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Abstract

State of the art compiler intermediate representations incorporate SSA data
dependencies in a graph based manner. We present the intermediate represen-
tation Firm, which extends the functional stores of Steensgard and introduces
a novel representation of exceptions. Firm offers a high-level representation of
the type hierarchy and object-oriented features, which makes it exceptional suit-
able for analysing and optimizing of strongly typed languages. The construction
interface automates value numbering and the generation of SSA typical Phi op-
erations. Firm comes with a full blown range of standard optimizations and
analyses. In the paper we show that Firm requires 53% less operationss and
80% less Phi operations than the SSA representation of the gcc compiler.



0.1 Introduction

Optimizing compilers should translate source programs into effective target
code, whereas compiler writers want a compiler that is easy to engineer and
maintain. To achieve these opposed goals compilers utilize intermediate repre-
sentations (IRs) as a useful abstraction. We research on compiler optimizations
for full fletched programming languages, focusing on object oriented languages.
For our research in back end construction we compile imperative languages. As
a basis of our research, we need a high quality intermediate representation. We
present Firm, an IR that bridges the whole gap between source language and
target architecture, using a coherent set of operations.

Firm is a graph based representation extending [Cli95] in two directions:
Firstly, we define a novel representation of exceptions in SSA form. Secondly,
inter procedural data flow analyses like alias or heap analyses profit from exten-
sions such as an inter procedural representation, an integrated type representa-
tion and an extension of Steensgards functional stores.

0.1.1 Our Requirements to an IR

To be comparable, research compilers must generate competitive code, therefore
requiring an implementation of standard optimizations typically based on data
flow analysis. This is best achieved with SSA-form. Further an IR should
represent analysis information permanently so that different phases that use
the same kind of information do not need to recompute it.

Especially for contemporary languages the IR must represent exceptions.
Typical IRs either omit exceptions, or their representation causes a severe over-
head on data flow analyses. Often they restrict optimizations possibilities be-
cause they introduce very strict dependencies. Therefore the IR must represent
the required observable state at an exception explicitly to unveil all allowed
optimization possibilities.

Pointer analyses are crucial for optimizing object oriented programs. For
pointer analyses it is important to identify memory locations where values are
stored. Pointer analyses must recognize field accesses to distinguish the con-
tent of different fields. Representation of field accesses by address calculations
complicate their analysis. To analyse a given Load, a pointer analyses must
efficiently navigate in the IR to the corresponding Stores.

Pointer analyses are performed inter-procedural. The IR should support
inter-procedural analyses by supplying the basic infrastructure. The IR must
support a mechanism to represent and to distinguish between different contexts
during inter-procedural analyses.

0.1.2 Firm

We developed Firm, an IR to represent common object-oriented and imperative
languages. Firm is in Static-Single-Assignment form (SSA) [AWZ88, RWZ8§],
the current state-of-the-art for IRs. Furthermore, it is a fully graph based



representation and to our knowledge the only IR in SSA form designed as stand
alone representation. This graph represents only dependencies made up by such
information as control- and data flow. It leaves out all unimportant information,
as sequenzialization of expressions in a basic block. E.g., this allows to express
discovered instruction level parallelism (ILP) in the IR and increase it over the
compiler phases.

Firm introduces a new representation for exceptions expressing them only in
terms of data and control flow. This allows for fine grain adaption of exception
context handling to the requirements of the translated source language. The
effects of exceptions are fully transparent to optimizations and data flow analy-
ses. They implicitly define a common state variable which sequentializes them
in the representation with other operations changing the observable state of a
program.

The uniform representation of types contains all information necessary to
delay building type mechanisms as explicit type casts and polymorphic method
calls. It fully abstracts from source language mechanisms, as naming rules that
specify which methods overwrite each other. The tight coupling to the program
representation along with high level operations for type dependent mechanisms
as dynamic method calls allows straight forward interpretation of these.

We are the first IR to implement explicit dependency graphs [Tra0l], an ex-
tension to the functional stores proposed by [Ste95]. These allow for a better
representation of independent stores and more simple analyses of pointer val-
ues. This is further supported by the straight forward representation of inter
procedural dependencies. Firm is the first IR to extend SSA form to the call
graph, explicitly linking formal and actual parameters using special ¢-nodes.

We present our implementation of Firm. This includes a set of standard
optimizations and analyses, as common subexpression elimination or dominator
analysis. It defines clean and documented interfaces to construct and access the
representation. The SSA construction is automated and it supplies support for
inter-procedural analyses.

In Section 0.2 we compare Firm to other IRs in research and commodity
compilers. Section 0.3 introduces Firm and explains its advantages in detail. In
Section 0.4 we list our applications of Firm. Section 0.5 compares the complexity
of Firm with another SSA implementation. Section 0.6 concludes.

0.2 Related Work

We have not yet encountered an industrial strength compiler that uses a pure,
graph based IR in SSA form. All IRs we studied distinguish statements and
expressions, or are an assembler-like instruction list, sometimes overlaid with
a control flow graph. IL.e., they resemble the structure of source or target lan-
guages. Many compute an SSA representation on top of this representation
for certain optimizations, but none represent the information making up the
semantics of the program in their basic structure, which are control and data
dependencies. Statement/expression IRs represent exceptions on their source



language abstraction. That operations reach the same handler is expressed by
embracing them with dedicated constructs. Low IRs contain the explicit excep-
tion handling mechanisms. No IR includes a representation of inter procedural
dependencies.

0.2.1 1IRs in Industrial Strength Compilers

Gee [Sta02] can translate various programming languages. It utilizes two dif-
ferent IRs. The so called tree IR is a high level representation. It is a tree
based, syntax tree like representation. RTL is a low level, triple based represen-
tation. The IR of CoSy [ACE00], CCMIR, is designed to represent imperative
languages. OMIR extends CCMIR for object oriented languages as C++ and
Java. CCMIR contains high level source language type information as Firm.
For both, RTL and CCMIR/OMIR exists extensive documentation. The IR of
lec [FHO1] is only documented as an interface between front end and back end.
It is only designed for C and does not contain high level source type information.
None of these IRs contain an inter-procedural representation.

The gce compiler can build a SSA representation called GIMPLE on top of
the tree IR. It adds Phi trees and establishes value numbering by introducing
temporaries for each value.

.NET standardizes the intermediate binary format CIL [Lid] (common in-
termediate language). CIL is a stack language designed for target independent
representation of a program. It serves as a common IR for various programming
languages. It is not designed as a representation to perform optimizations on.
It represents a program in triple form, and contains high level type information.
It can be annotated with hints to conserve informations for optimizations.

0.2.2 IRs in Research

The SUIF2 [ADH'] system is designed with similar targets as Firm. It supplies
similar utility functionality, but no compiler specific algorithms or program op-
timizations. It offers a very flexible mechanism to manage compiler phases and
to extend the IR. The predefined part of the program representation is close to
an abstract syntax tree, i.e., it distinguishes statements and expressions.

The Scale [WMW96] compiler infrastructure is targeted to heterogeneous
computing. Scribble [Scr], the IR of Scale, can represent programs written in
C, Fortran and Java. It represents a program as a control flow graph, where the
blocks are list of expression DAGs. Scale includes a phase to construct SSA form
in Scribble by adding Phi DAGs in the expression lists and renaming variables.
Scale performs basic optimizations comparable to those in Firm on this repre-
sentation. It further implements a set of complex analyses and optimizations.

Neither SUIF nor Scale define a clear coupling between the type represen-
tation and the program code, complicating optimizations of polymorphic calls
and the data layout.

The Trimaran [Tri] compiler infrastructure is designed as a research plat-
form for compiling for new processor architectures. The infrastructure contains



various high and low-level optimizations. It utilizes the IR Elcor [Elc] for most
of its optimizations. Elcor is basically a control flow graph containing expres-
sion lists. The control flow graph contains special constructs to support back
end specific algorithms as scheduling or generation of predicated instructions.
It contains a data flow graph that represents dependencies between registers,
but also dependencies through memory as does Firm. This graph is designed
for back end algorithms, and therefore not well suited for high level analyses.

The Vortex [DDGT96] compiler infrastructure is targeted to research on op-
timizations of object oriented languages. It includes a wide range of OO specific
analyses and optimizations. The IR of Vortex represents high level type informa-
tion comparable to Firm. The inheritance hierarchy is represented as a directed
acyclic graph. Vortex does not represent the overwrites relation uniformly and
explicitly as Firm does. Instead, it formulates fixed lookup rules combined with
generic methods that group a set of polymorphic methods. Vortex also provides
the possibility to fix the layout of complex data types in the front end or in a later
phase. If the front end fixes the layout, high level information of field /method
access or allocations is lost. Firm annotates the high level type description with
the layout information, so that the high level information in the code represen-
tation is conserved. Optimizations violating the layout are forbidden. Vortex
represents code as expression DAG lists in a control flow graph. It has no SSA
representation nor standardized support for inter-procedural analyses as Firm.
The compiler is implemented in the OO language Cecil.

0.3 Firm

Firm is the definition of an intermediate representation that evolved from the
compiler research at University of Karlsruhe in the past 10 years. Its main merits
comprise the explicit representation of program semantics as data dependencies
in def-use-chains. Here it extends the ideas of [Cli95] to exceptions, the inter
procedural data flow and others.

0.3.1 The Graph Structure

By definition Firm requires that a program is represented as a directed graph of
elementary operations (jump, memory read/write, n-ary operation) such that
each local variable is assigned exactly once in the program text. Actually, Firm
completely resolves variables and only represents their values. Only references
to such values may appear as operands in an operation. Thus, an operand
explicitly indicates the data dependency to its point of origin. To extend this
property past control flow Firm utilizes the SSA-form.

The directed Firm graph is an overlay of the control flow and the data flow
graph of the program. Control operations branch to block operations. All non-
block operations depend on a block operation. This makes them dependent on
the control operations without introducing an artificial order.



SSA-form is a very elegant and easily comprehensible program representa-
tion as long as we only concentrate on handling local variables of the current
procedure. Handling accesses to non-local variables, arrays, record fields, ob-
ject attributes, etc., in general: handling of memory accesses, leads to additional
complexities. [Tra01] introduced ezplicit dependency graphs (EDG), for dealing
with these additional problems. On first sight, EDGs represent the memory as
a huge, single atomic variable, the state, that is operand or result of operations
depending on the memory. This introduces the necessary order to guarantee
the correctness of the representation.

The data dependencies and the equal dependency on control operations
through the block operation express the available ILP in the program. The
refinement of the state variable allows to directly express certain alias and
points-to information. With these concepts, Firm represents this information
inherently and continuously over all compiler phases. Any analysis or optimiza-
tion that contributes new insights adds these explicitly to the IR conserving
them for later phases.

Firm graph edges are implemented as pure references to operations, directed
backward. The IR can only be walked from the unique End operation of the
graph. Operations computing unused results are not reachable from End and
therefore fall out of the representation. In the IR described by [Cli95], the same
happens to endless loops, as there are no control or data paths from an endless
loop to the end of the procedure, resulting in wrong programs. Firm solves
this by automatically detecting endless loops and storing the loop header block
including important Phi operations as predecessors of the End operation.

As an example Fig. 1(ii) shows the Firm representation for the program
fragment in Fig. 1(i). In the first basic block, the constant 2 is added to a. The
conditional jump Cond passes control to the “then” or to the “next” Block,
depending on the result of the comparison. In the “then” Block, the constant
2 is added to the result of the previous add operation. In the “next” Block two
definitions of a reach the use of @ in the addition. The Phi operation chooses
which definition of variable a to use.

Figure 1 also shows that in the data flow representation the operations de-
pending on the same Block operation are not sequentially ordered.
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Figure 1: The code in (i) is represented by the Firm graph in (ii).

0.3.2 Representation of Exceptions

Firm defines a novel representation of exceptions [Rie04]. This representation
expresses the semantics of exceptions as control and data dependencies, inte-
grating well with the concepts of Firm. The effects of exceptions are fully
transparent to data flow analyses. The representation does not add additional
basic blocks which would spoil the performance of data flow analyses.

Exceptions are side effects of certain operations. These side effects can alter
the control flow. We call operations that can cause exceptions fragile operations.
In Firm we model all side effects per definition as effects on the state variable.
Fragile operations change this variable in some unspecified way if an exception
occurs. Therefore Firm requires all fragile operations to have a state operand
and a state result. This orders fragile operations with other operations with
side effects sequentially.



To handle fragile operations in analyses without special casing for them, we
represent their effects explicitly. Fragile operations have two control succes-
sors: the normal code and the exception handler. The exception handler either
is a handler specified by the program source, or it indicates termination of a
procedure.

In common IRs fragile operations end a basic block if they are defined as con-
trol flow operations. Fragile operations in Firm do not end basic blocks. Fragile
operations have a single control flow result that passes control flow to a possible
exception handler. If no exception occurs execution of the same block continues.
Le., with fragile operations basic blocks become extended basic blocks. This re-
duces the number of blocks in the representation. Other operations that do not
depend on the fragile operation can easily be moved past this operation.

Depending on the construction of Firm we can express different restrictions
on exception preciseness. To represent precise exceptions as required for Java,
the exception handler evaluates the program state of the fragile operation in
the program source. These exception semantics are comfortable for the user,
but restrict optimizations considerably. Alternatively, Firm can represent the
preciseness of exceptions on block or statement level. This allows to reset the
context to the state before a “try” statement, leaving room for any optimization
within this statement.

0.3.3 The High Level Type Representation

Firm tightly couples a type representation with the code representation. The
semantics of several Firm operations depend on attributes referring to the type
representation. This allows to represent compiler generated mechanisms as type
casts and field and method selection on a high level basis.

The type representation differs only features useful for optimization and
necessary for the translation. Complex type mechanisms must be resolved by
the front end, but are represented explicitly in Firm.

Firm defines a generic representation of source language types. It distin-
guishes several kinds of types. Primitive types directly map to target machine
modes. Pointer types directly map to the target pointer mode. In addition they
specify the type of the instance they point to. Method types describe method
interfaces. They list the number and type of arguments and results. Array
types describe a collection of fields with the same type. These fields are called
elements. An array type specifies a number of dimensions and an element type.
Optionally it specifies the size of the dimensions. Union types describe several
interpretations of the same memory region. Struct types describe a collection of
fields with different types.

Class types describe a partial collection of fields and methods. They list
a set of super types. The collection of fields and methods is completed by
inheriting fields and methods from the super types. Fields and methods of class
types specify polymorphy by referencing the fields/methods in super-classes they
overwrite. If a field is overwritten in a subclass, it is not inherited to this class.
Firm allows to explicitly resolve the inheritance relation. It knows fields and
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Figure 2: Restriction of the program representation with inherited fields. (ii)
shows explicit representation of inheritance of the code in (i). The field a of
class type B was added by the compiler to explicitly resolve the inheritance.
(iii) shows restriction of the Sel operation: Replacing edge (a) by (b) expresses
explicitly, that Sel never accesses the field a in an instance that is of type A but
not of type B.

methods that are marked as inherited. Such fields or methods must specify that
they overwrite the field or method they originate from. See Fig. 2, (i) and (ii)
for an example.

Relying on this type representation, Firm defines the following high level
operations to support analyses.

The Sel operation models feature access in a single operation. It fully ab-
stracts from pointer arithmetics, dispatch mechanisms or other functionality
utilized to implement the accesses. Sel has as operand an address of an in-
stance of a complex type. An attribute of the operation specifies which field or
method it selects from this instance. The result of the operation is the address
of this field or method.

An analysis must look at a single operation to interpret a field access. If the
analysis determines that a polymorphic method selection only selects a method
of a certain subclass it can express this information explicitly in the IR by setting
the corresponding attribute in the Sel operation. Fig. 2(iii) shows an example.

The source type Cast operation of Firm abstracts explicit type casts as
necessary for multiple inheritance. All sources of values, as Load and Const,
point to the type of the value they represent. The Alloc operation knows the
type of the allocated data structure. This allows to fully type the IR. Analyses
can use the Cast operation to express information about the type of a value
they determined. Interpreting the Cast operation reduces the values on a data
flow edge. This is especially useful for pointer values.



Firm does not fix the layout of complex types, i.e., optimizations can alter
the layout. A lowering phase can fix the layout of complex data structures and
introduce dispatch tables in the type representation. Then it can lower the
high level IR operations by introducing method dispatch and cast functional-
ity. This lowering phase can take advantage of knowledge about the compiled
source language, as, whether the language allows multiple inheritance or not.
Naturally, one can also construct Firm using only low level constructs, if the
source language requires this.

0.3.4 Explicit Dependency Graphs

Heap analyses profit from a SSA like representation of variables in memory.
Nevertheless we do not want to represent each variable in single assignment form,
as this means that we have to generate a copy of a variable at each assignment
to the variable. It is unlikely that a deconstruction of a representation that
generates copies results in a program with comparable memory consumption
as the original program. Further representing these copies means large memory
consumption for the representation of the analysis values. Therefore a functional
representation of heap variables must retain the memory locations.

[Cli95] proposes to represent the memory as a value, the state, that is a
result of operations that can change the memory (as Store and Call). It is an
operand to all operations that access the memory. These dependencies represent
Def-Use dependencies between non local variables. [Cli95] does not represent
Use-Def dependencies. He assures program correctness by placing all loads right
after the operation they depend on by definition.

[Ste95] extends the representation of [Cli95] to a representation of partial
states. These allow to describe the Def-Use dependencies depending on the
variables potentially accessed by the operations. This representation unveils
more parallelism in the program and increases the effectiveness of analyses.

Both representations can not express past which succeeding memory defin-
ing operation a load can be moved. Explicit dependency graphs [Tra01] (EDGs)
extend these state representations by adding explicit Use-Def dependencies be-
tween operations. Especially the Load operation has the state value as result.
With this representation only operations that depend on the same part of the
state depend on each other. This automatically allows to represent partial
states. These states are represented in SSA Form with special PhiS operations.
The EDG operation Sync can unite several partial state values if they can no
more be distinguished. Fig. 3 shows the advantage of Firm.

States, and especially partial states, speed up analyses evaluating the content
of non local variables. To compute the result of a load operation, the analysis
must consider all operations that are a reaching definition. Walking the state
edges in the Firm graph allows to reach relevant operations without visiting any
other. Introducing more partial states allows to express information gathered
with an alias or points to analysis directly in the IR. Without additional analyses
all memory accesses must be held in strict temporal order; reordering may lead
to wrong values being fetched from memory.
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Figure 3: The Firm extension to the representation of states. In (ii) the Load
depending on the first Store must implicitly be considered executed before the
second Store. (iii) shows how Firm expresses that the Load and the second

Store can be executed in parallel.
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Additionally, EDGs extend the IR to an inter-procedural data flow graph.
This graph directly connects all call sites with called methods. Call operations
branch to the possibly called methods as determined by a call graph analysis.
The graph links the actual parameters at call sites to the formal parameters
in the called procedures. We merge parameters from several call sites with Phi
operations. The method return is represented accordingly. By this the inter- and
intra-procedural representations are uniform. A data flow analysis can operate
on an intra procedural graph and on an inter-procedural graph without major
changes.

0.3.5 Firm in a compiler

A Firm representation may easily be generated during a tree walk through the
attributed syntax tree as generated from a compiler front-end. The interface
to the front end integrates an algorithm that constructs the SSA-form and the
initial state dependencies automatically.

Firm applies a set of optimizations to an operation right after its construc-
tion. Applying a set of optimizations to a single operation before applying the
same optimizations to its users unveils better optimization possibilities than
applying each optimization to the whole program. Our algorithm guarantees
that unnecessary operations are not allocated at all. This keeps the program
representation small from the very first.

Firm unites a high and low level IR. A compiler must not use an other
representation between semantic analyses and code generation. Therefore we
assume the code generation phase directly deals with SSA deconstruction.

0.4 Applications and Implementation of Firm

We utilize Firm in various contexts. Its initial design is derived from our ex-
periences with the IRs LABIL and BABIL, and the work in [Cli95]. [AvR96]
implemented the first version of Firm in the Sather-K compiler fiasco. [Tra01]
refines Firm and proposes a heap analysis on Firm. The work of [Tra01] is also
integrated in the fiasco compiler.

[TLB99] describes the first stable version of Firm. We implemented this
version in the stand alone library libFirm [Lin02]. The AJACS project [Gau02]
uses libFirm in a Java compiler for embedded automotive applications. Jack,
a Java compiler based on the jikes front end, and CRS, a C compiler based on
the gce front end, both use libFirm as IR. Finally we use libFirm along with
Eli [KPJ98] in the compiler construction laboratory at University of Karlsruhe
for now 5 years to teach the handling of SSA and optimizations, which allowed
us to improve interface and documentation based on user feedback.

The EU research project Joses [GAF199] defines Firm in fSDL [Buh93,
WKD95], a specification language for IRs in the commercial CoSy compiler
framework [AAvS94] distributed by ACE. The project utilizes a Firm view [Lin00]
on the CoSy IR, CCMIR for optimizations as inlining of Java array objects.
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The DfG research project CATE [cat] investigates the use of data flow anal-
yses in a meta programming system. In CATE we integrated libFirm [Kle03] in
the meta programming tool Recoder [LHO00].

0.4.1 Firm implementation

Firm represents all entities (as types, stack frames, global variables) with the
same mechanisms reducing the learning efforts. It defines only 36 basic oper-
ations with fixed semantics for the program code representation. Implementa-
tions of new algorithms must only deal with this small number of operations.
Firm utilizes type tags for run time type checking to simplify developments
on top of it. Checker routines verify the representation to find invalid constructs
introduced by transformations. The interface to Firm uses data encapsulation
to reduce the effects of changing the internal implementation on external phases.
We implemented a variety of standard optimizations on Firm including:

e constant evaluation, algebraic simplification and reassociation
e unreachable code and dead code elimination

e control flow optimizations (straightening, weak and strong if-simplification,
removal of critical control flow edges)

e common subexpression elimination, code placement, partial redundancy
elimination and strength reduction

e inlining and tail recursion

As well as the following analyses:
e construction of SSA form (integrated in the interface to the front end)
e reversion of the directed data flow graph (Def-Use edges)

dominator information

back edges and strongly connected regions

several loop trees for data flow work list algorithm
e basic call graph analysis
e rapid type analysis [BS96]

Firm is implemented in C but includes a Java Native Interface, so that it
can be used with front ends programmed in Java.
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0.5 Experiments

In this Section we compare the complexity of Firm with the complexity of the
SSA representation GIMPLE [Mer03] implemented in the gcc compiler (version
3.5-tree-ssa). We measure the number of operations needed to represent a
program in each of the IRs. We use CRS to construct Firm. CRS uses the gcc
front end version 3.3.2. We chose GIMPLE for a comparison as it is constructed
from the same front end as Firm, ruling out spurious effects.

The number of operations is significant for compiler performance. Less oper-
ations means faster traversals over the IR and less memory consumption for the
program representation. Comparing the runtime of compilers or optimization
phases is misleading. This merely compares the performance of the optimiza-
tion, not of the IR. Comparing the runtime of resulting executables compares
the quality of the optimization result, but not the quality of the IR. An optimiza-
tion written with less engineering effort and running faster must not produce
better optimization results.

We count the operations needed in the Firm representation right after the
construction is completed. We apply the basic optimizations during the con-
struction as proposed by [Cli95]. This is a basic advantage of Firm over other
IRs. On other IRs these optimizations are hard, as they require a data flow
analysis. Further it keeps the representation small from the very beginning.
The representation never contained more operations than we count. Moreover
we can apply the optimizations without an own pass over the IR.

We measure the gcc SSA representation right after its construction in pass
“rewrite_into_ssa” by iterating over the control flow graph and using gcc’s own
walker function for the tree expressions. Gcee executed a set of optimizations as
constant folding during the construction of its non-SSA IR.

For both representations, we count the Phi operations separately. In Firm,
we additionally count the PhiS operations (see Sec. 0.3.4). We do not count
operations needed to represent types or global variables.

With both compilers we translate all C programs in the SPECO00 bench-
marks. Table 1 shows the results of the experiment. Fig. 4 compares the
numbers.

Table 1 lists in colums labled “ops” the overall number of all operations
including the Phi and PhiS operations in thousands. The columns labeled “Phi”
list the number of Phi nodes. For Firm we separatley list the number of PhiS
operations.

Fig. 4 shows bars for operations (light gray) and Phi nodes (dark gray). The
bars represent the percentage of nodes in the Firm relatively to the nodes in
GIMPLE. The percentage for Phi operations does not consider the PhiS opera-
tions as these represent a feature not available in the GIMPLE representation.

The numbers show that the representation of a program in Firm needs only
47% of operations compared to GIMPLE. This is a considerable reduction. Firm
requires even less Phi operations: only 20%. The representation of the heap
as an explicit variable in Firm induces a considerable number of extra Phi
operations (column PhiS).
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Table 1: Number of operations (ops in thousands) and Phi nodes

Firm GIMPLE |
Program ops | Phi | PhiS ops | Phi
164.gzip 13 532 543 30 3093
175.vpr 42 1096 1360 98 3348
176.gcc 571 | 15350 | 22431 || 1077 | 87557
177.mesa 153 | 4299 | 4139 322 4478
179.art 3 184 153 9 397
181.mcf 3 134 143 6 130
183.equake 5 116 160 17 763
186.crafty 56 1383 | 2268 228 | 36179
188.ammp 38 1269 1021 75 1464
197.parser 32| 1119 | 1366 64 3735
253.perlbmk 219 | 6777 | 9294 445 | 35920
254.gap 200 | 7564 | 8074 438 14700
255.vortex 160 | 2557 | 8804 353 | 26077
256.bzip2 9 372 391 18 1333
300.twolf 80 | 2948 | 2920 201 9152
Sum 1591 | 45700 | 63067 || 3389 | 228326
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Figure 4: The code in (i) is represented by the Firm graph in (ii).
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Mesa, mcf and ammp have significant more Phi operations in Firm than the
other programs. Gcece 3.5 merges the conditions of directly nested if statements
on the AST and constructs simplified control flow. This represents the same
semantics with different control flow requiring less Phi operations. On Firm we
apply this optimization only later, when we recognize empty blocks.

Crafty and vortex have an extreme low number of Phi operations in Firm.
The chess simulator crafty uses a lot of global constants to express positions
on the field an the like. Firm evaluates these better, removing dead code and
avoiding Phis. The differences in vortex are in functions that use a lot of local
variables in inner blocks of deeply nested loops. Only very few definitions of
these variables are reachable in other blocks. In both programs GIMPLE re-
quires many Phi operations, the fraction of Phis of all operations is relatively
high, over 10% in crafty, indicating that GIMPLE can not detect that these
values are dead. The

0.6 Conclusion

In compiler construction the IR, is the central representation for program analy-
sis and optimization. We introduced our IR Firm, a graph-based SSA-representation
with well defined semantics. It does not rely on a specific source language but
can represent programs in different types of languages: object-oriented and im-
perative languages, like C or Java. It preserves the high level abstraction and
does represent OO features.

Due to the careful design of the operations and the superior structure, Firm
expresses the semantics of a program concise, using few operations. The con-
struction of Firm graphs is efficient. Already during this construction phase
standard optimizations like constant folding and common sub-expression elim-
ination are performed, which keeps the graphs even smaller. In comparison to
the gce SSA-representation GIMPLE we represent programs in equivalent Firm
graphs with 53% less operations and 80% less Phi operations.

We introduce an exception representation that integrates well with the com-
mon representations of control and data flow. This has the benefit that oper-
ations, which can raise an exception, must not be handled specially. Firm is a
platform for various analyses and optimizations. Heap analyses are supported
by the novel sparse functional representation of the heap. Firm can represent
the results of analyses directly in the IR. Furthermore, Firm offers an uniform
view on graphs for inter- and intra-procedural analyses.

Firm has been used in practical courses by students, in research and indus-
trial projects as well.

In our current work we investigate new, and implement known analyses and
optimizations on Firm. Especially, we focus on heap analysis and the optimiza-
tion of object-oriented programs. We explore the benefits of data flow analyses
in the area of meta programming. Ongoing research in back ends considers inte-
grated code selection and SSA deconstruction resulting again in a graph based
representation. Register allocation and scheduling then directly consume this



graph.
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