
SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 1

Single System Image Servers on top of Clusters of PCs

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Informatik

der Universität Karlsruhe (Technische Hochschule)

genehmigte

Dissertation

von

Vlad Olaru

aus Bukarest, Rumänien

Tag der mündlichen Prüfung: 3. Dezember 2004

Erster Gutachter: Prof. Dr. Walter F. Tichy
Zweiter Gutachter: Prof. Dr. Martina Zitterbart

2 VLAD OLARU

Contents

1 Introduction 13
1.1 Definitions . 15
1.2 System overview . 16
1.3 Contributions . 18
1.4 The road ahead . 21

2 Server architecture 23
2.1 Related work . 23

2.1.1 Request routing in cluster-based Web servers 24
2.1.2 Request routing in Virtual Web servers 25
2.1.3 Request routing in Distributed Web servers 26
2.1.4 Informed request distribution in cluster-based servers . . . 27

2.2 Design challenges . 27
2.3 Server and request distribution architecture 28

2.3.1 Request distribution architecture 29
2.4 The communication infrastructure 31
2.5 Summary . 33

3 Remote I/O 35
3.1 Related work . 36
3.2 Background on disk drivers and the file system 39

3.2.1 Disk drivers and the file system 39
3.3 Design considerations . 41
3.4 The software architecture of the CARD drivers 42
3.5 Device identification and block addressing 43
3.6 Dual operation: between pages and blocks 44

3.6.1 The unified page-buffer cache 45
3.6.2 The dual-behavior CARD driver 46

3.7 Single copy protocol . 47

3

4 VLAD OLARU

3.8 The impact of the file system read-ahead policy and the disk frag-
mentation . 49

3.9 The CARD drivers and the network 50
3.9.1 Event-driven vs. blocking 50
3.9.2 Asynchronous block delivery 51
3.9.3 Fault-tolerance . 52
3.9.4 Meta-data consistency 52

3.10 The CARD operation breakdown 52
3.10.1 Experimental setup and methodology 52
3.10.2 CARD vs. Local Disk comparison 53

3.11 Performance evaluation . 54
3.11.1 Experimental setup . 54
3.11.2 The impact of the WebStone load on the CARD driver . . 55
3.11.3 The impact of the read-ahead policy of the file system . . 56
3.11.4 Distributed server performance 57

3.12 Summary . 58

4 CARDs and cooperative caching 59
4.1 Related work . 61
4.2 Bringing the CARDs and cooperative caching together 62
4.3 Cooperative caching policies . 64

4.3.1 Block lookup . 64
4.3.2 Handling the eviction of cached blocks 65
4.3.3 Consistency issues . 65
4.3.4 Handling block requests 66

4.4 HSCC: Home-based Server-less Cooperative Caching 66
4.4.1 HSCC lookup . 68
4.4.2 HSCC handle request 68
4.4.3 HSCC handle eviction 69
4.4.4 HSCC keep consistency 71

4.5 On the scalability of HSCC . 71
4.6 HDC: Hash Distributed Caching 72
4.7 Performance evaluation . 73

4.7.1 Experimental setup . 73
4.7.2 CARD operation analysis 74
4.7.3 Cache hit ratios comparison 75
4.7.4 Eviction statistics . 75
4.7.5 CARD Speedup/Slowdown 76

4.8 Summary . 77

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 5

5 Cooperative caching and the cluster-based Web servers 79
5.1 Related work . 81

5.1.1 Web workload characterization 82
5.2 Caching on a curve . 83

5.2.1 Cooperative caching . 84
5.2.2 Exclusive caching . 85

5.3 Performance evaluation . 86
5.3.1 Experimental setup . 86
5.3.2 Experimental methodology 87
5.3.3 Preliminary discussion 87
5.3.4 The performance of cooperative caching without eviction

handling . 88
5.3.5 Selective eviction handling 89
5.3.6 Handling the heavy tail of the request distribution curve . 90
5.3.7 Mixing replication with cooperative caching 91

5.4 Summary . 91

6 TCP connection endpoint migration 93
6.1 Related work . 94
6.2 Background . 96

6.2.1 The perspective of the application developer 96
6.2.2 Processing the network traffic in the kernel 96
6.2.3 The three-way handshake connection setup protocol . . . 97

6.3 TCP connection endpoint migration overview 98
6.4 The front-ends and their role in the TCP connection endpoint mi-

gration . 99
6.5 Request routing without front-end involvement 100
6.6 The connection endpoint migration protocol 101

6.6.1 Matching the sequence numbers 102
6.6.2 The modified three-way handshake connection setup protocol103
6.6.3 Completing the migration 104
6.6.4 The role of the connection checkpoint 104
6.6.5 Isolating the migration protocol from the client 105
6.6.6 Updating the front-ends after a migration 105
6.6.7 Setting up the forwarding table when no front-ends are used 105
6.6.8 Handling the migration failure 106

6.7 Operating system features that influence the protocol 106
6.7.1 The consequences of using the three-way handshake setup

protocol for the connection endpoint migration 107

6 VLAD OLARU

6.8 The use of the TCP connection endpoint migration in request dis-
tribution policies . 108
6.8.1 The simple policy . 108
6.8.2 Handling short-lived connections 109

6.9 S-Clients performance evaluation 110
6.9.1 Experimental setup . 111
6.9.2 S-Clients . 112
6.9.3 Connection throughput 113
6.9.4 The evaluation of the migration rejection impact 114

6.10 The WebStone performance evaluation 115
6.10.1 The evaluation of non-persistent HTTP connections 115
6.10.2 The evaluation of non-persistent HTTP connections for a

three-node cluster-based server 119
6.10.3 The evaluation of persistent HTTP connections 121
6.10.4 The evaluation of persistent HTTP connections for a three-

node cluster-based server 124
6.11 Summary . 127

7 Speculative TCP connection admission in cluster-based Web servers 129
7.1 Speculative connection admission 130

7.1.1 Operating system internals 131
7.1.2 Speculative connection admission policies 132

7.2 Performance evaluation . 133
7.2.1 The impact of the accept queue length on the server activity 134
7.2.2 Speculative connection admission in request distribution . 135

7.3 Summary . 137

8 Summary and future work 139
8.1 Summary . 139

8.1.1 CARDs and cooperative caching 139
8.1.2 TCP connection endpoint migration 141
8.1.3 Kernel code development, experience and benefits 142

8.2 Future work . 144
8.2.1 The scalability analysis of HSCC and the locality-aware

request distribution policies using the TCP connection end-
point migration . 144

8.2.2 Cluster provisioning . 145
8.2.3 Locality-aware request distribution policies 145

List of Figures

1.1 A possible software architecture of a cluster operating system . . . 14
1.2 Server architecture . 16

3.1 Remote I/O systems . 37
3.2 Asynchronous buffer heads . 40
3.3 The software architecture of the CARD drivers. The numbers on

the picture mark the steps taken by a request for a block miss in the
local cache . 43

3.4 Socket buffer holding both block data and the associated buffer head 47
3.5 The exclusive caching operation of the CARD driver 48
3.6 Average response time and throughput figures for 150 simultane-

ous connections . 55
3.7 Average response time and throughput figures for 300 simultane-

ous connections . 56
3.8 The impact of the file system read-ahead policy 57
3.9 Distributed server performance, 300 simultaneous connections . . 58

4.1 Cooperative caching with CARDs. Case A: client-to-client coop-
eration; Case B: three-client cooperation; Case C: client-to-client
cooperation fails. The block must be retrieved from the disk . . . 63

4.2 Block retrieval in HSCC . 68
4.3 Eager cache index entry elimination algorithm. Node j evicts a

block and triggers the algorithm that will flush the corresponding
cache index entry . 70

4.4 Cache hit ratio comparison . 74
4.5 Cache Access Breakdowns. Local cache hits, global cache hits and

cache misses for HSCC and HDC 74
4.6 Eviction statistics. The number of evicted blocks saved by the

CARD driver for each policy . 76

7

8 VLAD OLARU

4.7 Speedup/Slowdown. The cooperative caching enabled operation of
CARDs vs. CARDs as remote disk interfaces 77

5.1 Experimental setup for request distribution-aware caching 87
5.2 WebStone evaluation of cooperative caching without eviction han-

dling . 88
5.3 WebStone evaluation of selective block eviction handling accord-

ing to classes of documents . 89
5.4 WebStone evaluation of heavy tail caching 90
5.5 WebStone evaluation of combining replication with caching . . . 91

6.1 Connection migration operation at the initiator 101
6.2 Connection endpoint migration at a glance 102
6.3 Experimental setup for connection migration policies migrating re-

quests from one back-end server to another 111
6.4 Server connection throughput . 112
6.5 Evaluation of the impact of rejecting connection migrations 114
6.6 Average class response times for WebStone non-persistent HTTP

requests . 116
6.7 Average class throughput for WebStone non-persistent HTTP re-

quests . 117
6.8 Connection migration policy with three servers, two of which re-

ceive requests on a Round Robin basis and decide in turn to migrate
those addressed to class0 and class1 documents to a third back-end
server . 118

6.9 Average class response times for WebStone non-persistent HTTP
requests in a three-node cluster-based server 119

6.10 Average class throughput for WebStone non-persistent HTTP re-
quests in a three-node cluster-based server 120

6.11 Overall average response time and throughput figures for Web-
Stone persistent HTTP requests when migrating class2 requests . . 121

6.12 Average class response times for WebStone persistent HTTP requests122
6.13 Average class throughput for WebStone persistent HTTP requests 123
6.14 Overall average response time and throughput figures for Web-

Stone persistent HTTP requests in a three-node cluster-based server 124
6.15 Average class response times for WebStone persistent HTTP re-

quests in a three-node cluster-based server 125
6.16 Average class throughput for WebStone persistent HTTP requests

in a three-node cluster-based server 126

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 9

7.1 The impact of the accept queue length on the server activity 134
7.2 Speculative admission within request distribution (The front-end

routes 33% of the requests to one server and 67% to the other) . . 135
7.3 Speculative admission within request distribution (The front-end

routes 25% of the requests to one server and 75% to the other) . . 136

10 VLAD OLARU

List of Tables

3.1 CARD vs. Local Disk Comparison (4k block read access times) . 53

6.1 The connection migration success rate 113
6.2 WebStone overall average response time and throughput figures for

migrating non-persistent HTTP requests for small, popular Web
documents (class0 and class1) vs. Round Robin routing 115

6.3 WebStone overall average response time and throughput figures
for three servers when migrating non-persistent HTTP requests
for small, popular Web documents (class0 and class1) vs. Round
Robin routing . 118

11

12 VLAD OLARU

Chapter 1

Introduction

The clusters of COTS (Commodity Off The Shelf) computers have shown lately a
great potential for high performance computing as they offer price-competitive and
scalable solutions (huge aggregate main memory, price-competitive, highly avail-
able and scalable secondary memory, huge I/O bandwidth). However, as of now,
most of these clusters are still regarded as a collection of independent machines
explicitly cooperating to some extent in order to fulfill some task. In spite of the
tremendous potential of the hardware interconnects they are equipped with, the
cluster systems fail today to present a Single System Image (SSI) to the user. In-
deed, nowadays high-speed System Area Networks (SAN) have latency and band-
width figures comparable to those of memory subsystems, and, thus, advocate for
a tighter integration of the various resources in the cluster. Such an integration re-
quires however appropriate mechanisms and management policies operating across
the cluster. Traditionally, such tasks are reserved to the operating system. Cur-
rently however, there are no state-of-the-art cluster operating systems available.
Moreover, the existing stand-alone operating systems offer conventional services
that are a poor match to the expectations of the parallel and/or distributed appli-
cations run on top of the clusters. Therefore, most of the time, the application
developers implement these services in user-space. As a direct result, the overall
performance of the system may suffer, while the software complexity of the ap-
plications increases substantially (with adverse effects on maintenance and further
development).

There is a wealth of previous research results that encourage us to follow the
idea of a cluster operating system. On the system side, a first step towards a tighter
resource collaboration was the development of scalable user-space communication
subsystems [68, 27, 70, 66]. They aimed at a reduced communication latency
by removing the operating system from the critical path. The reasons behind the

13

14 VLAD OLARU

OS bypass were the unwanted performance penalties induced by double buffering
and some kernel specific mechanisms (such as context-switching). However, since
message passing is not the most handy programming model, the next step taken
was to develop higher level software abstractions (memory pages, disk blocks,
etc.). The most notable research effort in this direction was that of the software
Distributed Shared Memory (DSM) systems [3, 76].

Communication Subsystem

Cooperative Caching Module

Locality−aware Request Distribution Module

Virtual Resource Layer
Virtual Disks, Remote DMA, etc.

Speculative TCP Admission Module

Standalone Web Server

Cluster−aware

Kernel−level

User−level

TCP Connection Endpoint Migration Module

Figure 1.1: A possible software architecture of a cluster operating system

The low latency of the emerging high-speed networks as well as the early ex-
perience with software DSM systems lead at some point to a significant twist in
the traditional approach to the parallel/distributed file system memory hierarchy
(server disk, server cache and local client cache). The cooperative caching net-
work file systems [23, 4] allowed checking the local cache misses also against the
remote client caches before going to the server cache. The low-latency networks
play a paramount role here, as retrieving remotely cached blocks is faster than get-
ting them from the server disk, even if the disk happens to be local. Moreover, as
in the case of DSMs, by implementing a joint management of the cluster caches,
cooperative caching enables the working set to scale beyond the limit of the locally
available memory.

A third notable trend, orthogonal to the above issues, made a case for flexibil-
ity/extensibility in the kernel operation [14, 28]. The conventional general-purpose
kernels respond inadequately to the challenges imposed by the new class of the
highly I/O-bound applications (mostly related to the multimedia and Web/Internet
technology domains). Systems like those cited above use a joint management of
the system’s resources between the applications and the operating system. These
kernels let the applications manage their own resources, while the system software

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 15

continues to provide general mechanisms such as protection domains, resource al-
location and scheduling, etc.

Summarizing some of the above ideas, Figure 1.1 depicts a possible software
architecture of a cluster operating system for Single System Image Servers on top
of COTS clusters. At the lowest level, a message passing subsystem enables the
communication over the SAN. The next level virtualizes the accesses to the remote
resources in order to provide higher level abstractions than those of simple mes-
sages. Above the Virtual Resource layer, one can build entire kernel subsystems,
but in this thesis we will restrict our attention to the cooperative caching, TCP
connection endpoint migration, locality-aware request distribution and speculative
TCP admission modules. At the top level, an unmodified stand-alone Web server
program runs on the distributed infrastructure of the cluster as if it would do on a
single machine. Such an approach is made possible by using Single System Image
cluster operating system services that are provided by the aforementioned modules.
Explaining how all these modules work together in order to provide for a Single
System Image of the cluster-based server is the topic of this thesis.

1.1 Definitions

Before we proceed any further, we take the opportunity to define some of the main
concepts for this thesis.

Single System Image Servers (SSI) - A Single System Image Server on top
of COTS clusters is a software construct that hides the distributed nature of the
hardware infrastructure of the cluster and presents both the system developer and
the user with the image of a single virtual server with multiple processors operating
like a stand-alone, single machine server would do.

Cooperative caching - A cooperative caching system manages jointly the in-
dividual file system caches in a cluster and offers support for a global, unified,
cluster-wide cache.

Exclusive caching - Exclusive caching is a technique that avoids storing multi-
ple copies of the same disk block either in the various caches of the same computing
system or among the distributed caches of several computers.

TCP connection endpoint migration - The TCP connection endpoint migra-
tion allows a client-transparent, arbitrary assignment and reassignment of server-
side TCP connection endpoints to particular server nodes in a cluster.

Locality-aware request distribution - A locality-aware request distribution
system for cluster-based servers attempts to provide better amortized performance
by routing requests to individual server nodes according to the locality of the re-
quested data.

16 VLAD OLARU

1.2 System overview

The purpose of this thesis is to investigate the impact of integrating various cluster
resources into a Single System Image server. Of major concern is not only the
performance of the system but also its ease of use and programming, its flexibil-
ity and the capability to offer global high-level abstractions/services that hide the
distributed nature of the server and the underlying message passing based infras-
tructure.

Today, big “computer farms” are common place in the server industry. Front-
end computers are used to redirect requests to servicing (back-end) computers. The
request distribution is mostly done in conjunction with some back-end load balanc-
ing policy. A lot of work has been done in the area of load balancing the back-end
machines, but some of the previously mentioned features of the COTS clusters us-
ing SANs suggest possible benefits coming from an enhanced cooperation among
the back-end servers. The typical server architecture that we will be referring to
throughout this thesis is depicted in Figure 1.2.

Front−end Frond−end

Back−end Back−end Back−end

System Area Network

TCP/IP/Ethernet

. . .

...

Internet

Back−end

Figure 1.2: Server architecture

Such a cooperation may involve changes in the server applications, but get-
ting good performance out of such constructs would be possible only by changing
the operating systems as well. Since the traditional kernels have been developed
for a stand-alone run, they fail to match adequately the challenges imposed by a
distributed server. However, only a collaboration between the user-level applica-
tion (in our case, the server program) and the kernel would yield the best perfor-
mance, as the general purpose kernel algorithms for memory management, process
scheduling, etc. respond inadequately to specific application needs.

Our approach to integrating various resources into a single server system con-

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 17

cerns two major parts of the operating system: the disk and the network subsys-
tems. The main mechanisms that we developed are the Cluster-Aware Remote
Disk drivers (CARDs) and the TCP connection endpoint migration. They serve as
driving engines for the cooperative caching and locality-aware request distribution
policies.

The CARDs are block oriented drivers that virtualize remote disk accesses
over a SAN. They offer a higher level of abstraction (I/O pages or disk blocks)
to the user/developer than that of the message passing systems. Through exclusive
caching, the CARDs exercise cluster-wide a fine-grain control over multiple cached
copies of a block. The exclusive caching is made possible by a single copy pro-
tocol that allows performing DMA from the disk to the network buffering system.
The operation of the CARD drivers may be driven by cooperative caching poli-
cies. A set of CARDs implementing a common cooperative caching policy builds
a unified disk cache across the cluster. Each such set may employ its own pol-
icy, independently of other similar sets. A flexible design enables the applications
to download at will their favorite policy into the kernel. We designed a decentral-
ized policy called Home-based Server-less Cooperative Caching (HSCC). We build
upon HSCC in order to perform request distribution-aware caching in cluster-based
Web servers. Thus, the kernel software can benefit from application-level knowl-
edge. Both the CARD drivers and HSCC have been implemented as Linux kernel
modules.

The TCP connection endpoint migration is a flexible way of assigning and re-
assigning server-side TCP connection endpoints to particular back-end machines.
Therefore, it represents a connection routing mechanism that helps build back-end
level request distribution algorithms. It hides from the client the distributed nature
of the server, for the client sees only a generic server-side endpoint to which it con-
nects, irrespective of its actual physical server binding. The connection endpoint
migration comes in two flavors: using front-ends and totally decentralized (actu-
ally, the back-ends take over the responsibilities of the front-ends). The mecha-
nism can be downloaded into the kernel as a Linux module. Through speculative
TCP connection admission, a fully distributed (i.e., back-end level) load balancing
mechanism is possible. The speculative admission builds upon the connection end-
point migration by accepting incoming connections on overloaded cluster nodes
only to offload them onto lighter loaded nodes.

We tested our system by using a popular stand-alone (i.e., non-distributed)
Web server program, Apache [5], and both commercial and academic benchmarks
(WebStone [61] and S-Clients [10], respectively). We transparently ran Apache
instances on each cluster node, without any modifications to the server program
code. Only the underlying kernels were aware of the inter-node cooperation, while
the user-level daemon serviced requests as it would do on a single machine.

18 VLAD OLARU

1.3 Contributions

This thesis proposes and proves the following claims:
Claim 1 System Area Networks support performant implementations of higher

level cluster operating system abstractions than message passing systems.
While the performance figures of the SANs are one of the main incentives be-

hind our work, it is an open question whether these figures translate directly into
similar performance figures for constructs implementing higher-level cluster op-
erating system abstractions (i.e., virtual disks and I/O pages or disk blocks) than
message passing systems, as such constructs depend significantly not only on the
performance of the communication infrastructure but also on the performance of
the stand-alone operating system (network interrupt handling latency, copying be-
tween various buffering systems inside the kernel, context-switch sensitivity, fair-
ness with respect to scheduling, etc.). Our CARD drivers help us figure out these
issues.

Claim 2 The performance of the virtual disk drivers depends significantly on
the degree of asynchrony of the virtual disk driver implementation.

Because the virtual disks fetch remote data over SANs, their design is highly
sensitive to the model of computation chosen to handle the remote requests: event-
driven vs. blocking, interrupt-time vs. kernel-thread, asynchronous vs. syn-
chronous. We show that a highly asynchronous mixture of interrupt-time and ker-
nel thread processing ensures an optimal performance for our CARD drivers while
maintaining a certain degree of fairness.

Claim 3 Exclusive caching as a fine-grain control over multiple cached copies
of a block across the cluster can be implemented through a single copy remote fetch
protocol.

The current kernel design of the disk drivers requires all the disk accesses to go
through a specialized cache called the buffer cache. Even the direct disk accesses
use the same data structures, but, as soon as the data is delivered to the user, no
copy of it is kept in the buffer cache. When it comes to virtual disks, a similar
problem arises. A request for a remote disk block may require a direct access to
the remote disk in order to avoid leaving behind a block copy in the remote buffer
cache. This fine-grain control over remote copies is a form of exclusive caching
[72, 19], and is implemented in our system [49] by means of a single copy protocol.
This protocol enables the remote disk nodes to perform DMA from the disk driver
into the socket buffers of the networking subsystem used by the SAN card.

Claim 4 Cooperative caching is an effective and efficient Single System Image
cluster construct only when taking into account additional parameters such as the
loads of the cluster nodes.

Exploring the performance of cooperative caching as a Single System Image

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 19

service for COTS clusters includes a thorough analysis of the mechanism itself.
Cooperative caching is an appealing idea because the remote memories accessed
over the SAN have better latency figures than the disks (even if the disks are local)
and because the global cooperative cache it builds can accommodate larger work-
ing sets. However, certain aspects of the cooperative caching algorithms need to be
addressed carefully. For instance, with our Home-based Server-less Cooperative
Caching algorithm [48], we show that saving locally evicted blocks into remote
memories doesn’t pay off if the target nodes are chosen irrespective of their loads.
For heavy workloads, most of the cache hits are global hits (i.e., hits in the remote
caches), and, thus, saving locally evicted blocks should be done with care, as due to
the access patterns of the applications most of the saving work may prove useless.

Claim 5 Using cooperative caching for cluster-based servers is an effective
alternative to replication.

Using cooperative caching in cluster-based servers has been explored to a smaller
extent. Moreover, the solutions that we are aware of relied on simulation. We used
the CARD drivers and Home-based Server-less Cooperative Caching to show that
cooperative caching improves the performance of a Web system storing its data on
virtual disks by making up for the performance gap between this solution and one
using replication. This result is important especially for COTS clusters that rely
on virtual disks to split the data center from the processing unit for administration
reasons (maintenance, fault-tolerance, etc.).

Claim 6 The TCP connection endpoint migration can be implemented effi-
ciently as a means for back-end level request distribution in cluster-based servers.

The very few client-aware (or client-server) TCP connection migration mecha-
nisms designed and developed so far have been used mostly for other purposes than
request distribution: to approach host mobility [59], as a fail-over mechanism for
switching between an unresponsive server and a more responsive one [60], or as a
driving engine behind server session migrations [63]. We show that the TCP con-
nection endpoint (client-transparent, server-side only) migration performs well for
back-end level request distribution too. For instance, simple locality-aware request
distribution policies migrating non-persistent HTTP connections for given classes
of static Web documents outperform clearly the Round Robin policies operating
on a similar setup. Such policies compare favorably to Round Robin for persis-
tent HTTP connections as well. The need for back-end level request distribution
mechanisms is supported also by previous research results [7].

Claim 7 The speculative TCP connection admission is an effective load bal-
ancing mechanism at the back-end level.

The speculative TCP connection admission is a mechanism that accepts spec-
ulatively incoming connection requests only to offload them subsequently onto
lighter-loaded nodes by means of TCP connection endpoint migration. It can be

20 VLAD OLARU

used as a back-end level load balancing mechanism that offers independence of
the external context to the SSI cluster-based servers (in particular, independence
of the various front-ends/switches performing connection routing according to var-
ious load balancing and/or content-aware policies). Addressing the load balanc-
ing issue at the back-end level has also the advantage of a smoother integration
with locality-aware request distribution policies, as the locality information resides
naturally at the back-end level. We show that the speculative TCP connection ad-
mission offsets effectively the cluster imbalances induced by suboptimal request
routing decisions taken outside the cluster (either at the front-end level or at earlier
stages in multi-tier server architectures).

Claim 8 The cluster-wide SSI kernel services are simplifying the cluster pro-
gramming and use.

The clusters have known widespread acceptance and success, but little has
been done to adjust the kernels to the cluster operation. Most of the time, the dis-
tributed/parallel applications run on top of the traditional kernels are forced to deal
either with inappropriate abstractions or with unperformant services. The virtual
disks offer the cluster applications high level software abstractions with performant
access that help circumvent the difficulties of programming message passing sys-
tems. For instance, the nodes mount remote disks as local storage by means of
CARD drivers and that makes the remote disk accesses appear as if issued to local
disks. If cooperative caching policies are in use, they even benefit of an extended
cache (the global cache). By using TCP connection endpoint migration protocols
in cluster-based servers, the logical equivalence of the back-end nodes gets system
level support as all the back-ends are now capable of handling a given server-side
connection endpoint irrespective of its physical server binding. The cluster-wide
request dispatching policies benefit from the back-end level request migration sup-
port and have to implement only the heuristic that triggers the migration.

Claim 9 The cluster-wide Single System Image kernel services allow a trans-
parent use of unmodified stand-alone applications in a distributed/parallel envi-
ronment.

One important aspect that should not be forgotten is the wealth of stand-alone
applications. Many of these have established themselves as first hand solutions
for a specific problem (e.g., Web server programs like Apache [5]). It is unrea-
sonable to hope that the new emerging distributed kernels will be adopted easily
by the applications developers or will determine an immediate response to their
new service offers. It is therefore imperative to make the old stand-alone applica-
tions runnable on top of the new distributed kernels by using implicitly the new
distributed/parallel services these kernels have to offer.

Claim 10 Flexible/extensible kernel mechanisms for cluster-wide resource man-
agement help match the needs of the parallel and distributed applications run on

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 21

top of COTS clusters.
The traditional kernels failed to adapt properly to the new emerging paradigms

of computation. Especially the Internet and multimedia explosion showed that
the conventional kernels cannot yield the best performance, as many of their in-
ner policies mismatch the needs of the applications. Hence, the call for flexibil-
ity/extensibility in the kernel operation. This thesis pleads in favor of flexible ker-
nel policies that enable the applications to take part in the resource management
by specifying their expectations to the kernel, which, in turn, is supposed to honor
them. For instance, we show that by taking into account information about Web re-
quest distribution curves, the kernel level cooperative caching performs better than
its general purpose counterpart. Also, by downloading into the kernel locality-
aware request routing policies that use the TCP connection endpoint migration and
information gathered from the Web request distribution curve, it is possible to out-
perform classic request dispatching solutions such as Round Robin.

1.4 The road ahead

In the next chapter we present the software architecture of our SSI Web server
based on a general purpose, policy-oriented request routing algorithm. Then, the
rest of the thesis can be followed easily by looking at Figure 1.1, namely on the path
leading from the lowest level (that of the communication subsystem) upwards to
the user-space application server. In fact, only the kernel level subsystems will be
of concern to this thesis. Chapter 3 presents the architecture of the CARD drivers,
followed in Chapter 4 by the description of the cooperative caching policies (in
particular, the description of Home-based Server-less Cooperative Caching) and
the way they steer the CARD operation. One step further, Chapter 5 describes a
SSI Web server using hints from the request distribution curve in order to improve
the performance of HSCC. Chapter 6 presents the TCP connection endpoint mi-
gration protocol and the way such a service can be used in back-end level request
distribution policies, as part of our general purpose three-phase request routing
algorithm. The description of speculative TCP connection admission follows in
Chapter 7. We summarize our results and present future work in Chapter 8.

22 VLAD OLARU

Chapter 2

Server architecture

This chapter sketches the architecture design of our SSI cluster-based server. One
of its main features is that it concentrates most of the functionality at the back-
end level while keeping the front-ends involved as little as possible. This design
choice is consistent with our endeavor to build cluster-wide mechanisms and poli-
cies that offer to the external user the image of a single system. Equally important
in our design is a platform for cooperation among such cluster-wide SSI services.
In the context of a Web server, we are interested to support the request dispatching
with appropriate mechanisms that offer a node the possibility to switch strategies
between data migration (through virtual disks and cooperative caching) and con-
nection migration. The rest of the chapter revolves around these two issues.

2.1 Related work

Building locally-distributed servers is a topic to which a lot of research work has
been devoted. Most of this work has been done for a particular type of service,
the Web. For this reason, the rest of this section will discuss the previous work in
terms of Web servers and will point out as needed the distinction to our approach.

A broad survey of the accomplishments in this field can be found in Cardellini
et al. [18], which offers also a taxonomy that we will follow in this section as
well. In fact, this section builds mostly on the information available in Cardellini
et al. [18]. However, the survey does not discuss the TCP connection migration
among the presented request routing mechanisms. We will present in Section 6.1
the research work related to the TCP connection migration.

One can classify the Web servers according to two main criteria: the request
routing mechanism used and the server architecture. Depending on the request
routing mechanism used, one can identify systems that do:

23

24 VLAD OLARU

• client Web routing - assumes that the client itself is responsible for assigning
requests to the servers.

• DNS-based routing - assumes that the requests are routed to the servers ac-
cording to the hints provided by the authoritative DNS server for the targeted
Web site.

• network level routing - delegates the request dispatching job to router devices

• Web service level routing - assumes that the Web server itself or custom
dispatching devices placed in front of the Web server are dealing with the
request assignment.

According to the type of server architecture employed, there are:

• Cluster-based Web servers - choose to hide the IP addresses of the back-end
servers from the clients. Typically, the clients access the server through a
public Virtual IP (VIP) address assigned to the front-end(s). Such a front-
end, also called a Web switch, acts as a centralized dispatcher for the incom-
ing requests.

• Virtual (ONE-IP) Web servers - use a public Virtual IP address as well, but
this address is assigned to each of the back-end servers.

• Distributed Web servers - advertise their real IP addresses to the clients.

The last two types of architectures do not employ front-end dispatching. As
expected, each of these architectures uses its own request dispatching scheme.

2.1.1 Request routing in cluster-based Web servers

The cluster-based Web servers use TCP-layer (layer-4 according to the OSI stan-
dard) or application-layer (layer-7 according to OSI) switches to assign requests
to the back-ends. The TCP-layer switches implement content-blind (uninformed)
routing, while the application-layer switches may use content-aware (informed)
routing. A special discussion on informed routing is provided at the end of this
section (Subsection 2.1.4).

The TCP-layer switches use techniques such as packet rewriting, packet tun-
neling or packet forwarding to route requests inside the cluster-based server. Packet
rewriting changes the VIP address with the proper IP address of the chosen server.
Packet tunneling encapsulates IP datagrams within IP datagrams addressed to the

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 25

servicing back-end. Packet forwarding uses MAC (Medium Access Control) ad-
dresses instead of IP addresses to identify the back-end. It is assumed that all the
back-ends share the same VIP address and lie on the same physical LAN segment.

The application-layer switches perform an application protocol analysis in or-
der to assign better the requests to the back-ends by using a content-aware distri-
bution. They are slower than the TCP-layer switches, but offer better amortized
performance. The actual request routing is achieved through TCP gateways, TCP
splicing techniques or TCP hand-off protocols. The TCP gateways keep opened
connections between the switch and the back-ends and forward the incoming re-
quests along these connections. TCP splicing attempts to improve on TCP gate-
ways by forwarding packets at the network layer between the network card and
the TCP/IP stack in order to avoid the expenses of the application protocol pro-
cessing. With TCP hand-off, the switch passes the connection endpoint to the
back-end server which communicates directly with the client. In order to accom-
modate persistent HTTP connections, TCP hand-off has been further extended to
multiple hand-off [7], which enables the front-end to successively pass a connec-
tion endpoint to multiple back-ends. Back-end request forwarding [7] improved
on multiple hand-off by forwarding both the requests and the responses through
the back-end currently managing the connection. Thus, the overhead of switching
between back-ends is avoided.

In general, the TCP layer switches outperform the application layer ones. The
request distribution is done earlier (at the connection setup time rather than once the
connection exists) and the burden of the application protocol processing is being
avoided. The switch itself raises the well known problems of being a performance
bottleneck and a single point of failure.

2.1.2 Request routing in Virtual Web servers

The virtual Web servers must filter the incoming requests as these hit at the same
time all the back-end machines sharing the VIP. The filtering process is distributed
among the back-ends and must designate the machine that will service the requests.
This filtering is typically a matter of computing a hash function on the source IP
address and sometimes also on the source port number. If the hash value matches
the server value, the request is accepted. The request distribution is uninformed
(content-blind) because the back-end servers identify themselves by examining in-
formation at TCP/IP level (client IP and port number). The request routing is done
at MAC level. As an important observation, routing requests at MAC level has the
advantage of accommodating any IP-based service. It avoids also the single point
of failure and the bottleneck problems. However, the main drawback stems from
the inability to take advantage of informed routing.

26 VLAD OLARU

2.1.3 Request routing in Distributed Web servers

The distributed Web servers make visible the IP addresses of all the back-end ma-
chines. Historically, the first distributed Web servers used round-robin DNS [16]
to route requests to the actual servicing nodes by relying on address resolution to
provide every new name query with another IP address. However, the intermediate
address caching at the clients and the non-authoritative DNS servers causes severe
load imbalances and this scheme ended up being used as part of two-stage request
distribution algorithms. The second routing step takes place as a distributed algo-
rithm at the Web server level. Such schemes include third party relaying, HTTP
redirection and URL rewriting.

In third party relaying, a server is chosen using round-robin DNS. Depending
on the local conditions, this server may choose to relay the requests to another
server. All the incoming packets exchanged between the client and the new server
will continue to flow through the first server. However, the new server responds
directly to the client. The obvious disadvantage of this solution is the extra hop
between the client and the server.

HTTP redirection is a standard protocol in which Web servers redirect client
requests to other servers by using an HTTP status code. This technique has the
advantage of handling the request routing at the Web page level, which obviously
allows for informed request distribution. However, the system overhead of redi-
recting the request is considerable as it implies setting up a new connection, which
can be quite expensive on slow networks and wastes both resources and processing
time.

URL rewriting is another redirection mechanism which changes dynamically
the hyperlinks within the requested page so that they point to another node. How-
ever, this dynamic generation of Web pages may prove expensive. Also, the new
node name has to be resolved as well and that resolution incurs additional DNS
queries. As with HTTP redirection, URL rewriting can be handled at user level
and, for a given client-server pair, further communications can be redirected with
a single request.

Our approach to the server architecture and request distribution is somewhat
out of the above taxonomy. The closest design to our server is that of the cluster-
based servers. The reasons for not matching any of the previously mentioned
classes were manifold. First, we chose to design a system that capitalizes at maxi-
mum on the past experiences, and, naturally, that choice imposed a mixture of the
techniques previously mentioned. Second, we want to improve on these solutions
and therefore we devised new mechanisms and policies that found no appropriate
design in the past attempts. And last, but not least, we are interested in developing
general methods for building scalable servers, and some of the previous solutions

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 27

in the area of the Web server development were too particular to the Web service
(see mechanisms such as HTTP redirection or URL rewriting).

2.1.4 Informed request distribution in cluster-based servers

Finally, we will discuss briefly some informed (content-aware) request distribution
systems. As seen from the general taxonomy presented at the beginning of this sub-
section, only some of the server architectures and routing mechanisms are suited
for informed request dispatching. In fact, most of the solutions so far were imple-
mented for the class of servers designated as Cluster-based Web servers. Systems
such as those described by Yang et al. [73] or Zhang et al. [75] are application
layer switches and therefore have the aforementioned disadvantages.

One of the most interesting and complex solutions to the informed request
distribution in cluster servers aims at reconciling the load balancing with the data
reference locality at the back-end level. Such solutions are also known as locality-
aware request distribution, shortly LARD, a term coined by the paper [52] which
introduced the issue in the literature. The issue is critical, as the two goals are
opposite: a perfect load balancing hurts the data locality, while striving to achieve
good data locality breaks the load balancing. Finding a trade-off between the two is
a difficult task. Some contributions in the field so far [52, 17, 2] chose simulations
to validate their work. A LARD prototype [52] employed a TCP hand-off protocol.
A follow-up paper by Aron et al. [8] made a point for moving the content-aware
request distribution at the back-end level. Ahn et al. [2] discuss content-aware
cooperative caching.

2.2 Design challenges

By looking at Figure 1.2, one can identify some architectural challenges. First off,
the use of specialized front-ends for the request dispatching represents a central-
ized, single point of failure and a possible performance bottleneck. The typical
solution to this problem is the front-end replication. We would like our system to
provide such functionality.

Second, most of the time the back-end server machines act independently of
each other and may thus cause a serious loss of cooperation potential as pointed
out by the experience of the content-aware request distribution systems. In the case
of the COTS clusters, the presence of the SANs advocates even further for a back-
end cooperation, as such interconnects benefit of latency and bandwidth figures
comparable to those of the memory subsystems.

28 VLAD OLARU

Third, such cluster-based servers are application-insensitive. The server soft-
ware runs on the back-ends, while the request routing takes place at the front-
ends. Therefore, the request routing is unaware of the needs of the server applica-
tions. This shortcoming makes a case for developing back-end level request routing
mechanisms (as advocated by Aron et al. [8] as well).

But this issue goes even further and raises server-specific problems. As we
saw in the previous section, finding a trade-off between data locality and load bal-
ancing is a hard task and requires specific back-end level cooperation. In fact, the
issue is complicated even further because the cluster-based servers are most of the
time used in complex environments using proxies, content delivery networks, etc.
The previous research [54] has shown that, in such setups, the request stream gets
filtered out at early stages and only the requests for large, unpopular static docu-
ments or dynamic content reach the cluster-based server. This effect is known as
the “trickle-down” effect. As a consequence of it, the pressure on the server storage
system increases and the locality-aware request distribution becomes crucial. The
side-effect of it is that the load balancing at the back-end level loses importance.

To summarize a bit, the lessons of the past experiences advocate for an ex-
tended cluster-wide cooperation at the back-end level, for single system image
constructs that hide the individual back-end presentation and for the need for im-
proved caching in the I/O subsystem of the server. But all these issues bring us back
to the discussion about the need to have a cluster operating system providing the
corresponding cluster-wide services. Our solution to the server-specific cluster-
wide SSI services relies on extending the traditional stand-alone kernel software
through “resource virtualization”. The remote resources are virtualized locally
over the SAN through specific constructs of the Virtual Resource Layer (see Figure
1.1). The two main services that we will further present, the cooperative caching
and the TCP connection endpoint migration, are the main ingredients of a general
purpose request dispatching algorithm representing the core of our cluster-based
server. The next section presents this algorithm.

2.3 Server and request distribution architecture

The server architecture uses the basic setup presented in Figure 1.2. The cluster
nodes represent the back-end server machines. On each of these nodes runs an
instance of a stand-alone server program (in our experiments we use the Apache
server program [5]). The System Area Network links all the cluster nodes and
acts as a communicating backplane among them. Most of the intra-cluster specific
protocols take place on this communication backplane, while the traditional com-
munication to the “world” employs the Local Area Network (LAN) facilities. The

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 29

low latency and high bandwidth of the SANs represent the incentives for the design
of the SSI services that we further describe. The communication infrastructure is
described in Section 2.4.

The front-ends presented in Figure 1.2 may play an active role in request dis-
tribution or may be totally circumvented by the request dispatching schemes. This
issue pertains to a more refined discussion, mostly related to the performance sen-
sitivity. Since any intranet has a gateway to the Internet anyway, avoiding the
involvement of the front-ends in the request distribution may seem overcautious as
long as these front-ends deliver sufficient performance. However, as we will dis-
cuss in Chapter 6, a fully-distributed request routing solution avoiding the front-
end(s) involvement may pay off. Moreover, such a solution would fit perfectly the
SSI cluster-based servers that rely on back-end level mechanisms only.

Following the taxonomy presented in Section 2.1, our architecture design em-
ploys features also present in Cluster-based and Virtual servers. As in the case
of the Cluster-based servers, we may employ front-end machines as TCP-layer
switches. Nevertheless, the back-ends can also take over the TCP routing in a fully
distributed design by using a connection endpoint migration protocol. Similar to
the Virtual servers solution, the Virtual IP address of the server is assigned to each
of the back-end machines and not to the front-end(s). However, unlike the Virtual
servers solution, the purpose of the Virtual IP is different. The Virtual IP is not
used to enable the incoming requests to hit simultaneously all of the back-ends
because we find the request filtering procedures of the Virtual servers to be too
costly. Instead, we use the Virtual IP to impose a Single System Image view on the
cluster-based server and to establish a functional equivalence of all the back-end
nodes in order to make the TCP connection endpoint migration effective. A (Vir-
tual IP, service port) pair defines a generic TCP endpoint. The connections linked
to this generic endpoint can migrate from one physical server to another through
the connection endpoint migration algorithm we will present in Chapter 6. The
reason behind this mixed approach is to restrict the functionality of the front-end
to that of a connection router (if at all used), while all the main informed request
distribution decisions take place at the back-end level.

2.3.1 Request distribution architecture

The central point of the software architecture of the SSI cluster-based server is a
request distribution scheme expressed as a two-phase (three-phase, if front ends
are used) algorithm. If front-ends are to be used, the first phase is executed at the
front-ends, while the other two are taking place at the back-end level and express
user-specified policies. Our main concern when designing the request distribution
system was to keep it as general as possible, that is, independent of any particular

30 VLAD OLARU

service. Also, we strove to identify the classes of mechanisms that can turn out
to be helpful for such systems and can be implemented as operating system plug-
gable services (modules). Therefore, our design choice went more on the system
side and explains, for instance, the use of the TCP-layer switches instead of the
application-layer ones in our request routing algorithms. The attempt to present
the cluster as a single system motivated the choice of assigning the Virtual IP to
each back-end machine. This choice is consistent with our decision to handle the
request distribution mainly at the back-end level, where each node should be able
to identify itself not only as a stand-alone machine but also as part of a distributed
server.

Nevertheless, our design does not understate the importance of the specific
features of the application. However, instead of relying on application-level so-
lutions only, we aim at a deeper collaboration between the applications and the
underlying kernel. Capitalizing on the extensible/grafting-capable kernels experi-
ence [14, 28], our design allows the applications (in this particular case, the server
program) specifying their own policies and downloading them into the kernel as
phases in the request distribution algorithm. Therefore, our request distribution is
policy- and not service-oriented. Most of the time, these policies are supposed to
perform not only the application specific processing but also to improve the overall
performance of the cluster by taking into account the side-effects of the service
protocol processing. But for a better understanding of how the policies work, we
continue by presenting the request distribution algorithm of our system.

When used, the front-ends perform a blind (non-informed) request distribution.
In fact, it is a simple connection routing based on a hashing function that attempts
to distribute uniformly the requests. The distribution is deliberately simple in order
to offload the front-end machine. There can be many such connection routers,
which is an important scalability factor. Each generic endpoint of a connection
at the back-end level “remembers” the front-end router through which the request
“came”.

The first back-end level distribution phase takes place when the incoming con-
nection requests targeting the generic TCP endpoint hit the back-end nodes. We
call it the unconnected phase, because it occurs early, at the connection setup time.
This phase is entirely devoted to the load balancing of the cluster nodes. Depend-
ing on the policy used, an incoming SYN packet may trigger a check on the TCP
and CPU load of that machine. If the machine is heavily loaded, the incoming SYN
packet is redirected to a less loaded machine. Finding such machines depends also
on policies. For instance, in Chapter 4 we will see how HSCC, our cooperative
caching algorithm, identifies heavily loaded nodes based on the number of the disk
blocks locally cached on behalf of other cluster nodes. Anyway, the price paid
for this extra hop is the SAN latency for a SYN packet, amortized over the cost

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 31

of the entire connection activity. Since this SYN redirection happens only once at
the connection setup time, its price can be considered negligible. For the servers
that use front-ends, handling the TCP connection endpoint assignment at the back-
end level is consistent with the decision to keep the front-end machines as lightly
loaded as possible, since their task is mainly to interface the back-end machines
with the “outside” world. Moreover, it is a natural choice as the back-end ma-
chines are supposed to cooperate and, therefore, to have the kind of information
that enables them to choose a better servicing node for the request. Otherwise, one
would need to inform the front-end node about the loads of the various back-end
nodes and to involve it in a more complicated request dispatching algorithm.

The second back-end level phase of the request distribution concerns the back-
end machines already connected to clients, either as a result of a front-end or a
back-end redirection. This is the connected phase, it is entirely policy-driven and
may result in a TCP connection endpoint migration. The normal application-level
protocol (HTTP, for instance) processing is carried out but it may be influenced by
hints provided by the distribution policy. In the case of a LARD policy, for exam-
ple, when a file is to be opened for access, a decision has to be made as to whether
the request will be serviced locally or it will be relocated it to another node. Such
content-aware decisions would be mainly heuristic methods of choosing between
data and connection migration.

A special type of a connected back-end level policy helps perform informed
load balancing entirely at the back-end level. We called it speculative TCP con-
nection admission. The general idea is that the front-ends shouldn’t pry into the
incoming requests at all. Instead, the requests hit a back-end server and only there,
based on cluster-wide knowledge, a policy that uses the TCP connection endpoint
migration mechanism can balance the loads of the cluster.

2.4 The communication infrastructure

As already mentioned, the SAN infrastructure is quintessential to the needs of the
SSI services that build upon it. As seen in Figure 1.1, the communication software
layer is the basis of all the other cluster OS layers. Therefore, before proceeding
any further, we take the opportunity to present its features and the services it offers.

One important aspect of the communication layer is its hardware independence.
Namely, it defines an interface for the upper cluster OS layers which will use it
to access the network hardware. The main services of this interface allow defin-
ing a cluster-wide unique node ID, message types, mapping/unmapping node IDs
to/from network hardware addresses and, of course, sending/receiving messages.
For every network hardware technology there will be a kernel module implemen-

32 VLAD OLARU

tation of this interface that will be hooked up with the kernel. Throughout our
experiments we used Myrinet cards under the control of the GM driver [66].

Defining a node ID abstraction is of capital importance to our SSI software as
both the CARDs (and cooperative caching) and the TCP connection endpoint mi-
gration use this kind of information to identify nodes in the cluster. As we will see
at the right time, the ID of the node exporting a disk through CARD drivers is part
of the CARD driver identification mechanism together with the traditional major
and minor numbers [9]. The TCP connection endpoint migration protocols use also
the node IDs to designate both the source and the destination of a migration. The
main routines dealing with IDs are:

• ps host id - returns the local host ID

• ps id to addr - maps a given ID to a network hardware address

• ps addr to id - converts a given network hardware address to a node ID

When using GM over Myrinet, the task of assigning unique IDs cluster-wide
is directly supported by the GM software. Therefore, in this case, the node IDs are
in fact the Myrinet IDs. The GM software supports also the conversion routines
between Myrinet IDs and Myrinet hardware addresses.

The interface is also responsible for defining various message types for the
use of the cluster OS. The block request messages issued by a CARD driver as a
consequence of a local cache miss are labeled by a corresponding type, while a
TCP SYN packet initiating a connection endpoint migration will receive its own
type. Sending messages is accomplished by means of an ps send msg routine
which takes as parameters a message type, a chunk of opaque data, the size of the
message and, naturally, its destination address:

int ps_send_msg(struct device *netdev,
unsigned short msg_type,
unsigned short msg_size,
void *msg,
unsigned char *dst_addr);

Receiving messages follows an event-driven model. The upper layer kernel
software “downloads” a specific handler for each type of message into the com-
munication layer. As soon as a message of a given type arrives at the node and
the network interrupt routine delivers it to the host, the corresponding handler fires
up and performs the necessary message processing. This handler runs in interrupt
context as a software interrupt handler (a.k.a. bottom half in Linux). The idea of

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 33

associating messages with the code needed to process them is close to that of Ac-
tive Messages [69], although in our case the message doesn’t carry the code within
itself, as such a solution would have been impractical given the size and complexity
that such handlers might have.

In order to make this infrastructure truly useful, we will describe in the next
chapters various policies and the way they interact with the request distribution
algorithm. We support the data migration by using CARDs (Cluster Aware Remote
Disks) and cooperative caching, while the request migration is accomplished by
means of the TCP connection endpoint migration.

2.5 Summary

In this chapter we described the general architecture of our cluster-based server
and its request distribution algorithm. The server employs a unique Virtual IP as-
sociated with each of the back-end machines of the cluster. The request routing
may or may not involve the front-end machines. The global request dispatching
algorithm relies on a policy-oriented design that ensures independence of the ap-
plication specificity. The applications are permitted to download their instructions
into the kernel by means of policies that operate as phases of the global request
dispatching algorithm of our cluster-based server.

At the end of the chapter we also presented briefly the architecture of our
hardware-independent communication layer. This layer defines the node IDs that
are used by all the other upper OS layers, as well as the conversion routines that
allow mapping these IDs to hardware addresses and vice-versa. The send/receive
messaging system is typed. Receiving messages is event-driven, a special handler
being called to process an incoming message according to its type.

34 VLAD OLARU

Chapter 3

Remote I/O

The tremendous potential of the COTS clusters cannot be always fully exploited
as the building block, the PC system, suffers from various well-known problems.
One widely recognized problem is the disk I/O bottleneck [45]. The ever increasing
gap between the rates at which the processor and disk speeds grow, the additional
pressure put on the disk I/O subsystem by the increased data sets, or the lack of
cooperation among the optimization algorithms used by the various system caches
(at the OS level or inside the disk controller itself) represent some of the most
challenging issues related to this problem.

The clusters suffer naturally from these problems but their distributed architec-
ture raises additional concerns. First off, a software architecture like the one de-
picted in Figure 1.1, which relies on a Virtual Resource Layer, has to provide proper
abstractions to the upper kernel layers. In the case of the disk I/O subsystems, these
abstractions are traditionally the disk blocks (for raw access or databases that de-
cide to implement their own data management mechanisms and policies) and/or
the I/O pages (the file systems being the typical “consumer” of this type of abstrac-
tion). A typical answer to the question is represented by the virtual disks [46], that
is, kernel drivers capable to fulfill local data requests by fetching remote data over
the net (in our case, the SAN). Thus, our first endeavor is to design and implement
an efficient kernel level virtual disk driver. The virtual disks help us share the data
across the cluster without having to replicate it locally on each cluster node.

However, having a solution for cluster-wide data sharing is only the starting
point of our concerns. Recent research on exclusive caching [72, 19] showed the
importance of the cooperation among various system caches (the file system cache,
the disk controller cache, etc.) in a single machine in order to maintain the control
over multiple cached copies of the same data block. In the case of a cluster using
virtual disks, the cache hierarchy grows beyond the boundaries of the local sys-

35

36 VLAD OLARU

tem and the local operation can affect implicitly the operation of the remote node
accessed through the virtual disk. To complicate the matter even further, if one
considers the problem of the constantly growing speed difference between proces-
sors and disks, the natural answer is to enlarge the cache in order to accommodate
larger working sets and, thus, to hope for improved performance. The good news
about clusters is that they can rely on cooperative caching to take advantage of a
global, cooperative, cluster-wide cache. Nevertheless, building and managing a
global cache remains a tricky business. Depending on the complexity of the coop-
erative cache design, the capability of controlling which copies of a certain block
should be kept around (potentially by using remote memories) pushes the issue of
exclusive caching even further. In this chapter, we present a low-level solution for
virtualizing computer-attached remote disks in COTS clusters. Following the up-
ward path through the software architecture graph in Figure 1.1, the next chapter
(Chapter 4) deals with our approach to cooperative caching.

Our virtual disks are called Cluster-Aware Remote Disks (CARD) and virtu-
alize the accesses to the remote computer-attached storage. The block requests
sent to the remote disk nodes may bypass the remote disk caches by using a sin-
gle copy protocol. A remote disk node using this protocol can send the disk data
through DMA directly into the network buffers without storing a copy of it in the
disk cache. The protocol provides exclusive caching by avoiding two copies of the
same block, one stored in the remote cache and the other one in the local cache.
The remote disk caches using exclusive caching are not affected by the incoming
block requests. Thus, they are isolated from the external influence and, in such a
case, a computer-attached remote disk behaves like a network-attached one. The
remote disks are mounted locally by means of virtual disk drivers as any locally-
attached disk would be and the file systems consider them local storage. Therefore,
the driver performance must be comparable to that of the local drives. Our CARD
drivers achieve the desired performance by using a highly asynchronous mode of
operation based on an event-driven model of computation that attempts to make
the most out of the SAN performance. Also, the influence of the semantics and the
assumptions of the file system using the CARD driver is confined locally, so that
they don’t have adverse effects on the operation of the remote disk. In this context,
we discuss the impact of the file system read-ahead policy. A CARD prototype
implemented in Linux showed performance comparable to that of the local disks.

Parts of the material presented in this chapter appeared in [49, 48].

3.1 Related work

The solutions to improve the disk I/O concern various levels of single systems, as
well as the cooperation among systems in the case of the remote disk I/O for paral-

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 37

lel/distributed computing. The remote disk I/O solutions can be broadly classified
in: user-level-, file system- or low-level-oriented solutions. Figure 3.1 depicts the
three possible approaches to the remote disk I/O. The arrows on the picture repre-
sent the individual steps of a remote disk I/O operation, while the arrow numbers
show the order of these steps.

Operating system Operating system

Network

User−level I/O server

2

7

51 8 3 6 4

Operating system

File system

Network

Operating system

1

Application

2

4

5

6 3

A. User−level remote I/O
B. Filesystem−level remote I/O

Application

1

Operating system

Virtual/logical disk

File system File system

Network

1 2

3

4 4

4

1

Physical disk

Operating system

C. Low−level remote I/O

1

File system

User−level FS serverApplication

Figure 3.1: Remote I/O systems

In the user-level solution, an application program asking for a block contacts
a remote user-level I/O server that, upon receiving the request (Figure 3.1 A, step
3), asks the local operating system to provide the block (step 4). As soon as the
block is delivered to the I/O server (step 5), the server can send the block back to
the requester over the network (steps 6 and 7).

The file system-level solution enables the applications to access remote data
through the services of distributed/parallel file systems. Most of the time, such
systems avoid handling requests in user-space. However, some implementations
rely on an user-level request service (depicted in Figure 3.1 B by the dashed arrows,
steps 3 and 4, and the user-level file system server).

The low-level remote disk I/O systems rely on the virtualization of the remote
storage (see Figure 3.1 C). Inside the operating system, a disk I/O request issued
by an application is handed over (either directly or through the local file system) to

38 VLAD OLARU

a virtual (or logical) disk driver that is supposed to serve the request. The virtual
disk driver fetches the blocks from the remote disk over the network.

The low-level stand-alone I/O systems improve the performance at the disk
level either by bridging the speed gap between the processor and the disk (Active
Disks [1]) or by integrating the various system caches into a cooperative I/O in-
frastructure. Exclusive caching [72, 19] avoids the double buffering occurring in
independently managed caches (e.g., the file system and the disk controller caches).
The file system-aware disk controller prefetching [57, 19] compensates for the mis-
match between the read-ahead policies of the file system and the disk controller.

The distributed low-level I/O systems include Petal distributed virtual disks
[46], single-image I/O systems (SIOS) [36], striped log-based storage (Swarm
[35]) and network-attached secure disks (NASD) [32]. Petal is a block-oriented
storage system that manages a pool of distributed physical disks by providing an
abstraction called virtual disk. A virtual disk is globally accessible and offers a
consistent view to all its clients. The SIOS Virtual Device Drivers (VDD) encom-
pass the entire disk capacity of a node (both local and virtual disks) much like in
a RAID system (actually implemented as default technology). Swarm offers the
storage abstraction of a striped log while the NASDs provide an object-oriented
interface.

At higher levels, distributed file systems like Frangipani [67] use Petal vir-
tual disks and supply them with meta-data consistency support by implementing a
distributed lock service. Server-less file systems [4] distribute the meta-data man-
agement and use cooperative caching [23, 55] to scale their working set beyond the
limit of the locally available memory. The usual distributed file system memory
hierarchy (local cache, server cache, server disk) is extended by adding the client
caches, provided that reading from remote caches takes less time than accessing the
disk. The PACA [21] parallel file system mixes cooperative caching with global
memory and memory-to-memory copies (a form of Remote DMA or RDMA).

Direct access file systems such as DAFS [25] modify the distributed I/O mem-
ory hierarchy as well, not by adding but by removing a level, namely the local
kernel cache. DAFS is based on NFS and addresses to a class of applications that
have seldom sharing access patterns. DAFS runs in user space and uses RDMA
to communicate directly with the file server in order to bypass the local operating
system. Unlike PACA, no global memory support is provided.

Parallel file systems like Clusterfile [40] aim to match efficiently the access
patterns of the parallel applications to the physical partitioning of the parallel files
across the cluster. Studies [58, 47, 56] have shown that the mismatches between
the two cause most of the performance loss in parallel file systems. Clusterfile
minimizes such mismatches by allowing a flexible physical partitioning of the file
across the cluster disks. By combining collective I/O [26, 44] with cooperative

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 39

caching, Clusterfile provides cooperatively cached collective I/O buffers [39].
Other user-level systems are mostly a work-around: block devices [43] using

VIA [6] or file systems (PVFS [38]) in user space, remote I/O libraries [31] over
MPI-IO [20]. Since the traditional kernels are unaware of the distributed nature of
these systems and their inner mechanisms and policies fail to match the expecta-
tions of the user space driven computation, the end result is performance penalty.
Also, moving typical kernel code in user space incurs increased application soft-
ware complexity and more difficult development.

3.2 Background on disk drivers and the file system

The CARD drivers build a block-level distributed storage system and can support
both file and database systems on top of them. However, all our work on remote I/O
refers exclusively to the interaction of the CARD drivers with the file systems. In
order to explain properly this interaction, we start out by presenting the operating
system concepts needed to understand the operation of our CARD-based storage
system. Presenting such concepts includes describing the basics of the disk driver
operation and its interaction with the file system.

3.2.1 Disk drivers and the file system

The interaction between a file system and a disk driver is intermediated by a page
or buffer cache that attempts to speed up the disk access. Usually, the file data is
accessed through the page cache, while raw and special data (meta-data such as
inodes and superblocks [9]) accesses use the buffer cache. Unlike the buffer cache,
which is indexed by disk ID and block number, the page cache is indexed by inode
and offset within the file. This particular indexing of the page cache allows an
efficient implementation of the memory-mapped files (see the Unix mmap system
call). Thus, pages store disk blocks contiguous in the logical file layout (a byte
stream for the Unix files) but potentially uncontiguous on disk.

Regardless of the type of the requested data, buffer head structures [9] are used
to describe the in-memory copies of a disk block. These buffer heads are always
the link between the corresponding disk cache and the strategy routine of the disk
driver. This routine is responsible for passing disk jobs to the driver and possi-
bly to schedule them for optimal access. In Linux, optimizing the disk access is
done by coalescing disk requests for consecutive blocks, if possible. The disk re-
quest structures keep pointers to the buffer head(s) to which they correspond and
use these structures to cooperate with the disk cache (either the buffer or the page
cache). In the case of the buffer cache, the buffer heads are stored in a hash list and
are called synchronous buffer heads as they can be later used to access the cached

40 VLAD OLARU

blocks. For the page cache, only temporary buffer heads are used. As previously
mentioned, they are used only to make the connection between the disk strategy
routine and the page cache. Therefore, these buffer heads are called asynchronous
(or I/O) buffer heads. While the synchronous buffer heads point to the buffer cache,
the asynchronous buffers heads are used only to load blocks potentially uncontigu-
ous on disk in a page that reflects logical contiguity, as instructed by the file system
layout. Figure 3.2 shows the relationship of the asynchronous buffer heads to the
I/O pages.

Buffer

Page

Buffer

Buffer

Buffer

Page descriptor

Asynchronous buffer head

C
on

tig
uo

us
 f

ile
 o

ff
se

ts

Asynchronous buffer head

Asynchronous buffer head

Asynchronous buffer head

Figure 3.2: Asynchronous buffer heads

When reading from a file, a process issues a system call that uses the appro-
priate kernel read routine provided by the file system to deliver the requested data.
The file system read routine checks the page cache for a page containing the re-
quested data and, if found, delivers the data back to the user level process.

However, if the requested data is not cached, a new page is allocated and an
appropriate asynchronous buffer head (or more if the page size is larger than the
block size) is created to describe the in-memory copy of the disk block. The page
is locked and a disk request gathering references to the asynchronous buffer heads
is passed to the disk strategy routine. The process making the request goes to sleep,
while the driver is responsible for serving the request.

When the driver finishes the service, a disk interrupt is issued and the corre-
sponding interrupt handler is called. This handler is sometimes called the hardware
interrupt handler (or the upper half). It is supposed to perform only the critical op-
erations needed to handle the interrupt, while leaving the uncritical tasks for later
handling through a so called software interrupt handler (or bottom half). Before
completion, the upper half checks whether the situation of the system permits the
execution of the bottom half as well. If so, the software handler is called and runs
to completion (can be interrupted though by further incoming hardware interrupts,

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 41

unless it explicitly disables them; in any case, a bottom half cannot be interrupted
by any other bottom halfs). Otherwise, its execution is deferred to a later time
(more precisely, before the scheduler chooses the next process to run).

The disk bottom half dequeues the request, runs a callback routine associated
with the asynchronous buffer head representing the block and wakes up any pro-
cess that might wait for that block to become available. The role of the callback
routine is to perform tasks related to the buffer head management. Typically, such
tasks include marking the buffer head up-to-date and unlocking the page (or buffer,
for synchronous buffer heads). Additionally, for asynchronous buffer heads, the
callback releases the buffer head(s) as soon as the entire page has been validated.
Reading raw or meta-data is similar, the only differences being that buffers and not
pages are handled and that synchronous buffer heads are used.

The traditional path has been recently put under scrutiny especially by dis-
tributed file systems like the Direct-Access File System (DAFS) [25] that bypasses
the local kernel in order to make a Remote DMA (a memory-to-memory access)
to the file server. The disk blocks are fetched directly in the user-space and leave
no trace in the kernel. Not storing a copy in the kernel cache assumes however a
particular type of operation in which the block sharing on the client side is seldom.
If this is not the case, mechanisms similar to those in the kernel are requested (a
form of mmap with MAP SHARED and Copy-On-Write).

Our approach is orthogonal to that of DAFS because we target different ar-
chitectures. As mentioned, the clusters of PCs are supposed to represent highly-
parallel machines, and the client-server assumptions of DAFS may not always fit
the cluster paradigm. Therefore, we chose to use local stand-ins for the remote
disks and to use them as if the resources were local. This decision raises questions
at the file system level (for instance, questions related to the meta-data consis-
tency) if stand-alone file systems are used on top of virtual disk drivers. However,
we believe that it is possible to implement with minimal effort parallel/distributed
file systems on top of the existing stand-alone ones, provided that the appropri-
ate functionality is offered at the virtual disk driver level. The issues concerning
such functionalities are presented in the next sections. However, the locking mech-
anisms and the meta-data consistency will not be discussed because these issues
should be solved at the file system level and this topic is beyond the purposes of
this thesis. For all the purposes of this thesis, a read-only storage system assump-
tion suffices.

3.3 Design considerations

The CARD driver is a regular block device driver in the kernel. However, it vir-
tualizes accesses to remote disks by fetching disk blocks over a SAN and that

42 VLAD OLARU

implies meeting certain design decisions. First of all, one needs to establish an
unique identity of a CARD throughout the cluster. Second, the existence of two
disk caches in the kernel and the choice of a high-level abstraction cause problems
as a CARD driver asks for a remote block. Since the CARD drivers operate on a
block abstraction, they send along with the request a remote disk ID and a block
number. However, at the remote site this pair cannot be used to index the page
cache. Therefore, if the remote page cache has a cached copy of the requested
block, the request goes unnecessarily to the disk. This scenario motivates the need
for a dual behavior of the CARD driver: it should accommodate both I/O page and
block requests.

Furthermore, having to deal with two systems, the CARD design has to decide
to which extent the local requests will affect the remote page/buffer cache at the
physical disk node, as the recent research in exclusive caching [72, 19] suggests
possible benefits for certain classes of applications. Moreover, the separation of
the various buffering systems inside the kernel incurs performance penalties. For
instance, the network subsystem uses specialized socket buffers to send/receive
messages, while the file system buffer cache uses its own buffering system (the
buffer head cache). This separation implies that the CARD driver must perform
two extra copies to move the data blocks between the two buffering systems. To
avoid these copies, one needs a Remote DMA (RDMA) engine that allows a direct
read/write access to remote memories through the SAN. Alternatively, one could
use a unified network and cache buffering system such as IO-Lite [53]. We describe
a partial solution consisting of a single copy protocol that allows also a simple
exclusive caching implementation.

Additional concerns regard the local file system level policies like reading
ahead. They may lose their efficiency if not properly exported to the remote system.
And last but not least, the driver should make the most out of the available potential
for parallelism in order to represent a true alternative to local drives performance-
wise. In the next sections we will address each of these issues.

3.4 The software architecture of the CARD drivers

Figure 3.3 depicts the software architecture of the CARD storage. It comprises
two main parts: the CARD kernel driver used to mount locally a remote disk and
a protocol handler running at the remote site in order to fulfill the remote disk
requests.

When a block request on a node misses in the local cache (step 1 on Figure
3.3), a request for that block is queued in the CARD driver while this one attempts
to fetch the block from the remote disk (step 2). To do that, the CARD driver
sends a request message (step 3) to the remote node and waits for the response.

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 43

The message passes over the SAN (step 4) and, once arrived at destination, it is
delivered to the protocol handler (step 5). The handler represents code running as
a software interrupt and is responsible to handle the incoming requests. First, it
checks the local cache for a cached copy of the requested block (step 6). This step
may be bypassed, as we will see later, by directly accessing the disk. If a cached
copy of the block exists, it is delivered to the requester by sending a message back
over the SAN (step 9). Otherwise, a request is addressed to the disk (step 7), which
in turn fulfills it by filling out the local cache with a copy of the block (step 8).
As soon as the copy becomes available, the data is sent back to the requester (step
9). The response travels back to the requesting node (step 10) where the CARD
driver is being notified of the block arrival and fills up the appropriate cache block
(step 11). Then, the process that requested the block is being awaken and given the
block (step 12).

Network card

DISK

Cache

P
rotocol

H
andler

System Area Network

4

5

6
7 8

9

Cache

1

CARD

Network card

2

3

10

11

12

CARD node Physical disk node

Figure 3.3: The software architecture of the CARD drivers. The numbers on the
picture mark the steps taken by a request for a block miss in the local cache

3.5 Device identification and block addressing

In order to send a block request to a remote disk, a CARD driver has to be able
to identify that node. Both the physical disk and the CARD driver virtualizing
it are uniquely identified in the cluster by a tuple (major number, minor number,
physical id). The major and minor numbers form the conventional pair used to

44 VLAD OLARU

identify a block device in stand-alone kernels. Many CARD drivers mounting the
same remote disk on different nodes may have different major and minor numbers
but share the same physical id. This ID is the ID of the physical disk node and,
at the same time, the ID provided by the communication infrastructure (i.e., the
result of calling ps host id as seen in Section 2.4). The major and minor numbers
are used in the traditional manner to distinguish among the various local block
drivers, while the third key of the tuple, the physical id, helps discriminate against
different CARD drivers with the same (major, minor) pair. The locally cached
blocks are found using the native addressing scheme of the local kernel based on
major, minor and block numbers. The remotely cached blocks are first checked
against their physical id to identify the actual CARD driver on that machine. Then,
the native addressing scheme of the local kernel is used. Of course, this global
addressing scheme assumes that a node mounts locally only once a remote disk by
means of a CARD driver.

3.6 Dual operation: between pages and blocks

For a cluster-wide file system, a virtual disk driver offering only block-oriented ac-
cess would complicate things. For one thing, systems implementing cooperative or
global disk caches [4, 21] will not be able to optimize the memory usage. Imagine
a node asking for a file page not locally cached. The request gets translated into
a disk block request by the virtual disk driver and sent to the remote disk. The
remote disk will receive a request containing a disk ID and a block number. If the
remote file system already accessed that block not long ago, a copy of it should
be in the page cache. But the page cache is indexed by inode and file offset, and
thus the request will unnecessarily have to go to the disk. The scenario is equally
valid for the cooperative caching case. Even if there is no available copy whatso-
ever, possible future requests to the same block at the remote node may benefit of
a cached copy. Again, since only the disk ID and the block number were provided
in the request, a copy at the remote node can be saved only in the buffer cache.
Subsequent file accesses to the block will copy the content also in the page cache
and thus will result in poor memory management (double buffering).

In order to answer the problem, one has to investigate two possible solutions.
The simplest would be a page-based interface to the storage. Since the file sys-
tems define their logical layout most of the time as a sequential stream of bytes
(model inherited from the Unix file systems), a page-based interface to the stor-
age would make sense because it fits well with the memory-mapped file paradigm.
Two arguments speak against this solution. First, our CARD-based storage sys-
tem is not intended for file system exclusive use. One can easily build database
systems on top of the CARD drivers. However, most of the time, the databases

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 45

avoid relying on file system facilities to manage their data. Therefore, offering just
a page-based interface may not properly suit the needs of such systems. Second,
the network-attached secure disks [32] propose an object-oriented interface to the
storage system, as opposed to the traditional block-based one. The CARD drivers
could support such an approach by adding another level of indirection between
an object-oriented interface presumably offered by an object-oriented file system
or database and the block-based interface. Having only the page-based interface
would add an undesired level of indirection between the two, and thus would cause
an additional overhead.

As a result of these considerations, we decided to provide our CARD-based
storage system both with a page- and a block-oriented interface. This design choice
admits to two implementations. One of them considers unifying the page and the
buffer cache interfaces in the kernel, while the other one relies on extending the
CARD functionality by sending page cache specific information along with the
block requests. Both methods are described and discussed in the following subsec-
tions and both have been implemented in the Linux kernel.

3.6.1 The unified page-buffer cache

One possible solution to the problem is to re-engineer the kernel page cache man-
agement algorithm. The main idea is to keep around synchronous buffer heads
that allow indexing the page cache through (disk ID, block number) pairs as well.
Keeping around synchronous buffer heads is accomplished by modifying the low-
level routine that starts page I/O operations (brw page in Linux 2.2) as follows. As
seen before, when filling out an I/O page, the system creates asynchronous buffer
heads that point into the I/O page to help direct the DMA disk transfers ordered
by the disk driver. Using synchronous buffer heads instead of asynchronous ones
and inserting them into the buffer cache queues as well causes subsequent buffer
cache lookups to succeed in finding the synchronous buffer heads that point to data
actually stored in the page cache.

The solution seems simple, but there is a catch to it. Namely, when the free
system memory becomes scarce, the memory management subsystem uses a clock
algorithm [65, 9] to page out some of the memory pages. If the decision targets an
I/O page, the page is saved to the disk only if it is modified (because an unmodified
copy of it exists already in the corresponding file somewhere on disk). Never-
theless, the eviction of the page entails releasing the corresponding structures that
index the page cache. At this point, the pages that are doubly indexed, both through
the page and the buffer cache, should also get rid of the corresponding synchronous
buffer heads that refer to the page. These additional deallocation operations imply
kernel code changes in the clock algorithm (expressed by the shrink mmap routine

46 VLAD OLARU

in Linux 2.2).
The unified page-buffer cache approach is problematic, as in general kernel

changes are hardly accepted by the users community, unless the problems they re-
spond to cannot be solved otherwise. Moreover, it defies our attempt to keep most
of the kernel unaware of the parallel/distributed environment in which it operates.
Conceptually, the page cache needs no knowledge about the origin of the cached
data. This kind of information may be kept in the file system, but belongs natu-
rally to the storage subsystem. This affirmation holds for stand-alone systems and
we aim to show that it extends naturally cluster-wide. Other obvious disadvan-
tages of the hard-coded solution are its increased complexity and the additional
bookkeeping memory consumption as the page cache keeps around synchronous
buffer heads. The obvious advantage of this solution is the reduced CARD driver
complexity, as the driver has to offer only the block-oriented interface.

3.6.2 The dual-behavior CARD driver

A cleaner solution to the problem doesn’t affect the kernel but complicates the
CARD driver design. Moreover, the CARD drivers stop being block-oriented stor-
age and borrow file system specificity. The main advantage is the flexibility. At
the storage level, it is possible to decide which copy to maintain: that in the page
cache, that in the buffer cache or, as we will see in the following section, no copy
at all.

When inserting disk requests in the CARD driver queue, the strategy routine
decides whether the requested block should be looked up at the remote disk site
in the page cache or in the buffer cache by setting an appropriate flag in the re-
mote block request. If a page cache copy is desired, the inode and the file offset
corresponding to the requested disk block are sent along with the request over the
SAN. Although at this level only the block number and the disk ID should suffice,
some kernel data structures make it easy to find this kind of information, namely
by indexing in a page table (the mem map array of page structures in Linux 2.2)
holding pointers to the structures describing the usable memory pages. Since the
disk data is stored in I/O pages, the page structure describing the page holds also
pointers to the inode of the corresponding file and the offset within it.

At the remote disk, the protocol handler (see Figure 3.3) honors the flag and
translates the received (inode, offset) pair into a locally valid index pair. This
translation is needed because Linux doesn’t use inode numbers for indexing, but the
kernel addresses of the corresponding inode structures. This way, carefully coded
hash schemes exploiting the placement of the inode cache in the kernel address
space improve the lookup performance. Following the translation, a local access
to the page cache is simulated as if it were issued by the local file system itself.

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 47

This procedure starts by looking up the page cache for a cached copy of the data.
If not found, a new page is allocated and handed over to the normal I/O processing
described at the beginning of this chapter. As a side effect, one gets also the bonus
of prefetching the corresponding inode in the inode cache. This prefetching speeds
up future (both local and remote) accesses to the same file.

3.7 Single copy protocol

The separation of the various buffering systems in the kernel affects the design
of the virtual disk driver. The network interface uses specialized socket buffers
to send/receive messages, while the file system uses its own buffering capabilities
(the page/buffer cache). Separate buffering systems imply additional copying both
at the local and at the remote disk nodes.

skb head

skb tail

Remote disk request header

Socket buffer

Data pointer

Buffer head

DATA

Figure 3.4: Socket buffer holding both block data and the associated buffer head

Let’s take the example of a file read operation. The virtual disk driver prepares
locally a page to store a block and sends the block request over the SAN to the
remote disk node. There, if already cached, the block is copied to the socket buffer
and sent back to the requester. This copy could be avoided only if the SAN card
was capable to perform a DMA from the page/buffer cache to the network card.
Current RDMA implementations [25] for SANs do not allow such things since
they require pre-defined pinned-down buffers. However, theoretically, the use of
arbitrary buffers should be possible, as the disk drivers, for instance, have no prob-
lem sending their data through DMA to randomly chosen (i.e., not pinned-down)
addresses like those of the individual pages/buffers.

For the uncached blocks we can do better. We instruct the disk at the remote
node to perform a DMA into the response socket buffer instead of the page/buffer
cache by preparing a socket buffer large enough to hold not only the data block, but

48 VLAD OLARU

also the buffer head structure that describes its in-memory copy (see Figure 3.4).
Thus, we bypass both the buffer head cache and an additional memory allocation
for the data itself. The latter is possible as we use pre-allocated response socket
buffers. We fill in the buffer head allocated in the socket buffer with the appro-
priate values and pass it to the strategy routine of the disk driver. As a result, the
destination address for the disk DMA transfer registered in the disk request will
be that provided by the buffer head which, in turn, points to an address within the
response socket buffer itself. When the disk read operation completes, the disk
software interrupt marks the “buffer” up-to-date and “releases” the buffer head. In
fact, nothing gets done since the buffer head occupies memory in the socket buffer
past the useful region and that memory won’t be transfered back over the network.

Network card

DISK

Cache

P
rotocol

H
andler

System Area Network

4

5

Cache

1

CARD

Network card

2

3

9

10

CARD node Physical disk node

8

6

7

Figure 3.5: The exclusive caching operation of the CARD driver

As soon as the response arrives at the initiator, the virtual disk driver that issued
the request has to copy the block data from the socket buffer to the page cache.
Again, this copy could be avoided if the SAN card had a DMA capability enabling
to send the data directly to the page cache. Or, as a general alternative to any DMA
capability, one could use a unified network and cache buffering system such as IO-
Lite [53]. The current CARD prototype doesn’t support such techniques. A visual
description of the whole protocol is given in Figure 3.5, which should be compared
to the standard operation depicted in Figure 3.3.

The capability to control whether copies of the fetched blocks are left behind
in the page/buffer cache at the remote disk node offers extended flexibility. On

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 49

one hand, a fine-grain exclusive caching [72, 19] is possible by simply sending an
exclusive caching remote disk request (in fact, it is a matter of setting a certain flag
in the request). On the other hand, the ability to control the copies at the remote site
enables a dual behavior for the disk: either computer- or network-attached. When
the node hosting the physical disk is not logically involved in the computation, the
single copy protocol makes the remote disk look like network-attached storage.

3.8 The impact of the file system read-ahead policy and
the disk fragmentation

The traditional stand-alone kernels use a file system read-ahead policy to improve
the disk usage and throughput. The default action is to sequentially prefetch a
given number of blocks. The policy adapts its behavior to the file access pattern
of an application by using a read-ahead window that may shrink to zero when
the accesses become random. This policy is complemented by the optimizations
performed by the strategy routine of the disk driver and the disk controller itself.
An independent management of all these caches and their optimization algorithms
may lead to performance degradation, as pointed out by recent research [57, 19].

When importing a remote disk through a CARD driver, the natural question
is how to translate the local file system read-ahead policy at the remote disk node,
since that node is not aware of the assumptions made by the local system issuing the
disk requests. A simple answer is to use a synchronous model employed by local
disk drivers (sequentially process the block request queue of the driver) and to rely
on the read-ahead facilities of the remote disk controller. But this solution may
not work properly for certain classes of applications. For instance, the Web servers
serve mostly small files and the read-ahead is really of almost no use in their case.
Moreover, the disk fragmentation worsens the performance due to unnecessary disk
accesses that pollute the caches and reduce the meaningful disk throughput.

Fortunately, it is fairly easy to translate the read-ahead access pattern to the
remote site by sending the disk requests asynchronously. The low-level driver
routine concluding the decisions of the strategy procedure removes the currently
issued disk request from the driver queue allowing thus the processing of the next
requests. The processed requests are gathered in a separate queue that will be
walked through when the block replies arrive. Thus, if we consider the low latency
of passing a small message over a SAN, we can affirm that the read-ahead requests
arrive and are queued at the remote disk node with minimal delay. The experimen-
tal section, Section 3.11, quantifies the effects of the asynchronous sending.

Reading ahead raises another question: how much to read ahead? The file
system makes its assumptions about the underlying storage system and uses an

50 VLAD OLARU

upper bound for the read-ahead window. This limit is the maximum read-ahead
value of the disk driver (in Linux 2.2, stored in the max readahead array which
is indexed by major and minor numbers). If the driver doesn’t set this variable,
the file system uses a default maximum value. When designing the CARD driver,
one has to assess the impact of setting this variable to different values. Intuitively,
using a higher read-ahead value would allow for more asynchrony. The intuition
is however undermined by our previous claim that the read-ahead block requests
arrive at the remote disk node with minimal delay. If so, it means that the CARD
driver should use the same maximum read-ahead value as the remote disk driver.
Section 3.11.3 will show the sensitivity of our asynchronous mode of sending disk
requests to this parameter by acknowledging that the CARD drivers should use the
same maximum read-ahead value with the remote disk driver.

3.9 The CARD drivers and the network

The CARD driver design has to cope also with the consequences of using a SAN
to move blocks back and forth. The requests arriving at the remote disk site behave
like regular messages delivered by the SAN card at interrupt time to the remote
host. Handling such messages raises a few issues that we will present in this sec-
tion. First off, the protocol handler (see Figure 3.3) that processes the incoming
block requests may follow either a blocking model (using a kernel thread server)
or an interrupt driven one, which serves the blocks using a software interrupt han-
dler run in interruptible context. This handler is executed at the end of the hardware
interrupt handler triggered by the SAN card interrupt. Second, messages can get
lost. Although SAN interconnects like Myrinet offer high reliability guarantees
(erroneously sent packets are seldom, most of the losses are due to insufficiently
available buffers on hosts), a virtual disk driver must cope with packet loss events.
And third, when the CARD drivers are used together with stand-alone file sys-
tems that are unaware of the distributed nature of the underlying storage system,
meta-data consistency problems may arise.

3.9.1 Event-driven vs. blocking

The blocking solution uses a kernel thread and has the advantage of establishing
a well-defined protection domain which avoids unfairness, as pointed out the by
the research experience with network subsystems [11, 12]. It is the thread entity
that gets charged for the server computation. The disadvantage is a lower degree of
responsiveness. When a request arrives, the network card delivers the interrupt, the
server thread is woken up and placed in the run queue. However, making the server
thread runnable doesn’t ensure immediate response as only the scheduler decides

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 51

which thread of control gets the processor next. The scheduling priorities offer a
somewhat coarse grain control over when exactly the server thread will run again.

The interrupt driven solution shows better responsiveness. The cached blocks
are delivered at interrupt time as fast as possible. If the block is not cached, the
software interrupt handler sets up a callback function associated with the buffer.
The callback will deliver the block (also in interruptible context) at the time the
disk interrupt handler signals that the disk driver finished loading the block. The
disadvantage is that the currently running process interrupted either by the SAN
card or by the disk interrupt is unfairly charged for unasked for computation.

Our solution is a mixture of the two. The cached blocks are serviced at interrupt
time in order to improve responsiveness. For the uncached blocks, the servicing
is deferred to a kernel thread because the disk latency is dominant in this case and
saving a few microseconds wouldn’t help much.

3.9.2 Asynchronous block delivery

The operation of the kernel thread delivering the disk blocks may be synchronous
or asynchronous. For the reasons discussed in Section 3.8, a synchronous model is
not acceptable. Moreover, a synchronous block delivery mechanism prevents disk
strategy routine and disk controller optimizations.

In the asynchronous block delivery mode, the server thread launches a number
of disk requests and blocks awaiting for the first request to complete. The benefits
arise from amortizing the cost of a context-switch over several disk requests, from
the optimizations performed by the strategy routine of the disk driver and from the
disk access optimization algorithms implemented by the disk controller. However,
there is still one problem left. Once the blocks have been loaded in the memory
(either in the local page/buffer cache or, as we presented in Section 3.7, directly
in the response socket buffer), they have to be sent back to the requester as well.
Sending back the data entails additional processing that cannot be carried out in
parallel with the request handling. A possible solution is to use another kernel
thread for the block delivery, but then the context-switches and the lack of control
on the scheduling decisions increase the servicing overhead even more.

A better solution uses an event-driven model. The disk drivers signal the com-
pletion of the block reads by calling a disk software interrupt that removes the
requests from the driver queue, marks them free, calls the potential callbacks as-
sociated with the buffers heads used for the blocks and launches new disk jobs, if
available. Running a callback at interrupt time is the key to better performance,
because these callbacks can be used to send the freshly loaded block back to the
requester right away. Thus, by simply registering the appropriate callback in the
buffer head passed to the strategy routine, one gets the maximum parallelism (ac-
tually pseudo-parallelism, as usual on the uniprocessor machines) between the re-

52 VLAD OLARU

quest processing and the data delivery. The major disadvantage of this solution
remains the unfairness, as already pointed out before. The costs of sending the
blocks are charged to the currently running process that happened to be interrupted
by the disk completion event.

3.9.3 Fault-tolerance

The networks can be unreliable. From a disk driver perspective, a disk request that
gets lost is unacceptable. Therefore, although the SANs exhibit usually a high de-
gree of reliability, reliable communication protocols are needed. However, a disk
request may be considered lost also when a remote node supposed to serve the
request goes down for unknown reasons. A correct (and fault tolerant) solution
requires a per-request timer that fires up a handler which flushes out the stale re-
quests, marks the corresponding buffer cache blocks not up-to-date and releases
their locks. As presented before, by releasing the locks the application is woken up
and the completing system call will report an I/O error.

3.9.4 Meta-data consistency

The CARD drivers are independent of any disk format and may access the physi-
cal disk through a raw interface, but using them with a non-distributed file system
(Linux ext2, for instance) may lead to severe inconsistencies. An example of such
problems involves the specialized directory and inode (file meta-data) caches found
in any file system. Intended for stand-alone use, such file systems fail to take the
appropriate measures for keeping these caches consistent across the cluster when
used on top of the CARD drivers. One can enhance the CARD capabilities with file
system meta-data consistency mechanisms. Instead, we chose to delegate the job at
the file system level for two reasons. First, the CARD drivers are meant to be stor-
age devices independent of the actual data format on the disk. Second, our plans
are oriented towards integrating the CARD drivers with Clusterfile [40], a parallel
file system for clusters. Clusterfile will take care of the meta-data consistency.

3.10 The CARD operation breakdown
Before we proceed to evaluating the performance of our CARD drivers as a sup-
port for sharing data in a cluster-based server, we present in a short experimental
preamble a breakdown of the time costs of the CARD remote operations.

3.10.1 Experimental setup and methodology

We ran our experiments on a small Linux cluster consisting of two Intel PCs inter-
connected through a Myrinet switch and LANai 7 cards. The Myrinet cards have

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 53

CARD Local Disk

Memory copies 80 µs -
Service handling 15 µs -

Network time 205 µs -

Cached read time 300 µs 30 µs

Disk read time 12300 µs 12000 µs

Table 3.1: CARD vs. Local Disk Comparison (4k block read access times)

a 133 MHz processor on board. They achieve 2 Gb/sec in each direction. The
interface to the host is a 64 bit/66 MHz PCI that can sustain a throughput of 500
MB/sec. The Myrinet cards are controlled by the GM 1.4 driver of Myricom [66].
The PCs are 350 MHz Pentium II machines with 256 MB of RAM. All the systems
run Linux 2.2.14. The disk used for tests is an IBM DCAS-34330W Fast/Ultra-SE
SCSI disk. Only one partition of it, containing approximately 1.7 GB data, was
remotely mounted in the experiment that we further describe.

Our experiment attempts to evaluate the performance of a CARD driver acting
as a simple remote disk interface. We compare its performance to that of the remote
disk it mounts. Essentially, the test consists of running the Unix find command to
scan a directory for a given string. The directory resides on the remote disk that
was mounted by means of a CARD driver. The typical layout of the command was:

find <dir> -exec grep <str> {} \;

The remote disk is formatted with a native Linux file system format (ext2) and
because of the potential inconsistencies that we have mentioned in Section 3.9.4,
the CARD mount was read-only. The file system is not aged and therefore mostly
contiguous. Exclusive caching has not been enforced in this experiment.

3.10.2 CARD vs. Local Disk comparison

The results are presented in Table 3.1. The memory copies represent the sum of
the two copying operations taking place at the two nodes involved in the operation
in order to transfer the data between the corresponding buffer/page caches and the
socket buffers of the two network subsystems. The service handling time refers to
the time spent while handling the incoming disk block requests. The network time
is computed by subtracting the copying and service times from the total fetch time.
Notice that accessing a remotely cached block is significantly faster (40 times, 300
µs vs. 12000 µs) than getting an uncached copy of it from the local disk. Also

54 VLAD OLARU

interesting is to see that the dominant parts of a remote fetch operation consist of
the network time (205 µs) and the copying time (80 µs), respectively. In contrast,
the service handling accounts for only 5% of the total access time.

3.11 Performance evaluation

In order to evaluate the performance of our CARD driver as a shared storage for
cluster-based Web servers, we used WebStone [61], a well known commercial
benchmark for Web servers respecting a Zipf-like [77] document retrieval distribu-
tion. The WebStone software has been configured to retrieve static documents only.
Therefore, throughout the rest of this section, by WebStone operations we refer to
HTTP GET commands. The benchmark used HTTP 1.0 and a file set around 1 GB
of data. The server(s) used local disks, NFS (over Ethernet) and Linux ext2 on top
of our CARD driver. The driver used the single copy protocol (that is, it made the
disk behave more like a network-attached than a computer-attached storage) and
we tested with both of the asynchronous delivery mechanisms: the thread-based
one, designated as the asynchronous case, and the interrupt-based one, called the
event driven case.

We drove two kinds of experiments. The first type attempted to assess the
performance of a single server using CARD drivers. We evaluated the impact of
the load, the disk fragmentation and the read-ahead policy of the file system on the
server performance. The results are presented in Subsections 3.11.2 and 3.11.3.
The second type of experiments considered the operation of the CARD drivers in
distributed servers. The aim was to get an idea about the behavior of our remote
disk acting either as a computer-attached or as a network-attached storage. In the
first case, the node hosting the physical disk was running a Web server instance
as well. For the other case, two server machines mounted locally the remote disk
found on a third machine through CARD drivers. Subsection 3.11.4 presents and
discusses the corresponding results.

3.11.1 Experimental setup

The cluster setup is that previously presented in Section 3.10.1 with an additional
IBM DCAS-34330W Fast/Ultra-SE SCSI disk and another cluster node. Similarly,
only disk partitions are remotely mounted for the experiments. Both disks are
formatted with a native Linux file system format (ext2). One of the disks has an
aged file system on it (39.5% non-contiguous, as reported by the fsck command),
while the other one is newly formatted (0% non-contiguous). The fragmentation
factor of the aged disk is not artificially chosen, but has been “naturally” induced
by several years of use. The server machines mounted the remote disk partitions
read-only (for the reasons explained in Subsection 3.9.4).

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 55

As a Web server we used Apache 1.3.20 [5]. A Linux router stays between the
client and the server machines. Both the client and the router are Athlon AMD XP
1.5 GHz PCs with 512 MB of RAM and run Linux 2.4.18. The client, the router
and the servers are all interconnected through regular 100Mb/s Ethernet.

3.11.2 The impact of the WebStone load on the CARD driver

We varied the load WebStone puts on the server by instructing the benchmark to use
a number of simultaneous connections of 150 and 300, respectively. In terms of the
requested data, these figures correspond to roughly 600 MB and 1 GB, respectively.
The results are presented in Figures 3.6 and 3.7. The average response time refers
to the average time taken by an operation (GET command, actually).

WebStone, 150 simultaneous connections

339,8
304,5303,8 305,2303,2 305,6

560,6563,1

0

100

200

300

400

500

600

39,5% 0,0%

Disk fragmentation

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

Local disk NFS Asynchronous Event driven

WebStone, 150 simultaneous connections

354,8
394,8395,3 394,7395,8 395,1

210,9 214,6

0

50

100

150

200

250

300

350

400

450

39,5% 0,0%

Disk fragmentation

T
h

ro
u

g
h

p
u

t
(K

b
it

s
/s

e
c

)

Local disk NFS Asynchronous Event driven

Figure 3.6: Average response time and throughput figures for 150 simultaneous
connections

Notice that for the light load (Figure 3.6) there are no significant differences
between the two remote disk methods. Naturally, the local disk performance of
the aged disk is somewhat worse than that of the non-aged one. Surprisingly, NFS
copes better with the disk fragmentation than the local disks. Its insensitivity to
the disk fragmentation for this load is similar to that exhibited by the CARD driver
cases. Overall, the CARD drivers outperform the local disks and NFS. The differ-
ence is unnoticeable for the non-aged disk, but visible for the aged one. This result
may be a bit surprising when it comes to the local disks, but it must be recalled that
the CARD drivers use a highly asynchronous mode of operation both at the local
and at the remote sites. This mode of operation allows some degree of processing
overlapping that makes up for the lack of contiguity of the aged disk whose greater
mechanical latencies can be thus better hidden.

Under heavy load (Figure 3.7), both of the CARD driver methods yield some
sensitivity to the disk fragmentation. Overall, the event driven method clearly out-
performs the asynchronous one. The disk fragmentation affects the comparison to

56 VLAD OLARU

the local disks. For the non-aged disk, the event driven method outperforms the lo-
cal disks, but the gain is minimal. For the aged disk, as the load increases, the lack
of contiguity entails a higher performance degradation for the local disk. Both of
the CARD driver methods yield clearly better figures as they manage to hide more
of the increased mechanical latencies in the parallel processing of the two nodes.
The higher the degree of asynchrony (and therefore the pseudo-parallelism), the
better the performance.

WebStone, 300 simultaneous connections

623,2

1230,4

579,5
495,9

1294,8

557,1
493498,3

0

200

400

600

800

1000

1200

1400

39,5% 0,0%

Disk fragmentation

A
v

e
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s

e
c

)

Local disk NFS Asynchrounous Event driven

WebStone, 300 simultaneous connections

94,6

213,5 206,7

245,5242,3

191,6

90,3

241,3

0

50

100

150

200

250

300

39,5% 0,0%

Disk fragmentation

T
h

ro
u

g
h

p
u

t
(K

b
it

s
/s

e
c

)

Local disk NFS Asynchronous Event driven

Figure 3.7: Average response time and throughput figures for 300 simultaneous
connections

3.11.3 The impact of the read-ahead policy of the file system

As mentioned in Section 3.8, one interesting question is whether the CARD driver
exports properly the effects of the read-ahead policy of the local ext2 file system. To
answer the question, we varied the size of the maximum number of the read-ahead
pages. We used the event-driven method and a load of 300 simultaneous connec-
tions. The results are shown in Figure 3.8. The kernel default value specifies to read
ahead at most 31 pages. Notice that for both of the disk types, the CARD driver
yields the best performance for the same value. Using smaller or larger values for
the maximum read-ahead value of the CARD driver yields a poorer performance
than that for the default value. This result shows that the CARD drivers issue read-
ahead requests with a minimal delay, since the default value matches perfectly the
peak performance of the disk driver at the node hosting the disk. More interesting,
for the other read-ahead values, the performance of the aged disk is better than that
of the non-aged one. This result points out clearly that exporting a wrong maxi-
mum value for the read-ahead window is not only suboptimal, but ceases to serve
the purposes of reading ahead (since the contiguous disk performs worse than the
non-contiguous one, which is totally counterintuitive). Such decisions can thus
affect the performance of the remote system and therefore undermine our design

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 57

goal to minimize the remote impact of the policies that are run locally.

Read ahead impact on average response time

515,7
518,4

498,3

493

505,4

512

480

485

490

495

500

505

510

515

520

525

0,0% 39,5%

Disk fragmentation

A
v

e
ra

g
e

 r
e

p
o

n
s

e
 t

im
e

 (
m

s
e

c
)

15 pages 31 pages 63 pages

Read ahead impact on throughput

232,1

245,5

241,3

236,3
233,2233,5

225

230

235

240

245

250

0,0% 39,5%

Disk fragmentation

T
h

ro
u

g
h

p
u

t
(k

b
it

s
/s

e
c

)

15 pages 31 pages 63 pages

Figure 3.8: The impact of the file system read-ahead policy

3.11.4 Distributed server performance

The distributed server performance evaluation uses two server machines in three
setups. The router acts as a front-end dispatcher using a Round Robin request
routing policy. In the first setup, the two machines serve the requests from the local
disks (the same file set, replicated on both disks). The disks are mostly contiguous
(0% and 1.7% non-contiguity, respectively). In a second scenario, one of the two
servers uses a virtual disk driver to mount the 0% non-contiguous disk locally
using the event driven method. This case corresponds to the computer-attached
operation of the disk. In the third setup, two machines mount locally the remote
disk as a network-attached disk using the event driven method. The WebStone load
was 300 simultaneous connections. The results are reported in Figure 3.9.

The two servers equipped with local disks perform best. The load is almost
equally split between the two disk drives and that maximizes the disk parallelism.
The other two cases show that the task is disk and not computational dominated.
Indeed, notice that their performance doesn’t differ much from that of the corre-
sponding single server in Figure 3.7 (slightly worse for case two and even better for
case three). For the second scenario, we assume that the additional load placed by
the server software on the node hosting the disk is responsible for the light perfor-
mance degradation. To conclude, the disk utilization is affected by the additional
remote operation.

Another important observation is that the performance of the virtual disks
doesn’t scale well when compared to that of a simple technique like replication.
A two-node distributed server using replication performs significantly better than
one using our CARD drivers. This observation leads to the conclusion that one
needs improved caching techniques to bridge the performance gap between the

58 VLAD OLARU

replication- and the virtual disk-based solutions.
WebStone, 2 servers, 300 simultaneous

connections

414

507,6 478,3

0

100

200

300

400

500

600

0%

Disk fragmentation

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e

(m
s
e
c
)

Local disks Local disk + event driven Event driven + event driven

WebStone, 2 servers, 300 simultaneous
connections

250,2

288,4

233,4

0

50

100

150

200

250

300

350

0%

Disk fragmentation

T
h

ro
u

g
h

p
u

t
(K

b
it

s
/s

e
c

)

Local disks Local disk + event driven Event driven + event driven

Figure 3.9: Distributed server performance, 300 simultaneous connections

3.12 Summary

In this chapter we presented the design of our CARD driver, a block device driver
in the kernel virtualizing the accesses to the remote disk data over a SAN in COTS
clusters. The main contributions of this construct come from its design that at-
tempts to translate the SAN bandwidth and latency figures into maximal block
retrieval performance figures. For instance, accessing a remotely cached block
through the CARD drivers is roughly 40 times faster than accessing the local disk
(when the block is uncached). A dual, both page- and block-oriented operation
of the driver as well as a single copy protocol that implements exclusive caching
enable a high performance control over the memory usage. The single copy pro-
tocol is possible as we developed mechanisms to perform DMA from the disk
into the socket buffer (that is, by bypassing the page/buffer cache). To the best
of our knowledge, this mechanism is a feature unique to the CARD drivers as no
other virtual disk drivers offer similar capabilities. When used to implement ex-
clusive caching, the single copy protocol makes the remote storage look like either
computer- or network-attached storage. The CARD driver exports properly the lo-
cal file system read-ahead decisions to the remote disk system through a highly
asynchronous mode of operation that uses the SAN optimally. The optimality of
the SAN usage is proven by the fact that the CARD maximum read-ahead value
coincides with that of the remote disk driver. In fact, the CARD-issued disk re-
quests arrive at the remote disk node with a minimal delay. Also, by overlapping
the communication with the request processing, the highly asynchronous operation
mode yields a performance comparable to that of the local disks.

Chapter 4

CARDs and cooperative caching

In the previous chapter we presented the software architecture of the CARD drivers
and we evaluated their performance as a shared storage for cluster-based servers.
However, the evaluation results presented in Figure 3.9 show that our virtual disks
are outperformed by a simple replication-based technique and that points to the
need to improve the performance of the CARDs through extensive caching. We
chose to rely on cooperative caching [23] in order to achieve this goal and this
chapter is devoted to the cooperative cache-enabled operation of the CARD drivers.

As seen in the previous chapter, a node mounting locally a remote disk by
means of a CARD driver sends block requests over the SAN. Once arrived at the
disk node, the requests are checked against the local page/buffer cache. Many
CARDs mounting the same remote disk develop a star-shaped cache topology cen-
tered at the disk node. This topology allows a limited form of cooperative caching
as consecutive requests to the same disk block benefit of the cached copies of the
block stored in the page/buffer cache of the disk node, provided that such copies
haven’t been evicted meanwhile. The latter assumption is the starting point for a
more complex solution involving the caches of all (or just some of) the nodes in the
cluster. The workloads exceeding the local node memory would definitely not take
advantage of the caching capacity of the disk node. A possible solution would be
to save the evicted blocks in remote memories. Extending the caching capacity be-
yond the local memory by implementing a joint management of the cluster caches
represents the topic of cooperative caching and this chapter. The basic premise
behind the idea is that getting cached copies of a block from remote memories is
faster than accessing the disk (even if the disk happens to be local). Our CARDs
fulfill the prerequisite as it can be easily deduced from Table 3.1.

As mentioned in Section 3.1, cooperative caching was introduced by the server-
less file systems [23, 4] which extended the traditional distributed file system mem-

59

60 VLAD OLARU

ory hierarchy (client cache, server cache, server disk) by adding the extra level of
the remote client memories. Thus, misses in the client or the server cache can be
checked against the remote client caches as well before going to the server disk.

Our approach tackles cooperative caching at the storage system level. Instead
of reasoning about a file system hierarchy, we prefer to view cooperative caching
as a way to enlarge the disk cache by using cooperative remote caches. Thus,
the upper layers are offered the view of a unified buffer/page cache across the
cluster. This approach appears to us more general, as one can build on top of our
storage system not only file systems but also databases or Web storage systems.
The CARDs are storage-level kernel constructs that extend the local disk caching
capacity beyond the locally available memory by relying on cooperative caching
policies. These can be downloaded in the driver at will by the user applications,
akin to grafting/extensible kernels [28, 14]. Such a policy is supposed to define a
distributed algorithm for the management of the individual cluster caches and, by
doing so, it builds a global cooperative cache. The capacity of this cache can grow
up to the size of the global cluster memory provided that the appropriate cluster-
wide block lookup and retrieval procedures are available. A cooperative caching
policy defines also a global replacement algorithm for the locally evicted blocks.

The cooperative caching policies are independent of the CARD driver they use.
A collection of CARD drivers using a common policy on several cluster nodes
results in a unified page/buffer cache (the aforementioned “cooperative cache”)
across the participating nodes. A CARD driver making no use of cooperative
caching behaves in fact like a remote disk interface (as described in the previous
chapter) and is restricted to a peer-to-peer relationship to its corresponding disk.

The CARD drivers offer a flexible and easy to use scheme of building the coop-
erative cache. Just by mounting CARDs for a given disk on a set of cluster nodes
and by downloading the appropriate cooperative caching policy in each of these
CARD drivers, one gets a share of each page/buffer cache in the set of the cluster
nodes for cooperative use. The span of the cooperative cache is thus determined by
the number of the participant nodes and their corresponding buffer cache shares.

Managing the cooperative cache is a task orthogonal to that of physically mov-
ing blocks to and fro and is expressed by means of a cooperative caching policy.
Such a policy defines how to find a certain block in the cooperative cache, what
should be done with the evicted blocks, whether multiple copies of the block may
exist in the cooperative cache and, if so, how consistency is handled. The blocks
not found in the local caches can now be searched for in the cooperative cache.
Only when there is no available copy in the entire cooperative cache, the block
request is serviced from the disk.

This chapter presents the cooperative caching implementation within the CARD
driver as well as two cooperative caching algorithms, one proposed by Dahlin et

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 61

al. [23] and another one developed by us. Our algorithm is called Home-based
Server-less Cooperative Caching (HSCC) and aims to provide for a decentralized,
cluster-wide cooperative cache. We evaluate the two algorithms in the context of a
distributed environment by using a micro-benchmark devised by us. An evaluation
of HSCC and the CARDs in the context of the cluster-based Web servers follows
in Chapter 5. For a discussion on the use of the cooperative caching to improve the
performance of the collective I/O operations in the Clusterfile parallel file system,
we refer the reader to Isaila et al. [39].

An abbreviated version of the material presented in this chapter was previously
published in [48].

4.1 Related work

The xFS project [23, 4] introduced the notion of cooperative caching. HSCC re-
sembles Hash Distributed Caching [23] as both are server-less and use a hash func-
tion on the block number. Also, HSCC shares with the N-Chance Forwarding [23]
eviction algorithm the notion of recirculation count, called depth in HSCC, al-
though used in different context. The recirculation count applies to single cached
copies of a block (singlets) while depth is used for the most recent block copy. N-
Chance Forwarding and HSCC handle eviction differently. N-Chance Forwarding
chooses randomly a node to forward an evicted singlet. Instead, HSCC takes an
informed decision by sending the block to the node which appears to be the least
loaded one from the local perspective. Since HSCC’s knowledge about the block
copies is distributed and not centralized as in N-Chance Forwarding, sometimes
there might be some unnecessary block forwarding.

PACA [21] is another cooperative file system cache that uses a decentralized
algorithm. It attempts to avoid replication and the associated consistency mech-
anisms by allowing only one copy of the block in the entire cluster-wide cache.
Keeping a single cluster-wide copy is possible as PACA uses a memory copy mech-
anism (a sort of Remote DMA) to send the data from the global cache to the local
user memory. However, every data access has to go through this memory copy
mechanism which is clearly much slower than accessing a local block copy.

Sarkar et al. [55] describe another cooperative caching algorithm using hints.
Like HSCC, it tries to avoid centralized control. Reasonably accurate hints are
used to locate a block in the cache without the involvement of the server. The al-
gorithm defines a master copy of each block and the clients exchange hints about
the possible location of this copy. If these hints are not accurate enough, there is
a fall-back mechanism that gets a copy of the block. The master copy simplifies
the eviction: only the master copies are subject to a saving attempt. The algorithm
uses a “best-guess” replacement strategy when storing locally the remotely evicted

62 VLAD OLARU

blocks. On the contrary, HSCC relies on the local kernel policy to do that. How-
ever, the “best-guess” replacement may introduce erroneous decisions and these
are offset by adding an extra cache, the discard cache, at the server node. The
cache consistency is file-based and not block-oriented as in HSCC.

The Global Memory System (GMS) [29] is a distributed shared-memory sys-
tem that can implement cooperative caching. GMS uses managers to locate the
blocks in the client caches and doesn’t provide a consistency mechanism. Only
single cached copies of a block are saved in the cooperative cache. A centralized
algorithm chooses the client target for the evicted block by periodically collecting
age information of the blocks in the client caches. The location of the oldest block
is then communicated to all the nodes.

We mentioned in Section 3.1 that the SIOS [36] system uses Virtual Device
Drivers (VDD) to amass the entire disk capacity of a node (both local and virtual
disks) similar to a RAID system (actually implemented as the default technology).
The SIOS system implements also cooperative caching, but neither a description of
it nor its evaluation is provided. Our design was oriented towards individual disks
that use a share of the cooperative cache according to their own policies. When
compared to the CARDs, the VDDs offer a much less flexible way to partition the
cluster caches and lack a mechanism for changing cooperative caching policies.

4.2 Bringing the CARDs and cooperative caching together

Every miss in the local buffer cache is checked by the CARD driver also against
the remote page/buffer cache at the disk node. As several nodes mount locally
a remote disk through a CARD driver, the global caching system develops to a
star topology, centered at the buffer cache of the disk node. This central buffer
cache plays the role of a server cache queried by the other caches through their
corresponding CARDs. However, this topology cannot serve the purposes of co-
operative caching as defined by Dahlin et al. [23]. In order to take advantage of
the whole cluster memory, one needs to implement a distributed management of
the individual caches across the cluster.

The CARD drivers support cooperative caching by enabling the applications
to download into the driver their own joint management algorithm of the cluster
caches (naturally, it is assumed that all the nodes mounting a certain remote disk
will use the same algorithm). Downloading policies into the driver is accomplished
by providing hooks in the CARD driver code. The policy is expressed as a kernel
module implementing the appropriate hooks.

One can see in Figure 4.1 how cooperative caching changes the behavior of a
CARD driver acting as a simple remote disk interface. With cooperative caching,

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 63

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

 /dev/disk1

 Node 1

Node 2 Node 3 Node 4

Node 5

/dev/rdisk1:5 /dev/rdisk1:5 /dev/rdisk1:5

/dev/rdisk1:5

Buffer cache Buffer cache Buffer cache

Buffer cache

Buffer cache

B3

B2

C1B1

* *

*

A2

A1

Legend:

disk
/dev/rdisk1:5 − CARD

/dev/disk1 − physical

 * − cache miss

C2C3

Figure 4.1: Cooperative caching with CARDs. Case A: client-to-client cooper-
ation; Case B: three-client cooperation; Case C: client-to-client cooperation fails.
The block must be retrieved from the disk

when a block request misses in the local cache, the appropriate hook in the CARD
driver redirects the request according to the local knowledge. A first possible sce-
nario (Case A in Figure 4.1) assumes that the requesting node (Node 1) has local
knowledge about where the requested block might be. As a result, it will direct
the request to the node it suspects to have a block copy (Node 2). Upon receiving
the request, Node 2 replies by sending back a copy of the block. This is the ideal
case, when fetching a copy of the block entails only two messages and two copy
operations (between the buffer cache and the network buffers at the two nodes).

In a second scenario (Case B), Node 1 uses a local hint to route the block
request to Node 3 but the hint proves wrong. Node 3 doesn’t have anymore a
cached copy of the block but knows that Node 4 must have one and thus forwards
the request to that node. Node 4 replies directly to Node 1 with the block copy.
The direct response saves an extra network hop that otherwise might prove costly,
both in terms of interrupt and network latency (a typical disk block size is 4 KB).

The third case (Case C) depicts the fall-back mechanism that ensures the even-
tual block delivery even when there is no cached copy available. Node 1 sends

64 VLAD OLARU

the request to Node 3 but this one neither caches the block nor does have any hint
about where the block might be. Therefore, Node 3 decides to forward the block
request to the disk node (Node 5). Node 5 accesses the disk and delivers a copy of
the block to the requester (Node 1).

The advantages of the cooperative caching become now clearer. By extending
the caching capacity potentially to the size of the global memory of the cluster,
one can use working sets that scale beyond the local memories. Moreover, the disk
node performing the uncached disk I/O gets offloaded. Also, as already mentioned,
accessing remote memories over the SAN improves the read latency.

In order to be able to yield such a cooperation, the CARDs must offer a clear
interface to the applications. Designing such an interface needs identifying the
main operations in the the above scenarios. This is the subject of the next section.

4.3 Cooperative caching policies

A cooperative caching policy is a set of four operations executed by the CARD
drivers in response to various events during the lifetime of a disk block in the
cooperative cache. They form a distributed management algorithm for the cooper-
ative cache. Writing a cooperative caching policy means to provide code for these
operations in a kernel module and to hook them up with a CARD driver. By de-
fault, their body is void and then the CARDs behave like remote disk interfaces.
The C definition of a cooperative caching policy looks like this:

struct coop_caching_ops {
int (*lookup)(struct request*);
int (*handle_eviction)(struct

buffer_head*);
int (*keep_consistency)(kdev_t,

struct sk_buff*);
kdev_t (*handle_request)(kdev_t,

struct sk_buff*);
};

4.3.1 Block lookup

Lookup is a typical client-side operation. The clients call lookup implicitly on
a cache miss as part of the low-level strategy routine of the CARD driver, right
before sending the block request over the SAN. Every time that a block request
misses in the local cache, the CARD driver needs to find out where to forward the
request. Searching the cooperative cache for a block copy is the job of lookup. It
returns either the ID of a node caching the block or the ID of the disk node.

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 65

However, depending on the policy designer, lookup may very well be called
also by the physical disk driver when the block requests miss in the buffer cache
(assuming that there are cached copies of those blocks somewhere else). Such cases
correspond to serving the server cache misses from the remote client memories
before going to the disk. In this case, lookup is called by the low-level disk driver
strategy routine.

4.3.2 Handling the eviction of cached blocks

Cooperative caching tries to reduce the I/O activity by increasing the cache hit ratio.
This goal can be supported not only through cluster-wide block lookups but also by
using idle remote caches to store the locally evicted blocks. Especially the single
cached copies of a block (singlets) should face a special treatment. Discarding
such blocks from a buffer/page cache means that the next request for that block
anywhere in the cluster will have to go to the disk.

handle eviction looks for remote caches that can host locally evicted blocks.
However, it does not interfere with the local eviction algorithm. The CARDs are
considered ordinary block devices and they obey the kernel native eviction pol-
icy as any other local disk would do. handle eviction extends this algorithm by
using the cooperative cache and implements a distributed eviction algorithm (and
indirectly, a global, cluster-wide cache replacement policy). If handle eviction suc-
ceeds, it returns the node ID of the new block host. If it fails, the block is dropped.

Technically, the block eviction works as a hook in the clock algorithm of
the kernel memory management subsystem. This is the only kernel code change
needed for our CARD-based system. In Linux 2.2, this change affects the code of
the shrink mmap routine that implements the clock algorithm. Our hook is called
exactly before releasing the memory page storing the disk block. The code of han-
dle eviction chooses a target for the block copy, copies the page into a socket buffer
and sends the buffer content over the SAN to the designated host.

4.3.3 Consistency issues

Cooperative caching is a technique that may use replication to improve the read
latency. In such cases, the policy should deal with the inconsistencies introduced
in the cooperative caching by the writes. We use the term consistency and not co-
herence as we refer to writes to different memory locations and the order in which
they are noticed by the other nodes in the cluster [65]. Each write operation of
a cooperative caching policy using replication triggers the execution of the corre-
sponding keep consistency routine. Essentially, as soon as the low-level routine of
the CARD driver at a client node decides where to send the written block, keep -
consistency fires up and triggers the execution of the consistency protocol.

66 VLAD OLARU

Typical consistency algorithms include invalidation- or update-based [65] pro-
tocols. Invalidation protocols send invalidation messages to all the copies of the
written block. When the holder of an invalidated copy needs to access it again, it
will have to get the new version from someone else (presumably the holder of the
written copy or the disk). Since the invalidation messages are small, the additional
network traffic is reasonably low but the future accesses to the updated data need
to go over the network. Update protocols propagate the update to all the copies
of the written block. The update propagation speeds up the future accesses to the
updated copies but may generate a lot of network traffic.

4.3.4 Handling block requests

When receiving a block request from another node, a node has to know how to
handle it. When the CARDs act as simple remote disk interfaces, this job is that of
the protocol handler in Figure 3.3. Its operation has been described in Chapter 3.
However, when the cooperative caching is in use, a block request may hit another
node than the disk node, as seen in Figure 4.1. Therefore, the basic operation of the
protocol handler has to be enhanced with cooperative caching aware operations.

handle request is such a cooperative caching aware operation. It decides whether
the block requests can be satisfied from the local cache or not. If a local copy exists,
the method returns the corresponding local CARD ID (or the disk ID, on the disk
node) and the block is serviced. If not, the requests are forwarded to other hosts.
Choosing the forwarding target is based on locally or globally available informa-
tion about the block copies across the cluster. If no such information is available,
a conservative approach is to forward the request to the disk node. An error code
should be returned to the requester when the forwarding is not possible.

handle request defines also how to deal with the requests to save remotely
evicted blocks. The idea is to make room locally to store the incoming block if
enough memory is available. Otherwise, the routine may decide to send the block
further to some other node potentially willing to store it.

Special care must be taken when writing handle request because it is being
called by the protocol handler of the CARD driver (see Figure 3.3). Since this one
is executed in interrupt context, all its code is prone to race conditions with the
main kernel thread.

4.4 HSCC: Home-based Server-less Cooperative Caching

According to the above guidelines, we designed Home-based Server-less Cooper-
ative Caching (HSCC), a decentralized, globally coordinated cooperative caching

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 67

policy which attempts to offload the disk node by distributing the block servicing
task. HSCC is home-based because each block gets a home node that services
requests for that block. The homes are assigned to the blocks by using a simple
hashing modulo n scheme. Since usually the clusters don’t change dynamically in
size, the choice of a fixed n is reasonable enough. The home may cache the block
in its own buffer cache or may simply keep a hint telling which is the node caching
the most recent block copy. For the latter case, the home forwards the block re-
quest to the node specified by the hint. The blocks get loaded at their homes lazily
(on-demand) and only if there is enough room. Thus, HSCC partitions statically
and evenly only the meta-data, not the actual data. HSCC is not fault-tolerant, the
failure of a home node breaks the operation of the algorithm. The policy is called
server-less because the disk blocks are not serviced by a centralized server.

HSCC employs a per node cache index to keep track of the nodes caching
particular blocks of the disk. The node uses this index to forward the block requests
that miss in the local cache. In general, keeping indices for cached blocks may be
too space-expensive and may endanger the scalability. For instance, if the index
entry uses a bitmap to mark the nodes caching the block, keeping track of 128
nodes would require 16 bytes per entry just for that. 1024 nodes would require
128 bytes per entry. That means that the local extra memory consumption grows
steadily with the size of the cluster and this is a serious scalability problem. For
example, 1024 nodes equipped with 256 MB each build a 256 GB cooperative
cache. 128 bytes for every 4KB block means 3.1% of the indexed memory. But
3.1% out of 256 GB is already too much for a single node. And the things don’t
improve for a linked list implementation.

To avoid this inconvenience, we choose to keep the index entry size constant,
regardless of the cluster size. We store only two node IDs per index entry. When
storing a block, a node records in the corresponding index entry the ID of the node
delivering the copy. We call this ID the previous ID. The second ID is that of the
last node that requested the block from the local node. We call it the next ID. Now
all the block copies are chained in a double-linked list in which next points to the
more recent block copies while previous refers to the older copies. This solution
doesn’t reduce the overall size of the index, but distributes its information and thus
lowers the local memory usage.

The overall index size can be reduced significantly if the block size (or, equiv-
alently, the cooperative caching unit) is increased to values larger than 4KB (a
typical value for SCSI disks, for instance). But larger caching units aggravate the
false sharing problem pointed out by the distributed shared memory research expe-
rience. False sharing designates non-overlapping concurrent accesses to a shared
page of memory. Therefore, although the nodes accessing the page do not refer the
same part of the memory page, they still have to obey consistency protocols, for

68 VLAD OLARU

instance, and, by doing so, the system can experience severe page thrashing. The
larger the page, the higher the probability of false sharing.

4.4.1 HSCC lookup

When a client node misses in the local cache, the CARD driver must find a node to
which to send the block request. The low-level part of the strategy routine of the
driver looks up the local cache index for a valid next ID by means of HSCC lookup.
If found, the routine returns this ID and the CARD driver directs the request to the
node identified by it. The rationale behind this procedure is that the next node is
the last one to have asked the local node for the block and there might be a chance
to find there a copy of it. If no such hint exists, the request is sent to the home
which is supposed to have accurate information about the last accesses to the block
across the cluster.

Client
node

node
Home

node
Caching

node
Disk

lookup block redirect to next

fall−back to diskserve the block

serve the block

serve the block

lookup block

Figure 4.2: Block retrieval in HSCC

4.4.2 HSCC handle request

If a block request arrives at its home, the protocol handler (see Figure 3.3) calls
HSCC handle request which looks up a block copy in the local buffer/page cache.
If found, the block is returned to the requester. Otherwise, the request is forwarded
to another node that can satisfy it. This node is either that identified by the next

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 69

ID from the corresponding index entry of the home node, if any, or the disk node,
otherwise. Either way, the requester is registered in the home index as the next ID.

If the block request arrives at a node that is not the home of the requested
block, it means it is a forwarded block request. Such requests are handed over to
HSCC handle request which checks if the node holds a block copy. If so, the copy
is delivered directly to the original requester of the block in order to save network
bandwidth and to avoid an extra and unnecessary network hop. Otherwise, if this
node is not the disk node, the request is forwarded directly to the disk node. In
turn, the disk node will deliver a copy of the block.

Figure 4.2 visually summarizes the combined operation of HSCC lookup and
HSCC handle request.

4.4.3 HSCC handle eviction

An evicted block is considered a singlet if the next ID is void and the previous
ID is the disk node ID. Otherwise said, if this copy of the block was taken from
the disk (here works also the assumption that the exclusive caching is in place by
default) and not given to anyone else so far. For a void next ID and a previous ID
different than the disk node ID, the block is considered the most recent copy. That
is, this block copy has been taken from some other client cache but not yet given
to any other requester. It may actually be a singlet if all the other copies have been
evicted meanwhile. Only singlets and most recent copies are considered for saving
in remote memories. All the other locally evicted copies are simply discarded.

Singlet eviction

HSCC handle eviction sends a singlet to the least loaded node in the cluster, as
perceived from the local perspective. Choosing such a node is based on a priority
queue storing the numbers of the blocks cached on behalf of each home participat-
ing in the cooperative cache. The home on behalf of which the local node caches
the least number of blocks is considered the least loaded node. If the chosen node
can host the block, it will send an index update with the new next ID to the home
of the block. If not, the target node forwards the block further to its home. If there
is no room at the home either, the block is discarded.

Most recent copy eviction

Most recent copies are sent to their previous node. The rationale behind this de-
cision is that the previous node might still have a copy of it and thus no saving
operation is needed. If the previous node has a copy, the block is discarded. Else,

70 VLAD OLARU

i ... j
nextprevious

.........

"i"

"k""k""k""k""k""k"

...k

notify
evict

notify notify notify
evictevictevict

Figure 4.3: Eager cache index entry elimination algorithm. Node j evicts a block
and triggers the algorithm that will flush the corresponding cache index entry

if there is enough space, the block is stored and an update message is sent to the
home with the node ID as the new next ID of the home of that block. If there is
not enough room, the previous node forwards the block further to its own previous
node.

In practice, this process can be quite long, so a depth count set in the evicted
block message helps restrict the forwarding to depth stages. If no copy is found
in depth steps, the block is stored locally instead of a “non-CARD” block in order
to avoid an eviction ripple effect that would trigger another HSCC handle eviction
operation, this time for the newly evicted block. By default, depth is 2.

When the index update message reaches its home, if there are no newer block
requests, an invalidate index message is sent to the evicting node. This node dis-
cards its cache index entry and forwards the invalidation to its own previous node.
Each previous node does the same until the invalidation reaches the node caching
the new most recent copy.

Discussion

In the most recent copy eviction algorithm, a cache index entry is kept around
(even if its corresponding block has been evicted) until the node receives an index
invalidation message from its own next ID node. This solution favors a local and
simple decision over a global and more complex one that would attempt to eagerly
update the next and previous ID nodes at the block eviction time.

The eager solution simplifies a lot the most recent copy eviction because it uses
a consistent mapping between the index entry and the block it indexes. Since the
list is up to date, the most recent copy is discarded. The home is updated with the

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 71

previous node as the new most recent copy holder (i.e., the new next pointer at the
home).

This solution is sketched using the annotations from Figure 4.3. When a node
j evicts a block, it informs its next ID node. If next evicts the block too, it informs
its own next ID node. As soon as this info reaches a node, say k, that doesn’t want
to evict the block, k sends back to its own previous ID node a message stating that
he is the new next ID node. k marks its own previous ID node as invalid and waits
for an update. The message issued by k travels back until it finds the first node, say
i, that doesn’t evict a block copy. At each hop on his way to i, the message sent
by k determines the node to discard the corresponding cache index entry. When i
receives the message, it modifies its own next ID node and sends an update directly
to k with the new previous ID node. In turn, k will update its own previous ID node.

4.4.4 HSCC keep consistency

Since HSCC uses block replication, the consistency becomes an issue. The con-
sistency algorithm is a flavor of write-through with invalidation. A written block
is sent to the disk node and both the home and the previous ID node copies are in-
validated. The home forwards the invalidation to the node caching the most recent
copy. Each node receiving an invalidation message invalidates its own copy. If the
previous ID node is not the disk node, the invalidation is forwarded to it. Other-
wise, the message is dropped, since the disk node already got the written block so
the invalidation would be wrong. As noticed, there are no guarantees for concur-
rent writes. Concurrency control would need a locking scheme in the upper kernel
layers (at the file system level).

4.5 On the scalability of HSCC

One of the main advantages of the COTS clusters is their inherent scalability as
new PCs can be steadily added to the cluster to cope with increasing computa-
tional demands. Whether the software running on clusters is scalable is another
matter. We have not had the chance to run HSCC on large scale clusters to prove
experimentally its scalability. Therefore, this subsection attempts to shed some
light on the theoretical aspects of the algorithm that argue in favor of its scalability
and on those that raise questions.

As previously seen, a block request message can travel over at most two hops
in the worst case. Indeed, if the requester doesn’t have a hint of where a copy of the
block might be, it will ask the home. If the home has a record pointing to a node,
the message gets forwarded to that node. However, if the designated node doesn’t

72 VLAD OLARU

hold a copy, it uses the fall-back mechanism and sends the block request to the
disk node. Altogether, this procedure sums up to a constant number of messages,
namely four, and thus renders the block retrieval independent of the cluster size.

Moreover, the caching and the meta-data management in HSCC can only ben-
efit from larger clusters. It is trivial that a larger cooperative cache will accommo-
date better the caching needs of a given disk remotely imported through CARDs.
Beyond that, the meta-data management of HSCC will benefit too because it dis-
tributes the responsibility of handling the block requests in equal shares to the
homes. Since a disk has only a given number of blocks, the larger the size of the
cluster (i.e., the number of homes), the smaller the number of the blocks that a
given home has to take the responsibility for.

The eviction handling is also taken care of so that it doesn’t hurt the scala-
bility. As previously mentioned, there is a constant depth (a constant number of
hosts tried) that an evicted block has to go through. This measure was first thought
against an increased eviction handling overhead, but it perfectly matches the scal-
ability requirement as the number of saving attempts concerning an evicted block
is independent of the cluster size.

All this sounds like good news, but a thorough analysis needs to look at the
home operation as well. When no local hints are available, HSCC looks up blocks
based on a hash function on the block number that yields the home ID. It is not
unconceivable that, for a certain workload, all the nodes in the cluster (in the worst
case) ask the same home for the same block (or for different blocks with the same
home). While each of the requests will incur a constant number of message ex-
changes as seen before, it is clear however that the operation of that given home
is overwhelmed by the number of messages coming from the cluster. And this
number varies now with the cluster size. The situation is serious as each of the in-
coming messages triggers an interrupt and thus inflicts increased interrupt latency,
a known cause for poor system performance. As of now, we do not have a precise
evaluation of this kind of behavior, but we believe it to be an important issue.

4.6 HDC: Hash Distributed Caching

We implemented also one of the algorithms presented in [23] as Hash-Distributed
Caching, from here on designated as HDC. We chose HDC over N-Chance For-
warding and Globally Coordinated Caching [23] because it is fully distributed,
whereas both the aforementioned algorithms redirect the client requests through
the server (or specially designated managers). Since the clusters are more likely to
be used as parallel machines (as opposed to the distributed environment in which
cooperative caching has been used first), we believe this feature of HDC to be an

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 73

important aspect as routing all the block requests through the server may become a
bottleneck of the system. HDC has been reported to perform similarly to Globally
Coordinated Caching and close to N-Chance Forwarding [23].

HDC employs also the notion of a home. The home of a block is that node
in the cluster whose ID matches the result of applying a modulo hash function on
the block number. The HDC home, unlike the HSCC homes, is supposed to hold a
block copy. If this is not the case, the home redirects the block requests to the disk.
Here is HDC’s description in terms of our cooperative caching policy definition.

• HDC lookup - This operation simply redirects all the local cache misses to
the home of the block. It doesn’t make use of any hints (like HSCC) that
might help find a block copy somewhere else in the global cooperative cache.

• HDC handle request - Handling requests is equally easy. If the block is
cached, it is simply delivered. Otherwise, the block request is re-routed to
the disk node.

• HDC handle eviction - HDC handles evictions only at the disk node. The
other nodes participating in the globally coordinated cache do not implement
any handle eviction operation. At the node hosting the disk, the eviction
handler simply sends the evicted block to its home in the cooperative cache.

• HDC keep consistency - The written blocks are sent to the disk node which,
in turn, invalidates all the other copies.

4.7 Performance evaluation
We evaluated the performance of our CARD prototype using HSCC and HDC. A
disk formatted with a native Linux file system format (ext2) was remotely mounted
by means of CARD drivers. Because of the potential inconsistencies that we have
mentioned in Section 3.9.4, the mount was read-only. The file system was not aged
and therefore mostly contiguous. All the tests consist of running the Unix find
command on a CARD driver to scan a directory for a given string. The typical
layout of the command was:

find <dir> -exec grep <str> {} \;

4.7.1 Experimental setup

We ran our experiments on a 3-node Linux cluster using the machines and the
network infrastructure described in Subsection 3.10.1. The experiments use only
a 1.7 GB partition of the IBM DCAS-34330W Fast/Ultra-SE SCSI disk that was
remotely mounted by means of CARD drivers.

74 VLAD OLARU

We approximated the extent to which the buffer cache of Linux can grow by
scanning a directory whose size was larger than the local memory. On the disk
node, the buffer cache grew up to 240 MB. On a CARD node, the buffer cache
grew up to 225 MB. So we can consider a value of roughly 690 MB of RAM for
our cooperative cache. However, this figure is just an upper bound as the Linux
memory management algorithm trades off dynamically application memory for
kernel memory. This behavior makes it hard to determine precisely the buffer
cache size, which may vary significantly depending on the machine load.

Cache Hit Ratios

89

71

57

73

87

95

21

69

81

62

3543

0

10

20

30

40

50

60

70

80

90

100

310 MB 420 MB 490 MB 571 MB 681 MB 741 MB

%
 (

tr
u

n
c

a
te

d
 v

a
lu

e
)

HSCC HDC

Figure 4.4: Cache hit ratio comparison

HSCC Cache Access Breakdown

0,18 3,96 2,12 4,11 2,35 3,04

95,8 85,41 85,77
69,77 69,19

54,37

4,02
10,63 12,11

26,12 28,46
42,59

0%

20%

40%

60%

80%

100%

310 MB 420 MB 490 MB 571 MB 681 MB 741 MB

95,98 89,37 87,89 73,88 71,54 57,41

Workload size + Overall cache hit ratio

Local cache hits Global cache hits Cache misses

HDC Cache Access Breakdown

10,77
20,18 23,52

15,85
8,55 6,9

70,78 49,41 38,91

28,12

26,56
14,87

18,45
30,41

37,57

56,03
64,89

78,23

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

310 MB 420 MB 490 MB 571 MB 681 MB 741 MB

81,55 69,59 62,43 43,97 35,11 21,77

Workload size + Overall cache hit ratio

Local cache hits Global cache hits Cache misses

Figure 4.5: Cache Access Breakdowns. Local cache hits, global cache hits and
cache misses for HSCC and HDC

4.7.2 CARD operation analysis

The cache-cooperative operation of the CARD driver was evaluated using six work-
loads whose sizes were roughly 310 MB, 420 MB, 490 MB, 571 MB, 681 MB

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 75

and 741 MB, respectively. All the workloads consisted of scanning combina-
tions of subdirectories of a typical /usr Unix directory, namely /usr/bin, /usr/lib/,
/usr/share, /usr/src. The first four size choices aim at evaluating the behavior of the
cooperative cache for workloads bigger than any cluster node memory (240 MB)
but smaller than the size of the global cache (690 MB). The last two size choices
intend to show the system performance at the limit of the global cache and beyond.

We warmed up the cooperative cache by running the find command at a CARD
node and then we took measurements by running it at another CARD node. We
compared the cache hit ratios of the two policies and evaluated the general benefits
of saving the evicted blocks.

4.7.3 Cache hit ratios comparison

A comparison between HSCC and HDC in terms of cache hit ratios is presented in
Figure 4.4. Notice that HSCC performs better overall, while HDC’s performance
degrades faster with the increasing size of the workloads than that of HSCC. In-
deed, for the first workload (310 MB), the cache hit ratio of HDC is roughly 85%
of the HSCC figure, while close to the global cache limit, that is, for the 681 MB
workload, HSCC achieves at least twice as many cache hits as HDC. HDC’s degra-
dation becomes even more severe beyond the global cache limit, as for the last
workload HSCC’s ratio is roughly 2.7 times that of HDC.

Figure 4.5 offers more insight on the CARD operation by showing the cache
access breakdowns. Notice that HDC has better local hit figures while HSCC yields
better global hit ratios. As soon as the workload approaches the limit of the global
cooperative cache (690 MB), the local hits become less important than the global
ones and this fact explains the difference in performance that we saw in terms of
overall hit ratios (see Figure 4.4). Moreover, the difference in the global cache hit
ratios between the two algorithms shows poor HDC eviction handling. The next
subsection further clarifies this point.

4.7.4 Eviction statistics

The number of evicted blocks stored by a CARD node running on the warm coop-
erative cache is reported in Figure 4.6. From this figure and from Figure 4.5, one
can infer that handling too many evicted blocks is a waste. The reason lies in the
way the two policies handle the cooperative cache. HDC evicts blocks only at the
server cache (disk node) and does it irrespective of the cluster load by sending the
evicted blocks to their homes. As Figure 4.5 shows, this feature of HDC improves
the local cache hits. Overall, HDC has better local hit ratios than HSCC. On the
contrary, HSCC has better global hit ratios overall, because it handles evictions at
the homes as well and saves blocks trying to even out the loads of the cluster nodes.

76 VLAD OLARU

For heavy workloads (the last three, for instance), the local cache hits become
less important when compared to the global cache hits. In this case, HSCC outper-
forms HDC by far exactly because it maintains a higher global hit ratio. As it can
be seen from Figure 4.5, saving too many evicted blocks (like HDC does) under
memory pressure turns out to be ineffective, as both the local and the global cache
hit ratios seem to diminish at the same pace. Thus, the eviction handling must be
made with care in order to balance the loads of the caches.

Eviction statistics

0

23888

42125

62411

12357

4389

7417

28043192

56617

36470

8550

0

10000

20000

30000

40000

50000

60000

70000

310 MB 420 MB 490 MB 571 MB 681 MB 741 MB

#
 o

f
s
to

re
d

 b
lo

c
k
s

HSCC saved blocks HDC saved blocks

Figure 4.6: Eviction statistics. The number of evicted blocks saved by the CARD
driver for each policy

4.7.5 CARD Speedup/Slowdown

We ran the workloads on a CARD driver acting as a remote disk interface (i.e.,
without enabling the cooperative caching) and we measured the running time us-
ing the Unix time command. We also ran the workloads on CARD drivers with
cooperative caching enabled, both on cold and warm caches. The results are pre-
sented in Figure 4.7.

For HSCC, the best speedup was that of the first workload (310 MB). The
CARD driver running on a warm cache achieved a speedup of 1.54 over the remote
disk interface. Even the workload larger than the global cache (741 MB) expe-
rienced speedup, although smaller (see the last line of the x-axis in Figure 4.7).
The slowdown of a CARD driver running on a cold cooperative cache is negligi-
ble when compared to a remote disk interface (see the middle line of the x-axis in
Figure 4.7).

For HDC, practically only the first workload (310 MB) exhibited speedup since
that of the second workload (420 MB) is negligible. All the other workloads ex-
perienced only slowdowns, both when running the CARD drivers on a cold cache
and on a warm one. Moreover, the slowdowns of the CARD driver running on the

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 77

cold cache are less severe than those of the CARD driver running on a warmed up
cache. Notice however that for large loads (the last three), the HDC slowdowns of
a CARD driver running on a cold cache are better than the corresponding ones of
HSCC because HDC is a simpler policy than HSCC. Nevertheless, the warm cache
figures show that trying aggressively to save evicted blocks is not only a waste, but
induces also running time penalties.

HSCC Speedup/Slowdown

0
50

100
150
200
250
300
350
400
450

310 MB 420 MB 490 MB 571 MB 681 MB 741 MB

0,98 0,97 0,98 0,92 0,91 0,91

1,54 1,25 1,26 1,19 1,18 1,14

Workload size / Slowdown CARD uncached / Speedup CARD cached

s
e

c

Remote Disk CARD uncached CARD cached

HDC Speedup/Slowdown

0
50

100
150
200
250
300
350
400
450

310 MB 420 MB 490 MB 571 MB 681 MB 741 MB

0,98 0,97 0,98 0,97 0,98 0,97

1,24 1,002 0,94 0,85 0,86 0,88

Workload size / Slowdown CARD uncached / Speedup CARD cached

s
e

c

Remote Disk CARD uncached CARD cached

Figure 4.7: Speedup/Slowdown. The cooperative caching enabled operation of
CARDs vs. CARDs as remote disk interfaces

Some of the performance numbers of the CARD drivers operating as remote
disk interfaces look weird. The 490 MB load takes more time than the 571 MB
one. Similar for the (681 MB, 741 MB) pair. This result is equally true when
running the workload on the local disk. Therefore, the problem is not related to
the CARD driver. Both the 490 MB and 681 MB loads include /usr/share which is
broader and deeper than the other workload directories (/usr/bin, /usr/lib, /usr/src).
The running time breakdowns show indeed that /usr/share needs more time per
MB than the other directories.

4.8 Summary

This chapter presented a flexible solution for a cluster-wide cooperative caching
system using Cluster-Aware Remote Disks. A collection of CARD drivers can em-
ploy a common cooperative caching policy in order to globally manage the content
of the nodes’ buffer/page caches. Using a globally managed cache is an easy and
natural way to extend cluster-wide the local page/buffer cache while maintaining
flexibility through the separation between the data access mechanism (the CARD
driver) and the data management policy (the cooperative caching algorithm). Due
to this flexibility, we experimented with two cooperative caching policies, Hash

78 VLAD OLARU

Distributed Caching and Home-based Server-less Cooperative Caching. We de-
signed the latter as a decentralized algorithm that should best match the require-
ments of parallel processing environments like those of the clusters by evenly dis-
tributing the meta-data management among the cluster nodes.

Decentralized algorithms are important for the cluster scalability, but, unfortu-
nately, very few such algorithms have been designed and evaluated. Both HSCC
and HDC use decentralized block lookup procedures, but HSCC uses a dynamic
placement of the data blocks. Only the meta-data management is statically dis-
tributed. HDC uses the block homes both as meta-data managers and as block
repositories. Moreover, the block eviction in HDC is done statically, every locally
evicted block is always sent to its home. On the contrary, HSCC sends the locally
evicted block to other nodes in the cluster based on dynamic knowledge about the
cluster load. Our experimental results favor HSCC’s approach.

Another decentralized cooperative caching algorithm similar to HDC, PACA
[21], uses cluster-wide only one cached copy of any given block. The use of a sin-
gle cluster-wide copy simplifies the problem of maintaining the consistency across
the cluster, but lacks locality of data, an important issue in locality-aware request
distribution systems for cluster-based servers. Therefore, we chose HDC to exper-
iment with, as we were further interested in developing Web-caching systems for
cluster-based servers.

Our results show that cooperative caching reduces the I/O activity and improves
the read latency. Even for heavy workloads (e.g., those larger than the coopera-
tive cache), our algorithm (HSCC) achieves cache hit ratios above 50% without
any slowdown (when running on a warm cooperative cache). The slowdowns of
our algorithm when running on a cold cooperative cache with respect to the non-
cooperative caching performance of the CARD drivers were negligible. The best
speed-up observed was 1.54.

There are also some important design issues regarding cooperative caching that
are validated by means of a real implementation of the algorithms. First, for heavy
loads (i.e., those approaching the size of the global cooperative cache or larger), the
local hits become less important than the global ones. Second, saving the locally
evicted blocks in remote memories irrespective of the loads of the cluster nodes is
a waste and induces running time penalties. For instance, an aggressive eviction
handling policy like that of HDC may end up forcing the performance to plummet
below that of the same system working on a cold cooperative cache.

The above observations show that a simple and static decentralized scheme
like that used by HDC doesn’t suit the purposes of scalability. Nevertheless, even
if our HSCC algorithm shows better performance, its scalability remains to be
proven experimentally. Section 4.5 discusses some theoretical aspects regarding
the scalability of the HSCC algorithm.

Chapter 5

Cooperative caching and the
cluster-based Web servers

As the previous chapter described the way the CARD drivers use cooperative
caching to build a globally coordinated cache by extending the local caching ca-
pacity of a disk to the aggregate sum of all the memories in the cluster, one can
get now a rough idea of what a SSI cluster-based server using cooperative caching
may look like. A server like that in Figure 1.2 services requests that hit a given
back-end machine either by fetching the requested document from the global co-
operative cache, provided that a globally cached copy of it exists, or by loading
it from the disk shared through the CARD drivers by all the nodes in the cluster.
The single system image of the server derives from two particular views: that of
the user who sees a single generic server endpoint (see Chapter 2) and that of the
application server developers who don’t need to take into account the distributed
nature of the environment because the underlying storage system takes care of it.
In other words, the client connects to a server (IP address, server port) pair as if the
cluster-based server would be a single server machine, while the sequential appli-
cation server programs running on the back-end nodes access the data as if stored
on local disks. This solution allows using unmodified stand-alone server software
on top of COTS clusters.

This image is appealing because its simplicity but hides serious questions re-
garding the context in which such a server might be used and the way it may affect
the effectiveness of the cooperative caching itself. Depending on the environment
the cluster-based server is working on, its storage system faces various challenges.
For instance, when integrated in multi-tier server architectures using proxies, con-
tent delivery networks, etc., the cluster-based servers are responsible to deliver
mostly unpopular static documents and dynamic content, as studies [54] show that

79

80 VLAD OLARU

the popular document requests are filtered out from the request stream at early
stages. The so called “heavy tail” of the request distribution curve (representing
large files whose service times account for a considerable part of the total servic-
ing time) remains to be handled at the level of the cluster-based server. As a direct
consequence, there is an increased pressure on the back-end level storage system
which calls for locality-aware request dispatching [52, 17] or improved caching
of the non-popular documents and mitigates the need for load balancing. But the
cooperative caching policies are general-purpose algorithms (and so is our HSCC
algorithm so far) and they apply an equal treatment to all the cooperatively cached
files.

Moreover, cooperative caching has been designed and developed for distributed
or parallel file systems and their usual workloads. However, it is a known fact that
the Web workloads exhibit particular features both in terms of the access patterns
and the size of the requested documents (files), features that differ significantly
from those of the regular file system workloads. Namely, the Web requests target
mostly the small and popular files that account for a significant part of the total
number of requests while only a small fraction of the requests concerns the large
and unpopular files. Therefore, cooperative caching needs to be revisited in this
context.

The insight gained through the experiments described in the previous chapter
adds consistency to the above mentioned concerns. Indeed, we have seen so far
that, in distributed environments, certain features of cooperative caching should be
handled carefully. For instance, Section 4.7 shows that handling the block evic-
tion irrespective of loads of the cluster nodes may hurt the performance. But a
cluster-based server functions like a parallel machine with all the nodes more or
less equally balanced (according to some load balancing policy). Under these cir-
cumstances, one may consider the eviction handling useless.

If the capability to respond adequately to a given type of workload should be
an important factor in developing Web-oriented cooperative caching algorithms, it
is equally true that, performance-wise, they should not do worse than simple so-
lutions like document replication. Locality-aware request dispatching algorithms
assume most of the time that the documents are fully-replicated across the cluster.
The replication causes not only a waste of storage space, but raises also serious
administration and maintenance problems as the size of the cluster grows. In fact,
nowadays clusters are split between a data and a processing center. The data center
gathers the entire storage capacity of the cluster, each of its disks being remotely
mounted on disk-less machines from the processing center. However, as concluded
by the experiments presented in Section 3.11, virtualizing the remote disks hinders
the I/O performance and asks for increased caching capabilities since uncached
concurrent non-overlapping block requests have to be serialized at the disk con-

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 81

troller. In a system using replicated documents (i.e., the same data set replicated on
local disks), such requests take advantage of the disk controller level parallelism.
We saw cooperative caching improving the performance of our micro-benchmark
running in a distributed environment, but we need to prove that it can also bridge
the gap between the performance of the virtual disks and that of the solutions using
replicated documents for cluster-based Web servers.

Our response to all these concerns is to steer the cooperative caching opera-
tion through hints induced by the application characteristics. In the particular case
of the cluster-based Web servers, those hints are deduced by speculating on the
Zipf-like [77] Web document request distribution curve in order to cache classes
of documents preferentially over other classes of documents. For instance, we
show that confining the cooperative caching to the class of the large and unpopu-
lar Web documents improves the performance of the general-purpose cooperative
caching algorithms. Furthermore, handling the block eviction in a cooperative Web
cache pays off only for the significantly large and unpopular documents. To the
best of our knowledge, this work is the first attempt to analyze the impact of the
application-aware (request distribution aware, in fact) cooperative caching.

Moreover, we supply cooperative caching with support for a fine-grain control
over which disk block copies should be kept around in response to a remote request
by using the exclusive caching feature of our CARD driver. In this context, we
investigate to which extent the exclusive caching can help cooperative caching by
avoiding unnecessary copies of certain classes of documents. To the best of our
knowledge, this work is the first attempt to combine the exclusive caching with
cooperative caching in a cluster-wide, application-aware caching system.

The results presented in this chapter appeared in [50].

5.1 Related work

We presented in Chapters 2 and 3, Sections 2.1 and 3.1, respectively, the back-
ground on locally distributed Web servers and remote I/O. At this point, we would
like to present past results that attempted to bridge the two areas, as well as the
Web workload characterization.

As mentioned in Section 2.1, Locality Aware Request Distribution (LARD)
systems [52] attempt to reconcile the locality of the requested data with the load
balancing. The paper that first discussed the issue [52] mentioned also that coop-
erative caching (more precisely GMS [29]) has been tested as an alternative to the
LARD techniques, but the results have been shown to be similar. Notice that GMS
uses general-purpose algorithms and therefore differs from our approach that tends
to fulfill closer the expectations of the applications run on the cluster-based servers
(the server programs, in fact) by taking into account their particular features.

82 VLAD OLARU

An intuition similar to ours led to the results reported in a content-aware coop-
erative caching system for cluster-based servers developed by Ahn et al. [2]. This
system uses a cache replacement policy that strives to avoid document duplicates
in the cluster in the following way. As soon as a back-end becomes overloaded,
the front-end redirects the requests for a given document to another back-end. The
overloaded back-end flushes its own copy of the document as it is clear that it won’t
be useful locally anymore. Notice that this approach is different than that of our
CARD system in which we do not intervene in the operation of the local memory
management algorithm. Another difference is that the content-aware cooperative
caching algorithm relies on the front-end to provide the block (or rather document)
lookup information to the back-end servers. This choice offloads the back-end
servers, but has the disadvantages of the centralized algorithms and raises addi-
tional questions concerning the scalability of the system.

Both aforementioned systems used simulations to validate their conclusions.

5.1.1 Web workload characterization

Many studies [15, 33, 71] have shown that the Web requests follow a Zipf-like [77]
distribution. According to it, the i-th most popular document is requested with
a probability proportional to 1 / iα, for 0 < α < 2. Because of the α values,
this distribution is also called heavy-tailed. In terms of Web requests, that means
the distribution has a long tail of less popular documents with poor locality of
reference. The higher the α, the greater the concentration of popular documents.

As a consequence of this distribution, caching popular static documents is very
effective, but the higher the fraction of the unpopular requested documents, the
lower the caching effectiveness. Moreover, another consequence of this distri-
bution points out the conflict between the load balancing and the data reference
locality. The popular documents tend to be served by the same server in order
to maximize the cache hit ratios, but that makes the server handling them a hot-
spot of the system. Trying to balance the load implies to distribute the service of
the popular documents, but doing so creates many replicas of the same document.
The existence of multiple replicas reduces the memory available for the service of
the rest of the requested documents and entails a poor I/O performance due to the
reduced caching effectiveness.

Another consequence, less obvious, advocates for favoring the short-lived con-
nections over the long ones. Crovella et al. [22] showed that, under a Shortest-
Connection-First scheduling algorithm, the mean response time improves signif-
icantly without affecting the response time of the long running connections too
much. Using queuing theory arguments, they proved that this fact is happening
exactly because the Web document requests follow a Zipf-like distribution. An ex-

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 83

ponential distribution, for instance, would have a more negative impact on the long
connections. The result came though at the cost of a significant drop in throughput,
mostly due to an user-level implementation. In subsequent work, Harchol-Balter et
al. [34] used an improved kernel implementation and showed even better response
time figures at no throughput penalty cost.

Another important aspect of today’s Web, namely the extensive use of proxies
and, more recently, Content Delivery Networks (CDNs), led to another interesting
result. These systems deliver replicas of popular documents from points closer to
the client than the original server of the documents and thus improve the client-
perceived latency, lower both the bandwidth consumption and the load on the orig-
inal server. As a result, there is a hierarchy of caches that filters out the popular
documents of the request stream so that only the less popular documents and the
dynamic (uncacheable) content are served by the original servers. Gadde et al.
[54] evidenced the phenomenon and called it the trickle-down effect. Some of the
consequences of this effect are important for our work. First, since the proxies and
the CDNs absorb most of the locality of the document stream, having to handle the
heavy tail of the stream at the original server exercises an increased pressure on the
server storage system. In this context, cooperative caching may play an important
role. Second, since only the unpopular part of the request stream hits the orig-
inal server, the locality-aware request distribution schemes at the original server
become important. As an aside, since the source of the load imbalance, namely
the popular static documents, has been filtered out, and the locality-aware request
distribution is desirable anyway, the importance of the dynamic load balancing at
the original server diminishes.

5.2 Caching on a curve

By looking at the Web request distribution curve it is possible to identify entire
classes of static documents according to their popularity. For instance, WebStone
[61], a commercial benchmark for Web servers respecting a Zipf-like law, identi-
fies by default four classes of static documents: files smaller than 1 KB, files in the
(1 KB, 10 KB) and (10 KB, 100 KB) ranges and files larger than 100 KB, denomi-
nated by class0, class1, class2 and class3 respectively. In terms of their popularity,
class0 accounts for 35% of the requests, class1 for 50%, class2 for 14% and class3
for 1%. However, the servicing time for class3 accounts for roughly one quarter of
the total time, while servicing class2 comes close to 40% of the total time.

A legitimate question is to ask whether a special treatment for each class could
improve the overall server performance. As seen in Subsection 5.1.1, the results
from connection scheduling in stand-alone servers [22, 34] suggest that favoring
the short-lived connections in a Shortest Remaining Processing Time connection

84 VLAD OLARU

scheduling improves the response time without affecting the overall behavior of
the server. This result can be an encouraging starting point for our work because it
relied on beforehand knowledge of the life length of a connection which was shown
to vary consistently with the size of the documents. Put differently, if one singles
out the large files as a separate class and schedules connections according to this
simple classification, the overall performance of the stand-alone server improves.

By further refining the document taxonomy, we are using a combination of co-
operative caching and exclusive caching to manage the global, cluster-wide cache
according to the characteristics of the workload. Such an approach needs to re-
spond several challenges. First off, it must be assessed whether cooperative caching
compares favorably to simple solutions like document replication. Second, it is un-
clear whether general-purpose cooperative caching algorithms wouldn’t do equally
well. Finally, since the previous attempts to use the general-purpose cooperative
caching for distributed Web servers [52, 2] relied on simulation, it is interesting to
validate our solution through a real implementation.

5.2.1 Cooperative caching

Two of the main features of cooperative caching are of particular interest to our
solution. First, the client block requests missing in the local cache are checked
against the remote client caches as well before going to the server. Second, co-
operative caching implements a global replacement policy for the locally evicted
blocks. Due to the aforementioned flexibility of our CARD drivers, we can im-
plement various lookup and eviction handling procedures which allow us testing
common sense intuitions about caching documents in the global cache. For in-
stance, the global caching of highly popular documents seems a good idea because
it may yield high hit ratios. Also, saving evicted blocks for unpopular documents
seems equally important because they account for a significant part of the total ser-
vicing time. Since all the classes compete for the same memory, it is questionable
whether a general purpose cooperative caching algorithm would do well. If the an-
swer is negative, one needs to find out whether policies trading off among classes
of documents wouldn’t do better.

As pointed out in Subsection 5.1.1, the servers operating in complex environ-
ments using proxies, content delivery networks, etc. serve mostly the unpopular
documents as the popular ones are filtered out of the request stream at early stages
[54]. This is yet another argument to assess the performance of caching exclusively
the class of the unpopular documents.

In Subsections 4.7.3 and 4.7.4, we saw that handling the block evictions irre-
spective of the loads of the clients participating in the global cache may cause a
severe performance loss (the performance can plummet below that of a cold global

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 85

cache). However, these results are valid for cooperative caching in a distributed en-
vironment. A natural question asks whether the global eviction handling is a right
idea in a cluster-based Web server, since such a server can be considered a parallel
machine in which all nodes are (more or less) equally busy (especially when load
balancing mechanisms are used). That is to say, the chances to find lightly loaded
nodes to host the remotely evicted blocks are small and, in such circumstances, our
previous experience argues against the global eviction handling.

One final question asks whether cooperative caching can compare to a simple
technique like replication. If not, one loses an important advantage of replica-
tion, namely that of the disk controller parallelism. In the worst case, when all
the requests have to go to the disk, cooperative caching pays double: the protocol
overhead and the sequential disk processing, the latter being probably the heaviest
price. And if this is the case, it is interesting to assess whether mixing coopera-
tive caching with replication (that is, replicating some classes of documents while
cooperatively caching the other) alleviates these consequences.

We respond to all these questions by writing specific algorithms that all build
upon the HSCC algorithm. By specific algorithms we actually mean various ver-
sions of the lookup and eviction procedures of HSCC, written according to the
definition in Section 4.3. For instance, deciding not to cooperatively cache a cer-
tain class of static documents is simply a matter of downloading into the CARD
driver a lookup procedure that lets the requests addressed to the files from that class
to be directly forwarded to the disk node. Similarly, handling the evictions of the
blocks belonging to the files in a certain class of documents requires downloading
into the CARD driver an eviction handler that tries to find a remote host for the
locally evicted blocks of the files in that class. For the case when no eviction is
to be handled, a null eviction procedure is downloaded into the kernel in order to
disregard the block eviction events.

5.2.2 Exclusive caching

As seen in Section 3.7, our exclusive caching solution operates cluster-wide by
avoiding double buffering as a host mounting a remote disk through a CARD
driver requests remote blocks. When used with cooperative caching, the exclu-
sive caching concerns only the requests that need to go to the disk. The requests
serviced from the remote client caches don’t need to worry about remote copies,
because they got there according to the joint management algorithm of the global
cache (loaded on demand or saved as a result of remote evictions), while the evic-
tion from that cache is regulated through the global replacement policy.

The exclusive caching enables the computer-attached disks in COTS clusters
to exhibit also a network-attached behavior, provided that no other useful compu-

86 VLAD OLARU

tation takes place on that node. A disk with a network-attached behavior mounted
remotely through CARD drivers opens also possibilities for selective caching ac-
cording to certain criteria. For instance, in terms of Web workloads, the page/buffer
cache at the disk node can be used to store unpopular documents and thus can act
as a “discard cache” for unpopular files. In general, setting up a “discard cache” for
a given class of documents at the disk node is simply a matter of suppressing the
exclusive caching flag in the requests for the uncached blocks of the files belong-
ing to that class. As a result, the disk node cache and its local replacement policy
govern the caching of that class of documents for which, presumably, it may make
little sense to cache its documents across the cluster. Naturally, the effectiveness
of such a method depends on the memory size of the disk node and the size of the
class.

5.3 Performance evaluation

In order to evaluate the performance of a cooperative cache enabled SSI cluster-
based Web server, we use WebStone [61], a well known commercial benchmark for
Web servers respecting a Zipf-like [77] document retrieval distribution. We instruct
the WebStone software to retrieve static documents only. Therefore, throughout
the rest of this section, by WebStone operations we refer to HTTP GET commands.
The benchmark uses HTTP 1.0 and a workload around 1 GB of data (corresponding
to a figure of 300 simultaneous connections maintained by the client to the server).
The server uses Linux ext2 file systems both on top of local disks and remotely
mounted disks. The CARD drivers have the exclusive caching turned on by default
(if not otherwise stated).

5.3.1 Experimental setup

We run our experiments on a 3-node Linux cluster using the setup described in Sub-
section 3.10.1. For these experiments, we use an upgraded version of the Myrinet
GM driver, namely GM 1.6.4 [66]. Only partitions of the IBM DCAS-34330W
Fast/Ultra-SE SCSI disks are mounted remotely for the experiments that we fur-
ther describe. The disks are formatted with a native Linux file system format (ext2).
The file systems are non-aged (0.7% non-contiguous, as reported by the fsck com-
mand). The server machines mount the remote disk partitions read-only.

As a Web server we use Apache 1.3.20 [5]. A Linux router stays between the
client and the server machines. Both the client and the router are Athlon AMD XP
1.5 GHz PCs with 512 MB of RAM and run Linux 2.4.19. The client, the router
and the server(s) are all interconnected through regular 100Mb/s Ethernet. Figure
5.1 describes visually the experimental setup.

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 87

Ethernet

Myrinet

Server 3

Server 1 Server 2Cooperative caching

Disk

Ethernet

Router

Client

CARD CARD

Figure 5.1: Experimental setup for request distribution-aware caching

5.3.2 Experimental methodology

The WebStone benchmark runs on the client machine and sends requests to the
cluster-based server through the router. The role of the router is twofold: to induce
additional latency in order to emulate some Internet-like behavior (almost impos-
sible to be noticed on a LAN) and to dispatch the client requests according to a
Round Robin policy to two of the server machines in order to yield perfect load
balancing (from the perspective of the number of the serviced requests). The two
cluster nodes build a cooperative cache of size at most 512 MB (somewhat smaller,
in fact, due to the space occupied mainly by the operating system and the server
program). This value amounts to at most half of the aggregate storage size of the
working set of the workload (1 GB of data). We chose this value in order to avoid
two situations: the case when the working set fits in any of the local memories, as
well as the case when the workload fits entirely in the global cache. The two nodes
mount the disk containing the benchmark file set through CARD drivers. The disk
itself resides on the third server node. The page/buffer cache at the disk node (the
third server machine) is referred throughout the rest of the section as the “discard
cache”.

5.3.3 Preliminary discussion

In Subsection 3.11.4 we described an experiment assessing the performance of the
CARD drivers acting as simple remote disk interfaces, i.e., without cooperative
caching. The experimental results (see Figure 3.9) pointed out the performance

88 VLAD OLARU

loss of a cluster-based server using disks mounted remotely by means of CARD
drivers when compared to a fully-replicated solution (that is, the servers have all
the needed documents stored on local disks). When equipped with local disks, the
servers performed best because the load was almost equally split between the two
disk drives that we used and that maximized the amount of the disk parallelism. We
take those experimental results as a reference for all the graphs depicting the results
of the experiments that are subsequently described. The next subsections attempt
to quantify to which extent the request distribution-aware cooperative caching can
make up for that performance loss and, very important, under which circumstances.

No eviction handling evaluation

431

418,4 417,8

433,4

410

415

420

425

430

435

0%

Disk fragmentation

A
v

e
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e

(m
s

e
c

)

replication cc + exclusive caching (class 2,3)
cc + exclusive caching (class 0,1) cooperative caching

No eviction handling evaluation

286,6
287,3

279,2

277,3

272

274

276

278

280

282

284

286

288

290

0%

Disk fragmentation

T
h

ro
u

g
h

p
u

t
(k

b
it

s
/s

e
c

)

replication cc + exclusive caching (class 2,3)
cc + exclusive caching (class 0,1) cooperative caching

Figure 5.2: WebStone evaluation of cooperative caching without eviction handling

5.3.4 The performance of cooperative caching without eviction han-
dling

In a first experiment we assess the impact of looking up cached copies of a locally
missing block in remote client memories without considering any global replace-
ment policy (i.e., without eviction handling). In order to do that, we wrote three
policies and we compared their performance to that of the fully-replicated solu-
tion. Using the class definitions in Section 5.2, a brief description of these policies
follows:

• cooperatively cache class2 and class3 files, that is, the files that require most
of the servicing time. The small and popular documents are cached at the
discard cache

• cooperatively cache class0 and class1 files (small and popular documents)
and rely on the discard cache to cope with class2 and class3 documents

• cooperatively cache all the requested documents

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 89

The results are presented in Figure 5.2. Notice that the first policy has the
best results (even slightly better than the fully-replicated solution), which empha-
sizes the importance of caching the heavy tail of the request distribution curve.
The last two policies exhibit performances comparable to each other (with a slight
degradation for the results of the plain cooperative caching). This outcome can be
explained if we remember that class0 and class1 account for 85% of the requests.
Thus, using the limited capacity of the discard cache to store the large files of class2
and class3 doesn’t improve significantly the performance.

Selective eviction handling

418,4 420,9

434

461,7

390

400

410

420

430

440

450

460

470

0%

Disk fragmentation

A
v

e
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s

e
c

)

replication eviction class 2 eviction classes 0,1 eviction class 0

Selective eviction handling

286,6 285,7

276,9

260,1

245

250

255

260

265

270

275

280

285

290

0%

Disk fragmentation

T
h

ro
u

g
h

p
u

t
(k

b
it

s
/s

e
c

)

replication eviction class 2 eviction classes 0,1 eviction class 0

Figure 5.3: WebStone evaluation of selective block eviction handling according to
classes of documents

5.3.5 Selective eviction handling

We pushed our investigation further by attempting to assess to which extent saving
locally evicted blocks in remote client memories affects the performance of the
cooperative caching operating in a cluster-based server environment. In our eval-
uation, we used three policies that handle evictions selectively, for given classes
of documents only. Using again the notations from Section 5.2, the definitions of
these policies are:

• handle only the evictions of the blocks belonging to the files of class2, those
that account for almost 40% of the total servicing time

• handle the evictions of the blocks of the class0 and class1, that is, popular
documents less than 10 KB

• handle the evictions for the class0 only, i.e., popular documents, representing
35% of the requested files

The results are reported in Figure 5.3 (which also compares them with those of
the fully-replicated solution). Notice that the first policy comes very close to the

90 VLAD OLARU

performance of the replicated solution which underlines again the importance of
keeping the class2 files cached in memory, this time due to the eviction handling.
The performance degradation of the other two policies shows that the smaller the
file, the less important the block eviction handling. As the sizes of the documents
grow, the eviction handling becomes more important. This effect can be noticed by
looking at Figure 5.3 from right to left.

Heavy tail handling

429,2

418,4 416,5

464,3

390

400

410

420

430

440

450

460

470

0%

Disk fragmentation

A
v

e
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s

e
c

)

replication cc + discard cache (class 3)

cc (class 0,1,2) no cc + discard cache (class 3)

Heavy tail handling

286,6 288,1
281,6

259,9

245
250
255
260
265
270
275
280
285
290
295

0%

Disk fragmentation

T
h

ro
u

g
h

p
u

t
(k

b
it

s
/s

e
c

)

replication cc + discard cache (class 3)

cc (class 0,1,2) no cc + discard cache (class 3)

Figure 5.4: WebStone evaluation of heavy tail caching

5.3.6 Handling the heavy tail of the request distribution curve

The heavy tail of the request distribution curve represents 1% of the requested doc-
uments but takes some 25% of the total servicing time. Our previous experiments
showed the importance of caching the large documents of class2 and class3. In
this subsection we try to get more insight about this issue by separately treating
the highly unpopular documents. We also attempt to simulate the operation of the
multi-tier servers that filter out the request stream by letting only the heavy tail to
be served at the original server. The two servers do that by cooperatively caching
all the classes of documents but class3, which remains to be stored at the discard
cache. We wrote three policies using cooperative caching that handle evictions in
class2:

• cooperatively cache all the documents and use the discard cache to keep
copies of the large documents of class3

• cooperatively cache class0, class1 and class2 documents without caching
class3 documents at all

• cache only class3 documents using the discard cache

The results are shown in Figure 5.4 and, as usual, they are compared to those
of the replicated solution. The poor performance of the third policy shows that

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 91

caching the large files doesn’t help if all the other requests go to the disk. This
conclusion becomes clear when comparing the performance of the third policy
with that of the second policy which doesn’t cache class3 documents at all and yet
performs significantly better. The best solution is offered by the first policy which
shows a slightly better performance than the solution using replication.

Replication and caching mix

418,4 416,9

422,8

413
414
415
416
417
418
419
420
421
422
423
424

0%

Disk fragmentation

A
v

e
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e

(m
s

e
c

)

replication
replication (class 0,1) + cc (class 2,3)
replication (class 0,1) + cc (class2) + dc (class3)

Replication and caching mix

286,6

287,8

285,5

284

284,5

285

285,5

286

286,5

287

287,5

288

0%

Disk fragmentation

T
h

ro
u

g
h

p
u

t
(k

b
it

s
/s

e
c

)

replication
replication (class 0,1) + cc (class 2,3)
replication (class 0,1) + cc (class 2) + dc (class 3)

Figure 5.5: WebStone evaluation of combining replication with caching

5.3.7 Mixing replication with cooperative caching

In this subsection we present the results of a mixed solution that uses both replica-
tion and cooperative caching (see Figure 5.5). We wrote and tested two policies.
In the first one, we replicate the class0 and class1 files on the local disks of the two
servers and use cooperative caching for the class2 and class3 documents. The sec-
ond policy uses replication for the small and popular documents (class0 and class1
files), cooperatively caches the class2 files and uses the discard cache to store the
unpopular documents (class3 files). Both policies handle evictions for the class2
files only. The first policy outperforms the fully-replicated solution and its results
are consistent with our previous observation according to which caching class2 and
class3 files yields the best performance. The fact that using the replication for the
small and popular files doesn’t affect this conclusion indicates that these classes
enjoy enough locality due to their popularity (since there are only two servers,
there is a 50-50 probability that a second request for the same document will hit
the same server).

5.4 Summary

In this chapter we described a request distribution-aware caching system for cluster-
based Web servers. Using cooperative caching and exclusive caching as driving
engines, our caching system speculates on the properties of the Zipf-like request

92 VLAD OLARU

distribution curves for static Web documents by selectively caching classes of doc-
uments according to their popularity. We also took the opportunity to investigate
the effects of such a particular type of caching on a general purpose technique like
cooperative caching.

The experimental results gathered by running a well-known commercial Web
benchmark, WebStone, help us reach some conclusions. First, cooperative caching
is a useful technique for the SSI cluster-based Web servers (especially when target-
ing the class of the large and unpopular files) because it can bridge the performance
gap between the solutions serving documents through virtual disks and the fully-
replicated solutions. Similarly, handling the block evictions pays off only for the
unpopular and significantly large documents. Attempting to handle the block evic-
tions for the small and popular documents penalizes the performance of the system.
A separate handling of the heavy tail of the request distribution curve may bring
further benefits if the previous observations are taken into account.

Chapter 6

TCP connection endpoint
migration

One of the main features of our SSI cluster-based server, as presented in Chapter
2, is the back-end level, policy-oriented request distribution mechanism. When a
request hits a back-end server, a policy downloaded in the kernel by the application
server has to decide where the request should be handled. A possible outcome is
to hand in the request to another back-end server, provided that such a decision
yields better performance. Simple decisions can be reached independently of the
request content by considering the various loads of the cluster nodes. Some other
decisions, however, need to spy on the request in order to gather information that
allows reaching a certain quality of request service. Typical such decisions are
those performing content- (or locality-) aware request routing. However, this type
of information becomes available only after a connection has been already set up
between the client and one of the back-end servers. As soon as that happened, a
request routing mechanism has to deal one way or another with the back-end that
was involved in the connection setup, since choosing a new server to service the
request leaves behind a connected server-side endpoint. Most of the solutions to
the problem (see Section 2.1) choose to circumvent the issue by using a switch
interposed between the client and the cluster-based server. The switch reaches
request routing decisions early, before the connections to the server machine have
been set up. Alternatively, other solutions let the client connect to a server which
becomes a relay for all the messages exchanged between the client and the cluster-
based server as soon as the request has been routed to another back-end server.

We present in this chapter a mechanism that deals cleaner with the aforemen-
tioned problem by migrating dynamically server-side TCP connection endpoints
between the back-end servers. The mechanism suits very well the SSI design of our

93

94 VLAD OLARU

cluster-based server, since it establishes a functional equivalence of all the server
nodes in the cluster. As soon as a client establishes a connection to an arbitrary
server, any further server-side endpoint migration remains undetected on the client
side, without affecting in any way the correctness of the request service.

Thus, we affirm that the TCP connection endpoint migration is a flexible way
of assigning and reassigning server-side connection endpoints to particular back-
end machines. It hides from the client the distributed nature of the server, for the
client sees only a generic server-side endpoint to which it connects, irrespective
of its actual physical server binding. The mechanism has been implemented as
a Linux kernel module and complies with the software architecture described in
Section 2.3. The TCP connection endpoint migration can be used together with
load-balancing algorithms or even content-aware request distribution.

The rest of this chapter begins by discussing the related work. Then, the de-
sign and implementation of the TCP connection endpoint migration protocol are
presented at large. Finally, we show by means of experimental results that the
TCP connection endpoint migration suits well the purposes of the back-end level
request distribution algorithms for cluster-based Web servers, both for persistent
and non-persistent HTTP connections. The experiments used both academic and
commercial benchmarks.

6.1 Related work

Connection migration is a new mechanism that has been only lately put under
scrutiny by Snoeren et al. [59, 60] and Sultan et al. [64, 63]. Their solutions
describe client-server migration protocols that allow either one of the involved par-
ties a graceful migration of their corresponding endpoint to a third party conform-
ing to the protocol. No front-end or switch is needed between the client and the
server. The first solution is not a true migration protocol as it involves an user-level
“wedge” that intermediates between the connection endpoints. Moreover, that pro-
tocol is application-dependent (i.e., not a TCP-migration protocol).

However, there is little evidence that the client-server connection migration
could be successfully used in request distribution for cluster servers mostly because
of the incurred overhead. In fact, Snoeren et al. used it for fault-tolerance purposes,
as a fine-grain fail-over mechanism for long-running connections switching across
a distributed collection of replica servers [60]. In a somewhat different domain,
they used connection migration to approach host mobility [59]. With Server Con-
tinuations, Sultan et al. [63] use the connection migration to migrate server sessions
as a particular form of process/thread migration.

Our protocol is an application-independent, server-side connection endpoint
migration protocol (server-to-server, client-transparent). It has versions both for

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 95

the architectures employing front-ends and for the fully-distributed ones. Its main
advantages are performance-related. Since it is client-transparent, the protocol is
not sensitive to the Internet behavior. In the case of the general client-server migra-
tion protocols, the inner mechanisms of TCP (slow-start/congestion avoidance, ex-
ponential back-off) may negatively affect the migration. The possible performance
degradation renders thus questionable the use of connection migration in request
distribution policies. On the contrary, a server-side protocol takes advantage of
powerful backplane interconnects which have better performance figures than the
Internet. A client-transparent migration protocol has the disadvantage of employ-
ing an additional connection router (either the front-end or the server node itself).
For fully-distributed cluster-based servers (i.e., when no front-ends are used), the
problem is mitigated by the low costs of passing messages over SANs.

The client-server migration protocols raise more general questions as they can
be used to migrate connections over Wide Area Networks as well. In such a con-
text, a client-aware migration protocol breaks the client-server paradigm: a client
is not anymore connected to a single server, represented through an (IP address,
TCP port) pair, but rather to a collection of servers identified by a set of tuples with
different IP addresses and the same TCP port. While the distributed nature of the
server contributes obviously to improved service, making it public does not pro-
vide a new abstraction, it just complicates an existing one. While effective, we do
not find it to be a neat design. We find Anypoint [74], a one-to-many communica-
tion model, a far more consistently and properly designed solution. Anypoint uses
also application-layer policies to route the requests and operates at the granularity
of transport frames. Anypoint’s performance has been tested for an NFS storage
router and not for the Web.

Also, in some sense, a client-sever migration protocol is not very different from
the existing HTTP-redirection protocol (see Section 2.1), namely, they both involve
the client in redirecting the connection, although in the HTTP-redirection case the
redirection is done by setting up a brand new connection. While technically differ-
ent, both protocols suffer from the performance penalty of having to go over the
Internet to perform the redirection.

A client-transparent protocol can be regarded as a particular client-server mi-
gration protocol involving a server and a client stand-in. This representative of the
client is either the front-end (when taking part in the request routing) or one of the
servers, as we will see for the case of the fully-distributed request routing. Since
this representative is directly linked to its peer (the server representing the migra-
tion target), the migration protocol is faster. Moreover, the client-server paradigm
remains unaffected if all the servers in the cluster use the same virtual IP address.
The client communicates with a locally-distributed server as if it would do with a
stand-alone one.

96 VLAD OLARU

6.2 Background

This section aims at presenting briefly those features of the TCP protocol and its
typical kernel implementation that facilitate a better understanding of our TCP con-
nection endpoint migration mechanism. To do so, we adopt two perspectives: that
of the system programmer who writes client-server applications using TCP/IP, and
that of the kernel developer who provides the application developer with the right
operating system services (system calls). Our main references for the TCP protocol
are RFC 793 and 1072 [41, 42] and Stevens [62]. For the kernel implementation of
the TCP protocol we assume the Linux case.

6.2.1 The perspective of the application developer

An application developer needs system support for establishing a connection be-
tween its client and server applications, for exchanging messages between the two
and for shutting down the communication between them. In order to simplify the
explanation, we rely on a widely used library of network services, the BSD socket
library. While there are other libraries supporting similar services, we believe the
BSD socket library to be illustrative enough for our purposes.

Before communicating with a server over TCP/IP, a client has to setup a con-
nection with the server by using the connect system call. On the server side, the
server program uses an accept system call to wait for incoming connection re-
quests. As soon as the rendez-vous synchronization takes place and the connection
between the client and the server is set up, the server program unblocks from the
accept system call and the useful communication can take place on the freshly
setup connection. Sending and receiving messages can be accomplished through a
variety of methods including the regular read/write system calls for file systems.

As soon as one of the peers wants to tear down the connection, it uses the
close system call. There is also the possibility to close partially an endpoint of the
connection by calling the shutdown system call with the appropriate parameters.
Basically, shutdown allows closing either the sending or the receiving part of the
local connection endpoint, or both (in this case being the equivalent of close).

6.2.2 Processing the network traffic in the kernel

The modern operating system kernels use an event-driven model to process the net-
work traffic. The network card interrupt handlers store packets in a general purpose
queue and schedule the appropriate software interrupts (bottom halfs in Linux) to
handle the queue. The protocol processing runs in these software interrupt handlers
that pass the processed packet from the general purpose queue to special purpose

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 97

queues managed by the protocols the packets are intended for. A TCP/IP packet,
for instance, is passed from the general purpose queue to the IP software interrupt
handler, the IP-specific processing is carried out and then the processed packet is
delivered to the TCP handler. In turn, this handler executes the TCP-specific pro-
tocol and stores the packet in a particular queue (in fact, either the listen queue,
for connection setup packets, or the socket receive queue, for regular packets ad-
dressed to an already established connection). This particular queue (either the lis-
ten or the receive queue) will be processed by the targeted process when running in
kernel mode as a consequence of executing a system call. In our example, accept
will process the listen queue while one of the read/readv/recv/recvfrom/recvmsg
will take care of the receive queue. This event driven model aims at minimizing
the protocol processing overhead, as the targeted process doesn’t need to wait ac-
tively for incoming packets (polling is a bad idea for non-preemptive kernels like
Linux, at least for the versions before 2.6). The incoming packets are placed in a
queue at interrupt time and, later on, the rest of the processing takes place when
the application (in our case, the server program) runs in kernel context.

6.2.3 The three-way handshake connection setup protocol

The aforementioned rendez-vous between a client calling connect and a server
waiting in an accept will be explained now from the kernel perspective. When
a client sends a connection setup request to a server (through a connect call), the
following steps take place:

• The client TCP engine sends a SYN packet to the remote peer. The SYN
packet contains, among other things, an initial sequence number (ISN) that
is used to mark the right sequence of packets that will be sent by the client.

• The server receives the SYN packet and responds on the spot with a SYN -
ACK packet that contains the server ISN. Also, the SYN ACK packet ac-
knowledges the received SYN packet by adding one to the client ISN.

• When the server SYN ACK reaches the client, this one replies with an ACK
segment that increments the server ISN by one.

The server kernel is affected by this protocol in the following way. As soon
as the server acknowledges the client SYN, an open-request structure is added to
a SYN Q queue (or listen queue, as defined in the previous subsection) associated
with the listening socket. When the client ACK arrives, the corresponding open-
request at the server is marked “ready” and a freshly created socket is associated
with it. Variations of this scheme used in other kernels employ two queues, a

98 VLAD OLARU

SYN RCVD and an accept queue. The incoming SYNs are placed in the SYN -
RCVD queue and, when the ACK comes, the entry is released and a new socket
is placed in the accept queue. Regardless of the implementation, later on, when
the user application-invoked accept runs in kernel context over the SYN Q (or the
accept queue, for other systems), the newly established socket is passed on to the
server application and the corresponding open-request structure is released.

6.3 TCP connection endpoint migration overview

As seen in Section 6.1, our TCP connection endpoint migration is client-transparent
and targets locally-distributed server architectures. It has two variants, one involv-
ing front-end(s) and a fully-distributed one. As a request (a SYN packet, in fact)
arrives at the front-end, it can be directed to a given server according to a certain
policy or it can pass through to hit eventually a back-end server.

In the first case, the front-ends keep a mapping table holding (connection ID,
server ID) entries. Every packet flowing in along the connection will be routed
by the front-end according to this mapping table. If a back-end server chooses
at some point to migrate its connection endpoint to another back-end server, the
corresponding mapping entry at the front-end has to be updated as well. A single
cluster may use many front-ends in order to ensure the scalability of the server. At
the back-end level, a context associated with each connection endpoint stores the
identity of the front-end through which the connection “came” first. This informa-
tion helps clean up the mapping table once the TCP connection has been closed.

In the second case, when the requests reach the back-end servers without front-
end involvement (at least from the connection routing point of view), the assign-
ment of a connection to a back-end has to be done by an external entity. Examples
of such entities include the DNS servers resolving name queries according to a
Round Robin algorithm [16] or front-ends that use a static connection assignment
according to some hash function on the connection ID (client IP and/or client port).
If the chosen back-end decides at a later time to migrate its connection endpoint
to another server in the cluster, a (connection ID, server ID) entry will be inserted
locally in a so called forwarding table. All the subsequent packets of the migrated
connection will then be forwarded according to the corresponding table entry.

Regardless whether the front-ends are involved or not, the connection endpoint
migration protocol takes place between two back-end server machines and has two
main stages. First, the back-end initiating the migration sets up a connection with
the new server as if it would be the client currently using the connection about to be
migrated. The back-ends do so by fulfilling a modified version of the connection
setup protocol described in Subsection 6.2.3. As a result of this step, a new server-

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 99

side connection endpoint intended to be a duplicate of that of the initiating server
is set up at the new back-end. Then, in a second step, this new endpoint becomes
truly a duplicate of the old server’s endpoint when the initiating back-end transfers
the entire server-side connection status to the new site. The transfer is made such
that, at the end of a successful migration, the client can continue exchanging mes-
sages with the new server from the point it had left the communication with the old
server. The old endpoint is deallocated and the client-server communication re-
sumes by using the new server-side endpoint. All this happens without the client’s
knowledge. The next sections describe in detail the two versions of the migration
protocol.

6.4 The front-ends and their role in the TCP connection
endpoint migration

The uninformed routing performed at the front-end snoops the incoming pack-
ets passing through the router and maps their destination address onto a Medium
Access Control (MAC) [62] address in order to deliver them to their destination
hosts. The mapping is computed according to some hashing function (regardless
whether this function is load-aware or not). Such a solution requires that all the
back-end servers share the same IP address. Sharing the same IP address is done
by setting the Virtual IP of the cluster as an IP alias on each back-end machine.
Some solutions like Network Dispatcher [37] and ONE-IP [24] create an entry in
a mapping table at the front-end for every new connection request (i.e., for every
new incoming SYN packet). The entry maps the Virtual IP to the MAC address
provided by the hash. Allocating a new entry each time an incoming SYN packet
passes through the front-end raises additional problems if many SYN packets are
discarded later on at the back-end level by overloaded servers. Namely, a clean-up
mechanism is needed in order to flush the useless/stale entries from the table.

In our approach, the connection-to-MAC mapping relies on a simple hash func-
tion that yields the same MAC address for all the packets of a connection. Thus, if
no connection endpoint migration occurs, there is no need to store an entry in the
mapping table. If later on the server connection endpoint is migrated to another
node, an update message sent by the new server triggers the allocation of a new
mapping entry. From this point on, all the client packets will be routed according
to the newly created entry and the hash function will be disregarded. The entries
will be deallocated either when the TCP termination protocol [41, 62] takes place
or when either party sends a RST [41, 62] segment. This solution reduces the
connection handling overhead as not all the connections end up being migrated.
Moreover, there is no need to clean up unnecessarily allocated entries. Also, the

100 VLAD OLARU

memory consumption is reduced.
It is also worth mentioning that the front-ends act as routers for the incoming

packets but not necessarily for the outgoing ones. Only the outgoing packets that
need to change the connection-to-MAC table (such as FIN, RST or update packets)
are forcibly routed through the front-end they correspond to. All the other outgoing
packets can flow out through regular IP routers. This aspect is important when one
wishes to dedicate the front-ends to the connection routing job only.

So far, our cluster architecture could have been that of a general Cluster-based
server. But the use of a Virtual IP at the back-ends makes it seem like a Virtual
server (see Section 2.1) in which all the server machines have to be connected to
the same LAN segment so that they can see each other’s MAC address.

6.5 Request routing without front-end involvement

The front-ends are not necessary to the connection endpoint migration. By making
a back-end act as a “fake front-end”, for instance, one gets a fully distributed con-
nection endpoint migration architecture. As long as the front-ends cope decently
with the load, the advantages of a fully distributed solution may appear farfetched.
Moreover, with the front-end replication, even the scalability issue seems solved.

However, a front-end solution has its disadvantages. First, any migration at the
back-end level results in an update message sent to the front-end. This additional
message consumes payload (LAN) bandwidth and, more important, CPU process-
ing time to handle the interrupts at the front-end, which is known to be a serious
bottleneck for the network systems. Second, as soon as a migration succeeds, all
the client packets flowing through the front-end have to be looked up against a hash
table. The lookup may be especially cumbersome for the persistent HTTP connec-
tions, for instance. For these connections, the subsequent requests passed along the
connection will have to pay for the previous (and possibly unrelated) request rout-
ing decisions. With a fully distributed solution circumventing the front-ends, such
shortcomings are alleviated, provided that some load-balancing scheme dispatches
evenly the requests to the “routing” servers at the back-end level. Such a balancing
scheme can be as simple as an equivalent of the Round Robin DNS [16].

Making a back-end server also a connection router, as soon as one of its con-
nection endpoints migrates to some other node, is simple enough. As soon as a
connection endpoint migrates somewhere else in the cluster, a (connection ID, new
server ID) pair is recorded in a so called forwarding table at the old server. Since
no trace of the connection endpoint has been left behind at the old server, the sub-
sequent packets for the migrated connection arriving at the back-end are simply
delivered to the usual RST mechanism of TCP [62, 41]. The routine responsible to

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 101

send back a RST segment to the client has been wrapped up with code that checks
first to see whether the forwarding table has an entry for that connection. If so, the
packet is not discarded and no RST segment will be generated. Instead, the packet
will be sent further to the new server which is identified according to the informa-
tion stored in the forwarding table. It is also worth adding that wrapping up the
kernel routine responsible to send a RST segment is simply a matter of replacing a
function pointer in the Linux kernel. When the new server closes the connection, it
sends back a cleanup message to the old server over the SAN in order to flush out
the corresponding entry from the forwarding table.

6.6 The connection endpoint migration protocol

Once a connection is established between a client and a back-end machine, its
server-side endpoint can migrate to another node at will. The operation of a server
wishing to migrate one of its connection endpoints to another back-end server is
presented by the state machine in Figure 6.1. The MIGRATION WAIT state is not
a new TCP state because the connection remains in the TCP ESTABLISHED state.
But for a better understanding of the protocol, we decided to introduce a wait state
describing the operation of the network connection during the migration. As it can
be seen, as soon as a migration request is issued (i.e., a migration SYN packet is
sent to the remote server), the connection moves to a wait state in which every
incoming client packet is stored in a checkpoint associated with the connection.

TCP_CLOSE

TCP_ESTABLISHED

migration accept

flush checkpoint to remote site +

MIGRATION_WAIT

simulate receiving an RST segment +
optionally, set up forwarding entry

setup checkpoint + stop processing

migration request

store packet into checkpoint

incoming packet

clean up checkpoint + resume processing

migration reject

Figure 6.1: Connection migration operation at the initiator

Upon receiving a response from the remote server, the connection leaves the

102 VLAD OLARU

wait state. If the migration failed, the connection checkpoint is cleaned up by
delivering the packets to the connection and the connection processing resumes.
On migration success, the checkpoint content is sent to the remote site and the
local server-side endpoint is deallocated. Figure 6.2 shows a visual description of
the individual protocol steps of a successful connection endpoint migration.

Back-end Back-end Back-end Back-end

Front-end Front-end….

System Area Network

Ethernet

Internet

1. MIGR_SYN

2. MIGR_ACK

C
he

ck
po

in
t

3. Sending the checkpoint packets

Figure 6.2: Connection endpoint migration at a glance

As already mentioned, the connection between the two back-end servers gets
set up such that, after transferring the server-side endpoint status to the new site,
the client can continue exchanging messages with the new server as if nothing
happened. In order to do so, certain conditions have to be met. Some of them
regard the sequence numbers and the time stamps used by the TCP protocol, some
other concern the aforementioned checkpoint established in order to cope with the
client packets that have been received but not yet serviced during the migration.
We discuss these issues in the context of the two main steps of the connection
endpoint migration protocol: the server-to-server connection setup protocol (i.e.,
the modified three-way handshake) and the migration completion phase.

6.6.1 Matching the sequence numbers

Upon receiving a migration SYN, a server targeted by a migration will duplicate
locally the endpoint of the initiator of the migration. This operation needs properly
negotiated initial sequence numbers (ISN) to be used in the three-way handshake
protocol (see Subsection 6.2.3). The packets flowing between the client and the
new server have to respect the sequence numbers agreed upon with the old server
by the time of the migration. Since the new server-side endpoint is set up by relying
on the TCP connection setup protocol, the initiator of the migration has to choose
a proper “client” ISN. Additionally, it has also to impose the ISN that the target

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 103

server will use as its own ISN during the connection setup protocol described in
Subsection 6.2.3.

Enabling the new server to choose an ISN of its own would not permit matching
the server sequence numbers currently in use. Namely, the ISN of the new server
should be the next allowable send sequence number (denoted by snd nxt in RFC
793 [41]) for the old server. To do so, the initiator server uses a modified SYN
segment carrying with it the “imposed” server ISN to be used at the migration site.
When the SYN packet is processed at the remote TCP stack, the “imposed” ISN is
adopted as a “locally generated” ISN.

The server initiating the migration chooses the “client” ISN to be either the
sequence number of the first packet stored in the connection checkpoint or, if that
checkpoint is empty, the next sequence number usable by the client (denoted by
rcv nxt in RFC 793 [41]), minus one. By choosing the two ISNs in this way, the
three-way handshake protocol will ensure that the connection endpoint at the new
server site respects the sequence numbers agreed upon between the client and the
old server by the time of the migration.

6.6.2 The modified three-way handshake connection setup protocol

A particular feature of this migration connection setup protocol is that the last two
messages in the three way handshake do not go over the SAN between the peers.
Under this modification, the protocol described in Subsection 6.2.3 becomes:

• The initiator server sends to the new server a modified SYN packet that car-
ries the “client” and the “imposed” ISNs chosen as specified in Subsection
6.6.1. The “imposed” ISN for the new server is adopted at the remote site as
a “locally generated” ISN.

• The new server receives the SYN packet, carries out the typical connection
setup processing with the supplied “imposed” ISN but drops the generated
SYN ACK packet. Instead, it generates locally the corresponding ACK by
modifying the received SYN packet (i.e., by changing accordingly its se-
quence numbers and by erasing the SYN flag).

As it can be noticed, only one message is necessary to set up a new connection
endpoint at the new server site. This design saves us one SAN message (namely
the final ACK in the TCP connection setup protocol, since, as we will see in the
next subsection, a migration acknowledgment message is needed anyway) and is
part of our strategy to keep the migration overhead as low as possible in order to
be able to use the connection endpoint migration in request distribution.

104 VLAD OLARU

6.6.3 Completing the migration

As soon as the new connection endpoint is fully set up at the remote site, the new
server sends back a migration acknowledgment to the old server (see Figure 6.2).
In turn, the requester flushes out the connection checkpoint and the write queue
(containing packets sent by the server but not yet acknowledged by the client) by
sending them to the new server site. Then, the remote site is able to re-play safely
the checkpoint because of the properly set sequence numbers. As for the machine
that initiated the migration, it simulates receiving a RST segment (see [41, 62]) in
order to flush out the connection state and the allocated resources.

One tricky business is to find out whom to send the migration acknowledg-
ment to, since the new server thinks the new endpoint has been set up for yet an-
other client connection. Essentially, the TCP connection setup protocol provides no
means to distinguish between a connection setup request and a migration request
(since, obviously, it has not been developed to support migration). The solution is
to piggyback the ID of the old server on the migration SYN message by using the
urgent pointer field in the TCP header [41, 62]. This choice may not seem neat but
is truly harmless as the urgent pointer field of the SYN segments has no particular
meaning. At the new server node, the ID will be stored in the environment of the
newly created socket and, when the time for the migration acknowledgment comes,
it will be used to direct the message to the initiator of the migration. As a technical
comment, it is worth saying that this value is not stored in the open-request struc-
ture mentioned in Section 6.2, but saved from the migration SYN packet into the
urgent pointer field of the locally generated ACK. From here, it will be saved in
the newly created socket data structure as the ACK segment gets processed.

6.6.4 The role of the connection checkpoint

As already mentioned, the migration protocol uses also a checkpoint as part of the
connection status. This checkpoint is built at the connection setup time and stores
incoming packets. It is cleaned up periodically as the request processing is carried
out. Its main role stems from the fact that, most of the time, a migration decision
comes as a consequence of analyzing a given request sent by the client along the
connection. Since the outcome of that analysis is to migrate the connection end-
point to some other server in the cluster, the migration protocol has to deal also
with the packet(s) of the request(s) and, possibly, with earlier packets (i.e., those
that haven’t been processed yet) or later packets (i.e., those arrived after the mi-
gration decision has been reached) as well. Thus, when migrating a connection,
the content of the checkpoint is flushed out to the new location of the migrated
endpoint. There, it is replayed in order to mimic the receive of the packets at that

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 105

node. In turn, the user-space daemon carries out the application-level protocol.
During the replay of the checkpoint at the remote site, the automatically gen-

erated ACKs of the TCP engine are dropped locally. The reason for this decision
is performance- rather than correctness-related. Since the packets gathered in the
checkpoint have been acknowledged once by the old server, the new server doesn’t
want to fool the client by sending duplicate ACKs as these may trigger on the client
side the congestion avoidance [62] algorithm. As a result of that, the future data
transfers will be erroneously penalized in terms of performance, since no conges-
tion took place, actually.

6.6.5 Isolating the migration protocol from the client

During the migration process, the node initiating the migration suppresses all the
packets that may be sent to the client (including the simple ACKs sent automati-
cally by the TCP engine in response to the client packets received after initiating
the migration). As soon as the two back-end nodes agreed on the migration and the
duplicate connection endpoint has been fully set up at the new site, the new node is
also responsible of sending to the client the packets from the write queue on behalf
of the old server.

6.6.6 Updating the front-ends after a migration

When using the front-ends for routing , as soon as the migration completes, each
ACK sent by the new server acts as an update sent to the front-end in order to
modify its corresponding connection routing cache entry, if any. The front-end
notices that it is an update message, and, if no entry for the connection exists, it
registers the mapping between the connection and the MAC source address of the
outgoing packet. As soon as the first client ACK arrives at the new server, the
updating process stops (that is, server ACKs act no more as update messages).

Piggybacking update information on regular TCP ACK messages is possible
because of the design of our server that requires the front-ends to be directly
linked to the back-ends through a LAN. In this case, it is possible to set the type
of the LAN packet carrying the ACK segment to be that of an update message.
When the front-end receives and recognizes such a message, it will update first the
connection-to-MAC address mapping table and then will route the packet further.

6.6.7 Setting up the forwarding table when no front-ends are used

When no front-ends are involved, as soon as the migration completes, the server
initiating the migration registers locally the connection identity (client IP and TCP

106 VLAD OLARU

port) and associates it with the server ID of the new location of the server-side
endpoint. This routing entry is entered in the forwarding table whose role has been
previously explained in Section 6.5. The forwarding takes place also over the SAN
in order to minimize the latency and to avoid increasing the traffic on the LAN.

6.6.8 Handling the migration failure

If the new server does not accept the migrated connection endpoint, a fall-back
mechanism is used to resume the execution at the old server. A migration reject
packet is sent back and recognized by the old server as an error condition. There-
fore, the server policy that triggered the migration is signaled the error. In turn, this
policy will have to reach a decision. Normally, the request processing is resumed
from where it was left. Anyway, as soon as the server has been informed about
the abort of the connection endpoint migration, the connection is viewed again as
a regular, locally-bound connection.

6.7 Operating system features that influence the protocol

There are several implementation aspects that influence the protocol design. First
of all, TCP uses time stamps to prevent either parties to receive stale packets. These
time stamps are most of the time taken from the local logical clock (i.e., an integer
counter) of the operating system (in Linux, the so called jiffies). Currently, there
is no way to synchronize these internal counters in a cluster (because they have
internal relevance only). When it comes to migration, if the old server uses “newer”
time stamps than those of the new server accepting the migrated endpoint (i.e., the
old logical clock is greater than the new one), the end result will be that the TCP
engine of the client will refuse the packets coming from the new server because
they have “older” time stamps (i.e., smaller than those expected by the client that
considers the corresponding TCP segments to be stale). In order to save extra
synchronization messages, the value of the old server’s clock is piggybacked on
the migration SYN as well by using one of the SYN option fields [41]. At the
remote node, the value is recorded in the environment of the socket representing
the migrated connection endpoint. A filter installed on the outgoing TCP path in
the kernel checks every migrated connection endpoint environment for the value
of the “old” time stamp and adjusts accordingly the time stamps in every outgoing
TCP segment.

Further concerns address the TCP connection setup protocol. First, the TCP
engine implementation in the kernel limits the number of outstanding connection
requests that have not yet been accepted (i.e., the size of the SYN Q queue, see
Subsection 6.2.3). Since the connection endpoint migration emulates a client con-

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 107

nection setup protocol, it means that the migration requester competes with actual
clients for the resources of the migration target node. Nevertheless, the migration
implies more than the connection setup and requires a special treatment if the mi-
gration request is to be refused. Second, for performance reasons and in order to
minimize the SAN traffic, the connection setup part of the migration protocol sends
just the SYN segment over the SAN, while the corresponding SYN ACK and ACK
are played locally by the migration target. This solution makes the old server ap-
pear as a potential threat to the new server which may mistake it for a misbehaving
client either attempting to conduct a SYN flooding attack or being too fast to re-
spond to and therefore asking to be quenched. The solutions to these problems are
discussed in Subsection 6.7.1.

Finally, in order to offload the LAN from additional traffic, the migration pro-
tocol takes place entirely on the SAN. This choice is natural because SANs have
lower latencies and higher bandwidths than LANs. The protocol runs mostly in
interrupt context (bottom halfs in Linux). Only the decision to initiate a connec-
tion endpoint migration cannot be taken in interrupt context because of two rea-
sons. First (and obviously), the policies taking such decisions act on behalf of user
processes (server programs) when these run in kernel mode. Second (and conse-
quently), those processes must be stopped during the migration as the use of polling
inside the kernel may harm the system performance (Linux is a non-preemptive
kernel, at least the versions before 2.6). However, blocking the process involves a
sleep mechanism that cannot be used in interrupt context inside the kernel.

6.7.1 The consequences of using the three-way handshake setup pro-
tocol for the connection endpoint migration

Using a modified connection setup protocol to migrate connection endpoints has
the advantage of being easy to understand. Using the state of a given connection
gathered in the connection checkpoint, the protocol simulates a connection estab-
lishment and then re-plays remotely the checkpoint. Moreover, it is easy to imple-
ment as it requires only to send the right SYN packet and to flush the checkpoint
content to the remote site.

However, there are some catches as well. Depending on the processing speed
of the requests and the rate of the request arrivals, it may very well happen that
the SYN Q of the new server overflows. When the overflow occurs, two decisions
come in handy to the kernel. The simplest one discards the incoming SYNs. The
more refined one requires SYN cookies. In both cases, the connection endpoint
migration fails. A reject message is sent back to the requester to signal the fail-
ure. Therefore, our migration protocol may be sensitive to the size of the queue,
recorded in the kernel as the SOMAXCONN value. This aspect is important as the

108 VLAD OLARU

migration SYNs sent over the SAN backplane are competing for resources with the
“regular” SYNs received over the LAN. As it will turn out, however, the migration
rejection is not too costly and the extra percentage of rejected migrations results in
insignificant penalties on the user-perceived latency and throughput. Nevertheless,
the request distribution schemes relying on such implementations of the connection
endpoint migration mechanism should be aware of this effect.

Using the connection setup protocol to duplicate the server-side endpoint on
a remote machine has another drawback as well, besides the competition of the
migration SYNs with the client SYNs for the resources of the server targeted by
the migration. The migration SYNs use the SAN to fulfill the setup protocol. The
SANs are high speed interconnects and, if many migration requests hit the new
server, this one gets the false impression that eager “clients” are overwhelming it
with requests. The phenomenon is unfortunately accelerated by our design decision
to drop the SYN ACK and to respond on the spot with the corresponding ACK. The
TCP engine of the server simply drops these locally generated ACKs by advertis-
ing a zero receive window (see RFC 793 [41]) for the freshly allocated socket. As a
result, the initiator of the migration doesn’t get the migration acknowledgment and
a deadlock occurs. Fortunately, breaking the deadlock is simply a matter of modi-
fying the TCP engine to impose a non-zero receive window (64 KB by default) on
sockets freshly created as a result of a connection endpoint migration.

6.8 The use of the TCP connection endpoint migration in
request distribution policies

Having described the connection endpoint migration protocol, we now present the
operation of the request distribution policies using it. We first discuss a simple
policy aiming at assessing the overhead of the connection endpoint migration, both
when it succeeds and when it fails. Next, we show how the connection endpoint
migration can be used in a more complicated policy.

6.8.1 The simple policy

Essentially, this policy migrates all the requests hitting a certain node to another
one in the cluster. From a technical perspective, this procedure works as follows.
At interrupt time, the packets of a request build up in a receive queue of the socket.
This queue is part of the checkpoint that the migratory connections manage. As
soon as the request is reconstructed in memory, the server application can access
the request data through read/readv or recv/recvfrom/recvmsg system calls. Inside
the Linux kernel, a tcp recvmsg routine checks the receive queue and transfers the

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 109

data to the user level. Our policy operates as a hook inside tcp recvmsg by avoiding
the data transfer to the local server in order to migrate the connection endpoint.
Section 6.9 shows the evaluation results.

The signature of the hook inside tcp recvmsg is the following:

int tcp_recvmsg_hook(struct sk_buff *skb);

A policy can be expressed by implementing this hook inside a Linux kernel
module and becomes effective by downloading the module into the kernel by
means of regular Linux insmod/modprobe commands. The parameter of the call
is a socket buffer representing the packet about to be delivered to the user-level
server program. By parsing the content of this packet (and possibly that of the sub-
sequent ones), a policy can identify the requests of the protocol it was devised for
(HTTP, for our experiments). The return value of the tcp recvmsg hook call speci-
fies whether the packet should be handled locally (otherwise said, if the migration
failed or hasn’t been attempted at all) or the connection endpoint was migrated.

By the time tcp recvmsg hook is called, the corresponding socket buffer passed
as an argument to the call is already associated with a socket representing the local
connection endpoint. This information can be then used as a parameter to the
migration routine, if the policy decides to migrate the connection endpoint. The
signature of the migration routine is:

int migrate_sock(struct sock *sk, int target_ID);

The first parameter is the socket representing the local connection endpoint,
while the second argument is the node ID of the server (provided by the commu-
nication infrastructure, see Section 2.4) to which the connection endpoint is being
migrated. The return value specifies whether the migration succeeded or failed.

6.8.2 Handling short-lived connections

In a more general context, the policy might parse the request to find out information
that might help take a request distribution decision. For instance, a content-aware
policy might find out the file to be accessed and, depending on the actual location
of the cached copies of the file, a decision meeting locality of reference demands
may be taken. Such a solution applies of course to the cases where the application
level protocol doesn’t involve user-level specific processing such as compression or
cryptography. For such cases, the policy must be implemented in user-level, while
the connection endpoint migration is supported through a system call. However, an
user-level policy implies changing the application software, which breaks our aim
of running unmodified software designed for stand-alone infrastructures on top of
clusters.

110 VLAD OLARU

In this subsection we describe a particular type of policy that builds upon pre-
vious research. Crovella et al. [22] and Harchol-Balter et. al [34] proved that fa-
voring the short-lived connections in connection scheduling for stand-alone servers
improves significantly the average response time, practically without affecting the
response time of the long connections. We wrote a policy that extends this result
cluster-wide, by migrating only the connections concerning the small and popu-
lar static Web documents in a content-aware dispatching scheme. Since the large
document requests are serviced locally, it can be considered that the short-lived
connections are favored by migrating them to a site where they can benefit of im-
proved locality of reference. At the node initiating the migration, we hide the costs
of migrating the connection endpoints for the small requests by overlapping the
increased disk I/O (due to the local service of the large files) with the computation.

As described in the previous subsection, we download a specific routine into
the kernel (more exactly, within tcp recvmsg) to do the job. This routine parses
the HTTP protocol header, identifies the file name of the requested document and
checks its size. If this size doesn’t qualify the document to belong to the “heavy
tail” of the request distribution curve, the policy migrates the connection endpoint
to a node whose ID matches a hash value on the file name. This decision aims at
creating locality of reference for a certain file by constantly caching its content on
the same machine. Section 6.10 shows the evaluation results for this policy. Natu-
rally, such a particular policy could have been implemented at the front-end level
as well, but in a more complicated policy involving cooperative caching, for in-
stance, the migration destination would be chosen according to caching hints taken
from the cooperative caching management system. When used in such schemes,
the front-end dispatching needs explicit caching hints from the back-ends.

6.9 S-Clients performance evaluation

To evaluate our simple policy using the connection endpoint migration (see Sub-
section 6.8.1), we ran a benchmark depicting the server performance in terms of
connection throughput. We used S-Clients [10], a software that generates bursty
HTTP request behaviors as typically seen in the Internet. The operation of S-
Clients tests only the speed of the server software (including of course that of the
kernel TCP/IP stack) without paying attention to additional issues like caching.
The benchmark generates high rates of HTTP requests targeting a single file, in-
dex.html (by default, roughly 5 KB in our experiments, if not otherwise stated).

A client machine (called C) launches the benchmark. The generated requests
pass through a front-end and are directed to a server machine called A. At this
point, we explored three scenarios. In the first one, called Single server, the ma-
chine A serves the requests itself. This scenario serves as a baseline case for the

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 111

comparisons with the next two scenarios. In a second scenario, Front-end, the
server A accepts the requests and migrates the corresponding connection endpoints
to another server (called B) using the front-end based version of our migration pro-
tocol. B accepts the requests and serves them. The third scenario, Back-end, is
similar to Front-end but we use the migration protocol that involves back-ends
only. The general idea of the last two scenarios is depicted in Figure 6.3.

Myrinet

DiskDisk

Request

Request migration

Ethernet

Ethernet

Response

Server A

Front−end

Server B

Client
C

Figure 6.3: Experimental setup for connection migration policies migrating re-
quests from one back-end server to another

We tried also to assess the impact of our particular protocol design on the con-
nection endpoint migration performance. One such design aspect is the use of the
three-way handshake protocol to initiate a migration. A migration can be refused
by the remote server by usual means of rejecting a connection setup request (see
Section 6.2.3). We assess the performance of the worst case scenario when all the
migrations fail due to connection setup rejection at the remote server. In this case,
the server B rejects all the migration requests of A, and, therefore, A has to resume
the request servicing from the point it was left before the migration. This scenario
intends to evaluate the operation of the connection endpoint migration when wrong
migration decisions hit overloaded servers that cannot accept further requests.

6.9.1 Experimental setup

The two back-end servers, A and B, are the PCs described in Subsection 3.10.1.
They are interconnected by means of the Myrinet infrastructure presented as well
in Subsection 3.10.1. We used the GM 1.6.4 [66] version of the Myricom driver.
Each back-end runs Apache 1.3.28 [5] as a Web server.

The client C and the front-end are both PCs equipped with Athlon AMD XP 1.5

112 VLAD OLARU

Ghz processors and 512 MB of RAM. Both systems run Linux 2.4.19. All the ma-
chines, including the servers, are interconnected through regular 100Mb/s Ethernet
(with the front-end acting as an IP router between the client and the servers).

350

400

450

500

550

600

650

700

750

800

850

0 1000 2000 3000 4000 5000 6000

C
o
n
n
ec

ti
o
n
 t

h
ro

u
g
h
p
u
t

(c
o
n
n
s/

s)

Request rate (reqs/s)

Connection throughput for single server, front-end routing and back-end routing

"single-server"
"front-end"
"back-end"

Figure 6.4: Server connection throughput
If the connection endpoint migration is to be used as an active element of a

request distribution scheme, it needs to perform reasonably well under overload
conditions. Therefore, our experiments aim to shed light on the performance of the
connection endpoint migration under such circumstances. In order to understand
the following results, we need to clarify first the notions S-Clients operates with.

6.9.2 S-Clients

The S-Clients benchmark enables the clients to generate variable request rates de-
pending on some parameters. One of them is the number of the CPU cycles after
which a request is issued by the client. This value is computed by dividing the CPU
clock speed by a factor called from here on rate. The benchmark allows varying
this rate and we used that in our experiments to increase the load on the server.

Another parameter that helps create high request rates is the number of repeti-
tions of the attempts to get a request through (i.e., those requests which have been
served by the server). Practically, this parameter translates into the lower bound on
the number of successful transactions which have to occur before the benchmark
stops. In our experiments we used 30000 repetitions.

By connection throughput we understand the number of connections per sec-
ond accepted and served by the server. The request rate is the number of requests
arriving at the server (i.e., the numbers of SYNs/sec).

The request rate generated by S-Clients is dynamically adapted to the server
response. That is to say, for a given set of input parameters (CPU cycles, rate,

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 113

number of repetitions), S-Clients may generate different request rates for different
servers or different setups of the same server. This behavior can be easily seen
on Figure 6.4, where three different curves corresponding to different servers or to
the same server with different setups are drawn by using x-axis values that differ as
well. The explanation is that we used the x-axis to represent request rate values and,
as mentioned before, the request rates are generated by the S-Clients depending on
the server load and/or the network congestion. Alternatively, one can say that both
the request rate and the connection throughput are output values of the S-Clients
benchmark.

6.9.3 Connection throughput

The results concerning the three cases (Single server, Front-end and Back-end)
are reported in Figure 6.4. Single server accommodates better lower request rates
than the connection endpoint migration cases. For small request rates, the con-
nection endpoint migration overhead is significant and, due to the low overall load
of the server, the server performance is affected visibly. However, as soon as the
request rates grow “enough” (beyond 2000 reqs/sec), the performance of the con-
nection endpoint migration cases gets better than that of Single server. This result
is due to the fact that Single server runs to its saturation while the connection
endpoint migration cases are not there yet. So we shouldn’t actually talk about im-
provement, but rather about the capacity of the connection endpoint migration to
postpone the saturation point for higher request rates than those of Single server.
For Single server, the saturation occurs at about 3000 reqs/s and the client running
the benchmark exhausts the local resources and cannot create more connections as
there are too many open connections to which the server didn’t respond yet. Figure
6.5 shows a similar situation that will be discussed in the next subsection.

Back-end Front-end

of migrated connections 209776 140336
number of rejected migrations 100873 59955

Total # of connections 310649 200291
Successfully migrated ratio 67.52% 70.06 %

Table 6.1: The connection migration success rate

These results are good news for the request distribution, as the connection end-
point migration makes little sense for lightly loaded server nodes. Instead, it should
be used to postpone the server saturation point. Notice that this goal corresponds
exactly to that part of the curve where the connection endpoint migration pays off.

In Subsection 6.7 we discussed the influence of the kernel design on our choice
of using fake SYN packets to initiate a migration. In Table 6.1 we quantify the

114 VLAD OLARU

migration success of the two experiments using the connection endpoint migration.
It can be seen that the back-end routing has a somewhat smaller migration success
rate than the front-end routing (67.52% vs. 70.06%).

6.9.4 The evaluation of the migration rejection impact

A worst case scenario evaluation completes the image of the performance of the
connection endpoint migration. Figure 6.5 depicts the performance of the server
A, both stand-alone and while having all its migration requests rejected by the
server B. Notice that the “rejection” curve on the graph depicts the performance of
a single machine, namely that of the server initiating the migrations (the server A).

As it can be noticed, the rejection scenario is similar to the aforementioned
connection endpoint migration scenarios in the sense that it doesn’t hurt the perfor-
mance of overloaded servers. That is to say, overloaded servers can try to migrate
requests without being afraid that they will pay too much for their decision.

In order to get more insight on the causes of the overhead induced by the con-
stant rejection of migrations, we draw an additional curve on the graph in Figure
6.5, namely the one labeled “delayed”. Essentially, this curve describes the per-
formance of a stand-alone server using a policy that chooses to delay by one CPU
quantum the service of an incoming request. In terms of the policy implementa-
tion described in Section 6.8, we call the sleep on timeout kernel routine inside
tcp recvmsg with a timeout value of 1 CPU quantum (i.e., 1 jiffy in Linux).

350

400

450

500

550

600

650

700

750

800

850

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
o
n
n
ec

ti
o
n
 t

h
ro

u
g
h
p
u
t

(c
o
n
n
s/

s)

Request rate (reqs/s)

Evaluation of the migration rejection impact

"standalone"
"delayed"

"rejection"

Figure 6.5: Evaluation of the impact of rejecting connection migrations

We said in Section 6.7 that the process initiating the migration has to yield
the processor until the migration either completes or gets rejected. Therefore, the
“delayed” curve aims to depict the behavior of a migration policy excluding the
migration protocol itself. In fact, we are looking for an assessment of the network

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 115

costs of sending the migration SYN packet and having to handle the incoming mi-
gration rejection response. This assessment can be inferred by taking the difference
between the “delayed” and the “rejection” curves.

The main observations are that, for low request rates, the network overhead
of the migration is significant, while for high request rates, this overhead can be
hidden through more request processing. Such results are typical for overlapping
communication with computation, a technique that the kernels perform by default
to improve the CPU usage by means of multiprocessing.

6.10 The WebStone performance evaluation

In order to assess the performance of the policy migrating short-lived connections
(see Subsection 6.8.2), we used the WebStone [61] benchmark under the same as-
sumptions described in Section 5.3 with one difference: the data set was replicated
on the local disks of each of the two servers. We used the same experimental setup
like that of the simple policy (see Subsection 6.9.1).

simultaneous connections 100 150 200 250 300

Avg. response time RR (msec) 310.3 332.7 370.3 453.4 1113.9
Avg. response time CM (msec) 301.2 311.9 341.8 747.5 1615

Avg. throughput RR (Kbits/sec) 385.0 359.5 323.7 264.5 107.6
Avg. throughput CM (Kbits/sec) 397.2 384.0 351.1 159.9 74.2

Table 6.2: WebStone overall average response time and throughput figures for mi-
grating non-persistent HTTP requests for small, popular Web documents (class0
and class1) vs. Round Robin routing

On such a setup, the policy described in Subsection 6.8.2 functions as follows.
The client machine C runs the WebStone benchmark and generates requests that are
redirected by the front-end to one of the back-end servers (the machine A). This
server identifies the requests for the large and unpopular static Web documents
(class2 and class3 as seen in Section 5.2) and services them locally on the server
A, while routing the class0 and class1 requests to the second server (the machine
B). In turn, the server B serves the requests. With the exception that only part of
the requests are getting migrated, the operation is the same with that described in
Figure 6.3. We compare the performance of this server setup with that of a two-
node server handling requests routed in a Round Robin fashion by the front-end.

6.10.1 The evaluation of non-persistent HTTP connections

In a first round of experiments, our WebStone client issued plain HTTP 1.0 [13]
requests without using the “Keep alive” feature of the protocol (see [30]) in order

116 VLAD OLARU

to ensure that only one request is passed along any given TCP connection (i.e., we
used non-persistent connections to the server). The reason to do so was that we
wanted to be able to observe the caching behavior of our server using the afore-
mentioned policy. The overall results are presented in terms of average response
time and throughput in Table 6.2. A more refined analysis of the results for 100,
150 and 200 simultaneous connections is possible by having a look at Figures 6.6
and 6.7, which break down the overall figures into the corresponding class figures.
For 250 and 300 simultaneous connections, the server evolves towards its satura-
tion point both for Round Robin and our connection migration policy. However,
our policy does worse than Round Robin because of the connection endpoint mi-
gration overhead. Both cases are discussed at the end of this subsection.

Average response time class0

83,88

46,92

25,86

50,93

26,38

16,63

0

10

20

30

40

50

60

70

80

90

100 150 200

Number of simultaneous connections

A
v

e
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s

e
c

)

RR class0 CM class0

Average response time class1

116,47 137,72

173,17

141,02

106,51 115,08

0

20

40

60

80

100

120

140

160

180

200

100 150 200

Number of simultaneous connections

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

RR class1 CM class1

Average response time class2

1024,63

1046,19

1085,71
1076,95

1030,8

1017,18

980

1000

1020

1040

1060

1080

1100

100 150 200

Number of simultaneous connections

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

RR class2 CM class2

Average response time class3

10099,39

10266,74

10065,899992,67

10274,17

10000,92

9850

9900

9950

10000

10050

10100

10150

10200

10250

10300

100 150 200

Number of simultaneous connections

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

RR class3 CM class3

Figure 6.6: Average class response times for WebStone non-persistent HTTP re-
quests

A look at Figures 6.6 and 6.7 shows that reassigning the service of class0 and
class1 documents through connection endpoint migration improves the average
response time and throughput for these individual classes. Indeed, one notices
that, for class0, for instance, the average response time of the connection endpoint
migration policy experiences reductions of 35.69%, 43.77% and 39.28%, respec-
tively, of the average response time for the Round Robin policy. A somewhat less

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 117

severe degradation for Round Robin is exhibited by the average response times for
class1 (8.55%, 16.43% and 18.56%, respectively).

Throughput class0

71,557

127,904

232,096

360,899

227,398

117,744

0

50

100

150

200

250

300

350

400

100 150 200

Number of simultaneous connections

T
h

ro
u

g
h

p
u

t
(K

b
it

s
/s

e
c

)

RR class0 CM class0

Throughput class1

243,311

305,599

360,963

394,736

298,864

366,035

0

50

100

150

200

250

300

350

400

450

100 150 200

Number of simultaneous connections

T
h

ro
u

g
h

p
u

t
(K

b
it

s
/s

e
c

)

RR class1 CM class1

Throughput class2

371,634

385,645

395,212

374,795

391,806

398,223

355

360

365

370

375

380

385

390

395

400

405

100 150 200

Number of simultaneous connections

T
h

ro
u

g
h

p
u

t
(K

b
it

s
/s

e
c

)

RR class2 CM class2

Throughput class3

395,83

392,955

398,265

392,797

397,541

399,195

388

390

392

394

396

398

400

100 150 200

Number of simultaneous connections

T
h

ro
u

g
h

p
u

t
(K

b
it

s
/s

e
c

)

RR class3 CM class3

Figure 6.7: Average class throughput for WebStone non-persistent HTTP requests

All these benefits come practically at no extra servicing cost for the large and
unpopular request classes (class2 and class3). In fact, the class2 figures show that
the connection endpoint migration policy slightly outperforms Round Robin. For
class3, one can notice an insignificant degradation of the average response time
figures. However, the average response time degradation doesn’t go beyond 0.03%
of the corresponding connection endpoint migration figure.

These results confirm cluster-wide those obtained by Crovella et al. [22] when
using a Shortest Connection First connection scheduling policy in stand-alone Web
servers. In our case, the scheduling is done by migrating the requests for the small
and popular files to the second server. The practically unaffected performance for
the classes of large and unpopular documents has several reasons. First, as ex-
plained in the previous chapter (see Subsection 5.1.1), the Zipf-like distribution is
not an exponential one and thus makes the requests for the large documents seldom
enough. As a result of that, such requests do not to have an impact on the servicing
time when migrating the requests for the other classes. Second, the long servic-
ing time for large and unpopular documents makes it easier to hide the connection

118 VLAD OLARU

endpoint migration overhead of the requests for small files through an increased
overlapping between computation and I/O (disk and network altogether). And nat-
urally, the high popularity of the small documents as well as their reduced size
make the caching at the migration site very effective for these classes of requests.

Overall, the individual improvements for the classes of small and popular re-
quests are somewhat smoothened out, as reflected in the average figures shown in
Table 6.2. Indeed, the overall improvements in terms of the average response time,
for instance, amount, to 2.93%, 6.25% and 7.69%, respectively.

Myrinet

Server C

Front−end

Disk Disk

Disk

Server A Server B

class0, class1
request migration

class0, class1
request migration

Request
Class 0,1

Ethernet

Class 2,3
response

Class 2,3
response

Ethernet

Request

response

WebStone

Client C

Figure 6.8: Connection migration policy with three servers, two of which receive
requests on a Round Robin basis and decide in turn to migrate those addressed to
class0 and class1 documents to a third back-end server

simultaneous connections 250 300 350

Avg. response time RR (msec) 416.1 907.0 1150.6
Avg. response time CM (msec) 410.3 513.2 820.4

Avg. throughput RR (Kbits/sec) 288.1 132.2 104.0
Avg. throughput CM (Kbits/sec) 291.9 233.3 145.9

Table 6.3: WebStone overall average response time and throughput figures for three
servers when migrating non-persistent HTTP requests for small, popular Web doc-
uments (class0 and class1) vs. Round Robin routing

As soon as the WebStone load increases beyond 250 simultaneous connections,
the performance of our connection endpoint migration policy worsens, as it can be
inferred from the last two columns of Table 6.2 which depict the overall perfor-
mance of the two policies for 250 and 300 simultaneous connections, respectively.
In order to pinpoint the problem, we decided to investigate whether the server A

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 119

(the one initiating the migrations) doesn’t become a bottleneck of the system as
the load increases. Since our suspicion was that the cause of the performance loss
was the overhead imposed by the connection endpoint migration, we decided to
scale up the server setup to three back-end servers and to distribute the connection
endpoint migration task to two of the back-end machines.

Average response time class0

130,2

627,5

862,28

122,49

224,2

544,16

0

100

200

300

400

500

600

700

800

900

1000

250 300 350

Number of simultaneous connections

A
v

e
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s

e
c

)

RR class0 CM class0

Average response time class1

948,24

711,5

217,56

624,61

315,93

211,41

0

100

200

300

400

500

600

700

800

900

1000

250 300 350

Number of simultaneous connections

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

RR class1 CM class1

Average response time class2

1890,41

1599,87

1132,26

1501,64

1235,13

1136,27

0

200

400

600

800

1000

1200

1400

1600

1800

2000

250 300 350

Number of simultaneous connections

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

RR class2 CM class2

Average response time class3

11071,15

10763,67

10377,02

10798,15

10447,3510286,93

9800

10000

10200

10400

10600

10800

11000

11200

250 300 350

Number of simultaneous connections

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

RR class3 CM class3

Figure 6.9: Average class response times for WebStone non-persistent HTTP re-
quests in a three-node cluster-based server

6.10.2 The evaluation of non-persistent HTTP connections for a three-
node cluster-based server

In order to answer the question, we use a slightly different server setup in which
the front-end routes requests according to a Round Robin policy to two of the back-
end servers, which, in turn, migrate class0 and class1 requests to a third back-end
server. A visual description of the setup is provided by Figure 6.8. By distributing
the migration task between two back-end servers, we attempt to balance the migra-
tion overhead between the two servers and to see whether this solution improves
the cluster-based server performance. All the experimental results concerning this
policy are then compared to those of a policy dispatching the requests to three
servers on a Round Robin basis. The overall comparison of the two policies can be
seen in Table 6.3, while Figures 6.9 and 6.10 show the per-class performance.

120 VLAD OLARU

Figures 6.9 and 6.10 show indeed that the problem of the previous connection
endpoint migration policy was that, for heavy workloads, the server migrating the
connection endpoints couldn’t cope with the connection endpoint migration over-
head. By distributing this overhead almost equally over two servers, one gets a
policy that performs significantly better than Round Robin as the load increases.

Throughput class0

9,559

46,058

6,955

48,959

11,022

26,746

0

10

20

30

40

50

60

250 300 350

Number of simultaneous connections

T
h

ro
u

g
h

p
u

t
(K

b
it

s
/s

e
c

)

RR class0 CM class0

Throughput class1

59,156
44,358

193,697 199,33

67,447

133,378

0

50

100

150

200

250

250 300 350

Number of simultaneous connections
T

h
ro

u
g

h
p

u
t

(K
b

it
s

/s
e

c
)

RR class1 CM class1

Throughput class2

213,594252,42

356,417

268,904

326,569354,842

0

50

100

150

200

250

300

350

400

250 300 350

Number of simultaneous connections

T
h

ro
u

g
h

p
u

t
(K

b
it

s
/s

e
c

)

RR class2 CM class2

Throughput class3

389,358

373,602

363,91

391,299

386,233

372,443

350

355

360

365

370

375

380

385

390

395

250 300 350

Number of simultaneous connections

T
h

ro
u

g
h

p
u

t
(K

b
it

s
/s

e
c

)

RR class3 CM class3

Figure 6.10: Average class throughput for WebStone non-persistent HTTP requests
in a three-node cluster-based server

The differences are not significant for 250 simultaneous connections; for this
load, the connection endpoint migration policy does slightly better than Round
Robin. However, as soon as the load increases to 300 and 350 simultaneous
connections, the connection endpoint migration policy outperforms clearly Round
Robin and copes better with the performance degradation. A look at Figure 6.9
shows that, for 300 connections, the class0 average response time of the connec-
tion endpoint migration policy is 2.79 times smaller than the corresponding Round
Robin time, while for class1 the ratio is “only” 2.25. Even the class2 requests bene-
fit significantly as the average response time for the connection endpoint migration
policy is 22.79% smaller than that of Round Robin (see Figure 6.9). For class3, the
gain is insignificant, 2.93% (notice that the scale of the class3 graph is truncated at
the bottom). Similar conclusions hold for the throughput figures (see Figure 6.10).

A look at Table 6.3 gives us the overall improvement, both in terms of average

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 121

response time and throughput. The average response time of the connection end-
point migration policy is 1.76 times smaller than that of Round Robin, while its
throughput is 1.76 times larger.

Similar conclusions hold for the 350 simultaneous connections case as well, al-
though both servers degrade rapidly towards their saturation points. Still, in terms
of the overall performance, the average response time of the server operating un-
der the connection endpoint migration policy outperforms by a factor of 1.40 the
Round Robin driven server.

6.10.3 The evaluation of persistent HTTP connections

All the experiments described in the previous two subsections considered non-
persistent HTTP connections (i.e., one HTTP request per established connection)
to the cluster-based server. Under these circumstances, it is easy to reason about the
caching effects of the two previously presented request distribution policies involv-
ing connection endpoint migration. However, a fair question asks to assess also the
TCP connection endpoint migration’s performance for persistent connections.

Unfortunately, the answer is hardly foreseeable for simple policies like those
used before. The main reason lies in the fact that, as soon as the client passes many
HTTP requests along a given TCP connection to the server, it is almost impossi-
ble to guarantee any caching effectiveness for the requested documents. Indeed,
migrating requests addressed to a given class of documents to a given server node
doesn’t ensure a successful caching, as the client will continue to send along the
same connection requests that potentially (and most probably) target other classes
of documents as well. As a result, the cache of the node where the connection
endpoint migrates becomes polluted and less effective.

Overall average response time

0

200

400

600

800

1000

1200

Number of simultaneous connections

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

RR CM

RR 415,2 517,8 657,2 825,8 978,5

CM 404,9 511 630,6 772,6 995,3

300 400 500 600 700

Overall throughput

0

50

100

150

200

250

300

350

Number of simultaneous connections

T
h

ro
u

g
h

p
u

t
(k

b
it

s
/s

e
c

)

RR CM

RR 287,6 230,4 180,3 143 120,3

CM 296,2 234,7 188,7 153,2 117,9

300 400 500 600 700

Figure 6.11: Overall average response time and throughput figures for WebStone
persistent HTTP requests when migrating class2 requests

A simple solution of the problem would be to migrate the connection endpoint
every time a new request comes along the persistent connection to a server node

122 VLAD OLARU

that already caches the requested document(s). However, this solution barely fits
our small experimental setup. With only two (or three) nodes, using such a policy
results in thrashing, as the nodes spend most of their running time handing each
other connection endpoints. Therefore, we stuck with the simple policies that we
used in the previous two subsections and we detected empirically which classes
of documents benefit at most from caching, as a result of the connection endpoint
migration in the case of persistent connections. We consider this approach suffi-
cient, as our goal in this subsection is only to prove that the connection endpoint
migration performs well for persistent HTTP connections too.

Average response time class0

0

100

200

300

400

500

Number of simultaneous connections

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

RR class0 CM class0

RR class0 125,46 204,36 240,27 332,62 443,93

CM class0 103,53 172,55 226,4 292,21 449,56

300 400 500 600 700

Average response time class1

0

100

200

300

400

500

600

Number of simultaneous connections

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

RR class1 CM class1

RR class1 212,1 294,6 314,98 364,62 465,01

CM class1 191,28 264,56 309,81 350,47 477,95

300 400 500 600 700

Average response time class2

0

500

1000

1500

2000

2500

3000

Number of simultaneous connections

A
v
e
rg

a
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

RR class2 CM class2

RR class2 1153,97 1304,69 1686,11 2077,09 2405,87

CM class2 1206,89 1462,84 1803,26 2272,23 2715,88

300 400 500 600 700

Average response time class3

0

5000

10000

15000

20000

25000

30000

Number of simultaneous connections

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

RR class3 CM class3

RR class3 10377,31 11748,92 18582,53 24585,83 26754,64

CM class3 10440,8 11436,9 14721,35 18384,81 22993,39

300 400 500 600 700

Figure 6.12: Average class response times for WebStone persistent HTTP requests

In the rest of this subsection we present the results of using the policy de-
scribed in Figure 6.3 when migrating requests for the static Web documents of
class2 (large and unpopular documents, 14% of the total WebStone requests). As
a short reminder, that policy operates on a two-node cluster-based server by mi-
grating connection endpoints from one server node to the other one. As previously
explained, choosing to migrate requests for class2 is simply based on the empiri-
cal results that are presented in Figure 6.11. Figures 6.12 and 6.13 present again
class-based breakdowns that help understand easier the caching behavior of the
server nodes for particular classes of the requested documents, both in terms of the

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 123

average response time and the achieved throughput.

First of all, one important aspect should be noticed by looking at any of these
graphs. The use of persistent HTTP connections improves significantly the opera-
tion of the server (regardless whether it uses Round Robin or connection endpoint
migration policies). Whereas in the case of the non-persistent HTTP connections
our server saturates at about 300 - 350 simultaneous connections, the use of the
persistent HTTP connections allows the same server postponing its saturation point
beyond 700 simultaneous connections (up to 1000 as we will see next, in the case of
the three-node server setup). The performance difference in the case of the persis-
tent HTTP connections can be accounted to amortizing the cost of the connection
setup and termination over multiple requests.

Throughput class0

0

10

20

30

40

50

60

70

Number of simultaneous connections

T
h

ro
u

g
h

p
u

t
(k

b
it

s
/s

e
c

)

RR class0 CM class0

RR class0 49,255 30,24 25,69 18,601 13,938

CM class0 59,674 35,899 27,277 21,121 13,73

300 400 500 600 700

Throughput class1

0

50

100

150

200

250

Number of simultaneous connections

T
h

ro
u

g
h

p
u

t
(k

b
it

s
/s

e
c

)

RR class1 CM class1

RR class1 199,756 143,751 134,404 116,072 91,155

CM class1 221,187 160,029 136,58 120,765 88,551

300 400 500 600 700

Throughput class2

0

50

100

150

200

250

300

350

400

Number of simultaneous connections

T
h

ro
u

g
h

p
u

t
(k

b
it

s
/s

e
c

)

RR class2 CM class2

RR class2 349,525 309,624 239,896 194,271 167,786

CM class2 334,792 275,375 223,731 177,403 148,414

300 400 500 600 700

Throughput class3

0
50

100
150
200
250
300
350
400
450

Number of simultaneous connections

T
h

ro
u

g
h

p
u

t
(k

b
it

s
/s

e
c

)

RR class3 CM class3

RR class3 381,981 338,957 214,872 162,228 149,138

CM class3 384,759 353,877 272,108 218,007 171,971

300 400 500 600 700

Figure 6.13: Average class throughput for WebStone persistent HTTP requests
By looking at Figure 6.11, one can infer that migrating requests for class2 bal-

ances the two-node cluster as well as a Round Robin policy does. Indeed, the over-
all performance figures of the connection endpoint migration policy are slightly
better than those of Round Robin, except for the heavy load case (700 simulta-
neous connections) when the performance is slightly worse. An in-depth analysis
of this result is possible by having a look at Figures 6.12 and 6.13. For instance,
the graphs corresponding to class2 show the slight performance degradation due

124 VLAD OLARU

to the connection endpoint migration overhead. The highest degradation concerns
the 700 simultaneous connections case. In terms of the average response time, for
instance, the penalty is an extra 12.88% of the Round Robin average response time
for class2. In fact, for 700 simultaneous connections, Round Robin outperforms
the connection endpoint migration policy for class0 and class1 documents as well.

However, in general, the performance figures for the class0, class1 and class3
requests are better for the connection endpoint migration policy. For class0 and
class1, the gain is significant for the light loads (300 and 400 simultaneous con-
nections). Again, reasoning in terms of the average response time, the best gain
for class0 is 17.47% of the Round Robin time (for 300 simultaneous connections),
while the similar figure for class1 is 10.19% (for 400 simultaneous connections).

The class3 figures of the connection endpoint migration policy are particularly
good, as for all the loads they are better than those of Round Robin. And the
interesting fact is that they are better as the load on the server increases. For the
600 simultaneous connections load, for instance, the servicing time of the class3
documents for the connection endpoint migration policy is with over 6 seconds
faster (6201.02 milliseconds, in fact) than that of Round Robin, representing a
save of 25.22% of the Round Robin time. Even for 700 simultaneous connections,
the connection endpoint migration policy manages to save 3761.25 milliseconds,
that is, 14.05% of the Round Robin time.

Overall average response time

0

200

400

600

800

1000

1200

1400

Number of simultaneous connections

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

RR CM

RR 421,4 519,8 634,7 753 862,9 985,7 1236,4 1276,3

CM 421,4 519,1 631,4 749,1 872,1 1000,1 1085,6 1185,5

300 400 500 600 700 800 900 1000

Overall throughput

0

50

100

150

200

250

300

Number of simultaneous connections

T
h

ro
u

g
h

p
u

t
(k

b
it

s
/s

e
c

)

RR CM

RR 284,7 230,3 187,9 158,2 136,7 118,7 94 90,7

CM 284,8 230,6 189 158,4 135,9 118,4 107,5 97,3

300 400 500 600 700 800 900 1000

Figure 6.14: Overall average response time and throughput figures for WebStone
persistent HTTP requests in a three-node cluster-based server

6.10.4 The evaluation of persistent HTTP connections for a three-
node cluster-based server

In this subsection we present the results of using the connection endpoint migration
for persistent HTTP requests in our second policy depicted in Figure 6.8. As a
reminder, that policy operates on a three-node cluster-based server in the following
way. The front-end router redirects in a Round Robin manner persistent HTTP

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 125

requests to two of the server nodes which, in turn, decide to migrate some of their
connection endpoints to the third server. Unlike Subsection 6.10.2, the policy does
not migrate class0 and class1 but class3 requests. As in the previous subsection,
class3 has been identified experimentally to be the best-performing case.

The overall results are shown in Figure 6.14, while the detailed, per-class per-
formance is depicted in Figures 6.15 and 6.16, respectively. The graphs in Figure
6.14 tell that the connection endpoint migration policy migrating persistent HTTP
requests addressed to class3 performs as well as Round Robin does. For the heavy
loads, 900 and 1000 simultaneous connections, respectively, it even outperforms
the policy aiming at a perfect balance.

Average response time class0

0

100

200

300

400

500

600

700

800

Number of simultaneous connections

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

RR class0 CM class0

RR class0 124,5 217,95 296,31 354,71 400,73 443,8 678,16 673,52

CM class0 131,87 215,98 302,52 379,71 464,68 539,32 573,86 647,61

300 400 500 600 700 800 900 1000

Average response times class1

0

100

200

300

400

500

600

700

800

Number of simultaneous connections

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

RR class1 CM class1

RR class1 219,33 308,12 393,24 470,6 503,14 513,67 696,97 712,15

CM class1 218,21 308,75 401,66 494,68 582,06 657,04 688,88 744,64

300 400 500 600 700 800 900 1000

Average response time class2

0

500

1000

1500

2000

2500

3000

Number of simultaneous connections

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

RR class2 CM class2

RR class2 1170,79 1284,99 1478,55 1733,13 1984,38 2351,27 2788,48 2848,62

CM class2 1153,46 1273,26 1439,46 1610,85 1768,33 1947,23 2099,66 2357,39

300 400 500 600 700 800 900 1000

Average response time class3

0

5000

10000

15000

20000

25000

30000

35000

Number of simultaneous connections

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

RR class3 CM class3

RR class3 10431,2 10987,7 12883,6 15365,9 20160,5 25840,4 28213,5 31184,4

CM class3 10459,7 11131 12467,9 14613,7 17533,2 21982,6 26351,6 28366,5

300 400 500 600 700 800 900 1000

Figure 6.15: Average class response times for WebStone persistent HTTP requests
in a three-node cluster-based server

A look at the graphs depicting the performance of the individual classes of
requests explains this result. For all the loads except for the 900 and 1000 si-
multaneous connections cases, the connection migration policy outperforms the
Round Robin one for class2 and class3, while exhibiting poorer performance for
class0 and class1. For the last two loads, the situation changes. All the class re-
sults are better for the connection endpoint migration policy (except for the case of
the class1 and 1000 connections, but even in that case the difference is minimal).

126 VLAD OLARU

Moreover, the figures for class2 and class3, the large and unpopular documents
whose servicing time accounts for most of the total servicing time, show clear im-
provements over those of the Round Robin policy. For instance, the connection
endpoint migration policy operating on 900 simultaneous connections improves
the average response time of the class2 requests by 688.82 milliseconds (24.70%
of the corresponding Round Robin time) and that of class3 by 1861.99 milliseconds
(6.59% of the corresponding Round Robin time). For 1000 simultaneous connec-
tions, the class2 average response time is with 491.23 milliseconds (17.24% of
the corresponding Round Robin time) smaller than that of Round Robin, while
for class3 the difference is of 2817.89 milliseconds (9.06% of the corresponding
Round Robin time).

Throughput class0

0

10

20

30

40

50

60

Number of simultaneous connections

T
h

ro
u

g
h

p
u

t
(k

b
it

s
/s

e
c

)

RR class0 CM class0

RR class0 49,672 28,329 20,858 17,45 15,437 13,927 9,112 9,173

CM class0 46,878 28,6 20,442 16,298 13,306 11,466 10,781 9,553

300 400 500 600 700 800 900 1000

Throughput class1

0

50

100

150

200

250

Number of simultaneous connections

T
h

ro
u

g
h

p
u

t
(k

b
it

s
/s

e
c

)

RR class1 CM class1

RR class1 193,14 137,26 107,47 89,986 84,13 82,465 60,845 59,354

CM class1 194 136,94 105,42 85,484 72,791 64,451 61,37 56,882

300 400 500 600 700 800 900 1000

Throughput class2

0

50

100

150

200

250

300

350

400

Number of simultaneous connections

T
h

ro
u

g
h

p
u

t
(k

b
it

s
/s

e
c

)

RR class2 CM class2

RR class2 346,38 314,14 272,94 232,58 202,67 171,56 144,44 141,38

CM class2 350,81 316,89 280,97 250,06 227,66 207,28 191,85 171,4

300 400 500 600 700 800 900 1000

Throughput class3

0
50

100
150
200
250
300
350
400
450

Number of simultaneous connections

T
h

ro
u

g
h

p
u

t
(k

b
it

s
/s

e
c

)

RR class3 CM class3

RR class3 382,19 363,92 309,89 260,85 198,34 152,38 140,45 126,71

CM class3 382,52 360,12 320,1 272,05 227,52 183,86 150,2 138,56

300 400 500 600 700 800 900 1000

Figure 6.16: Average class throughput for WebStone persistent HTTP requests in
a three-node cluster-based server

As in the case of the results presented in the previous subsection, the actual
performance of the simple policies like those migrating entire classes of requests
in order to improve the locality of reference for the requested documents of those
classes is of little relevance for the persistent HTTP connections. Since many re-
quests targeting various document classes flow along the same connection, assign-
ing statically the migration destination based on the document class is hardly pay-

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 127

ing off in terms of the caching effectiveness. However, this section and the previous
one point out the effectiveness of using the connection endpoint migration in back-
end level request distribution schemes for persistent HTTP connections, provided
that optimal caching offsets the incurred connection endpoint migration overhead.
For our simple policies we had to find out empirically the optimal case, but it is
perfectly possible to develop more sophisticated policies that strive to achieve an
optimal performance by taking into account the caching information available at
the back-end level. This type of information can be either explicitly disseminated
throughout the cluster by the back-end nodes or implicitly shared among the back-
end nodes by means of cluster-wide caching systems like that presented in the
previous chapters.

6.11 Summary

We presented in this chapter a mechanism for migrating TCP connection endpoints
between two server nodes in a cluster-based server. The main goal of our work was
to assess whether the TCP connection endpoint migration can be an useful mecha-
nism in the request distribution for cluster-based servers, as the previous research
on client-server connection migration protocols showed that they can perform well
as a fine-grain fail-over mechanism for fault-tolerant server solutions or as a sup-
port for host mobility and migration of server sessions.

The results of our experiments are encouraging for our endeavors. The con-
nection endpoint migration shows throughput figures that adapt well especially for
high request rates, which is important as the connection endpoint migration is en-
visioned to play a load balancing role by offloading highly loaded nodes from the
request service. Even the extreme case of the constant migration rejection doesn’t
add a significant overhead to a system experiencing high request rates, which
means that the connection endpoint migration can be trusted for highly loaded
nodes as the penalty on the initiator won’t be excessive.

We show also that the connection endpoint migration helps build simple but
effective locality-aware request distribution policies. For instance, a simple policy
that migrates all the non-persistent HTTP requests for small and popular static
Web documents from one back-end server to another performs better than a Round
Robin routing policy involving the two servers, both overall and for the considered
classes of requests. The average response time for small requests gets improved by
as much as 43.77%, practically at no extra costs for the “heavy-tail” service.

Moreover, the experiments with a three-node server distributing the migration
task between two servers in a Round Robin manner, while, in turn, the two servers
migrate requests for the small and popular static Web documents to a third ma-
chine, show that the connection endpoint migration policies can outperform simple

128 VLAD OLARU

policies like Round Robin by a factor as high as 1.76. The individual figures for
the migrated classes of requests (class0 and class1 in WebStone terminology) show
improvement factors of 2.79 and 2.25, respectively, while improving the individual
service figures of the other classes of documents at the same time!

The aforementioned results are possible because the non-persistent HTTP con-
nections enable our simple policies to control the caching effectiveness of the
server nodes. However, we show that the TCP connection endpoint migration
can equally be an effective routing mechanism for persistent HTTP connections
in request distribution policies operating at the back-end level. Nevertheless, in
the case of the persistent HTTP connections, the performance of such policies is
highly sensitive to the caching effectiveness of the requested documents.

The TCP connection endpoint migration involves only two cluster nodes at a
time and therefore doesn’t raise scalability questions. However, the use of the TCP
connection endpoint migration in request distribution policies may raise such con-
cerns. In fact, our connection endpoint migration policy operating on a two-node
server (see Subsection 6.10.1) doesn’t cope well with high loads, and only by dis-
tributing the overhead of the migration between two server nodes (see the policy
described in Subsection 6.10.2) it was possible to obtain high performance results.
So even for small-sized clusters, the inappropriate use of the TCP connection end-
point migration may have a negative impact on the performance. In general, the
impact of the TCP connection endpoint migration on the scalability of the request
distribution policies using it turns out to be an interesting and sensitive topic of
further research.

Chapter 7

Speculative TCP connection
admission in cluster-based Web
servers

As seen in the previous two chapters, our SSI server relies on request distribution
solutions taken at the back-end level. The main reason behind this design deci-
sion stems from the fact that the back-ends cooperate in order to serve requests
(through cooperative caching, for instance) and thus share naturally various types
of information about the other nodes in the cluster. Such an example is the way
HSCC shares the load information among the cluster nodes in order to improve the
eviction handling. Our policy-oriented, back-end level request distribution solution
may thus profit easily from this kind of information that is locally available on each
back-end node.

Having taken such a design decision, one has to look for appropriate mecha-
nisms to support the back-end level request distribution. So far, we have seen in
Chapters 5 and 6 how cooperative caching and the TCP connection endpoint mi-
gration function in our SSI cluster-based Web server. More complicated policies
than the one presented in Subsection 6.8.2, for instance, would try to combine the
cooperative caching with the connection endpoint migration at the back-end level
and, by doing that, would need a particular back-end level mechanism for the load
balancing. The main problem when developing such a mechanism consists in the
ability to decouple the server functionality of the back-end cluster node from that
of the load balancing. More precisely, doing load balancing at this late stage has
to cope with the fact that the incoming requests have reached their final destination
and expect to find here service.

In this chapter, we investigate the speculative TCP connection admission, a

129

130 VLAD OLARU

back-end level load balancing mechanism either targeting fully distributed cluster-
based servers (i.e., without front-end) or acting as a companion to the front-end
request dispatching. The speculative admission builds upon the TCP connection
endpoint migration by speculatively accepting incoming requests on overloaded
nodes only to migrate them further to less-loaded servers in the cluster. Sub-
optimal routing decisions taken outside the cluster (either at the front-end(s) or
by external entities at earlier stages in multi-tier server architectures) may direct a
request to an overloaded server and that will cause the rejection of the request. Of
course, if all the other nodes in the cluster are also overloaded, there is little room
to improve the situation. However, as soon as there are less-loaded nodes, the spec-
ulative admission offloads the server by migrating the connections to these nodes
and thus offsets the imbalance. From this perspective, the speculative admission
acts as a load balancing mechanism or, for the servers using front-ends, leverages
the front-end load balancing. Acting at the back-end level, the speculative admis-
sion has the advantage of being fully distributed. The speculative admission is a
mechanism and not a policy. Identifying lightly-loaded nodes in the cluster and
developing methods to disseminate this information throughout the cluster are no
topics of this chapter.

Parts of the material presented in this chapter were published in [51].

7.1 Speculative connection admission

In the cluster-based servers that use front-ends, the requests are routed to the back-
ends either uninformed or based on some application-level protocol analysis. In
the uninformed case, as we have seen before, the request is routed to a server
according to a hash function aiming to equalize the loads of the back-ends. By
inspecting the content of the request, the informed routing provides a better amor-
tized performance by taking into account additional information such as locality of
the requested data. In both cases, however, the sub-optimal routing decisions may
result in severe load imbalances among the back-ends. One legitimate question is
whether we can do better once such a decision caused a newly incoming request to
be sent to an overloaded server.

The fully-distributed cluster servers do not use front-ends to assign connec-
tions to the back-end machines. They usually rely on an external entity to perform
that assignment (Round Robin DNS [16], for instance) or perform the dispatch-
ing themselves. In the first case, the external entities performing the routing are
not aware of the distributed server status and thus may inflict severe load imbal-
ances. One needs a mechanism at the back-end level to offset such imbalances.
The servers performing the dispatching themselves are most of the time “virtual
servers”, that is, distributed servers using a common IP address which rely on

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 131

MAC-level routing. However, this aspect makes them hardly amenable to content-
aware routing. One needs a back-end level mechanism to correct the routing deci-
sions that are sub-optimal from the data locality point of view.

The speculative connection admission tries to answer these issues. The idea
is to accept additional incoming connection requests even if the server is highly
loaded, provided that there are less-loaded nodes in the cluster willing to take over
the servicing of these requests. Once the connection is established, the overloaded
server hands over the endpoint it manages to a lighter-loaded node. This task is
accomplished through TCP connection endpoint migration.

From a technical perspective, this idea is accomplished in the following way.
When using the standard socket library, a server declares its interest in servicing
requests in two steps (see also Section 6.2). First, it invokes a listen system call
that establishes a queue in the kernel for the incoming connection requests. Then,
through an accept system call, the server picks up established connections from that
queue and passes on the corresponding connection handles to that part of the server
program servicing the requests. The speculative connection admission enlarges the
queue storing the incoming connection requests by a given increment. The “extra-
accepted” connections are marked migratory. A request distribution policy will
migrate these connections according to either cluster-wide load hints or the locality
of the referenced data.

In general, the TCP connection endpoint migration can be regarded as the driv-
ing engine of the distributed request dispatching at the back-end level. Postponing
the routing decisions until the requests hit the back-ends is an important issue for
the solutions that strive to enhance the cooperation among the back-ends. Such ap-
proaches are suitable when the back-ends share cluster-wide information suscep-
tible of improving the request distribution decisions: load information (expressed
by means of the CPU utilization of the cluster nodes, the number of the established
connections, the amount of the I/O activity or combinations of all these) for the
load balancing policies or globally cached data for the content-aware routing. In
this regard, the speculative connection admission extends further the capabilities
offered by the connection endpoint migration and acts as a support for the back-
end level policies that leverage the routing decisions performed outside the cluster.
In the next subsections, we describe the implementation of the speculative connec-
tion admission in the kernel and we show how to use it together with policies in
our request distribution system.

7.1.1 Operating system internals

To understand the speculative connection admission, we need to remember how
the requests are handled from the kernel perspective. In Subsection 6.2.3, we saw

132 VLAD OLARU

that, when a client sends a request to a server, its TCP engine sends a SYN packet
to the remote peer. The server receives and processes the packet at interrupt time
using the event-driven model described in Subsection 6.2.2. Namely, it responds
on the spot with the appropriate SYN ACK and adds an open-request structure to
the SYN Q queue associated with the listening socket. As soon as the client sends
back the ACK to the SYN ACK, the corresponding open-request structure at the
server is marked “ready” and a freshly created socket is associated with it. Later
on, when the user-invoked accept runs in kernel context over the listen queue, the
newly established socket is passed on to the server application and the open-request
structure is released.

Although a single queue (a linked list of open-request structures), this list is
logically managed as if there would be two queues: a SYN RCVD queue (stor-
ing requests for unacknowledged received SYNs) and an “accept” queue (storing
requests associated with already established connections). The accept system call
considers actually only the “accept” part of the queue.

7.1.2 Speculative connection admission policies

The speculative connection admission enlarges the “accept” part of the listening
queue by a given increment. Thus, it establishes a percentage of the incoming
accepted connections that will have to migrate. In a logical sense, we can speak
of an additional “admission” queue. Practically, this queue is part of the enlarged
“accept” queue. The extra-accepted connections will be migrated by a speculative
connection admission kernel policy which operates as follows.

When the client ACK in the three-way hand-shake connection setup protocol
arrives at the server, the TCP handler creates a new socket and tags it “connected”.
At this point, the speculative admission policy marks the socket migratory. The
number of migratory connections varies dynamically and depends on the ratio be-
tween the accept queue increment (the size of the “admission” queue) and the size
of the whole accept queue.

As with the policies described in the previous chapter (see Section 6.8), the
speculative admission policy operates within the tcp recvmsg routine of the kernel.
If the corresponding socket was previously marked migratory, the local request
handling is avoided and a connection endpoint migration takes place. One legit-
imate question asks though why the speculative policy should wait for the server
application to try to process the request before migrating the connection endpoint.
The answer is that meaningful decisions might be possible only by inspecting the
request. For instance, a content-aware policy (like that in Subsection 6.8.2) might
find out the file to be accessed and, depending on the actual location of the cached
copies of the requested document, a performant decision may be taken.

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 133

However, all this comes at a price. Modern server programs use multiple
threads (sometimes even processes, like in Linux’s case) to serve the requests.
Since the speculative policy operates only when such a server thread attempts to
process a request from the socket receive queue, it means that, although the request
will not be handled locally, a new servicing thread is spawned and scheduled for
execution. Even though many server programs use pre-spawned threads in order
to avoid the overhead of the thread creation, there remains the price of an addi-
tional context switch. For an exact image of how much this cost may be, the reader
is referred again to the “delayed” curve in Figure 6.5, Section 6.9. The right an-
swer to this problem is to use the speculative connection admission only for high
request rates, when the impact of the additional context switch isn’t that expen-
sive. Luckily, that operation regime is exactly the one addressed by the speculative
connection admission which is supposed to work on overloaded nodes in order to
balance the loads of the cluster nodes. Using the speculative connection admission
for lightly-loaded nodes makes little sense.

One other important issue regards the migration rate. Assuming that servicing
a request takes more time than speculatively admitting and migrating it, it means
that the node speculatively admitting connections may soon overflow the migration
target. This issue is regulated by considering the admission queue as a window that
shrinks and grows depending on the capacity of the migration target to accept mi-
grated requests. As soon as the migration target rejects a connection migration, the
node migrating speculatively accepted connections closes its window (i.e., makes
the admission queue length equal to zero) and waits for a notification from the mi-
gration target before it starts again to accept connections speculatively. The node
receiving the migrated requests sends back notifications to the migration initiator
as soon as it finished servicing the requests. If these notifications get lost and the
node using the speculative admission has a null window, then the node will grow
its window back to the size of the admission queue after a certain number of local
requests have been serviced (typically, this value is also set to the size of the ad-
mission queue, as this size approximates the number of the migrated connections
that the migration target might have processed in the meantime. Naturally, this
assumption holds for homogeneous clusters only).

7.2 Performance evaluation

We used again S-Clients [10] to evaluate the performance of the speculative con-
nection admission. We reported the performance of our system in terms of the
number of serviced connections per second (the connection throughput) relative to
the achieved number of requests per second (the request rate). All the experiments
used a front-end based server. The case of the fully distributed server can be sim-

134 VLAD OLARU

ply derived from this one by considering the front-end to be the external entity that
dispatches the requests.

Our experiments consist in launching two S-Clients processes on a client ma-
chine called C. The requests generated by the benchmark pass through a front-end
and are directed to a server machine called A. At this point, we explored two sce-
narios. In the first one, the machine A serves the requests itself. This case serves
two purposes: as a baseline case for the comparisons with the next scenario and
also as a way to understand the impact of varying the accept queue size on the
server software. In a second scenario, the server A uses the speculative connection
admission to offload some of its connections onto the other server (B). This second
scenario intends to evaluate the operation of the speculative admission in real-life
conditions, as the server A handles a given number of connections and migrates
the speculatively accepted ones to the server B. In order to assess the impact of the
load imbalances that may occur in a cluster, we instructed the front-end to route
requests asymmetrically. More specifically, in one experiment the front-end redi-
rects two thirds of the requests to the server A and one third to the server B. We
tested also the case when three quarters of the requests are routed to the server A
and one fourth to the server B.

We used the same experimental setup like that described in Subsection 6.9.1.
Each back-end runs Apache 1.3.20 [5] as Web server.

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000 6000 7000

C
o
n
n
ec

ti
o
n
 t

h
ro

u
g
h
p
u
t

(c
o
n
n
/s

ec
)

Request rate (req/s)

Stand-alone performance

"single.128-128"
"single.128-96"
"single.128-64"

Figure 7.1: The impact of the accept queue length on the server activity

7.2.1 The impact of the accept queue length on the server activity

We started our experimental evaluation by testing the performance of a stand-alone
server in terms of the achieved connection throughput when varying the size of

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 135

the “accept” part of the listen queue. The results are presented in Figure 7.1. The
length of the SYN RCVD queue was that set in the kernel as the SOMAXCONN
value (128 by default). We chose length values of 64, 96 and 128 for the accept
queue of our server (denoted on the graph by “single.128-64”, “single.128-96” and
“single.128-128”, respectively). By looking at Figure 7.1, it can be noticed that the
best performing case is “single.128-96”, while the system experiences the largest
performance degradation for an accept queue length of 64. Since we want to test the
performance of the speculative connection admission under heavy load conditions,
we chose the case “single.128-64” as a base case for our next experiments. That
is to say, the speculative admission experiments considered a base accept queue of
length 64.

200

250

300

350

400

450

500

550

600

650

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
o
n
n
ec

ti
o
n
 t

h
ro

u
g
h
p
u
t

(c
o
n
n
/s

ec
)

Request rate (req/s)

Speculative connection admission with connection migration

"w33.acc64"
"w33.cm33"

Figure 7.2: Speculative admission within request distribution (The front-end routes
33% of the requests to one server and 67% to the other)

7.2.2 Speculative connection admission in request distribution

Both the TCP connection endpoint migration and the speculative connection ad-
mission are meant to be used by request dispatching algorithms. In our second
experiment, a server accepts speculatively connections only to migrate them to an-
other server. We report the connection throughput values for the normal processing
(i.e., without speculative admission) and for the speculative admission. The normal
processing uses a SYN RCVD queue length of 128 and an accept queue length of
64 (depicted throughout the graphs by the keyword “acc64”). The speculative con-
nection admission uses two different increments of the base accept queue length
(64), namely 32 and 64. On the graphs, the corresponding curves can be recog-
nized by the percentage represented by the admission queue in the total accept

136 VLAD OLARU

queue (for instance, “cm33” means that the speculative admission operates on a 64
+ 32 long accept queue, in which the admission queue represents 33% of the total
queue).

For the first experiment, that in which two thirds of the requests hit the server
A and one third the server B, we used only an admission queue of 32 entries for our
speculative admission policy. The results are reported in Figure 7.2 (the curves on
the graph are tagged “w33”). In Figure 7.3 we present the results for the experiment
in which the front-end routes three quarters of the requests to the server A and one
quarter to the server B (curves tagged “w25”).

As a general observation, all the speculative cases seem to cope better with
higher request rates than the normal processing case. In particular, the “w25.cm50”
case performs remarkably well, by extending the responsiveness of the server to re-
quest rates between 3000 and 4000 req/s. The normal processing cases are limited
below 3500 req/s (Figure 7.2) and 3000 req/s (Figure 7.3), respectively. At these
figures, the server gets saturated and the client running the benchmark exhausts the
local resources and cannot create more connections (i.e., there are too many open
connections to which the server did not respond yet).

150

200

250

300

350

400

450

500

550

600

650

0 1000 2000 3000 4000 5000 6000

C
o
n
n
ec

ti
o
n
 t

h
ro

u
g
h
p
u
t

(c
o
n
n
/s

ec
)

Request rate (req/s)

Speculative connection admission with connection migration

"w25.acc64"
"w25.cm33"
"w25.cm50"

Figure 7.3: Speculative admission within request distribution (The front-end routes
25% of the requests to one server and 75% to the other)

For the case in which the front-end routes two thirds of the requests to one
server and the rest to the second server (Figure 7.2), it is worth noting that, for
small request rates, the speculative policy induces a significant overhead. For such
request rates, the normal processing case outperforms the speculative case. Nev-
ertheless, as soon as the request rates become important (around 2000 req/s), the

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 137

server using speculative admission copes better with the increased demands. It
yields the peak performance at about 617 conn/s and some 2200 req/s. This trend
becomes clear when looking at the second case, where the imbalance is more se-
vere and the speculative admission improves undisputedly the overall performance
of the distributed server (see Figure 7.3). Indeed, both speculative cases outper-
form the normal processing (denoted by “w25.acc64”) for high request rates. It is
also worth noting that, for high request rates, larger admission queues yield signifi-
cantly better connection throughput figures. Similar to the first experiment (Figure
7.2), at small request rates, the normal processing handles better the situation, as
the overhead of the connection migration cannot be hidden. All these observations
are consistent with those made in Section 6.9 for the experiments with the simple
connection endpoint migration policy.

Perhaps another aspect worth noting is that the imbalances at the front-end
prevent the performance of the two-server node to scale linearly when compared to
the single server case. Indeed, by looking at the graphs “single128-64” in Figure
7.1, “w33.acc64” in Figure 7.2 and “w25.acc64” in Figure 7.3, one can see that the
peak performance of a single server is at about 300 conn/s (the exact figure is 324
conn/s) while none of the two cases for the two-node server achieves more than 519
conn/s. It is the job of the speculative admission to overcome the imbalance and
to improve the performance by almost doubling the peak connection throughput
figure.

7.3 Summary

This chapter presented the speculative TCP connection admission, a back-end level
mechanism to improve the sub-optimal request distribution decisions in cluster-
based servers. The overloaded server nodes in the cluster accept speculatively
the incoming requests only to offload them to less-loaded nodes by means of the
TCP connection endpoint migration. The speculative connection admission targets
back-end level request distribution policies that leverage routing decisions taken
outside the cluster. The mechanism has been implemented in the Linux kernel as
part of our policy-based software architecture for request distribution. We have
been able to show that the speculative connection admission adds little overhead
to the normal TCP processing on overloaded nodes, offsets the load imbalances
and accommodates high request rates. These results recommend the speculative
admission for an active role in the request distribution in cluster-based servers.

138 VLAD OLARU

Chapter 8

Summary and future work

8.1 Summary

This thesis presented Single System Image (SSI) operating system services for
cluster-based Web servers. These services permit an unmodified stand-alone server
program (say, Apache [5]) running on a node of a cluster of Commodity Of The
Shelf (COTS) computers to regard the entire cluster as a single machine whose
resources are at its disposal. Each stand-alone server instance running on a cluster
node is unaware of other similar instances running on other cluster nodes. The
cooperation among the cluster nodes takes place entirely at the kernel level and is
based on cluster-wide SSI services. These services are part of a general software
architecture for cluster operating systems based on resource virtualization (see Fig-
ure 1.1). Through resource virtualization, the nodes access remote resources as if
local.

For the purposes of this thesis, we developed two such SSI services: the Cluster-
Aware Remote Disk (CARD) drivers and the TCP connection endpoint migration.
The CARD drivers virtualize local accesses of a node to remote disks and provide
for an extended, cluster-wide disk cache built by means of cooperative caching.
The TCP connection endpoint migration establishes a server equivalence among
the nodes of the cluster by using generic server-side endpoints that can be arbitrar-
ily assigned and reassigned to any server machine in the cluster.

8.1.1 CARDs and cooperative caching

The main incentive behind our system design is represented by the performance
figures of the System Area Networks (SANs) that are commonly used nowadays
to enhance the traditional networking capabilities of the COTS clusters (see Figure
1.2). The disk virtualization methods and the cooperative caching traffic as well

139

140 VLAD OLARU

as the TCP connection endpoint migration protocol make use of this high speed
interconnect. Therefore, the first endeavors of this thesis were to assess the effec-
tiveness of the resource virtualization techniques based on SANs.

When no cooperative caching policy is in use, the CARD drivers behave like
remote disk interfaces on the local machine. We show that the CARD drivers yield
good performance due to their highly asynchronous mode of operation: cluster-
wide, in terms of overlapping the communication with the computation between the
two nodes (the remote disk node and the node mounting the remote disk through a
CARD driver), as well as locally, at the remote disk site, through a mix of interrupt-
time and thread-based block request processing. This mixed processing method
aims to maximize the degree of pseudo-parallelism between the request handling
and the data delivery on a uniprocessor machine. These conclusions are validated
experimentally in Section 3.11 and support Claim 2 as stated in Section 1.3.

The CARD drivers offer the upper kernel layers as well as the applications
like our SSI server the benefit of using I/O page/block abstractions built on top of
the message passing capabilities of the SAN. A fine-grain control over these ab-
stractions is made possible through a single copy protocol that allows for exclusive
caching. The implementation of this single copy protocol uses the capability to
perform DMA from the disk to the network buffering system without intermedi-
ate copying. The description of this mechanism provided in Section 3.7 supports
Claim 3 in Section 1.3.

A further compelling argument for building high level kernel abstractions is
that the bottleneck of the computing systems is not in the hardware anymore, but
rather in the software. For instance, we have been able to show (see Section 3.8)
that exporting the effect of the read-ahead policy of a file system using the CARD
drivers is highly sensitive to the inner parameters of the driver implementation
(namely the maximum read-ahead window). Our CARD driver delivers an optimal
performance for a maximum read-ahead window equal to that of the remote disk
system. This fact shows optimal SAN usage. For other values however, even for
those that would favor higher degrees of asynchrony (and thus better SAN usage),
the performance drops. Put differently, the high performance SAN figures do not
translate automatically into high performance CARD figures. In general, the SSI
services based on SANs need to harmonize with the operation and the features of
the software using the SAN (the operating system kernel being of major concern).
This statement, together with the experimental results from Section 3.11 concern-
ing the mixed blocking/event-driven mode of operation of the CARD drivers and
the performance of our exclusive caching implementation support Claim 1.

The virtual disks share data across the cluster, but the corresponding local
disk caches are still managed separately. We used cooperative caching to pro-
vide for a decentralized, globally-coordinated SSI disk cache. We designed and

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 141

developed a cooperative caching algorithm called Home-based Server-less Coop-
erative Caching (HSCC) and showed that the cooperative caching algorithms run
efficiently only when considering additional information such as the loads of the
cluster nodes (see Section 4.7). We proved that, for large workloads, most of the
cooperative cache hits are global hits (i.e., remote cache hits) and, therefore, the
eviction handling pays off only when choosing carefully the target of the block
saving attempt. These results support Claim 4.

In the case of the Web systems, which have different workloads than the file
systems, we found that the cooperative caching is effective for cluster-based Web
servers if supported by application-level hints. More specifically, we used informa-
tion from a Web request distribution curve to steer at fine-grain level the operation
of our general purpose cooperative caching algorithm (HSCC). Supplying that kind
of information to the kernel-level code is possible due to the flexible/extensible de-
sign of our software architecture that enables the applications to download their
policies into the kernel at will, similar to the extensible kernels. Our general pur-
pose algorithm (HSCC) could not fill up the performance gap between a simple
solution like replication and one using data sharing through virtual disks (more
precisely, our CARD drivers). Only when targeting the classes of the large and
unpopular Web requests (i.e., when driven by request distribution-induced hints)
HSCC makes up for the performance loss and compares favorably to replication
(see Section 5.3). This result supports Claims 5 and 10.

8.1.2 TCP connection endpoint migration

Cooperative caching by itself cannot answer all the questions raised by a cluster-
based Web server. The main problem arises when trying to reconcile the data
locality with the load balancing. Although our HSCC algorithm attempts to even
out the loads of the cluster caches, the imbalances in a cluster-based Web server
occur also due to request routing decisions and cannot be offset through cooperative
caching alone. For that, one needs a request routing mechanism as well. Since the
nodes jointly managing the cooperative cache by means of HSCC already share
load information, the natural choice is to develop a back-end level request routing
mechanism, in this case the TCP connection endpoint migration mechanism.

Through TCP connection endpoint migration, generic server-side connection
endpoints can be arbitrarily assigned and reassigned later to server nodes in the
cluster. We show that the TCP connection endpoint migration performs well for
back-end level request distribution schemes too, not only for fault-tolerant pur-
poses as shown by the previous research on general, client-server TCP connec-
tion migration protocols. In the particular case of the cluster-based Web servers,
we show that the TCP connection endpoint migration is an effective ingredient of

142 VLAD OLARU

back-end level request distribution policies, both for persistent and non-persistent
HTTP connections.

For instance, simple request distribution policies migrating non-persistent HTTP
requests for small and popular static Web documents outperform Round Robin by
over 75% in terms of overall figures, while the individual improvements for the
targeted classes of documents are as high as 2.79 times those of the corresponding
Round Robin figures at no extra cost for the other classes of requests (see Section
6.10). The case of migrating persistent HTTP connections is more sensitive to the
caching effectiveness of the policy in use, but our experimental results (see Section
6.10.3) show that the TCP connection endpoint migration performs well in this
case, too. Thus, the TCP connection endpoint migration can be thought of as an
effective back-end level connection routing mechanism for cluster-based servers
and may turn out to be the right companion of cooperative caching in the locality-
aware request routing policies attempting to trade off between data and connection
migration. This statement validates our Claim 6 in Section 1.3.

We also developed a back-end level load balancing mechanism based on the
TCP connection endpoint migration that we call speculative TCP connection ad-
mission. This mechanism attempts to alleviate the consequences of the sub-optimal
routing decisions taken outside the cluster-based server (either by the front-ends or
by an external entity routing the requests as it is the case with the Round Robin
DNS or with the multi-tier server architectures). This goal is accomplished by off-
setting the induced load imbalances late, at service time (that is to say, when the
back-end servers can inspect the request content). By enlarging the accept queue of
the individual servers in the cluster, an overloaded server node can accommodate
an increased number of incoming requests only to offload them onto lighter-loaded
nodes by means of the TCP connection endpoint migration. Our experimental
results (see Section 7.2) show that the speculative TCP connection admission ef-
fectively offsets the externally induced imbalances among the cluster nodes and
thus validate Claim 7 in Section 1.3.

8.1.3 Kernel code development, experience and benefits

The kernel code development is not an easy task. It involves a specific type of
programming and, most of the time, it lacks the support of comfortable develop-
ment tools. When we say specific programming techniques we refer to the fact
that the kernel acts as a collection of coroutines, and writing kernel code comes
down to writing such code. More than that, even on uniprocessor machines, some
of the kernel code is prone to race conditions and needs the appropriate concurrent
programming techniques. This is the case of the software and hardware interrupt
handlers that run when the interrupts stop the current thread of execution in the

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 143

kernel. And above all, the kernel address space is a shared one, and the developer
cannot indulge in relying on protection domains as in the case of the user-level de-
velopment. All the common programming mistakes (unallocated memory, memory
leaks, writing beyond the bounds of the allocated memory, etc.) end up by freezing
the machine. Last but not least, the complexity of the operating system, the largest
software run by any machine, may seem daunting at times. Getting accustomed to
kernel software is a process whose learning curve has a slow-increasing slope. All
these problems make the development harder and more time-consuming.

Nevertheless, we considered it quintessential to implement our SSI services at
kernel level. First of all, conceptually, these services belong to the operating sys-
tem as they provide basic functionality to the upper kernel layers and applications.
Moreover, our kernel services offer simplicity of use and flexibility in operation.
For instance, remote disks can be mounted locally by means of the CARD drivers
as any local disk would be (that is, by using the regular Unix mount command). The
applications can download at will their favorite cooperative caching policy into the
CARD driver and thus they steer the global management of the cluster-wide coop-
erative cache (see Chapter 4). These statements support Claim 8 in Section 1.3.

Equally simple, an application developer willing to write a request distribution
policy based on the TCP connection endpoint migration needs to specify only the
migration target and the heuristics triggering the migration (see Section 6.8.1) and
to download them into the kernel. The generic TCP connection endpoints identify
the cluster as a whole, rather than individual server nodes, and establish a logi-
cal equivalence of all the servers in the cluster. These arguments provide further
support for Claim 8 in Section 1.3.

A kernel implementation of the SSI services enables unmodified stand-alone
applications (the Apache server in the case of our SSI cluster-based Web server,
see Chapter 5) to run in a distributed/parallel environment. Our solution vali-
dates Claim 9 in Section 1.3. The alternative would be to implement similar
services in the user space. This solution not only implies application changes,
but is also known to complicate the software development and to induce perfor-
mance penalties as the underlying stand-alone kernel software is unaware of the
distributed/parallel environment. Therefore, its inner mechanisms and policies fail
to match the expectations of the applications.

However, the kernels have been accused of adapting their services too slowly
to the new emerging paradigms of computation. A central point of criticism was
related to the general purpose operating system algorithms that were supposed to
fulfill every application need with high performance and yet they failed to do so.
With the advent of the Internet and multimedia applications, it became clear that
the flexibility/extensibility in the kernel is a must. Exo-kernels and grafting ker-
nels provide such flexibility. Faithful to this perspective, we designed flexible SSI

144 VLAD OLARU

service software in a policy-oriented (server) architecture that allows applications
(server programs) expressing their views through policies. These policies can be
downloaded into the kernel at will. In turn, the kernel honors the application’s
view by running the policy code in kernel context. This mechanism enabled ex-
periments with various cooperative caching and request distribution policies. We
have been able to show that general purpose algorithms are outperformed by algo-
rithms that take into account the application specificity (see the case of the request
distribution-aware caching described in Chapter 5 or the comparisons between the
request distribution policies based on the TCP connection endpoint migration and
Round Robin in Chapter 6). These results validate our last claim (see Claim 10 in
Section 1.3).

8.2 Future work

There is definitely a lot of work to do in the area of the SSI cluster-based servers.
However, we would like to restrict this final part of the thesis to a few issues that
we consider of immediate relevance to what we have presented so far.

8.2.1 The scalability analysis of HSCC and the locality-aware request
distribution policies using the TCP connection endpoint migra-
tion

In Chapter 4, when we discussed the scalability of our Home-based Server-less Co-
operative Caching algorithm, we mentioned that we couldn’t test its performance
on large scale clusters. A theoretic discussion in Subsection 4.5 supports the scal-
ability of the HSCC lookup and eviction handling procedures. However, a given
home node can have a hard time coping with situations in which all the cluster
nodes look up simultaneously blocks managed by that home. The situation may
be worsened as the protocol runs in bottom halfs at interrupt time and can create
the conditions for a receiver live-lock (the system functions, but spends all of its
processing time by serving network interrupts). Before suggesting any solutions
for this kind of possible shortcomings of our algorithm, we would like to develop
methods and tools to analyze this type of receiver live-lock in order to assess its
impact on the overall performance of the algorithm.

A further point of interest concerns the scalability of the locality-aware request
distribution policies using the TCP connection endpoint migration. Assessing the
TCP connection endpoint migration overhead for large scale clusters is an impor-
tant issue. We believe that distributing this overhead over several back-end servers
like we did in Subsection 6.10.2 may be the starting point of a future investigation.

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 145

Naturally, this issue has to be correlated with those presented further in Subsection
8.2.3.

8.2.2 Cluster provisioning

A serious problem concerns the cluster provisioning. Choosing the right cluster
size in terms of resources can prevent worst case scenarios like that described in
the previous subsection from happening. In general, the ability to estimate the
resource needs of a certain workload may bring benefits beyond that of reaching
the optimal performance by setting clear bounds on the scalability (and thus, by
pointing out the thresholds on the usability of the cluster). A thorough analysis of
the resource needs of a cluster-based server may lead to a better cluster usage by
restricting the number of the nodes allocated for a given task.

8.2.3 Locality-aware request distribution policies

The next logical step when having the cooperative caching and the TCP connection
endpoint migration at one’s disposal is to mix the two in locality-aware request
distribution policies. As mentioned in Chapter 4, when we presented our HSCC
algorithm, the homes maintain references to the nodes that hold the last recently
loaded blocks for which the home takes the responsibility. That means that the
knowledge about the caching of a given file is spread throughout the cluster. A
request hitting a node would then have to figure out for which of the blocks of the
requested file the node is a home. Then, by inspecting the references that the home
has for those blocks, a locality-aware request distribution policy would be able to
exploit the locality of reference by migrating the request to a node that caches the
requested file.

In fact, there is more at stake than the locality of reference for the requested
data. As we already mentioned in Section 2.1.4, reconciling the load balancing
with the locality of reference is a hard task as the two goals are opposite: routing
all the requests to the same node in order to maximize the data locality results in
hot-spots, while striving to achieve good load balancing entails spreading multiple
copies of a file over several nodes in the cluster, which represents both a waste of
memory and an increased network and/or disk I/O activity.

One can use the cooperative caching and the TCP connection endpoint migra-
tion to attempt to reach a heuristic optimum by switching between data and request
migration. Remember that HSCC maintains on every node an approximate evalu-
ation of the load of the other nodes in terms of the blocks stored on behalf of the
other nodes. This information is used to steer the operation of the eviction handling
procedures by avoiding to send the evicted blocks to overloaded nodes. This type

146 VLAD OLARU

of information flows naturally across the cluster through the HSCC algorithm and
can help reach connection endpoint migration decisions as well.

For instance, knowing that an overloaded node caches a copy of a requested file
may prevent migrating the request to that node as it may very well happen that that
node will evict exactly the copy of that file (or might have already done so) before
the corresponding TCP connection endpoint gets migrated there. Moreover, even if
an optimistic policy might choose to migrate the request under these circumstances,
the request service may face other problems, even though it might count on data
locality. Such problems include the overheads due to the memory swapping and
the poor network subsystem performance due to the scarcely available memory.

On the other hand, knowing that there are lightly loaded nodes available may
be an incentive to migrate requests, even if the data locality is missing, in order to
balance the cluster-based server.

Bibliography

[1] A. Acharya, M. Uysal, and J. Saltz. Active Disks: Programming Model, Al-
gorithms and Evaluation. In Proceedings of the 8th ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VIII) , October 1998.

[2] Woo Hyun Ahn, Woo Jin Kim, and Daeyon Park. Content-Aware Cooperative
Caching for Cluster-Based Web Servers. In The Elsevier Journal of Systems
and Software 69 (2004), pag. 75-86, 2004.

[3] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,
and W. Zwaenepoel. TreadMarks: Shared Memory Computing on Networks
of Workstations. In IEEE Computer, Vol. 29, No. 2, pp. 18-28, February 1996.

[4] T. Anderson, M. Dahlin, J. M. Neefe, D. Patterson, D. Rosseli, and R. Y.
Wang. Serverless Network File Systems. In The 15th Symposium on Operat-
ing System Principles, December 1995.

[5] Apache. http:/www.apache.org/.

[6] VIA: The Virtual Interface Architecture. http://www.viarch.org, 1998.

[7] M. Aron, P. Druschel, and W. Zwaenepoel. Efficient Support for P-HTTP
in Cluster-Based Web Servers. In Proceedings of the 1999 Annual Usenix
Technical Conference, June 1999.

[8] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel. Scalable Content-
aware Request Distribution in Cluster-based Network Servers. In Proceed-
ings of the 2000 Annual Usenix Technical Conference, June 2000.

[9] Maurice J. Bach. The Design of the Unix Operating System, 1986. Prentice
Hall Inc.

147

148 VLAD OLARU

[10] G. Banga and P. Druschel. Measuring the capacity of a Web Server. In
Proceedings of the Usenix Symposium on Internet Technologies and Systems,
December 1997.

[11] G. Banga, P. Druschel, and J. Mogul. Lazy Receiver Processing (LRP):
A Network Subsystem Architecture for Server Systems. In Proceedings of
the Second Symposium on Operating Systems Design and Implementation
(OSDI’96), October 1996.

[12] G. Banga, P. Druschel, and J. Mogul. Resource containers: A new facility for
resource management in server systems . In Proceedings of the Third Sympo-
sium on Operating System Design and Implementation , February 1999.

[13] T. Berners-Lee, R. Fielding, and H. Frystyk. RFC 1945: Hypertext Transfer
Protocol – HTTP 1.0, 1996.

[14] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker, M. Fiuczynski,
C. Chambers, and S. Eggers. Extensibility, Safety and Performance in the
SPIN Operating System. In Proceedings of the 15th ACM Symposium on
Operating System Principles (SOSP-15), December 1995.

[15] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and
Zipf-like distributions: Evidence and implications. In Proceedings of IEEE
Infocom ’99, March 1999.

[16] T. Brisco. RFC 1764: DNS Support for Load Balanacing, 1995.

[17] R. B. Bunt, D. L. Eager, G. M. Oster, and C. L. Williamson. Achieving Load
Balance and Effective Caching in Clustered Web Servers. In Proceedings of
the Fourth International Web Caching Workshop, March 1999.

[18] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu. The State of the
Art in Locally Distributed Web-Server Systems. In ACM Computing Surveys,
Vol. 34, No.2, pp. 263-311, June 2002.

[19] Enrique V. Carera and Ricardo Bianchini. Improving Disk Throughput in
Data-Intensive Servers. In Proceedings of the 10th IEEE International Sym-
posium on High Performance Computer Architecture, February 2004.

[20] P. Corbett, D. Feitelson, Y. Hsu, J.-P. Prost, M. Snir, S. Fineberg, B. Nitzberg,
B. Traversat, and P. Wong. MPI-IO: A parallel file I/O interface for MPI.
Technical Report NAS-95-002, NASA Ames Research Center, Moffet Field,
CA, January 1995.

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 149

[21] T. Cortes, S. Girona, and L. Labarta. PACA: A Distributed File System
Cache for Parallel Machines. Performance under Unix-like workload. Tech-
nical Report UPC-DAC-RR-95/20 or UPC-CEPBA-RR-95/13, Departament
d’Arquitectura de Computadors, Universitat Politecnica de Catalunya, 1995.

[22] M. E. Crovella, R. Frangioso, and M. Harchol-Balter. Connection Scheduling
in Web Servers. In Proceedings of the 2nd Usenix Symposium on Internet
Technologies and Systems, October 1999.

[23] M. Dahlin, R. Yang, T. Anderson, and D. Patterson. Cooperative Caching:
Using Remote Client Memory to Improve File System Performance. In The
First Symposium on Operating Systems Design and Implementation, Novem-
ber 1994.

[24] O. P. Damani, P. E. Chung, Y. Huang, , C. Kintala, and Y-M. Wang. ONE-IP:
Techniques for Hosting a Service on a Cluster of Machines. In Proceedings
of the 6th International WWW Conference, April 1997.

[25] Matt DeBergalis, Peter Corbett, Steve Kleiman, Arthut Lent, Dave Noveck,
Tom Talpey, and Mark Wittle. The Direct Access File System. In Proceedings
of the 2nd Usenix Conference on File and Storage Technologies (FAST ’03),
pages 175–188, San Francisco, USA, March–April 2003.

[26] J. del Rosatio, R. Bordawekar, and A. Choudhary. Improve parallel I/O via a
two-phase run-time access strategy. In Proceedings of the IPPS Workshop on
Input/Output in Parallel Computer Systems, 1993.

[27] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and K. Li. VMMC-2: Ef-
ficient Support for Reliable, Connection-Oriented Communication. In Pro-
ceedings of Hot Interconnects V, August 1997.

[28] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole Jr. Exokernel: an
operating system architecture for application-level resource management. In
Proceedings of the 15th ACM Symposium on Operating Systems Principles
(SOSP ’95), pages 251–266, Copper Mountain Resort, Colorado, December
1995.

[29] Michael J. Feeley, William E. Morgan, Frederic H. Pighin, Anna R. Karlin,
and Henry M. Levy. Implementing Global Memory Management in a Work-
station Cluster. In Proceedings of the 15th Symposium on Operating Systems
Principles, December 1995.

[30] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. RFC 2068:
Hypertext Transfer Protocol – HTTP 1.1, 1997.

150 VLAD OLARU

[31] I. Foster, Jr. D. Kohr, R. Krishnaiyer, and J. Mogill. Remote I/O: Fast Access
to Distant Storage. In Proceedings of the Fifth Annual Workshop on I/O in
Parallel and Distributed Systems, November 1997.

[32] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, H Gobioff, E. Riedel,
D. Rochberg, and J. Zelenka. Filesystems for Network-Attached Secure
Disks. Technical Report CMU-CS-97-118, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213-3890, July 1997.

[33] S. Glassman. A Caching Relay for the World Wide Web. In First Interna-
tional World Wide Web Conference, 1994.

[34] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Size-Based
Scheduling to Improve Web Performance. In ACM Transactions on Computer
Systems, Vol. 21, No.2, pp. 207-233, May 2003.

[35] J. H. Hartman, I. Murdock, and T. Spalink. The Swarm Scalable Storage
System. In Proceedings of the 19th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS ’99), June 1999.

[36] R. S. C. Ho, K. Hwang, and H. Jin. Single I/O space for Scalable Cluster
Computing. In Proceedings of the 1st IEEE International Workshop on Clus-
ter Computing, December 1999.

[37] G.D.H. Hunt, G.S. Goldszmidt, R.P. King, , and R. Mukherjee. Network
Dispatcher: a connection router for scalable Internet services. In Proceedings
of the 7th International WWW Conference, April 1998.

[38] W. B. Ligon III and R. B. Ross. An Overview of the Parallel Virtual File
System. In Proceedings of the Extreme Linux Workshop, June 1999.

[39] F. Isaila, G. Malpohl, V. Olaru, G. Szeder, and W. Tichy. Integrating collec-
tive I/O and cooperative caching into the Clusterfile parallel file system. In
Proceedings of the 18th ACM International Conference on Supercomputing
(ICS), June 2004.

[40] F. Isaila and W. Tichy. Clusterfile: A flexible physical layout parallel file sys-
tem. In Third IEEE International Conference on Cluster Computing, October
2001.

[41] Editor J. Postel. RFC 793: Transmission Control Protocol Specification,
1981.

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 151

[42] V. Jacobson, R. Braden, and D. Borman. RFC 1072: TCP Extensions for
High Performance, 1992.

[43] Kangho Kim, Jin-Soo Kim, and Sungin Jung. A Network Block Device Over
Virtual Interface Architecture on LINUX. In Proceedings of the IEEE Inter-
national Parallel and Distributed Symposium, April 2002.

[44] D. Kotz. Disk-directed I/O for MIMD Multiprocessors. In Proceedings of the
First USENIX Symposium on Operating Systems Design and Implementation,
1994.

[45] David Kotz and Ravi Jain. I/O in parallel and distributed systems. In Allen
Kent and James G. Williams, editors, Encyclopedia of Computer Science and
Technology, volume 40, pages 141–154. Marcel Dekker, Inc., 1999. Supple-
ment 25.

[46] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. In Pro-
ceedings of the 7th International Conference on Architectural Support for
Programming Languages and Operating Systems, 1996.

[47] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, and M. L. Best. File
Access Characteristics of Parallel Scientific Workloads. In IEEE Transactions
on Parallel and Distributed Systems, 7(10), October 1996.

[48] V. Olaru and W. F. Tichy. CARDs: Cluster Aware Remote Disks. In Proceed-
ings of the Third IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid 2003), May 2003.

[49] V. Olaru and W. F. Tichy. On the Design and Performance of Remote Disk
Drivers for Clusters of PCs. In Proceedings of the International Confer-
ence on Parallel and Distributed Processing, Techniques and Applications
(PDPTA’04), June 2004.

[50] V. Olaru and W. F. Tichy. Request Distribution-Aware Caching in Cluster-
Based Web Servers. In Proceedings of the Third IEEE International Sympo-
sium on Network Computing and Applications (IEEE NCA04), August 2004.

[51] V. Olaru and W. F. Tichy. Speculative TCP Connection Admission using
Connection Migration in Cluster-based Servers. In Proceedings of the IADIS
International Conference WWW/Internet 2004, October 2004.

[52] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel, and
E. Nahum. Locality-Aware Request Distribution in Cluster-based Network

152 VLAD OLARU

Servers. In Proceedings of the ACM Eighth International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS-VIII) , October 1998.

[53] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: An Unified I/O Buffering
and Caching System . In Proceedings of the Third Symposium on Operating
Systems Design and Implementation, February 1999.

[54] S. Gadde R. P. Doyle, J. S. Chase and A. Vahdat. The Trickle-Down Effect:
Web Caching and Server Request Distribution. In Proceedings of Sixth In-
ternational Workshop on Web Caching and Content Distribution (WCW’01),
June 2001.

[55] Prasenjit Sarkar and John H. Hartman. Efficient Cooperative Caching using
Hints. In Proceedings of the Second Symposium on Operating Systems Design
and Implementation, October 1996.

[56] Huseyin Simitici and Daniel A. Reed. A Comparison of Logical and Physical
Parallel I/O Patterns. In International Journal of High Performance Comput-
ing Applications, special issue (I/O in Parallel Applications), 12(3), 1998.

[57] M. Sivathanu, V. Prabhakaran, F. Popovici, T. Denehy, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Semantically-Smart Disk Systems. In Proceed-
ings of the 2nd Usenix Conference on File and Storage Technologies (FAST
’03), March 2003.

[58] Evgenia Smirni and Daniel A. Reed. Workload Characterization of I/O Inten-
sive Par allel Applications. In Proceedings of the Conference on Modelling
Techniques and Tools for Computer Performance Evaluation,Springer-Verlag
Lecture Notes in Computer Science, June 1997.

[59] A. C. Snoeren, D. G. Andersen, and H. Balakrishnan. An End-to-End Ap-
proach to Host Mobility. In Proceedings of the 6th ACM/IEEE International
Conference on Mobile Computing and Networking (MobiCom ’00), August
2000.

[60] A. C. Snoeren, D. G. Andersen, and H. Balakrishnan. Fine-Grained Failover
Using Connection Migration. In Proceedings of the Third Annual USENIX
Symposium on Internet Technologies and Systems (USITS), March 2001.

[61] The Standard Performance Evaluation Corporation (SPEC).
http://www.spec.org/web99/.

SINGLE SYSTEM IMAGE SERVERS ON TOP OF CLUSTERS OF PCS 153

[62] W. Richard Stevens. TCP/IP Illustrated, Volume 1, 1994. Addison Wesley
Longman, Inc.

[63] F. Sultan, A. Bohra, and L. Iftode. Service Continuations: An Operating
System Mechanism for Dynamic Migration of Internet Service Sessions. In
Proceeding of the 22nd Symposium on Reliable Distributed Systems (SRDS),
July 2003.

[64] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory TCP: Highly Avail-
able Internet Services Using Connection Migration. Technical Report DCS-
TR-462, Department of Computer Science, Rutgers University, Piscataway,
NJ 08854-8019, December 2001.

[65] Andrew S. Tanenbaum. Distributed Operating Systems, 1995. Prentice Hall
Inc.

[66] Myricom Inc. GM: the low-level message-passing system for Myrinet net-
works. http://www.myri.com/scs/index.html.

[67] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A scalable distributed
file system. In Proceedings of the 16th ACM Symposium on Operating System
Principles, 1997.

[68] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net: A user-level network
interface for parallel and distributed computing. In Proceedings of the ACM
Symposium on Operating Systems Principles, December 1995.

[69] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active
Messages: a Mechanism for Integrated Communication and Computation. In
Proceedings of the 19th International Symposium on Computer Architecture,
May 1992.

[70] T. M. Warschko, J. M. Blum, and W. F. Tichy. On the Design and Semantics
of User-Space Communication Subsystems . In Proceedings of the Interna-
tional Conference on Parallel and Distributed Processing, Techniques and
Applications (PDPTA’99), June 1999.

[71] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. Levy. On
the scale and performance of cooperative Web proxy caching. In Proceed-
ings of the 17th ACM Symposium on Operating System Principles, December
1999.

154 VLAD OLARU

[72] Theodore M. Wong and John Wilkes. My Cache or Yours? Making Storage
More Exclusive. In Proceedings of the USENIX Annual Technical Confer-
ence, pages 161–175, 2002.

[73] C.-S. Yang and M.-Y. Luo. Efficient Support for Content-Based Routing in
Web Server Clusters. In Proceedings of the 2nd Usenix Symposium on Inter-
net Technologies and Systems, October 1999.

[74] K. G. Yocum, D. C. Anderson, J. S. Chase, and A. Vahdat. Anypoint: Ex-
tensible Transport Switching on the Edge. In Proceedings of the 4th USENIX
Symposium on Internet Technologies and Systems, March 2003.

[75] X. Zhang, M. Barrientos, J.Chen, and M. Seltzer. HACC: An Architecture
for Cluster-Based Web Servers. In Proceedings of the 3rd USENIX Windows
NT Symposium, July 1999.

[76] Yuanyuan Zhou, Liviu Iftode, and Kai Li. Performance Evaluation of Two
Home-Based Lazy Release Consistency Protocols for Shared Virtual Memory
Systems. In Proceedings of the 2nd Symposium on Operating Systems Design
and Implementation, October 1996.

[77] G. Zipf. Human Behavior and the Principle of Least Effort, 1949. Addison
Wesley.

List of abbreviations

CARD Cluster-Aware Remote Disk, 17
COTS Commodity-Off-The-Shelf (clusters), 13
DAFS Direct Access File System, 38
DSM Distributed Shared Memory, 14
GMS Global Memory System, 62
HDC Hash Distributed Caching, 72
HSCC Home-based Server-less Cooperative Caching, 17
ISN Initial Sequence Number, 97
LAN Local Area Network, 28
LARD Locality-Aware Request Distribution, 27
MAC Medium Access Control, 25
NASD Network-Attached Secure Disks, 38
RDMA Remote Direct Memory Access, 38
SAN System Area Network, 13
SSI Single System Image, 13
VIA Virtual Interface Architecture, 39
VIP Virtual IP (address), 24

