2002.

Chi-Kueng Luk and Todd C. Mowry. Automatic compiler-inserted
prefetching for pointer-based applications. IEEE Transactions on
Computers, 48(2), 1999.

Mikko H. Lipasti, William J. Schmidt, Steven R. Kunkel, and
Robert R. Roediger. SPAID: Software Prefetching in Pointer- and
Call-Intensive Environments. In Proceedings of the 28th International
Symposium on Microarchitecture, Ann Arbor, MI, USA, November
1995.

Artour Stoutchinin, José Nelson Amaral, Guang R. Gao, James C.
Dehnert, Suneel Jain, and Alban Douillet. Speculative Prefetching
of Induction Pointers. In Proceedings of International Conference on
Compiler Construction 2001, volume 2027 of Lecture Notes in Com-
puter Science, pages 289-303, Genova, Italy, April 2001. Springer-
Verlag.

Julian Seward and Nick Nethercote. Valgrind, version 2.0.0. Techni-
cal report, http://developer.kde.org/ sewardj/, 2003.

Martin Trapp, G6tz Lindenmaier, and Boris Boesler. Documentation
of the Intermediate Representation FIRM. Interner Bericht 1999-14,
Dept. of Computer Science, University of Karlsruhe (TH), December
1999.

14

