
Analytical Considerations for Transactional Cache
Protocols

Daniel Pfeifer

Institute for Program Structures and Data Organisation (IPD)

Universität Karlsruhe, Germany

pfeifer@ira.uka.de

April 19, 2005

Since the early nineties transactional cache protocols have been intensively studied in the context of client-server
database systems. Research has developed a variety of protocols and compared different aspects of their quality
usingsimulation systemsand applying semi-standardized benchmarks. Unfortunately none of the related publi-
cations substantiated their experimental findings by thorough analytical considerations. We try to close this gap
at least partially by presenting comprensive and highly accurate analytical formulas for quality aspects of two
important transactional cache protocols.

We consider the non-adaptive variants of the ”Callback Read Protocol” (CBR) and the ”Optimistic Concur-
rency Control Protocol” (OCC). The paper studies their cache filling size and the number of messages they
produce for the so-calledUNIFORMworkload. In many cases the cache filling size may considerably differ from
a given maximum cache size – a phenomenon which has been overlooked by former publications. Moreover
for OCC, we also give a highly accurate formula which forecasts the transaction abortion rate. All formulas are
compared against corresponding simulation results in order to validate their correctness.

Categories and Subject Descriptors: H.2.4.o [Information Systems]: Database Management—Systems, Trans-
action Processing; H.3.4.b [Information Systems]: Information Storage and Retrieval—System and Software,
Distributed Systems; C.4 [Performance of Systems]: Optimization

General Terms: Caching, Client-Server, Protocol, Transaction Management

Additional Key Words and Phrases: Page-Server, Performance, Analysis

1. INTRODUCTION

In the early nineties database researchers have started to study client-server database sys-
tems. At this type of systems, clients may access a central database system over the net-
work in order to perform transactions. For read and write access a client downloads a fixed
unit of data from the server database and stores it in a local cache. Depending on the type
of database system the data units may be pages or objects (or both). For simplicity this
paper considers only pages as data units. Figure 1 illustrates the basic architecture of a
client-server database system. A client may access serveral pages within the same transac-
tion. At transaction commit, all client changes must eventually be propagated to the server
and must be written to the server’s database.

It is widely accepted that client-server database systems should meet three important
requirements:

—Client transactions should be serializable at the database server. (Serializability is a
well-known consistency requirement for database systems (see [Bernstein et al. 1987]).)

2 · Daniel Pfeifer

Database on Disk

Disk-Cache

Server

Messages Passing the
Network

Client cClient 1

Local Cache Local Cache

Fig. 1: Basic Architecture of a Client-Server Database System

—The so-called external consistency ensures that a valid serialization order of committing
transactions is the same as the commit order at the server ([Adya et al. 1995]).1

—Execution of client requests should be as efficient as possible. This includes high trans-
action throughput, low transaction latency and a low probability of transaction aborts.

Obviously, the protocol for processing client operations has a crucial impact on these
requirements. Any such protocol which caches downloaded pages at the client side and
which meets the first two of the above requirements is called atransactional cache proto-
col. In the following we refer to it more shortly as a protocol.

One of the goals of various research contributions in the field of client-server database
systems was to invent highly efficient protocols or to compare existing protocols with re-
spect to their efficiency. Since many parts of a client-server database system are already
fixed by its core architecture and by hardware parameters, the essential algorithm behind a
protocol can only optimize a few efficiency-related parameters. These include

—the number and the size of messages transferred between client and server,
—the degree to which message processing happens synchronously or asynchronously, re-

spectively and
—the probability of transaction aborts.

Traditionally, the quality of protocols is evaluated by simulation models and so, the re-
lated results are experimental in nature. There is only little work on predicting quality
aspects of protocols analytically. Unfortunately there are drawbacks in considering simu-
lation resultsonly:

—Detecting implementation errors and false results is difficult. Analytical solutions can
help to substantiate experimental findings and vice versa.

—Experimental results do not give plausible explanationswhy a protocol behaves in a
certain way. Conversely, analytical solutions are usuallybasedon plausible explanations
and make them explicit.

—Unlike simulation results, analytical findings can help to optimize system parameters
instantly at system runtime.

In this paper we analyze quality parameters of two important and widespread protocols,
namely the ”Callback Read Protocol” (CBR, [Wang and Rowe 1991]) and the ”Optimistic

1In many cases it is still acceptable if the serializiation order and commit order deviate from each other within
certain bounds.

Analytical Considerations for Transactional Cache Protocols · 3

Concurrency Control Protocol” (OCC, [Adya et al. 1995; Gruber 1997]). We assume fixed
transaction lengths and use the so-calledUNIFORM workload. This workload assumes
that a random transaction operation accesses every database page with the same probability.
Moreover, the probabilities for read and write access of database pages are constant (but
may differ from each other).

Given this framework, we derive highly accurate formulas to predict the following qual-
ity parameters of CBR and OCC:

—the average number of messages exchanged between a client and the server with respect
to a committing transaction and

—the average filling size of a client cache after (infinitively) many operations. Note that
a client cache does not always fill up to its maximum size since page roll-ins and re-
movals may compete at the cache. This phenomenon has not been studied in any former
publications.

In order to verify our analytical solutions, we constructed a client-server database sim-
ulation system according to [Franklin et al. 1997]. As it will be shown, there is a strong
correspondence between the experimental and the analytical results and so, the related
results give mutual evidence for their correctness.

We only consider thenon-adaptiveversions of CBR and OCC. The adaptive versions of
these protocols, namely ACBL and AOCC, may dynamically reduce the units of data for
operations from pages to objects in order to reduce the chance of conflicts ([Zaharioudakis
et al. 1997; Gruber 1997]).

Adaptivity does not affect the number of messages per committing transaction and so
the respective formulas from below also hold for ACBL and AOCC. However, our analysis
of cache filling sizes does not apply to ACBL and AOCC.

Additionally, we give a highly accurate formula to predict transaction abort rates when
applying OCC. Note that there is a body work in estimating transaction abort rates of op-
timistic transaction protocols (see [Thomasian 1998]). Unfortunately the related solutions
are either mathematically complex or too inaccurate. In contrast, we improve a simple and
well-known formula for estimating abort rates of optimistic protocols such that it produces
highly accurate results for OCC.

The rest of this paper is structured as follows: Section 2 references important publica-
tions in the field of transactional caching and discusses how protocols have been analyzed
by former publications. Section 3 analytically derives the expected cache filling size for
CBR as well as OCC and verifies the solutions’ correctness using simulation. Section 4 and
Section 5 focus on the number of messages and OCC’s transaction abort rate, respectively.
The paper closes with a brief conclusion.

2. RELATED WORK

Currently, [Franklin et al. 1997] is one of the most authoritative contributions in the field of
client-server database systems. The authors roughly compare about nine different protocols
and classify them according to a taxonomy. Moreover they compare some of the protocol’s
efficiency aspects using a simulation system.

The simulation system is based on a closed queuing simulation model for client-server
database systems which was first introduced by [Wilkinson and Neimat 1990]. The core
concept of this simulation model was adopted by many papers in the field of transactional
cache protocols including [Wu et al. 2004; Chu and Winslett 1994; Chung et al. 1997;

4 · Daniel Pfeifer

Franklin et al. 1997; Gruber 1997; Adya et al. 1995;Özsu et al. 1998; Zaharioudakis et al.
1997; Wang and Rowe 1991; Franklin and Carey 1992; Carey et al. 1991; Carey et al.
1994]. Therefore, it represents a quasi-standard for comparing corresponding protocols.
Concerning the simulation model itself, the main difference across these publications are
the are architectural tuning parameters, e.g. network latency, processor speed, disk speed
or the number of instructions to perform protocol related actions.

There has also emerged a quasi-standard for the type of transaction workloads which
are used in the context of client-server database simulation systems. The most important
ones areUNIFORM, HOTCOLD, PRIVATE, HICON andFEEDand they were introduced
by [Franklin and Carey 1992; Carey et al. 1991]. [Wu et al. 2004; Carey et al. 1994;
Zaharioudakis et al. 1997; Gruber 1997;Özsu et al. 1998; Franklin et al. 1997; Adya et al.
1995] use all or subsets of these workloads in order to study the quality of protocols. Every
workload tries to reflect more or less typical access patterns of potential client applications
or puts focus on certain quality aspects. In this paper we limit ourselves to theUNIFORM
workload because it well exhibits the quality aspects we want to study. Also, due to its
simplicity, it is well suited for analytical considerations.

The protocols that we regard in this paper, namely CBR and OCC, have been intensively
studied using simulation ([Franklin et al. 1997; Adya et al. 1995; Gruber 1997]). We refer
to [Franklin et al. 1997] and [Adya et al. 1995; Gruber 1997] for a detailed description
of CBR and OCC as well as their derivatives ACBL and AOCC. CBR is widely accepted
as the leading algorithm because it combines good transaction throughput with low abort
rates ([Wu et al. 2004; Adya et al. 1995]). OCC and its derivative AOCC provide very
good transaction throughput but for certain workloads, they can lead to high abort rates
([Wu et al. 2004; Adya et al. 1995; Gruber 1997]).

To the best of our knowledge there are no publications which present conclusive and
accurate analytical models for quality parameters of protocols. [Gruber 1997] discusses a
basic model which explains why the number of messages per transaction differ between
OCC and CBR. However, the model is far from enabling the prediction quantitative results.
[Wu et al. 2004] introduce ADCC – a peer-to-peer-based protocol. The authors analytically
compare the message cost of CBR and ADCC for the case of write/write conflicts. Nei-
ther does this analysis predict the total message cost per committing transaction nor is it
validated by experiments.

[Franklin et al. 1997] depicts the cache hit rate for simulation results which are based on
theUNIFORMworkload. The related chart displays the effect of a cache filling size which
is below the maximum cache size but the phenomenon is not discussed any further.

3. CACHE SIZE

For many workloads, a client’s cache filling size can essentially differ from the cache’s
maximum cache size even after many operations. Assuming theUNIFORMworkload, this
section presents formulas to predict this effect for CBR and OCC. To verify their accuracy,
the formulas’ results are compared with corresponding simulation results.

3.1 Analysis

Let c be the number of clients running operations of concurrent transactions in random
order. Letn be the total number of operations that have been processed across all clients
since system start. Letpr be the probability that an operation performs a read access and
pc be the chance that an operation is part of a committing transaction.

Analytical Considerations for Transactional Cache Protocols · 5

We consider a certain clientC and its cache. Lets(n) beC’s current cache filling size
after n operations andsmax be its maximum cache size. LetD be the total number of
database pages at the server. Further, letphit(s) be the cache hit rate at clientC which
depends on the caches filling sizes.

Since we assume aUNIFORM workload, we can determine the probability of a cache
hit for then+1-th operation occurring at clientC as follows:

phit(s(n)) = s(n)/D. (1)

When considering all concurrent requests of all clients, there is fraction of requests that
increases the cache size atC and another fraction that decreases the cache size. Given the
cache is not yet full, an increasing cache size is caused by every page miss at clientC. On
the other hand, a page invalidation (at OCC) or a page callback (at CBR) reduce the cache
size by one. The corresponding actions occur in random order with specific probabilities
and cause an asymptotic cache filling sizesexpafter infinitively many calls. Obviously,sexp

ranges in[0,smax].
To determinesexp, we proceed as follows: At first, we derive an equation describing how

the expected cache filling sizes(n+1) (for operationn+1) depends ons(n). The equation
ignores the minimum cache size0 and the maximum cache sizesmax. Then, we consider
the related asymptotic solutionlimn→∞ s(n) which gives a stable fixed pointsf ix. As the
final solution we obtainsexp= max(0,min(sf ix,smax)).

In the following we discuss the equation fors(n+1) and the related fixed pointsf ix for
OCC as well as CBR.

3.1.1 OCC. For OCC, the equation fors(n+1) must reflect the chance of rolling in as
well as invalidating pages. The following non-trivial facts affect formula’s structure:

—The chance that operationn+1 is generated by clientC is 1/c.
—Pages which are rolled in and written by an aborting transaction do not affects(n+ 1)

since OCC will remove the page again at the transaction’s abort time.
—If an aborting transactionC writes a page which is already cached, the page will eventu-

ally be invalidated an so the operation reduces the cache size by one.
—Another client’s operation which is part of committing transaction and which writes a

page being inC’s cache, causes an invalidation and reducesC’s cache size by one.

This leads to

s(n+1)︸ ︷︷ ︸
New Cache Size

= s(n)︸︷︷︸
Old Cache Size

+ 1/c︸︷︷︸
Local Operation

·(1− phit(s(n)))︸ ︷︷ ︸
Cache Miss

· (pc +(1− pc) · pr)︸ ︷︷ ︸
Commits or Aborts and Reads

− 1/c︸︷︷︸
Local Operation

· phit(s(n))︸ ︷︷ ︸
Cache Hit

·(1− pr)︸ ︷︷ ︸
Writing

· (1− pc)︸ ︷︷ ︸
In Aborting Transaction

− (1−1/c)︸ ︷︷ ︸
Other Client’s Operation

· phit(s(n))︸ ︷︷ ︸
Cache Hit at ClientC

·(1− pr)︸ ︷︷ ︸
Writing

· pc.︸︷︷︸
In Committing Transaction

Using equation 1 we can substitutes(n)/D for phit(s(n)) and try to find a fixed point for
limn→∞ s(n) by settingsOCC

f ix = s(n+1) = s(n). Solving the resulting equation we obtain:

sOCC
f ix = D · (pc +(1− pc) · pr)/(1+ pc · (c−1) · (1− pr))).

6 · Daniel Pfeifer

The fixed point is globally stable because

|∂s(n+1)/∂s(n)|= |1−1/(c·D)− (1−1/c) · (1− pr) · pc/D|< 1.

Eventually we obtain the asymptotic cache filling sizesOCC
exp = max(0,min(sOCC

f ix ,smax)).

3.1.2 CBR. The equation fors(n+1) is similar to the one for OCC. However, another
client’s write operation may reduceC’s cache size by one due to a callback (and not due
to an invalidation as with OCC). The other client’s operation does not have to be part of a
committing transaction. This gives:

s(n+1)︸ ︷︷ ︸
New Cache Size

= s(n)︸︷︷︸
Old Cache Size

+ 1/c︸︷︷︸
Local Operation

·(1− phit(s(n)))︸ ︷︷ ︸
Cache Miss

· (pc +(1− pc) · pr)︸ ︷︷ ︸
Commits or Aborts and Reads

− 1/c︸︷︷︸
Local Operation

· phit(s(n))︸ ︷︷ ︸
Cache Hit

·(1− pr)︸ ︷︷ ︸
Writing

· (1− pc)︸ ︷︷ ︸
In Aborting Transaction

− (1−1/c)︸ ︷︷ ︸
Other Client’s Operation

· phit(s(n))︸ ︷︷ ︸
Cache Hit at ClientC

·(1− pr).︸ ︷︷ ︸
Writing

The related fixed point is

sCBR
f ix = D · (pc +(1− pc) · pr)/(1+(c−1) · (1− pr)))

and analogously to the OCC-case, it is globally stable. The asymptotic cache filling size is
sCBR
exp = max(0,min(sCBR

f ix ,smax)).

3.2 Evaluation

For the verification of all analytical findings of this paper, we implemented a simulation
system according to [Franklin et al. 1997] and tried to stick as closely as possible to the
specification such as given by the paper. This includes the hardware, software, database
and workload parameters.2 Only the following parameters differ from the corresponding
ones in [Franklin et al. 1997]:

—In this report, the number of concurrent clients varies between 1 and 40, whereas in
[Franklin et al. 1997] it only varies between 1 and 25.

—Here, the maximum sizesmax of a client cache can be 15%, 25% or 35% of the server
database size, whereas [Franklin et al. 1997] uses 5% and 25% instead.

To compute an analytical value that corresponds to a simulation result, we use the cor-
responding base parameters from [Franklin et al. 1997]. E.g. the write probability 0.2
for the UNIFORM workload corresponds topr = 0.8 in the above equations. Similarly,
the parameter ”DatabaseSize” from [Franklin et al. 1997] corresponds toD from above.
The only parameter in the above formulas which cannot derived from the specification of
[Franklin et al. 1997] is the probabilitypc. To determine it, we used the following formula
and corresponding values as obtained from simulation runs:

pc = ops· ”Committed Transactions Per Run”/”Total Operations Per Run”.

2The related implementation is written in Java and is publicly available ([Pfeifer 2005]). It is well suited as a
framework for implementing further transactional cache protocols.

Analytical Considerations for Transactional Cache Protocols · 7

Cache Size 15% of DB Cache Size 25% of DB Cache Size 35% of DB Cache Size 15% of DB, Analytical

Cache Size 25% of DB, Analytical Cache Size 35% of DB, Analytical

0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0 22,5 25,0 27,5 30,0 32,5 35,0 37,5 40,0 42,5

Number of Clients

0

50

100

150

200

250

300

350

400

450

A
ve

ra
ge

/E
xp

ec
te

d
C

ac
he

 F
ill

in
g

S
iz

e

Fig. 2: Average/Expected Cache Filling Size for OCC Using Simulation and Analysis

Figure 2 compares the average cache filling size using simulation versus the expected
cache filling size using analysis for OCC. At simulation, the average is computed from all
sizes measured at client caches after an appropriate warmup period. The warmup period
ensures that the cache filling sizes become stable since the caches are empty at simulation
start.3 The good fit between the graphs is evidence of the correctness of the OCC-related
formula from above.

Figure 3 compares the average cache filling size using simulation versus the expected
cache filling size using analysis for CBR. Similar to Figure 2, the graphs substantiate the
correctness of the CBR-related formula from above.

The simulation confirms that under load, a client cache does not necessarily fill up to its
maximum. In general, it may be important to consider this phenomenon when designing,
configuring and optimizing client-server database systems because it negatively affects the
cache hit rate and may result in unused and thus wasted client cache storage. To illustrate
this, Figure 4 shows the cache hit rate for OCC (after the warmup period) with respect to
the experiments from Figure 2. (The values are essentially proportional to the ones from
Figure 2.)

4. MESSAGES FOR COMMITTING TRANSACTIONS

This section estimates the number of messages exchanged between client and server with
respect to committing transactions.

4.1 Analysis

4.1.1 OCC. For OCC, estimating the number of messagesmOCC for a committing
transactions is straight forward.mOCC only depends on the number of operationsopsper

3We varied the warmup period in tests prior to the actual simulation to guarantee reliable and representative
results.

8 · Daniel Pfeifer

Cache Size 15% of DB Cache Size 25% of DB Cache Size 35% of DB Cache Size 15% of DB, Analytical

Cache Size 25% of DB, Analytical Cache Size 35% of DB, Analytical

0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0 22,5 25,0 27,5 30,0 32,5 35,0 37,5 40,0 42,5

Number of Clients

0

50

100

150

200

250

300

350

400

450

A
ve

ra
ge

 C
ac

he
 S

iz
e

Fig. 3: Average Cache Filling Size for CBR Using Simulation and Analysis

Cache Size 15% of DB Cache Size 25% of DB Cache Size 35% of DB Cache Size 15% of DB, Analytical

Cache Size 25% of DB, Analytical Cache Size 35% of DB, Analytical

0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0 22,5 25,0 27,5 30,0 32,5 35,0 37,5 40,0 42,5

Number of Clients

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

H
it

R
at

e
in

 %

Fig. 4: Cache Hit Rate for OCC Using Simulation and Analysis

transaction and the expected cache hit ratephit(sOCC
exp):

mOCC = 2·ops· (1− phit(sOCC
exp))︸ ︷︷ ︸

2 Messages for Every Cache Miss (Back and Forth)

+ 2.︸︷︷︸
Commit Operation

Analytical Considerations for Transactional Cache Protocols · 9

Cache Size 15% of DB Cache Size 25% of DB Cache Size 35% of DB Cache Size 15% of DB, Analytical

Cache Size 25% of DB, Analytical Cache Size 35% of DB, Analytical

0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0 22,5 25,0 27,5 30,0 32,5 35,0 37,5 40,0 42,5

Number of Clients

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36
M

es
sa

ge
s

S
en

t p
er

 C
om

m
it

Fig. 5: Average Number of Messages per Committing Transaction for OCC Using Simulation and Analysis

4.1.2 CBR. For CBR, one can estimate the number of messagesmCBR as follows:

mCBR= 2 ·ops· ((1− phit(sCBR
exp))︸ ︷︷ ︸

Cache Miss

+ phit(sCBR
exp) · (1− pr)︸ ︷︷ ︸

Cache Hit but Writing

+ (1− pr) · phit(sCBR
exp) · (c−1)︸ ︷︷ ︸

Callbacks (Write Ops. with Cache Hits at Other Clients)

)
+ 2.︸︷︷︸

Commit Operation

At CBR, a clientC needs to acquire a write lock from the server for almost every write
operation (and this results in two additional messages). The case where the client already
possesses the write lock is ignored because it is rare: The client must have written the
respective page before but in the same transaction. This event is unlikely sinceops¿ D.
About phit(sCBR

exp) · (c−1) clients cache the page thatC is about write, which result in the
above state number of callback messages.

4.2 Evaluation

Figure 7 and 6 compare simulation results with analytical results for the average/expected
number of messages per committing transactions using OCC and CBR. The parameters
for the simulation runs are the same as in Section 3.2. For clarity, at CBR, we omitted the
graphs where the maximum cache size is 25% of the database size. (Still, the corresponding
results are similar.)

Again, there is a good fit between the respective graphs which is evidence of the correct-
ness of formulas from above.

5. TRANSACTION ABORTION RATE FOR OCC

This section improves a well-known formula from [Thomasian 1998], to get an accurate
prediction of transaction abortion rates when using OCC.

10 · Daniel Pfeifer

Cache Size 15% of DB Cache Size 35% of DB Cache Size 15% of DB, Analytical Cache Size 35% of DB, Analytical

0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0 22,5 25,0 27,5 30,0 32,5 35,0 37,5 40,0 42,5

Number of Clients

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

M
es

sa
ge

s
S

en
t p

er
 C

om
m

it

Fig. 6: Average Number of Messages per Committing Transaction for CBR Using Simulation and Analysis

5.1 Analysis

Let T be a transaction running at clientC. We want to determine the probabilitypabort that
T aborts.

Let us assume thatT will execute all of itsopsoperations. WhileT is running, there are
about2 · (c−1) concurrent transactions from other clients which overlap withT. About
half of them commit beforeT and they can causeT to be aborted. The latter transactions
execute about half of their operations whileT is running. Considering these facts and
applying the formula from Section 5.2 of [Thomasian 1998], one obtains the following
(naive) solution:

pabort naive= 1− (1−ops/D)1/2·ops·(c−1)·(1−pr).

The formula ignores the fact that onlycommittingtransactions can cause the abortion of
T and therefore the factor1− pabort is missing in the exponent. An improved solution is
given by the following equation:

pabort = 1− (1−ops/D)1/2·ops·(c−1)·(1−pr)·(1−pabort).

Note that the equation refers topabort on both sides. Solving it analytically involves the
so-called LambertW-function.

5.2 Evaluation

Figure 7 compares simulation results with analytical results for the ratio of aborted versus
started transactions in percent. The parameters for the simulation runs are the same as in
Section 3.2. For clarity, we only show the graphs where the maximum cache size is 25%
of the database size. The results for the alternative maximum cache sizes (15% and 35%)
are similar – in fact the cache sizes hardly exert any influence on the corresponding results.

Analytical Considerations for Transactional Cache Protocols · 11

Cache Size 15% of DB Cache Size 15% of DB, Improved Analytical Cache Size 15% of DB, Naive Analytical

0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0 22,5 25,0 27,5 30,0 32,5 35,0 37,5 40,0 42,5

Number of Clients

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

A
bo

rt
s

pe
r

S
ta

rt
ed

 T
ra

ns
ac

tio
ns

 in
 %

Fig. 7: Aborted Versus Started Transactions in Persent for OCC (No Early Aborts)

As one can see, the improved analytical solution predicts the analytical results very well,
where as the naive approach does not. For the improved analytical solution, the numerical
values ofpabort are computed using the (mathematical) secant method.

The version of the OCC protocol applied for Figure 7 doesnot perform early aborts.
When allowing early aborts, a server terminates a transaction as soon it is guaranteed that
the transaction will not pass its validation phase ([Gruber 1997]). In many cases the server
can detect this event even before the respective transaction has performed its entire set
operations. Early aborts have an impact on the average number of concurrent transactions
and therefore, they reduce the accuracy of the analytical solution from above. To illustrate
this fact, Figure 8 also presents simulation results of an OCC version using early aborts.

5.3 Conclusion

This paper has presented a simple but highly accurate analytical framework for predicting
important quality parameters of the two transactional cache protocols OCC and CBR under
theUNIFORMworkload.

Firstly, we considered the filling size of a client cache: Our model explains why the
cache filling size can considerably differ from the maximum cache size even after many
operations and also and predicts this effect. The phenomenon is important because it may
lower the cache hit rate and affect a system’s efficiency. Surprisingly, it has not been
considered by former publications in the field of transactional caching.

Secondly, we gave comprehensive formulas to predict the number of messages that a
client and the server exchange when processing a committing transaction. The formula for
CBR highlights the quantitative effect of callbacks.

At last, we improved a well-known formula for estimating transaction abort rates of
optimistic protocols such that it becomes highly accurate with respect to OCC. In this
context, it matters to model the fact that only committing transactions can cause other
transactions to be aborted.

12 · Daniel Pfeifer

Cache Size 25% of DB Cache Size 25% of DB, Improved Analytical Cache Size 25% of DB, Naive Analytical

0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0 22,5 25,0 27,5 30,0 32,5 35,0 37,5 40,0 42,5

Number of Clients

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

A
bo

rt
s

pe
r

S
ta

rt
ed

 T
ra

ns
ac

tio
ns

 in
 %

Fig. 8: Aborted Versus Started Transactions in Persent for OCC (Early Aborts)

All analytical solutions where compared with corresponding simulation results. Analyt-
ical and experimental findings gave mutual evidence for their correctness.

The stated formulas had a simple structure. One reason for this is the simple nature of
the UNIFORM workload. Unfortunately, more complex workloads such asHOTCOLD
also demand for more complex mathematical modelling tools and models (e.g. Markov
models). Since more complex models are inherently more error-prone, they are also less
reliable when trying to validate experimental studies. Therefore, in order to check the
correctness of a dynamic system, it is favorable to have both, simple but comprehensive
analytical system models, which cover basic behavior and sophisticated models to handle
advanced cases. For the field of transactional cache protocols, this paper has taken a first
step in this direction.

REFERENCES

ADYA , A., GRUBER, R., L ISKOV, B., AND MAHESHWARI, U. 1995. Efficient optimistic concurrency control
using loosely synchronized clocks. InProceedings of the 1995 ACM SIGMOD Conference on Management
of Data. ACM Press.

BERNSTEIN, P., HADZILACOS, V., AND GOODMAN, N. 1987.Concurrency Control and Recovery in Database
Systems. Addison-Wesley.

CAREY, M. J., FRANKLIN , M. J., L IVNY, M., AND SHEKITA , E. J.1991. Data caching tradeoffs in client-server
dbms architectures. InProceedings of the 1991 ACM SIGMOD Conference on Management of Data. ACM
Press, 357–366.

CAREY, M. J., FRANKLIN , M. J., AND ZAHARIOUDAKIS , M. 1994. Fine-grained sharing in a page server
oodbms. InProceedings of the 1994 ACM SIGMOD Conference on Management of Data. ACM Press, 359–
370.

CHU, S. I. AND WINSLETT, M. 1994. Minipage locking support for object-oriented page-server dbms. InCIKM
’94: Proceedings of the third international conference on Information and knowledge management. ACM
Press, New York, NY, USA, 171–178.

Analytical Considerations for Transactional Cache Protocols · 13

CHUNG, I., LEE, J., AND HWANG, C.-S.1997. A contention based dynamic consistency maintenance scheme
for client cache. InCIKM ’97: Proceedings of the sixth international conference on Information and knowl-
edge management. ACM Press, New York, NY, USA, 363–370.

FRANKLIN , M. J. AND CAREY, M. J. 1992. Client-server caching revisited. InInternational Workshop on
Distributed Object Management. 57–78.

FRANKLIN , M. J., CAREY, M. J., AND L IVNY, M. 1997. Transactional client-server cache consistency: Alter-
natives and performance.ACM Transactions on Database Systems 22,3, 315–363.

GRUBER, R. 1997. Optimism vs. locking: A study of concurrency control for client-server object-oriented
databases. Tech. Rep. MIT-LCS-TR-708, MIT. Februar.

ÖZSU, M. T., VORUGANTI, K., AND UNRAU, R. C.1998. An asynchronous avoidance-based cache consistency
algorithm for client caching dbmss. InProceedings of the 24th Conference on Very Large Databases. Morgan
Kaufmann, 440–451.

PFEIFER, D. 2005. DBCacheSim – a simple simulation framework for transactional client server database cache
protocols.http://www.ipd.uka.de/ ∼pfeifer/ .

THOMASIAN , A. 1998. Concurrency control: methods, performance, and analysis.ACM Comput. Surv. 30,1,
70–119.

WANG, Y. AND ROWE, L. A. 1991. Cache consistency and concurrency control in a client/server dbms architec-
ture. InProceedings of the 1991 ACM SIGMOD Conference on Management of Data. ACM Press, 367–376.

WILKINSON , W. K. AND NEIMAT, M.-A. 1990. Maintaining consistency of client-cached data. InProceedings
of the 16th Conference on Very Large Databases. Morgan Kaufmann, 122–133.

WU, K., FEI CHUANG, P., AND L ILJA , D. J.2004. An active data-aware cache consistency protocol for highly-
scalable data-shipping DBMS architectures. InProceedings of the 1st Conference on Computing Frontiers.
ACM Press, 222–234.

ZAHARIOUDAKIS , M., CAREY, M. J., AND FRANKLIN , M. J. 1997. Adaptive, fine-grained sharing in a client-
server oodbms: A callback-based approach.ACM Transactions on Database Systems 22,4, 570–627.

