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Zusammenfassung

Eine der typischen Anwendungen von Kiirzeste-Wege-Algorithmen sind Verkehrssysteme
wie Routenplaner fiir Stralendaten und Auskunftsysteme fiir den Zug- und Busverkehr.
Benutzer solcher Systeme stellen Anfragen nach der besten Reiseroute, die moglichst kurz,
schnell oder kostengiinstig sein soll. Abgesehen von interaktiven Systemen taucht diese
Problemstellung ebenfalls als Teilproblem in der Touren- und Dispositionsplanung auf. In
der Regel éndert sich in beiden Féllen der zugrunde liegende Graph wenig bis gar nicht.
Des Weiteren sind durch die Anwendung geographische Koordinaten des Verkehrsnetzes
gegeben, die eine Zeichnung des Graphen ermoglichen. Das algorithmische Kernproblem
besteht daher darin, wiederholt kiirzeste Wege in einem gerichteten Graphen mit nicht-
negativen Kantengewichten zu bestimmen, fiir den ein Layout gegeben ist.

Wenn nun sehr viele und immer wieder die selben kiirzesten Wege bestimmt werden
miissen, so lohnt sich eine Vorabberechnung der kiirzesten Wege, um so Anfragen schneller
beantworten zu kénnen. Verkehrsgraphen sind jedoch in der Regel sehr grof3, aber auch sehr
diinn, d.h. die Anzahl der Kanten im Graphen ist linear in der Anzahl der Knoten. Deshalb
wéchst der Speicherplatzbedarf fiir alle kiirzesten Wege quadratisch mit der Grofle des
Graphen. Der notige Speicherplatzbedarf verbietet daher das Abspeichern aller kiirzesten
Wege fiir diese Graphen mit hunderttausenden von Knoten.

Das Thema des ersten Teils meiner Arbeit ist nun die Entwicklung von Beschleuni-
gungtechniken fiir Kiirzeste- Wege-Algorithmen, die unter Benutzung der geographischen
Informationen Teilergebnisse der Vorabberechnung verwenden und dabei aber nur linearen
Speicherplatzbedarf haben. Die Evaluation der Algorithmen geschieht dabei in der Regel
durch deren Implementierung und statistischer Auswertung mit realen und generierten
Daten, wie es im relativ jungen Gebiet des Algorithmen Engineering iiblich ist.

In meiner Arbeit wurde insbesondere der Ansatz untersucht, fiir jede Kante des Graphen
die geographische Region in Form eines geometrischen “Container” abzuspeichern, in der
diejenigen Knoten liegen, zu denen ein kiirzester Weg mit dieser Kante beginnt. Bildlich
gesprochen stellt man also an jeder Kante einen Wegweiser auf, der mit einer Art Kiirzeste-
Wege-Container anzeigt, in welche Region man mit dieser Kante auf einem kiirzesten
Weg kommen kann. In einer experimentellen Studien wurde untersucht, welche Art von
geometrischen Objekten dafiir besonders gut geeignet sind. Es zeigte sich, dass bereits mit
einfachen Objekten wie kleinsten umschlieenden, achsenparallelen Rechtecken (Bounding
Boxes) eine beeindruckende Verkleinerung des Suchraums maoglich ist (siche Abb. 1).

In einer weiteren Studie wurden verschiedene Algorithmen entwickelt und verglichen,
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Abbildung 1: Suchraum fiir einen kiirzesten Weg von Hannover nach Berlin ohne Beschleu-
nigungtechnik (links) und unter Verwendung von Kiirzeste-Wege-Containern (rechts).

die dieses Verfahren auf dynamische Graphen erweitern, wenn z.B. durch Baustellen oder
Staus Kanten des Graphen ungiiltig werden bzw. durch Baumafinahmen oder nach Been-
den einer Storung neue Kanten verfiighbar werden. Kiirzeste-Wege-Container werden durch
solche Verdnderungen ungiiltig, wodurch Wege ausgegeben wiirden, die nicht die kiirzesten
sind. Eine komplett neue Vorverarbeitung kann jedoch vermieden werden, wenn sich nur
wenige Kanten des Graphen verdndern. Konkret haben wir festgestellt, dass die Vorverar-
beitung in der Praxis um den Faktor 2-3 beschleunigt werden kann ohne Abstriche an die
Qualitét der Kiirzeste-Wege-Container machen zu miissen.

Eine relativ neue Technik zur Beschleunigung von Kiirzeste-Wege-Suchen verfolgt einen
ziemlich &hnlichen Ansatz wie Kiirzeste-Wege-Container. Sie partitioniert dazu die Knoten-
menge des Graphen und speichert an jeder Kante einen Bitvektor, der angibt, in welchen
Partitionen des Graphen Knoten liegen, die auf einem kiirzesten Weg mit dieser Kante
erreicht werden konnen. Eine experimentelle Studie geht der Frage nach, welche geome-
trischen Partitionierungen fiir diese Technik am besten geeignet sind. Des Weiteren wird
eine Methode vorgestellt und getestet, den Speicherplatzbedarf der Bitvektoren durch eine
geeignete Komprimierung zu reduzieren.

Schliefflich untersucht eine vierte Studie, wie sich Kiirzeste-Wege-Container mit anderen
Beschleunigungstechniken kombinieren lassen und wie schnell diese Kombinationen sind.
Konkret wurden alle 16 Kombinationen von vier Beschleunigungstechniken implementiert
und miteinander unter verschiedenen Gesichtspunkten verglichen. Als besonders effektiv
stellte sich dabei die Kombination von Kiirzeste-Wege-Containern mit bidirektionaler Su-
che heraus.

Der zweite Teil meiner Arbeit beschéftigt sich mit der Frage, ob man geometrische Be-
schleunigungstechniken fiir Kiirzeste-Wege-Algorithmen nutzbar machen kann, wenn die
geographische Information aus irgendwelchen Griinden nicht einfach zu Verfiigung gestellt



werden kann oder wenn man in Anwendungen kiirzeste Wege in Graphen sucht, fiir die
kein natiirliches Layout gegeben ist. Fiir das Generieren dieser Layouts werden Metho-
den des Graphenzeichens verwendet, welche bei derart groflen Graphen vor eine eigene
Herausforderung gestellt werden.

In einer ersten Studie betrachten wir den Spezialfall eines Auskunftssystems fiir Bus
und Bahn. (Gerade beim Busverkehr sind die Verkehrsbetriebe haufig nicht bereit, eine
kostenintensive Datenaufbereitung der geographischen Koordinaten “nur” fiir eine Fahr-
planauskunft durchzufiihren.) Es war moglich, die spezielle Struktur eines Fahrplangraphen
nicht nur im zur Evaluation verwendeten Auskunftssystem zu benutzen, sondern auch bei
der Modellierung und Implementierung des Algorithmus’ zum Zeichnen der Graphen zu
verwenden. Fiir den Fall, dass bereits einige wenige Koordinaten vorgegeben werden, stellte
sich heraus, dass generierte Koordinaten eine dhnliche Qualitét bzgl. der Beschleunigungs-
techniken erreichen wie echte geographische Koordinaten.

Durch das positive Ergebnis fiir Fahrplanauskunft motiviert, fithrten wir eine Studie
fiir das Kiirzeste-Wege-Problem auf allgemeinen Graphen durch. Wir implementierten drei
aktuelle Algorithmen zum Zeichnen grofler Graphen und verglichen deren Ausgaben fiir
Graphen aus unterschiedlichen Anwendungen in Bezug auf drei geometrische Beschleu-
nigungstechniken und deren Kombinationen. Insbesondere die Ergebnisse fiir Kiirzeste-
Wege-Containern iibertrafen mit Beschleunigungsfaktoren im dreistelligen Bereich fiir ei-
nige Arten von Graphen unsere Erwartungen bei weitem. Es stellte sich auch heraus, dass
Zeichnungen, die optisch gleich ansprechend waren, bzgl. der Beschleunigungstechniken
unterschiedlich gut waren, ja sogar in einigen Féllen weniger “schone” Zeichnungen gut fiir
die Suche nach kiirzesten Wegen waren.

Zusammenfassend ldsst sich sagen, dass man mittels Kiirzeste-Wege-Containern im
Vergleich zu und erst recht in der Kombination mit anderen Beschleunigungstechniken
die Suche nach kiirzesten Wegen enorm verbessern kann und dass man dabei durch-
aus auf einfache geometrische Objekte wie achsenparallele Rechtecke zuriickgreifen kann.
Dariiberhinaus kann der Ansatz auf die Félle erweitert werden, dass sich der Graph veran-
dert oder dass keine oder nur wenige Koordinaten fiir Knoten des Graphen gegeben sind.
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Chapter 1

Introduction

Engineering algorithms has attracted increasing attention during the last years. This thesis
focuses on the engineering of algorithms for large graphs for two types of problems: to find
shortest paths and to draw the graph nicely. Of particular interest is the connection of the
two, namely to draw a graph in order to find shortest paths faster.

Shortest Paths

Computing shortest paths is a base operation for many problems in traffic applications.
The most prominent are certainly route planning systems for cars, bikes and hikers [1, 2, 3],
or scheduled vehicles like trains and buses [4, 5, 6, 7, 8]. If such a system is realized as
a central server, it has to answer a huge number of customer queries asking for their
best itineraries. Users of such a system continuously enter their requests for finding their
“best” connections. Furthermore, similar queries appear as sub-problems in line planning,
timetable generation, tour planning, logistics, and traffic simulations. The main goal is to
reduce the (average) response time for answering a query.

The algorithmic core problem that underlies the above applications is the single-source
shortest-path problem on a given directed graph with non-negative edge lengths related to
a layout of the graph which is also provided. The particular graph is quite large (though
sparse), and hence only space requirements are acceptable that are linear in the number of
nodes. One of the features of travel planning is the fact that the network hardly changes
for a certain period of time while there are many queries for shortest paths. This justifies
a heavy preprocessing of the network to speed up the queries (see e.g., [7, 9]). Although
pre-computing and storing the shortest paths for all pairs of nodes would give us “constant-
time” shortest-path queries, the quadratic space requirement for traffic networks with more
than 10° nodes makes it prohibitive. The most commonly used approach for answering
shortest path queries concerns variants of Dijkstra’s algorithm [1], targeting at reducing
its search-space (the number of nodes visited by the algorithm).

In the first part of this thesis, we explore the possibility to reduce the search space of
Dijkstra’s algorithm by using precomputed information that can be stored in O(n + m)
space. We can use a given layout of the graph to extract geometric information to answer
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Figure 1.1: The search space of DIJKSTRA’S ALGORITHM (left) and DIJKSTRA’S ALGO-
RITHM WITH PRUNING using bounding boxes (right).

the on-line queries fast. (Figure 1.1 gives an illustrative example for a street network.)
We use a very fundamental observation on shortest paths. In general, an edge that is
not the first edge on a shortest path to the target can be safely ignored in any shortest
path computation to this target. More precisely, we apply the following concept. In the
preprocessing, for each edge e a set of nodes S(e) is computed which are the nodes that
can be reached by a shortest path starting with e. While running Dijkstra’s algorithm,
those edges e for which the target is not in S(e) are ignored.

As storing all sets S(e) would need O(mn) space, we relax the condition by storing a
geometric object for each edge that contains at least the nodes in S(e). We will call such
an object a shortest-path container as it contains (at least) the targets of shortest paths.
The shortest-path queries are then answered by Dijkstra’s algorithm restricted to those
edges for which the target node is inside their associated geometric object. Note that this
method does in fact still lead to a correct result, but may increase the number of visited
nodes to more than the strict minimum (i.e., the number of nodes in the shortest path). In
order to generate the geometric objects, a layout L : V — R? is used. For the application
of travel information systems, such a layout is given by the geographic locations of the
nodes. It is however not required that the edge lengths are derived from the layout. In
fact, for some of our experimental data this is not even the case.

We would like to mention that a particular type of geometric objects, the angular
sectors, has been introduced in [7] for the special case of a time table information system.
Our results, however, are more general in two respects: (a) we examine the impact of
various different geometric objects; and (b) we consider Dijkstra’s algorithm for general
embedded graphs. In Section 2.3, we present an extensive experimental study comparing
the impact of these objects using real-world test data from railway and street networks. It
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turns out that a significant improvement can be achieved by using other geometric objects
than angular sectors.

The following section concerns the dynamic version of the above mentioned scenario;
namely, the case where the graph may dynamically change over time as streets may be
blocked, built, or destroyed, and trains may be added or canceled. In this work, we present
new algorithms that dynamically maintain geometric containers when the weight of an edge
is increased or decreased (note that these cases cover also edge deletions and insertions).
We also report on an experimental study with real-world railway data. Our experiments
show that the new algorithms are 2-3 times faster than the naive approach of recomputing
the geometric containers from scratch.

Our dynamic algorithms are perhaps the first results towards an efficient algorithm
for the dynamic single-source shortest-path problem without using the output complexity
model — introduced in [10, 11] and extended in [12, 13] — under which algorithms for the
dynamic single-source shortest-path problem are usually analyzed. We would also like to
mention that existing approaches for the dynamic all-pairs shortest paths problem (see
e.g., [14, 15, 16, 17, 18], and [19] for a recent overview) are not applicable to maintain
geometric containers, because of their inherent quadratic space requirements.

In [20, 21], a speed-up technique is introduced that is very similar to the geometric
containers in Section 2.3 but uses—at least theoretically—more than linear space. The
graph is partitioned into regions and the shortest-path container for an edge is not a
geometric object but a bit-vector where each bit corresponds to one region. A bit is set
for an edge if a shortest path to a node in the corresponding region exists that starts with
this edge. Also this method does in fact still lead to a correct shortest path, and if a node
t is inside a marked region for an edge e but no shortest path to this node starts with the
edge e, then shortest-path queries to ¢ may unnecessarily consider the edge e.

Apart from their impressing speed-up factors, bit-vectors as shortest-path containers
have the advantage that the preprocessing can be realized without the computation of
all-pairs shortest paths. In fact, it is sufficient in practice to perform a single-source
shortest-path computation for all nodes that are on the boundary of a region. This insight
substantially reduces the preprocessing step.

In Section 2.5, we compare the impact of different geometric partitioning methods like
grids, quadtrees or kd-trees. Furthermore, we examine a two-level approach for the bit-
vectors which reduces the space requirement but maintains the speed improvement. The
two-level bit-vectors compress the bits for nodes that are far apart and therefore exact
information is less important for the shortest-path search.

In Chapter 3, the shortest-path containers are compared with other known speed-up
techniques. The further techniques that we consider are the classic goal-directed and
bidirectional search, as well as a multi-level approach for shortest-path computations. In
a goal-directed search [22], a potential function is added to the priorities in the priority
queues. If the potential function is chosen carefully, the search is pushed towards the
target while a correct shortest-path can be guaranteed. A bidirectional search starts two
searches simultaneously at the source and at the target node towards the source. If the
two search horizons meet, a shortest path from the source to the target can be composed of



12 CHAPTER 1. INTRODUCTION

two sub-paths in the two search spaces. The multi-level approach [23] enriches the graph
by additional edges which represent shortest path. The graph is decomposed by a node
separator and the additional edges connect the separator nodes among each other and with
the nodes in the adjacent region.

Even more important than the comparison of the 4 speed-up techniques is the evaluation
of all 16 combinations. We examine and discuss which techniques combine well and for
which combinations the speed-up does not scale.

The last chapter of the first part of this thesis concerns methodological issues regarding
our implementation, which have been carried out in C++. Implementing and supporting
that many variations of Dijkstra’s algorithm in C++ is a tedious task if it is not planned
carefully. We employ several techniques to maintain a common code base that is at the
same time small, flexible and efficient. We use a blend of the design pattern template
method [24], parameterized inheritance [25, 26], and template meta-programming [27, 28].

Adding functionality to graph algorithms can be achieved by the design pattern tem-
plate method [24] or an extension of the design pattern wvisitor, the approach of the BOOST
graph library [29]. Our work deviates from the latter and is closer to the former, which
it actually enhances to grasp parts of aspect-oriented programming. Aspect-oriented pro-
gramming tries to provide a modular way to overcome the single dimension of functional
decomposition by the design pattern template method (see e.g., [30]). More precisely, it
is necessary to change the inheritance hierarchy to create arbitrary combinations of as-
pects. To support aspect-oriented programming in C++, an extension of the C++ language
is proposed in [30]. However, such an extension can be avoided through the use of parame-
terized inheritance [26] (also known as mix-in classes [25]) and template meta-programming
[27, 28], which provides the base to a solution with standard C++ compilers.

Graph Drawing

The second part of this thesis is dedicated to graph drawing of large sparse graphs. In the
first chapter, we provide an overview over known algorithms that are currently known to
perform well even on large graphs. Algorithms in this area are often more a product of
algorithmic engineering than a clear algorithm with exact solution. Therefore, it is more
precise to say that we present groups of algorithms that share a common idea. The three
methods that are presented are the following:

Force-Directed Layout. The idea to embed a graph according to forces of springs is
due to Eades [31]. We will introduce it as an extension of a barycentric layout [32].
It has been extended later by [33, 34] with forces that reflect the structure of the
graph. Recently, three variations of a multi-level spring-embedder [35, 36, 37| have
been developed to use this approach for large graphs.

Spectral Layout. A spectral layout algorithm draws the graph with eigenvectors of a
matrix that is derived from the graph. Although this method is fairly old [38], it has
not drawn much attention by the graph drawing community until recently, where,
again, a multi-level variant made it feasible for large graphs [39].
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High-Dimensional Embedding. This very recent method constructs a drawing in a
very high-dimensional space first, and then, this drawing is projected to the plane
using principal component analysis [40]. The high-dimensional drawing is determined
with shortest-path trees, which fits nicely into the picture of this thesis.

After the presentation of the graph drawing techniques in Chapter 5, we describe an
application for bibliographic networks in Chapter 6, which combines methods of two of
them. It illustrates nicely how a concrete application can be engineered using and com-
bining ideas from the mainstream graph drawing algorithms. The bibliographic network
is visualized as a landscape where the text entities are represented by houses. The loca-
tion of the houses are determined with a spectral layout whereas the elevation is given
by a centrality measure. The surface of the landscape is computed with a variant of the
barycentric layout. However, the algorithm for the surface prevents edges and nodes of
the main graph to cross the surface. Therefore, the large and distracting graph is hidden
below the surface and only the most prominent papers are on the surface.

After this illustrative example, Chapter 7 presents an application of graph drawing
where the visualization itself is not the goal. The application stems from the scenario of
a timetable information system that answers customer queries for fast connections. As we
already mentioned in the first part of the thesis, these queries can be modeled as a special
variant of a shortest-path problem in a specific timetable graph [7]. Moreover, many of
speed-up techniques can be adopted to this application. For geometric speed-up techniques,
a layout of the graph is provided by the geographic location of the stations and bus stops.
Surprisingly, some providers for public transport do not maintain (accurate) coordinates for
their transportation network. This is mainly the case for local bus companies that can plan
and operate without much technical support. However, their timetables are integrated in
larger travel planning systems, which results in timetable graphs with a partially unknown
layout. Chapter 7 shows how to model the (re-)construction of a layout which can be used
for geometric speed-up techniques. A specific layout algorithm is presented that makes use
of the special structure of the graph. The results of the layout algorithm are evaluated
experimentally with the (simplified) timetable information system from [7].

The last chapter before the conclusion extends these results to general weighted undi-
rected graphs. Without any special structure of graphs, all three approaches of Chapter 5
can be used. We examine experimentally layouts created by these algorithms with three
geometric speed-up techniques (goal-directed search, shortest-path containers, and reach-
based routing). The geometric speed-up techniques are combined and compared with bidi-
rectional search, because bidirectional search can be applied without any preprocessing.
Where a layout is provided for the test graphs, it is included in the comparison.
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1.1 Definitions and Problem Description

1.1.1 Graphs

An (undirected) graph G is a pair (V, E), where V is a finite set of nodes and F' is a set
of edges, where an edge is an unordered pair {u,v} of nodes u,v € V. If the edges are
ordered pairs (u,v) of nodes u,v € V', we call the graph directed. Throughout this thesis,
the number of nodes |V| is denoted by n and the number of edges |E| is denoted by m.
For a node u € V, the number of outgoing edges [{(u,v) € E}| is called the degree of the
node. Given edge weights [ : E — Ry, the weighted degree of u is Z(M)eE l(u,v).

A graph (without multiple edges) can have up to O(n?) edges. We call a graph sparse,
if m € O(n), and we call a graph large, if one can only afford a memory consumption in
O(n). In particular, for large sparse graphs O(n?) space is not affordable.

A path in G is a sequence of nodes (uy, . .., ux) such that {u;, u;.1} € Eforall 1 <i < k.
If G is directed, a path must respect the direction of the edges, i.e. (u;,u;11) € E for all
1 <i< k. A path with u; = uy, is called a cycle.

Given edge weights [ : £ — R (“lengths”), the length of a path P = (uy, ..., uy) is
the sum of the lengths of its edges I(P) := >, ., l(w;, ui11). For two nodes s,t € V, a
shortest s-t path is a path of minimal length with w; = s and uy = t. The (graph-theoretic)
distance d(s,t) of s and ¢t is the length of a shortest s-t path.

We define the reverse graph Gie, of a directed graph G = (V, E) as the graph G, =
(V, Erey) With Erey = {(u,v)|(v,u) € E}. If the graph is weighted by [ : E — R, the reverse
graph is weighted by l.e,(u,v) = [(v,u). In words, the reverse-graph is the graph G with
all edges reversed. It is easy to see that (s,...,t) is a shortest path from s to ¢ in G iff
(t,...,s is a shortest path in G, with the same edges reversed.

A layout of a graph G = (V,E) is a function L : V — RY that assigns each node a
position in R? with d € N. A layout L : V — R? of a graph is called balanced, iff the center
of gravity is the origin or, more formally, + >~ _, L(v) = 0. Most layouts will be in the
Euclidean plane, i.e. d = 2. For ease of notation, we will sometimes identify a node v € V
with its location L(v) € R? in the plane, if the layout is fixed. The Euclidean distance
between two nodes u,v € V' is then denoted by ||u — v]|.

1.1.2 Shortest Path Problem

Let G = (V, E) be a directed graph whose edges are weighted by a function [ : £ — R.
We interpret the weights as edge lengths in the sense that the length of a path is the sum
of the weights of its edges. The (single-source single-target) shortest-path problem consists
in finding a path of minimum length from a given source s € V' to a given target t € V.
Note that the problem is only well defined for all pairs, if G does not contain negative
cycles (cycles with negative length). In the presence of negative weights but not negative
cycles, it is possible, using Johnson’s algorithm [41], to convert in O(nm + n*logn) time
the original edge weights [ : £ — R to non-negative edge weights I’ : E — R{ that result
in the same shortest paths. Hence, in the rest of this thesis, we can safely assume that
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1 for all nodes u € V set dist(u) := o0
2 initialize priority queue @ with source s and set dist(s) :=0
3 while priority queue @ is not empty
4 get node u with smallest tentative distance dist(u) in @
5 for all neighbor nodes v of u
7 set new-dist := dist(u) + I(u,v)
8 if new-dist < dist(v)
9 if dist(v) = 00
10 insert neighbor node v in ) with priority new-dist
11 else
12 set priority of neighbor node v in () to new-dist
13 set dist(v) := new-dist

Algorithm 1: DIJKSTRA’S ALGORITHM.

edge weights are non-negative. Throughout the thesis we also assume that for all pairs
(s,t) € V x V| the shortest path from s to ¢ is unique. (This can be achieved by adding a
small fraction to the edge weights, if necessary.)

The classical algorithm for computing shortest paths in a directed graph with non-
negative edge weights is that of Dijkstra [42] (Algorithm 1). The algorithm maintains, for
each node v € V', a label dist(v) with the current tentative distance. The algorithm uses
a priority queue () containing the nodes that build the current search horizon around s.
Nodes are either unvisited (i.e. dist(u) = c0), in the priority queue, or finished (already
removed from the priority queue). It is easy to verify that nodes are inserted at most
once in the priority queue if the extracted node u in line 4 is the node with the smallest
tentative distance in the priority queue and all edge weights are non-negative. Thus, the
labels are updated while the algorithm visits the nodes of the graph with non-decreasing
distance from the source s.

In order to compute a shortest path tree, one has to remember that u is the predecessor
of v if a shorter path to v has been found (i.e. between line 8 and 9). DIJKSTRA’S
ALGORITHM computes the shortest paths to all nodes in the graph. If only one shortest
path is needed to a target node t € V, the algorithm can stop if the target ¢ is removed
from the priority queue in line 4. If DIJKSTRA’S ALGORITHM is executed more than once,
the initialization of dist in line 1 for each run can be omitted by introducing a global
integer variable time and replacing the test dist(v) = oo by a comparison of the time
with a time stamp for every node. (See e.g., [7] for a detailed description.)

The asymptotic time complexity of DIJKSTRA’S ALGORITHM depends on the choice
of the priority queue. For general graphs, Fibonacci heaps [43] still provide the best
theoretical worst-case time of O(m-+nlogn). For sparse graphs, binary heaps result in the
same asymptotic time complexity. Even more, binary heaps are (1) easier to implement
and (2) perform better for many instances in practice [44].

For special cases of edge weights, better algorithms are known. If edge weight are
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integral and bounded by a small constant, Dial’s implementation [45] with an array of
lists (“buckets”) provides a priority queue where all operations take constant time. An
extension with average linear complexity for uniformly distributed edge weights is presented
in [46, 47]. Note however, that the better a speed-up technique works, the smaller the search
front is, and the less important the priority queue is.

1.2 Speed-up Techniques

In this section, we present known speed-up techniques with which we will compare and
combine shortest path containers (Chapter 2.3). In all cases, our base algorithm is Dijk-
stra’s algorithm as the speed-up techniques rely on the fact that Dijkstra’s algorithm does
not need to visit all nodes in the graph.

1.2.1 Bidirectional Search

Figure 1.2: Bidirectional search performs two searches “in parallel,” a forward and a back-
ward search. The algorithm stops when a node has been removed from both priority
queues. A shortest path consists of a path from the source s to a node in the intersection
of the search horizons and continues to the target ¢.

As depicted in Fig. 1.2, the bidirectional search simultaneously performs two searches:
a ‘normal,” or forward, variant of the algorithm, starting at the source node; and a so-
called reverse, or backward, variant of Dijkstra’s algorithm, starting at the destination
node. With the reverse variant, the algorithm is applied to the reverse graph, i.e., a
graph with the same node set V' as that of the original graph, and the reverse edge set
E={(u,v) ]| (v,u) € E}.

Let dist¢(u) be the distance labels of the forward search and dist,(u) the labels of the
backward search, respectively. The algorithm can be terminated when one node has been
designated to be permanent by both the forward and the backward algorithm. Then, the
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Figure 1.3: The search space of a bidirectional search for the same query as in Fig. 1.1.

shortest path is determined by the node v with minimum value dist;(u) + dist,(u) and
it can be composed of the shortest path from the start node s to u, (found by the forward
search), and the shortest path from u to the destination ¢ (found by the reverse search).
Note that the node u itself is not necessarily marked as permanent by both searches.

Intuitively, the visited nodes in a unidirectional algorithm form a ball around the source
of the search. For grid-like graphs such as transportation networks, one can expect that the
search space is roughly r? where r denotes the number of nodes on the shortest path. In the
bidirectional search, however, two searches with half of the radius are performed (Fig. 1.3).
The number of visited nodes is therefore approximately 2 - (%)2 = %7"2. This estimation is
not completely achieved in practice, because the search horizon may be limited by the size
of the graph. However, bidirectional search scales fairly well in combination with other
speed-up techniques.

One degree of freedom in bidirectional search is the choice whether a forward or back-
ward step is executed. Common strategies are to choose the direction with the smaller
priority queue, to select the direction with the smaller minimal distance in the priority
queue, or to simply alternate the directions. As our goal is to reduce the total number of
visited nodes, the first strategy usually results in the fastest algorithm.
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1.2.2 Goal-Directed Search or A*

Figure 1.4: Goal-directed search uses modified edge lengths ' (u,v) := l(u, v) —pt(v) + pe(u)
where py(v) provides a lower bound for the length of a shortest v-t paths. A path from s
to t is a shortest s-t path according to I’, if and only if it is a shortest s-t path according
to [.

This technique, originating from AI, modifies the priority of active nodes to change the
order in which the nodes are processed. More precisely, a goal-directed search adds to the
priority dist(u) a potential p; : V — R{ (often called heuristic) depending on the target
t of the search [22]. The modified priority of a node v € V is therefore dist(v) + p(v).
With a suited potential, the search can be pushed towards the target thereby reducing the
running time while the algorithm provably returns a shortest path. (See Fig. 1.5.)

Intuitively speaking, one can compare a path in traffic network with a walk in a land-
scape. If you add a potential, the affected region is raised. If the added potential is small
next to the target, you create a valley around the target. As walking downhill is easier
than uphill, you are likely to hit the target sooner than without the potential added.

We will now use an alternative formulation of goal-directed search to discuss its cor-
rectness. Equivalently to modifying the priority, one can change the edge lengths such that
the search is driven towards the target ¢ (illustrated in Fig. 1.4). In this case, the weight
of an edge (u,v) € E is replaced by I'(u,v) := l(u,v) — pi(u) + ps(v). The length of a s-v
path P = (s = vy, v9,...,U511 = v) is then

ZI(P) = Zl/(%viﬂ) = Zl(vi,viﬂ) — pe(vi) + pe(vig1)
k
= —pi(s) + pi(v) + Zl(viavm)
= —p(s) + pe(v) + I(P).

Up to the constant —p,(s), the length of P with modified edge lengths is therefore p;(u).
In particular, the length of an s-t path with modified edge lengths is the same up to the
constant —p;(s) + p(f). Therefore, a path from s to t is a shortest s-t path according to
', if and only if it is a shortest s-t path according to I.
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Figure 1.5: The search space of a goal-directed search for the same query as in Fig. 1.1.

If all modified edge lengths ’(u, v) are non-negative, we can apply Dijkstra’s algorithm
to the graph with modified edge lengths I’ and get a shortest s-t path according to [. This
leads to the following definition:

Definition 1 Given a weighted graph G = (V,E),l : V — RJ, a potential p : V — R is
called feasible, if [(u,v) — p(u) + p(v) > 0 for all edges e € E.

Usually, potentials are used that estimate the distance to the target. In fact, it can be
shown that a feasible potential p is a lower bound of the distance to the target t if p(¢) <
0. Note that every feasible potential p can be transposed into an equivalent potential
P’ (v) = p(v) —p(t), which is a lower bound of the distance to the target. We can, therefore,
assume without loss of generality that the potential is indeed a lower bound. The tighter
the bound is, the more the search is attracted to the target. In particular, a goal-directed
search visits only nodes on the shortest path, if the potential is the distance to the target.

In an actual implementation of goal-directed search, you will most likely use the first
formulation, namely to modify the priority with which nodes are inserted in the priority
queue. This has the advantage that p is called (at most) once per edge instead of two calls.
Furthermore, the distance labels of the nodes are unmodified. This improves the numerical
stability and simplifies the handling of the labels (in particular in combinations with other
speed-up techniques).
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We will now present three scenarios and how to obtain feasible potentials in these cases:

Given a layout L :V — R? of the graph where the length of an edge is correlated with
the distance of its end nodes. A feasible potential for a node v can be obtained using
the Euclidean distance (the “flight distance”) ||L(v) — L(t)|| to the target t.

In case the edge lengths are in fact the Euclidean distances, the Euclidean distance
I|IL(v) — L(t)]| itself is already a feasible potential, due to the triangular inequal-
ity. Using this potential, an edge that points directly towards the destination has a
modified edge length of zero while the modified length of an edge that points in the
opposite direction is twice the distance.

If the edge lengths are mot the Euclidean distances of the end nodes, a feasible
potential can be defined as follows: let v,,,, denote the maximum “edge-speed”
I|L(u) — L(v)||/l(u,v), over all edges (u,v) € E. The potential of a node u can now
be defined as p(u) = ||L(u) — L(t)||/Vmaz- The maximum velocity can be computed
in a preprocessing step by a linear scan over all edges. Numerical problems can be
reduced if the maximum velocity is multiplied by 1 + € for a small € > 0.

This approach can be extended in a straight forward manner to other metric spaces
than (R? ||-]|). In particular, it is possible to use more than two dimensions or other
metrics like the Manhattan metric. Finally, the expensive square root function to
compute the Euclidean distance can be replaced by an approximation.

Usually, the speed-up for goal-directed search is around 2 if the distance is estimated
with a metric.

With a preprocessing, it is possible to gather information about the graph that can be

used to obtain improved lower bounds. In [48], a small fixed-sized subset L C V of
“landmarks” is chosen. Then, for all nodes v € V, the distance d(v,1) to all nodes
[ € L is precomputed and stored. These distances can be used to determine a feasible
potential. For each landmark I € L, we define the potential pgl)(v) = d(v,1) —d(t,1).
Due to the triangle inequality d(v,l) < d(v,t) + d(t,v), the potential pgl) is feasible
and indeed a lower bound for the distance to t. The potential is then defined as the
maximum over all potentials: p,(v) := max{p\’(v):{ € L}. It is easy to show that
the maximum of feasible potentials is a feasible potential, too.
For landmarks that are situated next to or “behind” the target t, the lower bound
pgl) (u) should be fairly tight, as shortest paths to ¢ and [ most likely share a common
sub-path. Landmarks in other regions of the graph, however, may attract the search
to themselves. This insight justifies to consider, in a specific search from s to ¢, only
those landmarks with the highest potential pgl) (u). The restriction of the landmarks
in use has the advantage that the calculation of the potential is faster while its quality
is improved.

Using landmarks, goal-directed search is usually up to 10 times faster than plain
Dijkstra.
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For restricted shortest-path problems, performing a single run of an unrestricted Di-
jkstra’s algorithm is a relatively inexpensive operation. Examples are travel planning
systems for scheduled vehicles like buses or trains. The complexity of the problem
is much higher if you take connections, vehicle types, transfer times, or traffic days
into account.

It is therefore feasible to perform a shortest-path computation to find tighter lower
bounds [8]. More precisely, you run Dijkstra’s algorithm on a condensed graph of
the full, time-expanded graph: The nodes of this graph are the stations (or stops)
and an edge between two stations exists iff there is a non-stop connection. The edges
are weighted by the minimal travel time. The distances of all v € V' to the target
t can be obtained by a single run of Dijkstra’s algorithm from the target t with
reversed edges. They provide a feasible potential for the time-expanded graph, since
the distances are a feasible potential in the condensed graph and an edge between
two stations in the time-expanded graph is at least as long as the corresponding edge
in the condensed graph.

1.2.3 Multi-Level Approach

Level 1

Level 0 = G

Figure 1.6: The multi-level approach enhances the graph G' by adding a coarsened graph.
The new level is induced by a separator Sy (black nodes). An edge in the coarsened graph
(level 1) represents a shortest path in the original graph (level 0). Inter-level edges connect
all nodes in a connected component of G\S; to the separator nodes on the border of the
connected component.

This speed-up technique requires a preprocessing step at which the input graph G =
(V, E) is decomposed into [+1 (I > 1) levels and enhanced with additional edges represent-
ing shortest paths between certain nodes. The additional edges can be seen as “bridges” or
“short-cuts” for Dijkstra’s algorithm. (Of course, the “short-cuts” are not shorter concern-
ing the length of the path but only the number of visited edges.) An illustrative example
for [ = 1 is shown in Fig. 1.6. The decomposition of the graph depends on separators
S; C V for each level, called selected nodes at level i: Sp :=V D 57 D ... D 5. These
node sets can be determined on diverse criteria. In a simple, but practical implementation,
they consist of the desired numbers of nodes with highest degree in the graph. (However,
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Figure 1.7: The search space using a multi-level approach for the same query as in Fig. 1.1.

with domain-specific knowledge about the central nodes in the graph, better separators
can be found [23].)

There are three different types of edges being added to the graph: upward edges, going
from a node that is not selected at one level to a node selected at that level; downward
edges, going from selected to non-selected nodes; and level edges, passing between selected
nodes at one level. The weight of such an edge is assigned the length of a shortest path
between the end-nodes.

To find a shortest path between two nodes s and ¢, then, it suffices for Dijkstra’s
algorithm to consider a relatively small subgraph of the multi-level graph (Fig. 1.7). The
hierarchical structure of the multi-level graph entails that a shortest path from s to ¢t can
be represented by a certain set of upward and of downward edges and a set of level edges
passing at a maximal level that has to be taken into account.

1.2.4 Reach-Based Routing

This fairly recent approach prunes the search space based on a centrality measure called
“reach” [49]. Intuitively, a node in the graph is important for shortest paths, if it is situated
in the middle of long shortest paths. Nodes that are only at the beginning or the end of
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Figure 1.8: The reach on the path P of a node v is defined as the minimum of the length of
P, and the length of P,;. The reach r(v) is defined as the maximum reach for all shortest
s-t paths in G containing v.

long shortest paths are less central. This leads to the following formal definition:

Definition 2 (Reach) Given a weighted graph G = (V,E),l: E — R{ and a shortest s-t
path P, the reach on the path P of a node v € P is defined as r(v, P) := min{l(Ps,),(Py)}
where Py, and P, denote the sub-paths of P from s to v and from v to t, respectively (see
Fig. 1.8). The reach r(v) of v € V is defined as the mazimum reach for all shortest s-t
paths in G containing v.

In a search for a shortest s-t path Py, a node v € V' can be ignored, if (1) the distance
[(Py,) from s to v is larger than the reach of v and (2) the distance I(P,;) from v to ¢
is larger than the reach of v. While performing Dijkstra’s algorithm, the first condition
is easy to check, since [(Ps,) is already known. The second condition is fulfilled if the
reach is smaller than a lower bound of the distance from v to ¢t. (Suited lower bounds
for the distance of a node to the target are already described for goal-directed search in
Section 1.2.2.) Lines 7-13 of algorithm 1 are therefore not performed if conditions (1) and
(2) are certainly fulfilled.

To compute the reach for all nodes, we perform a single-source all-target shortest-
path computation for every node. With a modified depth first search on the shortest-
path trees, it is easy to compute the reach of all nodes using the following insight: For
two shortest paths P, and Ps, with a common node v € P,, and v € Ps,, we have
max{r(v, Ps;), (v, Pyy)} = min{l(Ps,), max{l(P,.),(P,,)}}. The preprocessing for sparse
graphs needs, therefore, O(n?logn) time and O(n) space. (In case such a heavy prepro-
cessing is not acceptable, [49] also describes how to compute upper bounds for the reach.)

Using reach-based routing, a speed-up factor up to 20 has been reported in [49]. How-
ever, this effect decreases if reach-based routing is combined with bidirectional search.
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Chapter 2

Shortest-Path Containers

This chapter introduces the abstract concept of shortest-path containers. The basic idea
behind a shortest-path container is to store, for each edge, some information to decide for
which targets of shortest-path queries the edge might be necessary. We seek for methods
that can guarantee that at least the target nodes for shortest-path that start with this
edge are inside the container. In this case, a modified version of Dijkstra’s algorithm can
provably find a shortest path, but usually visits much fewer nodes. A special variant of
this method has been presented in [7] where the containers are angular sectors in the plane
and the graph is a timetable graph for railways.

The next section defines shortest-path containers and shows how to use them. Then,
in Sect. 2.2, we discuss how to generate shortest-path containers. Sect. 2.3 contains an
experimental study about constant-sized geometric objects that can be used as shortest
path containers. The following section presents first methods to maintain these geometric
objects in case the graphs (and therefore its shortest paths) change. In the last section
of this chapter, we discuss an approach without the condition that a container must have
constant size.

2.1 Definition of Shortest-Path Containers

We will now formally define the shortest-path containers which help to reduce the search
space of Dijkstra’s algorithm. Containers are used to keep the nodes which are potentially
useful for shortest path computations. This idea gives rise to DIJKSTRA’S ALGORITHM
WITH PRUNING (Algorithm 2), which reduces the search space by examining at each it-
eration only a subset of the neighbors of a node (line 5a); the differences to DIJKSTRA’S
ALGORITHM (Algorithm 1) are shown in boldface. The idea is illustrated in Fig. 2.1. The
condition in line 5a is formalized by the notion of a consistent container.

Definition 3 Let G = (V,E), | : E — R be a weighted graph. We call a set of nodes
C C V a container. A container C associated with an edge (u,v) is called consistent, if
for all shortest paths from u to t that start with the edge (u,v), the target t is in C.

25
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Figure 2.1: DIJKSTRA’S ALGORITHM is run for a node u € V. Let the white nodes be
those nodes that can be reached on a shortest path using the edge (u,v). A geometric
object is constructed that contains these nodes. It may contain other nodes, but this does
only affect the running time and not the correctness of DIJKSTRA’S ALGORITHM WITH
PRUNING.

In other words, C'(u,v) is consistent, if S(u,v) C C(u,v), where S(u,v) represents
the set of nodes = for which the shortest u-z path starts with the edge (u,v). Note that
further nodes may be part of a consistent container. However, at least the nodes that can
be reached by a shortest path starting with (u,v) must be in C'(u,v). We will refer to the
additional nodes as wrong nodes, since they lead us the wrong way.

Theorem 4 Let G = (V,E), [ : E — R be a weighted graph and for each edge e let C(e)
be a consistent container. Then DIJKSTRA’S ALGORITHM WITH PRUNING finds a shortest
path from s to t.

Proof: Consider the shortest path P from s to ¢ that is found by DIJKSTRA’S ALGORITHM.
If for all edges e € P the target node t is in C(e), the path P is found by DIJKSTRA’S
ALGORITHM WITH PRUNING, because the pruning does not change the order in which the
edges are processed. A sub-path of a shortest path is again a shortest path, so for all
(u,v) € P, the sub-path of P from u to t is a shortest u-t path. Then by definition of
consistent container, t € C(u,v). O

This idea of pruning can be extended to bidirectional search (see Sect. 1.2.1). A second
set of containers is determined by running the preprocessing a second time on the reversed
graph Gie, (see Sect. 1.1). We will refer to the geometric objects of this graph with reversed
edges as reverse containers. A forward step in the bidirectional search checks the normal
containers whereas a backward step uses reverse containers.
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1 for all nodes u € V set dist(u) := o0

2 initialize priority queue @ with source s and set dist(s) := 0

3 while priority queue @ is not empty
3a if u =t return

4 get node u with smallest tentative distance dist(u) in @

) for all neighbor nodes v of u
5a if t € C(u,v)

7 set new-dist := dist(u) + I(u,v)

8 if new-dist < dist(v)

9 if dist(v) = 00
10 insert neighbor node v in @) with priority new-dist
11 else
12 set priority of neighbor node v in () to new-dist
13 set dist(v) := new-dist

Algorithm 2: DIJKSTRA’S ALGORITHM WITH PRUNING. Neighbors are only visited, if the
edge (u,v) is in the consistent container C(u,v). (Differences to DIJKSTRA’S ALGORITHM
(Algorithm 1) are printed in bold face.)

The quality of a set of containers was evaluated according to the following criterion.

Definition 5 Let C' denote a set of containers and for each edge e € E let S(e) C V denote
the set of nodes that can be reached by a shortest path starting with e. For both sets, we
count the number of nodes inside all containers: Y |{t € C(e)}| and Y .x|{t € S(e)}|.
Both sums are bounded by n - m. We therefore define the quality of C' as:

n-m-—>y  z|{t € Cle)}|
n-m— . pl{t € S(e)}

This fraction is biased by the number of correct nodes. It equals 1, if the number of wrong
nodes inside containers is zero, while it becomes 0, if all containers in C' contain the entire
graph.

2.2 Creating Consistent Containers

We now describe in detail how to compute C(s,x) for all edges (s,z) € E. The com-
plete algorithm is shown as Algorithm 3. (The differences to DIJKSTRA’S ALGORITHM
(Algorithm 1) are printed in bold face.)

Recall that S(s,z) is the set of all nodes ¢ with the property that there is the (unique)
shortest s-t path that starts with the edge (s,z). To determine S(s,x) for every edge
(s,z) € E, Dijkstra’s algorithm is run for each node s € V. We keep a node array
Source Edge where the entry SourceEdge[v], v € V, stores the first edge (s, x) in a shortest
s-v path in G. This can be constructed in a way similar to that of a shortest path tree:
Every time the distance label of a node v is adjusted via (u,v), we set SourceEdge[v] to
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0 for all seV do
1 for all nodes u € V' set dist(u) := 0o
2 initialize priority queue @) with source s and set dist(s) :=0
3 while priority queue @) is not empty
4 get node u with smallest tentative distance dist(u) in @
4a if u # s enlarge C(SourceEdge[u]) to contain u
5 for all neighbor nodes v of u
7 set new-dist := dist(u) + I(u,v)
8 if new-dist < dist(v)
9 if dist(v) = 00
10 insert neighbor node v in ) with priority new-dist
11 else
12 set priority of neighbor node v in () to new-dist
13 set dist(v) := new-dist
14 ifu=s
15 set SourceEdge[v] := (s,v)
16 else
17 set SourceEdge[v] := SourceEdge|u]

Algorithm 3: CREATE-CONTAINERS. Running a modification of DIJKSTRA’S ALGORITHM
(Algorithm 1) for all nodes s € V' to create consistent containers. (Differences to DIJK-
STRA’S ALGORITHM are printed in bold face.)

(u,v), if u = s, and to Source Edge[u], otherwise (lines 14-17). When a node u is removed
from the priority queue, Source Edge[u] holds the outgoing edge of s with which a shortest
path from s to u starts. Enlarging C(SourceEdge[u]) to contain u in line 4a therefore
constructs consistent containers C(s,x) for all neighbors z of s.

Since Dijkstra’s algorithm runs in O(nlogn) time for sparse graphs, the overall running
time is O(n?logn) plus the time to construct the containers. The storage requirement is
O(n) plus the space required to store the containers.

Some types of containers are not possible to be constructed on-line by enlarging them
when a new node is inserted. In other words, no efficient method exists to update a
container C'(s, x) with a new node u that has turned out to be in S(s, x), and it is necessary
to actually create the sets S(s,x) in memory in line 4a. The sets S(s,z) can then be used
to construct the containers C(s, x) off-line, after DIJKSTRA’S ALGORITHM has finished for
s. Remark that the storage requirement is still O(n), because - \cp|S(s,2)| < n.

For very large graphs, it may be necessary to parallelize CREATE-CONTAINERS. In fact,
the results for each node v € V' in line 0 are indeed independent and can be distributed
to different machines. Furthermore, it may be acceptable to compute the shortest-path
containers only for a subset of the edges, thereby avoiding the all-pairs shortest-path com-
putation. More precisely, line 0 loops only over a subset of the nodes in this case. Figure 2.2
shows the average search space of DIJKSTRA’S ALGORITHM WITH PRUNING with an in-
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Figure 2.2: Average search space relative to DIJKSTRA’S ALGORITHM if the preprocessing
is only performed for a subset of the nodes.

creasing subset of nodes. For a given size of the subset, the nodes of highest degree are
selected. Among nodes of same degree, the selected nodes are chosen at random. Fig-
ure 2.2 depicts for 17 street networks the average search space relative the search space
of DIJKSTRA’S ALGORITHM. Remark that for most of the graphs, the reduction for 20%
preprocessed nodes is already similar to a full preprocessing (100%).

2.3 Geometric Containers of Constant Size

The shortest-path containers that we are using are geometric objects. Recall from Sec-
tion 1.1 that a layout L : V — R? of the graph in the Euclidean plane is given. In
Section 2.1, we explained how consistent containers are used to prune the search space of
DIJKSTRA’S ALGORITHM. In particular, the correctness of the result does not depend on
the layout of the graph that is used to construct the containers (in contrast to the impact
of the container for speeding up Dijkstra’s Algorithm). To use the containers for speeding
up Dijkstra’s algorithm and thus be able to answer on-line queries fast, we require that a
geometric container has a description of constant size and that its containment test takes
constant time. We will first provide a list of the geometric objects and describe how to con-
struct them. Then, in the subsequent subsection, we describe in detail the computational
statistics that we performed. The corresponding results and conclusions are presented in
the last subsection. Preliminary portions of this work appeared in [50].
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2.3.1 Geometric Objects

This section describes the geometric containers that we used in our tests. Except for
the convex hull, all of them have constant size and therefore the containment test takes
constant time. In particular, we have considered the following types of containers for an
edge (u,v):

Circle Centered at Tail (Circle) For each edge (u,v), the circle with
center at u and minimum radius that contains S(u,v) is computed.
This is the same as finding the maximal distance of all nodes in
S(u,v) from u. The size of such an object is constant, because the
only value that needs to be stored is the radius' which leads to
a space consumption that is linear in the number of edges. The
radius can be determined on-line by increasing it if necessary.

Ellipse. An extension of the circle is the ellipse with foci v and v and
minimum radius needed to contain S(u,v). It suffices to remember
the radius, which can be found on-line similarly as in the circle
case.

_ Angular Sector (AngularSect). Angular sectors are the objects that
‘ were used in [7]. For each edge (u,v) a node p left of (u,v) and a
node ¢ right of (u,v) are determined such that all nodes in S(u,v)
lie within the angular sector Z(p,u,q). The nodes p and ¢ are
chosen in a way that minimizes the angle Z(p,u,q). They can be
determined in an on-line fashion: If a new node w is outside the
angular sector Z(p,u,q), we set p := w if w is to the left of (u,v)
and ¢ := w if w is to the right of it. (Note that this is not necessarily
the minimum angle at v that contains all points in S(u,v).)

Circular Sector (CircularSect). By intersecting an angular sector with
a circle at the tail of the edge, we get a circular sector. Obviously
the minimal circular sector can be found on-line and needs only
constant space (two points and the radius).

Smallest Enclosing Circle (MinCircle). The smallest enclosing circle
is the unique circle with smallest area that includes all points. We
use the implementation in CGAL [51] of Welzl’s algorithm [52]
with expected linear running time. The algorithm works off-line
and storage requirement is at most three points.

'In practice, the squared radius is stored to avoid the computationally expensive square root function.
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Smallest Enclosing Ellipse (MinEllipse). The smallest enclosing el-
lipse is a generalization of the smallest enclosing circle. Therefore,
the search space using this container will be at most as large as for
smallest enclosing circles (although the actual running time might
be larger since the inclusion test is more expensive). Again, Welzl’s
algorithm is used. The space requirement is constant.

Bounding Box (BBox). This is the simplest object in our collection.
It suffices to store four numbers for each object, which are the
lower, upper, left and right boundary of the box. The bounding
boxes can easily be computed on-line while the shortest paths are
computed in the preprocessing.

Edge-Parallel Rectangle (Rect || Edge). Such a rectangle is not par-
allel to an axis, but to the edge to which it belongs. Thus, for each
edge, the coordinate system is rotated and then the bounding box
is determined in this rotated coordinate system. Our motivation
to implement this container was the insight that the target nodes
for an edge are usually situated in the direction of the edge. A
rectangle that targets in this direction might therefore be a bet-
ter model for the geometric region than one that is parallel to the
axes. Note that storage requirements are actually the same as for a
bounding box, but additional computations are required to rotate
the coordinate system.

Intersection of Rectangles (Intersection) The rectangle parallel to
the axes and the rectangle parallel to the edge are intersected,
which should lead to a smaller object. The space consumption of
the two objects sums up, but is still constant, and as both objects
can be computed on-line the intersection can be as well.

Smallest Enclosing Rectangle (MinRect). We allow the rectangle
to be oriented in any direction and search for one with smallest
area containing all points. The algorithm from [53] finds such a
rectangle in linear time. However, due to numerical inconsistencies
we had to incorporate additional tests to ensure that all points are
in fact inside the rectangle. As for the minimal enclosing circle,
this container has to be calculated off-line, but needs only constant
space for its orientation and dimensions.
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Smallest Enclosing Parallelogram (MinPara). A parallelogram is
a generalization of a rectangle, and surprisingly Toussaint’s idea
to use rotating calipers can been extended to find the smallest
enclosing parallelogram [54]. Space consumption is constant and
the algorithm is off-line, too.

Convex Hull. As the convex hull is the smallest enclosing convex poly-
gon of the points, it does not fulfill our requirement that containers
must be of constant size. It is included here, because it provides
a lower bound for all convex objects. If there is a best convex
container, it cannot exclude more points than the convex hull.

For some types of containers, it is obvious that they are at least as good as others.
In particular, if a container is a subset of another container, using the first container in
DIJKSTRA’S ALGORITHM WITH PRUNING excludes at least as many nodes as the second
container. If we assume that the distribution of the nodes is uniformly at random, the
expected number of nodes inside a geometric container is proportional to its area. The
larger the container, the larger the average number of wrong nodes should be.

2.3.2 Experimental Setup

We implemented the algorithm in C++ using GCC 2.95.3. We used the graph data struc-
ture from LEDA 4.3 (see [44]) as well as the priority queue and the convex hull algorithm
provided. I/O was done by the LEDA extension package for GraphML with Xerces 2.1.
For the minimal circles, ellipses and parallelograms, we used CGAL 2.4 [51]. In order to
perform efficient containment tests for minimal circles, we converted the result from ar-
bitrary precision to built-in doubles. To overcome numerical inaccuracies, the radius was
increased if necessary to guarantee that all points are in fact inside the container. For
minimal ellipses, we used arbitrary precision which affects the running time but not the
search space. Instead of calculating the minimal circle (or ellipse) of a point set, we deter-
mine the minimal circle (or ellipse) of the convex hull. This speeds up the preprocessing
for these containers considerably, because the convex hull could be computed with built-in
doubles. Although CGAL also provides an algorithm for minimal rectangles, we decided to
implement one ourselves, because one cannot simply increase a radius in this case. Due to
numeric instabilities, our implementation does not guarantee to find the minimal container,
but asserts that all points are inside the container. The convex hulls were computed with
LEDA [44]. The experiments were performed on an Intel Xeon with 2.4 GHz on the Linux
2.4 platform.
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It is crucial to this problem to do the statistics with data that stem from real applica-
tions. We are using two types of data:

Street Graphs. We have gathered street maps from various public Internet servers. They
cover some American cities and their surroundings. Unfortunately the maps did not
contain more information than the mere location of the streets. In particular, streets
are not distinguished from freeways, and one-way streets are not marked as such,
which makes these graphs bidirected with approximately Euclidean edge length. The
street networks are typically very sparse with an average degree hardly above 2. The
size of these networks varies from 1444 to 20466 nodes.

Railway Graphs. The railway networks of different European countries were derived
from the winter 1996/1997 time table. The nodes of such a graph are the stations
and an edge between two stations exists iff there is an non-stop connection. The
edges are weighted by the average travel time. In particular, here the weights do not
directly correspond to the layout. They have between 409 nodes (Netherlands) and
6884 nodes (Germany) but are not as sparse as the street graphs.

All test sets were converted to the XML-based GraphML file format [55] to allow a unified
processing.

We sampled random single-source single-target queries to determine the average number
of nodes that are visited by the algorithm. For an exact description, we need to define the
mean and variance of n samples.

Definition 6 (Mean and Variance) Givenn samples x = (x1,...,x,)" € R", the mean
value of x is defined as

_ 1L

Ti=— ) Iy

The (empirical) variance of x is defined as

n

1
2 ._ 2
S'_n—lg (xp — 7).

k=1

Sampling is based on the length of the (1 — L)-confidence interval on this average which
is 2tn_1,1_%sn_% (see, e.g., [56]), where th-11-2 denotes the 1 — $-quantile of Student’s
t-distribution with n — 1 degrees of freedom (where n is the number of samples, s the
standard error, and « our chosen error probability). The sampling was done until the
length of the 95%-confidence interval was smaller than 5% of the average search space.
For n > 100 we approximated the t-distribution by the normal distribution. Note that
the sample mean 7 and the standard error s can be calculated recursively with Z(,) =

s (@Fnony(n—=1) +2,) and 87,y = A5 |(n = 2)s7,_y + (n = V)T, ) + 27 — nf%n)], where

the subscripts in brackets mark the sample size. Using these formulas, it is possible to run
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Figure 2.3: Average number of visited nodes relative to DIJKSTRA’S ALGORITHM for all
graphs and geometric objects. The graphs are ordered according to the number of nodes.

random single-source single-target shortest-path queries until the length of the confidence
interval is small enough.

We are interested in two results: What is the average size of the search space and what
is the actual CPU time spent per search on average? The first number is independent
from implementation, compiler, CPU, and operating system, whereas the latter includes
the overhead that is introduced by a speed-up technique. As measurement for the search
space, we used the number of nodes that are put into the priority queue during the search.

2.3.3 Computational Results

Figure 2.3 depicts the results for railway and street networks. The average number of nodes
that the algorithm visited are shown. To enable the comparison of the result for different
graphs, the numbers are relative to the average search space of DIJKSTRA’S ALGORITHM
(without pruning). As expected, the pruning for circles around the tail is by far not as good
as the other methods. Note, however, that the average search space is still reduced to about
10% (25% for street networks). The only type of objects studied previously [7], the angular
sectors, result in a reduction to about 6% (10%), but if both are intersected, we get only
3.5% (7%). Surprisingly, the result for the simplest container (bounding boxes) is about
the same as for the better tailored containers (circular sectors, edge-parallel and smallest
enclosing rectangles, or parallelograms). Of course the results of more general containers
(e.g., smallest enclosing rectangle vs. bounding box) are better, but the differences are not
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Figure 2.4: Quality according to Definition 5 for all graphs and geometric objects. The
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sets and geometric objects.

The values for minimal ellipse and minimal parallelogram

are clipped. They use arbitrary precision and therefore their containment tests are much

slower.
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very big. Furthermore, the difference to our lower bound for convex objects (convex hull)
is comparatively small. The data sets are ordered according to their size. In most cases
the speed-up is better the larger the graph. This can be explained by the observation that
the search space of a lot of queries is already limited by the size of the graph.

In Figure 2.4, the quality according to Definition 5 is shown. Comparing Figures 2.3
and 2.4 confirms that the quality reflects the search space. Containers that result in few
visited nodes have a higher quality. Furthermore the quality is not so dependent on the
size of the graph, because the quality measure is normalized.

Finally, we examined the average running time. We depict them in Fig. 2.5, again
relative to the running time of the unmodified Dijkstra. It is obvious that the slightly
smaller search space for the more complicated containers does not pay off. In fact the
simplest container, the axis-parallel bounding box, results in the fastest algorithm.

2.4 Updating Containers

If a weight of an edge is changed, some containers must be updated to stay consistent.
Generally speaking, for every new shortest path (ug, uy, ..., ug_1, ux) in the graph, C(ug, uy)
has to be updated to include uy. If we maintain containers C™" for reversed edges (e.g., to
perform a bidirectional search), up must be added to C™V(ug_1, ug). (We will refer to the
containers for this graph with reversed edges as reverse containers and mark them with
the superscript “rev”.)

As running CREATE-CONTAINERS after each update is not desirable, we look for faster
methods to maintain consistent containers (but possibly with worse quality). If containers
are too large, then their quality is decreased but their consistency is preserved. The first
helpful observation is the fact that only a part of the containers may be too small.

In this section, we will present necessary conditions for new shortest paths when edge
weights increase or decrease. (Preliminary portions of this work appeared in [57].) They
enable us to maintain consistent containers without running completely from scratch
CREATE-CONTAINERS (Algorithm 3). Throughout the section, we will mark variables
before the update with the subscript “old” and updated values with the subscript “new”.

2.4.1 Increasing an edge weight

Let us first consider the case of increasing the weight of an edge (x,y) € E. The following
lemma is suited to restrict the set of containers that we have to update.

Lemma 7 Let G = (V,E), l : E — R be a weighted graph. Assume that the increase of
the weight of an edge (x,y) € E creates a new shortest s-t path Ppey in G. Then, before the
weight change, (xz,y) is the last edge of a shortest s-y path and the first edge of a shortest
x-t path.

Proof: Let P,4 denote the old shortest path from s to t as illustrated in Fig. 2.6. Since
the weight [(z,y) is increased, (z,y) € Poq. Let Py, denote the first part of this path Pyq
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Figure 2.6: When the weight of the edge (z,y) is increased, the source s of a new shortest
path from s to ¢ must be inside Sqq(z,y).

from s to y. Since a sub-path of a shortest path is again a shortest path, P, was the
shortest path from s to y. For symmetric reasons, the first edge of a shortest x-t path is
(z,y). O

By the definition of (reverse) containers, the first and last nodes of new shortest paths
can be described as follows.

Corollary 8 Let G = (V,E), I : E — R be a weighted graph. Assume that the increase of
the weight of an edge (x,y) € E creates a new shortest s-t path Ppey in G. Then

s e Chy(z,y) and t € Coulzx,y).
It is therefore sufficient to run a (modified) Dijkstra for all nodes in CXY(z,y) to update
(normal) containers and in Cyq(z,y) to update reverse containers.
Either Lemma 7 or Corollary 8 can be used to restrict the set of nodes for which
Dijkstra’s algorithm must be performed. The following lemma is suited to restrict Dijkstra’s
algorithm itself.

Lemma 9 Let G = (V,E), | : E — R be a weighted graph and let P,ey be a path from a
node s to a node t that has become a shortest path because of an increase of the weight of
an edge (z,y). Then, for all nodes u € Ppey:

dnew<3> U) < dnew(57 I) + lnew(q;; y) + dnew(y7 ’U,)

Proof: The new shortest path P, does not contain the edge (z,y), and the sub-path of
Pyew from s to u is also a shortest path that does not contain the edge (x,y). The right
hand side of the inequality is the length of some path from s to u containing (z,y). Since
shortest paths are assumed to be unique, the lemma follows immediately. 0
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2.4.2 Decreasing an edge weight

Similar to the case of a weight increase, we can prove a lemma about start and end nodes
of new shortest paths for the case of a weight decrease.

Lemma 10 Let G = (V,E), | : E — R be a weighted graph. Assume that the decrease of
the weight of an edge (x,y) € E creates a new shortest s-t path Py in G. Then, after the
weight change, (x,y) is the last edge of a shortest s-y path and the first edge of a shortest
x-t path.

Proof: Obviously, the edge (z,y) must be part of this path P,.,. Let P, denote the
sub-path of P, from s to v. As a sub-path of a shortest path is also a shortest path,
Py, is a shortest that ends with the edge (z,y). For symmetric reasons, the first edge of a
shortest a-t path is (z,v). O

Again the condition provides a simple test using the containers C(z,y) and C™(z,y).
This time however, both containers must already be updated.

Corollary 11 Let G = (V, E), I : E — R be a weighted graph. Assume that the decrease
of the weight of an edge (x,y) € E creates a new shortest s-t path Ppey tn G. Then
s € C (z,y) and  t € Chew(z,y).

new

In order to run a (modified) Dijkstra for all nodes in Chey(x,y), it is necessary to
compute Chey(Z,y), i.e., to enlarge it if necessary. This can be done similarly to its creation
in CREATE-CONTAINERS (Algorithm 3). In contrast to CREATE-CONTAINERS, the loop
in line 0 is replaced by a single run for s := z. Furthermore in line 4a, only the container
C(z,y) must be enlarged (i.e., Alu] = (z,y)). Finally, DIJKSTRA’S ALGORITHM can be
truncated to the part of the graph, where distance labels change. This can be achieved
by executing lines 8-17 only if new-dist < loq(z,y) + doa(y, u). If a node v is excluded
because new-dist > loa(z, y)+doa(y, u), we distinguish between two cases. If new-dist =
lnew (%, ) +doa(y, v), the distance of v has not changed. Furthermore, the distance has not
changed for all nodes a where the shortest z-a path contains v. Ignoring nodes v € V with
new-dist = lyew (%, y) + doa(y, v) therefore does not change the result of the algorithm. If
new-dist > lyew(2,y) + doa(y, v), there exists a shorter path from x to v that does not
contain (u,v). The node v can therefore be ignored in this case, too.

Similarly to Lemma 9 the next lemma reduces the search space of CREATE-CONTAINERS
for the updating of the rest of the containers, but this time the old weight of the edge (z, y)
is used in the comparison.

Lemma 12 Let G = (V,E), | : E — R be a weighted graph and let Py be a path from
a node s to a node t that has become a shortest path because of a decrease of the weight of
an edge (z,y). Then, for all nodes u € Ppey:

dnew(sa U) < dnew(sa -T) + lold(xa ?/) + dnew(y> U)
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Figure 2.7: When the weight of the edge (z,y) is decreased, for all nodes u on a new
shortest path from s to ¢, dyew (s, 1) < dpew (S, ) + lowa (T, Y) + dew (Y, ).

Proof: Since lyew (7, v) < loa(z,y), the new distance dyey (s, t) must be shorter than the old
distance dgq(s,t). The new shortest path P,e, does contain the edge (z,y) in contrast to
the old shortest path from s to ¢t. Therefore dyey (S, t) = dnew (S, ) + lnew (%, Y) + dnew (¥, t) <
dnew (8, ) +loa (2, Y)+Fdnew (y, t). Consider now some node u € Py, (see Figure 2.7). Let Py,
denote the sub-path of Py, from s to u. If P, does not contain (z,y), i.e. if the edge (z, y)
appears in P, after u, then dpey (s, u) < dyew (8, ) < dpew(S, ) +lowa (T, y)+dnew (Y, t), since
loa(z,y) > 0. If Py, contains (z,y), then dyew(s,u) = duew (S, T) + lnew(2,Y) + dnew (Y, w).
Otherwise a shorter path from s to u would exist which contradicts the fact that P, is a
shortest path. Since loq(x,y) > luew(x,y) the lemma follows. O

2.4.3 Update strategies

According to Lemma 7 and 10, only those containers have to be updated that belong to
an outgoing edge of a node s € V', where the last edge on a shortest s-y path is (z,y). We
will call such nodes s potentially affected and denote their number by p. The potentially
affected nodes can be determined by a run of a modified Dijkstra starting at y with reversed
edges.

If we maintain reverse containers, Corollary 8 and 11 provide an even simpler method
to find containers that may need maintenance. When a weight of an edge (z,y) has
changed, only those containers must be updated that belong to an outgoing edge of a node
in C™(z,y). Symmetrically, the reverse containers that belong to an incoming edge of a
node in C(z,y) should be checked. If the weight has been decreased, the containers C(z, y)
and C*™(x,y) must be updated as described in the previous section before we determine
the nodes inside them.

Both methods, with and without reverse containers, find those nodes for which the
containers of incident edges must be updated. For both of them, we studied three different
methods to update the container of an edge:
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Compute the container from scratch. The result is slightly different from recomput-
ing all containers from scratch because not all containers are recomputed. A container
that can shrink is not necessarily updated. As DIJKSTRA’S ALGORITHM is run for
every potentially affected node, the overall running time is bounded by O(p-nlogn).

Set the container to infinity (without any further computation). If the entire graph is
inside the container, it is certainly consistent. However, the quality of the containers
drops dramatically with this method although the running time—being linear in p—is
appealing.

Enlarge the container as much as necessary. A variant of Dijkstra’s algorithm trun-
cated according to Lemma 9 and 12 can be used to enlarge on-line containers. (This
method is not applicable for off-line containers.) More precisely, the lines 8-17 of
CREATE-CONTAINERS are only executed for a node v that satisfies new-dist <
d(s,x) + lpew(z,y) + d(y,v) or new-dist < d(s,x) + loa(x,y) + d(y,v), respectively.
In particular, the rest of the nodes are never inserted in the queue ). The complexity
of this update strategy is therefore O(p- klog k), if for all potentially affected nodes s
an upper bound k exists for the size of the set of nodes fulfilling the condition in
Lemma 9 and 12 for edge weight increases and decreases, respectively.

The conditions in Lemma 9 and 12 use distance values d(u,z) and d(y,u) for dif-
ferent v € E, which have to be computed beforehand by running two instances of
DIJKSTRA’S ALGORITHM.

The reverse containers are the counterpart to normal containers, if all edges in the
graph are reversed. Therefore, the same algorithm can be applied to a graph with
reversed edges to enlarge the reverse containers as necessary.

2.4.4 Experimental Setup

We performed an experimental study to evaluate the performance and quality of our algo-
rithms. More precisely, we examined how much time is needed to update the containers
(on average) and how much the containers differ from containers computed from scratch.
(Remember that we do not shrink all containers in our updates.)

As the experiments in the static case showed that bounding boxes are, in practice,
the fastest container type with constant size, the experiments for the dynamic version are
performed with this geometric container. The construction of all containers from scratch
is very time consuming. A single preprocessing that takes hours or even days should be
feasible. However, for this experimental study, we need to construct all containers from
scratch hundreds of times in order to compare them to updated containers. Therefore, we
evaluate the different update strategies only for the (smaller) railway networks. After all,
we assume that the results scale to the larger graphs that todays and future computers
can handle.

For each graph, we increase the weight of 100 random edges to a large value (i.e., the
sum of all weights in the graph). This is similar to removing the edge from the graph.
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Figure 2.8: The quality of updated containers for 100 increased edge weights. The con-
tainers are enlarged by a truncated Dijkstra for all nodes s with (z,y) as the last edge of a
shortest s-y path. In the right diagram the quality is divided by the quality of containers
computed from scratch.

After every weight change, the containers are updated according to section 2.4.3. A second
set of containers is determined from scratch to compute the quality and compare the
computation time. For the evaluation of decreasing edge weights, we start with the graph
where 100 random edges have been set to a large weight. The weights are then decreased
to their original values. Again, the updated containers are compared to newly computed
containers.

All six variants have been implemented in C++ based on the graph structure provided
by LEDA 4.4. The programs were compiled with GCC 3.2 and run on a single Intel Xeon
with 2.4 GHz performing Linux 2.4.

2.4.5 Computational Results

In order to reflect the fact that also the quality of containers that are computed from
scratch varies from graph to graph and after each update, we examined the quality of
updated containers relative to the quality of containers that are computed from scratch.
It turns out that in both cases—with and without reverse containers—the outcome is very
similar. Furthermore, the case of an edge weight increase resembles the case of an edge
weight decrease.

If containers are only enlarged, their quality decreases most of the time as expected
(Figure 2.8). It is interesting to note that the larger the graph, the larger its quality
remains. Single “bad” containers are clearly less important if the graph contains more
edges. For large graphs, the quality stays close to 1 even after 100 updates.

If the containers are simply set to infinity, the situation is dramatically different though.
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reverse containers used not used
set to from set to from
container update infinity enlarge scratch infinity enlarge scratch
n m

nl 409 1215 1331; 173 2.17;2.00 2.45;2.70 269; 228  2.52;3.43 5.02;3.02
au | 1660 4327 | 8093; 700 1.99;1.90 2.54;2.38 | 1551;1429 2.07;2.10 2.13;2.10
ch | 2279 6015 | 10211; 953 2.18;2.24 2.56;2.58 | 2235;2300 2.77;2.85 2.48;3.09
i | 2399 8008 | 9552; 965 2.85;2.75 2.77;2.68 | 2095;2097 2.80;2.65 2.64;2.94
fr | 4598 14937 | 17691;1932 2.09;2.21 2.87;2.66 | 4382;4291 2.55;3.13 4.25;3.36
de | 6884 18601 | 33160;2974 1.72;1.71 2.04;2.21 | 6568;6583 2.53;2.31 2.56;2.76

Table 2.2: Average speed-up for updating the containers with increasing weights (first
number) and decreasing weights (second number).

After a few updates, the containers settle in a state with a quality below 0.2 where almost
all nodes are inside all containers. Such a state is clearly not desirable, because no nodes
are pruned by Dijkstra’s algorithm for queries.

In the case where containers of incident edges are recomputed from scratch the resulting
containers coincide most of the time with the newly computed containers. In other words,
the quality equals 1 after almost every update. In practice, such updates can therefore be
considered as good as using freshly determined containers.

The analysis of the time measurements are shown in Table 2.2. The first two columns
list the number of nodes and the number of edges in the respective graphs. The other six
columns refer to the six cases that have been examined in our study. They report the speed-
up factor as the ratio between the time required for computing containers from scratch and
the time for updating the containers. The three types of updates (enlarge the containers to
infinity, enlarge the containers according to Lemma 9 and 12, and recompute the containers
from scratch) were tested with maintenance of reverse containers and without it (using a
backward Dijkstra instead). Although the time improvements are huge, if the containers are
enlarged to infinity, these values are more or less meaningless, because of the unacceptable
quality. We report them only for the sake of completeness.

An interesting observation is the fact that the speed-up factor does not seem to be
correlated with the size of the graph. Furthermore, the similarity of the algorithms for
increasing and decreasing edge weights probably explains the similar behavior in terms
of timings. The speed-up values with and without reverse containers are quite similar,
but note that the absolute time values with reverse containers are about twice as large.
Maintaining reverse containers can therefore be justified only if they are used for other
purposes as well (e.g., for bidirectional search). The most interesting observation however
is the fact that using a pruned Dijkstra (column “enlarge”) is often slower than Dijkstra
without pruning (column “from scratch”). Obviously the additional check and computing
the distances to z and from y for all nodes outweigh the gain of the pruning.
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2.5 Geometric Containers of Non-Constant Size

If you drop the requirement that a shortest-path container must be of constant size, a
substantially higher speed-up is possible [20, 21]. Although its asymptotic space consump-
tion is higher, in practice, a much better speed-up of 100 and more can be achieved with
the same amount of space. We first present these so-called bit-vectors in Section 2.5.1 by
incorporating them in the framework of shortest-path containers.

Furthermore, [20, 21] show that the preprocessing can be realized without computing
all-pairs shortest paths. We discuss in Sect. 2.5.2, how the preprocessing for bit-vectors
can avoid the computation of all-pairs shortest paths, and also show in detail the method
to partially re-use the result of the previous run of DIJKSTRA’S ALGORITHM in the pre-
processing.

The bit-vector speed-up technique is based on a partition of the set of nodes. If we
consider a street network and hence a graph with a layout, intelligent partitions are those
in which nodes inside the same region are geometrically adjacent. We have examined
several partitioning algorithms which are well applicable and give good speed-ups. Tested
on real-world street networks, we compared the different strategies concerning the resulting
average search space. In Section 2.5.3, our selection of geometric partitioning algorithms
is presented that we used for our analysis.

Furthermore, we develop in Sect. 2.5.4 a two-level variant of the bit-vectors. They pro-
vide some kind of (lossy) compression of bit-vectors. For the same amount of space, they
result in a smaller search space and a higher speed-up. Note that the compression guar-
antees the correctness of a shortest-path query but may be slower than the uncompressed
bit-vector.

In Sect. 2.5.5, our experiments are described whose results are discussed and presented
in the subsequent subsection. Preliminary portions of this work appeared in [58].

2.5.1 Bit-Vectors as Shortest-Path Containers

In Section 2.1, convex geometric objects approximated for each edge e, the set of all target
nodes of shortest paths that start with the edge e. We will now use a partition of the set
of nodes V into p regions for a different approximation. Formally, we will use a function
r:V — {1,...,p} that assigns to each node the number of its region. (Given a 2D layout
of the graph, a simple method to partition a graph is to use a regular grid as illustrated
in Figure 2.9 and assign all nodes inside a grid cell the same number.) In contrast to
Section 2.3, where we assigned a convex geometric object to each edge, we will now use
a bit-vector b, : {1,...,p} — {true,false} with p bits, each of which corresponds to a
region. For each edge e, we therefore set the bit b.(i) to true iff e is the beginning of a
shortest path to a node in region i € {1,...,p}.

It is easy to see that by definition such bit-vectors provide consistent shortest-path
containers, i.e. for all shortest paths from u to ¢ that start with the edge (u,v), the target
t is in a region that is marked by the bit-vector of (u,v). All possible partitions of the
nodes lead to a correct solution but most of them would not lead to the desired speed-up of
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Figure 2.9: A 5 x 7 grid partitioning of Germany

the computation. During the shortest-path search, while scanning a node u, DIJKSTRA’S
ALGORITHM WITH PRUNING (Algorithm 2) considers all outgoing edges and can now ignore
those edges which have not set the bit for the region of the target node.

The space requirement for the preprocessed data is O(p - m) for p regions because we
have to store one bit for each region and edge. If p = n and we assign to every node its
own region number, we store in fact all-pairs shortest paths: if a node is assigned to its
own, specific region, the modified shortest-path algorithm will find the direct path without
regarding unnecessary edges or nodes. Note however, that in practice even for p < n we
achieved an average search space that is only 4 times the number of nodes in the shortest
path. Furthermore, it is possible within the framework of the bit-vector speed-up technique
to use a specific region only for the most important nodes. Storing the shortest paths to
important nodes can therefore be realized without any additional implementation effort. It
is common practice to cache the shortest paths to the most important nodes in the graph.

As other shortest-path containers, bit-vectors can be combined with bidirectional search
(see Section 1.2.1). In principle, they can be used independently for the forward search,
the backward search, or both of them. In our experiments the best results (with a fixed
total number of bits per edge) achieved a forward and backward accelerated bidirectional
search, which means that we applied the partition-based speed-up technique on both search
directions (with half of the bits for each direction).

2.5.2 Preprocessing without All-Pairs Shortest Paths

In the preprocessing, the bit-vectors of all edges can also be filled correctly with Algo-
rithm 3. For each node s € V', we determine with a slightly modified DIJKSTRA’S ALGO-
RITHM for all nodes t € V the first edge e of the shortest s-t path and set the set the bit of
partition r(¢) of the bit-vector of e. Setting the bit-vectors needs O(mn) time for all pairs
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of edges and nodes. The running time for the preprocessing is therefore dominated by the
time required to compute n times DIJKSTRA’S ALGORITHM with total time complexity
O(n - (m+ nlogn +n)). For sparse graphs m € O(n) like typical traffic networks, we get
a worst-case time complexity of O(n?logn).

Fortunately, it is not necessary to compute all-pairs shortest paths to fill the bit-vectors
correctly as presented in [21]. A better approach uses the following insight: Every shortest
path from any node s to a region R with the region number py has to enter the region R:
if s is not a member of region R an edge e = (u,v) with r(u) # pr and r(v) = pg exists.
We will see that it is sufficient if the preprocessing algorithm only regards shortest paths
to such nodes v. We will call such nodes boundary nodes.

Theorem 13 (Boundary Nodes) Given a graph G = (V, E) and a partition of V in p
regions by r : V. — {1,...,p}, consider the bit-vectors b, for e € E that are computed
with the set of shortest paths to boundary nodes only. If for all edges (u,v) € E the region
bit of the target node of the edge b, (r(v)) is set to true, the bit-vectors are consistent
shortest-path containers.

Proof: Let s € V and ¢t € V be arbitrary but fixed nodes. Let P = (s = vy,...,vp = 1)
denote a shortest s-t path. We have to show that for the (vi,v2) the bit by, 4,)(r(t)) for
the target regions r(t) is set. If r(vy) = r(t) (i.e. vy is in the target region), then the
region bit r(vy) is set. If r(ve) # r(t), we consider the first edge (v;,v;41) € P such that
r(v;) # r(viz1) = r(t). The sub-path of (vy,...,v;1) of P is also a shortest path and v; 1
is a boundary node. The preprocessing restricted to shortest paths to boundary node has
considered the path from v; to v;;; and hence it has set the bit of region r(v;y1) = r(t). O

For street networks, it is reasonable to assume that for all edges (u,v) € E, the edge
itself is a shortest u-v path (i.e. l(u,v) = d(u,v)). Therefore, for all edges (u,v) € E the
region bit of the target node of the edge b, (r(v)) is set.

The set of shortest paths to boundary nodes can be computed efficiently in the reverse
graph G.ey. For every boundary node b, the shortest-path tree T}, rooted at b is determined.
For all edges e € Ty, bit r(b) must be set to true. If we denote the number of boundary
nodes by k, the time complexity for the improved preprocessing is O(k - nlogn).

The number k of boundary nodes is highly dependent on the partitioning of the nodes.
We can minimize k by taking the minimal edge-separator for a certain number of regions.
However, we will see in section 2.5.6 that this partitioning method does not always lead to
the best results is respect to the search space of DIJKSTRA’S ALGORITHM WITH PRUNING.
As an example for the resulting preprocessing time: This improved preprocessing algorithm
needed for one of our real-world graphs with 473000 nodes and 1.1 million edges using a
10 x 10 grid-partition in 2.5 hours and the average search space during the single requests
was reduced to less than 4% compared to the standard search.

Preprocessing with Pruned Shortest-Path Trees

We will now present a technique to avoid the computation of the full shortest-path trees
of all boundary nodes in G,,. Consider the shortest-path tree of a node v; and a node v,
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in the same region as v;. For each node v € V of the graph, we get an upper bound of the
length of the shortest path from v, to v: it can not be longer than the distance from vy to
vy and the shortest path from v; to v. We can now use this upper bound to reduce our
preprocessing effort.

For the first boundary node v; of each region, the algorithm computes its (reverse)
shortest-path tree, the corresponding bit-vectors and distance from the closest boundary
node vy of that region. During the computation of the shortest-path tree of v, we use the
upper bounds of the prior search: if we find a shortest path to a node v which is longer
or equal to the upper bound, the algorithm does not put v into the priority queue. (If a
shorter path is found later, the node will be put into the priority queue and the algorithm
provides correct results.) During the computation of the shortest path tree for the next
boundary node v3, upper bounds are computed using v,, and so on.

Experiments show that this method reduces the number of nodes that are inserted
in the priority queue during the preprocessing to less than 70%. The running time was
improved by up to 20%.

2.5.3 Partitioning Algorithms

The bit-vector speed-up technique uses a partitioning of the graph to precompute infor-
mation whether an edge may be part of a shortest path. Any possible partitioning can
be used and the algorithm returns a shortest path, but most partitions do not lead to an
acceleration. In this section, we will present the partitioning algorithms that we examined.
Most of these algorithms need a layout of the graph. In our case, this is a 2D layout, but
all partitioning algorithms can be adapted easily to higher dimensions.

Grid

Probably the easiest way to partition a graph with a 2D layout is to use regions induced
by a n x m grid of the bounding box. More precisely, we denote with (,t)" the top-left
vertex of the bounding box of the 2D layout of the graph and with (r,b)" the bottom-right
vertex. The grid cell G;; with 0 <7 < n,0 < j < m is now defined as the rectangle

r—1 r—1 t—b t—>b
. 1) - L. 1) ——
i+ —] x [b+j—b+ (1) —]

[l+i-

(Nodes on a grid line are assigned to an arbitrary but fixed grid cell.) Figure 2.9 shows an
example of a 5 x 7 grid.

A bit-vector for a grid can be seen as a raster image of S(u,v), where S(u, v) represents
the set of nodes x for which the shortest u-x path starts with the edge (u,v). The pixel
i in the image is set, iff (u,v) is the beginning of a shortest path to a node in region
ie{l,...,p}. A finer grid (i.e., an image with higher resolution) provides a better image
of S(u,v), but requires more memory. (On the other hand, the geometric objects in
Section 2.3 approximate S(u,v) by a single convex object of constant size.)
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(a) Quadtree (34 regions) (b) Kd-Tree (32 regions) (¢) METIS (32 regions).
Figure 2.10: Germany with three different partitions

The grid partitioning method uses only the bounding box of the graph—all other prop-
erties like the structure of the graph or the density of nodes are ignored and hence it is
not surprising that the grid partitioning always has the worst results in our experiments.
Since earlier works on this speed-up method used this partitioning method, we use the grid
partitioning as a baseline and compare all other partitioning algorithms with it.

Quadtrees

A quadtree is a data structure for storing points in the plane. Quadtrees are typically used
in computational geometry for range queries and have applications in computer graphics,
image analysis, and geographic information systems.

Definition 14 (Quadtree) Let P be a set of points in the plane and Ry its bounding-boz.
Then, the data structure quadtree is a rooted tree of rectangles, where

e the root is the bounding region Ry, and

e Ry and all other regions R; are recursively divided into the four quadrants, while they
contain more than one point of P.

The leaves of a quadtree form a subdivision of the bounding-box Ry. Even more, the leaves
of every sub-tree containing the root form such a subdivision. Since, for our application,
we do not want to create a separate region for each node, we use a sub-tree of the quadtree.
More precisely, we define an upper bound b € N of points in a region and stop the division
if a region contains less points than this bound b. This results in a partition of our graph
where each region contains at most b nodes. Fig. 2.10(a) shows such a partition with 32



48 CHAPTER 2. SHORTEST-PATH CONTAINERS

regions. In contrast to the grid-partition, this partitioning reflects the geometry of the
graph—dense parts will be divided into more regions than sparse parts.

Kd-Trees

In the construction of a quadtree, a region is recursively divided into four equally-sized
sub-regions. However, equally-sized sub-regions do not take the distribution of the points
into account. This leads to the definition of a kd-tree. In the construction of a kd-tree, the
plane is recursively divided, similar to a quadtree. The underlying rectangle is decomposed
into two halves by a straight line parallel to an axis. The directions of the dividing line
alternate. The positions of the dividing line can depend on the data. Frequently used
positions are given by the center of the rectangle (standard kd-tree), the average, or the
median of the points inside. (Fig. 2.10(b) shows a result for the median and 32 regions.) In
applications with higher dimensions, the partition axes are not cycled but the dimension
with the largest variance is used.

If the median of points in general position is used, the partitioning has always 2! regions
and at every decomposition, one node of the graph lies exactly on the boundary of two
regions. For these nodes, it is worthwhile to check whether all neighbors of that node have
their positions in the other region. If yes, the node can be transfered to the other region
and will not become a boundary node.

The median of the nodes can be computed in linear time with the median of medians
algorithm [59]. Since the running time of the preprocessing is dominated by the shortest-
path computations after the partitioning of the graph, we decided to use a standard sorting
algorithms instead. (As a concrete example, the kd-tree partitioning with 64 regions for one
of our test graphs with one million nodes was calculated in 175s, calculating the bit-vectors
took seven hours.)

METIS

A fast method to partition a graph into k almost equally-sized sets with a small cut-set
is presented in [60]. An efficient implementation can be obtained free-of-charge from [61].
There are two advantages of this method for our application. The METIS partitioning
does not need a layout of the graph and the preprocessing is faster because the number of
edges in the cut is noticeable smaller than in the other partitioning methods. Fig. 2.10(c)
shows a partitioning of a graph generated by METIS.

2.5.4 Two-Level Bit-Vectors

An analysis of the calculated bit-vectors reveals that there might exist possibilities to
compress the bit-vectors. For 80% of the edges either almost none or nearly all bits of
their bit-vectors are set. Table 2.3 shows an excerpt of the analysis we made. The column
7= 1"shows the number of edges, which are only responsible for shortest paths inside their
own region (only one bit is set). Edges with more than 95% bits set, could be important
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graph #edges algorithm # marked regions

=1 <10% > 95%
street_network_1 920,000 KdTree(32) 351,255 443,600 312,021
street_network_1 920,000 KdTree(64) 334,533 470,818 294,664
street_network_1 920,000 METIS(80) 346,935 468,101 290,332
(32)
(64)

street_network 4 2,534,000 KdTree(32) 960,779 1,171,877 854,670
street_network 4 2,534,000 KdTree(64) 913,605 1,209,353 799,206

Table 2.3: Some statistics about the number of regions that are marked in bit-vectors.

roads. This justifies ideas for (lossy) compression of the bit-vectors, but it is important
that the decompression algorithm is very fast—otherwise the speed-up of time will be lost.

Let us have a closer look at a search space to get an idea of how to compress the bit-
vectors. As illustrated in Figure 2.11(a) for a search from the dark grey node to the light
grey node, the modified DIJKSTRA search reduces the search space next to the beginning
of the search but once the target region has been reached, almost all nodes and edges are
visited. This is not very surprising if you consider that all edges of a region have set the
region-bit of their own region. We could handle this problem if we used a finer partition
of the graph but this would lead to longer bit-vectors (requiring more memory). As a
concrete example, if we used a 15 x 15 grid instead of a 5 x 5 grid, each region would be
split in 9 additional regions but the preprocessed data increases from 25 to 225 bits per
edge. However, the additional information for the fine grid is mainly needed for edges in
the target region of the coarse grid. This leads to the idea that we could split each region
of the coarse partition but store this additional data (for the fine grid) only for the edges
inside the same coarse region. Therefore, each edge gets two bit-vectors: one for the coarse
partition and one for the associated region of the fine partition.

The advantage of this method is that the preprocessed data is smaller than for a fine
one-level partitioning, because the second bit-vector exists only for the target region (34
bits per edge instead of 225). It is clear that the 15 x 15 grid would lead to better results.
However, the difference for the search spaces is small because we expect that entries in
bit-vectors of neighboring regions are similar for regions far away. Thus, we could see this
two-level method as a (lossy) compression of the first-level bit-vectors: We summarize the
bits for remote regions. If one bit is set for a fine region, the bit is set for the whole group.

Only a slight modification of the search algorithm is required. Until the target region
is reached, everything will remain unaffected, unnecessary edges will be ignored with the
bit-vectors of level one. If the algorithm has entered the target region, the second-level
bit-vector provides further information on whether an edge can be ignored for the search
of a shortest path to the target-node.

Experiments showed (Section 2.5.6) that this method leads to the best results concern-
ing the reduction of the search space, but an increased preprocessing effort is needed. Note
however, that it is not necessary in the preprocessing to compute the complete shortest-
path trees for all boundary nodes of the fine partitioning. The computation can be stopped
if all nodes in the same coarse region are finished.



50 CHAPTER 2. SHORTEST-PATH CONTAINERS

NP

7
(a) Without a two-level bit- (b) For each edge, a bit-vector is stored for the coarse 5 x 5
vector, a search visits al- grid and a bit-vector for a fine 3 x 3 grid in the same coarse
most all edges in the target region as the edge.
region.

Figure 2.11: Tllustrations for two-level vectors

2.5.5 Experimental Setup

The main goal of this section is to compare the different partitioning algorithms with regard
to their resulting search space and speed-up of time during the accelerated DIJKSTRA
search. We tested the algorithms on German street networks, which are directed and have
a 2D layout and positive, integral edge weights. Table 2.4 shows some characteristics of
the graphs. The column “shortest path” is the average number of nodes on a shortest path
in the graph. For the unmodified DIJKSTRA’S ALGORITHM, the average running time and
number of nodes touched by the algorithm is given for 5000 runs.

All experiments are performed with an implementation of the algorithms in C++ using
the GCC compiler 3.3. We used the graph data structure from LEDA 4.4 [44]. In order

Graph #nodes #edges shortest DIJKSTRA’S ALGORITHM

path  time [s] F#touched nodes
street_network_1 362,000 920,000 250 0.26 183,509
street_network 2 474,000 1,169,000 440 0.27 240,421
street_network 3 609,000 1,534,000 580 0.30 306,607
street_network 4 1,046,000 2,534,000 490 0.78 522,850

Table 2.4: Characteristics of tested street networks. The columns “shortest paths” provides
the average number of nodes on a shortest path.
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to measure the unaffected speed-ups of time, we additionally implemented the algorithms
without the framework for code re-use presented in Section 4. Experiments showed, that
even the most modern C++ compilers do not optimize away virtual functions calls when
possible (even with aggressive optimization turned on). Removing unnecessary function
calls “by hand” accelerated a single shortest-path request up to a factor of ten for complex
inheritance hierarchies.

For each graph, we generated a demand file with 5000 random shortest-path requests so
that all algorithms use the same shortest-path demands. All runtime measurements were
made on a single AMD Opteron Processor with 2.2 GHz and 8 GB RAM.

From an abstract point of view, our speed-up method reduces the complete graph for
each search to a smaller sub-graph and this leads to a smaller search space. We sampled the
average size of the search space by counting the number of visited nodes and measured the
average CPU time per query. DIJKSTRA’S ALGORITHM is used as a reference algorithm
to compare search space and CPU time. Fortunately, DIJKSTRA’S ALGORITHM WITH
PRUNING only tests additionally a bit of a bit-vector and this does not lead to a significant
overhead. In graphs we tested, there is a strong linear correlation between the search space
and the CPU time. This justifies that in the analysis it is sufficient to consider the search
space only.

2.5.6 Computational Results
Quadtrees and Kd-Trees

We first compared the four geometric partitioning methods quadtrees and kd-trees for the
center (standard), average, and median. Figure 2.12(a) shows the average search space
for a street network for an increasing number of bits per edge. As the differences are
indeed very small, we will use only kd-trees with median in the rest of this section as a
representative for this partitioning class.

We now compare the average search space for different graphs. For an easy comparison
we consider the search space relative to the average search space of DIJKSTRA’S ALGO-
RITHM in this graph. Figure 2.12(b) provides the relative average search space for an
increasing number of bits per edge. It is remarkable that for bit-vectors in this range of
size all curves follow a power law.

Two-Level Partitionings

The main reason for the introduction of the second-level partitions was that no edge is
excluded from the shortest-path search inside the region of the target node t. Therefore,
the second-level bit-vectors reduce the shortest-path search mainly if the search already
approaches the target. Figure 2.13 compares the search spaces of the one-level and two-
level accelerated searches. Although only very few bits are added, the average search space
is reduced to about half of its size.

Using a bidirectional search, the two-level strategy becomes less important, because
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Figure 2.12: Average search space for different sizes of bit-vectors. With an increasing
number of bits per edge, the search space gets smaller.
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Figure 2.14: Average search space for a bidirectional search using bit-vectors by kd-trees.
The two-level strategy becomes irrelevant for the bidirectional search. If more than 50
regions are used for the first-level, the two-level acceleration provides no noticeable im-
provement.

the second-level bit-vectors will not be used in most of the shortest-path searches: the
second-level bit-vectors are only used, if the search enters the region of the target. During
a bidirectional search the probability is high that the two search horizons meet in a different
region than the source or target region. Therefore, the second-level bit-vectors are only
used, if both nodes are lying in the same region. Figure 2.14 confirms this estimation. Only
for large partitions in the first level is a speed-up recognizable with two-level bit-vectors.
If more than 50 bits for the first level are used, the difference is very small. We conclude
that the second-level strategy does not seem to be useful in a bidirectional search.

Comparison of the Partitioning Methods

Finally, we want to compare the different algorithms directly. We have four orthogonal
dimensions in our algorithm tool-box:

1. The base partitioning method: Grid, KdTree or METIS
2. The number of partitions

3. Usage of one-level partitions or two-level partitions

4. Unidirectional or bidirectional search

Since computing all possible combinations on all graphs takes way too much time, we
selected the algorithms that are listed in Table 2.5. (We refrained from implementing
Bi2Metis, because usually the two-level bit-vectors in a bidirectional search hardly per-
formed better than the one-level variant.) Furthermore, we fix the size of the preprocessed
data to nearly the same number for all algorithms. (The same size can not be realized
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Name of partitioning forward backward bits per edge
1%t level 274 level | 1 level 27 level
Grid 9%x9 - - - 81
KdTree 64 - - - 64
METIS 80 - - - 80
2Level Grid 8 x 8 4 x4 - - 80
2LevelKd 64 16 - - 80
2Level METIS 72 8 - - 80
BiGrid TxT - 6 x 6 - 85
BiKd 32 - 32 - 64
BIMETIS 40 - 40 - 80
Bi2LevelGrid 6x6 2 x 2 6 x6 2x2 80
Bi2LevelKd 32 8 32 8 80

Table 2.5: Partitionings with nearly the same preprocessed data size of 80 bit

due to the restrictions by the construction of the partitioning algorithms.) Figure 2.15
compares the results of our partitioning methods on the four street networks.

For the unidirectional searches, the two-level strategies yield the best results (a factor of
2 better than for their corresponding one-level partitioning). For the bidirectional search,
we can see some kind of saturation: the differences between the partitioning techniques
are very small.

The best partition-based speed-up method we tested is a bidirectional search, acceler-
ated in both directions with kd-tree or METIS partitions. We can measure speed-ups of
more than 500. In general, the speed-up increases with the size of the graph. Figure 2.16
shows the search space for the four street networks. Note that in case of a bidirectional
search, a large number of bits per edge already shows some effects of saturation as the
curves are bent. In contrast, in Fig. 2.12(b) the curves follow a power-law. Even with
the smallest preprocessed data (16 bit per edge), we get a speed-up of more than 50. The
accelerated search on network 4 is 545 times faster than plain DIJKSTRA’S ALGORITHM
using 128 bits per edge preprocessed data (1.3ms per search).

Of the tested partitioning methods, we can recommend the kd-tree used for forward
and backward acceleration. The partitioning with kd-trees and METIS yield the highest
speed-up factors, but kd-trees easier to implement.
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Figure 2.16: Search space for street networks 1-4 with a bidirectional accelerated search
using kd-tree partitions.
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Chapter 3
Combining Speed-up Techniques

In this chapter, the impact of using shortest-path containers is compared with the impact
of other previously known speed-up techniques. Even more important, we examine their
combinations and how well a speed-up technique scales if it is added to another com-
bination. In particular, we consider all 16 combinations of the following four speed-up
techniques from Section 1.2:

Goal-Directed Search (go) modifies the given edge weights to favor edges leading to-
wards the target node [22, 62]. With graphs from timetable information, a speed-up
in running time of a factor of roughly 1.5 is reported in [7].

Bidirectional Search (bi) starts a second search backwards, from the target to the
source (see [63], Section 4.5). Both searches stop when their search horizons meet.
Experiments in [64] showed that the search space can be reduced by a factor of 2,
and in [65] it was shown that combinations with the goal-directed search can be
beneficial.

Multi-Level Approach (ml) takes advantage of hierarchical coarsenings of the given
graph, where additional edges have to be computed. They can be regarded as dis-
tributed to multiple levels. Depending on the given query, only a small fraction
of these edges has to be considered to find a shortest path. Using this technique,
speed-up factors of more than 3.5 have been observed for road map and public trans-
port graphs [23]. Timetable information queries could be improved by a factor of 11
(see [9]), and in [66], good improvements for road maps are reported for a similar
approach.

Shortest-Path Container (sc). For this computational study, we selected bounding
boxes as container type, since they are easy to implement, and—among constant-
sized objects—the resulting algorithm is the fastest in terms of CPU cycles and still
very fast with respect to the number of visited nodes.

Goal-directed search and shortest-path containers are only applicable if a layout of the
graph is provided. Multi-level approach and shortest-path containers both require a pre-
processing, calculating additional edges and bounding boxes, respectively. All these four

o7
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techniques are tailored to Dijkstra’s algorithm. They crucially depend on the fact that
Dijkstra’s algorithm is label-setting and that it can be terminated when the destination
node is settled. (Therefore, the algorithm does not necessarily search the whole graph.)

We first show that, with more or less effort, all 2* = 16 combinations can be imple-
mented. Then, an extensive experimental study of their performance is provided. Bench-
marks were run on several real-world and generated graphs, where operation counts as well
as CPU time were measured.

The next section provides details how to combine the speed-up techniques. Section 3.2
presents the experimental setup and data sets for our statistics, and the belonging results
are given in Section 3.3.

3.1 Speed-up Techniques and their Combinations

In this section, we enlist for every pair of speed-up techniques how we combined them.
The extension to a combination of three or four techniques is straight forward, once the
problem of combining two of them is solved.

3.1.1 Goal-Directed Search and Bidirectional Search

Combining goal-directed and bidirectional search is not as obvious as it may seem at first
glance. [64] provides a counter-example for the fact that simple application of a goal-
directed search forward and backward yields a wrong termination condition. However, the
alternative condition proposed there has been shown in [65] to be quite inefficient, as the
search in each direction almost reaches the source of the other direction. This often results
in a slower algorithm.

To overcome these deficiencies, we simply use the very same edge weights I'(v, w) :=
l(v,w) — pe(v) + pr(w) for both the forward and the backward search. With these weights,
the forward search is directed to the target ¢ and the backward search has no preferred
direction, but favors edges that are directed towards ¢. This should be (and indeed is)
faster than each of the two speed-up techniques. This combination computes a shortest
path, because a shortest s-t path is the same for given edge weights [ and edge weights
modified according to goal-directed search, I’.

3.1.2 Goal-Directed Search and Multi-Level Approach

As described in Section 1.2.3, the multi-level approach basically determines for each query
a subgraph of the multi-level graph, on which Dijkstra’s algorithm is run to compute a
shortest path. The computation of this subgraph does not involve edge lengths and thus
goal-directed search can be simply performed on it.
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3.1.3 Goal-Directed Search and Shortest-Path Containers

Similar to the multi-level approach, the shortest-path containers approach determines for
a given query a subgraph of the original graph. Again, edge lengths are irrelevant for the
computation of the subgraph and goal-directed search can be applied offhand.

3.1.4 Bidirectional Search and Multi-Level Approach

Basically, bidirectional search can be applied to the subgraph defined by the multi-level
approach. In our implementation, that subgraph is computed on the fly during Dijkstra’s
algorithm: for each node considered, the set of necessary outgoing edges is determined. If a
bidirectional search is applied to the multi-level subgraph, a symmetric, backward version
of the subgraph computation has to be implemented: for each node considered in the
backward search, the incoming edges that are part of the subgraph have to be determined.

3.1.5 Bidirectional Search and Shortest-Path Containers

In order to take advantage of shortest-path containers in both directions of a bidirectional
search, a second set of containers is needed. For each edge e € E, we compute the set
Srev(€) of those nodes from which a shortest path ending with e exists. We store for each
edge e € F the bounding box of S (e) in an associative array Cie, with index set F.
The forward search checks whether the target is contained in C'(e). The backward search
checks whether the source is contained in Ciey(€).

3.1.6 Multi-Level Approach and Shortest-Path Containers

The multi-level approach enriches a given graph with additional edges. Each new edge
(u1,uy) represents a shortest path (uq,us,...,ux) in G. We annotate such a new edge
(uy, ug) with C'(uq,us), the associated bounding box of the first edge on this path.

3.2 Experimental Setup

In this section, we provide details on the input data used, consisting of real-world and
randomly generated graphs, and on the execution of the experiments.

3.2.1 Data
Real-World Graphs

In our experiments, we included a set of graphs that stem from real applications. As in
other experimental work, it turned out that using realistic data is quite important as the
performance of the algorithms strongly depends on the characteristics of the data.
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street
1444 3045 16471 20466 25982 38823 45852 45073 51510 79456
m | 3060 7310 34530 42288 57620 79988 98098 91314 110676 172374

public transport
409 705 1660 2279 2399 4598 6884 10815 12070 14335
m | 1215 1681 4327 6015 8008 14937 18601 29351 33728 39887
planar
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
m | 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
waxman
938 1974 2951 3938 4949 5946 6943 7917 8882 9906
m | 4070 9504 14506 19658 24474 29648 34764 39138 44208 48730

=

=

=

=

Table 3.1: Number of nodes and edges for all test graphs

Street Graphs. Our street graphs are street networks of US cities and their surroundings.
These graphs are bidirectional, and edge lengths are Euclidean distances. The graphs
are fairly large and very sparse because bends are represented by polygonal lines.
(With such a representation of a street network, it is possible to efficiently find the
nearest point in a street by a point-to-point search.)

Public Transport Graphs. A public transport graph represents a network of trains,
buses, and other scheduled vehicles. The nodes of such a graph correspond to stations
or stops, and an edge between two nodes exists if there is a non-stop connection
between the respective stations. The weight of an edge is the average travel time
of all vehicles that contribute to this edge. In particular, the edge lengths are not
Euclidean distances in this set of graphs.

Random Graphs

We generated two sets of random graphs that have an estimated average degree of 2.5
(which corresponds to the average degree in the real-world graphs). Each set consists of
ten connected, bidirectional graphs with (approximately) 1000 - ¢ nodes (i = 1,...,10).

Random Planar Graphs. For the construction of random planar graphs, we used a gen-
erator provided by LEDA [44]. A given number of n nodes are uniformly distributed
in a square with a lateral length of 1, and a triangulation of the nodes is computed.
This yields a complete undirected planar graph. Finally, edges are deleted at random
until the graph contains 2.5 - n edges, and each of these is replaced by two directed
edges, one in either direction.

Random Waxman Graphs. The construction of these graphs is based on a random
graph model introduced by Waxman [67]. Input parameters are the number of nodes
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n and two positive rational numbers o and 5. The nodes are again uniformly dis-
tributed in a square of a lateral length of 1, and the probability that an edge (u,v)
exists is 3 - exp(—d(u,v)/(v/2c)). Higher 3 values increase the edge density, while
smaller « values increase the density of short edges in relation to long edges. To
ensure connectedness and bidirectionalness of the graphs, all nodes that do not be-
long to the largest connected component are deleted (thus, slightly less than n nodes
remain) and the graph is bidirectional by insertion of missing reverse edges. We set
a = 0.01 and empirically determined that setting 3 = 2.5 - 1620/n yields an average
degree of 2.5, as wished.

3.2.2 Experiments

We have implemented all combinations of speed-up techniques as described in Sections 1.2
and 3.1 in C++, using the graph and binary heap data structures of the LEDA library [44]
(version 4.4). The code was compiled with the GNU compiler (version 3.3), and experi-
ments were run on an Intel Xeon machine with 2.6 GHz and 2 GB of memory, running
Linux (kernel version 2.4).

For each graph and combination, we computed for a set of queries shortest paths,
measuring two types of performance: the mean values of the running times (CPU time in
seconds) and the number of nodes inserted in the priority queue. The queries were chosen
at random and the amount of them was determined such that statistical relevance can be
guaranteed (see also Sect. 2.3.2).

3.3 Experimental Results

The outcome of the experimental study is shown in Figures 3.1 and 3.2. Further diagrams
that we used for our analysis are depicted in Figures 3.3-3.11. Each combination is referred
to by a 4-tuple of shortcuts: go (goal-directed), bi (bidirectional), m1 (multi-level), sc
(shortest-path container), and -- if the respective technique is not used (e.g., gobi --sc).

We calculated two different values denoting relative speed-up: on the one hand, Fig-
ures 3.1 and 3.2 show the speed-up that we achieved compared to plain Dijkstra, i.e., for
each combination of techniques the ratio of the performance of plain Dijkstra and the
performance of Dijkstra with the specific combination of techniques applied. There are
separate figures for the number of nodes and running time, respectively.

On the other hand, for each of the Figures 3.3-3.6, we focus on one technique 7 and
show for each combination containing 7 the speed-up that can be achieved compared to
the combination without 7. For example, when focusing on bidirectional search and con-
sidering the combination go bi -- sc, say, we investigate by which factor the performance
gets better when the combination gobi --sc is used instead of go----sc only.

In the following, we discuss, for each technique separately, how combinations with the
specific technique behave, and then turn to the relation of the two performance parameters
measured, the number of visited nodes and running time: we define the overhead of a
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Figure 3.2: Speed-up relative to Dijkstra’s algorithm in terms of running time
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combination of techniques to be the ratio of running time and the number of visited nodes.
In other words, the overhead reflects the time spent per node.

3.3.1 Speed-up of the Combinations
Goal-Directed Search

Individually comparing goal-directed search with plain Dijkstra (Figure 3.3), speed-up
varies greatly between the different types of graphs: Considering the random graphs, we
obtain a speed-up of about 2 for planar graphs but of up to 5 for the Waxman graphs,
which is quite surprising. Only little speed-up, of less than 2, can be observed for the
real-world graphs.

Concerning the number of visited nodes, adding goal-directed search to the multi-level
approach is slightly worse than adding it to plain Dijkstra and with bidirectional search, we
get another slight deterioration. Adding it to shortest-path containers (and combinations
including them) is hardly beneficial.

For real-world graphs, adding goal-directed search to any combination does not improve
the running time. For generated graphs, however, running time decreases. In particular, it
is advantageous to add it to a combination containing multi-level approach. We conclude
that combining goal-directed search with the multi-level approach generally seems to be a
good idea.

Bidirectional Search

Bidirectional search individually gives a speed-up of about 1.5 for the number of visited
nodes (see Figure 3.4) and for the running time, for all types of graphs. For combinations
of bidirectional search with other speed-up techniques, the situation is different: For the
generated graphs, neither the number of visited nodes nor the running time improves when
bidirectional search is applied additionally to goal-directed search. However, running time
improves with the combination containing the multi-level approach, and also combining
bidirectional search with shortest-path containers works very well. In the latter case, the
speed-up is about 1.5 (as good as the speed-up of individual bidirectional search) for all
types of graphs.

Multi-Level Approach

The multi-level approach crucially depends on the decomposition of the graph. The Wax-
man graphs could not be decomposed properly by the multi-level approach, and therefore
all combinations containing the latter yield speed-up factors of less than 1, which means a
slowing down. Thus we consider only the remaining graph classes.

Adding multi-levels to goal-directed and bidirectional search and their combination
gives a good improvement in the range between 5 and 12 for the number of nodes (see
Figure 3.5). Caused by the big overhead of the multi-level approach, however, we get a
considerable improvement in running time only for the real-world graphs. In combination
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with shortest-path containers, the multi-level approach is beneficial only for the number
of visited nodes in the case of street graphs.

The multi-level approach allows tuning of several parameters, such as the number of
levels and the choice of the selected nodes. The tuning crucially depends on the input
graph [23]. Hence, we believe that considerable improvements of the presented results are
possible if specific parameters are chosen for every single graph.

Shortest-Path Containers

Shortest-path containers work especially well when applied to planar graphs, i n fact, the
speed-up even increases with the size of the graph (see Figure 3.6). For Waxman graphs,
the situation is completely different: with the graph size, the speed-up becomes smaller.
This can be explained by the fact that large Waxman graphs have, due to construction,
more long-distance edges than small ones. Because of this, shortest paths become more
tortuous and the bounding boxes contain more “wrong” nodes.

Throughout the different types of graphs, shortest-path containers individually as well
as in combination with goal-directed and bidirectional search yield exceptionally high
speed-ups. Only the combinations that include the multi-level approach cannot be im-
proved that much.
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3.3.2 Overhead

For goal-directed and bidirectional search, the overhead (time per visited node) is quite
small, while for shortest-path containers it is a factor of about 2 compared to plain Dijkstra
(see Figures 3.11. The overhead caused by the multi-level approach is generally high and
quite different, depending on the type of graph. As Waxman graphs do not decompose
well, the overhead for the multi-level approach is large and becomes even larger when the
size of the graph increases. For very large street graphs, the multi-level approach overhead
increases dramatically. We assume that it would be necessary to add a third level for graphs
of this size. It is also interesting to note that the relative overhead of the combination goal-
directed, bidirectional, and multi-level is smaller than just multi-level —especially for the
generated graphs.

3.3.3 Conclusion

To summarize, we conclude that there are speed-up techniques that combine well and
others where speed-up does not scale. Our result is that goal-directed search and multi-
level approach is a good combination and bidirectional search with shortest-path containers
complement each other.

For real-world graphs, a combination including bidirectional search, multi-level, and
shortest-path containers is the best choice as to the number of visited nodes. In terms
of running time, the winner is bidirectional search in combination with shortest-path con-
tainers. For generated graphs, the best combination is goal-directed, bidirectional, and
shortest-path containers for both the number of nodes and running time.

Without an expensive preprocessing, the combination of goal-directed and bidirectional
search is generally the fastest algorithm with smallest search space—except for Waxman
graphs. For these graphs, pure goal-directed is better than the combination with bidi-
rectional search. Actually, goal-directed search is the only speed-up technique that works
comparatively well for Waxman graphs. Because of this different behaviour, we conclude
that planar graphs are a better approximation of the real-world graphs than Waxman
graphs (although the public transport graphs are not planar).
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Chapter 4

Implementation

In the implementation of experimental algorithms, switching flexibly between different
variants is a major issue apart from the efficiency of the algorithm. In our case, a basic
algorithm (DIJKSTRA’S ALGORITHM) is refined in different ways in order to compare their
performance and output. As a concrete example, the shortest path computation with
Dijkstra’s algorithm can be improved by goal-directed search or geometric pruning. Apart
from such refinements, other so-called aspects [30] can be added to the algorithm: operation
counting, time measurement or debugging output.

4.1 Adding Aspects by Parameterized Inheritance

For complex algorithms, it is favorable to keep the code of every aspect separate from the
basic algorithm while preserving the efficiency. The basic algorithm is defined as a class
with virtual functions at major key points as sketched below:

struct Algo {
virtual void init() {...}
virtual bool finished() {...}
virtual void do_something() {...}

void run() {
init();
while (!finished())
{ do_something(); }
}
};

In our case, the algorithm is of course DIJKSTRA’S ALGORITHM. The constructor func-
tion of Algo initializes the priority queue, init () inserts the source in the priority queue,
finished() tests whether the priority queue is empty, and so on. The function do_something ()
is just a mere representative for the number of functions inside the loop.
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Suppose we are interested in the number of calls to the function do_something(). The
aspect in question is then added by deriving a subclass that modifies virtual functions of
the base class. This realization has the drawback that different aspects cannot be combined
freely, because the base class is fixed. We get a much more flexible system, if we turn the
aspect into a mix-in class, i.e., we make the base class a template argument.

template<typename Base> struct AspectCount::public Base {
int operations;
virtual void init() { Base::init(); operations=0; }
virtual void do_something() { Base::do_something(); ++operations; }

I
Note that calling the base class function is mandatory in order to preserve the correctness
of the algorithm and other aspects.

We are now ready to explain how different variants of Dijkstra’s algorithm can be
realized using aspects. Suppose that another aspect is implemented similarly to the above,
e.g., AspectTarget for terminating DIJKSTRA’S ALGORITHM when the target is finished.
The four variants of Dijkstra’s algorithm with operation counting, termination at target,
and termination at target with operation counting, can be easily instantiated:

Dijkstra AlgoA; AlgoA.run(source,target) ;
AspectCount<Dijkstra> AlgoB; AlgoB.run(source,target) ;
AspectTarget<Dijkstra> AlgoC; AlgoC.run(source,target) ;

AspectTarget<AspectCount<Dijkstra> > AlgoD; AlgoD.run(source,target);

Thus, it is possible with parameterized inheritance to instantiate all combinations of as-
pects, while it is not necessary to actually implement the (exponentially many) combi-
nations. Since all functions are inlined, the function calls can be optimized away by the
compiler which leads to a flexible and efficient set of algorithms.

Other aspects that we implemented include storing a layout of the graph, goal-directed
search, geometric pruning, performing operation counts including mean value and vari-
ance, constructing on-line or off-line containers in CREATE-CONTAINERS, or truncating
DIJKSTRA’S ALGORITHM according to Lemma 9 or 12 for updates after changing edge
weights.

4.2 Constructor Parameter List

The initialization of the algorithm is done by the constructor of the class and necessary
parameters are given as arguments to the constructor. We will now discuss the question
how additional parameters that are needed by aspects can be provided. We use a technique
inspired by [68], but omit the creation of a repository.

Consider again Dijkstra’s algorithm. The parameters that are given to the constructor
are the graph and the edge lengths in this case. A speed-up technique that uses a layout
of the graph would expect the layout in addition to the graph and the edge lengths.

The constructor of the aspect has to pass along the parameters to the base class.
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Algo::Algo(Typel Parameter1l){...}

template<typename Base>

AspectA<Base>: :AspectA(Typel Parameterl, Type2 Parameter?2):
public Base(Parameterl)

{ do something with Parameter2 }

If there is another AspectB that expects another Parameter and we want to freely combine
them, we have the problem that the constructor does not know which parameters the
base class (including other aspects) needs. Either we have to write constructors for all
combinations of parameters, or we have to sacrifice type safety by passing a list of pointers
to void that are then casted to the respective parameters. A third method, the one that
we follow, is to pass a meta-list of types. We will now describe, how such a meta-list can
be realized in a way similar to that in [28].

struct END {};
static END End;

template<typename T, typename NEXT=END> struct LISTITEM {
T &value;
NEXT next;

s

The template class LISTITEM is the list item of our parameter list. It holds a value and a
pointer to the next list item. The class END is used as an anchor to create an empty list.
Usage of the list is as follows.

struct Algo {
typedef LISTITEM<Typel> ParamType;
Algo(ParamType Parameter);

};

template<typename Base> struct AspectA::public Base {
typedef LISTITEM<Type2,Base::ParamType> ParamType;
AspectA(ParamType Parameter) :Base(Parameter.next)
{ do something with Parameter.value }

+;

An aspect that needs to add a parameter can do this by attaching it to the parameter type
ParamType. It can access the value of the additional parameter as Parameter.value and
pass the rest of the list Parameter.next to its base class. The list that is given to the base
class could be the parameter list of Algo, but it can also contain further arguments that
are needed by other aspects. Since the parameter list Base: :ParamList of the template
argument Base is used, both cases are handled by this construction.

In order to nicely construct the parameter list, we need the class LISTITEM to provide
generic constructors for lists with different lengths:
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template<typename T, typename NEXT=END>
struct LISTITEM {

T &value;

NEXT next;

LISTITEM(T &t):value(t),next(Nil){}

template<typename T2> LISTITEM(T2 &t2, T &t):value(t), next(t2) {}

template<typename T2, typename T3> LISTITEM(T3 &t3, T2 &t2, T &t):
value(t), next(t3,t2) {}

// ... and so on

};

The best way to show how simple it is to use a parameter list is to provide an example.
Assume our basic algorithm Dijkstra needs the parameters G and 1. Furthermore, we
would like to use an aspect PruningAspect, which needs the parameter L, and an aspect
CountingAspect without additional parameters. To realize such an algorithm, it is simply
needed to provide the three parameters as the meta-list:

PruningAspect<CountingAspect<Dijkstra> >::ParamType P(G, 1, L);
PruningAspect<CountingAspect<Dijkstra> > Algo(P);

For obvious reasons, it is required to know which aspects need what additional parameters.

Furthermore, the respective parameters must be given in the same order as the aspects are
added.

4.3 Dependencies

Another issue of the code organization is that some aspects depend on others. To give
a concrete example, goal-directed search as well as geometric pruning both depend on a
layout of the graph. Template meta-programming can also be used to check dependencies
of such concepts [69]. In our case, concepts coincide most of the time with the use of a
mix-in class (a derived class where the base class is a template parameter). This enables
us to actually add the mix-in class in case it is needed but has not been included yet.
(The aspect “layout” must only be added once if both goal-directed search and geometric
pruning are used.)

In order to check a condition at compile-time, we make use of partial specialization as
presented in [28]:

template<bool Cond, typename A, typename B>
struct IF { typedef A RET; };
template<typename A, typename B>

struct IF<false,A,B> { typedef B RET; };

The template class IF can be used to decide at compile time, which type A or B is used
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depending on the condition Cond. The “return value” of the meta function IF is the type
RET. Consider the definition

IF<(sizeof (int)<4), int, long>::RET a

If the size of int is 4, the general definition of IF is used. Therefore a is of type int. If
the size of int is smaller than 4, the specialization of IF is used and a is of type long.

Our goal is to test at compile time whether the given base class T provides a certain
aspect Aspect (e.g., whether the algorithm class stores a layout of the graph). Hence,
what we need is to test whether the base class T is of the form Aspect<B> for some
class B. Furthermore the base class T also provides the aspect Aspect, if it is derived from
Aspect<B> (e.g., because some other aspect has been added after Aspect). Testing whether
a class T is derived from a class B is a little bit tricky (see Chapter 2.7 in [27] for more
details).

template<typename T, template<typename L> class Aspect>
struct Provides {
private:

class Yes { char a[l]; };

class No { char a[10]; };

static No ProvidesTest( ... );
template<typename S> static Yes ProvidesTest( Aspect<S> const* );

public:
static bool const RET = (sizeof(ProvidesTest(static_cast<T*>(0)))
== gizeof(Yes));

};

The aspect to test is provided as a template-template argument (a template class as tem-
plate argument) of the class Provides. The template function ProvidesTest (Aspect<S>
const*) accepts a pointer to Aspect<S> for some class S or a pointer to a class that is
derived from Aspect<S>. The function ProvidesTest(...) can take any pointer as ar-
gument. Both functions will actually never be called, so there is no need to define them.
What is important about these functions is that they differ in their return type. If we call
ProvidesTest () with a pointer to a class derived from Aspect<S>, the return type would
be Yes. Otherwise it would be No. Even more important is that the sizes of their return
types differ. Hence, we can distinguish by sizeof (ProvidesTest(static_cast<T*>(0))
whether T is derived from Aspect<S>. The return value of the meta function Provides is
stored in RET.

Using the template classes IF and Provides, we are now able to add to a base class an
aspect if and only if it is not already included:

template<typename Base, template<typename L> class Aspect>
struct EnsureAspect {
typedef typename IF<Provides<Base,Aspect>::RET, Base,
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Aspect<Base> >::RET RET;
};

Usage is as follows:

template<typename Base>

struct A:public EnsureAspect<Base,B>::RET {

typedef typename EnsureAspect<Base,B>::RET MyBase;
// ... further class members

¥

The aspect A (e.g., geometric pruning) needs the base class to include aspect B (e.g.,
layout). If Base does not provide it, A is not derived from Base but from B<Base>. For
our convenience, the type of the actual base class is remembered as MyBase.

For a concrete application we return to our main example. Geometric pruning Pruning-
Aspect and goal-directed search GoalDirectedAspect both need a layout LayoutAspect.
If they ensure the usage of LayoutAspect as shown above, it is not necessary to include
this aspect by hand:

PruningAspect<LayoutAspect<Dijkstra> >::ParamType P1(Graph, Lengths,
Layout) ;
PruningAspect<LayoutAspect<Dijkstra> > Algol(P1);

PruningAspect<Dijkstra>: :ParamType P2(Graph, Lengths, Layout);
PruningAspect<Dijkstra> Algo2(P2);

Both instantiations Algol and Algo2 result in the same algorithm. Furthermore, the
aspects PruningAspect and GoalDirectedAspect can be combined as

PruningAspect<GoalDirectedAspect<Dijkstra> >::ParamType P3(Graph,
Lengths,
Layout) ;

PruningAspect<GoalDirectedAspect<Dijkstra> > Algo3(P3);

Again, it is necessary to know which parameters are needed and in which order according
to the added aspects including their dependencies. However, instantiating an algorithm
gets much shorter and clearer, since only the main aspects need to be mentioned.
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Chapter 5

Graph Drawing

In this chapter, we present the three methods to draw graphs that have been shown to
produce good results even for large graphs: multi-level force-directed layout, eigenvectors
of the Laplacian, and principal component analysis of a high-dimensional embedding. The
main goal of the rest of this thesis it to draw graphs (i.e. generate layouts of graphs) in
order to use them for geometric speed-up techniques. Since these speed-up techniques have
been shown to be very efficient, it is therefore appreciable if they can be used in case the
layout of the graph is (partially) unknown or not given by the application.

In this chapter, we assume that all graphs are undirected graphs (ignoring the direction
of the edges), because preliminary results suggest that a drawing of the directed graph does
not improve the quality of speed-up techniques. Furthermore, we assume that graphs are
connected and loop-free, i.e. for all edges (i,7) € E, i # j.

5.1 Force-Directed Layout

Eades presented in [31] the idea to draw a graph by simulating the edges of the graph as
springs and the nodes of the graph as rings connecting these springs. The approach has
been refined in [33, 34] by adding repelling forces to avoid small distances between nodes.
We will introduce this algorithm differently than history by looking at barycentric layouts
at first.

Let L : V — R? be a layout of a graph, then the potential function

Pp(p) = Y w({u,0}) - [|L(w) = L(v)|? (5.1)
{u,v}eF
where w(e) = @ weights the influence of an edge according to its length i(e), defines a
weighted barycentric layout model [32]. This model has an interesting physical analogy,
since each of the terms in (5.1) can be interpreted as the potential energy of a spring with
spring constant w(e) and ideal length zero.
A necessary condition for a local minimum of Pg(p) is that all partial derivatives vanish.
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Figure 5.1: Barycentric layout of an 72 x 72 grid with the four corners fixed, and the same
grid with 95 and with 10 randomly selected nodes fixed

That is, for all L(v) = (z,,y,), v € V, we have

2, w({u,v}) -y 2, w{u,v}) -y

- u{uv}eE y, = u{uv}eE
’ >, w{u,v}) ’ >, w({uv})
u{u,v}eF u{u,v}eF

In other words, each node must be positioned in the weighted barycenter of its neighbors.
It is well known that this system of linear equations has a unique solution, if at least
one L(v) in each connected component of G is given (and the equations induced by v
are omitted) [70]. Note that, in the physical analogy, this corresponds to fixing some of
the points in the spring system. Moreover, the matrix corresponding to this system of
equations is weakly diagonally dominant, so that iterative equation solvers can be used to
approximate a solution quickly (see, e.g., [71]).

Assuming that the given set of node positions provide the cornerstones necessary to
unfold the network appropriately, we can thus generate coordinates for the other nodes us-
ing, e.g., Gauss-Seidel iteration, i.e. by iteratively placing them at the weighted barycenter
of their neighbors. Figure 5.1 indicates that this approach is highly dependent on the set
of given positions. As is discussed in Sect. 7.4, it nevertheless has some practical merits.

The main drawbacks of the barycentric approach are that all nodes are positioned inside
of the convex hull of the nodes with given positions, and that provided edge length are not
preserved. We will now modify the potential (5.1) to take these edge lengths into account.

Kamada and Kawai [34] use springs of length d(u,v), i.e. equal to the length of a
shortest path between u and v, between every pair of nodes. The potential then becomes

Pyx(L) = Y w(u,v) - (| L(w) = L(o)] = d(u,0))*, (5.2)

u,weV

the idea being that constituent edges of a shortest path in the graph should form a straight

line in the drawing of the graph. To preserve local structure, spring constants are chosen
as We = @, so that long springs are more flexible than short ones. (The longer a path in

the graph, the less likely are we able to represent it straight.) Note that this is a special
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case of multidimensional scaling, where the input matrix contains all pairwise distances in
the graph.

This model certainly does reflect our layout objectives more precisely. Note, however,
that it is NP-hard to determine whether a graph has an embedding with given edge
lengths, even for planar graphs [72].

In contrast to the barycentric model, the necessary condition of vanishing partial deriva-
tives leads to a system of non-linear equations, with dependencies between z- and y-coordi-
nates. Therefore, we can no longer iteratively position nodes optimally with respect to the
other temporarily fixed nodes, as in the barycentric model. As a substitute, a modi-
fied Newton-Raphson method can be used to approximate an optimal move for a single
node [34, 73].

We compute a local minimum of a potential P(L) by relocating one node at a time
according to the forces acting on it, i.e. the negative of the gradient, —VP(L). For each
node v (in arbitrary order) we move only this node in dependence of P(L(v)). The node is
shifted in the opposite direction of d := VP(L(v)). A substantial parameter of a gradient
descent method is the size of each step. For small graphs, it is often sufficient to take a
fixed multiple of the gradient (see the classic example of [31]), while others suggest some
sort of step size reduction schedule (e.g., see [33]).

We applied a more elaborated method that is robust against change of scale, namely
the method of Wolfe and Powell (see, e.g., [74]). The step size o € (0,00) is determined by

VP(L(v) —od)d < .
VP(LNd |
PL() — P(Lv) — od)
-V P(L(v)d 2 0

for given parameters ¢ € (0,0.5) and x € (4,1). Roughly speaking, this guarantees that
the potential is reduced and that the step is not too small without any “fine-tuning” of
a cooling schedule. We remember the last step length to initialize the next step length
calculation, which speeds up the algorithm considerably. In our experiments, this method
clearly outperformed the simpler methods both in terms of convergence and overall running
time.

We also implemented the Newton-Raphson method, but it turned out to be an order
of magnitude slower to achieve the same minima. This is mainly due to the fact that we
worked in three dimensions, where it is necessary to invert a 3 x 3-matrix and to compute
six instead of three second derivatives. The matrix inversion was performed by our own
implementation as well as by LAPACK [75]. Both versions were not competitive with the
method of Wolfe and Powell.

While these algorithms produce appealing drawings, their running time is unacceptable
for large graphs. (In the graph drawing literature, similar objective functions have been
subjected to simulated annealing [76, 77] and genetic algorithms [78, 79]. These methods
seem to scale even worse.) Three groups discovered independently [35, 36, 37| how a
force-directed layout can be generated efficiently with a multi-level approach. For our
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implementation, we combined some of their methods: To create the next coarser graph in
the multi-level hierarchy, edges of a maximal matching are contracted [36]. This works very
well except for graphs that contain many star-like structures. (Then, only few edges are
removed in the next coarser graph.) For such graphs, we therefore use an inclusion-maximal
independent set as in [35].

5.2 Spectral Layout

This graph drawing method uses eigenvectors of a special matrix associated to a graph, the
so-called Laplacian matrix. Spectral layouts have been introduced in [38], but can also be
found in text books like, e.g., [80]. Their value for graph drawing has been renewed lately
by [39], which introduces a multi-level approach to make this drawing technique feasible
for large graphs. In this section, we will first provide some definitions and basic theorems
concerning graphs and their matrices and then show how to use them to produce a layout
for a graph. We will assume in this section that V' = {1,...,n} which is convenient to
describe vectors and matrices associated to a graph G = (V, E).

Definition 15 (Adjacency and Laplacian Matrix) Given a graph G = (V, E) with
V ={1,...,n}, the adjacency matrix of G is the matric A € R"*" with n = |V| and

. {1 if {i,j} € E

0 otherwise

If G is weighted with w : E — R{, the weighted adjacency matrix is the matriv A € R™"
with
. {w(z}j) if{i,jy € E
Y 0 otherwise

The (weighted) Laplacian matrix L of an undirected graph with (weighted) adjacency ma-
tric A € R™"™ is defined as D — A, where D denotes the diagonal matrix containing the
(weighted) degree of the corresponding nodes on the diagonal.

Since a spectral layout uses eigenvectors of the Laplacian as coordinates, we first recall
the definition of eigenvectors:

Definition 16 (Eigenvector and Eigenvalue) Let M € C™™ be a matriz. A wvector
0 # v € C" is called an eigenvector of M, if there exists an A € C such that

Muv = X\v
The number A\ € C is called an eigenvalue of M.

By construction, the all 1 vector T = (1,...,1)" € R" is an eigenvector of a Laplacian
matrix with eigenvalue 0: The value on the diagonal is the negative sum of all other entries
in this row.
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The dimension of an eigenvector of L is n, the number of nodes in GG. Therefore, one can
interpret an eigenvector of L as one-dimensional coordinates. Similarly, two eigenvectors
provide a two-dimensional drawing. Before we discuss which eigenvectors we use and how
we can determine them, we will show that the eigenvectors and eigenvalues are real.

Definition 17 (Symmetric Matrix) A matric M = (m;;) € C"*™ is called symmetric,
if mi; =my; for alli,j € {1,...,n}, or M* = M for short.

Obviously, the Laplacian matrix of a graph is symmetric by construction. This implies
that its eigenvalues are real:

Lemma 18 The eigenvalues of a real-valued, symmetric matrix are real, and the corre-
sponding eigenvectors are real-valued.

Proof: Let M € R™ ™ be a symmetric matrix, v € C" an eigenvector for the eigenvalue

A € C. Then
(v, Mv) = (v, W) = Mv,v) = A||v]|?

and
(v, Mv) = v'Mv = v'M'v = (Mv)'v = (Mv,v) = (Av,v) = v, v) = M|v|?

Since eigenvectors are by definition not zero, we get A = A. The eigenvectors of M are
then in the kernel of M — AI, which is a real subspace, since A € R. This concludes the
proof. O

We have now seen that, given a graph G, the eigenvectors of its Laplacian matrix are
in R"™. The reason for using eigenvectors z € R" of the Laplacian matrix for graph layout,
in particular those associated with small eigenvalues, is the following. The energy or stress
resulting from x is the value of the quadratic form

)= T = g 3w =)

{u,v}eFE

where w({i,j}) is the weight of the edge {7,j}, if L is weighted, and 1, otherwise.
Minimizing e(z) brings connected nodes close together, which is a common criteria for
“nice” drawings of a graph. Without loss of generality, we may assume that x is normalized,
so e(x) = z'Lz. Vectors minimizing e(x) with ||z|| = 1 are eigenvectors of L as shown in
the following theorem.

Theorem 19 Given a symmetric matriz M € R"™, the extremal of x'Mx under the re-
striction ||z|| = 1 is an eigenvalue of M.

Proof: The Lagrangian of the maximization problem is

L(z,\) = 2'Mz — \a'x — 1)
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The partial derivatives are

%L(m,)\) = 2Mz —2)\x

0

5[,(35,)\) = 1-2'z

The necessary conditions are therefore Mz = Az and [|z|]] = 1. An extremal value is
therefore an eigenvalue of M as

'Mzx = 2" v = \a'z = \||z|| = A

O

The all 1 vector 1 € R” is the eigenvector with the smallest eigenvalue 0. As this eigen-

vector is useless for a drawing, orthogonal eigenvectors x and y for the smallest eigenvalues
greater than zero are used to create the layout.

Lemma 20 For a symmetric matriz, eigenvectors with distinct eigenvalues are orthogonal.

Proof: Let M € C™*" be a symmetric matrix, vy, vs € C™ two eigenvectors with eigenval-
ues A1, A2 € R where A\; # 5. Then

A1 (v1, v2) = (Au1,v2) = (Muy,v) = (v1, Mva) = (v1, Agva) = Aa(v1, v2)

If (v1,v9) # 0, then A\; = Ay which contradicts A # As. O

The non-trivial eigenvectors of L are orthogonal to the trivial minimizer 1, and thus
centered around the origin. Their resulting stress is the associated eigenvalue of L. There-
fore, pairwise orthogonal eigenvectors associated with the smallest non-zero eigenvalues
yield layouts of minimum stress that are balanced (i.e. centered around the origin).

The eigenvalues can be computed efficiently with power iteration of the matrix 2A7— L,
where A denotes the maximum degree of a node in V and I € R™*" is the identity matrix.
The largest eigenvalue of L is bounded by twice the maximum degree A in GG. A vector
x € R” is an eigenvector of L with eigenvalue A iff x is an eigenvector of 2A[ — L with
eigenvalue 2A — A\. Thus, 2AI — L has the same eigenvectors as L in reversed order of
their (positive) eigenvalues. For a sparse graph, the matrices L and 2AI — L are sparse as
well, so the matrix multiplication can be implemented efficiently using adjacency lists.

To obtain the second largest eigenvalue, one applies the power method to the matrix
My := M — \z2t /||z||* as proposed in [81]. Except for x1, the matrix M; has the same
eigenvalues as M: Given an eigenvector x; of M with eigenvalue \; # Ay, it holds that

0

as eigenvectors with distinct eigenvalues are orthogonal (Lemma 20).
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5.3 High-Dimensional Embedding

The key idea of this method [40] is to draw the graph in a very high-dimensional space
(usually d = 50) and then project the graph to 2D. The projection is realized using principal
component analysis (PCA), which maximizes the variance of the projected data.

5.3.1 Drawing in R

In order to draw the graph in R? a node s € V is selected for each of the d dimensions.
For this dimension, the coordinate of a node v € V is then defined as the distance of v
from s, i.e. the length of a shortest s-v path in G. As our graphs are weighted, the shortest
paths were calculated using these edge weights. (The breadth first search in [40] is simply
replaced by Dijkstra’s algorithm.) Using these distances as coordinates provides a layout
in RY.

This method can be illustrated as if we had d different “pictures” of the graph. For
each picture, we selected a different position in the graph and take a (one-dimensional)
picture that sorts the other nodes according to their distances. If we have pictures from a
lot of different angles, we should get a reasonable overview of the graph.

A good choice of positions should gather as many different aspects of the graph as pos-
sible. It is therefore common to select the positions in a greedy-like fashion that maximize
the sum of distances to the other selected nodes.

5.3.2 Projecting to R?

In order to project the graph into a plane, principal component analysis (PCA) is used. The
projected coordinates are a linear combination of d-dimensional coordinates xq,...,x4 €
R™. PCA determines the linear combination 3¢ u,z; of coordinates with Y27, u? that
produces the largest variance. For doing so, we need the notion of covariance:

Definition 21 (Covariance) Given two n-dimensional observations xy,xe € R™, the
(empirical) covariance of z1 and x5 is defined as

n

1

S12 ' = —— (1 — T1) (T2 — T2)
n—1 —

where T, denotes the mean value %22:1 Tr1 and To denotes the mean value %22:1 Tho.
Given d n-dimensional observations x1,...,xq € R", the covariance matrix is defined as
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Observe that the covariance sy of a vector r; € R™ with itself is the variance s? (Defini-
tion 6), so the entries on the diagonal of the covariance matrix are the variances s?, ..., s2.

Let us look at the definition of the covariance matrix from the point of view of our
d-dimensional layout. At first, the layout is balanced by a translation of the values xz;
in every dimension i = 1,...,d, such that Y ,_, @, = 0. Then, the covariance matrix
S € R? is computed as s;; = ﬁ(:cz,xﬂ For ease of notation, we will therefore assume
in the rest of this section that the d-dimensional layout is balanced, i.e. > }_; zy; = 0 for
all i = 1,...,d. If the layout is balanced in R¢ | then every linear combinations of the

coordinates is balanced, too:

n d d n
Zzumk = Zuzzxm =0
k=1

k=1 =1 =1
0

for all uw = (uy, ..., u;)" € RL The variance of a linear combination Z?Zl u;x; can therefore
be computed as

d d d d

d d
ﬁ(z U X, Z u;x;) = ﬁ Z Z wiwi (T, ;) = ﬁ Z Z UiSijU; = ﬁ(u, Su)
i=1 j=1

i=1 j=1 i=1 j=1

Therefore, the coefficients (uy,...,uq)" € R? with |lul| = 0 for a linear combination
Zle w;x; of coordinates with maximal variance maximize (u, Su) under the restriction
that ||u| = 0. According to Theorem 19, u must be an eigenvector of S for the largest
eigenvalue. The eigenvector v of S for the second largest eigenvalue provides the second
coordinate Zle v;z;. Both can be determined efficiently using power iteration of S as
presented in Section 5.2.



Chapter 6

Example: Visualization of
Bibliographic Networks

Bibliographic analysis [82] uses publication data to structure and summarize a scientific
field. This data is often given in the form of bibliographic networks, with nodes representing
authors, journals, or publications, and edges representing relations between these entities
such as authorship, collaboration, or citation.

As a concrete example for the graph drawing algorithms in the last chapter, we provide
a novel approach to visualize bibliographic networks that facilitates the identification of
clusters (e.g., topic areas) and prominent entities (e.g., surveys or landmark papers) at the
same time. More precisely, the bibliographic network is embedded in a landscape where
nodes are represented by buildings. (This work has been published previously in [83].)

While employing the landscape metaphor has been proposed in several earlier publi-
cations, we introduce new means to define and compute the relevant parameters of the
landscape. A noteworthy aspect of our method is that determination of prominent enti-
ties, the spatial representation of the clustering of the network, and the elevation of the
landscape’s surface are carried out in a surprisingly uniform and simple way. From a tech-
nical point of view, it combines a spectral layout (Sect. 5.1) of the (modified) network
with a restricted force-directed layout (Sect. 5.2) of a refined graph. The effectiveness of
our network visualizations is illustrated on a data set from the graph drawing literature
(Sect. 6.4).

Since we propose an integrated method of analysis and visualization directed at par-
ticular aspects of bibliographic analysis, it may serve as a specialized component in more
elaborate systems such as [84, 85, 86], and in particular as a communication back-end for
systems that specialize in extracting and presenting network data [87, 88|.

6.1 Landmark Papers

To identify prominent entities in bibliographic networks, we determine the structural im-
portance of nodes according to their position in the graph. Many concepts formalizing this
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(a) bibliographic coupling (b) co-citation

Figure 6.1: Two operators producing weighted undirected graphs that capture the essence
of an analytic perspective

notion are in use, but the concept of hubs and authorities [89], though originally conceived
to improve relevance ranking in Web search engines, appears to be particularly suitable
for bibliographic networks. In this subsection, we present a slightly different derivation of
these indices to emphasize the similarity to the spectral layout that we use to position the
nodes.

A straightforward notion of prominence in an undirected graph, commonly applied in
the analysis of social networks [90], is the idea that the importance of a node is determined
by the importance of its neighbors. According to the following definition, the importance
assigned to a node is proportional to the total importance of its neighbors.

Definition 22 (Eigenvector Centrality [91]) Let A be the adjacency matriz of a con-
nected undirected graph G = (V,E). The eigenvector centrality, ¢(G) = (¢y)vev, is the
(unique) eigenvector for the largest eigenvalue of A subject to ¢, > 0 for allv € V and

Y vey Gy = 1.

To simplify the presentation, we restrict ourselves to the analysis of (connected) citation
networks with respect to landmark publications. We thus consider directed graphs G =
(V, E), in which each node v € V represents a publication, and directed edges (u,v) € F
that represent a citation of v in u. With straightforward modifications, our methods can
be applied to other types of bibliographic networks and other types of analyses (e.g., at
surveys, prominent authors, or journals with high impact).

We now define two operators to transform an unweighted directed graph into a weighted
undirected graph. The two operators model two different structural aspects in the directed
graph that can be extracted in the transformed graphs by a centrality analysis. See Fig. 6.1
for an illustration of the operators.

Definition 23 (Bibliographic Coupling [92] and Co-Citation [93]) Let G = (V, E)
be a directed graph with adjacency matriz A. The weighted undirected graphs B(G) and C(G)
induced by adjacency matrices B = AA" and C = A'A are called the bibliographic coupling
and co-citation graph, respectively.
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It is interesting to note that bibliographic coupling of a bipartite graph in which nodes
represent authors or publications, with edges from authors to their publications, yields a
collaboration graph.

The bibliographic coupling and co-citation graphs can then be used to formally define
the notions of hubs and authorities. Designed to increase the effectiveness of Web search
engines, hubs and authorities are formal notions of structural prominence of nodes in
directed graphs. Intuitively, a Web page is considered a hub, if it links to many authorities,
and a resource is an authority, if many hubs link to it. The implicit assumptions about
the meaning of a link are generally the same as the ones made for citations. In fact, the
Web can be considered to be the largest citation network there is.

Definition 24 (Hubs and Authorities [89]) For a connected directed graph G = (V, E),
let B and C' denote the adjacency matrices of B(G) and C(G), respectively. The hub index,
h(G) = (hy)vev, and the authority index, a(G) = (a,)vev, are defined as the eigenvector
centrality of B and C', respectively.

Starting from a® « % -1, the following interleaved version of power iteration is used to
compute the indices without explicitly constructing the undirected graphs.

R — A g, hE) — p®) /|| Rk
a(k+1) — At. h(k); CL(k+l) - a(kﬂ)/Ha(Hl)H.

While the speed of convergence depends on the ratio between the largest and second-
largest eigenvalue, convergence is usually rapid and we use stabilization of the eigenvalue
approximation as our stopping criterion. Since bibliographic networks tend to be very
sparse with m € O(n), each iteration takes linear time.

6.2 Topics

In this section, we describe a method to compute a two-dimensional layout of a biblio-
graphic network that represents thematic clusters geometrically. Since the layout algorithm
is a spectral layout (see Sect. 5.2) of a transformed graph, it is technically very similar to
the iterative computation of a prominence vector in the previous subsection.

The prominence analysis carried out in the previous subsection is based on an undirected
graph in which weighted edges correspond to the extend of bibliographic coupling (hubs)
or co-citation (authorities). Weights thus reflect similarity of entities with respect to the
analytic perspective taken. However, if a pair of nodes in a directed graph G is connected
by just a single edge, they are adjacent in neither B(G) nor C(G). To incorporate similarity
implicit in directed linkages, our definition of similarity contains an additional unit weight
for each directed edge.

Definition 25 (Similarity Graphs) Let G = (V| E) be a directed graph with adjacency
matriz A. The weighted undirected graphs Sp(G) and S¢(G) induced by adjacency matri-
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(a) Laplacian (b) modified Laplacian (p = 0.25)

Figure 6.2: Co-citation similarity layout of a citation network. See Sect. 6.4 for details on
the data and note that the layout is not primarily determined by the citation graph, but
the similarity of citation patterns

ces Sp = AA'+ A+ A" and S¢c = A'A+ A+ A' are called the similarity graphs with respect
to bibliographic coupling and co-citation, respectively.

Similarity graphs may be clustered geometrically using standard methods such as multi-
dimensional scaling or force-directed graph layout algorithms. However, for reasons stated
more elaborately in [86], a spectral layout (see Sect. 5.2) is more appropriate for our ap-
plication.

Spectral layout refers to the use of eigenvectors of the Laplacian matrix L = D — A,
where A denotes the (weighted) adjacency matrix of the graph and A is the diagonal
matrix containing the (weighted) degree of the corresponding nodes on the diagonal. If
the underlying graph is not “round-shaped” (roughly, if the second-smallest eigenvalue
is not large enough), Laplacian layouts yield in a clustering which is too dense to be
useful for visualization. This defect is also noted in [86], where it is suggested to use the
Laplacian layout to initialize a force-directed layout algorithm which significantly increases
the running time. However, we propose to modify the Laplacian matrix by introducing
a relaxation factor 0 < p < 1. The matrix L, = (1 — p) - D — A compromises between
the Laplacian and the adjacency matrix and thus avoids excessive displacement of loosely
connected nodes. Figure 6.2 illustrates the effect.

To be able to compute eigenvectors of L, with the same simple power iteration used
for hubs and authorities, we reverse the order of it eigenvalues and repeatedly orthogonal-
ize with 1. Moreover, because of the potential loss of sparsity, we do not construct the
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similarity graphs explicitly.

To compute a similarity clustering with respect to, say, co-citation, let A be the ad-
jacency matrix of a directed graph G' with n nodes, Ds, () the diagonal weighted degree
matrix of S¢(G), and A the maximum weighted degree of S¢(G).
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A second dimension, ¥, is computed in much the same way, except that we orthogonalize
with the first dimension by computing
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at the end of each iteration. Again, we are requiring only sparse matrix-vector and vector-
vector multiplication, so that each iteration needs linear time and space.

6.3 Scientific Landscapes

The landscape metaphor is popular for visualizing bibliographic networks [85, 86, 94|, but
in general the landscape is produced simply by overlaying a triangulated grid, where grid
points are elevated according to the density of data points in their vicinity. The shape of
the landscape thus conveys only one aspect in the network’s analysis, i.e. clustering.

We define the shape of the landscape so as to display both clustering and prominence
in the same visualization and to represent the underlying network layout more accurately.
Intuitively, we simplify a three-dimensional drawing of the network in which two dimensions
represent similarity between entities, while the third is determined by a prominence index
by placing a table cloth over it. It almost goes without saying that this table-cloth is
positioned with yet another variation of a graph-drawing algorithm.

Assume we are given a connected undirected graph G = (V, E) with n nodes and
m edges together with a three-dimensional layout (z, y, z), in which each v € V is associated
with a point (z,, ¥, z,) € R3. In our application, - and y-coordinates are the entries of
eigenvectors of the modified Laplacian matrix of G, and z-coordinates are eigenvector
centralities in G, i.e. z = ¢(G), but a landscape could be generated in much the same way
from any other three-dimensional layout as well.

We want to cover the layout from the top (z-direction) with a smooth surface to resem-
ble a landscape in which elevations correspond to prominent entities. We therefore first
generate a point set in the xy-plane, triangulate it, and finally compute z-coordinates for
all points using this triangulation and the prominence of nodes.
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The set of points defining the shape of the landscape is generated as follows. Consider
the two-dimensional straight-line drawing of G defined by (z,y), and add (y/n) equidis-
tant horizontal and vertical lines each to the drawing. The set of points P that defines
the landscape consists of all nodes of G and all intersections between edges, grid lines, or
edges and grid lines. Note that |P| € O(m?).

Next, a Delaunay triangulation of P is computed. The resulting triangles will be used
to render the surface, but first we have to determine z-coordinates for all p € P such that
the surface covers the three-dimensional graph layout like a table cloth.

Ideally, points created from nodes of the graph are placed at the same z-coordinate as
the node. On the other hand, for the surface to be smooth, points that are close in the
xy-plane should also be close in z-direction. Thus consider the objective function

Z wpg - |12p = 24l

p,gEP

where w, is a non-negative weight measuring the influence of ¢ on p, which will depend on
the relative distance between them. We set w,, = 0, if p = ¢ or p and ¢ are not adjacent
in the Delaunay triangulation. Inspired by recent work on terrain modeling [95, 96], we
compute the remaining influence weights as in Sibson’s interpolant [97], i.e. by temporarily
removing p from the Voronoi diagram and setting w,, to the share of p’s Voronoi cell that
its Delaunay neighbor acquires through p’s removal.

Minimization of the above objective function is straightforward. It is also the quadratic
form associated with a Laplacian matrix, but this time of the graph of the Delaunay
triangulation with Sibson weights. Moreover, since the surface should cover the three-
dimensional shape of the network, there are natural candidates for the z-coordinates of
points stemming from a node or the intersection of an edge. Since close nodes may have
very different prominence scores, we fix the z-coordinate of points that are locally maximal
(i.e. whose Delaunay neighbors have smaller natural candidates) and of points on the
convex hull (at ground level). Subject to these constraints, the remaining coordinates are
determine so as to minimize the above objective.

Since some points are already fixed, minimization amounts to placing all other points
in the weighted barycenter of their neighbors. The resulting system of linear equations
has a unique solution [32], which can quickly be approximated using an iterative equation
solver. Let F' be the edges of the Delaunay triangulation, then we simply iterate

(k+1) Wpq (k)
“p - Z w q

A{p,q}eF
q:{p,q} q :{p,q'}eF

for each p € P whose coordinate has not been fixed. These are once again sparse matrix
computations, and since the matrix is weakly diagonally dominant, convergence is rapid.
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6.4 Results and Discussion

As a proof of concept, we have implemented our approach in C+-+ using the Library
of Efficient Data Types and Algorithms (LEDA) [44] and OpenGL. The data set used
in our examples is taken from the 2001 Graph Drawing Contest [98] and consists of all
papers published in proceedings of Graph Drawing Symposia 1994-2000, complete with
their mutual citations. The largest connected component is formed by 249 papers and
642 citations. (Note that this data cannot form the basis for valid conclusions about the
relative importance of papers in the field of graph drawing as such. It was chosen because
we are most familiar with the document corpus and could therefore evaluate much better
the adequateness of our visualizations relative to the data set.)

Using our reshaped landscape metaphor, the citation network suggests several hypothe-
ses about the nature of citations in the area of graph drawing that are readily confirmed by
inspection of the underlying data. Peaks indeed indicate authoritative papers, and villages
correspond to popular themes in graph drawing.

Improved graphical design (e.g., richer glyphs), more sophisticated rendering (e.g., in-
creased realism), and powerful means of user interaction (e.g., levels of detail) would cer-
tainly be worthwhile considering for an actual system, but are beyond the scope of our
work. The landscape visualization might further be extended by introducing topical area
boundaries (based on the implicit surface techniques of [99]) or citation tracks (based on
main path analysis [100]).

Figure 6.3: Simultaneous visualization of prominence (authority) and clustering (co-
citation similarity) — overview and zoomed in to the “village” of the graph drawing contest
(with partially transparent table cloth)
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Chapter 7

Generating Layouts for Travel
Planning Systems

In travel-planning systems for public transport [6, 5, 4], shortest-path computations form
a basis for answering connection queries. They often make use of geometric speed-up
techniques for shortest-path computations as presented in Chapters 2 and 3. Finding the
best itinerary using schedules vehicles can thereby be modeled as a shortest-path query in
the graph where the nodes are departure and arrival events and an edge represents a train
connection or a waiting time at a station.

The problem we consider in this chapter has been posed by an industrial partner! who
is a leading provider of travel-planning services for public transportation. They are faced
with the fact that quite often, much of the underlying geography, i.e. the location of nodes
in a network, is unknown, since not all transport authorities provide this information
to travel service providers or competitors. This is particularly true if the provider of
the travel information system differs from the transportation company, e.g. for foreign
trains or local bus companies. The situation will become even more serious in future with
the liberalization of the European railway network and the integration of local buses in
door-to-door queries. Furthermore, producers of a time-table information system need
to demonstrate their travel-planning software to new customers who usually do not have
coordinates in a ready-to-use state. Since the reduction in query response time is important,
other ways to make the successful geometric speed-up heuristics applicable are sought.

The existing, yet unknown, underlying geography is reflected in part by travel times,
which in turn are given in the form of timetables. Therefore, we can construct a simple
undirected weighted graph in the following way. FEach station represents a node, and
two nodes are adjacent if there is a non-stop connection between the two corresponding
stations. Edge weights are determined from travel times, thus representing our distance
estimates. Reasonable (relative) location estimates are then obtained by embedding this
graph in the plane such that edge lengths are approximately preserved. Parts of these
results have been published previously in [101]. This problem is closely related to drawing

'HaCon Ingenieurgesellschaft mbh, Hannover.
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Internet latency maps and positioning algorithms for wireless ad-hoc networks. However,
it is mot our goal to reconstruct the original coordinates, but to produce coordinates with
which the speed-up techniques perform well.

In the next section, we describe precisely how we model the graph from a set of timeta-
bles that we use to generate the geographic information. In Section 7.2, we tailor a specific
force-directed layout algorithm for this graph and application. This algorithm is experi-
mentally evaluated on timetables from the German public train network using a snapshot of
half a million connection queries. Section 7.3 describes the experiments that we performed
and Section 7.4 their results.

7.1 Estimating Distances from Travel Times

If the actual geographic locations of stations in a travel network are not provided, the
only related information available from the timetables are travel times. We use them to
estimate distances between stations that have a non-stop connection, which in turn are used
to generate locations suitable for the geometric speed-up techniques, though in general far
from being geographically accurate.

The (undirected, simple) connection graph of a set of timetables contains a node for
each station listed, and an edge between every pair of stations connected by a train not
stopping in between. The length I(e) of an edge e in the station graph will represent our
estimate of the distance between its endpoints.

The distance between two stations can be expected to be roughly linear in the travel
time. However, for different classes of trains the constant involved will be different, and
closely related to the mean velocity of trains in this class. We therefore estimate the length
of an edge e in the station graph, i.e. the distance between two stations as follows: Consider
all non-stop connections that induce this edge. We use as estimated distance the mean
value of their travel time times the average velocity of the vehicle serving the connection.

Mean velocities have been extracted from the data set described in Sect. 7.3, for which
station coordinates are known. For two train categories, the data are depicted in Fig. 7.1,
indicating that linear approximations yield a fairly good estimation.

Note that all travel times are integers, since they are computed from arrival and depar-
ture times. As a consequence, slow trains are often estimated to have unrealistically high
maximum velocities, thus affecting the modified edge lengths in the goal-directed search
heuristic.

Apart from the estimation of geographic distances, a second set of edge lengths has been
tested: a distance that is proportional to the average travel time of all vehicles including
this edge. (It is the same as assuming that all trains have the same average velocity.) This
approach can be justified by the insight that the travel-planning system minimizes only
the travel time.
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Figure 7.1: Euclidean distance vs. travel time for non-stop connections. For both service
categories, all data points are shown along with the average distance per travel time and
a linear interpolation

7.2 A Specific Layout Model for Connection Graphs

In our particular application, it may occasionally be the case that the geographic locations
of at least some of the major hubs of the network are known, or can be obtained easily. We
will therefore first examine barycentric layouts (see Sect. 5.1) exploiting the fact that such
hubs are typically well-distributed and thus form a scaffold for the overall network. Our
approach for the more general case, described in the rest of this section, is a derivation
of a multi-level force-directed layout and can therefore be viewed as an extension of a
barycentric layout, too.

7.2.1 Sparsening.

We use the algorithm of Kamada and Kawai from the Sect. 5.1 as a starting point for
our specific layout model. If springs are introduced between every pair of nodes, a single
iteration takes time quadratic in the number of nodes. Since at least a linear number of
iterations is needed, this is clearly not feasible. Since, moreover, we are not interested
in a readable layout of the graph, but in supporting the geometric speed-up heuristics
for shortest-path computations, there is no need to introduce springs between all pairs of
nodes.

We cannot omit springs corresponding to edges, but in connection graphs, the number
of edges is of the order of the number of nodes, so most of the pairs in (5.2) are connected
by a shortest path with at least two edges. If a train runs along a path of k edges, we call
this path a k-connection. To model the plausible assumption that, locally, trains run fairly
straight, we include only terms corresponding to edges (or l-connections) and to 2- and
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3-connections into the potential. Whenever there are two or more springs for a single pair
of nodes, they are replaced by a single spring of the average length. For realistic data, the
total number of springs thus introduced is linear in the number of nodes.

7.2.2 Long-Range Dependencies.

Since we omit most of the long-range dependencies (i.e. springs connecting distant pairs of
nodes), an iterative method starting from a random layout is almost surely trapped in a
poor local minimum.

We therefore determine an initial layout by computing a local minimum of the potential
on an even sparser graph that includes only the long-range dependencies relevant for our
approach. In other words, we apply a (fairly special) multi-level variant of a force-directed
layout. More precisely, we consider the subgraph consisting of all stations that have a
fixed position or are a terminal station of some train, and introduce springs only between
the two terminal stations of each train, and between pairs of the selected nodes that are
consecutive on the path of any train. We refer to these additional pairs as long-range
connections. In case the resulting graph has more components than the connection graph,
we heuristically add some stations touched by trains inducing different components and
the respective springs. After running our layout algorithm on this graph (initialized with a
barycentric layout), the initial position for all other nodes is determined from a barycentric
layout in which those positions that have already been computed are fixed.

To measure the impact of this modification, we computed 100 layouts with and 100
without it and compared the average of the final potential values. It turns out that the
result of the algorithm using this initial layout has a 9% smaller value of the objective
function.

7.2.3 Nodes of High Degree.

The method to find an initial layout of the sparser graph in the previous section can be
seen as a two-level approach of the embedding algorithm: The first level is the full graph,
the second level is the graph of long-range connections, which is embedded first. Although
the second level already improves the final potential function, in case no station at all
has a fixed position, the iterative method is still likely to be trapped in a local minimum.
The introduction of a third, even smaller graph therefore leads to another improvement
of the potential function of 21%. (In case of 22 given coordinates for major hubs, the
improvement is only 0.1%, however.)

To determine the third level, we use again the structure of the graph: We iteratively
replace all nodes of degree three or less in the second level by edges between their neighbors.
More precisely, nodes

e of degree 0 or 1 are removed

e of degree 2 are replaced by an edge with length equal to the sum of the lengths of
incident edges
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Figure 7.2: Layouts of the graph of Fig. 5.1, where fictitious trains run along grid lines,
using the tailored layout for connection-graphs.

e of degree 3 are replaced by a triangle of edges, where the edge lengths are computed
as if the angles between the incident edges of the node were 60°.

7.2.4 Another Dimension.

Generally speaking, a set of desired edge lengths can be realized more accurately when the
number of dimensions of the Euclidean space is increased.

Several models make use of this observation by temporarily allowing additional coordi-
nates and then penalizing their deviation from zero [102] or projecting down [103].

We use a third coordinate during all phases of the layout algorithm, but ignore it in the
final layout. Since projections do not preserve the edge lengths,? we use a penalty function
Y vev Ct - 22, where ¢; is the penalty weight at the tth iteration, to gradually reduce the
value of the z-coordinate towards the end of the layout computation.

The penalty has to be chosen large enough such that the graph is finally pressed into
the plane and small enough that the result differs from the projection.® Let P, denote the
potential at the beginning of the last phase. Experiments showed that a multiple of the
unmodified potential that increases like the fourth power of the time gives good results:
¢ =C- Pt

The average final potential of 100 runs of the algorithm is reduced by 16% with respect
to an exclusively two-dimensional approach.

7.2.5 Summary

In summary, our layout algorithm consists of the following six steps:

2 In our experiments with 100 layouts, the objective function triples if the graph is simply projected
into the plane.

3In our experiments with 100 layouts, the objective function of a projection into the plane and a
subsequent optimization in the plane is 7% worse.
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1. barycentric layout of graph of long-range connections for nodes of high degree

2. iterative improvement

Bl

barycentric layout of graph of long-range connections

a

iterative improvement
5. barycentric layout of entire graph including 2-, 3-, and long-range connections
6. iterative improvement with increasing z-coordinate penalties

In each of these steps, the iteration is stopped when none of the stations was moved by
more than a fixed distance. Figure 7.2 shows the results of this approach when applied to
the graph of Fig. 5.1.

When it comes to ship and flight schedules it is not possible anymore to ignore the fact
that the earth is not flat. Fortunately it is easy to modify the algorithm in such a way that
it works on a sphere. It is sufficient to (a) use a metric that reflects the slope of the earth
and (b) modify the penalty function of the projection. Whereas the latter can be done in
a canonical way, the new distance should avoid expensive trigonometric calculations. It
turned out that a fifth order approximation of the arcus sine multiplied by the Fuclidean
distance works well in practice.

7.3 Experimental Setup

For the experimental evaluation of our generated layouts, we use the (simplified) scenario
of a travel planning system for public railroad transport presented in [7, 9]. It is based
solely on timetables; for each train there is one table, which contains the departure and
arrival times of that train at each of its halts. In particular, we assume that every train
operates daily.

The system evaluates connection queries of the following kind: Given a departure
station A, a destination station B, and an earliest departure time, find a connection from
A to B with the minimum travel time (i.e., the difference between the arrival time at B
and the departure time at A).

To this end, a (directed) time-expanded graph of the network is constructed from timeta-
bles in a preprocessing step. For each departure and arrival of a train there is one node
in the graph. Therefore, each node is naturally associated with a station, and with a time
label (the time the departure or arrival of the train takes place). There are two different
kinds of edges in the graph:

Stay edges: The nodes associated with the same station are ordered according to their
time label. Then, there is a directed edge from every node to its successor (for the
last node there is an edge to the first node which introduces cycles in the graph).
Each of these edges represents a stay at the station, and the edge length is defined
by the duration of that stay.
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Travel edges: For every departure of a train there is a directed edge to the very next
arrival of that train. Here, the edge length is defined to be the time difference
between arrival and departure. (Travel edges introduce more complex cycles.)

Answering a connection query now amounts to finding a shortest path from a source
to one out of several target nodes: The source node is the first node at the start station
representing a departure that takes place not earlier than the earliest departure time, and
each node at the destination station is a feasible target node. In [7], a variation of Dijkstra’s
algorithm is used for these shortest-path computations that takes advantage of the special
structure of the graph and uses several speed-up techniques. For the evaluation of the
generated layouts, we focus on the purely geometric speed-up techniques of this system:
goal-directed search (see Chapter 3) and shortest-path containers with angular sectors (see
Chapter 2).

Our computational experiments are based on the timetables of the Deutsche Bahn AG,
Germany’s national train and railroad company, for the winter period 1996/97. It contains
a total of 933,280 arrivals and departures on 6,884 stations, for which we have complete co-
ordinate information (de-org in Fig. 7.3). To assess the quality of coordinates generated by
the layout algorithms described in Sect. 7.2, we used a snapshot of queries against the cen-
tral travel information server of Deutsche Bahn AG. This data consists of 544,181 queries
collected over several hours of a regular working day. These benchmark data are unique
in the sense that it is the only real network for which we have both coordinates and query
data.

In the experiments, shortest paths are computed for the above queries using our own
implementation of Dijkstra’s algorithm and the angle-restriction and goal-directed search
heuristics. All implementations are in C or C++4, compiled with GCC 2.95.2.

7.4 Computational Results

From the timetables we generated the following instances:
e de-org (coordinates known for all stations)
e de-22-important (coordinates known for the 22 most important?® stations)
e de-22-random (coordinates known for 22 randomly selected stations)
e de (no coordinates given)

For these instances, we generated layouts using the barycentric model of Sect. 5.1, the
tailored model of Sect. 7.2 with estimated distances, and the tailored model with average
travel time as “distance,” and measured the average core CPU time spent on answering
the queries, as well as the number of edges touched by the modified versions of Dijkstra’s

4Together with the coordinate information, there is a value associated with each station that indicates
its importance as a hub. The 22 selected stations have the highest attained value.
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barycentric tailored (dist. est.) tailored (time avg.)

Figure 7.5: Generated layouts with provided coordinates for 22 random stations (de-22-random)
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speed-up technique

angles goal both
‘ instance ‘ layout model ms ‘ edges | ms ‘ edges | ms ‘ edges
de-org 17| 9177 | 79 | 20995 | 14 | 6496

de (Fig. 7.3) | tailored (dist. est.) | 40 | 17553 | 107 | 28591 | 43 | 15167
tailored (time avg.) | 43 | 18228 | 92 | 24634 | 38 | 13888
de-22- barycenteric 20 | 10464 | 100 | 26669 | 19 | 8722
important | tailored (dist. est.) | 19 | 9844 | 93 | 24334 | 19 | 7763
(Fig. 7.4) tailored (time avg.) | 22 | 10994 | 75 | 20052 | 17 | 7412
de-22- barycentric 27 | 13415 | 124 | 32628 | 31 | 13066
random tailored (dist. est.) | 21 | 10597 | 87 | 23033 | 18 | 7973
(Fig. 7.5) tailored (time avg.) | 27 | 11671 | 77 | 20853 | 22 | 8055

Table 7.1: Average query response times and number of nodes touched by Dijkstra’s algo-
rithm. Without coordinates, the average response time is 105 ms (33704 edges).

algorithm. Each experiment was performed on a single 336 MHz UltraSparc-II processor
of a Sun Enterprise 4000/5000 workstation with 1024 MB of main memory. The results
are given in Tab. 7.1, and the layouts are shown in Figs. 7.3-7.5.

The results show that the barycentric model seems to pair very well with the angle-
restriction heuristic when important stations are fixed. The somewhat surprising usefulness
of this simple model even for the randomly selected stations seems to be due to the fact
that our sample spreads out quite well.

Another interesting observation is that the layouts according to average travel times
are better for goal-directed search than the layouts that use estimated distances. This can
be explained by the fact that goal-directed search uses the highest speed to calculate the
lower bound to the destination, which is tighter in this case.

The tailored layout model appears to work well in all cases. The results and pictures
suggest that our layout algorithm produces a reasonably good reconstruction of the traffic
network with respect to the travel-planning system. Note that the average response time for
connection queries compared to the average response time without coordinates is reduced
by 60%, even without any knowledge of the underlying geography. With the fairly realistic
assumption that the location of a limited number of important stations is known, the
speed-up obtained with the actual coordinates is almost matched.

To evaluate whether the tailored model achieves the objective of preserving given edge
lengths, we generated additional instances from de-org by dropping a fixed percentage
ranging from 0-100% of station coordinates, while setting I(e) to its true value. As can be
seen in Fig. 7.6, these distances are reconstructed quite well.

As an attempt to avoid the small but existing shortcomings of the layout algorithms as
much as possible, we generated a further set of coordinates de-org-t that uses the original
coordinates as initialization. The layout was then modified locally to fit the travel times
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Figure 7.6: Evaluation whether the tailored layout model preserves edge lengths. Min-
imum, mean, and maximum relative error in edge lengths, averaged over ten instances
each

speed-up technique
angles goal both
‘ instance ‘ layout model ms ‘ edges | ms ‘ edges | ms ‘ edges
| de-org-t | modified org | 18 | 9384 | 7118782 | 14 | 6086 |

Table 7.2: Average query response times and number of nodes touched by Dijkstra’s algo-
rithm for the layout based on original coordinates.

as much as possible.

The result is depicted as de-org-t in Fig. 7.3 and the resulting query times are shown
in Tab. 7.2. With de-org-t, the results are slightly better than the results with any other
generated coordinates. This suggests that there is still some space for improvement of
the layout algorithm, but probably not much. The main result of this last experiment,
however, is the observation that the original coordinates can be improved with respect to
the goal-directed search.



Chapter 8

Generating Layouts for Geometric
Speed-Up Techniques

The previous investigations in Chapters 2 and 3 have shown the practical usefulness of
geometric speed-up techniques that guarantee the correctness of the result for shortest
path computations. However, such speed-up techniques utilize a layout of the graph which
typically comes from geographic information. This chapter examines the question how
geometric speed-up techniques can be used in case there is no layout given. We present
an extensive computational study analyzing the usefulness of methods from graph drawing
as foundation for such techniques. It turns out that using appropriate layout algorithms,
significant a speed-up can be achieved.

Our baseline algorithm without any preprocessing is the bidirectional variant of Dijk-
stra’s algorithm with binary heaps. For sparse graphs, the asymptotic running time for
Dijkstra’s algorithm with binary heaps is O(nlogn). Moreover, for our application, binary
heaps have been reported to be efficient in practice [44].

In Chapter 7, a related question has been studied for the special case of a timetable
information system. A scenario is considered where the geographic information typically
contained in timetable data is only incomplete. The results in this chapter are more
general with respect to the graphs considered, as well as the layout algorithms explored.
We experiment with real world graphs from different areas and with various generated
graphs. In particular, in contrast to Chapter 7, no additional information is used that
might support the layout algorithms, like movement of trains or coordinates of selected
stations.

The main contribution of this chapter consists in a computational study demonstrat-
ing that artificially produced layouts can indeed be used as basis for geometric speed-up
techniques for shortest paths computations. For several of the graphs explored, signifi-
cant speed-ups are achieved with appropriately generated layouts. Moreover surprisingly,
for a number of the tested instances where layouts based on geographic information were
available, the generated layouts resulted in an even better speed-up.
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Street Rail AS Planar Small W. Preferential

1429 3034 409 1215 | 14492 29948 2000 10000 2000 11974 2000 12000

2948 7128 698 1669 | 14689 30336 4000 20000 4000 23984 4000 24000
15868 33380 1650 4311 | 14899 30712 5999 30000 6000 35960 6000 36000
20036 41476 2239 5948 | 15078 31347 7999 40000 8000 47974 8000 48000
24106 53826 2348 7856 | 15268 33743 9998 50000 | 10000 59978 | 10000 60000
35802 78646 4553 14829 | 15415 34716 | 11999 60000 | 12000 71974 | 12000 72000
38823 79988 6848 18542 | 15578 35041 | 13998 70000 | 14000 83976 | 14000 84000
44439 96994 | 10795 29328 | 15763 33000 | 15999 80000 | 16000 95974 | 16000 96000
44878 90930 | 12070 33728 | 15899 33585 | 17998 90000 | 18000 107984 | 18000 108000
78947 171410 | 14335 39887 | 16037 34283 | 19999 100000 | 20000 119970 | 20000 120000

O O 00O Uk W

[y

Table 8.1: Number of nodes and edges for all test graphs.

8.1 Experimental Setup

For our experiments, we used graphs of six different types and 10 graphs of every type.
Three of the types are real data that stem from an application (Streets, Railway, and AS)
while the three other types are randomly generated graphs. Furthermore, three of the types
provide already a layout (Streets, Railway, and Planar), which we can use as a baseline.
In detail, the six types of graphs are:

Street Networks. The street networks in our test data are derived from street maps
of US cities and their surroundings. As bends are realized with piecewise straight
lines, these graphs are very sparse and fairly large. Unfortunately, our data does not
contain information about the street classification, so all edges are weighted by an
approximation of their Euclidean length.

Railway Graphs. A node in a railway network is a station or stop. There exists an edge
between two nodes, if there is a non-stop connection serving the respective stations.
The edges are weighted according to their average travel time. A layout of this graph
is provided by the geographic coordinates of the stations (although the edge weights
are not derived from this layout).

Autonomous Systems. These graphs represent the autonomous systems topology of the
Internet. An Autonomous System (AS) is a collection of routers which are under one
administrative domain (e.g. UUNET, AT&T, or DFN). They present a unified face
to the rest of the world in terms of accessibility and routing policies. Every node in an
AS-graph represents one Autonomous System, and two nodes are connected if there
is at least one physical link between the two corresponding Autonomous Systems.

The AS-graphs are generated regularly by the Oregon Route Views Project using
traces. If t(e) denotes the number of traces that crossed an edge e, we regard ﬁ as
the edge length. Therefore, good connections that are passed by a lot of traces are
regarded as short edges.

Random Planar Graphs We generated a family of random planar graphs. For given n
and m, we first select n points uniformly at random in the unit square. Then, we
determine a Delaunay triangulation of these points and delete edges randomly until
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there are only m edges left.! The edge weights are the Euclidean distances in the
layout that is provided by the construction.

Small Worlds. In [104], a graph model has been introduced to simulate self-organizing
networks that show a small average path length (like, e.g., networks of acquaintances,
the power network in the Western US, or the collaboration graph of movie actors).
Starting from a regular ring lattice with n nodes and d edges per node, an edge is
“rewired” with a given probability p. For our test sets we used d = 3 and p = 0.1.
Edge weights are uniformly distributed over [0, 1].

Graphs with Preference. A model for random graphs that produces a power law distri-
bution of the node degrees has been presented in [105]. Nodes are added consecutively
to the graph, while an incident edge of a new node is added with a certain probability.
The main idea is that a new edge connects more likely to a node with a high degree.
For our test sets, we generated graphs with an expected degree of 3. Edges weights
are uniformly distributed over [0, 1].

From all graphs, we used only the maximal connected component for our calculations to
assert connectedness. (In all cases, the maximum connected component contained almost
all if not all nodes.) The number of nodes and edges are listed in Table 8.1.

The graphs were drawn with the three methods described in Chapter 5:

Force-Directed Layout. For our implementation, we combined some of the methods
in Section 5.1 for a multi-level realization of a force-directed layout. To create the
next coarser graph in the multi-level hierarchy, edges of a maximal matching are
contracted [36]. This works very well except for graphs that contain many star-like
structures. (Then, only few edges are removed in the next coarser graph.) For such
graphs, we therefore use an inclusion-maximal independent set as in [35].

Instead of forces according to Fruchterman and Reingold [33], we followed the ap-
proach of Kamada and Kawai [34], because these forces are better suited to represent
distances in a graph. To avoid a computation and storage of all-pairs shortest paths,
we restricted the forces to the nearest 30 nodes. Due to the multi-level embedding,
distances are also preserved in a larger range.

Spectral Layout. We incorporated the edge weights in this approach by replacing the
adjacency matrix A by a weighted adjacency matrix W = (w;;);;. Since an edge
weight [(v;,v;) represents the length of an edge, we set w;; = m, if {v;, v} € E,
and w;; = 0 otherwise. The diagonal matrix D uses the weighted degree in this case.
(Using the weighted Laplacian substantially improved our results.)

High-Dimensional Embedding. Again, we incorporated the edge lengths, which was
fairly obvious for this graph drawing technique. The high-dimensional embedding,

IThis is very close to the generator of planar graphs in LEDA except that we use a Delaunay triangu-
lation. We think that these graphs correspond more to our intuition of a random planar graph.
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which is later projected to 2D, is generated with distances in the graph. We replaced
the unweighted graph by the weighted graph—or algorithmically, the breadth-first
search by Dijkstra’s algorithm.

For each graph and layout, we processed shortest-path queries using bidirectional search
and all eight combinations of (1) goal-directed search, (2) geometric shortest-path contain-
ers, and (3) reach-based routing (Sect. 1.2). We used exact values for the reach and not
the bound provided by [49], since we admit an all-pairs shortest-path computation for
shortest-path containers, too. We selected bounding boxes as object type for geometric
shortest-path containers, because they are fast and simple.

We determined the average number of nodes that were inserted in the priority queue
as well as the average CPU time used per query. Observe that in contrast to the second
number, the first number does not depend on the type of the priority queue, implementa-
tion, compiler, system, or processor. The actual speed-up for a speed-up technique, graph
and layout is then defined as the ratio of the respective values without speed-up technique
and with speed-up technique.

The algorithms have been implemented in C++ using LEDA 4.5 (see [44]). In particu-
lar, we used the graph and binary heap data structures, vector and matrix classes and the
algorithms for computing maximum matchings and Delaunay triangulations from LEDA.
The programs were compiled with GCC 3.3 and the experiments were performed on a
single AMD Opteron with 2.2 GHz running Linux 2.4. For a unified processing, all graphs
have been converted to GraphML [55].

8.2 Computational Results

The results are depicted in Fig. 8.1-8.7. Each figure summarizes the result for a combina-
tion of speed-up techniques that is added to bidirectional search. In each figure, the left
diagram illustrates the average speed-up in terms of the number of visited nodes and the
right diagram illustrates the average speed-up in terms running time. Since there is no
layout given for some graphs (AS-graphs, small world graphs, and graphs with preferential
attachment), the speed-up for “given layout” for these graphs is missing in all figures.

The high-dimensional layout is obviously well suited for goal-directed search (Fig. 8.1).
It is the best layout for small-world and street graphs and also very good for random planar
graphs, although the given layout is unbeatable in this case. Note, that for street graphs
the speed-up for the high-dimensional layout is higher than for the given layout. However,
the overhead for goal-directed search is so large that in many cases no speed-up in terms
of CPU time is achieved.

The situation is completely different for shortest path containers (Fig. 8.2). Except for
AS-graphs, the speed-up in terms of CPU time is close to that for the number of visited
nodes and achieves values up to 20-40. Furthermore, it is interesting to note that for
shortest-path containers the generated layouts are as good as the given layouts (with the
high-dimensional layout for AS-graphs being the only exception).
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The speed-up for adding reach-based routing (Fig. 8.2) is smaller, but it is nice to see
that this speed-up technique is well-suited for street graphs as originally intended [49] (but
works very well for small word graphs, too). Again, all generated layouts provide a fairly
good performance compared to the provided layouts.

If you combine goal-directed search with shortest-path containers (Fig. 8.4), the speed-
up is dominated by the latter speed-up technique. Therefore, the results are very similar
to the results in Fig. 8.2. The same is true for the combination of shortest-path containers
with reach (Fig. 8.6) and the combination of all three speed-up techniques (Fig. 8.7), which
reveal the same characteristics. More interesting is Fig. 8.5, which shows the combination
of goal-directed search and reach. The speed-up of the two techniques add up for most
graphs.

For AS-graphs, the speed-up concerning CPU time is generally not as good as for the
number of visited nodes. This can be explained by the special structure of these graphs,
which consists of a highly connected core to which a lot of path-like graphs are attached.
The ratio of excluded and visited nodes is very high in this case, which increases the average
running time per visited node.

We have seen, that sometimes a fairly good speed-up of the query time is possible by
first generating a layout and then applying geometric speed-up techniques. Apart from
few exceptions, all three graph-drawing methods produce equally good layouts concerning
geometric speed-up techniques. Since a high-dimensional layout is best suited for goal-
directed search and generally faster to produce, we recommend this type of layout. It
is also notable, that if a layout is already given for a graph, it is sometimes possible to
generate a layout that results in a better speed-up.

Motivated by these results, it would be interesting to develop a specialized “graph
drawing” method that optimizes the layout for geometric speed-up techniques. Such a
layout algorithm would not necessarily produce nice drawings, but generate even better
layouts to speed up shortest-path computations.
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Chapter 9

Conclusion

We have seen that using a layout may lead to a considerable speed-up in Dijkstra’s algo-
rithm, if one allows a suitable preprocessing. Actually, we are able to reduce the search
space with a linear amount of space to only 5 — 10%, while even “bad” containers result
in a reduction to less than 50%. The somewhat surprising result is that the simple bound-
ing box outperforms other geometric objects in terms of CPU cycles. For bit-vectors as
shortest-path containers, very good partitions can be generated with standard techniques
like quadtrees or kd-trees. Furthermore, the memory consumption can be reduced effi-
ciently for an unidirectional search with two-level bit-vectors. Since the geometric pruning
is independent of the priority queue. Algorithms using a special priority queue such as
[106, 107] can easily be combined with it. The decrease of the search space is in fact the
same (but the actual running time would be different).

In the dynamic case, we have seen that it is possible to speed up the maintenance
of geometric containers by a factor of about 2-3 while preserving optimality in almost
all cases. Enlarging containers to infinity leads to a cascading effect that destroys the
benefit of geometric containers. If containers are only enlarged, the presented pruning of
DIJKSTRA’S ALGORITHM does not justify the loss of quality. It would be interesting to find
other simplifications that guarantee consistent containers, but realize a good compromise
between optimality and running time. Furthermore, our results suggest that it should be
possible to get a speed-up factor of about 2 with an (provable) optimal update strategy.
Finally, it might be possible to combine edge weight increases and edge weight decreases
in a single algorithm.

For bit-vectors as shortest-path containers, the partitioning algorithm plays a crucial
rule for the speed-up. Using the standard data structure of a kd-tree results in an efficient
algorithm. If an unidirectional search is performed, a higher speed-up is possible with the
same amount of space using two-level bit-vectors.

It is easy and efficient to combine shortest-path containers with other speed-up tech-
niques. Of particular interest is the bidirectional search where the speed-up factors almost
scale. Another hot candidate for a combination is the goal-directed search. However, the
higher the number of speed-up techniques in a combination, the lesser their impact on the
overall speed-up.
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If a layout of the graph is not provided, we have seen that it makes perfect sense to
draw the graph in order to use geometric speed-up techniques afterwards. The speed-up
factors for generated layouts may be even on par with layouts that are provided by the
application. In case a graph has a specific structure (like a timetable graph), it is possible
to engineer a specific graph-drawing algorithm that takes advantage of this structure. In
our concrete application of a timetable graph, the train lines were of particular use to
generate multiple levels of the graph. Furthermore, it can be assumed in practice that
parts of the layout are known in this case.

For general graphs, major graph-drawing techniques can be used to generate a layout.
Apart from some exceptions, their results are suited for our application even though their
original purpose is fairly different. Although force-directed and spectral layouts are also
appropriate, we recommend a layout by a high-dimensional layout, because it is easy to
implement and acceptably fast in practice.
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A*, see goal-directed search

A

adjacency matrix, see matrix

authority index, 89

autonomous system, see data, AS graph

average, 48

B

bibliographic coupling, 88
bibliographic networks, 87-93
bidirectional search, 16, 26, 44, 57-59, 107

bit-vector, 11, 43-54

two-level, 48-49, 51-53
bounding box, 31, 40, 46, 47, 57, 61, 68,

69, 115
C

circle, 30

smallest enclosing, 30
co-citation, 88
compression, 43, 48, 49
confidence interval, 33

connected component, 21, 80
connection, 33, 60, 95, 96, 108

long-range, 98
container, 25

consistent, 25, 25, 26, 28, 36, 39, 43,

115
reverse, 26
convex hull, 32, 36

covariance, 85

matrix, see matrix, covariance

cycle, 14, 14, 100, 101
D
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data
AS graphs, 108

bibliographic networks, 87
graphs with preference, 109
public transport graphs, 60
railway graphs, 33, 40, 60, 108
random planar graphs, 60, 108
random Waxman graphs, 60
small world graphs, 109

street graph, 29

street graphs, 33, 50, 60, 108
degree, 29, 33, 60, 82, 91, 98-100, 109
Dijkstra’s algorithm, 15, 1523, 25-54, 71,

101, 107-111
distance, 14, 80
E
edge, 14

length, 96
eigenvalue, 82, 83
eigenvector, 82
eigenvector centrality, 88
ellipse, 30

smallest enclosing, 31
energy, 83

F
Fibonacci heap, see heap

G
geometric objects, 30-32

goal-directed search, 18, 57-59

graph, 14

adjacency matrix, see matrix

connection, 21, 95-100
directed, 14
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large, 14
layout, see layout
reverse, 14, 36
sparse, 14
time-expanded, 21, 95, 100
timetable, see graph, time-expanded
undirected, 14
weighted, 14, 82
GraphML, 32, 33, 110

H

heap
binary, 15, 61, 107, 110
Fibonacci, 15

heuristic, 18
hub index, 89

K
kd-tree, 48, 51, 115

L

layout, 10, 14, 29
balanced, 14, 84, 86
barycentric, 79
force-directed, 12, 79-82, 97-100, 109
high-dimensional, 13, 85-86, 109
multi-level, 98
spectral, 12, 82-84, 90-91, 109
sphere, 100

LEDA, 50, 110

loop, 79

M

matrix
adjacency, 82, 82, 83, 88
covariance, 85
Laplacian, 82
symmetric, 83

mean, 33, 85

median, 48

METIS, 48

multi-level approach, 57-59

multidimensional scaling, 81

N

INDEX

node, 14

boundary, 45

degree, 14

potentially affected, 39, 40
norm, 14

O
Opteron, 51, 110
overhead, 51, 63, 63, 69, 110

P
parallelogram
smallest enclosing, 32
path, 14, 97
length, 14
shortest, 14
PCA, see principal component analysis
planar graphs, see data, random planar
graphs
potential, 18
feasible, 19-21
power iteration, 84
power law, 51, 54, 109
preprocessing, 27-29, 44-46
principal component analysis, 13, 85, 85
priority queue, 11, 15-16, 34, 61, 110

Q
quadtree, 47, 51, 115

quality, 27, 35, 36, 40, 41

R
railway graphs, see data, railway graphs
reach, 23, 111-114
rectangle
edge-parallel, 31
smallest enclosing, 31
region, 43
reverse containers, 36, 37, 39

S

sampling, 33

search space, 34, 36, 51, 110
sector
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angular, 30
circular, 30
Sparc, 105
speed-up, 61, 110
spring, 80

spring-embedder, see layout, force-directed
street graphs, see data, street graphs
stress, see energy

T
timetable
graph, see graph, time-expanded
information system, 13, 100-101
triangulation, 60, 91-92, 110

\Y%
variance, 33, 85, 86, 86

W
Waxman graphs, see data

X
Xeon, 32, 41, 61
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