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Korreferent: Prof.Dr. Rudolf Lohner



To My Mother



Preface

The nonlinear complementarity problem (NCP) is a system of nonlinear in-
equalities in nonnegative variables, along with a nonlinear equation that
expresses the complementarity relationship between the variables and the
inequalities. The variational inequality (VI) is a generalization of the nonlin-
ear complementarity problem. Variational inequalities and nonlinear comple-
mentarity problems provide a powerful and unifying setting for the study of
optimization and equilibrium problems, and serve as the main computational
framework for the practical solution.

As one of the most powerful algorithms for solving the VI and the NCP,
Newton’s method plays an important role in numerical computation, it serves
as the prototype of many local, fast methods. However, in the literature one
can only find the local convergence results on Newton’s method for the VI
and the NCP. The local results share the same drawback: before showing
the convergence of the method, the existence and some properties of the
solution to the original problem have to be assumed, which cannot be verified
computationally.

The present research is motivated by the effort to overcome this drawback.
By the idea of the Kantorovich theorem, the dissertation meticulously studies
the semilocal convergence of Newton’s method for variational inequalities
and complementarity problems, as well as the various convergence properties
including the convergence domain, convergence rate, error estimation etc.
These Kantorovich-type theorems established in the dissertation not only
provide computationally verifiable conditions to guarantee the convergence
of Newton’s method, but also provide new existence and uniqueness results
for solutions. Moreover, an enclosure method for linear complementarity
problems is also proposed in order to estimate the parameters required in
the convergence conditions. Numerical results are presented to support the
theoretical analysis.

During the period of my study and the preparation of the dissertation,
Professor Götz Alefeld of Karlsruhe Universität has been giving me great
and circumspect support. It is he who introduced me to interval analysis
and automatic differentiation techniques. I have benefitted from the many
fruitful and illuminating discussions with him. Here I would express my
deep and sincere gratitude to Prof. Dr. Alefeld, for his so kind and so great
support to my study, for his careful supervision and for his many illuminating
suggestions.
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Markus Neher, Dr. Uwe Schäfer, Mr. Marco Schnurr, Professor Rong Shao,
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Chapter 1

Introduction

1.1 Problems

Definition 1.1. [14] Let Ω be a nonempty subset of Rn and let f be a map-
ping from Rn into itself. The variational inequality problem, denoted by
V I(Ω, f), is to find a vector x∗ ∈ Ω such that

(y − x∗)T f(x∗) ≥ 0, ∀y ∈ Ω.

We call V I(Ω, f) a linear variational inequality if Ω is a polyhedral and f is
an affine function, i.e., f(x) = Mx + q , where M ∈ Rn×n and q ∈ Rn. Refer
to [11, 12, 31] for linear variational inequalities, for example.

One typically assumes that f is continuously differentiable over an open
set D ⊆ Rn, and that Ω ⊂ D is nonempty, convex and closed. In fact Ω is
usually a polyhedral in applications.

In the important special case where Ω is taken to be the nonnegative
orthant Rn

+, the variational inequality V I(Ω, f) is equivalent to the nonlinear
complementarity problem [22].

Definition 1.2. [14] Let f be a mapping from Rn into itself. The nonlinear
complementarity problem, denoted by NCP (f), is to find a vector x∗ such
that

x∗ ≥ 0, f(x∗) ≥ 0, x∗T f(x∗) = 0.

When f(x) = Mx + q for M ∈ Rn×n and q ∈ Rn, the problem NCP (f)
is called linear complementarity problem, which is denoted by LCP (q, M).
Refer to Cottle, Pang and Stone [9], or Murty [29] for an extensive treatment
of the linear complementarity problem.
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Historically, the variational inequality problem was originally introduced
as a tool in the study of partial differential equations by Hartman and Stam-
pacchia in [15], and was subsequently expanded by Stampacchia in several
papers [24, 25, 42]. The nonlinear complementarity problem first appeared
in the Ph.D. dissertation [8] of Cottle.

Let Ω ⊆ Rn be nonempty. The simplest example of a variational inequal-
ity is that of solving a system of equations

f(x) = 0

in Ω. It is easy to show that if f(x∗) = 0, then x∗ solves V I(Ω, f); conversely,
if x∗ solves V I(Ω, f) and it is in the interior of Ω, then f(x∗) = 0. The var-
ious applications of variational inequalities and nonlinear complementarity
problems have been well documented in the literature [13, 14], which we will
concern in the numerical experiments.

1.2 Newton’s Method

For the variational inequality V I(Ω, f), the most well known algorithm is
Newton’s method, sometimes it is denoted as basic Newton’s method in the
literature. The method is to compute a sequence of iterates {xk}, such that
xk+1 solves the k-th linearized problem V I(Ω, fk), where

fk(x) = f(xk) + f ′(xk)(x− xk), (1.1)

and f ′(x) denotes the Jacobian matrix of f , i.e., f ′(x) = (∂fi(x)/∂xj). The
linearized problem V I(Ω, fk) is not a linear variational inequality when Ω
fails to be a polyhedral. The actual computation of the solution to each
V I(Ω, fk) is not of particular concern in the paper. One can state Newton’s
method for the nonlinear complementarity problem in the similar way, where
each linearized problem is a linear complementarity problem. There is a large
body of literature on the solution to linear complementarity problems, see
[9] and [29] and their references, for example.

It seems from the literature that Robinson proposed Newton’s method
for variational inequalities and nonlinear complementarity problems origi-
nally [36, 37, 38, 39, 40], but did not give a convergence analysis. Subse-
quently Eaves [10] and Josephy [19] analyzed the method for the variational
inequalities with applications to PIES model [5, 6, 17, 18], and independently
obtained the convergence results in their technical reports respectively. Jose-
phy presented his results using the notion of a regular solution introduced in
Robinson’s earlier work [40].
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Definition 1.3. [40] Let x∗ be a solution to V I(Ω, f). Then x∗ is called to
be regular if there exists a neighborhood N of x∗ and a scalar δ > 0 such that
for every vector y with ‖y‖ < δ, there is a unique solution x(y) ∈ N to the
perturbed linearized variational inequality V I(Ω, f y), where

f y(x) = f(x∗) + y + f ′(x∗)(x− x∗);

moreover, as a function of the perturbed vector y, the solution x(y) is Lip-
schitz continuous, i.e., there exists a constant γ > 0 such that whenever
‖y‖ < δ and ‖z‖ < δ, one has

‖x(y)− x(z)‖ < γ‖y − z‖.

It is easy to see that if Ω = Rn, the solution x∗ is regular if and only if
f ′(x∗) is nonsingular. Generally, the regularity of the solution x∗ to V I(Ω, f)
is hard to be verified except for some special cases.

Proposition 1.4. [40] Let x∗ be a solution to V I(Ω, f) and let f ′(x∗) be
positive definite (not necessarily symmetric), then x∗ is regular.

In the case of the nonlinear complementarity problem, we can present a
necessary and sufficient condition [40] for x∗ to be a regular solution.

Definition 1.5. [9] Let A = (aij) ∈ Rn×n. A is said to be
(a) a Z-matrix if all its off-diagonal elements are nonpositive;
(b) a P-matrix if all its principal minors are positive;
(c) an M-matrix if it is an invertible Z-matrix and has nonnegative inverse;
(d) an H-matrix if there is a vector d = (di), di > 0, such that∑

j 6=i

|aij|dj < |aii|di, i = 1, 2, · · · , n.

Remark 1.5.1. An H-matrix with positive diagonal elements is a P-matrix,
an M-matrix is an H-matrix and has positive diagonal elements. The class
of H-matrices with positive diagonal elements is an important subclass of
P-matrices. See [9].

Proposition 1.6. [40] Let x∗ be a solution to NCP (f). Define the index
sets

I+ = {i : x∗i > 0}, I0 = {i : x∗i = fi(x
∗) = 0}.

Then x∗ is regular if and only if the following two conditions hold with the
index sets I+ and I0:
(a) the principal submatrix (f ′(x∗))I+I+ is nonsingular;
(b) the Schur complement (f ′(x∗))I0I0−(f ′(x∗))I0I+ [(f ′(x∗))I+I+ ]−1(f ′(x∗))I+I0

is a P-matrix.
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It is clear that if f ′(x∗) is a P-matrix, then x∗ is regular since the class of
P-matrices is invariant under principal pivoting [9].

Given the notion of regularity, we can state the convergence result of
Newton’s method proposed by Josephy [19].

Theorem 1.7. [14, 19] Let Ω be a nonempty closed and convex subset of
Rn. Let f : Rn → Rn be once continuously differentiable, and x∗ be a regular
solution to V I(Ω, f). Then there exists a neighborhood of x∗ such that if the
starting point x0 is chosen there, the Newton sequence {xk} is well defined and
converges to the solution x∗. Furthermore, if f ′(x) is Lipschitz continuous
near x∗, then the convergence is quadratic.

Corollary 1.8. [19, 33] Let Ω be a nonempty closed and convex subset of
Rn. Let f : Rn → Rn be once continuously differentiable, and let x∗ be a
solution to V I(Ω, f) with f ′(x∗) being positive definite. Then there exists a
neighborhood of x∗ such that if the starting point x0 is chosen there, the New-
ton sequence {xk} is well defined and converges to the solution x∗. Moreover,
if f ′(x) is Lipschitz continuous near x∗, then the convergence is quadratic.

In Eaves’s treatment [10], f has the special form:

f(y, z) =

(
c

g(z)

)
,

where g′(z) is assumed to be positive definite in its domain, and the quadratic
convergence is established only for z.

Another special case of theorem 1.7 for the nonlinear complementarity
problem was established in [33] by using the monotonic norm approach.

Corollary 1.9. [33] Let f : Rn → Rn be once continuously differentiable,
and x∗ be a solution to NCP (f) with f ′(x∗) being an H-matrix with positive
diagonal elements. Then there exists a neighborhood of x∗ such that if the
starting point x0 is chosen there, the Newton sequence {xk} is well defined
and converges to the solution x∗.

One notices that the aforementioned convergence results share the same
drawback:
before showing the convergence of the method, the existence and some prop-
erties of the solution to the original problem has to be assumed, which cannot
be verified computationally.

The present research is motivated by the effort to overcome this drawback.
By the idea of the Kantorovich theorem, the dissertation meticulously studies
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the semilocal convergence of Newton’s method for variational inequalities
and complementarity problems, as well as the various convergence properties
including the convergence domain, convergence rate, error estimation etc.
These Kantorovich-type theorems established in the dissertation not only
provide computationally verifiable conditions to guarantee the convergence
of Newton’s method, but also provide new existence and uniqueness results
for solutions.

1.3 Structure of Dissertation

The structure of the dissertation is as follows, chapter 2 extends the Kan-
torovich theorem to variational inequalities, some convergence properties are
derived also; chapter 3 establishes the semilocal convergence results specially
for nonlinear complementarity problems; chapter 4 proposes an approach
of enclosing solutions to linear complementarity problems; implementation
details and numerical results are presented in the last chapter.
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Chapter 2

Extension of the Kantorovich
Theorem

2.1 The Kantorovich Theorem

Let D ⊆ Rn be open and nonempty, and let f : D → Rn be continuously
differentiable. Denote the nonlinear equation f(x) = 0 by NE(f). We know
that the Newton iterate

xk+1 = xk − f ′(xk)−1f(xk)

is just the solution to the linearized problem NE(fk), i.e., to the system of
linear equations

fk(x) = f(xk) + f ′(xk)(x− xk) = 0.

For the investigation of the method, one of the most powerful convergence
analysis tools is the Kantorovich theorem [20], which can provide compu-
tationally verifiable conditions of convergence. Since Newton’s method for
NE(f) and that for V I(Ω, f) share the same iterative scheme, i.e, their
(k+1)-th iterates are all defined as the solutions to their respective k-th
linearized problems NE(fk) and V I(Ω, fk) with the same associated affine
mapping (1.1), it is promising to extend the Kantorovich theorem to varia-
tional inequalities.

Denote the closed ball by S̄(x, r) := {y ∈ Rn : ‖y−x‖ ≤ r}, while denote
the open ball by S(x, r) := {y ∈ Rn : ‖y − x‖ < r}. The following is the
Kantorovich theorem in its classic form for the solution of equations.

Theorem 2.1. [30] Assume that f : D ⊆ Rn → Rn is continuously differ-
entiable on a convex set D0 ⊆ D and that

‖f ′(x)− f ′(y)‖ ≤ γ‖x− y‖, ∀x, y ∈ D0.
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Suppose that there exists an x0 ∈ D0 such that ‖f ′(x0)−1‖ ≤ β and h =
βγη ≤ 1

2
, where η ≥ ‖x1 − x0‖. Set

r∗ =
1−

√
1− 2h

βγ
, r∗∗ =

1 +
√

1− 2h

βγ
,

and assume that S̄(x0, r∗) ⊆ D0. Then the Newton sequence {xk} is well
defined, remains in S̄(x0, r∗), and converges to a solution x∗ of f(x) = 0
which is unique in S(x0, r∗∗) ∩D0. Moreover, the error estimate

‖xk − x∗‖ ≤ (βγ2k)−1(2h)2k

, k = 0, 1, 2, · · · ,

holds.

Loosely speaking, to prove the theorem, one has to deal with two prob-
lems:
(1) to show that the invertibility of f ′(x1) can be concluded from that of
f ′(x0) so as to guarantee that x2 is well defined;
(2) to estimate ‖x2 − x1‖, in order to show that the conditions of theorem
2.1 still hold when x0 is replaced by x1.

The first problem can be addressed by the following perturbation lemma [7].

Lemma 2.2. [7, 30] Let B be an n×n matrix. B−1 exists if and only if there
is a matrix A such that A−1 exists and

‖A−B‖ <
1

‖A−1‖
.

If A−1 exists, then

‖B−1‖ ≤ ‖A−1‖
1− ‖I − A−1B‖

≤ ‖A−1‖
1− ‖A−1‖‖A−B‖

. (2.1)

Here the matrix norm ‖ · ‖ is assumed to be subordinate to some vector
norm.

The estimation of ‖x2−x1‖ can be obtained by direct substitution. Thus
by the mathematical induction we can prove the well-definedness and the
convergence of the Newton sequence to a solution of the nonlinear equation,
and other various convergence properties.

The analysis on Newton’s method for the variational inequality V I(Ω, f)
differs in some aspects to that on Newton’s method for equations. Firstly,
the invertibility of f ′(x0) is not sufficient to insure the unique solvability
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of V I(Ω, f0). Secondly, if V I(Ω, f0) is uniquely solvable under certain as-
sumption on f ′(x0), we need a powerful extension of lemma 2.2 to show
that the assumption imposed on f ′(x0) holds also for f ′(x1), so as to insure
that V I(Ω, f1) has a unique solution, and then that x2 is well defined. The
last problem is to estimate ‖x2 − x1‖, which is hardly to obtain by direct
substitution, if not impossible.

For the first problem, we know if f ′(x0) is positive definite (not necessarily
symmetric), then f 0 is strongly monotone, so V I(Ω, f0) is uniquely solvable,
and x1 is well-defined. See remark 2.5.1 in the next section. Thus in the
extension of the Kantorovich theorem to variational inequalities, f ′(x0) is
assumed to be positive definite.

In order to solve the second problem, we need to extend lemma 2.2 to
symmetric positive definite matrices. This is given in the next section. We
use the definition of the variational inequality and the positive definiteness
of the Jacobian matrices of f at the iterates to estimate ‖x2 − x1‖, which is
included in the proof of the main result of this chapter.

2.2 Main Result

The following is the extension of lemma 2.2 to symmetric positive definite
matrices. The involved matrix norm is subordinate to some vector norm.

Theorem 2.3. Let B be an n×n symmetric real matrix. We have
(a) B is positive definite if and only if there is a symmetric positive definite
matrix A such that

‖A−B‖ <
1

‖A−1‖
;

(b) if there is a symmetric positive definite matrix A such that

‖A−B‖ =
1

‖A−1‖
,

then B is either positive semi-definite or positive definite.

Proof. (a) The necessity is straightforward, we prove the sufficiency. De-
noting by λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of A, and so A−1 has the
eigenvalues λ−1

1 ≥ λ−1
2 ≥ · · · ≥ λ−1

n since A is symmetric positive definite. It
is clear

ρ(A−B) ≤ ‖A−B‖ <
1

‖A−1‖
≤ 1

ρ(A−1)
= λ1. (2.2)
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Let C ∈ Rn×n be symmetric with the eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µn. From
Chapter 2.1 of Ortega and Rheinboldt [30] we know

µ1x
T x ≤ xT Cx ≤ µnx

T x, ∀x ∈ Rn. (2.3)

From (2.3), it follows

|xT Cx| ≤ max{|µ1x
T x|, |µnx

T x|} ≤ ρ(C)xT x,

so by (2.2) we have

|xT (A−B)x| ≤ ρ(A−B)xT x < λ1x
T x, ∀x 6= 0,

which implies xT Bx > xT Ax − λ1x
T x for any x 6= 0. And from (2.3) we

know xT Bx > 0 for any x 6= 0, it means that B is positive definite.
(b) If ‖A − B‖ = 1/‖A−1‖, in the similar way to that in (a), we can prove
that xT Bx ≥ xT Ax− λ1x

T x ≥ 0. Letting A = I, B = 0, we have

‖A−B‖ = 1 = 1/‖A−1‖,

which shows that B is either positive semi-definite or positive definite.

In the proof of the main result of this chapter we will need the classic
existence and uniqueness result, which was established previously in [42]. To
state the result, we introduce the following definition.

Definition 2.4. [30] The mapping f : Rn → Rn is said to be strongly mono-
tone over D ⊆ Rn if there exists an γ > 0 such that

(f(x)− f(y))T (x− y) ≥ γ‖x− y‖2, ∀x, y ∈ D,

where ‖ · ‖ denotes any vector norm in Rn.

Theorem 2.5. [42] Let Ω be a nonempty, closed and convex subset of Rn

and let f be a continuous mapping from Ω to Rn. If f is strongly monotone
with respect to Ω, then there exists a unique solution to the problem V I(Ω, f).

Remark 2.5.1. For affine mapping f(x) = Mx + q, where M ∈ Rn×n and
q ∈ Rn, the strong monotonicity of f is equivalent to the positive definiteness
of the matrix M (not necessarily symmetric), see chapter 5.4 of Ortega and
Rheinboldt [30]. Thus, if M is positive definite and Ω ⊆ Rn is nonempty,
closed and convex, then V I(Ω, f) has a unique solution.

Recall Ã = (A + AT )/2, where A is a square real matrix. We establish
the following Kantorovich-type semilocal convergence of Newton’s method
for variational inequalities.
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Theorem 2.6. Let D ⊆ Rn be open, let Ω ⊂ D be nonempty, convex and
closed. Assume that f : D → Rn is continuously differentiable, and that

‖f ′(x)− f ′(y)‖2 ≤ γ‖x− y‖2, ∀x, y ∈ D0,

where D0 ⊆ Ω is convex. Suppose that there is a starting point x0 ∈ D0 such
that f ′(x0) is positive definite and

‖f̃ ′(x0)
−1

‖2 ≤ β.

Denote by x1 the unique solution to V I(Ω, f0) and

‖x1 − x0‖2 ≤ η,

where
f 0(x) = f(x0) + f ′(x0)(x− x0).

If

h = βγη ≤ 1

2
, (2.4)

and
S̄(x0, r∗) ⊆ D0, (2.5)

where

r∗ =
1−

√
1− 2h

βγ
,

then the Newton sequence {xk} is well defined, remains in S̄(x0, r∗), and
converges to a solution x∗ of the variational inequality V I(Ω, f), which is
contained in S̄(x0, r∗).

Remark 2.6.1. If f ′(x0) is positive definite, then V I(Ω, f0) has the unique
solution x1. See theorem 2.5 and remark 2.5.1.

Remark 2.6.2. Here the open ball S(x, r) and the closed ball S̄(x, r) are all
defined by the spectral norm ‖ · ‖2.

Proof. It is clear that β 6= 0. If γ = 0, then we have f ′(x) = f ′(x0) for
any x ∈ D0, which by the mean value theorem [30] implies f(x) = f 0(x),
and so the Newton iteration terminates at x1 since it is just the solution to
V I(Ω, f). If η = 0, then x1 = x0, since x1 solves V I(Ω, f0) we have

(y − x0)T f(x0) = (y − x1)T (f(x0) + f ′(x0)(x1 − x0)) ≥ 0, ∀y ∈ Ω,

which indicates that x0 is just a solution of V I(Ω, f), and the Newton iter-
ation terminates at it. So without loss of generality, we assume γ 6= 0 and
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η 6= 0.
Denote η0 = η, β0 = β, h0 = h and r∗0 = r∗. We divide the proof into three
parts: (a), (b) and (c).
(a) Firstly we prove that x2 is well defined. From the inequality

1− 2h0 ≤ 1− 2h0 + h2
0

and the assumption (2.4) it follows that√
1− 2h0 ≤ 1− h0,

and so
β0γη0 = h0 ≤ 1−

√
1− 2h0,

so we have

η0 ≤
1−

√
1− 2h0

β0γ
= r∗0.

Since ‖x1 − x0‖2 ≤ η0, we have x1 ∈ S̄(x0, r∗0), and x1 ∈ D0 because
S̄(x0, r

∗) ⊆ D0. Considering that

‖f̃ ′(x1)− f̃ ′(x0)‖2 ≤ ‖f ′(x1)− f ′(x0)‖2/2 + ‖(f ′(x1)− f ′(x0))T‖2/2

= ‖f ′(x1)− f ′(x0)‖2 ≤ γ‖x1 − x0‖2

≤ γη0 = h0/β0 ≤ 1/(2β0) < 1/β0,

one has

‖f̃ ′(x1)− f̃ ′(x0)‖2 < 1/‖f̃ ′(x0)
−1

‖2,

which, by theorem 2.3, implies that f̃ ′(x1) is positive definite, and so is f ′(x1).
From remark 2.5.1 we know that the problem V I(Ω, f1) is uniquely solvable,
and x2 is well defined. Moreover, by the inequality (2.1) one has

‖f̃ ′(x1)
−1

‖2 ≤
β0

1− β0η0γ
=

β0

1− h0

= β1.

(b) Subsequently we estimate ‖x2 − x1‖2 and prove that (2.4) and (2.5) still
hold when x0 is replaced by x1. Considering that x1, x2 ∈ Ω, and that x1

solves V I(Ω, f0) and x2 solves V I(Ω, f1), one has

(x2 − x1)T f 0(x1) = (x2 − x1)T [f(x0) + f ′(x0)(x1 − x0)] ≥ 0,

(x1 − x2)T f 1(x2) = (x1 − x2)T [f(x1) + f ′(x1)(x2 − x1)] ≥ 0.
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Adding the two inequalities and rearranging the terms, one obtains

(x1 − x2)T f ′(x1)(x1 − x2)

≤ (x1 − x2)T (f(x1)− f(x0)− f ′(x0)(x1 − x0))

≤ ‖x1 − x2‖2‖f(x1)− f(x0)− f ′(x0)(x1 − x0)‖2.

(2.6)

Since x1 ∈ S̄(x0, r∗0), from the assumption (2.5) it follows x1 ∈ D0, and so
L[x0, x1] = {λx0 + (1 − λ)x1|0 ≤ λ ≤ 1} ⊆ D0. We have the following
inequality [35]

‖f(x1)− f(x0)− f ′(x0)(x1 − x0)‖2 ≤ γ‖x1 − x0‖2
2/2. (2.7)

Denote the eigenvalues of Ã by λ1 ≤ λ2 ≤ · · · ≤ λn. From (2.3) we know

xT Ãx ≥ λ1x
T x =

‖x‖2
2

ρ(Ã−1)
≥ ‖x‖2

2

‖Ã−1‖2

.

Considering the fact xT Ax = xT Ãx, one has

‖x1 − x2‖2
2/‖f̃ ′(x1)

−1

‖2 ≤ (x1 − x2)T f̃ ′(x1)(x1 − x2)

= (x1 − x2)T f ′(x1)(x1 − x2).

(2.8)

From the inequalities (2.6), (2.7) and (2.8) we have

‖x1 − x2‖2
2/‖f̃ ′(x1)

−1

‖2 ≤ γ‖x1 − x2‖2‖x1 − x0‖2
2/2.

For the same consideration as in the beginning of the proof, we assume that
x1 6= x2, otherwise the exact solution x∗ = x1 has been got, and the iteration
can be stopped. Thus

‖x1 − x2‖2 ≤ γ‖f̃ ′(x1)
−1

‖2η
2
0/2 ≤

β0

1− h0

γ

2
η2

0 =
h0η0

2(1− h0)
= η1.

Clearly η1 ≤ η0/2. Noting that

h1 = β1γη1 =
β0

1− h0

γ
h0η0

2(1− h0)
=

h2
0

2(1− h0)2
≤ 1

2
,

condition (2.4) holds when x0 is replaced by x1. Let

r∗1 =
1−

√
1− 2h1

β1γ
.
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By direct substitution, one has√
1− 2h1 = (1− h2

0

(1− h0)2
)1/2 =

√
1− 2h0

1− h0

, (2.9)

and

r∗1 =
1−

√
1− 2h0

β0γ
− η0 = r∗0 − η0,

so for any x ∈ S̄(x1, r∗1),

‖x− x0‖2 ≤ ‖x− x1‖2 + ‖x1 − x0‖2 ≤ r∗1 + η0 = r∗0,

i.e., S̄(x1, r∗1) ⊆ S̄(x0, r∗0), which indicates that the condition (2.5) holds also
when x0 is replaced by x1.
(c) Here we prove that the Newton sequence is convergent to a solution of
V I(Ω, f), which exists in the ball S̄(x0, r∗). By mathematical induction it
follows that the Newton sequence {xk}, starting from x0, is well defined,
remains in S̄(x0, r∗0) = S̄(x0, r∗) and satisfies

‖xk+1 − xk‖2 ≤ ηk =
hk−1ηk−1

2(1− hk−1)
≤ hk−1ηk−1, (2.10)

‖f̃ ′(xk)
−1

‖2 ≤ βk =
βk−1

1− hk−1

, (2.11)

and

hk = βkγηk =
h2

k−1

2(1− hk−1)2
≤ 2h2

k−1, (2.12)

where k = 1, 2, · · ·. From (2.12) we have

hk ≤ 2h2
k−1 =

1

2
(2hk−1)

2 ≤ 1

2
(2hk−2)

4 ≤ · · · ≤ 1

2
(2h0)

2k

. (2.13)

From (2.10) and (2.13) we have

ηk ≤ hk−1ηk−1 ≤ hk−1hk−2ηk−2 ≤ · · · ≤ hk−1hk−2 · · ·h0η0

≤ (2h0)
2k−1

(2h0)
2k−2 · · · (2h0)

0η0/2
k = (2h0)

2k−1η0/2
k.

(2.14)

On the other hand, by the mathematical induction, we can see that

{xk+1, xk+2, · · ·} ⊂ S̄(xk, r∗k), k = 0, 1, 2, · · · ,

which, combined with (2.14) implies that

‖xk+p − xk‖2 ≤ r∗k =
1−

√
1− 2hk

βkγ
≤ 2ηk ≤ (2h0)

2k−1η0/2
k−1, (2.15)
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i.e., {xk} is a Cauchy sequence which has a limit x∗ with x∗ ∈ S̄(xk, r∗k) for
any k = 0, 1, · · ·. Considering

(y − xk+1)T (f(xk) + f ′(xk)(xk+1 − xk)) ≥ 0, ∀y ∈ Ω,

and the continuity of f and f ′, we can conclude

(y − x∗)T f(x∗) ≥ 0, ∀y ∈ Ω,

when k → ∞, i.e., x∗ solves V I(Ω, f). It is clear that x∗ ∈ S̄(x0, r∗) since
{xk} ⊂ S̄(x0, r∗).

2.3 Uniqueness and Convergence Speed

We have shown that x∗ ∈ S̄(x0, r∗). The following is a further result on the
existence domain of the solution x∗.

Theorem 2.7. If the conditions of theorem 2.6 hold, then

S̄(xk+1, r∗k+1) ⊆ S̄(xk, r∗k), ∀k = 0, 1, · · · ;

and
lim
k→∞

S̄(xk, r∗k) = {x∗},

where x∗ is the limit of the Newton sequence {xk}, and r∗k is defined as in
(2.15).

Proof. It is straightforward in the proof of theorem 2.6 that

S̄(xk+1, r∗k+1) ⊆ S̄(xk, r∗k).

From (2.11) we know βk ≥ β0 and βk = 2kβ0 when h0 = 1
2
. From (2.13) it

follows that

0 ≤ r∗k =
1−

√
1− 2hk

βkγ
≤ 1−

√
1− (2h)2k

β0γ
→ 0

for h < 1
2
; and

r∗k =
1−

√
1− 2hk

βkγ
=

1

2kβ0γ
→ 0

for h = 1
2
. Thus the sequence of S̄(xk, r∗k) converges to {x∗}.

Theorem 2.7 indicates that the limit x∗ of {xk} remains in each closed
ball S̄(xk, r∗k), where the sequence {S̄(xk, r∗k)} is inclusion monotone. On the
uniqueness of the solution we have the following result.
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Theorem 2.8. Let the conditions of theorem 2.6 hold and S(x0, r∗∗) ⊆ D0,
where

r∗∗ =
1 +

√
1− 2h

βγ
.

Then the limit x∗ of the Newton sequence {xk} is the unique solution of
V I(Ω, f) in the open ball S(x0, r∗∗).

Proof. Denote r∗∗0 = r∗∗ and suppose that x∗∗ ∈ S(x0, r∗∗) is a solution
of V I(Ω, f) different to x∗ in S(x0, r∗∗). Because x1 ∈ Ω is a solution to
V I(Ω, f1), by the definition of variational inequalities we have

(x1 − x∗∗)T f(x∗∗) ≥ 0,

(x∗∗ − x1)T (f(x0) + f ′(x0)(x1 − x0)) ≥ 0.

Adding the two inequalities and arranging the terms, we have

‖x∗∗ − x1‖2 ≤
1

2
γβ0‖x∗∗ − x0‖2

2.

Assume ‖x∗∗ − x0‖2 = θr∗∗0 , where 0 ≤ θ < 1 since x∗∗ is assumed to be in
the open ball S(x0, r∗∗0 ). From (2.9) and (2.11) we know

r∗∗1 =
1 +

√
1− 2h1

β1γ
=

β0γ

2
(
1 +

√
1− 2h0

β0γ
)2 =

β0γ

2
(r∗∗0 )2, (2.16)

and so ‖x∗∗−x1‖2 ≤ θ2r∗∗1 . (2.16) also follows r∗∗1 = r∗∗0 −η0, which indicates
that S(x1, r∗∗1 ) ⊆ S(x0, r∗∗0 ). By induction, we have

‖x∗∗ − xk‖2 ≤ θ2k

r∗∗k = θ2k 1 +
√

1− 2hk

βkγ
≤ θ2k 2

βkγ
, (2.17)

and by (2.11) we know βk ≥ β0, and so

‖x∗∗ − xk‖2 ≤ θ2k 2

β0γ
.

Since 0 ≤ θ < 1, x∗∗ = limk→∞ xk = x∗, and the conclusion holds.

When h = 1
2
, r∗ = r∗∗ = 2η, from theorem 2.8 we know x∗ is the unique

solution to V I(Ω, f) in the open ball S(x0, r∗) = S(x0, r∗∗) = S(x0, 2η). In
fact we have the following better result.

Theorem 2.9. If the conditions of theorem 2.6 hold with h = 1
2
, then the

Newton sequence {xk} converges to the solution x∗ of the problem V I(Ω, f)
which is unique in the closed ball S̄(x0, r∗) = S̄(x0, r∗∗) = S̄(x0, 2η).
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Proof. Obviously r∗ = r∗∗ = 2η when h = 1
2
. The analysis in the proof of

theorem 2.8 holds except for the case θ = 1 in (2.17). From (2.17) with
θ = 1, we have

‖x∗∗ − xk‖2 ≤
2

βkγ
.

When h = 1
2
, from (2.11) and (2.12) it follows that βk = 2kβ, so

‖x∗∗ − xk‖2 ≤
1

2k−1

1

βγ
,

and so x∗∗ = limk→∞ xk = x∗, and the conclusion holds.

The following error estimate can be obtained from the inequality (2.15)
immediately.

Theorem 2.10. If the conditions of theorem 2.6 hold, then we have the error
estimate

‖xk − x∗‖2 ≤
1

2k−1
(2h)2k−1η = (βγ2k)−1(2h)2k

. (2.18)

Proof. From (2.15) with p →∞, the error estimate (2.18) follows.

The error estimate (2.18) indicates that if h < 1
2
, the Newton sequence

converges rapidly, which can be alternately shown by the following quadratic
convergence property.

Theorem 2.11. If the conditions of theorem 2.6 hold with h < 1
2
, then the

Newton sequence {xk} is quadratically convergent.

Proof. Since x∗ solves V I(Ω, f), xk+1 solves V I(Ω, fk), we have

(xk+1 − x∗)T f(x∗) ≥ 0,

(x∗ − xk+1)T (f(xk) + f ′(xk)(xk+1 − xk)) ≥ 0.

Adding the two inequalities and rearranging the terms, we have

‖xk+1 − x∗‖2 ≤
γ

2
‖f̃ ′(xk)

−1

‖2‖xk − x∗‖2
2. (2.19)

Noting xk ∈ S̄(x0, r∗), so by the inequality (2.1) we have

‖f̃ ′(xk)
−1

‖2 ≤
β

1− βγ‖xk − x0‖2

≤ β

1− βγr∗
=

β√
1− 2h

,

and so

‖xk+1 − x∗‖2 ≤
γ

2

β√
1− 2h

‖xk − x∗‖2
2,

19



i.e., the convergence is quadratic.

The following result shows that the convergence of the Newton sequence
is linear when h = 1

2
.

Theorem 2.12. If the conditions of theorem 2.6 hold with h = 1
2
, then the

Newton sequence is linearly convergent.

Proof. When h = 1
2
, (2.11) and (2.12) imply that βk = 2kβ and hk = 1

2

respectively. From the error estimate (2.18) we know ‖xk − x∗‖2 ≤ 1
2k−1 η.

Substituting the relevant terms in (2.19) one has

‖xk+1 − x∗‖2 ≤
γ

2
2kβ

1

2k−1
η‖xk − x∗‖2 =

1

2
‖xk − x∗‖2,

which follows the conclusion.

Example 2.13. Consider a simple one-dimensional variational inequality
V I(Ω, f), where Ω = [−1, 1] and f(x) = x2. Setting x0 = 1

2
, one can verify

that all the assumptions of theorem 2.6 hold with h = 1
2
. The Newton iterates

read xk = 1/2k+1, k ≥ 1. This sequence converges linearly to x∗ = 0, which
is a solution of V I(Ω, f).

In the rest of the section we compare theorem 2.6 and corollary 1.8.

Theorem 2.14. Let D ⊆ Rn be open, let Ω ⊂ D be nonempty, closed and
convex. Assume that f : D → Rn is continuously differentiable on a convex
set D0 ⊆ Ω and that

‖f ′(x)− f ′(y)‖2 ≤ γ‖x− y‖2, ∀x, y ∈ D0.

Let x∗ ∈ D0 be a solution to V I(Ω, f), where f ′(x∗) is positive definite and

‖f̃ ′(x∗)
−1

‖2 ≤ β∗.

If S̄(x∗, 1/(β∗γ)) ⊆ D0, then the conditions of theorem 2.6 hold for any

starting point x0 ∈ S̄(x∗, θ/(β∗γ)), 0 < θ ≤ 2−
√

2
2

.

Proof. Similar to the part (a) of the proof of theorem 2.6 we can show that
f ′(x0) is positive definite, and

‖f̃ ′(x0)
−1

‖2 ≤
β∗

1− θ
= β.

Thus x1 is well defined. Since x∗ solves V I(Ω, f), x1 solves V I(Ω, f0), we
have

(x1 − x∗)T f(x∗) ≥ 0,

(x∗ − x1)T (f(x0) + f ′(x0)(x1 − x0)) ≥ 0.
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Adding the two inequalities and arranging the terms, we have

‖x∗ − x1‖2 ≤
γ

2
‖f̃ ′(x0)

−1

‖2‖x∗ − x0‖2
2 ≤

γ

2

β∗

1− θ
(

θ

β∗γ
)2,

this implies that

‖x1 − x0‖2 ≤ ‖x∗ − x0‖2 + ‖x∗ − x1‖2 ≤
θ

β∗γ
+

γ

2

β∗

1− θ
(

θ

β∗γ
)2 = η.

It is easy to verify that if θ ≤ 2−
√

2
2

, then

h = βγη =
θ2

2(1− θ)2
+

θ

1− θ
=

2θ − θ2

2(1− θ)2
≤ 1

2
.

Let r = (1−
√

1− 2h)/(βγ). We have

r =
1−

√
1− 2h

βγ
=

2h

βγ(1 +
√

1− 2h)
≤ 2h

βγ
=

2θ − θ2

1− θ

1

β∗γ
.

If θ ≤ 2−
√

2
2

, then

r +
θ

β∗γ
=

3θ − 2θ2

1− θ

1

β∗γ
≤ 1

β∗γ
.

Hence for any x ∈ S̄(x0, r) we have

‖x− x∗‖2 ≤ ‖x− x0‖2 + ‖x0 − x∗‖2 ≤ r +
θ

β∗γ
≤ 1

β∗γ
,

which indicates S(x0, r) ⊆ S(x∗, 1/(β∗γ)), so S(x0, r) ⊆ D0, and the conclu-
sion is drawn.

From theorem 2.14 we can see theorem 2.6 quantitatively interprets corol-
lary 1.8. If f ′(x∗) is positive definite, the solution x∗ is isolated [43], but not
vice versa. So to some extent we can say theorem 2.6 also quantitatively
explains the local and quadratic convergence of Newton iteration near the
isolated solution to V I(Ω, f).

By the next result we show that theorem 2.6 is more general than corollary
1.8 in the following sense.

Theorem 2.15. If the conditions of theorem 2.6 hold, then for any x ∈
S(x0, 1/(βγ)), f ′(x) is positive definite.
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Proof. Similar to the part (a) of the proof of theorem 2.6, we have

‖f̃ ′(x)− f̃ ′(x0)‖2 ≤ ‖f ′(x)− f ′(x0)‖2

≤ γ‖x− x0‖2 < 1/β ≤ 1/‖f̃ ′(x0)
−1

‖2,

which, from theorem 2.3, follows that f̃ ′(x) is also positive definite, and so
is f ′(x).

When h < 1
2
, since x∗ ∈ S̄(x0, r∗) ⊆ S(x0, 1/(βγ)), f ′(x∗) is positive

definite. When h = 1
2
, since S(x0, r∗) = S(x0, 1/(βγ)), x∗ might be in the

boundary of S(x0, 1/(βγ)), and from theorem 2.3, it follows that f ′(x∗) is
either positive definite or positive semi-definite. In example 2.13, we can
verify that f ′(x∗) is positive semi-definite. In other words, Newton’s method
is convergent if the starting point x0 is chosen sufficiently close to a solution
x∗ with f ′(x∗) being positive definite, and could be convergent if x0 is close
to a solution x∗ with f ′(x∗) being positive semi-definite.
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Chapter 3

Special Results for
Complementarity Problems

All the convergence results proposed in chapter 2 can be applied to nonlinear
complementarity problems, but in many cases the requirement of positive
definiteness of f ′(x0) is restrictive. Recall the classic existence result [9]: the
linear complementarity problem LCP (q, M) has a unique solution for any
column vector q if and only if M is a P-matrix. As a matter of fact, the
unique solvability of LCP (q, M) depends on the nature of the matrix M and
the column vector q. In some cases, LCP (q, M) could have a unique solution
even without the invertibility of M . See [9, 29, 41] for more detailed existence
and uniqueness results. This is to say, there is still room for weakening the
assumptions on f ′(x0) in theorem 2.6. In this chapter we try to replace the
requirement that f ′(x0) is positive definite by an alternate condition: f ′(x0)
is an H-matrix with positive diagonal elements. This class of matrices is an
important subclass of P-matrices. See [9].

3.1 Preliminaries

Let A = (aij) be an n×n real matrix. Then A is an H-matrix if there is a
vector d = (di), di > 0, such that∑

j 6=i

|aij|dj < |aii|di, i = 1, 2, · · · , n. (3.1)

Define the comparison matrix Ā = (āij) of A, where

āij =

{
|aii|, if i = j,

−|aij|, if i 6= j.
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Using Ā, (3.1) can be written as

Ād > 0.

Define Â = (âij), where

âij =

{
aii, if i = j,

−|aij|, if i 6= j.
(3.2)

Clearly both Ā and Â are Z-matrices, and Ā = Â if A has nonnegative
diagonal elements. Remember that A is an M-matrix if and only if A is a
Z-matrix and there is a vector d = (di), di > 0 such that Ad > 0; A is an
H-matrix if and only if Ā is an M-matrix. See [9, 34].

We recall that a vector norm ‖ · ‖ is monotonic if for any x, y ∈ Rn,

|x| ≤ |y| implies ‖x‖ ≤ ‖y‖,

where |x| = (|xi|) and |y| = (|yi|). It is easy to see that ‖ · ‖1 and ‖ · ‖∞
are monotonic. Denote |A| = (|aij|) for an arbitrary matrix A = (aij). We
can see that |A| ≤ |B| implies ‖A‖1 ≤ ‖B‖1 and ‖A‖∞ ≤ ‖B‖∞. Refer to
chapter 2.4 of Ortega and Rheinboldt [30].

The following property of Â is straightforward.

Proposition 3.1. Let A and B be n×n matrices. Then

‖Â− B̂‖ ≤ ‖A−B‖ (3.3)

holds for ‖ · ‖∞ and ‖ · ‖1.

Proof. Noticing that |aii − bii| = |(A−B)ii|, and that for i 6= j

|(|aij| − |bij|)| ≤ |aij − bij| = |(A−B)ij|,

we have |Â− B̂| ≤ |A−B|, and the assertion holds.

3.2 Convergence Results

From remark 1.5.1 we can see that if f ′(x0) is an H-matrix and has positive
diagonal elements, then f ′(x0) is a P-matrix, and NCP (f 0) has the unique
solution x1. Subsequently, we try to show that f ′(x1) is also an H-matrix
with positive diagonal elements, which guarantees that x2 is well defined.
For this purpose we need another extension of lemma 2.2 to M-matrices and
H-matrices. We estimate the distance between x1 and x2 in the proof of the
main result of this chapter by using monotonic norm approach.

We establish the following perturbation property of M-matrices.
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Theorem 3.2. Let B be a Z-matrix. Then B is an M-matrix if and only if
there is an M-matrix A such that

‖A−B‖∞ <
1

‖A−1‖∞
.

Proof. The necessity is straightforward, we prove the sufficiency. Let e =
(1, 1, · · · , 1)T and d = A−1e. Since A is an M-matrix, A−1 = (αij)n×n ≥ 0, so
di =

∑n
j=1 αij =

∑n
j=1 |αij| ≥ 0. Assume di = 0, then

∑n
j=1 |αij| = 0. This

means αij = 0 for all 1 ≤ j ≤ n, which is not possible since A−1 is invertible.
So d > 0. Moreover

‖d‖∞ = max
1≤i≤n

{|di|} = max
1≤i≤n

{
n∑

j=1

|αij|} = ‖A−1‖∞.

Because

‖(A−B)d‖∞ ≤ ‖A−B‖∞‖d‖∞ < ‖d‖∞/‖A−1‖∞ = 1,

we have

|(Ad−Bd)i| = |(e−Bd)i| = |1− (Bd)i| < 1, i = 1, 2, · · · , n,

so (Bd)i > 0, i.e., Bd > 0 for a positive vector d > 0, which implies that B
is an M-matrix since it has been assumed to be a Z-matrix.

Corollary 3.3. Let B be a Z-matrix. Then B is an M-matrix if and only if
there is an M-matrix A such that

‖A−B‖1 <
1

‖A−1‖1

.

Proof. Since ‖A‖∞ = ‖AT‖1 and A is an M-matrix if and only if its transpose
is also an M-matrix, so from theorem 3.2 it follows the conclusion.

We establish the perturbation property of H-matrices with positive diag-
onal elements.

Theorem 3.4. Let B be an n×n real matrix. Then B is an H-matrix with
positive diagonal elements if and only if there is an H-matrix with positive
diagonal elements A such that

‖Â− B̂‖∞ <
1

‖Â−1‖∞
,

where Â and B̂ are defined as in (3.2).
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Proof. It is enough to prove the sufficiency. Note that B̂ is a Z-matrix, and Â
is an M-matrix since A is assumed to be an H-matrix with positive diagonal
elements. We can apply theorem 3.2 and conclude that B̂ is an H-matrix
with positive diagonal elements.

The following is an alternate convergence result of Newton’s method for
nonlinear complementarity problems.

Theorem 3.5. Let D ⊆ Rn be open and Rn
+ ⊂ D. Assuming that f : D →

Rn is continuously differentiable, D0 ⊆ Rn
+ is convex, and that

‖f ′(x)− f ′(y)‖∞ ≤ γ‖x− y‖∞, ∀x, y ∈ D0.

Suppose that there exists a starting point x0 ∈ D0 such that f ′(x0) is an
H-matrix with positive diagonal elements, and

‖f ′(x0)
−1
‖∞ ≤ β.

Denote by x1 the solution to NCP (f 0), and let

‖x1 − x0‖∞ ≤ η.

If

h = βγη ≤ 1

2
,

and
S̄(x0, r∗) ⊆ D0,

where

r∗ =
1−

√
1− 2h

βγ
,

then the Newton sequence {xk} is well defined, remains in S̄(x0, r∗), and con-
verges to a solution x∗ of the nonlinear complementarity problem NCP (f),
which exists in the closed ball S̄(x0, r∗).

Remark 3.5.1. NCP (f 0) is in fact a linear complementarity problem with
the matrix f ′(x0), and has a unique solution because f ′(x0) is assumed to be
an H-matrix with positive diagonal elements.

Remark 3.5.2. Here the open ball S(x, r) and the closed ball S̄(x, r) are all
defined by ‖ · ‖∞.
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Proof. For the same consideration as in theorem 2.6 we assume γ 6= 0 and
η 6= 0. Denote β0 = β, η0 = η, h0 = h, r∗0 = r∗. From (3.3) we know

‖f̂ ′(x1)− f̂ ′(x0)‖∞ ≤ ‖f ′(x1)− f ′(x0)‖∞ ≤ γ‖x1 − x0‖∞ < 1/β0,

since f̂ ′(x0) = f ′(x0) we have

‖f̂ ′(x1)− f̂ ′(x0)‖∞ <
1

‖f̂ ′(x0)
−1

‖∞
=

1

‖f ′(x0)
−1
‖∞

,

which, from theorem 3.4 follows that f ′(x1) is also an H-matrix with positive
diagonal elements. By the inequality (2.1) we have

‖f ′(x1)
−1
‖∞ ≤ β0

1− β0η0γ
=

β0

1− h0

= β1.

Since f ′(x1) is an H-matrix with positive diagonal elements, so by the ex-
istence and uniqueness result [9, 41] we know the subproblem NCP (f 1) is
uniquely solvable, and x2 is well-defined. Note

x1 ≥ 0, f(x0) + f ′(x0)(x1 − x0) ≥ 0, (x1)T (f(x0) + f ′(x0)(x1 − x0)) = 0,

x2 ≥ 0, f(x1) + f ′(x1)(x2 − x1) ≥ 0, (x2)T (f(x1) + f ′(x1)(x2 − x1)) = 0.

(1) Consider the index for which (x1)i = (x2)i. We obtain

(f ′(x1)|x2 − x1|)i = −
∑

j 6=i |f ′(x1)|ij|x2 − x1|j

≤ |f(x1)− f(x0)− f ′(x0)(x1 − x0)|i.

(2) Consider the index for which (x2)i > (x1)i. We have (x2)i > 0, and so
[f(x1) + f ′(x1)(x2 − x1)]i = 0, and

[f(x0) + f ′(x0)(x1 − x0)− f(x1)− f ′(x1)(x2 − x1)]i ≥ 0.

Since [f ′(x1)]ii = [f ′(x1)]ii and |x2 − x1|i = (x2 − x1)i, we obtain

(f ′(x1)|x2 − x1|)i = (f ′(x1))ii(x
2 − x1)i −

∑
j 6=i |f ′(x1)|ij|x2 − x1|j

≤ (f ′(x1)(x2 − x1))i

≤ [f(x0) + f ′(x0)(x1 − x0)− f(x1)]i

= |f(x1)− f(x0)− f ′(x0)(x1 − x0)|i.
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(3) Consider the index for which (x1)i > (x2)i. We have (x1)i > 0, and so
[f(x0) + f ′(x0)(x1 − x0)]i = 0, and

[(f(x1) + f ′(x1)(x2 − x1)− f(x0)− f ′(x0)(x1 − x0)]i ≥ 0.

Since [f ′(x1)]ii = [f ′(x1)]ii and |x2 − x1|i = (x1 − x2)i, we obtain

(f ′(x1)|x2 − x1|)i = (f ′(x1))ii(x
1 − x2)i −

∑
j 6=i |f ′(x1)|ij|x2 − x1|j

≤ (f ′(x1)(x1 − x2))i

≤ [f(x1)− f(x0)− f ′(x0)(x1 − x0)]i

= |f(x1)− f(x0)− f ′(x0)(x1 − x0)|i.

Hence we can deduce that

f ′(x1)|x2 − x1| ≤ |f(x1)− f(x0)− f ′(x0)(x1 − x0)|.

Since the inverse of f ′(x1) is nonnegative, we obtain

|x2 − x1| ≤ f ′(x1)
−1
|f(x1)− f(x0)− f ′(x0)(x1 − x0)|.

Since the norm ‖ · ‖∞ is monotonic, it follows that

‖x2 − x1‖∞ ≤ ‖f ′(x1)
−1
‖∞‖f(x1)− f(x0)− f ′(x0)(x1 − x0)‖∞.

By the similar way as in the proof for theorem 2.6, we can complete the
proof.

We can verify that the following H-matrix, which has positive diagonal
elements, is not positive definite:

A =

(
1 2

0.1 1

)
.

Another example illustrates that a positive definite matrix could not be an
H-matrix:

A =

(
1 2

−1 1

)
.

Thus we can see that theorem 3.5 could be applied to certain nonlinear
complementarity problem, to which theorem 2.6 is not applicable, and vice
versa.

The following are the convergence properties of Newton’s method for
nonlinear complementarity problems, the proof for them are similar to those
for their counterparts in chapter 2.
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Theorem 3.6. If the conditions of theorem 3.5 hold, then

S̄(xk+1, r∗k+1) ⊆ S̄(xk, r∗k), ∀k = 0, 1, · · · ;

and
lim
k→∞

S̄(xk, r∗k) = {x∗},

where x∗ is the limit of the Newton sequence.

Theorem 3.7. Let the conditions of theorem 3.5 hold and S(x0, r∗∗) ⊆ D0,
where

r∗∗ =
1 +

√
1− 2h

βγ
.

Then the limit x∗ of the Newton sequence {xk} is the unique solution of
NCP (f) in the open ball S(x0, r∗∗).

Theorem 3.8. If the conditions of theorem 3.5 hold with h = 1
2
, then the

Newton sequence {xk} converges to the solution x∗ of NCP (f), which is
unique in the closed ball S̄(x0, r∗) = S̄(x0, r∗∗) = S̄(x0, 2η).

Theorem 3.9. If the conditions of theorem 3.5 hold, then we have the error
estimate

‖xk − x∗‖∞ ≤ 1

2k−1
(2h)2k−1η = (βγ2k)−1(2h)2k

.

Theorem 3.10. If the conditions of theorem 3.5 hold with h < 1
2
, then the

Newton sequence {xk} is quadratically convergent.

Theorem 3.11. If the conditions of theorem 3.5 hold with h = 1
2
, then the

Newton sequence is linearly convergent.

We know if f ′(x∗) is an H-matrix with positive diagonal elements, then
x∗ is isolated [14]. The following theorem shows that if a starting point x0

is close enough to such a solution, the conditions of theorem 3.5 hold. So
we can consider theorem 3.5 as a quantitative interpretation of corollary 1.9,
and to some extent it is also a quantitative interpretation of the local and
quadratic convergence of Newton’s method near an isolated solution to the
nonlinear complementarity problem.

Theorem 3.12. Let D ⊆ Rn be open and Rn
+ ⊂ D. Assume that f : D → Rn

is continuously differentiable, D0 ⊆ Rn
+ is convex, and that

‖f ′(x)− f ′(y)‖∞ ≤ γ‖x− y‖∞, ∀x, y ∈ D0.

Let x∗ ∈ D0 be a solution to NCP (f), where f ′(x∗) is an H-matrix with
positive diagonal elements, and

‖f ′(x∗)
−1
‖∞ ≤ β∗.
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If S̄(x∗, 1/(β∗γ)) ⊆ D0, then the conditions of theorem 3.5 hold for any

starting point x0 ∈ S̄(x∗, θ/(β∗γ)), 0 < θ ≤ 2−
√

2
2

.

By the next result we show that theorem 3.5 is more general than corollary
1.9 in the following sense.

Theorem 3.13. If the conditions of theorem 3.5 hold, then for any x ∈
S(x0, 1/(βγ)), f ′(x) is an H-matrix with positive diagonal elements.

Theorem 3.13 indicates that if h < 1
2
, f ′(x∗) is an H-matrix with positive

diagonal elements; if h = 1
2
, f ′(x∗) could not be such matrix. This means

that Newton’s method could be convergent if the starting point x0 is chosen
sufficiently close to a solution x∗, for which f ′(x∗) is not an H-matrix or has
nonpositive diagonal elements.

All the convergence results of this chapter hold also for the norm ‖ · ‖1.
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Chapter 4

Enclosing Solutions of Linear
Complementarity Problems

Theorem 2.6 and 3.5 provide the computational conditions to guarantee the
convergence of Newton’s method for complementarity problems. In order to
apply the theorems, one has to find the upper bound η of the distance between
the starting point x0 and the first Newton iterate x1. For this purpose an
apparent approach is to compute x1 by algorithms for solving linear comple-
mentarity problems, for example by the various principal pivoting methods
and iterative methods [9, 29]. However, this approach is not economic and
unnecessary in many cases. Instead of computing x1 exactly, if we can com-
pute an interval [x] such that x1 is guaranteed to be contained in it, then we
can estimate ‖x1 − x0‖ by

‖x1 − x0‖ ≤ sup
x∈[x]

{‖x− x0‖}. (4.1)

In the literature there are very few enclosing methods for the linear com-
plementarity problem LCP (q, M), except for [2, 3], in which the authors
develop the Moore test [28] and Miranda’s theorem [26] for the well known
Pang’s formula [32],

min{x, Mx + q} = 0, (4.2)

where min is taken componentwise. Both of the two papers provide sufficient
conditions for insuring the existence of the solution to the linear complemen-
tarity problem in a given interval. However, they do not point out how to
compute such an interval enclosing solutions. The present chapter establishes
an approach to construct an interval in which the unique solution to the linear
complementarity problem, associated with an H-matrix with positive diago-
nal elements, is contained. A variable dimension bounding procedure is also
given to compute the exact solution.
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We will use interval analysis in this chapter, see [1, 27] for an extensive
treatment. Here we just refer to some necessary notations. Denote the
one-dimensional real closed interval by [x] = [x, x], where x ≤ x are real
numbers. Denote the n-dimensional real closed interval by [x] = ([x])i, where
each component ([x])i is a one-dimensional interval. Also we can write an
n-dimensional interval as [x] = [x, x], where x, x ∈ Rn and x ≤ x holds
componentwise. Define the midpoint of an interval by m([x]) = (x + x)/2
and the width by w([x]) = (x− x)/2, and define |[x]| = max{|x|, |x|}, where
the max operator denotes the componentwise maximum of two vectors.

If an enclosure [x] = [x, x] of x1 has been obtained, apparently one can
componentwise estimate

|x1 − x0| ≤ |[x]− x0|,

which can be computed easily. Hence for a monotonic vector norm ‖ ·‖, (4.1)
can be expressed as

‖x1 − x0‖ ≤ sup{‖x− x0‖ : x ∈ [x]}

= ‖|[x]− x0|‖

= ‖max{|x− x0|, |x− x0|}‖.

(4.3)

4.1 Existence Test

We begin with giving an existence test for the solution to the nonlinear
complementarity problem NCP (f) by using a more general equivalent for-
mulation [9]. Let ∆ be a diagonal matrix with positive diagonal elements.
Also we call ∆ a positive diagonal matrix. Let

p(x) := max{0, x−∆f(x)}. (4.4)

It is known that x solves NCP (f) if and only if x is a fixed point of the
mapping p(x), i.e., if x = p(x), which can also be written equivalently

min{x, ∆f(x)} = 0.

(4.2) is a special case of this equation. See [9].
Introduce an interval operator

max{0, [x]} := [max{0, x}, max{0, x}],

where [x] is an n-dimensional interval. Notice that this interval operator is
inclusion monotonic, i.e., [x] ⊆ [y] implies max{0, [x]} ⊆ max{0, [y]}.

The following is an existence test for the solution to the nonlinear com-
plementarity problem NCP (f).
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Theorem 4.1. Let [x] be an n-dimensional interval, and let f ′([x]) be an
interval extension of f ′ over [x]. If for some fixed point x ∈ [x] and a positive
diagonal matrix ∆,

Γ(x, [x], ∆) := max{0, x−∆f(x) + (I −∆f ′([x]))([x]− x)} ⊆ [x], (4.5)

then there is a solution of NCP (f) in Γ(x, [x], ∆). If there is a solution x∗

of NCP (f) in [x], then x∗ ∈ Γ(x, [x], ∆) ∩ [x].

Proof. For any y ∈ [x] we have

y −∆f(y) ∈ x−∆f(x) + (I −∆f ′([x]))([x]− x),

see [28]. By the property of inclusion monotonicity of max{0, [x]}, we have

p(y) = max{0, y −∆f(y)}

∈ max{0, x−∆f(x) + (I −∆f ′([x]))([x]− x)},

i.e., Γ(x, [x], ∆) is an interval extension of the mapping p(·) over [x]. Thus the
condition (4.5) implies that p(·) maps [x] into itself, from which, combining
with the continuity of p(·), it follows that p(·) has a fixed point x∗ ∈ [x]. Let
x∗ ∈ [x] be a solution of NCP (f). Clearly

x∗ = p(x∗) ∈ max{0, x−∆f(x) + (I −∆f ′([x]))([x]− x)},

which indicates that x∗ ∈ Γ(x, [x], ∆) ∩ [x].

Theorem 4.1 indicates that if we can find an interval [x], for which the
condition (4.5) holds, then an inclusion monotonic sequence {[xk]} can be
computed, where

[xk+1] := Γ(xk, [xk], ∆k) ∩ [xk], k = 0, 1, · · · , (4.6)

[x]0 = [x], xk ∈ [xk], ∆k is a positive diagonal matrix. And we can guarantee
that a solution x∗ to NCP (f) is contained in each interval [xk]. An approx-
imation of x∗ can also be automatically given by some xk ∈ [xk] with the
componentwise error less than |[xk]−xk|, although the exact solution x∗ has
not been computed yet. A common choice of xk is xk = m([xk]), for which
the error is componentwise less than the width w([xk]).

The following corollary is a non-existence result.

Corollary 4.2. If
Γ(x, [x], ∆) ∩ [x] = ∅, (4.7)

then there is no solution to NCP (f) in [x].
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If neither the inclusion (4.5) nor the condition (4.7) holds for the interval
[x], then we can conclude nothing, but we can still compute the sequence
{[xk]} iteratively. If for some iterate [xk] the inclusion (4.5) holds, then
the existence of the solution to NCP (f) in [xk] can be guaranteed, and
we can improve the enclosure by continuing the iteration (4.6) since the
next enclosure [xk+1] is not wider than its predecessor [xk]. If [xk] = ∅, we
terminate the iteration and can conclude that there is no solution in the
interval [x0] = [x].

4.2 Enclosing Solutions

In the rest of this chapter we study the linear complementarity problem
LCP (q, M), where M is an H-matrix with positive diagonal elements. It
is known that the problem has a unique solution for any column vector q
[41]. In this section, we will construct an interval [x] for which the inclusion
(4.5) holds, and so the unique solution of LCP (q, M) can be enclosed by the
interval.

The interval operator defined in theorem 4.1 has the following simple form
for the general linear complementarity problem LCP (q, M):

Γ(x, [x], ∆) = max{0, x−∆(Mx + q) + (I −∆M)([x]− x)}. (4.8)

In order to find an interval [x] satisfying (4.5), one has to meticulously choose
the positive diagonal matrix ∆, the interval [x] and the point x. Because each
diagonal entry of M is assumed to be positive, we define ∆ = diag(m−1

ii ) in
the rest of this chapter.

We know an H-matrix with positive diagonal elements must be nonsingu-
lar [9], so Mx+q = 0 has a unique solution. We have the following enclosure
of the solution of LCP (q, M), where M is an H-matrix with positive diagonal
elements. In general, the enclosure method is not applicable to the problem
LCP (q, M) when M is positive definite.

Theorem 4.3. Assume that M is an H-matrix with positive diagonal ele-
ments, and ∆ = diag(m−1

ii ). Let x̄ satisfy Mx̄+ q = 0 and let d = (di) ∈ Rn,
di ≥ 0 such that M̄d ≥ 0 and di > 0 for any index i with x̄i < 0. Let

s :=

{
0, if x̄ ≥ 0,
max{−x̄i/di : x̄i < 0}, otherwise,

and [x] = [x̄−sd, x̄+sd]. Then the unique solution of LCP (q, M) is contained
in Γ(x̄, [x], ∆).
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Proof. It is clear that (I −∆M̄)d ≥ 0 and

(I −∆M)[−d, d] = [−(I −∆M̄)d, (I −∆M̄)d].

Therefore, for the interval [x] = [x̄− sd, x̄ + sd] we can write (4.8) as

Γ(x̄, [x], ∆) = max{0, [x̄− s(I −∆M̄)d, x̄ + s(I −∆M̄)d]}.

Notice (I −∆M̄)d ≤ d. For the case x̄i ≥ 0, we can see

(Γ(x̄, [x], ∆)i = max{0, x̄i− s((I−∆M̄)d)i} ≥ x̄i− s((I−∆M̄)d)i ≥ x̄i− sdi

and
(Γ(x̄, [x], ∆)i = x̄i + s((I −∆M̄)d)i ≤ x̄i + sdi,

so we have
(Γ(x̄, [x], ∆)i ⊆ [x̄i − sdi, x̄i + sdi].

For the case x̄i < 0, we can see

(Γ(x̄, [x], ∆)i = 0 ≥ x̄i − sdi,

and
(Γ(x̄, [x], ∆)i = max{0, x̄i + s((I −∆M̄)d)i} ≤ x̄i + sdi

since x̄i + sdi ≥ 0, so we have

(Γ(x̄, [x], ∆)i ⊆ [x̄i − sdi, x̄i + sdi],

which follows the conclusion.

4.3 Variable Dimension Iteration

Applying theorem 4.3 to the starting linearized problem NCP (f 0), we can
enclose x1 by the interval [x] constructed in the theorem, and can get an
estimate of ‖x1−x0‖ given in (4.3). Furthermore we can compute an inclusion
monotonic sequence of intervals by (4.6) to improve the estimate if necessary.
The following theorem indicates that it is enough to compute the next iterate
in (4.6) for a problem with smaller dimension, instead of the original problem.

Theorem 4.4. Suppose that the conditions of theorem 4.3 hold. Denote

s = max
x̄i<0

{− x̄i

di

} = − x̄k

dk

,

where x̄k < 0, and denote by x∗ the unique solution to LCP (q, M). Then
x∗k = 0.
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Proof. It is clear that x̄k + sdk = 0. Thus x∗k = 0 is concluded from the fact:
x∗k ∈ [x̄k − sdk, x̄k + sdk] ∩Rn

+ = [0, 0].

Let x̄ satisfy Mx̄ + q = 0. If x̄ ≥ 0, then x̄ is just the solution to
LCP (q, M); if it has negative components, from theorem 4.4 it follows that
at least one vanishing component of the exact solution x∗ can be determined.
Let [x] be given as in theorem 4.3. Denote

α = {i : (Γ(x̄, [x], ∆))i = [0, 0]},

and denote by ᾱ the complement set of α. As shown above, if x̄ � 0, then
α 6= ∅, so if α = ∅, we have got a solution x∗ = x̄ to LCP (q, M). If α 6= ∅,
we can guarantee the components of the solution x∗ of LCP (q, M) indexed
by α to be 0, although x∗ has not been computed yet. Block the vectors x∗,
q and the matrix M

x∗ =

(
x∗α
x∗ᾱ

)
, q =

(
qα

qᾱ

)
, M =

(
Mαα Mαᾱ

Mᾱα Mᾱᾱ

)
.

Since x∗α = 0, from the complementarity condition one can see that x∗ᾱ solves
LCP (qᾱ, Mᾱᾱ). Because any principal submatrix of an H-matrix is still an
H-matrix, theorem 4.3 is applicable to LCP (qᾱ, Mᾱᾱ), which has smaller
dimension.

The application of theorem 4.3 depends on the computation of the vector
d. Choosing u > 0, for example u = (1, 1, · · · , 1)T , we know M̄d = u has the
unique solution d = M̄−1u ≥ 0, and

miidi = ui +
∑
j 6=i

|mij|dj ≥ ui > 0,

i.e., di > 0. Block d and u as d = (dT
α , dT

ᾱ)T and u = (uT
α , uT

ᾱ)T , respectively.
Since M̄ᾱα ≤ 0 and dα > 0, we have

M̄ᾱᾱdᾱ = uᾱ − M̄ᾱαdα ≥ 0,

which indicates that we can use dα when applying 4.3 to LCP (qᾱ, Mᾱᾱ).
Since in application of theorem 4.3, we either get the exact solution x∗

or compute at least one vanishing component of it, it is enough to apply
theorem 4.3 to at most n reduced problems with the form LCP (qᾱ, Mᾱᾱ),
in order to obtain the exact solution x∗. We call such method a variable
dimension iteration, which is described as follows.

Algorithm 4.5. (Variable Dimension Iteration)
Input q ∈ Rn and M ∈ Rn×n which is an H-matrix and has positive diagonal
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elements. Denote by [x] the output enclosure.
Step 1(Initialization) Compute d > 0 such that M̄d = u = (1, 1, · · · , 1)T ,
set I := {1, 2, · · · , n}, α := I, β := ∅, and choose ε ≥ 0.
Step 2(Computing enclosure) Compute x̄ = (x̄i) such that Mx̄ + q = 0,
compute

s = max
xi<0,i∈α

{− x̄i

di

}

and
[x]i = [max{0, x̄i − sdi + s/mii}, max{0, x̄i + sdi − s/mii}],

where i ∈ α.
Step 3(Stopping criteria) Compute

p = max
i∈α

|xi − xi|.

If p ≤ ε, then output the enclosure [x] and terminate the algorithm; otherwise,
set

β := β ∪ {i ∈ α : [x]i = [0, 0]}

and α := I − β, go to step 2.

Algorithm 4.5 will compute an enclosure of the exact solution x∗ in at
most n loops, where a loop means the procedure from step 2 to step 3. The
width of the enclosure is componentwise less than ε/2. It is clear that the
exact solution will be obtained if choosing ε = 0.
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Chapter 5

Numerical Experiments

Theorem 2.6 and 3.5 provide the computational conditions to guarantee the
convergence of Newton’s method for variational inequalities and complemen-
tarity problems. The purpose of this chapter is to test the applicability of
the theorems. Since there are very few real variational inequalities in the lit-
erature, we restrict our experiments to nonlinear complementarity problems.

5.1 Implementation Details

In numerical experiments we apply the following variant of theorem 3.5, in
which we choose D0 = S̄(x0, 2η0). It is easy to see that S̄(x0, r∗) is contained
in D0 if h = βηγ ≤ 1

2
.

Theorem 5.1. Let D ⊆ Rn be open, Rn
+ ⊂ D, and let f : D → Rn be

continuously differentiable. Let x0 ∈ Rn
+, and let f ′(x0) be an H-matrix and

have positive diagonal elements with

‖f ′(x0)
−1
‖∞ ≤ β.

Let x1 denote the unique solution to NCP (f 0) and

‖x1 − x0‖∞ ≤ η.

Assume that S̄(x0, 2η) ⊂ D, and that

‖f ′(x)− f ′(y)‖∞ ≤ γ‖x− y‖∞, ∀x, y ∈ S̄(x0, 2η).

If

h = βγη ≤ 1

2
,

then the Newton sequence {xk} is well defined, remains in S̄(x0, 2η), and
converges to a solution x∗ of NCP (f), which is contained in S̄(x0, 2η).
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We test the applicability of theorem 5.1 for five examples via Matlab 6.5
on a PC. For each example we set

x0 := (1, · · · , 1)T ,

and apply theorem 5.1 in the following way.
Let xk be known. We have to invert the matrix f ′(xk) in order to verify

whether or not f ′(xk) is an H-matrix. If f ′(xk) is an H-matrix and has
positive diagonal elements, we compute

βk = ‖f ′(xk)
−1
‖∞.

When f ′(xk) is an H-matrix with positive diagonal elements, NCP (fk)
has a unique solution, where

fk(x) = f(xk) + f ′(xk)(x− xk).

NCP (fk) is in fact the linear complementarity problem

LCP (f(xk)− f ′(xk)xk, f ′(xk)). (5.1)

We apply algorithm 4.5 to (5.1) with the choice ε = 1e−15, so as to compute
the enclosure [xk+1] of the unique solution of it. By (4.3) we compute

ηk = ‖|[xk+1]− xk|‖∞,

and set
xk+1 := m([xk+1]).

Note that xk+1 is an approximation of the unique solution of (5.1) with the
error less than ε/2 componentwise.

In general, we could evaluate f ′ and estimate the Lipschitz constant γk of
f ′ over the closed ball S̄(xk, 2ηk) via the interval computation and automatic
differentiation techniques, see [35]. Because the numerical examples in this
chapter are not too complex, in coding we use manual computation to give
the formulae of evaluating f ′ and of estimating its Lipschitz constant.

We report
hk = βkηkγk, k = 0, 1, · · · , k∗,

for which hk∗ ≤ 1
2

and hk > 1
2

holds for 0 ≤ k ≤ k∗ − 1.
If ηk ≤ ε = 1e− 15, we terminate the computation, and report

x̃ := xk+1

as an approximation of the exact solution x∗. Considering that x is a solution
of NCP (f) if and only if min{x, f(x)} = 0, see [32], we report the value

‖min{x̃, f(x̃)}‖∞
as a measurement of the preciseness of the approximate solution x̃. The
inclusion x̃ ∈ S̄(xk∗ , 2ηk∗) is also verified.
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5.2 Numerical Results

Example 1. Let

f(x) =

(
3x2

1 + 2x1x2 + 2x2
2

2x2
1 + x1 + 5x2

2 − 5

)
.

We get

Table 1
k hk

0 4.480000000000000e+000
1 1.796666666666667e+000
2 1.983606557377060e-001

with k∗ = 2,

xk∗ =

(
0

1.016666666666667e + 000

)
,

ηk∗ = 1.653005464480883e− 002, and get

x̃ = x6 = (0, 1)T

with
‖min{x̃, f(x̃)}‖∞ = 0.

We have

‖x̃− xk∗‖∞ = 1.666666666666661e− 002
≤ 3.306010928961767e− 002 = 2ηk∗ ,

which indicates that x̃ ∈ S̄(xk∗ , 2ηk∗).

Example 2. Let

f(x) =


9x2

1 + 2x1x2 + 2x2
2 + x3 − 2x4 − 6

2x2
1 + 6x2

2 + 3x2 + 3x3 + 2x4 − 2
3x2

1 + x1x2 + 2x2
2 + 12x3 + 3x4 − 1

x2
1 + 2x2

2 + 2x3 + 2x2
4 + 12x4

 .

We get

Table 2
k hk

0 7.139453398738613e+000
1 1.864409122527345e+000
2 5.711166356596502e-001
3 3.241410280772485e-002

40



with k∗ = 3,

xk∗ =


7.918856434193208e− 001
1.844193264594170e− 001

0
0

 ,

ηk∗ = 2.261871037195052e− 003, and get

x̃ = x7 =


7.919820808120031e− 001
1.821513560751179e− 001

0
0


with

‖min{x̃, f(x̃)}‖∞ = 4.440892098500626e− 016.

We have

‖x̃− xk∗‖∞ = 2.267970384299101e− 003
≤ 4.523742074390103e− 003 = 2ηk∗ ,

which indicates that x̃ ∈ S̄(xk∗ , 2ηk∗).

Example 3. Consider NCP (f), where f(x) = ∇g(x),

g(x) =
5∑

j=1

ejxj +
5∑

i=1

5∑
j=1

cijxixj +
5∑

j=1

djx
3
j ,

the ej, cij and dj are given in table 3, see [16].

Table 3
j 1 2 3 4 5
ej -15 -27 -36 -18 -12
c1j 30 -20 -10 32 -10
c2j -20 39 -6 -31 32
c3j -10 -6 10 -6 -10
c4j 32 -31 -6 39 -20
c5j -10 32 -10 -20 30
dj 4 8 10 6 2

We get

Table 4
k hk

0 8.983718736411477e-001
1 1.268063520890801e-001
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with k∗ = 1,

xk∗ =


5.771443120443256e− 001
8.691545919474093e− 001
1.317488519671896e + 000
7.508180538040421e− 001
4.208261791923880e− 001

 ,

ηk∗ = 8.327449205204705e− 002, and get

x̃ = x6 =


5.242668812739169e− 001
8.826745559564113e− 001
1.258478528366829e + 000
7.411507267992281e− 001
3.355687869800365e− 001


with

‖min{x̃, f(x̃)}‖∞ = 6.994405055138486e− 015.

We have

‖x̃− xk∗‖∞ = 8.525739221235151e− 002
≤ 1.665489841040941e− 001 = 2ηk∗ ,

which indicates that x̃ ∈ S̄(xk∗ , 2ηk∗).

Example 4. Let φ(x) = (φi(xi)) with φi(xi) = exi , let

M =
1

h2


H −I

−I H
. . .

. . . . . . −I
−I H

 ∈ Rn×n,

where h = 1/(n + 1),

H =


4 −1

−1 4
. . .

. . . . . . −1
−1 4

 ∈ R
√

n×
√

n.

Set x∗ = (0, 1, 0, 1, · · · , 1)T ∈ Rn and let q = (qi)
T ∈ Rn as in [4]:

qi = −
{

(Mx∗)i + ex∗i , if x∗i > 0,
(Mx∗)i + ex∗i − ξi, otherwise,
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where ξi is a random nonnegative number. Let f(x) = φ(x) + Mx + q. The
problem NCP (f) has a unique solution x∗, and is the result of the application
of centered five points difference method to an equilibrium problem given in
[23]. The nonnegative random numbers are generated in [0, 1]. We perform
the numerical experiments for the case n = 9 and get

Table 5
k hk

0 2.199881344962741e-001

with k∗ = 0, ηk∗ = 9.994809069174520e− 001. We have

‖x∗ − x0‖∞ = 1 ≤ 1.998961813834904e + 000 = 2ηk∗ ,

which indicates that x̃ ∈ S̄(xk∗ , 2ηk∗).

Example 5. Let φ(x) = (φi(xi)) with φi(xi) = (xi + 1)3 − i, and let

M =


1 2 2 · · · 2
0 1 2 · · · 2

0 0 1
. . .

...
...

...
. . . . . . 2

0 0 · · · 0 1

 ∈ Rn×n.

Furthermore, let x∗ = (x∗i ) with

x∗i =

{
0, if imod7 = 0,
i, otherwise.

q = (qi) is chosen such that

qi =

{
i− (Mx∗)i − si(x

∗
i ), if imod7 = 0,

−(Mx∗)i − si(x
∗
i ), otherwise.

Let f(x) = φ(x) + Mx + q. The problem NCP (f) has a unique solution x∗

and can be found in [4]. We perform the numerical experiments for the case
n = 10, and get
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Table 6
k hk

0 4.978082710810089e+004
1 3.228462762280312e+005
2 8.098622412333274e+004
3 2.154793637151195e+004
4 5.699905960651396e+003
5 1.458547108142570e+003
6 3.257926206342722e+002
7 3.893138642914219e+001
8 3.588485395622169e+000
9 3.900827115527714e-002

with k∗ = 9, ηk∗ = 1.736591041838764e− 003. We have

‖x∗ − xk∗‖∞ = 1.732093619922992e− 003
≤ 3.473182083677529e− 003 = 2ηk∗ ,

which indicates that x̃ ∈ S̄(xk∗ , 2ηk∗).

Final Remark. Numerical results support the theoretical analysis given
before, and indicate that the conditions in theorem 5.1 can serve as a numer-
ical validation of both the convergence of Newton’s method and the existence
of solutions. Moreover, the computational enclosure S̄(xk∗ , 2ηk∗) of the exact
solution is also available as soon as the conditions of theorem 5.1 are fulfilled.
For numerical validation of solutions of nonlinear complementarity problems,
see [4].
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