Theory and Practice of Transactional Method
Caching

Daniel Pfeifer and Peter C. Lockemann

Institute for Program Structures and Data Organisation (IPD)
Universitat Karlsruhe, Germany

{pfeifer, lockeman} @ipd.uni-karlsruhe.de

March 9, 2005

Nowadays, tiered architectures are widely accepted for constructing large scale information systems. In this
context application servers often form the bottleneck for a system’s efficiency. An application server exposes an
object oriented interface consisting of set of methods which are accessed by potentially remote clients. The idea of
method cachings to store results of read-only method invocations with respect to the application server's interface
on the client side. If the client invokes the same method with the same arguments again, the corresponding result
can be taken from the cache without contacting the server. It has been shown that this approach can considerably
improve a real world system'’s efficiency.

This paper extends the concept of method caching by addressing the case where clients wrap related method
invocations in ACID transactions. Demarcating sequences of method calls in this way is supported by many
important application server standards. In this context the paper presents an architecture, a theory and an efficient
protocol for maintaining full transactional consistency and in particular serializability when using a method cache
on the client side. In order to create a protocol for scheduling cached method results, the paper extends a classical
transaction formalism. Based on this extension, a recovery protocol and an optimistic serializability protocol are
derived. The latter one differs from traditional transactional cache protocols in many essential ways. An efficiency
experiment validates the approach: Using the cache a system’s performance and scalability are considerably
improved.

Categories and Subject Descriptors: H.2.4mddrmation Systemg: Database ManagementSystems, Trans-
action ProcessingH.3.4.b [nformation Systemg: Information Storage and RetrievalSystem and Software,
Distributed System<€.4 [Performance of Systemp Optimization

General Terms: Client-Server, Architecture, Transaction Management, Object Oriented

Additional Key Words and Phrases: Caching, Application Server, Transaction Theory, Performance, Scalability

1. INTRODUCTION

Modern large-scale client-server-based information systems follow a tiered architecture.
The most common solution is the three-tier architecture consisting of a presentation tier,
an application tier and a data tier. E.g. for a typical web application, a servlet-enabled
web server implements the presentation tier and a (relational) database system implements
the data tier. Application server technologies such as BiB |4 or corresponding parts
of the .NET FrameworkMicrosoft ] are often used to realize the application tier. They
offer an object oriented interface consisting of a set of service methods to their clients, the
so calledservice interfaceln order to centralize business logic but also for better system
scalability, the different tiers are usually hosted on separate machines in a local network.
This makes invoking a service method a costly affair, since it requires a remote method call
which passes the application server’s infrastructure and often incurs database accesses.
Consequently, application servers tend to become the bottleneck of an information sys-
tem in respect to its performance and scalability. Many solutions have been proposed to

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year1?ages



2 . Daniel Pfeifer and Peter C. Lockemann

tackle this problem including dynamic web cachi@mton et al. 2002 Challenger et al.
1999 [Li et al. 2003, method cachingRfeifer and Jakschitsch 2003&pplication data
caching Jcache], database cachin@Srembowicz 2000Luo et al. 2002 The TimesTeh
Team 200pand special design patterrigléarinescu 200R

We concentrate omethod cachingvherebyresults of service method calls are cached
on the client side of an application servét.g. in case of atiered web application, an appli-
cation server’s client is usually a servlet-enabled web server. Alternatively, an application
server’s client could also be an end-user program with rich a graphical user interface.

If the client code invokes a service method that does not have any side effects, its result
may be cached for later reuse on the client side. If the client code calls the same method
with the same arguments again, the result can be read from the cache without contacting
the application server.

[Pfeifer and Jakschitsch 20p&howed that this approach can be pursued transparently,
so that usually neither the client-side nor the server-side application code has to be aware
of a related cache’s presence. Moreover, it validated that a method cache can considerably
improve performance and scalability of real world applications.

For caching approaches the most challenging part is usually to guarantee cache con-
sistency. [Pfeifer and Jakschitsch 200&lso demonstrates how strong cache consistency
can be asserted for the price of added efforts on the part of an application developer who
has to describe certain interdependencies between methods. However strong cache con-
sistency does not cover the case where service method calls are demarcated by client-side
transactions.

Consequently, this paper extends the idea of method caching by addressing the case
where the client code wraps service method invocations in ACID transactions. This type
of transactions is explicitly supported by popular application server technologies such as
EJB and .NET. This paper presents an architecture and a theory that dratdestional
caching of method results on the client sidleile maintaining complete transactional con-
sistency and in particular serializability. Moreover, we discuss how to preserve important
recovery properties when using a transactional method cache.

In this context many important assumptions differ from the ones that govern conven-
tional transactional cache protocols such as presentefaramklin et al. 199F In par-
ticular, we do not assume that a protocol for transactional method caching can be tightly
integrated into the database system that underlies the application server. In practice, such
an expectation would be unrealistic because commercial database systems do not allow a
deep engagement in their internal transaction manager. Instead we propose an independent
component, called thexrscheduler, for scheduling cached method results while asserting
full transactional consistency. Thescheduler is located in between the application server
and the underlying database system, cooperates with a transactional method cache on the
client-side and makes conservative assumptions about the database system'’s transaction
management.

The remainder of this paper is organized as follows: First we clarify the scope to which
transactional method caching may be applied and explain how an application server archi-
tecture should be extended to enable this caching approach (SEgtibnorder to build
anm-scheduler and a related cache protocol, it is useful to extend the conventional notion
of transactions. Sectic8 develops a theory for transactional method caching on the ba-
sis of the classical 1-version and multiversion transaction formalisms. Using this theory,
Section5 develops a serializability protocol for scheduling cache hits for cached method



Theory and Practice of Transactional Method Caching . 3
I [

Client
\ Client Code |

begin(), Service \ Method
commit(), Method \ Result
ol lback(), Call Service
Interface

- Application Server
2PC Transaction Monitor‘ ‘ Service Method Impl.

start(),
prepare(),
commit(),
rollback()

Ack. for

X TX End

Interface

v

Data
Elements

Read/Write

TX Ack. Operations

Data Access

2PC Interface Interface

Resource Manager (e.g. DBMS)

Fig. 1: Architecture of an Application Server Supporting Client-Side Transactions

results inside transactions. The protocol is optimistic but differs from existing transactional
cache protocols such as OCE&dya et al. 199bin many essential ways. Before, Section

4 discusses how conventional recovery qualities can be assured in the presence of a trans-
actional method cache. To demonstrate that the approach pays off, the paper presents an
efficiency experiment for an EJB-based application server system (S&j}ti@ection?’

outlines the relationships between our contribution and existing caching approaches for
web applications as well as existing transaction protocols. We conclude with a summary
and prospects to future work.

2. GENERAL ARCHITECTURE
2.1 Client-Side Transactions for Application Servers

This section highlights the general concept of client-side application transactions and the
respective infrastructure. Figufiillustrates an architecture enabling client-side transac-
tions in conjunction with service interfaces: An application server offers two interfaces,
the service interface and the transaction interface. Both interfaces can be used via remote
method calls from a client. E.g. for EJB, the service interface technically consists of a set
EJB Home and EJB Remote Interfaces (which are Java interfaces) while the transaction
interface adheres to the Java Transaction /& ¢.* Using these interfaces, a client can
wrap a sequence of service method invocations in an ACID transaction. The application
server executes the client’s service method invocations and relies on one or more trans-
actional resources (e.g. databases) to enable transactional consistency. To achieve this,
the application server state (as far as relevant to clients) is derived from the state of the
transactional resources. If a transactional resource is a relational database, this is typically
realized by SQL statements inside service method implementations or by object relational
mappings between application server objects and database table rows. As shown in Figure
1 a service method implementation may therefore read and write data elements via the data
access interface of the underlying database system.

1 Note that the term "service interface” abstracts from the actual number of programming language interfaces for
an application server standard.



©CoOo~NOUO~WNE

4 . Daniel Pfeifer and Peter C. Lockemann

Context ctx = new InitialContext();
/I Request an application transaction
UserTransaction utx = (UserTransaction) ctx.lookup("java:comp/UserTransaction");
utx.begin(); /I Begin the transaction
Item item = itemSession.findlitemByld(20); /I Invoke service methods as part of the current transaction
if (litem.price > 42) {
item.price = 42;
itemSession.updateltem(item);

}

utx.commit(); /I Commit the transaction
Fig. 2: Example Code of a Client-Side Transaction Using EJB

For every transaction that a client begins, the application server starts a transaction on
every registered resource manager (e.g. a database transaction) and keeps it open for as
long as the client transaction is open. All service method invocations inside a client’s
transaction are tied to a respective resource transaction for every participating resource
manager. To realize this, the resource managers are usually expected to provide a trans-
action demarcation interface according to the XA standdite[Open Groug. When
committing a client transaction, the application server acts as a transaction monitor and
commits all respective resource transactions using a two-phase commit protocol. Due to
this mechanism, transactional qualities of resource transactions are more or less inherited
by client-side transactions. E.g., if there is only one participating resource manager and it
guarantees serializability then the client transaction will also be serializable.

Note that typically, application servers do not guarargksbal serializability across
multiple resource managers but only ascertain local serializability and atomic commits.
The approach of this paper does not try change this fact but offers the same degree of
consistency in the presence of client-side method caches. Therefore, the actual number of
resource managers is mostly irrelevant to this contribution (given that there is at least one
such entity).

Figure2 presents an example of EJB-related code for a client-side transaction including
service methods calls.

2.2 Integrating a Transactional Method Cache

This section explains how a transactional method cache can be integrated in the above ar-
chitecture. It shows how a service method invocation is generally processed in the presence
of a method cache and describes a base protocol for keeping the cache contents up-to-date.

2.2.1 Base ArchitectureFigurel3 extends Figurd by the components additionally
needed for transactional method caching. As described in S&ctimncache is located at
the client and implements the application server’s transaction interface as well as its service
interface?

For the client code, the presence of the cache is completely transparent — it performs
its method calls as usual. However, service method invocations and calls to demarcate
transactions are now intercepted by the transactional method cache. For every service
method call the cache checks if a related method result is in its store. If so, it returns

2Technically this can by realized by applying the the design pattern "dynamic prd&uti{j or by generating
the respective classes staticalRf¢ifer and Jakschitsch 2003



Theory and Practice of Transactional Method Caching . 5

Client Client Code
begin(),

commit(),

Method

Result ~ Repested
Service
Interface

Repeated
TX Interface

Transactional Method Cache
(Cache method results,
delegates method calls to application server if necessary)

begin() +, Service Method Result +
TX Ack. + commit() +, Method Extended
Extended rollback() +, Call + Service
TX Interface Interface
Additional .. Application Server L Addtiona
Info.for ¢ a4 - ... Info. for
Scheduling ;” . : Service Method Impl | ™ juli
Method | Transaction Monitor \ﬁﬁp—‘ ‘;SC,\::;S; 9
Operations’, b, wi X Operations
4 m-Scheduler i

X
Data Access Interface

start(), prepare(),
ACK commit(),rollback(‘)/ \"[X]'W[X]
2PC Interface

Resource Manager (e.g. DBMS)
(Including rw-Scheduler)

Fig. 3: Architecture of an Application Including a Transactional Method Cache amd-&oheduler

the result to the client right away. Otherwise it delegates the call to the server where it is
(almost) executed as usual. The cache always forwards calls for demarcating client-side
transactions to server.

In order to exchange additional cache consistency information, all remote method invo-
cations might transfer extra data. This is indicated in Fi@iby a plus sign added to a
respective label. (Most modern remote method invocation protocols allow for these kind
of extensions.) When a method call arrives at the server, the additional information from
the method cache is passed on totkecheduler. As soon as the call’'s result is about to
be returned to the client, the-scheduler attaches consistency information which will be
processed by the cache.

The approach leaves the conventional message flow between client and server intact,
since additional data is always piggy-backed to ordinary remote method calls. Only in case
of cache hits, the information flow changes since client server communication is avoided.
This lazy way of exchanging cache consistency information keeps the communication cost
at a minimum but requires transactional method cache protocols that are optimistic.

2.2.2 Base Protocol.The following paragraphs describe thase protocofor trans-
actional method caching. Note that this protocol does not yet guarantee serializability.
It merely asserts that cache content is created for read-only method invocations and that
stale cached method-results will be invalidated soon after a respective write operation. In
later sections we will see how the base protocol can be extended to ascertain transactional
consistency.

Also note, that the base protocol as described next refers to just one client cache whereby
the corresponding client might run several concurrent transactions. However, the protocol
can easily be extended to function to with multiple clients. (The details are omitted in
favour of a compact presentation.)

Let mbe service method armim(a) be a corresponding method invocation comprising



6 . Daniel Pfeifer and Peter C. Lockemann

the this-objecb and the argument list. Wheno.m(a) reaches the cache it checks if the
result for the cache keym,0,a) is in its store. For a cache hit, the result is returned to
the client code straight away. Further, for every active local client transaGtibe cache
keeps an initially empty list; and enters into it all method results that were returned from
the cache on behalf of transactidn In order to do so, every cached method result is
assigned a unique identifier which is enteredl;in

If a cache miss occurs if or if the client tries to commit;, the respective method call is
delegated to the application server. The method cache attaches theofishe respective
transaction; to the call and sends it to the server. On the server side, the call is executed
as usual, howevds; is forwarded to a new component — the so caliedcheduler The
m-scheduler is in charge of scheduling the use of cached method results in such a way that
a client transactioff; remains consistent, i. e., serializable. It can do so because it knows
all cache hits ofl; from the respective lidt;, and also, it observes all data access operations
that service method implementations perform via resource managers.

Take a cache miss so that the method oati(a) from above might cause several read
and write operations on a relational database. M¥szheduler observes these operations,
keeps track of them in an operation listand passes the operations on to the database
system. For now we assume ttatonsists of operations of the typg] andw[x] with x
representing a data element of the database. However, as it will be discussed later, there
are challenges in identifying data elements suchk as

When the execution of.m(a) finishes at the server, the-scheduler checks if there
are any write operations in the operation listIf not, the respective method invocation
left the database state unchanged and will become a candidate for caching. In this case
the m-scheduler associates a globally unique identifigk) with o.m(a) wherei repre-
sents the transactioh in which o.m(a) was computed anK identifieso.m(a) insideT;.
Moreover, than-scheduler maintains a global taMeo associate all identifiers of cached
method calls (from all transactions) with all data elements that were read during a respec-
tive method execution. So, farm(a) it will enter (i, k) and the respective data elements
(such as known frorh) in V. When the application server sends the restribm o.m(a)’s
execution to the client, the respective message also contains theitlpleThis tells the
cache that should be cached and it saves botand (i,k) together with the cache key
(m,0,a) in its store.

If, on the other handy.m(a) did cause one or more write operations, the system behaves
differently: Letx be a data element which was written on behabb.afi(a). UsingV them-
scheduler determines all identifiers of cached method results at whose compxtatien
read and collects them in an invalidation IistThe server attachdsto the result message
which containg and sends it to the client. When the client receives the message it removes
all method results from the cache which are identified by elemenis iEventually it
returnsr to the client code.

To sum up, then-scheduler needs identifiers for cached method calliike, lists like
Li, l; andh as well as the tabM to enable consistent transaction executions and to keep the
cache up-to-date. Usirlg the m-scheduler gets to know what cached method calls were
accessed in a transaction. Uswidghe m-scheduler can tell what data elements were read
to produce cached method results and also it can derive what cached method results must
be invalidated. Usingi, k) them-scheduler can associate cache hits with entries ¥fom

Figuredillustrates the base protocol’s data structures and some of its important imple-



Theory and Practice of Transactional Method Caching . 7

interface DE {} /I Representation of a data element (just a marker interface) 1
class Mid { int k; } /I'|D of a cached method result 2
class Op { boolean read; DE x; } /I Representation of a database operati@hor w[x] 3
class T { // Representation of a transactidn 4
int id;  // Transaction ID 5
List<Op> | = ©; // Database operations for the current method execultipn ( 6
int nextMIld = 0; /I Counter for new IDs of cached method results 7
8
9
class Req { // A service method call which is forwarded to the server 10
int txId; /11D of the transaction containing the call 11
Object o; Method m; Object[] args; /I Method call details 12
/I Recent client-side cache hits for the given transactigh ( 13
List<MId> L; 14
15
class Res { // Response for a service method execution 16
Object r;  // The execution’s result 17
boolean cachable; /I Whether the result is cachable or not 18
Mid m = null;  //If result is cachable: the ID of the result 19
List<MId> h;  // IDs of recently invalidated cached method results 20
} 21
22
class MScheduler { /I Representation of the-scheduler 23
RelDE,MId> V = 0; // Relatesxwith IDs of cached method results 24
Map<int, T> txId2T = 0; I/l Relates a transaction’s ID with its timestamp 25
26
void handleRequest(Req req) { /I mscheduler part for handling a request of a service method executidh
for each m € reqL // Iterate over all recent cache hits of the considered transaction and schedule t28m
methodOp(m, txId2T(req.txId)); /I (for details see later) 29
30
void completeResponse(Res res, T t) { /I Complete the response of a service method execution 31
res.cachable = true; /I At first, assume that the result is cachable 32
for each op € tl 33
if (lop.read) { /I'lf the method executed a write operations, 34
res.cachable = false; /I ... itis not cachable 35
/I Updateh to invalidate the respective cache entries at the client 36
for each m € V(x) res.h.add(m); 37
38
if (res.cachable) { /'f the result will be cached,.. 39
res.m = new Mld(t.id, t.nextMId++); /I ... generate its ID and . 40
for each op € | //...register it at the server using 41
V.put(op.x, res.m); 42
43
|.clear(); /I Clear the database operations list for the next method execution 44
} 45
46
} 47

Fig. 4: Java Pseudo Code for the Base Protocol’s Aspects attBeheduler

mentation aspects at the server sidEhe classe®eq andRes represent the requests and
the responses of service method calls addressing the server. The classes’ field names match
the names used in the protocol description from above.

At the server side, therscheduler drives the base protocol in respect to handling re-
guests and generating responses. In this context the application server is supposed to call

3 Note that in order to represent data types conveniently, the code applies parametric polymorphism (also known
as "generics” in the Java worl@ilad Brachd). E.g., the polymorphic typBel<A,B> stands for finite relations
R C AxB and the typévap<A,B> represents finite functior’s—B.



8 . Daniel Pfeifer and Peter C. Lockemann

MScheduler.handleRequest() when it receives a remote service method call. After the
application server has computed the method call’s resitifinvokescompleteResponse()

This way them-scheduler can add all missing base protocol information to the response
object. Eventually, the server sends the completed response object to the client.

2.2.3 Integrated Transaction Schedulinglthough method caching happens on the
client side, cache consistency is provided byrithecheduler (on the server side). Without
a transactional method cache in place, client transactions are mainly based on the trans-
action management of resource managers. For this purpose, every resource manager has
its own unit for scheduling transaction operations, the so calkedcheduler E.g. the
rw-scheduler applies a serializability protocol such as two-phase locReign$tein et al.
1987, 2-version two-phase locking or FOCE&rder 1981 Unfortunately, the use of
cached method results is beyondranscheduler’'s control but still affects transactional
consistency. Therefore, te-scheduler and a respectix@-scheduler must cooperate in
order to provide consistent client transactions.

Since resource manager products such as relational database management systems (RDBMs)
cannot be easily prepared for such an integration, we propose a layered approach for
scheduling transactions in the presence of a method cache. Using this approach the re-
source manager is completely unaware offascheduler and performs its tasks as usual.

Them-scheduler intercepts all transaction operations that address the resource manager
and on top of it, it schedules the use of cached method results. In order to do so, it makes
conservative assumptions about tiescheduler’'s behavior and handles conflicts result-
ing from the use of cached method results and conventional write operations. Using the
data structures from above it has all information at hand to perform this task. The next part
of this paper is devoted to developing a theory for howrascheduler can produce seri-
alizable transactions under these conditions. The general idea of separating different parts
of a transaction scheduling process along certain types of data operations can be found in
[Bernstein et al. 19¢7We build on this idea for creating an integrated scheduler consisting
of anm-scheduler and arw-scheduler.

Note that it is a crucial requirement for thescheduler to obsenadl transaction opera-
tions addressing the resource manager. Otherwise, it might miss potential conflicts between
operations and therefore generate non-serializable histories.

As mentioned above, there is an additional challenge when constructmegseneduler
because it has to observe access operations in respect to single data elements from a
database. E.g. if thenscheduler should integrate with an RDBMS, database elements
might be table rows. Since the-scheduler acts outside of the RDBMS, it can only ob-
serve database access on the basis of SQL statements. Unfortunately SQL statements spec-
ify data elements only descriptively and so tnescheduler is unable to directly identify
data elements as needed. As a rather pragmatic solution to this problem, we expect an ap-
plication developer to help out by providing the necessary information via some extra code
inside service method implementations. The extra code is inserted after a corresponding
SQL statement and refers to tirescheduler in order to tell it what data elements the SQL
statement accessed. It is up to the application developer to find a useful representation for
identifying data elements. From our experience, key values of table rows are mostly a good
choice.



Theory and Practice of Transactional Method Caching . 9

3. TRANSACTION THEORY FOR METHOD-BASED CACHING
3.1 MC-Transactions and MC-Histories

In order to produce serializable histories in conjunction with method caching, one has to
represent the use of cached method results in transaction histories. This section extends the
notion of conventional transactions and 1-version histories such as preserBedristgin
et al. 1987 by introducing a new operation that indicates the use of a cached method result
inside a transaction. As opposed to conventional read and write operations we call such an
operation anethod operation

A benefit of method operations is that they accurately and naturally represent of the use
of cached method results in a transaction formalism. More importantly, they enable the
development and the verification of non-trivial serialization protocolsnfeachedulers.
One such protocol will be described in Sectin

For an intuitive understanding of method operations we take a look at a corresponding
history before we come up with a proper definition for it. Consider the following history:

Hy = rfyrixews (X comy *r§[xcs.

How does it differ from a conventional 1-version history? First of all, we have read opera-
tions with superscripts such &4x]. This operation is just like an ordinary 1-version read
operation (e.g. like1[x]) except that the superscrigtis an identifier for the method call
on whose behalf the read operation was performed. The respective method call is executed
on the server side and so it produces ordinary read operations at the resource manager.
As the method call reads two data elements, there is a series of read operations with the
same superscript, namel§[y] andr{[x]. Since the method call with the 1B in T; only
reads data, its result may be cached on the client side. Afterwards it is available for cache
hits (which might occur in other transactions). Note that from a technical point of view,
the superscripts for read operations are created and used bystieeduler. They are not
visible and not relevant to a resource managev'scheduler.

Secondly,H; contains the method operaticné"‘. It reflects an access to a cached
method resulin transactionls. The index3 specifies thaftné’4 belongs tals. Furthermore,

the superscript orfné’4 uniguely identifies the cached method result to which it refers: It is
just the result that was produced by the operatidg andr{[x] of T;. So the numbet in

the superscript orfné’4 refers toT; and the numbet identifies the method call with the ID
4,

We have just covered the most relevant aspects of MC-histories and how they extend
conventional 1-version histories. The following definitions implement these ideas.

DEFINITION 1. An MC-transactionT; is a set of operations with a partial ordering
relation <j, where

—T C {Wi[x],rij [x],mk’I | xis a data element\ j,k,1 € N\ {0} } U{a,c},
—aeTieadT,
—VpeT:pé¢{aicit=(p<iaVvp<ic),

—vrlpd,wiX € T ol [ < wi[X] < ~(wi[X] <i 1 [X)).



10 . Daniel Pfeifer and Peter C. Lockemann

Besides introducing method operations, MC-transactions require every read operation to
have a superscript. Note that a read operation’s superscript is only necessary to "reference
it from method operations as explained for the histbiry*

DEFINITION 2. Let{Ts,..., Ta} be a set of MC-transactions. AMC-historyH is de-
fined asH = |J{'_; Ty with a partial ordering relation<2 | ; <;. Furthermore, the fol-
lowing condition must hold:

vm e H ke {1,...np AV e H iri[x] < mi

The last condition of Definitiof2 ensures that everrylij“I refers to al, that exists irH.
However, it is not necessary there exist any read operations of ther{({)rm inH.

DEeFINITION 3. The functiord(p) returns the set of data elements of an operadn
an MC-historyH as follows:

d(r{ [x) = d(wi[x]) = {x},d(m") = {x| 3ri[x| € H }.

Further, a(p) shall be the type of an operatigne H, so a(rij X)) =r, a(wi[x]) =wand
k|

a(n{!) =m

Two operationsy;,v; € H conflict with each otherexpressed by; }f v, iff

d(u) nd(v;) # 0 (T # Ty A (alu) =wva(v;) =w))v
(a(u) =wAa(vj) =m) V (a(u) =mAa(y)) :w)).

Obviously, the data elements that cause conflicts in respect to a method opaﬁtion
are just the ones which are read by operations of the f{gim]. Consider the MC-history
Hj from above. It holds the following conflicts (and no others):

r X wa X, walx)  r30d, my g ezl

Definition 3 states that conflicts inside a single transacfipare possible if one of the
conflicting operations is a write operation and the other one is a method operation. To see
why this is useful, consider the history

Ho = ri[x|ciws [x]m;’lcz.

Here,w[x] J my* is reasonable becausg” refers to anx-value that was read befove[x]
is performed.

As is common for conventional 1-version histories, we want to avoid MC-histories with
unordered but conflicting operations. The next definition limits MC-histories in this re-
spect.

DEFINITION 4. An MC-historyH is well defined iff

vp,qe HMC: plfg=p<qvag<p.

4Technically, superscripts for read operations form an extension of conventional 1-version transactions because
a respective transaction may contain several read operations of the same data element whereas this is not the
case for a transaction such as definecBerhstein et al. 19¢7 However, this detail has no major impact on
transaction theory.



Theory and Practice of Transactional Method Caching . 11

For the rest of this paper we are only interested in well defined MC-histdgiesrom
now on, whenever we refer to the term "MC-history” we actually mean "well defined MC-
history”.

DEFINITION 5. The rw-projectionRW maps an MC-histonH to a history RW(H)
with all operations fromH but its method operations, $8W(H) = {p € H | a(p) # m}.
Furthermore, it keeps all ordering relations frorh, but those in which method operations
are involved.

If RW(H) = H holds for an MC-histonH, it is called anrw-history. Similarly, if a
transaction does not contain any method operations it is callechatransaction

As an example of anw-projection consider
RW(H1) = ri[ylr{[Xciwz[x]car3[x]cs.

Apart from the superscript of read operationshistories represent conventional 1-version
histories. Laterrw-projections will help us to formalize how am-scheduler anaw-
scheduler split their work for producing an integrated schedule. Note thewteeheduler
only gets to see thew-projection of an MC-history. This means that formal qualities that
therw-scheduler should assert, may be associated witlwaprojection but not an entire
MC-history.

3.2 Multiversion Histories

This section briefly defines a slight adaption of conventional multiversion histories and
multiversion serializability graphs. The adaption is necessary for a sound introduction of
serializable MC-histories which follows in SectiBcR.

DEFINITION 6. Let{Ts,...,Ta} be a set ofw-transactions. Anultiversion historyH
is defined a#d = { h(p) | p€ UL, Ti) } with a partial ordering relation<. Further, the
functionh must fulfill the following criteria:

—vai, 6w € U T ha) = & Ah(@) = & Ah(wX) = wilx],
—wrl [} € Uy Tie: 3i € {4,...,n} o h(rx) = rt [x],
—Vie {1,...,[‘1} Vp,geTiip<iq= h(p) < h(Q),

—vrl [} € URoa T h(rh X)) = rhxi] = (i = 0v3wi[x] € H twi[xi] < rl[x]),

—vri X € Upea T (h(r X)) = ri ] Ai # jAcj e H) = ci e H.
Anx; is called aversionof the data element

The above definition assumes that prior to any write operation, there already exists an
initial versionxg for every data element

Mainly for consistency reasons, multiversion histories maintain the superscripts of read
operations as introduced by Definitida Apart from this, the here defined multiversion
histories differ from the ones irBernstein et al. 19§ becauséh is not expected to map
transaction operation${x] with wi[x] <; ri[x] tor![x]. The criterion would be too restrictive
for the definition of serializable MC-histories from Secti®R. However, for serializable
multiversion histories, we still accomplish a similar result asBernstein et al. 19§7
because the definition of multiversion serializability graphs from below accounts for this
issue.



12 . Daniel Pfeifer and Peter C. Lockemann

DEFINITION 7. LetD be the set of data elements of all operations of a multiversion
historyH, soD = {x | 3ri[x;] € H Vv 3wi[x;] € H}. Aversion ordek establishes for every
data elemenk € D a total order of its versions, such thgj is the smallest version:

VxeD:Vi,j e N\ {0} :xo <X A (I # ] = X < Xj VXj < X).
A version order that adheres to the following predicate is calleie version order
YW [xi], wix;] € H @ (wi[x] < wj[xj] Vi=0) =% < X;.

Write version orders are specific version orders. As we will see, it turns out that we have
to rely on write version orders in order to create a serializability theory for MC-histories.

To keeps things short, we omit the definition of serializable (or more specifically 1-
serializable) multiversion histories. Instead, we turn to the definition of multiversion ser-
izalizability graphs straight away and assume that the reader is familiar with the underlying
serializability theorem (se®Ernstein et al. 19§Y.

DEFINITION 8. LetH be a multiversion history for thew-transactions{T, ..., Tn}
and < be a corresponding version order. Thaultiversion serializability grapMV SGC
{T1,...,Ta}? for H and < is given be the following predicate:

(Ti,Tj) EMVSG:& 6 € TTAC € Tj A3rR[X ], Wml[Xm] € H :
(i=j=k=mAi#lAwix] <rih[x|]) V(iZjam=i=IAk=])V
(£ ]AM=IAl=JAXn<X)V (i£ ]JAKk=1IAM=jJAX < Xn).

Instead of writing(T;, T;) € MV SGwe simply writeT; — T;. If one of the last two
disjunctive clauses holds, th@p— T; is called aversion order edge

Since Definitiorfenables multiversion histories with operationg] < r! [xj] andi # j,
the first disjunctive clause in Definitidintroduces graph edges for just this case. In other
words:wi[x] < rl[xj],i # j is impossible for committing transactiofisandT; if MV SGis
acyclic.

3.3 Interpretation of MC-Histories

Intuitively, not all serial MC-histories should be considered serializable. To understand
this, let us reconsidet; from above:m:l;4 accesses a cached method result which is based
on the version ok such as read by;. However, in the meantimd; wrote x and might
have created a new value for it. Furth@[x] read the value of written by T,. This means
thatmé’4 refers to another value ofthanr3[x], although this should not be the case. Still

Hj is serial. If the method call that cause@?“ had not been a cache hit but had been
executed normally, it would have reacby some operation§[x]. And this value would
have been the value written Ay.

The conventional definition for serializable 1-version histories is based on the serializ-
ability of serial histories. Unfortunately as just seen, this approach is not applicable to
MC-histories. Then what is a good definition of serializability for MC-histories? As a so-
lution we will interpret MC-histories as multiversion histories by means of an embedding
functionMV. MV maps all operations of an MC-history to one or more multiversion oper-
ations. This wayMV produces a multiversion history thexactlyreflects all the conflicts
that exist forH.



Theory and Practice of Transactional Method Caching . 13

Let us begin with an example to convey these intentions. Asddingom above is
mapped to the following multiversion history:

MV (Hz) = r{[yo]r{[Xo]ciwa[Xa]Car 3[Yo] r3[Xo]r3 %] Ca.

The original operations}[x|r{[y] are mapped tof[yo]r7[xo] whereyo andxo state the ver-
sions that these operations relett@:4 is mapped ta3[yo]ri[xo] since it essentially accesses
the same versions ofandy as the read operations to which it refersHp (namelyr?[x]
andr?[y]). The superscript fori[yo] andrix] has been chosen more or less arbitrarily —
because ofg[xz], it must not equab. (The superscript is only required for conformance
with Definition/6.) Finally w;[x2] just writes a respective new versionyénd relates to
Wy [X] from Hj.

In the following, we will generalize the interpretation functibtv. Thus we can define
an MC-historyH to be serializable if and only ¥V (H)'s multiversion serialization graph
is acyclic for a write version order. E.gMV (H1)’s multiversion serializability graph is
cyclic for the version ordexg < Xp. It contains the version order edgés— T, (due to
rf[xo] andwa[xz]), Ts — T (due tori[xo] andw;,[x,]) as well as the edg& — Ts (due to
Wa[X2] andrg[xz]). This suits our intuition not to considet; as serializable.

For MV it is crucial that it mapsll conflictsof an MC-historyH to H's multiversion
image. Otherwise one might obtain a multiversion histoty (H) that is 1-serializable
although its originH should not be considered serializable. The resulting formalism for
MC-histories would then lead to serialization protocols that do not create truly serializable
histories. E.g. the history

Hs = r{[ylri{x|cawa[x/comy *wsX]cs

should not be considered serializable for similar reasod aslowever, a naive mapping
of Hs like

1 [Yo]r1[Xo] c1Wa[X2]cor 3 [Yo] r3[Xo]Wa[Xa]ca

is 1-serializable but ignores the confligs[x] }f w3[x] in H3 because the respective oper-
ationswy[xp] andws[xz] do not conflict. SAMV has to be defined in way such that this
conflict is reflected iMV (Hz). An appropriate definition df1V results in:MV (Hz) =

r1lyolr 1ol cawa[xelcar3[yolr3[xo] < \r/\%@\/ ca

Here, the operatiorg[x,] has been introduced to ensure that the set of conflicts in respect to
transactions fronidz andMV (Hz) remain identical. The next definition states the general
structure ofMV.

DEFINITION 9. LetH be an MC-history with the transactiori= {Ti,...,T,}. The
function

V:H-—-{1...,n},V(p)—k

shall return the indeX of the last write operationw[x] € H beforep such that, € H. If
no suchwy(x] existsV (p) shall be zero, s& (p) = 0. Further, the function

ss:NxNxT—N,(i,j,T)—h



14 . Daniel Pfeifer and Peter C. Lockemann

shall return a unique number for an argumeitj, T;) such thath ¢ {k|rk[x] € T;}.°
Theinterpretation functiorMV is then defined be means of an auxiliary function
with

M) = {rE By g 1 mvwX) = {

M) = {rfxy(g)la =T € HAh=ssk,j, T)} andMV (H) = Upeumy(p).
The partial ordering relation<’ for MV (H) is inherited fromH’s partial ordering rela-
tion <, more specificallyp <’ q:&

{wi[x ]} if 3rkx € H kX < wi[x]
{wi[x], K% wi )] } Otherwise,

(mv-i(p) < mvi(g) Vv ({p.a} € mvm™) A p=r¥x Ag=rky] Arkx < riiy)).

The latter part of the definition of’ deals with ordering read operations that replace
method operationsMV produces a well formed multiversion history according to Defi-
nition6. The next theorem shows that for am-historyH, MV produces a multiversion
history with (practically) the same serialization graphas

THEOREM 1. LetH be anrw-history. Further,SG'(H) shall be the transitive clo-
sure of the 1-version serializability graph &f (according to Bernstein et al. 19¢y
and MV SG(MV (H)) shall be the transitive closure of the multiversion serializability
graph of MV (H) with some write version order. Then, the two graphs are identical, so
SG(H) =MVSG(MV(H)).

PROOF Obviously,Vi € {1,...,n}: ¢ € Ti & ¢ € muT;) holds. This means that con-
ditions for graph edges that request participating transactions to be committed do not have
to be considered any further for this proof.

"C" Let T — T; be inSG Then, there are operatiopse Ti, g€ T; with p<q, p} q
andi # j. Moreover, there is arwith {x} = d(p)Nd(q).

If a(p) = r,a(q) = wone has got![xs] <’ wj[x;] in MV (H) (for somes). Thus,ws[X] <
wj[x] must hold and s@s < xj. This leads to the version order edge— T; € MV SG If
a(p) =w,a(qg) =r, one has gowi[x] <’ r?[xs] in MV (H) (for somes) with the following
two options fomws[xs]: Either one obtains the trivial case- sorw;[X] < ws[X]. Ws[X] < wi[X]
cannot hold because it would leadwgx] <’ ws[Xs] and sor?[xi] because in Definitio®
the indexi is determined by (contradiction). Sinces € H (according to the definition of
V), Ts— Tj isinMV SG As one will see as part of the next casgx] < ws[x] implies the
edgeT; — Ts € MV SG and sol; — Tj € MV SG.

Finally, consider(p) = w,a(q) = w: Let wj[x] = Wi, [X] < ... < Wi, [X] = wj[x] be the
sequence ddll write operations itH in respect tox betweerw; [x] andw; [x] such that > 2
andc, € Toforalloe {1,...,n}. Nextwe prove that there is a pakif) — Ty, € MV SG by
induction onn. n= 2: For this casenV(W, [X]) = {Wi, [X,], Mk, %]} due to the definition
of V and alsowy, [X, | <’ I, [%,]. Thus, Ty, — Tk, € MVSG n— 1~ n: The argument is
analogous to the case= 2. The only difference is to replade by k,_1 andk; by k.

"D" Let T — T; be inMVSG T; — Tj can be a version order edge or an edge due to
wi[xi] <" rf'[x] with i # j. In particular the cases[x] < rf'[x] with i # 1 (from the first
disjunctive clause of DefinitioB) can be excluded becauserf/s Definition.

5 The specific structure afsis not of interest. Below, it is just required to produce unique superscripts for read
operations in respect to a transactipn



Theory and Practice of Transactional Method Caching . 15

Consider the cass; x| <’ r?[xi]: According to the definition ofnvone has gowi[X] <
rx] (if mv(rj[x]) = {r"x} for somek) or wi[x] < w;[x] (if mv(w;[x]) = {r""[x], w;[x;]}
for somek). SoT, — T; € SG r?[xi] cannot be in the range of a method operation because
H is anrw-history.

If Ti — T; € MV SGis a version order edge one has got two cases. Caséx;rl[x;]
MV (H) (for somek) with x; < X;. i # 0 holds because ofj [x;] and becausec is a version
order. Thusj > 0, which implies that av;[x;] exists inMV (H). Since< is a write version
order,w;[X] < w;[x] follows and furtherT; — T; € SGfollows.

Case 2: One has got two operatiofig],w;[xj] € MV (H) (for somek) with X < Xj.

There two are subordinate cases, namgy] <’ wj[x;] andw;[x;] <’ r'[x]. (The two
operations can be compared by means<fsince their preimagep,q € H in respect
to mv must be conflicting and sp < q or q < p, but this relationship is maintained by
<') Considerr[x] < wj[xj] first. Then,r[x] € mvrl'[x)) or rM[x] € mvwi[x]) and
rMx < w;[x] respectivelyw [x] < wj[x] follows. SoT; — T; € SG (mv-1(r[x(]) cannot be
a method operation becaulleis anrw-history.) Secondly, considev;[x;] <’ ri[x]. Due
to the definition ofV, k cannot be zero and so, wits < Xj one obtainsm|x| < w;j[x].
I ri[x] € mV(ri[x]) holds, it follows thawi[x] < w;[x] < ri[x] which impliesV (r'[x]) # k.
This is a contradiction to [x] € mV(ri[x]). Finally, if ri[x] € mv(w;[x]) one obtainsw[x] <
w;j (x| < w;i[x] and thusV/ (w;[x]) # k. However, this also contradictgx] € muw;[x]). The
previous considerations have covered all cases for €figesl; € MVSG [

Using Definition9 one can interpret MC-histories as ordinary multi-version histories.
However, an MC-history does not exhibit the same complexity as its underlying multi-
version history. (E.g. MC-histories without-operations may be considered as ordinary
one version-histories.) Therefore the introductiomebperations greatly simplifies the
developmenin-scheduler protocols.

Theorenil stated that the chosen interpretation functiévi is appropriate when applied
to anrw-history H, sinceMV (H) essentially holds the same serializability graphHas
Moreover, MV interprets arm-operation as a set of read operations accessing just the
versions of data elements which were used when the respective cached method result was
first computed. These facts justify the following definition of serializable MC-histories.

DEFINITION 10. An MC-historyH is MC-serializabldff MV SGMV (H)) is acyclic in
respect to some write version order.

E.g. H; andH3 from above are not MC-serializable because the corresponding multiver-
sion serializabilty graph is cyclic (an@ < x2 matches the write version order predicate).

3.4 Serializability Theorem for MC-Histories

Using Definition10 one can decide whether an MC-histdtyis MC-serializable by com-
putingMV (H) and then checking the resulting history’s multiversion serializability graph
for cycles. Clearly, it would be more convenient if we had a serializability theorem which
applies right toH instead ofMV (H). The next definition states how a respective graph
should be constructed fof.



16 . Daniel Pfeifer and Peter C. Lockemann

DEFINITION 11. LetH be an MC-history for the transactiody,...,T,}. TheMC-
serializability grappMCSGC {Ty,..., T, }? for H is given by the following predicate:

(Ti,T}) EMCSGi& G € TiAC €Ty A
(@peTi:3aeT  a(p) £ m A al@) £mApkanp<a) v
Bm wi X, rX € HrkX < wilx] A (i # jvwg ) < mh) v
(i # § A 3w, i rkf € HMC:wilx < rifx)) ).
Instead of( T, Tj) € MCSGwe simply writeT; — T;.

ConsiderH; from above. Its MC-serializability graph consistf— T, (due torf[x] f
W2[X]), T, — T3 (due tow,[x] Jf r3[x]) andTs — T, (due tow,[x] Jf mé"‘). These are the same
edges as iMV SGMV (H1)) (with Xp < x2). This observation gives rise to proving the
serializability theorem for MC-histories which is stated next.

THEOREM 2. LetH be an MC-history.MCSG(H) shall be the transitive closure of
its MC-serializability graph oH and MV SG(MV (H)) shall be the transitive closure of
the multiversion serializability graph iV SGH) in respect to some write version order.
Then, the two graphs are identical, MCSG' (H) = MV SG (MV (H)).

PrRoOFE Just as for the proof of Theorefy conditions for graph edges that request
participating transactions to be committed do not have to be considered any further.

"C" Let Ty — T; be inMCSG Due to the first disjunctive clause of Definitidr
SGRW(H)) € MCSGH) holds. (Just compare the first disjunctive clause of Definition
11 with the definition of SG fromBernstein et al. 197 So, if i — Tj € SGRW(H))
thenT; — T; € MVSG (MV(RW(H))) € MVSG(MV (H)). (This follows from Theorem
1)

Now, letTi — T; be nMCSGH) \ SGRW(H)). Ti — T; can only exist because of the
second or the third disjunctive clause of Definitibfi This means that there are either

operationsrrgk", wj[x], rk[x] with ri[x] < wj[x] or operationswi[x], m‘j“', ri[x] with wi[x] <

re[x.
“For the first case, consider the image in respectito mv(rk[x)) = {r}[xs]}, wj[xj] €
mv (wj[x]) andrl[xs] € mV(mk") (for somes). With rl[xs] <’ wj[xj] it turns out thats =
0V ws[xs] <’ wj[xj] and one gets the version order< x;. For this case # j and the
operations''[x] andw;[x;] result in the version order edge — T; € MV SG(see last
disjunctive clause of Definitid8). If otherwisei = j holds, it follows thawv; [x;] = w;[x] <’
ri[xs] for the second disjunctive clause of Definitibf. Sincei # s, one obtaing; — T; =
T; € MV SGbecause of the first disjunctive clause of Definii&n

If there are operations[x], m'j“', ri[x] with wi[x] < ri[X] that causél; — Tj € MCSG
then their images in respect tov behave as followsw; [x;] <’ ri[xs] <’ r?[xs] (for some
s). The case = sis trivial. Otherwise one can conclude by induction as in the proof of
Theoreml thatT; — Ts € MV SG' with ws[Xs] € Ts. ThusT; — Tj is in MV SG'. (Note that
s> 0 because 0¥’s definition and because of [x].)

"D" Let Ty — Tj be inMVSGMV (H)). Theoreml has already considered all edges
that relate to conflicts between read and write operations but not method operations. There-
fore, it suffices to analyze edges MV SGthat are cause by the additional images of



Theory and Practice of Transactional Method Caching . 17

method operations in respect tov. So, letrfl[xs] € m\/(m'ﬁ"') andw[x] be operations
that causes a respective edfje— Tj € MVSG According to Definition8 one has to
distinguish for casesi = j = n=t,i Zsw[x] < rix] ori#ji=s=tj=nor
i#£j,i=t]j=5X%<KX0ri # j,n=it=j X < %.

In the first case, one has got operatigg] < wi[x] < mk" orw; X < Wo[X] < rj[x < mik" ,
since otherwisé= swould hold.r}[x] < wi[X] < mk" results in the edg& — T; € MCSG
with i = j from the second disjunctive clause of Definitibhi wi [x] < wo[X] < rk[x] < mk"
results inTy — To — T, € MCSG

The second case leadswgx;| <’ r?[xi] € mv(m‘j(") with wi[x] € mw;[x]). Therefore,
there exists an} [x] with wi [x] < ri[x] in H. If r\[x] < wi[x] would hold, applyingnvwould
returnmu(r} [x]) = {rk[xg]} for someg # i. This would lead toj[xg] € mv(m']-"') instead of

rixl e mv(m‘j‘") (contradiction). Thus]; — T; € MCSGfollows from the last disjunctive
clause of Definitior1.

Considering the case# j,i =t, | = s, % < Xs: Here,wi[x] < w;[x] follows right away
becausex is a write version order. (Note that= i cannot be zero.)

The last case creates the situatiang x;, x| € m\/(mk") andwj[x;] € mv(wj[x])
with w;j[x] € H. Moreover, due tmk", there must be & [x] € H with ri[x] < mik". If
ri[x] < wj[x holds, one obtaing; — T; for the second disjunctive clause of Definition
11. Now considem;[x] < ri[X: If ri[x] reads fromT;, applyingmv results inw;[x;] <’
ri<[xj] </ x;] € mm') and soj = s but this is a contraction tas < Xj. Otherwise
ri[x| readsx from aT, # T and one has gok;j[X] < Wo[X] < r[x]. Applying mvresults
in wjx;] </ WolXo] < rl[Xo] <’ rxo] € mym'). Thus,s= o and finallyx; < xs follows
(because oivj[x;] < Wo[Xo]). However, this contradicts the case’s precondition.

Given an MC-historyH, Theorem2 confirms that the transitive closure bfs MC-
serializability graph is identical to the transitive closuréMdf (H)'s multiversion serializ-
ability graph. Since a transitive closure does neither add nor remove graph cycles, we can
indeed rely on Definitiod0to check for MC-serializability.

4. RECOVERY FOR MC-HISTORIES

Before developing a serializability protocol for transactional method caching, we want to
address the simpler task of creating a recovery protocol. In this respect, we are interested
in applying conventional recovery qualities such as "recoverable” or "strict”. Again, the
definition of these qualities must be adapted to the structure of MC-histories. This section
defines the corresponding qualities and gives a lemma on whishsaeduler’s recovery
protocol can be based. The second part of this section discusses the protocol’'s implemen-
tation.

4.1 Formalism

DEFINITION 12. LetH be an MC-history with the transactioi8= {Ty,...,T,}. A
transactionT; € T reads (a data elementfrom T; € T via an operatiomp < T iff:

AKX, wix e H:wix <k A (h=ivm™ e H)A—(aj < kX)) A
YWo[X] € H 1 wj[x] < Wo[X] < rK[X] = ap < rf[X.



18 . Daniel Pfeifer and Peter C. Lockemann

We havep = rﬁ[x], if h =1 holds for the given predicate angl= mh’k otherwise. The
relationship betweefd, x, T; and p is expressed bgeadsTi, x, Tj, p). readsforms the so
calledreads-from-relation

For the MC-history
Ha = wWa[xr} [ylri [Xlcicomy ' wa(X]cs

we havereads= {(T1,%, T2,ri[x)), (Ta,x, T2,mz")}. Using the reads-from-relation, most
conventional recovery qualities can also be applied to MC-histories.

DEFINITION 13. An MC-historyH with the transaction¥ = {T,..., Ty} and the data
element® is recoverableespective ACA (avoiding cascading abortespectivelstrict,
iff the following qualities hold:

—recoverable
Vi,je{l,...,n}:¥xeD:VpeH: (i #jAreadsT,x,Tj,p)Ac € H) =¢j <,
—ACA:
Vi,je{l,...,n}:¥xeD:VpeH: (i # jAreadsT,x,Tj,p)) =cj < p,
—strict H is ACA and
YW X, wi[x € H: (i # JAW; X <wi[X]) = (a; <Wi[X] VCj <Wi[X]).

Obviously, the standard inclusion statement "stticACA C recoverable” also is true
for MC-histories. The four MC-historigds to Hg, which are presented next, only differ in
respect to the placement of but: Hs is not recoverableiis is recoverable but not ACA,
H- is ACA but not strictHg is strict.

Hs = wa[X)wa[ylwa[ylr3[Xm§ ‘caci o,
He = wa[xwa [ywa[y]r3[X]mE " cscacs.
Hy = wa[xwa [y]wa[ylcar3[X)mé cace.
Hg = wa[X)wi[ylciwaly]r3 (X m5 *csc,

The next lemma states how amscheduler can ensure that together withrthescheduler,
it produces ACA MC-histories. By requesting an MC-histonyisprojection to be ACA
the lemma assumes that the-scheduler will already provide ACAw-histories Given
that them-scheduler guarantees an additional predicate, the joint MC-history will be ACA
too.

LEMMA 1. LetH be an MC-history for the transactior8= {Ty,..., Ty} and let the
following predicate hold:
VT, € T:Vxe D:readsT,xTi,r{[x) = Vm' eH:i# j=c<m'.
Then,H is ACA iff RW(H) is ACA.

PROOF "=": Let H be ACA. SinceRW(H) C H holds, the reads-from-relation of
RW(H) is a subset oH’s reads-from-relation. TherefoRW(H ) is also ACA.

"<" Let RW(H) be ACA. Thus, in respect tbl only the additional method opera-
tions might violate ACA. Letn'j“'I € H be such a method operation that reads fimia



Theory and Practice of Transactional Method Caching . 19

Wi [X], soreaquj,x,'ﬁ,m'j‘") holds. Due to Definitioil2 there must also be am[x] with
readg Ty, X, Ti, r}[X]). Further,ri[x] < m'j"'I must hold because of Definiti@ If k # i then
G <rkx < m‘j"I follows, sinceRW(H ) is ACA. Otherwise, one obtainsadg T, x, Ti,r! [X])
and sog; < m'j"I if i # j due to the Lemma'’s predicate. In either cbkes ACA. O

The next MC-history shows that the predicate of Lenfisinecessary:

Ho = wa[X]ri[xmycicy

is not ACA because akads Ty, X, Ty, m;’l) andm%‘l < ¢1. HoweverRW(Hg) = wi[X]ri[x]
c1Co is ACA.

As the following example shows, Lemrdacannot be rephrased for MC-histories that
are just recoverable:

Hio = wi [Xr3[x)m5 *cacico

is not recoverable, since the relati@ad<Ts, X, Ty, mg’l) holds andt; < ¢;. Still, RW(H10)
is recoverable.

If one wants MC-histories to be strict and not just ACA, it suffices to keep the predicate
from Lemmeéll and to expect thew-scheduler to produce striov-histories:

LEMMA 2. An MC-historyH is strict iff H is ACA andRW(H) is strict.

PROOF "=": Let H be strict. SincdRW does not remove any commit or abort opera-
tionsRW(H ) must be strict too.

"<": Let H be ACA andRW(H) be strict. In respect tbl only method operations must
be checked. However, additional method operations do not impact the strictness predicate
for write operations from Definitiod3. [

4.2 Implementation

We now describe a simple protocol that produces ACA respectively 8fi@histories
given that therw-scheduler creates ACA respectively stniet-histories. As stated by
LemmaZ2 and1 the m-scheduler’s job is just to guarantee the predicate of Lengur-
prisingly, this can be done entirely on the client side of a related system: For every trans-
actionT; started at the client, the method cache keeps a flag which indicates whether or not
there has already occurred a write method call in3jd€For a new transaction the flag is
false, meaning no write method call has occurred yet.) After the first write method call of
Ti, every new method call resultwhich is computed insid&; and stored in the method
cache, remains locked client unfjlends. The lock prevents concurrent transactions from
producing a cache hit onbeforeT; ends. AtT’s commit, the lock is removed and other
transactions may accessHowever, ifT; aborts, them is entirely removed from the cache.
The protocol is correct becaussad<T;,x, Ti,r![x]) from the predicate of LemniEcan
only hold, if some write operation has ever occurred;inWhen this happens, the lock on
new cached method results producedipprevents other transactions from reading those
cached method results befokghas committed.

5. OPTIMISTIC CACHING TIMESTAMP PROTOCOL
5.1 Formalism

This section presents an optimstic caching timestamp protocol (OCTP) for scheduling
method operations as part BIC-histories. Anm-scheduler that applies this protocol can



20 . Daniel Pfeifer and Peter C. Lockemann

be integrated with anw-scheduler that follows a timestamp protocol itself but also with
a strict two-phase lock protocol. An integration with a strict two-phase lock protocol is
possible by interpreting thev-scheduler's commit order as a timestamp ord&8efhstein
et al. 1987 showed that this is legitimate.)

Apart from the protocol presented next, we have developed another serialization protocol
for an mscheduler whose essential idea is related to the one of OCC #adya]|et al.
1994. For a more compact contribution we do not present this protocol. We prefer to
present OCTP mainly because it is a strong improvement over the OCC-like protocol: It
accepts a superset of histories that the OCC-like protocol aécaptsit causes much
lower transaction abortion rates. The latter statement is substantiated by the experiments
from Sectior6.” As opposed to the OCC-like protocol, the correctness of OCTP is not
straight forward to see. We will have to make good use of the formalism from S@&:tion
prove it correct.

The fundamental concept of timestamp protocols are timestamps. For clearity and com-
pleteness we define them next.

DEFINITION 14. LetH be an MC-history with the transactiof&= {T1,...,Ty}. ts:
{T1,...,Tn} — Nis atimestamp functioriff

Vi,je{l,...,n}:ts(T) =ts(Tj) =i =j.

For conventional timestamp protocols conflicting operations should be ordered along the
timestamp order of the transactions to which they belong.

DEFINITION 15. LetH be an MC-history with the transactiofis= {Ty,...,Ta}. H is
t-ordered in respect to a timestamp functierff

vp,geH:Vi,je{l,....n}: (pe TIAQeTiApKaAts(Ti) <ts(Tj)) =
(aeHVajeHVp<Q).

It is well known and easy to prove th&rderedrw-histories are serializable. The
reason for this is that conflicting read and write operations dictate the direction of edges
in a respective serializability graph. However, for a method operation that conflicts with
a write operation the direction of a respective edge in the MC-serializability graph does
not necessarily depend on the two operation’s order. Hygrom above ig-ordered for
the timestamp functiots(T;) = i but the operations[x] < wa[x] < mé"" produce an edge
Tz — To. Therefore the timestamp rule does not guarantee MC-serializability.

In the following, an edgdj — T is called areverse edgeif and only if it is produced
by two conflicting operationg € T andq € T; with ts(T;) < ts(T;) . Otherwise we call it
anormal edge

Interestingly, if an MC-historH is t-orderedH'’s reverse edges can only be created by
the conditioram , w; [x], rk[x] € H : (rk[x] < w; [} A (i # j vwj[x] < ")) from Definition
11 This implies that the read operatid[jx] towhich mk" refers must have occurred before
w;j[X].

One way to develop a timestamp protocol for MC-histories would be to entirely forbid
reverse edge. But we can go a more general way and trade off reverse edges against

6This can be proven.
"The effect can also by explained analytically but this is beyond the scope of this paper.
8 This approach leads to the OCC-like protocol mentioned at the beginning of this section.



Theory and Practice of Transactional Method Caching . 21

T1 - Tz — T3
‘ ¥

normal graph edges! To illustrate this idea, consider the following prefik of
riyirixewa[xjcom; .

Whenmé’4 is scheduled it produces the reverse etige> T,. So afterwards the scheduler’s
duty should be to avoid edges frofa to Ts. At the point of time when thetscheduler
acceptsmé"‘, T3 has still a (good) chance to commit. However if we forbade reverse edges
entirely, them-scheduler would have to rejem:é’4 and thus aborT; right away.

In general, the following rule should hold: If tinescheduler accepts a method operation
producing a reverse edde— T; then it should ensure that there are no edges T; with
ts(T;) <ts(Th). As an example, suppose the graph from Fidismes an MC-serializability
graph with the timestamp functiais(T;) = i. The dotted arrows then represent reverse
edges. According to the stated rule, the graph édge Ts must be excluded because of
the reverse edg®& — T4. Similarly, T3 — T4 contradicts the rule due to the reverse edge
T, — T3. But how aboufls — Tg? It adheres to the stated rule and still leads to a graph
cycle. Apparently, it does not suffice to consider single reverse edges. Instead, one has to
considempaths of reverse edgeb Figure5 a path of reverse edges starting frdgleads
back toT,. Therefore, no transactions wits(T;) > ts(T2) should point tdT.

The functiontssi; (T;) which is defined next, computes the minimum timestamp of all
those transactions that can be reached from transagtida paths consisting exclusively
of reverse edges. The computation is based on the operation order of an underlying MC-
history (prefix) and can be performed dynamically bytfkecheduler. The function forms
the basis of a respective serializability protocol.

DEFINITION 16. LetH be an MC-history with the transactiof3y, ..., Ty} and a time-
stamp functiorts. Thefitting timestampfunction

tsiic :{Ti |i€{,....,n}AGET}—N
is computed as follows:
tssic (Ti) = min ({ts(Ti)} U
{tsrie(T7) | 3w X, M rk[X) € H: rlx) < wi[x] Ats(Tj) <ts(T) Acj € H }).
LEMMA 3. tsyi is well defined.

PrRoOOF Considertssit (Ti) according to Definitiorl6. The argument ofmin(...) is a
non-empty set, since it contait®T;). Further, everylj referenced by the sétsst (Tj) | ...}
from above has committed (8 € Tj) and lies in the domain dBy;. For everyT; refer-
enced by{tssit(Tj) | ...} we havets(Tj) <ts(T;). Since there are at mostimestamps in
the range ofs, the computation dfss;; (T;) terminates. O

Usingtssiy we can define the qualityt-fitting” for MC-histories, which formalizes the
generalized rule for reverse edges from above.



22 . Daniel Pfeifer and Peter C. Lockemann

DEFINITION 17. LetH be an MC-history with the transactiofds,...,Ta}, a time-
stamp functiorts and the MC-serialization grapMCSG H is t-fitting in respect tas
iff

Vi,je{L,...,n}: (Ti — Tj € MCSGAts(T;) < ts(Tj)) = ts(Ti) < tssit (Tj).

Unfortunately-fitting MC-histories witht-orderedw-projections don’t have to be MC-
serializable. We need two additional qualities to prove a respective theorem. "Irreflexive”
avoids edge§; — T; in an MC-serializability graph. For an operation sequence of the
kind wi[X] < ri[x] < m‘j“| "rm-ordered” ensures thed(T;) < ts(T;) holds, if T; andT; com-
mit. Luckily, both qualities are uncritical when realizing a corresponding serializability
protocol.

DEFINITION 18. An MC-historyH is irreflexiveiff
Aw; [x],rnk",rL[x] eH: rL[x] <wi[x < r'qk" =a € H.

Consider a client transactioh which causes a write operation[x] at the server. The
base protocol from SectidB.2 causes cached method results to be removed from the
client's cache right before the method invocation causirig| returns control to the client
code. Therefore a cache hit corresponding\% with wi[X] < mk*' cannot happen and the
base protocol ascertains implicitly "irreflexive”.

DEFINITION 19. An MC-historyH is rm-orderedn respect to a timestamp functios
iff
Vi j e {1} G, m kX € H rwilx] < rifx] < mi) =
(a € HMC vaj e HMC vis(T) < ts(Tj)).

As we will see below, an MC-history is implicitlym-ordered if them-scheduler coop-
erates with amm-scheduler that applies a strict two-phase lock protocol. The next theorem
forms the basis of am-scheduler’'s implementation of OCTP. It expects vescheduler
to providet-orderedrw-histories.

THEOREM 3. An irreflexive MC-historH which ist-fitting andrm-ordered in respect
to a timestamp functiots is MC-serializable iiRW(H) is t-ordered in respect tts.

PROOF AssumeH’s MC-serialization grapfMCSGwas cyclic. A cycle inMCSGhas
at least a length of 2, because for all disjunctive clauses from Defirfitldout the case
rx < wix < mk", i # j holds for a corresponding edge — T;. However, the case
rifX < wilx] < mi'“' is excluded becaudté is irreflexive. A cycle (with two or more nodes)
in MCSGconsists of at least one reverse edge. Otherwise one would obtain algyele
... — T with normal edges only and $8(Tx) < ts(Tyx) would hold (contradiction).

The following considerations reveal that for a reverse €fige T; one has got oper-
ationsrl[x] < wj[x] and mk" with ts(T;) < ts(T) from the second disjunctive clause of
Definition/11. Edges from the first disjunctive clause of Definitibfi cannot be reverse
edges because the related operations must not be method operatioR8Y(blit is ex-
pected to be-ordered. If an edge from the third disjunctive clause of Definifidiwas a
reverse edge, then one would have operatighg < r}[x] < m'j"'| with ts(Tj) < ts(T;). Yet,
this contradict$d’s quality to berm-ordered.



Theory and Practice of Transactional Method Caching . 23

Now, letC be a cycle ilMCSGand T, be the node irC with the smallest timestamp.
There must be a reverse edfig— Tk € C for someT,, because otherwisg’s timestamp
would not be minimal in respect @. Further, lefl; — ... — Ty be the longest acyclic path
in C consisting entirely of reverse edges. Then, there must be anledgd; < C which
is a normal edge. Otherwig2would consist of reverse edgealy and one would obtain
C=Tk— ... — Tk with ts(Ty) < ts(Tk) (contradiction).

SinceT; — Tj is not areverse edge, one hastgoT;) < ts(T;) and everis(T;) < tssit (Tj),
due toH beingt-fitting. SinceT; — ... — Ty only consists of reverse edges, an inductive
application of Definitioril6 results intssit (T;) < ts(Ti). This leads tds(T;) < ts(Ty) and
contradicts the assumption thgt's timestamp is minimal irC. Thus MCSGmust be
acyclic. O

5.2 Implementation

This section characterizes a serializability protocol fomascheduler which is derived
from TheorenB. We assume that th&-scheduler applies a strict two-phase lock protocol
since this protocol is common for commercial database management systems.

As mentioned at the beginning Sectiyin case of a strict two-phase lock protocol, the
commit order ofrw-transactions may be considered a timestamp order. More specifically,
the timestamp function is implicitly given g(Ti) <ts(T;) < ¢ < ¢j. (As we will see,
aborted transactions are not of interest.)

Since the correspondingv-histories are strict, the situatiom [x] < r}[x] < m'lf’I leads

tow[x < ¢ <X < m'j"I < ¢j and sats(Ti) < ts(Tj) holds due to the chosen timestamp
function. Hence, the qualityrin-ordered” is automatically guaranteed. For serializability
them-scheduler only needs to ensutefitting”.

Figurel6 captures a respective implementation using Java pseudo code and forms an
extension of the base protocol’'s pseudo code from Figur&or simplicity, it assumes
that them-scheduler is notified of transactional operations by calls to the metbadi} |,
write() , commit() andabort() . The methodnethodOp() handlesmoperations and is
called byhandleRegest()  from Figure4. Except forabort() , the methods do not impact
the systems’s normal transaction management process but only observe it. However, a
call toabort() is assumed to abort the client-side transaction as well as related resource
manager transactions.

For them-scheduler to work properly, it is required that an underlying resource manager
processes read, write, commit and abort operations in the same order as they are observed
by them-scheduler. Further, all those operations must passtbeheduler. The imple-
mentation does not yet account for memory management but in fact, all of the code’s data
structures can be handled in a way such that their size remains limited. At the end of this
section we will explain how this can be realized.

Transactions are represented by instances of €lagkereby a transaction’s timestamp
as well as its fitting timestamp are initially unknown. For that rea3ds, andT.ts fj
obtain the valuec when a respective transaction begins (Line 7). The tistsvl andml
(Lines 9, 10) store transaction operations in order to detect conflicts with other transac-
tions. The lists are used at a transaction’s commit-time in order to find conflicts with active
transactions (Lines 46 to 57).

Let Ty =t be a transaction which is represented by an instande ©he fieldt.ts g
from Line 8 stores the largest timestamp of a committed transaction producing a normal



©OoO~NOUTR_WN P

24 . Daniel Pfeifer and Peter C. Lockemann

interface DE {} /I Representation of a data element (just a marker interface)
class Mid { int kl; } /1D of a stored method result of operatiory$], ri[y]. ...
class Op { boolean read; DE x; }
class T { // Representation of a transacti@in

int id; /I The transaction’s ID

List<Op> | j = ©; int nextMId = 0; /I From Figure 4

int ts = o, tS fjt= oo; // Timestamp and fitting timestamp fay

int ts o = 0; // Maximum timestamp of transactions producing normal edgds to

Set<DE> rl = 0, wl = ©; //For storing data elements which are read respectively writteh by
Set<MId> ml = @; // For storingT;’s method operations aéld-objects

}

class MScheduler { /I Representation of the-scheduler
int nextTs = 1; /I To create the next timestarg

Rel<DEMId> V = ©0; // Relatescwith tuples(k,I) with x € d(m")

Rel<DE,T> 1t =  0; // Relatesxwith T-objects representings such thatX[x] € T
Rel<DE,T> wt = 0; // Relatesxwith T-objects representings such thaw[x] € T;

Rel<MId,DE> mt = ©; // Relates(k,!) with T-objects representings such than' € T;

Map<intint> txld2ts = 0; /Il Relates a transaction’s ID with its timestamp
synchronized void read(T t, DE x, int k) { /I Performrk[x] with tid =i
for each s € wt(x) if (checkTimestamps(s, t)) { abort(t); return; } /I Handlerw-conflicts
trladd(x); rt.add(x,t); /I Update relations
txld2ts.put(t.id, o); tI j.add(new Op(true, x));
synchronized void write(T t, DE X) { Il Performw; [X] with tid =i
for each s € wt(x) U rt(x)
if (checkTimestamps(s, t)) { abort(t); return; } /I Handleww- andwr-conflicts

for each m € V(x) //Handlewm-conflicts in respect totfitting”

for each s € mt(m) if (checkTimestamps(s, t)) { abort(t); return; }
twl.add(x); wtadd(x, t); Il Update relations
tl j.add(new Op(true, x));

synchronized void methodOp(T t, Mid m) { /1 Schedulen{ at them-scheduler with.id =i

for each x € V~Y(m) // Handlemw-conflicts
for each s € wt(x) if (sits < o) {

/I Update 's fitting timestamp ifrnk'I might cause a reverse edge
if (s.ts > txld2ts(m.k) && s.ts fit<tts fit) tis it = SIS i
I mk" might cause a normal edge, then check for abort
if (s.ts <= txld2ts(m.k) && s.ts > tis tol) LIS 1o = Sits;
if (tts (o1 >= tts it) { abort(t); return; } }

t.ml.add(m); mt.add(m, t); Il Update relations

synchronized commit(T t) { /I Handle commit ot
tts = nextTs++; txld2ts.put(t.id, t.ts); /I Create the timestamp
if (tts fit == o) tis i = tts;  // Adjusttsy; if necessary
for each x € twl //Update fitting timestamps for active transactions
for each m € V(x)
for each s € mt(m)
if (Sts == 0 & tiS g < SIS i) SIS it = LIS fit;
if (sts (o >= S.its it) abort(s);
for each x € trl /I rw-conflicts // Abort transactions violating-fitting” due tot 's timestamp
for each s € wt(x) if (checkTimestamps(t, s)) abort(s);
for each x € twl // ww andwr-conflicts
for each s € wt(x) U rt(x) if (checkTimestamps(t, s)) abort(s);
for each m € tml // wmconflicts
for each x € V-i(m)
for each s € wt(x) if (checkTimestamps(t, s)) abort(s);

}

boolean checkTimestamps(T a, T b) {
if (ats < o0 && his == o && ats > bits g ) bis g=ats;
return b.ts == o && bits to >= bits i

}
synchronized void abort(T t) { ... } /I Abortt

Fig. 6: Java Pseudo Code for-fitting” at the m-Scheduler



Theory and Practice of Transactional Method Caching . 25

edge which points td. tts o is important to guaranted-fitting” throughoutt s life-
time: While normal edges pointing tomay increase the value bfs o, reverse edges
originating fromt may decreastts i dynamically due to new transactional operations.
Them-scheduler's main task is to ascertais (o < t.ts ¢ untilt commits. At a viola-
tion of this invariant it aborts eitheror it aborts the respective conflicting transaction. The
methodcheckTimestamps() ~ from Line 59 assists in updatiridgs ;o accordingly and in
checking the stated invariant after the update. It is used my the mataaif)s , write()
andcommit()

The relationV associates data elements (instances of €18swith cached method calls
(Line 15). The latter ones are identified byd-objects according to the read operations
by which the method result was computed. (This coincides with the descriptiiirom
Section2.2 and Figured.) The purpose of the relatioms, wt andmt is to associate data
elements respectively IDs of method results with transactions in which they were accessed
(Lines 16 to 18).

The methodsead() ,write() andmethodOp() first check whether the intended oper-
ation might violate the qualityt*fitting”. At a violation, they abort the current transaction.
(Note that the pseudo code abstracts from the details of the abort process.) Otherwise, they
update then-scheduler’s data structures.

As an example of how the violation check works, consider the Line 2dadf) : Using
wt the method binds each transaction that wrote the same data element as the current read
operation to the local variabke If the transaction (bound t®) has got a timestamp less
than o it must have committed and so if the current transactiocommitted too, the
read operation would result in a normal edget € MCSG So, in order to assert-’
fitting” for t the expression.ts < t.ts fit must hold and this is just checked in Line 21
usingcheckTimestamps() . The arguments behind the checks of the metiriid() are
similar (Lines 26 to 29).

methodOp() observes a nemoperationmk" of a transactiorl; =t and determines if
the operation produces reverse or normal edges in respect to committed transactions. In
order to do somethodOp() loops over all data elements which are referenced byrthe
operationmk" (Line 34). If a committed transactiofy =s has written one of those data
elements, there is a conflict betwegrandT;. Further, ifT;’s timestamp is younger than
ts(Tk), one obtains the situation[x] < ¢ < wj[x] < ¢j < mi'“' which implies a reverse
edge and sats i must potentially be updated (Line 37). Using the nbdg2ts  the
m-scheduler fetches the timestartgoTy) in respect tunk". Converselyts(T;) < ts(Tk)
only allows the two optionsy;[x] < r}[x] < mik’I andr}[x < wy(xX] < ¢k < mik’I with k= j.

The former option indeed causes a hormal edgd.tSg, must be updated and the quality
"t-fitting” must be tested far (Lines 39, 40). The latter option is impossible since the base
protocol causes the cached result referenced\lﬂyco be invalidated right after executing
of wi[x].

Finally consider the functioning aommit() : At first a timestamp is assigned tts
(Line 44). Sinceommit() is synchronized, all committing transactions are totally ordered
and so is their timestamp. In concordance with Definitién 's fitting timestamp is set to
tts if it hasn't got a lower timestamp yet (Line 45).

Because now,'s timestamp is known, all conflict edges betweeand active transac-
tions can be checked to see whether they are reverse or normal edges and if they violate
"t-fitting”. The Lines 46 to 49 determine all related reverse edges and update an active



26 . Daniel Pfeifer and Peter C. Lockemann

transaction’s fitting timestamgts ¢i; accordingly. Note that a related conflict is guaran-
teed to cause a reverse edge. To see this, let againe andT; =s. A normal edge

would lead to the situatiow; [x] < r[x] < m'j"I < ¢i but this contradicts the assumption that
the resource manager guarantees strictnesswfdnistories. Line 50 checks & must be
aborted because of a changesdd ¢j; in Line 49.

The Lines 51 to 57 inspect active transactienfor normal edges —s< MCSGand
abort a respective transactierif t-fitting is violated due ta . In analogy to the case from
the Lines 46 to 49, it can be shown that conflicts inspected by the Lines 55 to 57 always
lead to normal edges.

5.3 Memory Management

So far the data structures used in Figéreould unboundedly grow with the number of
transactions and operations that the system processes. The following paragraphs briefly
describe how to limit the size of these data structures without changing the functioning of
the discussed implementation.

The first question to answer is when entries for a certain transaction may be deleted
because they don't affect the processing of active transactions anymore. A closer look at
Figure6 leads to two different cases to be considered: Due to the Lines 21, 27, 29, 40,
52, 54, and 57 an (active) transacti@ris aborted if some other transactidpproduces a
normal edgdl; — T; such thats(T;) > tsf;t (Ti) holds. For this case it suffices to retain the
entries for just those transactions contained in the following set:

Mi={t [tts >min{sts ¢ |sisactive}}.

The second case covers Line 37 where the fitting timestamp of a committed transaction
is assigned to the fitting timestamp of an active transaction. Therefore, one also needs to
retain the entries of transactiongontained in the following set:

Mo={t |tts >min{sts fi|Ix (kD) €Vixeswl Atxid2s(k) <tss )}}.

Finally Line 49 also affects the fitting timestamp of active transactions but since it only
passes on the fitting timestamp of a transaction that is about be committed, the respective
entry is already contained M.

The joint seM; UM> forms the set of transactions whose entries need to be retained, but
how can its size be controlled? There are two ways to do this: Firstly, one can delete entries
(x,(k0) from V which are stale because some transaclijonith a younger timestamp
than T¢ has preformed an operatiam[x]. This reduces the size dfl,. Alternatively,
an active transaction can be aborted in order to reduce the sig.oFinding the right
candidates to be removed frolty U M2 can be done efficiently. (A detailed discussion
of this process is beyond the scope of this paper.) Moreover, practical experience such as
from the experiments of the next section show that the siZé0f My is not a critical
system factor.

By controlling |[M1 UMgz|, one can limit the size of the data structures wt, mt and
txld2ts  from Figure6. Still, V may grow unboundedly because it must hold an entry
for every valid cached method result but there may be arbitrary many of those results
(in arbitrary many caches). To tackle this probleshould be limited by a fixed (but
reasonably high) upper bound. Then, an LRU-strategy can be used to replace respective
entries inV. By extending the base protocol from Sect@a the client cache that stores



Theory and Practice of Transactional Method Caching . 27

a method result which is associated with a replaced entkiyaain be notified in order to
erase the result.

A last thing to consider is that due to invalidation delays for cached method results,
methodOp() can potentially be called with an argument vaiufor which the respective
entry inV has already been replaced (or removed by controlf»y. For this reason
methodOp() must be adjusted to check the validity its argument valudo do so, the
following code should be inserted after Line 33 of Fig@re

it (V. ~L(m) = 0) { abort(t); return; }

6. EVALUATION

In this section we briefly justify the intellectual investment in transactional method caching
by giving evidence that the approach can considerably improve system scalability and per-
formance.

6.1 Experiment

We implemented a prototype of a transactional method cache anmdsaheduler on top
of the EJB application server product JBOSS v3.2Bdss]. The implementation of the
cache’s base protocol follows the architecture from Se@i@n The relational database
management system MySQL v4.0.MySQL!/] serves as a resource manager. The client
is a multithreaded Java program performing remote service method invocations. The client,
the application server and the database system are hosted on three separate PCs in a local
network, whereby the PCs’ hardware suits up-to-date desktop standards (including a 1.2
GHz Pentium 4 Processor and 512 MB RAM). The PCs operate under Windows XP. By
observing the related system resources we ensured that neither network bandwidth nor the
load on the client machine represented a potential bottleneck for the experiment.

The experiment’s database consists of a single SQL table with the following structure:

item(id int primary key, name varchar(50), descr varchar(250),
price float, weight float, manuf varchar(50))

Using an auxiliary program the table was filled with 1 million random valued entries. At
the application server, an EJB session bean implemented a service interface according to
Figure7. The methodinditemByld() reads a database entry from ften -table via

JDBC Sun f} and returns the contents of a related table row adtemm -object. The
related table row is queried via its key value using the methidd'argument. Similarly
updateltem() , changes a table row according to tken -object which is passed in as

an argument. The related table row is accessed via its key value usitignth@bject’s

id -field. (If no such row exists, the method throws an exception.) For the database the
SQL isolation level was set to "SERIALIZABLE". On this level, MySQL performs a strict
(1-version) two-phase lock protocol with row level locking.

Themscheduler is implemented as a delegating JDBC driver and incorporates the pro-
tocol from Sectiorb.2. As explained at the end of Secti@r?, we had to insert extra code
behind the service methods’ JDBC statements in order to infornmtbeheduler about the
accessed table rows. (In this respect, the corresportitvglue was chosen to identify a
data element.)

The client contains a single transactional method cache. The cache applies an LRU
replacement strategy with a limit of 4000 storable method results. A variable number of



=

QWO ~NOOA~WNE

28 . Daniel Pfeifer and Peter C. Lockemann

public interface ItemSession extends javax.ejb.EJBObject {
public Item findltemByld(int id) throws RemoteException;
public void updateltem(ltem item) throws RemoteException;

}

public class Item implements java.io.Serializable {
public int id; public String name;
public String description; public double price;
public double weight; public String manufacturer;

}

Fig. 7: Java Pseudo Code of the Experiment’s Service Interface

client threads perform transactions concurrently. Every transaction consists of 10 method
calls addressing the server’s EJB interface.

For every call a client thread chooses randomly whether tofinditemByld() or
updateltem() . findltemByld() is invoked with the probabilityp, = 0.8 whereasipdateltem()
has the probabilityt — p;. After finishing the 10 calls successfully, the thread commits (re-
spectively aborts) its transaction with a chanceef 0.95 (respectivelyl — pc).2 At last
the thread pauses for 1 second before starting a new transaction (no matter if the previous
transaction committed or aborted).

An important parameter that determines the experiment’s cache hit rate as well as the
cache invalidation rate is the value of iideargument when callinfindlitemByld() and
the value ofitem.id  when callingupdateltem() . The client uses a random distribu-
tion to compute a corresponding value, whereby 1 milliem -table rows are potentially
referenced.

During a warmup phase the cache fills up to its maximum size of 4000 method results.
After that the probability that a service method call causes a 1&iB% (this chance im-
plies the event of invokindinditemByld() ). The probability is mainly caused by the
given cache size and the chosen random distribution for generdtiaglues which is not
uniform® The chance of invalidating a cached method result (due to a respective call of
updateltem() ) is aboutl3.25% (= (1—pr)/pr - 53%).

One may ask, why we did not resort to an existing benchmark application instead of de-
signing the experiment from above. Unfortunately there are no useful and realistic bench-
marks for testing client-side transactions in the application server domain. ROBE8lhet
et al. 2002/Cecchet et al. 200 DbjectWelj is an EJB-benchmark that comes close to our
needs and models an auction web site which is similar to eBay.com. However, the bench-
mark does not account for client-side transactions and cannot be reasonably adjusted to
make use of this feature.

Still, the main input parameters that govern the experiment from above represent conser-
vative estimates of similar parameters that result from applyorgtransactional method-
cachingto RUBIS. In particular, Pfeifer and Jakschitsch 20p8bserved cache hit rates
between 53% and 78% when applying non-transactional method caching to RGB&S. |
chet et al. 200Lconsiders a fraction of about 85% of read-only method calls as most
representative for an auction web site workload. (In contrast, we are more conservative by
settingpy = 80%)

SWe have also tried other transaction lengths varying between 5 and 25 calls per transaction. The results are very
similar to the chosen value of 10 method calls per transaction.
10 Essentially we employed a log-normal distribution with the standard paranetevsandc = 1.6.



Theory and Practice of Transactional Method Caching . 29

1700
1600
1500
1400
1300
1200
1100
1000

Committed Transactions per min

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100 105
Number of Clients

‘ = No Caching ® Base Prot. Base Prot., No Hits OCC-Like Prot. OCT Prot. ‘

Fig. 8: Committed Transactions as a Function of the Number of Concurrent Client Threads (Throughput)

Average Duration for Successful Transactions in s

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105
Number of Clients

‘ = No Caching ® Base Prot. Base Prot., No Hits OCC-Like Prot. OCT Prot. ‘

Fig. 9: Average Duration of a Transaction that Executed 10 Service Method Calls (Response Time)

We therefore believe, that transactional method caching can cause similar results as for
the given experiment when it is applied to real world applications. Moreover, due to the
experiment’s simplicity, its input parameters are clear and its results are well traceable.
Beyond these consideration®féifer and Jakschitsch 20Bas already shown that non-
transactional method caching produces very good efficiency improvements when applied
to RUBIS.

6.2 Results

For the results presented next, every data point corresponds to a two minute measuring
period. The measuring period was preceded by a two minute warmup phase in order to
fill the method cache. By conducting additional test experiments we ensured that both



30 . Daniel Pfeifer and Peter C. Lockemann

Percentage of Aborted Transactions
D

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105
Number of Clients

‘ = No Caching ® OCC-Like Prot. OCT Prot. ‘

Fig. 10: Percentage of Aborted Transactions in Respect to Started Transactions

the duration of the measuring phase as well as the warmup phase produced representative
values.

Figure8 shows the number of committed transactions per minute for a varying number
of concurrent client threads under five different system configurations. The graph "No
Caching” represents the respective results for the system without using a method cache.
The graph "OCT Prot.” depicts the results if transactional method caching is applied using
the mrscheduler protocol from Secti@(OCTP). A simpler transactional protocol which
is similar to the classical OCC protocol froiAdya et al. 199bhas also been tested (see
also Sectiorb.l). The fourth graph displays system behavior when a method cache is
used whileonly applying the base protocol from Secti@r.2. This option would hardly
be applied in practice since it does not provide transactional consistency. It was added
to Figure8 because it gives an impression of the overhead ohatheduler protocol as
opposed to the pure base protocol. Similarly the graph "Base Prot., No Hits” shows system
behavior when applying the base protocol but not granting any cache hits. This graph helps
to characterize the overhead of the base protocol versus a system without method caching.

All system variants scale well with an increasing number of concurrent client threads.
However, system variants using method caching attain a considerably higher level of trans-
action throughput. By comparing "No Caching” and "Base Prot., No Hits” one can see
that the additional cost for the base protocol remains moderaten®&oheduler protocols
reduce the transactional throughput in comparison to a "pure” base protocol, because they
abort a fraction of transactions for consistency reasons.

Figure9 illustrates the average duration of a successful transaction for the same runs
as in FigureB. Here, method caching considerably shortens transaction runtimes and so it
improves system performance. As in FigBrene can observe the cost of the base protocol
and them-scheduler protocols which are both moderate.

Finally, FigurelQshows the transaction abortion rate for those runs from Figurgich
maintain transactional consistency. Obviously abortions become more likely with an in-
creasing number of concurrent transactions. The worst abortion rate is observed for the
OCC-like protocol — transactions may be aborted byntkecheduler as well as the database



Theory and Practice of Transactional Method Caching . 31

| webClient |
I

[ Web PagIge Cache J
[ WebSever |
[ MethorIj Cache J
] Applicatilon Server \
[ App. Da\Ita Cache}

Web Application
Fig. 11: Common Tiers of Web Application Architectures and Related Options for Caching.

system. For the system variant without method caching only the database system aborts
transactions. Surprisingly a system with method caching using OCTP has lower abortion
rates than the variant without method caching! The reason for this is that OCTP allows even
transactions to commit that have caused cache hits on stale cached method results. This
is also the reason why OCTP has a better quality than the OCC-like protocol. The OCC-
like protocol always aborts transactions accessing stale cached method results. OCTP
establishes a kind of a consistent multi-version transaction scheduling policy in respect to
cached method results.

All'in all, the experiments give evidence thating OCTP, transactional method caching
can improve system throughput, response time as well as transaction abortion rates

7. RELATED WORK
7.1 Web Application Caching

In the last years, research as well as industry has made various efforts to improve the
performance of web applications by means of caching. Since transactional method caching
can be beneficial in the context of web applications, we briefly compare it against other
caching approaches in this field and discuss the advantages and disadvantages.

Figure1l shows the tiers of a typical web application architecture and highlights where
caches potentially come into play:

— Application data caching happens somewhere in between the database and the applica-
tion server tier. If it is done right in front of the databa&rémbowicz 2000Luo et al.
2002, [Larson et al. 2003The TimesTen Team 20P0abstractions of database queries
are associated with query results in the cache. In case of a cache hit, the query result
is immediately returned by the cache as opposed to running the database query engine.
At the server side, application data is cached either programmatically through runtime
objects whose structure has been designed by the application dev&ippehg Group
jcaché] or it is controlled by an object-relational mapping framewdkacle; Software
Tree].

— Web page caching usually occurs in front of a servlet- or script-enabled web server.
Beyond the simple task of caching static pages, there are also many approaches for



32 . Daniel Pfeifer and Peter C. Lockemann

caching dynamically generated web pa@®stbn et al. 2002Challenger et al. 199%.i
etal. 200}

— A method cache is inserted at the "backend” of a servlet- or script-enabled web server
from where application server calls are initiated. Whidifer and Jakschitsch 2003
discussed non-transactional method caching, this paper is the first one presenting a so-
lution for transactional method caching.

The major problem of application data caches is that they can only save the cost of
database queries but no cost originating at the application server tier. Therefore caching of
service method results has a higher potential for improving system efficiency. In contrast,
the pure cost for executing page generation scripts at the Web server tier is rather low and
so, there is not much gain when caching dynamic Web pages instead of service method
results.

One important question that all dynamic web caching strategies must deal with is when
and how to invalidate cache content. l@andan et al. 20Q1Li et al. 2003 and |Luo
and Naughton 20(JIURLs of dynamic pages on the web server side are associated with
dependent SQL queries on the database level. If a database change affects a correspond-
ing query, the related pages in the cache are invalidatedCdndan et al. 20Q1Li et al.

2007 dependencies between queries and URLs are automatically detected through sniff-
ing along the communication paths of a web application’s tiers. Although the approach
observes database changégrovides only a weak form of update consistency, whereas
our approach ascertains full transactional consistency.

Other strategies for dynamic web page caching require a developer to provide explicit
dependencies between URLSs of pages to be cached and URLSs of other pages that invalidate
the cached one®Ersistence Software 2C0Dften, server-side page generation scripts or
database systems may also invalidate a cached page by invoking invalidation functions of
the web cache’s AP/Anton et al. 2002 Spider Software 202 XCache Technologiek
Unfortunately these strategies are invasive which means that application code (e.g. page
generation scripts) has to be changed. In conteastapproach is completely transparent
to the client code and requires only minor changes at the server-side ddaaefore it
can be applied even in late cycles of application development.

An explicit fragmentation of dynamic web pages via annotations in page generation
scripts helps to separate static or less dynamic aspects of a page from parts that change
more frequently/Datta et al. 2001ESI ]. Also, dependencies such as described in the
previous paragraph can then be applied to page fragments instead of entire pages. In this
respectpur approach enables an even more fined grained fragmentation as it treats depen-
dencies on a level where page scripts invoke service methods from the application&server.
great benefit, is that explicit page fragmentation annotations (such as supportesi by [
then become obsolete. This also leads to the conclusiodlching the results of service
method calls causes cache hit rates which are at least as good as in the case of dynamic
Web caching (or even better).

7.2 Conventional Transaction Protocols

This section highlights the differences between conventional transaction protocols and the
approach described in this paper.

Existing work in the field of transactional caching relates to page server systems, where
a client can download a database page to its local cache, change it and eventually send



Theory and Practice of Transactional Method Caching . 33

those changes back to the senferanklin et al. 199J For these systems the cache proto-

col ensuring transactional consistency forms an integral part of the database system itself.
In contrast, this paper's approach assumes that a tight integration with a given database
system is not possible. Moreover, the presented approach accounts for the characteris-
tics of an application server that does not enable direct access to data elements such as
pages. Therefore, we described how to extend an application server architecture to enable
consistent client-side method caching. The cache protocol is designed so that is does not
alter the standard communication flow between client and server. Also, the unit for ensur-
ing the transactional consistency — thescheduler — remains separate from an underlying
resource manager (such as a database system).

In order to develop an efficient protocol for thescheduler we presented a theory for
reflecting the use of cached method results inside transactions. Without this theory, proving
the correctness of OCTP would have been very difficult. As opposed to that, the correctness
of conventional transactional cache protocols such as Q&Iyd et al. 1995or CBR
[Franklin et al. 199Fis more obvious and does not demand formal considerations.

An important difference between OCTP and other conventional transactional cache pro-
tocols is that OCTP does neither avoid access to stale cache entries (such as CBR) nor
necessarily abort transactions which have accessed stale cache entries (such as OCC).
Therefore, in spite of being optimistic, OCTP can offer low transaction abortion rates.

With respect to the taxonomy dffanklin et al. 199FOCTP is a "detection based pro-
tocol” whereby a validation may be "deferred until commit”. Further, OCTP gives invali-
dation hints "during a transaction” and uses "invalidation” (as opposed to "propagation”)
as its "remote update action”. Propagation as a remote update action is not applicable since
the m-scheduler has no access to a method call's arguments which are needed for recom-
puting the method result that would have to be propagated. According to the taxonomy of
[Gruber 199FYOCTP supports "early aborts” and may be classified as "lazy reactive”.

Apart from transactional cache protocols, OCTP has a similarity to the multiversion
timestamp protocol (MVTO) fromReed 198B Let T; be a transaction with an operation
ri[x] but without a priorw;[x]. At MVTO, r[x] reads the versior, that was written by a
committedransactionT, such that

ts(Tk) = max{ts(T;) | ts(T;) < ts(Ti) Aw;[x] € Tj}

holds. Scheduling an operaticurrf’| at OCTP is similar to scheduling[x] at MVTO.
However, at OCTP the version of a respective data element is already fixed by the cache hit
itself, namely bymi'"I . Therefore, then-scheduler cannot chooggbut can only determine
whereT; would best "fit” in the given timestamp order. In order to do sontecheduler
computegsit (T;).

The fitting timestamps;; from Definition/16 is also connected to the concept of dy-
namic timestamps fronBayer et al. 198R In [Bayer et al. 198Pa scheduler may delay
the assignment of timestamps to transactions in order to accept a broader range of serial-
izable histories. A respective timestamp is therefore caljgthmic Although OCTP’s
fitting timestamp may change dynamically, a related transaction’s real timesséfmps
always dictated by thew-scheduler and therefore it is not dynamic. This is the crucial
difference between OCTP and the proposition fri8ayer et al. 198p



34 . Daniel Pfeifer and Peter C. Lockemann

8. CONCLUSION

This paper has presented an approach for the transactional caching of method results in
the context of application server systems. A related cache is placed at the system’s client
side. It comes into play when the client performs a sequence of method calls addressing
the server, whereby the calls are demarcated by an ACID transaction. If the client invokes

a read only method with the same arguments for the second time the related result can po-
tentially be taken from the cache which avoids an execution at the server. For a reasonable
hit rate, the approach is inter-transactional meaning that a cached method result can be
used by multiple client transactions.

The paper has adjusted the conventional architecture of an application server in order to
enable transactional method caching. Since the use of cached method results alters the way
a transaction is processed, it must be regarded when ensuring transactional consistency.
Therefore, we introduced an new system component at the server side which maintains
transactional consistency in the presence of cache hits. This soedieldeduler observes
cache hit operations as well as normal data access operations ascertains serializability of
client transactions.

To develop a protocol for am-scheduler, the paper extended the conventional 1-version
transaction theory by an operation which reflects the use of cached method results. We
derived a definition for serializability in respect to the extended transaction histories and
proved a corresponding serializability theorem.

Using these theoretical results, we developed an efficient recovery protocol as well as
an efficient serializability protocol for am-scheduler and proved their correctness. More-
over, the paper discussed some of the protocols’ implementation aspects. An experimental
evaluation showed that the presented cache can considerably improve system performance
and scalability as well as transaction abortion rates.

A limitation of the approach is that in order to guarantee transactional consistency, the
m-scheduler needs to obse@# data access operations addressing an underlying resource
manager. Also, it does have to make some basic assumptions about the resource man-
agers’ transaction management protocols. The stated limitation would be uncritical, if
an m-scheduler was integrated in a resource manager. Note that for this case, the major
contributions of this paper, namely the presented theory, the recovery protocol and the
transactional cache protocol, still apply.

As part of our future work we would like to apply the idea behind OCTP to the domain of
page server systems. In this field many transactional cache protocols have been studied (for
an up-to-date comparison s&#U et al. 200§). However, as explained in Secti@r?, none
of them allow transactions to commit who have accessed stale cache entries. Currently,
transaction protocols for page servers either enable moderate efficiency combined with
low abortion rates (e.g. CBR) or high efficiency combined with potentially intolerable
abortion rates (e.g. OCC). In contrast, an OCTP-like protocol for page servers could bring
together high efficiency (via optimism) and low abortion rates (by tolerating access to stale
cache entries) while still ensuring serializability.

Acknowledgement

The authors would like to thank Prof. Birgittadikig-Ries for thoroughly proof-reading
this paper.



Theory and Practice of Transactional Method Caching . 35

REFERENCES

ADYA, A., GRUBER, R, Liskov, B., AND MAHESHWARI, U. 1995. Efficient optimistic concurrency control
using loosely synchronized clocks. Rroceedings of the 1995 ACM SIGMOD Conference on Management
of Data ACM Press.

ANTON, J, JACOBS, L., LIu, Y., PARKER, J., ZENG, Z., AND ZHONG, T. 2002. Web caching for database
applications with oracle Web cache. Pnoceedings of the 2002 ACM SIGMOD Conference on Management
of Data ACM Press.

APACHE GROUP. Java Caching System (JCjtp://jakarta.apache.org/turbine/jcs

BAYER, R., ELHARDT, K., HEIGERT, J, AND REISER, A. 1982. Dynamic timestamp aIIocatlon for transactions
in database systems. Imstrlbuted Data BasedNorth-Holland Publishing Company, 9-20.

BERNSTEIN, P, HADZILACOS, V., AND GOODMAN, N. 1987.Concurrency Control and Recovery in Database
SystemsAddison-Wesley.

CANDAN, K. S, LI, W.-S, Luo, Q., HSIUNG, W.-P, AND AGRAWAL, D. 2001. Enabling dynamic content
caching for database-driven web sitesPloceedings of the 2001 ACM SIGMOD Conference on Management
of Data ACM Press.

CECCHET, E., CHANDA, A., ELNIKETY, S, MARGUERITE, J, AND ZWAENEPOEL, W. 2001. A comparison
of software architectures for E-business applications. Tech. Rep. TR02-389, Rice University.

CECCHET, E., MARGUERITE, J, AND ZWAENEPOEL, W. 2002. Performance and scalability of EJB applica-
tions. InProceedings of the Conference on Object-Oriented Programming, Systems, Languages and Applica-
tions. ACM Press.

CHALLENGER, J, DANTZIG, P, AND |YENGAR, A. 1999. A scalable system for consistently caching dynamic
Web data. IrProceedings of the 18th Conference of the IEEE Communications SOEER.

DATTA, A., DUTTA, K., THOMAS, H., AND VANDERMEER, D. 2001. A comparative study of alternative middle
tier caching solutions to support dynamic Web content acceleratioRroceedings of the 27th Conference
on Very Large DatabaseMorgan Kaufmann.

ESI. ESI - Edge Side Includebttp://www.esi.org

FRANKLIN, M. J., CAREY, M. J, AND LIVNY, M. 1997. Transactional client-server cache consistency: Alter-
natives and performanc&CM Transactions on Database Systems2315-363.

GILAD BRACHA. Generics in the Java programming languagf@tp://java.sun.com/j2se/1.5/pdf/
generics-tutorial.pdf

GREMBOWICZ, H. 2000. Oracle Database Cache — Concepts and Administration Guitacle.

GRUBER, R. 1997. Optimism vs. locking: A study of concurrency control for client-server object-oriented
databases. Tech. Rep. MIT-LCS-TR-708, MIT. Februar.

HARDER, T. 1984. Observations on optimistic concurrency control schem@mation Systems 2, 111-120.

JBoss. JBosshttp://www.|boss.org

jcache. JCache — Java Tempory Caching /&®&p.//|cp.org/en/jsr/detail?id=107

LARSON, P.-A, GOLDSTEIN, J, AND ZHOU, J.2003. Transparent mid-tier database cachmg in SQL Server. In
Proceedings of the 2003 ACM SIGMOD Conference on Management of S@k4 Press.

L1, W.-S, HSIUNG, W.-P, KALSHNIKOV, D. V., SION, R., PO, O., AGRAWAL, D., AND CANDAN, K. S.
2002. Issues and evaluations of caching solutions for web application accelerattvocéedings of the 28th
Conference on Very Large Databas®torgan Kaufmann.

Luo, Q., KRISHNAMURTHY, S, MOHAN, C., PIRAHESH, H., WOO, H., LINDSAY, B. G., AND NAUGHTON,

J. F.2002. Middle tier database caching for E-businesPrboteedings of 2002 the ACM SIGMOD Conference
on Management of Dat&A\CM Press.

Luo, Q.AND NAUGHTON, J. F.2001. Form based proxy caching for database-backed Web sifémdaedings
of the 27th Conference on Very Large Databases (VLDBygan Kaufmann, Rome, Italy.

MARINEScCU, F.2002.EJB Design PatternsWiley, USA.

MIcROSOFT. Microsoft NET Framework (.NET http://msdn.microsoft.com/netframework

MYSQL. The MySQL relational database systeftip:/www.mysgl.com

OBJECTWEB. The RUBIS projecthttp://rubis.objectweb.org

ORACLE. OracleAS TopLink http://otn.oracle.com/products/ias/toplink/index.html

PERSISTENCE SOFTWARE. 2001. Dynamai — a technical white papehttp://www. per5|stence com/
products


http://jakarta.apache.org/turbine/jcs�
http://www.esi.org�
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf�
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf�
http://www.jboss.org�
http://jcp.org/en/jsr/detail?id=107�
http://msdn.microsoft.com/netframework�
http://www.mysql.com�
http://rubis.objectweb.org�
http://otn.oracle.com/products/ias/toplink/index.html�
http://www.persistence.com/products�
http://www.persistence.com/products�

36 . Daniel Pfeifer and Peter C. Lockemann

PFEIFER, D. AND JAKSCHITSCH, H. 2003. Method-based caching in multi-tiered server application®nlithe
Move to Meaningful Internet Systems 2003: CooplS, DOA, and ODB&@Sthger, 1312-1332.

REEeD, D. P.1983. Implementing atomic actions on decentralized dA@M Transactions on Database Sys-
tems 11, 3-23.

SOFTWARE TREE. JDX — object-relational mapping technolodmtp://www.softwaretree.com/main.htm

SPIDER SOFTWARE. 2001. Accelerating content delivery: The challenges of dynamic content, white paper.
http://www.spidercache.com

SUN. Dynamic proxy classettp://java.sun.com/j2se/1.3/docs/quide/reflection/proxy.html

SuN. Enterprise Java Beans (EJBjtp://java.sun.com/products/ejb

SUN. Java Database Connectivity — JDEi@p://java.sun.com/products/jdbc

SUN. Java Transaction API (JTA), version 1Hatp://java.sun.com/products/jta/

THE OPEN GRoOuUP. Distributed transaction processing.http://www.opengroup.org/public/pubs/
catalog/tp.htm

THE TIMESTEN TEAM. 2000. High performance and scalability through application-tier, in-memory data man-
agement. IrProceedings of the 26th Conference on Very Large Databaéegan Kaufmann.

Wu, K., FEI CHUANG, P, AND LILJA, D. J.2004. An active data-aware cache consistency protocol for highly-
scalable data-shipping DBMS architectures.Phoceedings of the 1st Conference on Computing Frontiers
ACM Press, 222-234.

XCACHE TECHNOLOGIES XCache — a dynamic content Web cachip://www.xcache.com


http://www.softwaretree.com/main.htm�
http://www.spidercache.com�
http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html�
http://java.sun.com/products/ejb�
http://java.sun.com/products/jdbc�
http://java.sun.com/products/jta/�
http://www.opengroup.org/public/pubs/catalog/tp.htm�
http://www.opengroup.org/public/pubs/catalog/tp.htm�
http://www.xcache.com�

