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A model for the turbulent diffusion of turbulent kinetic energy in natural 

convection 

Abstract 

The widely used standard Reynolds Averaged Navier-Stokes models, e.g. 1-equation or 2-

equation models, use the transport equation for the turbulent kinetic energy. They are known 

to be problematic in describing thermally stratified flow. In the transport equation for the tur-

bulent kinetic energy the turbulent diffusion term is modeled with the gradient-diffusion ap-

proximation which is inadequate in internally heated fluid layers and Rayleigh-Bénard con-

vection.  These flow types are explained by means of direct numerical simulation (DNS) data. 

The data also include a new simulation of internally heated fluid layers with Rayleigh number 
910=Ra  and Prandtl number 07.Pr = . This simulation is performed using the TURBIT 

code.  

One of the possible deficiencies in the gradient-diffusion model for the turbulent diffusion of 

the turbulent kinetic energy is discussed using the direct numerical simulation data. Based on 

this study and the investigations in meteorology, extended forms of the gradient diffusion 

model for the turbulent diffusion are derived. For this deduction, the different closure terms in 

the turbulent diffusion, namely the velocity-fluctuation triple correlation and the velocity-

pressure fluctuation correlation, are modeled separately. Coupling of these models results in a 

Reynolds Averaged Navier Stokes model for the turbulent diffusion. In this model a variable 

Daly and Harlow model for the buoyancy contribution, i.e. the turbulent convection of the 

heat flux, is used to derive an extended Reynolds Averaged Navier Stokes model 1 for the 

turbulent diffusion. Based on an analysis of the transport equation for the buoyancy contribu-

tion a Daly and Harlow extended model for this term is obtained. Incorporating this extension 

in the model for the turbulent diffusion gives an extended Reynolds Averaged Navier Stokes 

model 2 for the turbulent diffusion. 

The modified or new models for the closure terms in the turbulent diffusion are validated us-

ing the direct numerical simulation data of internally heated fluid layers and Rayleigh-Bénard 
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convection. The Daly and Harlow extended model for the buoyancy contribution is also tested 

on both flow types.  

Also, the extended models 1 and 2 for the turbulent diffusion are analyzed and validated using 

the direct numerical simulation data of internally heated fluid layers. Their performance is 

also tested in Rayleigh-Bénard convection. The model 1 shows an acceptable improvement in 

comparison to the gradient-diffusion model for the turbulent diffusion in internally heated 

fluid layers. In Rayleigh-Bénard convection a small improvement is observed. The model 2 

gives a slight improvement over model 1 in certain height points in these flow types. The re-

sulting 3-equation model should lead to more accurate calculations for buoyant convection in 

fluid layers involving both stable and unstable stratification. 
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00ûρ̂  
 
temperature scale 
 
 
 
 
 
 
coefficient of the volume expansion. 
 
parameters 
 
Kronecker delta 
 
difference operator 
 
dissipation of E′  
 
dissipation of 2

3u′  
 
dissipation of 2T ′  
 
eddy conductivity 
 
thermal diffusivity 
 
thermal conductivity 
 
kinematic viscosity 
 
eddy viscosity 
 
pressure strain of 2

3u′  
 
density 
 
destruction of ε′  
 
 



 

  x

kσ        
      

εσ             
 
τ , newτ       
 

ijτ              
 
 
Superscripts 
 
( )

( )             

            
^  

 
( )
( )            

             
′  

 

( )v
             

( )j

            
 

    

( )″              
 
v  
 
Subscripts 
 
    
 i                    
 
 l 
 
max 
 
u 
 
[ ]   
 
 
Abbreviations 
 
ASM             
 
CBL 
 

turbulent Prandtl number of E′  
 
turbulent Prandtl number of  ε′  
 
 
time scale 
 
time averaged shear stresses 
 
 
 
 
non-dimensional quantities 
 
dimensional quantities 
 
time average 
 
fluctuating component with respect to ( ) 
 
volume average 
 
surface average 
 
mean over 21 xx − plane and time (t) 
fluctuation with respect to  
 
volume average over the complete channel 
 
 
 
 
 
node indices along the  direction ix  
 
lower 
 
maximum 
 
upper 
 
no Einstein-summation 
 
 
 
 
algebraic stress model 
 
Convective Boundary Layer 



 

 xi

CGHF 
 
DES 
 
DNS            
 
DH 
 
 
DHE 
 
EVM             
 
IHL               
 
LES             
 
LHS 
 
RANS          
 
RBC        
 
RHS     
 
RMS          
 
SGS 
 
TKE 
 
 
VDH 
 
VLES   

Counter Gradient Heat Flux 
 
detached eddy simulation 
 
direct numerical simulation 
 
Daly and Harlow model for Tu ′′ 2

3 , eqn (4.9a) 
 
Daly and Harlow Extended model for Tu ′′ 2

3 , eqn (4.11) 
 
eddy viscosity model 
 
internally heated fluid layers 
 
large eddy simulation 
 
Left Hand Side 
 
Reynolds Averaged Navier-Stokes 
 
Rayleigh-Bénard convection 
 
Right Hand Side 
 
root mean square 
 
sub-grid scale 
 
turbulent kinetic energy 
 
variable Daly and Harlow model for Tu ′′ 2

3 , eqn (4.9b) 
 
very large eddy simulation 
 
 

 





 

 1

1 Introduction 

Natural fluid flow and convective heat transfer are important in environmental, astro-

physical and industrial flow types. These flow types are generally turbulent in nature.  

 

Mostly the local and instantaneous detail of turbulence is not of practical importance. 

That is why methods of numerical investigation for turbulence are based on the so-

called Reynolds equations. It means averaging of conservation equations for mass, 

momentum and energy is performed over suitable time intervals to filter out the turbu-

lence effect. This approach is the RANS (Reynolds Averaged Navier-Stokes) 

method. In due course, the unknown Reynolds stresses and turbulent heat fluxes 

appear in the Reynolds equations. Mostly, the concept of eddy diffusivity and eddy 

conductivity has been employed to calculate these stresses and heat fluxes.  

 

Instead of above, solving the local and the instantaneous Navier-Stokes equations is 

known as the direct numerical simulation (DNS). The structures which appear in tur-

bulence are broadly classified into two categories, one is so-called the ‘Large eddies’ 

whose size is comparable with the width of the computational domain. Whereas, 

those eddies which are smaller than the Large eddies or the width of the computa-

tional cells are the ‘Small eddies’. The Ratio of the size of largest to the smallest eddy 

increases with the increasing Reynolds number ( Re ). In order to perform a DNS 

even the smallest scale needs to be resolved. Therefore, DNS is restricted only to 

low Re  even with the fastest computer available. In the high Re  flows it is only possi-

ble to resolve the large eddies and the small eddies are modeled by the sub-grid 

scale (SGS) models. This approach is known as the large eddy simulation (LES). 

LES is benefited with the facts that the large eddies which determine the characteris-

tics of turbulence are directly simulated. The small eddies that need to be modeled, 

found to obey widely universal laws. Therefore, LES can be regarded as fairly univer-

sal but not fully. As a result, it has been used for some industrial flow problems in-

stead of RANS. 
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1.1 Motivation and problem specification  

The present work deals with buoyant convection which requires special attention in 

many technical applications. Several efforts have been made to study the buoyant 

convection in meteorological and industrial flows which involve different types of fluid, 

e.g. air, water or liquid metal (e.g. Lumley et al. (1978), Moeng and Wyngaard (1989), 

and Canuto and Daalsgaard (1998)). Another crucial phenomenon which occurs in 

the natural or industrial flows is called the thermal stratification. It appears due to the 

temperature/density difference between the different layers of fluid. In fluid layers with 

the warmer (lighter) fluid over the colder (denser) fluid gives rise to stable thermal 

stratification whereas the colder (denser) fluid over the warmer (lighter) fluid results in 

an unstable thermal stratification. 

Buoyancy effect as a result of the thermal stratification plays an important role in the 

different types of fluid flow, e.g. Rayleigh-Bénard convection (RBC), internally heated 

fluid layers (IHL) and Convective Boundary Layer (CBL). The CBL in atmosphere 

arises if turbulence generated by buoyancy due to upward heat flux from the surface 

dominates relative to turbulence generated by mean shear due to horizontal wind. 

The sign of temperature gradient can be used to classify the thermal stratification as 

stable (positive temperature gradient), unstable (negative temperature gradient) and 

neutral (zero temperature gradient). The unstable stratification amplifies whereas the 

stable stratification attenuates the turbulence. This damping cannot be accounted by 

the isotropic assumption in the standard RANS model (e. g. ε ′−′E  model see e.g. 

Davidson (1990), here the notation for turbulent kinetic energy E ′  and its dissipation 

ε′  are used instead of k  and ε ). LES investigation of the unstably stratified fluid lay-

ers by Lee and Pletcher (2001) indicates that the sub-grid scale models are not per-

fect and that they need further improvement. Therefore, analytical, numerical (DNS) 

and experimental methods have been used to study the thermal stratification. How-

ever, the DNS is restricted to only low Re  flows depending on the available computa-

tional resources. This limitation of DNS makes the turbulence modeling approaches 

(RANS/LES) inevitable for numerically investigating the different flow types.  

 

Mostly the RANS method is applied for the numerical study of engineering flow prob-

lems. Some of these problems are also thermally stratified in which the Rayleigh 
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( Ra ) number, which is the ratio of buoyant force and the product of viscous drag and 

rate of heat diffusion, can attain very high values (e.g. Dinh and Nourgaliev (1997)). 

The experimental investigations in such cases are usually supported and their results 

are usually transferred to the actual technical parameters by numerical simulations in 

which engineering codes are employed. The quality of the numerical results strongly 

depends on the reliability of the turbulence models. Dinh and Nourgaliev (1997) had 

used a standard low Reynolds number tE Pr−ε′−′  model to recalculate an experi-

ment of natural convection in fluids with an internal heat source. According to the au-

thors, this model fails to describe the mean temperature or heat transfer in the regime 

of interest. They proposed several phenomenological corrections for this model. Fi-

nally, they concluded the need of further development to improve the predictive ca-

pability of this RANS model. 

 

The standard RANS models (e.g. ε′−′E  model) use the transport equation for the 

turbulent kinetic energy ( E ′ ). In this equation the turbulent diffusion appears as one 

of the closure terms. The turbulent diffusion consists of the turbulent-transport (veloc-

ity-fluctuation triple correlation Eu j ′′  term) and the pressure-transport (velocity-

pressure fluctuation correlation pu j ′′  term). They are modeled together in the gradi-

ent-diffusion model for the turbulent diffusion. Wörner et al. (1997) had shown that 

this gradient diffusion model for the turbulent diffusion of E ′  is not adequate in IHL. 

 

Such inadequacy of the gradient diffusion model for the turbulent diffusion was also 

observed in a LES study of CBL by Moeng and Wyngaard (1989). They observed 

that the gradient diffusion model for the turbulent transport can not explain the 

counter gradient transport of E ′ . The importance of the counter gradient transport of 

E ′  in the upper part of the atmospheric boundary layer was described by Lumley et 

al. (1978). According to the authors, the anisotropic effect of buoyancy (see e.g. 

Schemm and Lipps (1976)) could explain the counter gradient flux of E ′ . Therefore, 

Moeng and Wyngaard (1989) recommended the inclusion of the buoyancy effect in 

the modelling of turbulent transport of E ′ . This could also be one of the possible rea-

sons that the standard low Reynolds number tE Pr−ε′−′  model fails seriously to ex-
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plain such thermally stratified flow types as experienced by Dinh and Nourgaliev 

(1997).  

 

The above studies indicate that the effect of buoyancy needs to be included in the 

RANS as well as in the LES modeling approaches to improve their predictive capabil-

ity for investigating thermally stratified flow types. 

 

1.2 Literature status 

During the last few decades many scientists had provided a basic know-how about 

the effect of buoyancy /stratification in general. Monin and Yaglom (1971) and Ten-

nekes and Lumley (1972) are among some of the classical authors in the discipline of 

turbulence theory and RANS modelling approach. These authors had given a bird-

eye view of the effect of stratification/buoyancy and explained its influence on E ′ .  

 

The widely used RANS model for the velocity-fluctuation triple correlation term in the 

turbulent diffusion of E ′  was derived by Hanjalić and Launder (1972); it is a tensorial 

model. Afterwards, Deardorff (1974) had employed this model for a LES investigation 

of the mean structures of planetary boundary layer. A simplified form of this model is 

the gradient-diffusion model for the turbulent diffusion of E ′  (see e.g. Launder and 

Spalding (1972)). In this model the contribution of buoyancy was not considered. In 

order to include the effect of buoyancy, Lumley et al. (1978) had investigated the tur-

bulent transport term in the transport equations for turbulent kinetic energy, turbulent 

heat flux etc. In his model the presence of the buoyancy effect makes the different 

third order-moments in the different transport equations inter dependent.  

 

One way to include the influence of buoyancy in stable stratification is the introduc-

tion of additional near-wall damping functions in the eddy viscosity and eddy conduc-

tivity as explained by Murakami et al. (1996). These functions were introduced to de-

scribe the damping effect of buoyancy in the stable stratification.  

 

A better approach to deal with the effect of buoyancy is the algebraic stress modeling 

(ASM) or the algebraic turbulent heat flux modeling. Launder et al. (1975) had devel-

oped an ASM model for the Reynolds stresses. This model found to be suitable for 
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both the homogeneous and inhomogeneous shear flows. Later on, Davidson (1990) 

had developed a hybrid model for the Reynolds stresses. This model takes from an 

algebraic Reynolds stress model that part of the non-isotropic Reynolds stresses 

which is due to the buoyancy, and the remaining part from the standard ε′−′E  

model.  As an extension of this approach and based on Hanjalić et al. (1996), Liu and 

Wen (2002) had introduced additional wall-reflection functions in the model for Rey-

nolds stresses and turbulent heat fluxes. In absence of the vertical solid surface 

these functions reduce to zero. According to this study, these modifications have 

achieved quantitatively good agreement with the experimental data of velocity and 

temperature distributions in buoyant diffusion flames. Using the Davidson (1990) 

ASM model for the Reynolds stress, Yan and Holmstedt (1999) had proposed a 

modified form of the standard ε′−′E  model in which the turbulent heat flux is ap-

proximated in accordance with the Daly and Harlow (1970) model. A comparison be-

tween predicted and experimental values in case of a two-dimensional plane thermal 

plume shows a better agreement in comparison to the standard ε′−′E  model. How-

ever, the authors considered that further development in this direction will enhance 

the predictive capability of this modified ε′−′E  model. Considering the algebraic heat 

flux model by Launder (1988) and Nagano and Kim (1988), Otić et al. (2005) have 

proposed a modified 4-equation model which is based on the transport equation for 

E ′ , for the dissipation of E ′ ( )ε′ , for the temperature variance ( )2T ′  and for the dissi-

pation of 2T ′ ( )Tε′ . This model should be applicable for wide range of low Prandtl 

number ( Pr ) flows (see e.g. Grötzbach et al. (2004)). In these approaches the gradi-

ent-diffusion approximation for the turbulent diffusion of E ′  has been used. 

 

A more sophisticated method to study the buoyant flow types is the second-moment 

closure modeling. Hanjalić (1999) had discussed the improvements of the second-

order closure approach over the eddy-viscosity model for complex flow types. In an 

investigation of the turbulent natural convection, Dol et al. (1997) had made a com-

parative assessment of the statistical (RANS) models which are related to the trans-

port equations for turbulent heat fluxes and to the turbulent temperature variance. 

They observed that the coefficients which appear in the Daly and Harlow (1970) 

model for the turbulent diffusion terms in these transport equations are not constant. 

Afterwards, Dol et al. (1999) had modified the Daly and Harlow (1970) model for the 
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turbulent diffusion of temperature variance and used the statistical second moment-

closure approach to study the buoyant convection. Later on, Carteciano (1996) had 

successfully developed a 7-equation Turbulence Model for Buoyant Flows (TMBF). 

This is a combination of the standard ε′−′E  model for the turbulent Reynolds 

stresses and a full second-order model for the turbulent heat fluxes including the 

transport equations for 2T ′  and Tε′  for buoyancy influences. In recalculating a forced 

jet experiment with this model, it has been found that the mean temperature field is 

better predicted by the TMBF in comparison to the tE Pr−ε′−′  (see e.g. Carteciano 

and Grötzbach (2003)). These sophisticated approaches show remarkable improve-

ment over the standard RANS models for also investigating the turbulent natural con-

vection which involves different types of fluids. 

 

Usually LES and RANS are discussed in separate framework. However, the idea of 

blending LES and RANS was proposed by Spalart et al. (1997) which is known as 

the detached eddy simulation (DES). According to this concept, whole boundary layer 

which is populated with the ‘attached eddies’ is entrusted to a RANS model, and only 

in the separated region, the ‘detached eddies’ is entrusted to LES. In order to capture 

the coherent large-scale structures, while still remaining within the RANS framework 

a combination of LES and RANS strategies was analyzed by Hanjalić (2002)). He 

discussed the concept of very large eddy simulation (VLES) in which the large coher-

ent eddy structures are resolved. The remaining incoherent parts are modeled by a 

RANS-type closure, serving as a sub-scale model. Even these approaches use the 

transport equation for E ′ . Hanjalić (2002) emphasized on the inclusion of buoyancy 

effect in the RANS models for the turbulent diffusion of turbulent heat fluxes and 

temperature variance. He has not considered the effect of buoyancy in the turbulent 

diffusion of E ′  in order to obtain a simple model for this term. 

 

Most of the above approaches (RANS/LES/combination of LES and RANS) use the 

gradient-diffusion model for the turbulent diffusion of E ′ . Thus, any improvement in 

this model may further enhance the predictive capability of the standard or the ad-

vanced models for numerically investigating buoyant flow types. Based on experi-

ence, the gradient-diffusion model for the turbulent diffusion of E ′  assumes that the 
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velocity fluctuation triple correlation Eu j ′′  and velocity-pressure fluctuation correlation 

pu j ′′  can be modeled together. On the other hand, Wörner and Grötzbach (1998) 

had described the different behavior and importance of Eu j ′′  and pu j ′′  in IHL and 

RBC. At the same time, Dwyer et al. (1997) based on a LES of airflow above and 

within forest canopy had investigated the different terms in the transport equation for 

E ′ . They found that the pressure-transport in the turbulent diffusion of E ′  plays a 

significant role. These studies show that Eu j ′′  and pu j ′′  should not be modeled to-

gether in IHL and RBC. Moreover, pu j ′′  needs special attention in the model for the 

turbulent diffusion of E ′ . 

 

At the same time some authors (e.g. Zeman and Lumley (1976)) consider the contri-

bution of buoyancy in the turbulent diffusion of E ′  as a significant one. So far this 

effect has not been included along with the gradient-diffusion model for the turbulent 

diffusion of E ′ . 

 

Finally from the above studies, it can be concluded that: 

 

- The different closure terms Eu j ′′  and pu j ′′   in the turbulent diffusion 

of E ′  require separate modeling. 

 

- The buoyancy effect needs to be included in the model for the turbu-

lent diffusion of E ′ . 

 

1.3 Objectives 

The aim of this work is to improve the gradient-diffusion model for the turbulent diffu-

sion of E ′ . In order to extend the gradient-diffusion model for the turbulent diffusion, 

the conclusion of Moeng and Wyngaard (1989) and analysis of the DNS data of RBC 

and IHL will be used as a starting point. For the deduction of a model, the velocity-

fluctuation triple correlation Eu j ′′  and the velocity-pressure fluctuation correlation 

pu j ′′  will be modeled separately. The RANS models for Eu j ′′  and pu j ′′  will be cou-
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pled to derive the required extended RANS models for the turbulent diffusion. In this 

study, RBC and IHL are used as a model problem. 

 

In RBC, an infinite fluid layer between two horizontal isothermal walls which is heated 

uniformly from below and cooled from the top is considered. Whereas in IHL, the iso-

thermal walls are at a lower temperature than the fluid confined in-between which is 

having a uniform volumetric energy source. The fluid layers in RBC are unstably 

stratified over the complete height of the channel. On the other hand, in IHL most of 

the region over the height of the channel is stably stratified with an unstably stratified 

upper thermal boundary layer. This thin layer drives the vertical heat and momentum 

exchange. 

 

In IHL, presence of both the unstably and stably stratified fluid layers makes it prob-

lematic for modeling in comparison to RBC. At the same time, it is expected that the 

gradient-diffusion RANS model for the turbulent diffusion of E ′  may provide an ac-

ceptable result in the upper unstable region. This may not be acceptable near or in 

the stable region. Hence, in order to study the effect of buoyancy IHL is preferred 

which is also a prototype of the natural convection in astrophysics (see e.g. Canuto 

and Dalsgaard (1998)). Subsequently, the extended RANS model for the turbulent 

diffusion of E ′  will be tested in RBC. For this purpose the analyzing module of the 

TURBIT code (see e.g. Schumann (1973), Grötzbach (1977)) will be extended and 

employed to compare the existing and new models against DNS data. 

 

Considering the above in this Ph.D. work, the following aspects are included in this 

thesis: 

- Brief description of RANS modeling approach and some of the stan-

dard RANS models. 

 

- Description of DNS and analysis of the DNS results of IHL and RBC. 

This also includes a recently performed DNS of IHL with 910=Ra  

and Pr =7. 
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- Analysis of the terms in the transport equation for E ′  using the DNS 

data of IHL and RBC. 

 

- Derivation of a RANS model for the velocity-fluctuation triple correla-

tion Eu j ′′ . For this purpose the transport equation for Eu j ′′  will be 

used. In this model the effect of buoyancy will be introduced. 

 

- Short analysis of a modified RANS model for the velocity-pressure 

fluctuation correlation pu j ′′ . 

 

- The RANS models for Eu j ′′  and pu j ′′  will be joined to obtain an ex-

tended RANS model 1 for the turbulent diffusion of E ′ . This model 

includes both the effect of buoyancy and pu j ′′ . In this model the 

buoyancy term Tu ′′ 2
3  will be approximated with a variable Daly and 

Harlow (1970) model (VDH).  

 

- In another approach for modeling the turbulent diffusion of E ′ , the 

terms in the transport equation for Tu ′′ 2
3  will be analyzed using the 

DNS data of both flow types. Based on this analysis an extended 

form of the Daly and Harlow (DH) model for Tu ′′ 2
3  will be obtained. 

This will be referred to as Daly and Harlow Extended model for 

Tu ′′ 2
3  (DHE). 

 

- Derivation of the extended RANS model 2 for the turbulent diffusion 

of E ′  using the DHE model for Tu ′′ 2
3  and the modified RANS model 

for pu j ′′ . 

 

- Validation of the RANS models for Eu j ′′  and pu j ′′  using the DNS 

data of IHL and RBC.  
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- Validation of the DHE model for Tu ′′ 2
3  in both IHL and RBC. 

 

- Validation of the model 1 and 2 for the turbulent diffusion of E ′  in 

both flow types. 

 

- Additionally, a RANS model for the derivative of pu j ′′  will be derived 

and validated using the DNS data of both flow types. 
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2  Description of RANS 

This chapter deals with the basic RANS equations and some of the closure assump-

tions which are commonly used to solve the system of equations for thermally strati-

fied flow types. In the present study two buoyant flow types, namely, IHL and RBC 

are considered. 

2.1 Basic RANS equations 

The basic equations for laminar and turbulent convection are the equations for the 

conservation of mass, momentum and energy. In the present case, the linear de-

pendence of the stresses on the velocity deformation for the Newtonian fluid is con-

sidered. For simplicity, the Boussinesq approximation is adopted. This implies the 

assumption, that the physical properties in all terms of these equations are consid-

ered as constant except for the buoyancy. In this term a linear dependence of the 

density with temperature is assumed. Gray and Giorgini (1976) had shown that this 

approximation is valid in water and air up to a very high temperature difference. Sugi-

yama et al. (1991) had shown that this approximation is even applicable in liquid 

metals. Hence, without loss of generality, this approximation is employed in the pre-

sent investigation which involves different types of fluid with 070250 .Pr. ≤≤ . 

If the Cartesian co-ordinates are used with 1x  and 2x  as the horizontal and 3x  as the 

vertical direction, the conservation equations for mass, momentum and energy for the 

velocity component ),,( 321=iui , pressure p  and temperature T  in the non-

dimensional form are given by (see e.g. Oertel (2004)), 
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The Einstein summation rule is applied to all the terms bearing the same subscript 

twice. The eqn (2.1) is normalized with the plate spacing D̂ , the temperature differ-

ence 0T̂∆ , the time scale 00 û/D̂t̂ = , the pressure scale 2
00 ûˆp̂ ρ= , where ρ̂  is the 

density and the velocity scale 21
00

/)D̂T̂ˆĝ(û ∆γ= . Here Pr  and Gr  are the well known 

Prandtl and Grashof numbers, respectively. Another important dimensionless number 

is the Damköhler number ( )0
2 T̂ˆ/D̂q̂Da v ∆λ=  characterizing the volumetric or sink of 

heat in the fluid.  

In IHL 0T̂∆  is the maximum temperature difference across the height of the channel. 

This is not fixed but is a dependent variable; it is linked by means of Da  to vq̂ . In 

RBC uppperlower T̂T̂T̂ −=∆ 0  where lowerT̂  and upperT̂  indicate the temperature at the lower 

plate and upper plate, respectively, with the volumetric heat source 0=vq̂  and 

0=Da .  The velocity scale 0û  is chosen to normalize the buoyancy term to unity.  

Using suitable time intervals it is possible to capture slow as well as fast changes of 

the physical variables (e.g. ( )Tp,uy i  or = ). Application of the classical time average 

(Reynolds ansatz) decomposes these physical variables into their mean ( )y  and 

fluctuating parts ( )y′ , 

0 and        with =′=′+= yyy,yyy .   

 
Here, ( ) is the representation of the classical time average and ( )′ is the fluctuation 

with respect to ( ) . The time interval, over which the time mean value is taken, is 

chosen such that the lowest frequencies of the turbulent fluctuations are averaged 

out. So, the time mean values may still be dependent on larger time-scales which are 

associated with the change in the time mean field.  Let us consider y  and z  are any 

two variables. Application of the time averaging operator to their product results in 

(see e.g. Monin and Yaglom (1971)), 

( )( ) zyzyzyzyzzyyyz ′′+′+′+=′+′+=     .   
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Considering the property of the time averaging operator one obtains finally, 

zyzyyz ′′+=         . (2.2) 
 
The first term in the right hand side of this equation is the product of time averaged 

values and the last term is the time average of the product of fluctuations.  

The RANS equations are obtained by applying the time averaging operator to the 

system of equations as given in eqn (2.1) and using the property of this operator as in 

eqn (2.2), which are as follows, 
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 (2.3) 

 
In the TURBIT code a combined plane and time average operator  is employed in 

analyzing statistical data from the DNS or LES results. This linear operator is defined 

as mean over 1x - 2x  plane and time ( )t . The eqn (2.2) and (2.3) look formally identi-

cal with both ( ) and . The main difference is that  averaged quantities depend 

only on 3x  whereas ( ) averaged quantities depend on 321 ,,i,xi = . However, the 

present theoretical discussion continues further using the classical ( ) operator. 

2.2 Widely used closure assumptions 

In eqn (2.3) the unknown Reynolds stresses jiuu ′′  and turbulent heat fluxes Tui ′′  ap-

pear as a result of the Reynolds averaging. These are usually calculated using iso-

tropic eddy viscosity and eddy conductivity models.  Thus, in the first order models, 

the Reynolds stresses and heat fluxes are computed by assuming gradient diffusion: 
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Where, ( )t
Ht Pr

EcEc
ε′

′=ε
ε′

′=ν µµ

22
  and       are the isotropic eddy viscosity and 

isotropic eddy conductivity, respectively, and tPr  is called the turbulent Prandtl num-

ber for heat transport. This is one of the possibilities to calculate these unknowns. In 

the standard RANS models 090.=µc  and 90.Prt =  is used. Calculation of tν  and 

Hε  using the transport equations for E′  and ε′  is known as the ε′−′E  ( )ε−k  model 

(Launder and Spalding (1972)). In most codes basing on eqn (2.4) the new un-

knowns are calculated by means of the ε′−′E  ( )ε−k  model and by the Reynolds 

analogy. 

 

The linear isotropic eddy-viscosity models (EVM) have two major problems associ-

ated with them: (a) They cannot account for the anisotropy and (b) the assumption 

that the position of maximum mean velocity and change of sign of the turbulent 

stresses coincide which is seldom (see e.g. Speziale (1991)). Although these defi-

ciencies are known, the majority of turbulent flow calculations are carried out using 

the linear EVM. According to several authors, the full second-moment closures can 

overcome the limitations of the linear EVM (see e.g. Hanjalić (1999)). At the same 

time, this method requires six additional transport equations for the Reynolds 

stresses to be solved which cannot compete with the robustness and efficiency of the 

linear EVM. Therefore, the nonlinear EVM (see e.g. Lumley (1978), Shih et al. 

(1995)) and the algebraic stress models (ASM) (see e.g. Launder et al. (1975)) were 

developed to combine the computational robustness and efficiency of the linear EVM 

with the improved model accuracy of the second-moment closures. Nonlinear EVM 

also contains higher-order contributions from the strain and vorticity fields, e.g. prod-

uct of strain and strain, vorticity and strain, and vorticity and vorticity. 

 

Bauer et al. (2000) had applied nonlinear EVM to recalculate some of the complex 

flow types which include backward facing step, curved mixing layer and low-speed 
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internal flow in a strongly curved U-duct. They found that the nonlinear EVM are able 

to predict the presence of recirculation zones, flow separation etc. more precisely 

than the linear EVM. In this study moderate increase in the CPU-time had been ob-

served. The computational robustness was slightly decreased in comparison to the 

standard ε′−′E  model. 

 

In the above approaches the effect of buoyancy in the Reynolds stresses was not 

considered. Davidson (1990) had proposed a hybrid model for these Reynolds 

stresses which is as follows: 

 

( ) ( )
ASMjiEjiji uuuuuu ′′+′′=′′

ε′−′   

 
In this model, the ASM part contains the effect of buoyancy which is anisotropic. 

Thereafter, Durbin (1991) had introduced an anisotropic form of the eddy viscosity 

which has been applied to the channel flow and boundary layer. 

 

Grötzbach (1982a) had shown that the isotropic eddy conductivity model as in eqn 

(2.4) for the turbulent heat fluxes is not adequate in IHL. This is due to the presence 

of a wide range of the Counter Gradient Heat Flux (CGHF). Schumann (1987) had 

given a detailed account of the occurrence of CGHF in the stably stratified part of 

different flow types. In order to overcome such limitations, Launder (1988) had pro-

posed an algebraic model for the turbulent heat fluxes, which is as follows: 
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The above model in a non-dimensional form using the present length, velocity, time 

and temperature scales reduces to, 
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Here 
ε′
′

=τ
E  is a time scale and θc  is an empirical coefficient. This model requires for 

buoyant flow an additional transport equation for 2T ′  and for even better prediction at 

Pr  deviating from 1 the transport equation for Tε′  is necessary. This results in a 

TTE ε′−′−ε′−′ 2  model which is a 4-equation model (see e.g. Nagano and Kim 

(1988), Hanjalić et al. (1996)). Seki et al. (2003) have proposed a model which satis-

fies the linearity principle as in Lai and So (1990), and also the near-wall asymptotes 

for the turbulent heat transfer in the channel flow.  

 

So far some of the well known models have been presented. All use the transport 

equations for ε′′  and E .  Therefore, these equations will be considered as the next. 

The transport equation for E ′  (see e.g. Rotta (1951), Hossain and Rodi (1974) etc.) 

in the non-dimensional form is given by, 
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In eqn (2.6), EP  is the production of E ′  due to the mean shear and turbulent heat 

fluxes (buoyancy), ε′  is the dissipation of E′ , m,ED  is its molecular diffusion and t,ED  

is its turbulent diffusion.    

 

The flow types, IHL and RBC, are shear free, i.e. the production of E ′  is only due to 

the buoyancy along the vertical direction ( )3=j . This can be calculated using the 

approximations as explained above. Therefore, the closure terms that remain in the 

transport equation for E ′  are ε′  and t,ED . The eqn (2.6) shows that t,ED  consists of 

Eu j ′′  and pu j ′′ . They are generally modeled together in the gradient diffusion model 

which is as follows (Launder and Spalding (1972)), 
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Here, kσ  is the turbulent Prandtl number of E ′ . The model as in eqn (2.7) has been 

used in the standard RANS models which are available in different commercial 

codes. In these codes one uses 01.k =σ , in general. Some of the problems which 

are associated with the above model for t,ED  have been discussed in the introduc-

tion. One of the most important problems is that this model does not account for the 

counter gradient transport of E′  (see e.g. Lumley et al. (1978) and Moeng and Wyn-

gaard (1989)). 

 

As explained, ε′  is one of the closure terms in the transport equation for E ′  (see eqn 

(2.6)). In order to calculate ε′ , its transport equation is employed  within the ε′−′E  

framework. In the non-dimensional form it is as follows (see e.g. Daly and Harlow 

(1970)), 
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To obtain the non-dimensional form the scaling as already explained is used (see 

e.g. Hiltner (1993)). In eqn (2.8) 1,Pε  is the production of ε′  due to the mean shear, 

2,Pε  is the production of ε′  due to the velocity and temperature fluctuations, εχ  is the 

destruction of ε′ , m,Dε  is its molecular diffusion and t,Dε  is its turbulent diffusion. As 

the flow types are shear free, the production of ε′  is only due to 2,Pε . The closure 

terms in eqn (2.8) are modeled as follows (see e.g. Rodi (1972), Hossain and Rodi 

(1974)): 
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Here, εσ  is called the turbulent Prandtl number of ε′ . Using the above approximation 

it is possible to solve the eqn (2.4). Therefore, the system of equations (eqn (2.3)) is 

closed in the framework of the ε′−′E  model. 

In this chapter some of the standard RANS models have been explained. All these 

RANS models, whether it is the 1-equation Kolmogorov-Prandtl Energy-length model 

(Prandtl (1945)), 2-equation ε′−′E  model; all use the transport equation for E ′  (eqn 

(2.6)). So far the models as implemented in most of the commercial codes use the 

above framework. On the other hand, the investigations in meteorology and in astro-

physics recommend the use of eqn (2.5) for computing the turbulent heat fluxes. This 

model needs additional transport equations for the temperature variance 2T ′  and for 

even better prediction with Pr  deviating from 1 the transport equation for the dissipa-

tion of 2T ′  ( )Tε′ . This results in a 3-equation ( )2TE ′−ε′−′  or in a 4-equation 

( )TTE ε′−′−ε′−′ 2  model. The following is the transport equation for 2T ′  in dimen-

sional form (see e.g. Rodi (1972)), 
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In the above equation TP  is the production of 2T̂ ′ ,  Tε̂′  is its dissipation, t,mD  is its mo-

lecular diffusion and t,TD  is its turbulent diffusion. In this equation only TP  can be cal-

culated using eqn (2.5) as explained, whereas Tε′  can be calculated using the model 

form of the transport equation for Tε̂′  as explained by Hossain and Rodi (1974). A 

new model for the remaining closure term t,TD  is proposed by Otić et al. (2005) which 

is as follows: 
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(2.10) 

 
Here 2θC  is an empirical coefficient and x∆  is the Laplacian operator. In eqn (2.10) 

newτ  denotes a time-scale which is calculated as follows: 

T
new

TE
ε′
′

ε′
′

=τ
2

   

 

The time scale newτ  is the geometrical mean of the thermal time scale 
T

T
ε′
′2

 and me-

chanical time scale 
ε′
′E . The model for 2

3Tu ′′  as given in eqn (2.10) was successfully 

validated with RBC.  

Even the 3 or 4-equation models involve the transport equation for E ′ . Therefore, 

any model improvements in the E′ -equation will also improve all the other more 

complicated models. Thus, in the subsequent chapter the terms in this transport 

equation will be investigated using the DNS data of IHL and RBC.  
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3 DNS and analysis of a RANS model for t,ED  

This chapter deals with the DNS data of IHL and RBC, and the standard gradient-

diffusion RANS model for t,ED , and is arranged as follows: 

 

The first section defines the problem and introduces some of the important literature 

for such flow types. Subsequently, a short mathematical description of DNS, valida-

tion of a DNS of IHL, and some statistical features of IHL and RBC are analyzed from 

the DNS data and are presented. Finally, the terms in the transport equation for E ′  

and the gradient-diffusion model for tED ,  will be analyzed using the DNS data.  

 

3.1 The flow types   

3.1.1 Internally heated fluid layers (IHL) 

Natural convection and heat transfer in a fluid layer of height D̂  which is heated in-

ternally by a homogeneous volumetric energy source vq̂  are of interest in certain 

geophysical, astrophysical, and technological problems. For example, it is also impor-

tant in the safety analysis of nuclear reactors to explain the phenomena of cooling of 

a molten core. In this case the fluid is bounded between the two isothermal parallel 

plates (its own solid crust) at a temperature lower than the molten core (the freezing 

temperature), see figure 3-1. 

 

The important dimensionless numbers which characterize the physical problem are 

the internal Rayleigh number IRa  and the Prandtl number κν= /Pr . The critical 

internal Rayleigh number for the onset of convection is 410743 ×.  (see e.g. Kulacki 

and Richards (1985)). In practical applications IRa  can attain very high values and 

simulations of IHL get their importance in these cases only at high IRa .  
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Fig. 3-1   Geometry as in TURBIT to describe internally heated fluid layers (IHL).  

In IHL the maximum temperature difference across the height of the channel 0T̂∆  is 

not known a priori for a given vq̂ , and hence Da  is also not known (see section 2.1). 

For fully developed convection, where dVq̂
V

v∫  is completely removed at the top and 

bottom wall, it follows by an energy balance that Da  equals the sum of the Nusselt 

numbers ( Nu ), i.e. lowerupper NuNuDa += .  This is used as a measure for 0T̂∆ . An-

other dependent dimensionless number is the Grashof number ( )DaPr/RaGr I= .   

Kulacki and Goldstein (1972) had experimentally investigated this flow type. They 

obtained correlations between Nu  and IRa  at the upper and lower walls. These are 

as follows, 

⎪⎭

⎪
⎬
⎫

=

=

.Ra.Nu

,Ra.Nu
.

Iupper

.
Ilower

2360

0940

 3290

 4281
 (3.1) 

 

Regarding the measurement of turbulent quantities in IHL, no reliable information is 

available so far for the fluid layer with equal temperature at the lower and upper wall. 

Among the numerical studies of IHL, Grötzbach (1982a, 1987, 1989) and Schmidt et 

al. (1997) had performed several accurate DNS with water ( Pr  =7) up to 810=IRa  

    Heat Source ( )vq̂

↓ĝ  



 

  22

which is fully turbulent. Dinh and Nourgaliev (1997) had found that the standard Rey-

nolds model tE Pr−ε′−′  fails seriously in reproducing the corresponding mean tem-

perature or Nu . This is due to the presence of counter gradient heat flux and counter 

gradient E ′  flux. Thus, DNS and LES are regarded as the promising alternatives.  

Recently, Tasaka and Takeda (2005) have studied the effects of a non-uniform inter-

nal heat source distribution on the onset of convection. They have considered an iso-

thermal upper wall and an adiabatic lower wall. Based on the linear analysis, they 

have investigated the conditions for the onset of convection, namely, the critical 

Rayleigh number and the critical wave number.  

In the previous simulation of IHL it was already tried to reach 910=IRa  and Pr =7 

(see Schmidt et al. (1997)), but the periodic length ( 21,X ) was not enough to record all 

the large scale structures. Therefore, during the present work a new DNS of IHL with 
910=IRa  and Pr =7 has been performed. Here a larger domain size has been used 

and the resolution has been adapted. This will be presented in the subsequent sec-

tion. 

3.1.2 Rayleigh-Bénard convection (RBC) 

Turbulent RBC occurs in a horizontal layer of fluid submitted to a gravity field, heated 

from the bottom and cooled from the top (see figure 3-2). In this case the fluid layer is 

unstably stratified throughout the height of the channel.   

 

Fig. 3-2   Geometry as in TURBIT to describe Rayleigh-Bénard convection (RBC). 

↓ĝ  
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The independent dimensionless numbers which characterize this physical problem 

are the external Rayleigh number ( )ERa  and the Prandtl number ( Pr ). Another 

dependent dimensionless number is the Grashof number 
Pr

Ra
Gr E= . For ERa  less 

than a critical value of about 1700 the fluid layers is at rest. At a higher ERa  slightly 

greater than the critical value, steady laminar convection in the form of cells and rolls 

occurs. Increase in ERa  causes the flow to become unsteady and complex (see e.g. 

Clever and Busse (1974)). It is generally accepted that the flow is fully turbulent for 
510≥ERa  at moderate Pr .       

 

Krishnamurti (1970a, 1970b) had experimentally investigated this flow type for a wide 

range of Pr  and ERa . She reported the occurrence of distinct transitions before the 

flow becomes turbulent. Later on, Clever and Busse (1974, 1981) had carried out a 

detailed theoretical study of this flow type even at low Pr . According to the authors, 

transition from the steady convection to time-dependent convection depends strongly 

on the wave-number of the structures. 

 

Among the numerical studies, Grötzbach (1982b) had reported the first DNS of turbu-

lent RBC with air ( Pr =0.71). He achieved 51083 ×= .ERa  and presented a detailed 

account of the structures which appear in this flow type. He compared the DNS data 

with the experimental data of Deardorff and Willis (1967). He had also reported the 

reversal in the mean temperature profile in the central region at low ERa . This was 

attributed to the coalescence of larger number of warm ‘blobs’ near the cold wall and 

of cold ‘blobs’ near the warm wall. It was not observed at higher 51083 ×= .ERa . Af-

terwards, Eidson (1985) had performed a LES study of RBC up to 61052 ×= .RaE . In 

this study, he used a modified version of the Smagorinsky model.  He compared the 

simulation results also with the experimental measurements of Deardorff and Willis 

(1967). 

 

At a later stage Domaradzki and Metcalfe (1988) had investigated the effect of shear 

on turbulent RBC in a plane Couette flow with DNS. They found that at moderate 

( )0005000010 ,,RaE −≈  shear tends to organize the flow into quasi-two dimensional 
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rolls parallel to the mean flow which enhances the heat transfer. While at a higher 

( )000150,RaE > , shear tends to disrupt the formation of convective plumes which re-

duces the heat transfer. Nieuwstadt (1990) in a review paper had discussed some of 

the performed DNS and LES of free convection which also includes RBC. He con-

cluded that the modeling studies are quite successful in simulating the characteristic 

features of these buoyant flow types. This is because of the fact that the large-scale 

flow structures like rolls, cells or thermals can be accurately resolved. Later on, 

Wörner (1994) had carried out DNS of RBC with Pr =0.006 at =ERa 3,000, 6,000, 

12,000 and 24,000.   

 

Based on a DNS study of RBC with an aspect ratio (length/height) of 6:6:1, Kerr 

(1996) had explained the transition from the soft to hard turbulence regime. He found 

that in the hard turbulence regime 72 /
ERa~Nu . Kimmel and Domaradzki (2000) had 

presented LES of RBC up to 810=ERa  based on an estimation model. According to 

the authors, this approach is more accurate than the Smagorinsky model. Further, 

they showed that it did not require any wall function for correct near wall behavior of 

the flow. It has been observed that, at a lower ERa  the plumes are continuous. But 

with the increase of Ra  the plumes break up into smaller scales. Hartlep et al. (2003) 

had reported diverse DNS of RBC up to 710=ERa  with 70.Pr =  and 7. They found 

that the structures can be classified as large or small scale as a result of a gap in the 

spatial spectra of the heat flux. Moreover, they showed that, with the increase of ERa  

the spectral gap is more pronounced. Recently, Otić and Grötzbach (2004) have re-

ported a DNS of RBC with 510=ERa  and Pr =0.025. They found that the tempera-

ture field even at this ERa  and Pr  is considerably influenced by the conduction. They 

used their data for intensive statistical analysis of closure terms and model develop-

ment. 

 

In this section some of the important literature for IHL and RBC is discussed. The 

dimensionless numbers which characterize these flow types are also presented. 

Hereafter, instead of IRa  or ERa  they will be simply referred to as Ra .  
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3.2 Description of DNS  

3.2.1 Basic equations 

In order to perform a DNS of IHL with 910=Ra  and Pr  = 7 the TURBIT code is used 

(see e.g. Grötzbach (1987), Wörner (1994) and others.). This solves the time-

dependent, three-dimensional conservation equations of mass, momentum and en-

ergy. The Boussinesq approximation is adopted. The non-dimensional form of these 

equations are integrated over the mesh volume 321 xxxV ∆∆∆= , which results in the 

volumetric average for any variable y , 

 

.dxdxdx)xxx(y
xxx

y '''''

xxx

'
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=  (3.2) 

 

Using the Gaussian theorem, the volume average of the partial derivatives is trans-

formed into a finite-difference form of the surface averaged values y
i

, where i  de-

notes the index of the direction normal to the respective mesh cell surface 

i
i xVF ∆= /  (Schumann (1973, 1975)), 
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Application of the operators (3.2) and (3.3) to the well known conservation equations 

provides the following formulae, 
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In the above equation, 3iδ  is the Kronecker delta which gives 1 if  3 =i and 0 other-

wise. The averaged non-linear terms can be rewritten using the definitions implied by 

the volume-averaging procedure. The averaging operator as explained in eqn (3.2), 

splits the velocity and temperature into spatial averages directly resolved by the grid, 

j
j
u , T

v
, with typical wavelengths larger than ix∆  and into ‘sub-grid scale’ parts, not 

resolved by the grid which are denoted by j
j

jj uuu −='  and TTT
v

−=′ ,  respectively, 

with typical wavelengths smaller than ix∆ .  Thus, using this operator one obtains a 

formally identical expression as in eqn (2.2) i.e. 

.
TuTuTu

uuuuuu

j
jj

j
j

j
j

ji

j

j

j

i

j

ji

j
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⎪
⎬
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′′+=

′′+=

  

,   
  (3.5) 

 

The first term on the right hand side of eqn (3.5) represents the spatially resolvable 

part of the instantaneous turbulent stresses and heat fluxes, respectively. The sec-

ond term represents the sub-grid scale (SGS) parts to be modeled. An important 

point need to be noted that, unlike the common volume-averaging procedure without 

application of Gaussian theorem, in the Schumann approach the sub-grid scale 

fluxes are not averaged over the mesh cell volumes but over single surfaces of mesh 

cells. This has an important advantage, to deal with anisotropic grids (Grötzbach 

(1977)). The other advantage, in contrast to Leonard’s filtering procedure, no Leo-

nard terms, in other words, no cross correlations between sub-grid scale and re-

solved scale variables appear, because of the linear filter function; in addition it has 

the advantage of Galilean invariance property (Speziale (1985)). 

 

3.2.2 Turbulence assumptions for DNS 

The unknown SGS stresses ji
j

uu ′′  and heat fluxes Tu j

j
′′  in the eqn (3.5) are those, 

which are not resolved by the grids. Thus they tend to zero if the resolution is high 

enough or .0→∆ ix  This is true in particular for the flows with low Ra , where the size 

of smaller vortices are not much smaller than the channel width and hence can be 

resolved better than that of flows with high Ra , where the size of vortices varies from 

very large (comparable with the channel width) to a very small one. In DNS the SGS 
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terms are neglected which means ji
j

uu ′′ = Tu j
j

′′ =0. As a result, the entire system of 

eqn (3.4) does not contain a single adjustable parameter except for problem-

identifying parameters Gr  and Pr . Numerically, there exist open parameters that are 

the domain size and the mesh width. It must be ensured that the mesh-width resolves 

even the smallest relevant turbulence elements to justify neglecting the SGS-terms 

and that the domain size records the largest turbulent scales (Grötzbach (1981, 

1983)). 

 

3.2.3 Boundary and initial conditions 

Using the above assumptions in eqn (3.4) results in a closed system of the five cou-

pled partial differential equations. These equations need to be solved for 

p),u,u,u(u  321=  and T . The no-slip conditions for the velocity field at both imperme-

able horizontal walls are used, i.e. 

 
021 321321 ==== ),,,(),,,( txxxutxxxu .  

 
For the temperature field in IHL equal wall temperatures are used i.e. 

 
021 321321 ==== ),,,(),,,( txxxTtxxxT .   

 
In RBC, 

 
02  and  11 321321 ==== )t,x,x,x(T)t,x,x,x(T .   

 

In the above description 13 =x  indicates the lower wall and 23 =x  indicates the up-

per wall. 

 

The discretization of these boundary conditions in the convection term of the conser-

vation equations as given in eqn (3.4) creates no serious problem as they fulfill on a 

staggered grid these equations. On the other hand the viscous and thermal diffusion 

terms require special care. The boundary conditions for the gradient of velocities for 

the wall shear stresses, gradient of temperature for the wall heat fluxes are defined 

as follows (from eqn (3.4)), 
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In the above equations ‘l’ and ‘u’ stands for the lower and upper wall, respectively. As 

the fine grid resolves the viscous and thermal boundary layer, the above operator can 

be numerically calculated with first order finite difference approximations. 

 

To simulate the convection in a fluid layer with a large horizontal extension, periodic 

boundary conditions are used. Let us consider 1N  and 2N  are the number of mesh 

cells in 1x  and 2x  directions, respectively. Assuming ( )21X ,ii =  as the size of the 

computational domain along the horizontal directions ( )21x ,ii =  which are defined as, 

222

111

  X
    X

xN
xN ,

∆=

∆=
.   

 
Here 21,x∆  indicate the grid widths in the ( )21x ,ii =  direction. In the TURBIT code the 

periodic boundary conditions are used along the horizontal directions for any variable 

y : 

Ζ∈++= n,m)x,nx,mx(y)x,x,x(y     with  X    X   32211321  (3.6) 
 
Where Z  denotes the set of non-negative integer. 

 

In order to perform a DNS of IHL with 910=Ra  and Pr =7, the simulation results from 

a similar problem with 810=Ra  and Pr =7 at time 29264.ti =  from Schmidt et al. 

(1997) have been used as the initial condition. These results are interpolated to the 

new grid. Such initial values are very close to realistic fields and need short comput-

ing time for redistribution and redevelopment of an equilibrium state. Also the IHL 

with 810=Ra  and Pr =7 has been further simulated starting with the results for this 

case at time 29264.ti = .  
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3.3 Selection of grid widths for a DNS of IHL and case specifications  

The spatial discretization required for DNS is explained in Grötzbach (1981, 1983). In 

case of IHL with 07.Pr =  the thickness of thermal boundary layers are smaller than 

that of the viscous boundary layers. Hence, the vertical grid widths near the upper 

and lower walls perlower / upx  3,∆  should be adequate to resolve the thermal boundary 

layers. With increasing Ra  the thickness of upper and lower thermal boundary layers 

decreases (see figure 3-10). Therefore perlower / upx  3,∆  have to be accordingly reduced 

to resolve the steep temperature gradients near the walls. According to Grötzbach 

(1987) in order to record adequately the wall heat fluxes the allowable vertical grid 

widths near the lower wall lower,h3  and near the upper wall upper,h3  are given by, 

 

upper
upper,upper,

lower
lower,lower, Nu

D̂hx
Nu

D̂hx
3

    and   
3 3333 =≤∆=≤∆ . (3.7) 

 
The eqn (3.7) was deduced by discretizing the thermal boundary layers by three 

nodes. To analyze closure terms, much finer grids near the walls may be required. 

According to the same author the maximum allowable mean grid width 

( ) 31
321

/
max xxxh ∆∆∆=  for an isotropic grid in IHL is given by, 
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ε′
κ

= , with  ( )
DaPrRe

RaNuNu lumax 23−≈ε′ . (3.8) 

 
In eqn (3.8) maxε′  indicates the maximum value of dissipation which is calculated near 

the upper wall. 

 

The grid widths of the DNS of IHL with different Ra  and Pr =7 performed by Schmidt 

et al. (1997) and in this thesis are shown in the figure 3-3. The lines indicate the 

maximum allowable mean grid width maxh  as in eqn (3.8) and lower,h3  and upper,h3  as in 

eqn (3.7). 
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Fig. 3-3    Plot of the grid widths for DNS of IHL with different Ra  and Pr =7 ( idx is 

used instead of ix∆ ). 
 

The figure 3-3 also shows that all the selected grid widths are either smaller than or 

equal to the corresponding limiting values except the maximum value of the grid 

width max 3 ,x∆  in the vertical direction. In contrast, lower,lower, hx  3 3  <∆  and lower,lower, hx  3 3  <∆   

indicate that the presence of more than 3 nodes in the thermal boundary layers close 

to the lower and upper walls is achieved.  

 

Table 1 shows the different cases of IHL which are explained in sub-section (3.2.3). 

 

 IHL Ra  Pr  D̂1,2X  1,2∆x  perlower / upx  3,∆  21 NN =  3N  finalt  
IN1E8 810  7  

 
4 0.025 lower: 0.012 

upper: 0.0057 
160 55 450.714

IN1E9 910  7 
 

4 0.0125 lower: 0.008 
upper: 0.0035 

320 77 361.86 
 

 

Table 1: Case specification of IHL. 

 

Here, the node numbers 21,N  required at least in the 21x ,  directions are: 

 

max

,
, h

X
N 21

21 ≥ . 
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The node number 3N  required in the 3x  direction can be estimated for a non-

equidistant grid by starting with upper/lower,h3  from the walls and slowly increasing the 

grid width up to maxh . The last column in table 1 shows the final non-dimensional time 

up to which the simulations are performed starting from the corresponding initial data.  

The DNS of IHL with 810=Ra  and Pr =7 requires about 13 hours of computational 

time on the Fujitsu/Siemens VPP5000 to proceed from 29264.ti =  to finalt = 450.714. 

On the other hand, the DNS of IHL with 910=Ra and Pr =7 needs 37 hours of 

computational time on the VPP5000 to proceed from 29264.ti =  to finalt =361.86.   

 

Table 2 shows the DNS datasets of IHL and RBC which will be used in the subse-

quent sections and chapters. 

 

Flow Type Ra  Pr  Source of the DNS data 

RBC 510  0.025   
 

Otić, Grötzbach and 
Wörner (2005) 

RBC 51036 ×.   0.71  
 

Wörner (1994) 

IHL 876 10 10 105 ,,×  7  
 

Wörner, Schmidt and 
Grötzbach (1997) 

IHL 910  7 new simulation 

 

Table 2. DNS datasets used in the analysis. 

 

Some of the cases as mentioned in table 2 are discussed in the context of table 1. 

The sources of the DNS datasets of IHL and RBC are given in the last column of this 

table. These include the DNS data of RBC from Otić et al. (2005) with liquid metal 

Pr =0.025 and from Wörner (1994) with a standard fluid like air Pr =0.71. 

 

3.4 Statistical evaluation of DNS data 

In the statistical analysis modules of the TURBIT code  has been employed to 

average the variables over the homogeneous horizontal planes and over time and 
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( )″ indicates their fluctuating parts. From application of these operators to any vari-

able y  follows, 

yyy ′′+= . 

Due to horizontal averaging, y  and y ′′  depend only on 3x .   

 

Flow 
Type 

Ra  timeN  maxt  tavN  avt∆  

RBC 510  27,000 617.265 16 86.502 

RBC 51036 ×.  5,200 204.425 20 20.155 

IHL 6105×  16,560  
 

78.228 12 46.007 
 

IHL 710  8,800 111.258 36 17.594 

IHL 810  21,620 450.714 30 82.299 

IHL 910  21,560 360.01 11 40.903 

 

Table 3.  DNS Data used for the statistical evaluation 

 

In table 3, timeN  is the number of time steps of the performed DNS within the final 

time interval avt∆  up to the maximum time maxt . tavN  is the number of time steps dis-

tributed within the time interval avt∆  over which mean values have been taken. In the 

analysis, physical variables at every analyzed time points are averaged over the hori-

zontal plane. In the time averaging these surface averaged quantities are averaged 

over tavN . 

 
3.5 Validation of the new DNS of IHL 

This section deals with the validation of the DNS of IHL with 910=Ra  and Pr =7. 

Only Nu  is available from experiments for this set of parameters; there is no reliable 

information regarding the mean temperature or any other turbulent quantities. There-

fore, the validation is based on the previous experience of this flow type at lower Ra  

(Grötzbach (1982a) and (1987)). Considering these studies as the basis and the cri-

teria that are used, validation of the DNS of IHL has been carried out as follows. 
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3.5.1 Time development 

Starting with the initial data as explained, the time integration of IHL has been carried 

out. This generates a restart-file which is further integrated in time until the flow be-

comes steady. During this procedure the time dependent integral quantities e.g. the 

surface averaged heat fluxes close to the upper and lower walls lq
3

 and uq
3

, the 

volume averaged (over complete channel) kinetic energy and temperature , Ev  and 

Tv  are obtained. These can be used to characterize the steady state of the flow 

field. 
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Fig. 3-4  Time development of the surface averaged wall heat fluxes evaluated from 

the DNS data of IHL with 910=Ra . 

Figures 3-4, 3-5 and 3-6 show the time development of the surface averaged wall 

heat fluxes, the volume averaged total kinetic energy and temperature in IHL. In each 

of these curves 843 values are plotted beginning at the time 264.29 and ending at 

the time 361.86. Starting from the initial condition the development of the flow field is 

represented by the sharp rise in the heat flux at the upper wall, kinetic energy, and a 

small increase in temperature. After 270≈t  the flow field tends towards the steady 

state.  
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Fig. 3-5  Time development of the volume averaged total kinetic energy evaluated 

from the DNS data of IHL. 
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Fig. 3-6  Time development of the volume averaged temperature of IHL. 

In the figures 3-5 and 3-6, the slight increase in the volume averaged kinetic energy 

and temperature with time ( )t  indicates that for more accurate analyses the simula-

tion should be proceeded to achieve the accurate fully developed steady state.  

This DNS of IHL was performed to develop and analyze an extended model for the 

turbulent diffusion of E′  which will be discussed in the subsequent chapters. On the 

other hand, the time development of the different characteristic integral quantities 

shows that the flow field in this case has not yet fully reached the steady state. Fur-

ther simulation of this case was not possible during the course of the present work. 

As a result, the available DNS data of IHL with 910=Ra  and 07.Pr =  may not be 

accurate enough for the statistical evaluation of the RANS model for the turbulent 
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diffusion of E ′ . Hence, the existing DNS data of IHL at a lower ( )87 10 10 ,Ra  at same 

Pr  will be used for the deduction and evaluation of the model for the turbulent diffu-

sion of E ′ . 

 

3.5.2 Domain size for resolving the large scales  

In order to investigate the domain size which is required to resolve the large scale 

structures the two-point correlations of the velocity fluctuations are considered. These 

correlations in the 1x  direction are defined as follows: 
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Fig. 3-7 Two-point correlations iiR  of the velocity fluctuations in IHL at 5213 .x =  

( ∆ of instead used is  d'' here ). 

The figure 3-7 depicts that the two-point correlations near the mid-plane at 5213 .x =  

are very close to zero over a wide range in the 1x  direction up to half the periodic 

length 
2

1X . This implies that the assigned periodic length 41 =X (see Table 1) is 

large enough to reach statistical independence within the different zones of the re-

corded flow volume. Therefore, the selected domain size  1,2X  is considered as suffi-

cient. 
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3.5.3 Vertical grid width for resolving the thermal boundary layers 
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Fig. 3-8 Nusselt number over Rayleigh number in IHL. 

Figure 3-8 shows the comparison between the data analyzed from the DNS and the 

experimental value of Nu  represented by the correlations as in eqn (3.1) at the upper 

and lower walls. The Nu  analyzed from the DNS data of IHL with 910=Ra  and 

Pr =7 is in good agreement with the experimental value of Nu  at the upper wall. This 

indicates that the selected vertical grid resolution is sufficient for resolving the steep 

temperature gradient near the upper wall. The linear fit (dotted line) of Nu  at the 

lower wall indicates the slight difference between the slopes of the experimental and 

DNS analyzed values of Nu . The difference of about 8% between the DNS and the 

experimental value of Nu  at the lower wall may be attributed to the higher value of 

max 3 ,x∆  in comparison to maxh   or that the 21,x∆  should really be somewhat smaller 

than maxh  and not only equal to maxh  (see figure 3-3). A third reason could be due to 

the still not fully developed flow state.  

3.5.4 Grid width for resolving the smallest scales 

One of the important tools to analyze the adequacy of the grid resolution for the small 

scale turbulent fluctuations for a DNS is the one-dimensional energy spectrum of the 

turbulent fluctuations. The one-dimensional energy spectra of the different velocity 

fluctuation components at 2713 .x =  analyzed from the DNS data are shown in figure 

3-9. 
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Fig. 3-9     One-dimensional energy spectra of the different velocity fluctuations 
evaluated from the data of IHL with 910=Ra  at 2713 .x =  with 11 2k xπ= . 

Here, 1k  is the wave-number in the 1x  direction. The figure 3-9 shows that most of 

the energy of the different velocity fluctuations is associated with low wave numbers. 

The anisotropy between the different velocity fluctuations can be observed except the 

lowest wave number region close to the lower wall. This figure also reveals that at 

higher wave-numbers the energy spectra of the velocity fluctuations are having a 

slope ~ 7
1k − . In the highest wave-numbers the energy spectra of the velocity fluctua-

tions are even steeper. This indicates that the selected grid is fine enough to resolve 

the smallest scales in IHL, because ( ) kkk
0

2 dE∫
∞

 gives the maximum contribution to 

the dissipation at ( ) -3kk ~E ; this integral converges for a steeper spectrum, i.e. with a 

slope much steeper than 3
1k −  it is expected that the dissipation scales are sufficiently 

resolved. So far the experience shows that a slope ~ 7
1k −  means that the small 

scales are very well resolved (see e.g. Grötzbach (1987) for IHL with lower Ra ). 

Thus, it can be excluded that the problem with Nu  at the lower wall as in figure 3-8 

may be due to large 21,x∆  values.  

These investigations show that the present DNS is better than the previous DNS of 

IHL with 910=Ra . It is not perfect, but for basic analysis of the principle behavior of 

the different closure terms and of related turbulence models it should be applicable. 
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3.6 DNS results for IHL and RBC 
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Fig. 3-10     Vertical profiles of the time mean temperature <T> in IHL. 

The time mean temperature profiles in IHL with water ( Pr =7.0) and at different Ra  

indicate that the thickness of the upper and lower thermal boundary layers decrease 

with increasing Ra , see figure 3-10. Moreover, the thickness of the upper thermal 

boundary layer is smaller than that of the lower thermal boundary layer. The maxi-

mum value of the mean temperature occurs near the edge of the upper boundary 

layer. This thin upper boundary layer is unstably stratified and thus drives the turbu-

lent heat and momentum exchange. Whereas the rest of the region along the vertical 

direction (downward) is stably stratified that attenuates the turbulent exchange. 
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Fig. 3-11  Vertical profiles of the time mean temperature <T> in RBC.  
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The time mean temperature profiles in RBC at different Ra  and Pr  show that the 

fluid layer in RBC is unstably stratified as in figure 3-11. The thickness of thermal 

boundary layers in RBC with liquid metal ( Pr =0.025) are greater than that of RBC 

with air ( Pr =0.71). This indicates that the temperature field in RBC with liquid metal 

is considerably influenced by conduction even at this large Ra  . This can be attrib-

uted to the dominance of the large thermal conductivity in the thermal boundary layer 

and due to the strong damping of the temperature fluctuations in low Pr  flows. With 

further increase of Ra , the vertical profile of the mean temperature in RBC with liquid 

metal should move towards the profile in RBC with air.  

 

Moreover, Gr  in RBC with liquid metal is higher ( )6104×=Gr  than that of RBC with 

air ( )5109×=Gr . The statistical features of the velocities including the scales are 

comparable at about same value of Gr  as shown in Wörner (1994). He referred it as 

the Grashof analogy. Thus, the velocity scales in case of RBC with liquid metal are 

smaller in comparison to RBC with air. This implies that the dissipation of turbulent 

kinetic energy in the RBC with liquid metal will extend to higher wave-numbers in 

comparison to RBC with air and therefore, finer grids are required in the liquid metal 

case. 
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Fig. 3-12      Vertical cut through the calculated temperature field in IHL with 
910=Ra and Pr =7 at 343822 .x =  and t = 361.86. 

A snap-shot of the vertical cut of the calculated temperature field in IHL as in figure 3-

12 shows the cold fluid close to the upper and lower isothermal walls. The fluid which 

is confined in between these layers has higher temperature. Due to the Rayleigh-

Taylor instability plumes are generated close to the upper wall. These plumes plunge 

down from the unstable layer deeply into the stable layer. 
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Fig. 3-13      Horizontal cut through the calculated temperature field in IHL with 
910=Ra  and Pr =7 at 948313 .x =  and t = 361.86. 

In the horizontal cut through the temperature field within the upper thermal boundary 

layer at the same time in figure 3-13 it can be detected that the plumes form open 

and closed cells. As the time progresses, new cells or parts of them are formed. 

Smaller cells finally contract to knots. Some of the plumes have sufficient kinetic en-

ergy to reach even the lower stably stratified thermal boundary layer (see figure 3-

12). There they re-distribute along the horizontal direction close to the lower wall as a 

result of continuity, later called “wall damping”. 

The cell structures as shown in figure 3-13 can only be found in the upper third of the 

channel including the upper thermal boundary layer. The critical wavelength of these 

cell structures at cRa  is 2/π=λc , see Tveitereid (1978). The experiments by Ku-

lacki and Goldstein (1972) and Jahn (1975) reveal that the largest scale of this type 

of flow decrease with increasing Ra . Based on DNS investigation, Schimdt et al. 

(1997) had shown that the size of the cells decreases with increasing Ra  in IHL with 

07.Pr = . Therefore, this aspect can also be used as a qualitative validation of the 

DNS of IHL. 
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Fig. 3-14       Vertical cut of the calculated temperature field in RBC with 

51036 ×= .Ra  and Pr =0.71 at 504272 .x =  and t = 203.18. 
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Fig. 3-15        Horizontal cut of the calculated temperature field in RBC with       
51036 ×= .Ra   and Pr =0.71 at 0713 .x =  and t = 203.18. 

A snap-shot of the vertical cut of the calculated temperature field in RBC of air as in 

figure 3-14 shows the cold boundary layer near the upper wall and the hot boundary 

layer near the lower wall. Hot plumes rise from the lower wall and cold plumes fall 

from the upper wall. Both plunge into the opposite boundary layers. In this cut the 

spatial arrangement does not indicate any regular horizontal structures.  
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The horizontal cut of the instantaneous calculated temperature field which is close to 

the lower wall is shown in figure 3-15 for the same time. This reveals the presence of 

cellular structures. These are quite unlikely to be detectable at the mid-plane be-

cause of the interpenetration of the plumes coming from both boundary layers (see 

Grötzbach (1990)). The knots indicate the upward rise of warm fluid and the relatively 

calm region in between these knots indicates the downward fall of cold fluid which re-

distributes along the horizontal direction close to the lower wall. 

The anisotropy between the RMS velocity fluctuations ( ) 212212
//

rms uuuu −=′′=  

evaluated from the DNS data of IHL and RBC can be observed in figures 3-16 and 3-

17. The anisotropy between these RMS velocity fluctuations is attributed to both the 

effect of buoyancy and presence of wall in both flow types.  
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Fig. 3-16      Vertical profiles of the Root Mean Square (RMS) velocity fluctuations in 
IHL with 910=Ra . 
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Fig. 3-17    Vertical profiles of the Root Mean Square (RMS) velocity fluctuations in 
RBC of air. 

In IHL, most of the turbulent kinetic energy is produced in the vertical velocity com-

ponent away from the walls due to the effect of buoyancy (see figure 3-16). The 

maximum in each of the horizontal components of the RMS values can be observed 

close to the upper wall in this flow type. Further, there appear small extrusions in the 

horizontal components close to the lower wall. These extrusions were not prominent 

in the earlier studies of IHL with 07.Pr =  at lower Ra . With the increase of Ra  these 

extrusions may grow further in IHL. Both the presence of the maximum and the ex-

trusions indicate a considerable amount of energy transfer from the vertical velocity 

component to the horizontal components close to the walls in IHL. This can be attrib-

uted to the pressure strain term in the transport equation for the auto-correlation of 

the velocity fluctuations (see Grötzbach (1989)).  

 

Similarly, in RBC of air there appear maxima close to the walls in each of the horizon-

tal velocity components. These can also be attributed to the energy transfer from the 

vertical to the horizontal velocity components in this flow type. Perot and Moin (1995) 

had given an explanation of this inter-component energy transfer close to the walls 

based on a DNS investigation of the shear-free turbulent boundary layer. They con-

sider this event is due to the presence of a local region of stagnation that arises from 

the fluid impinging on the boundary. This region influences the pressure strain term in 
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the transport equation for auto-correlation which is responsible for the inter-

component energy transfer.  

 

The RMS velocity fluctuations of the two horizontal components are not equal in 

RBC, see figure 3-17. These differences are regarded as a result of the presence of 

large scale roll structures which could be interpreted from the band-like arrangement 

of the knots with rising warm fluid and of the more calm areas with down coming cold 

fluids in figure 3-15. Presence of such structures was observed in Grötzbach (1990) 

and more recently Hartlep et al. (2003) had described the classification of these 

structures based on a spectral analysis.  
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Fig. 3-18        Vertical profiles of E ′′  (TKE) evaluated from the DNS data of IHL. 
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Fig. 3-19     Vertical profiles of E ′′  (TKE) evaluated from the DNS data of RBC. 
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The vertical profiles of E ′′  evaluated from the DNS data of IHL as in figure 3-18 

show the increase of the maximum value of E ′′  with the increasing Ra . This in-

crease in the maximum value depicts a kind of transition regime. Whereas, after cer-

tain Ra  the maximum value of E ′′  is almost the same. However, presence of small 

extrusions in the horizontal components of the RMS velocity fluctuations as in figure 

3-16 indicates that the flow has not reached the fully turbulent regime in which the 

distribution of statistical turbulence data is qualitatively independent from Ra . It can 

be concluded from these observations that the flow is tending towards the fully turbu-

lent regime. On the contrary, in RBC with liquid metal higher values of E ′′  in com-

parison to RBC with air are observed. These reveal both the regime in which the flow 

is not fully turbulent and presence of the large scale structures in RBC with liquid 

metal. Therefore, with further increase of Ra  the values of E ′′  in RBC with liquid 

metal should move towards the values of E ′′  in RBC with air.  

 

Hereafter, for simplicity the standard notations for the mean ( ) and fluctuations 

components ( )'  of any variable are preserved in writing instead of  and ( )″ , re-

spectively. These are already used in several equations (see e.g. eqn (2.6)). 

 

3.7 Analysis of the E′   equation for IHL and RBC 

This section deals with the analysis of the terms in the transport equation for E′  (eqn 

(2.6)) in IHL and RBC based on the DNS data. Subsequently, the gradient-diffusion 

model results and the DNS data of the turbulent diffusion of E ′ ( )tED ,  will be com-

pared in both flow types.  
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Fig. 3-20      Vertical profiles of the terms in the transport equation for E′  (TKE) in 
IHL with 910=Ra . 
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Fig. 3-21     Vertical profiles of the terms in the transport equation for E′  (TKE) in 
RBC of air. 

The terms in the transport equation for E ′  (see eqn (2.6)) in IHL and RBC show their 

different behavior in these flow types, see figures 3-20 and 3-21. In the present case 

the flow types do not have any imposed mean flow, e.g. wind, as a result the mean 

values of the velocities averaged over horizontal plane vanish. Therefore the flow 

types are shear free. Thus, the production of E ′ ( )EP  is exclusively due to the buoy-

ancy along 3=j  which is represented by the turbulent heat flux. In RBC this is al-



 

 47

ways positive, whereas in IHL it has even negative values in the strongly stably strati-

fied lower thermal boundary layer. 

 

In RBC, dissipation ( )ε′  has the maxima close to the walls along 3=j , where the 

fluid layers are strongly unstably stratified. In IHL, this shows a monotonically in-

creasing tendency along 3=j . In this case the maximum value is close to the upper 

wall. The above figures depict that the criterion of local equilibrium between EP  and 

ε′  is fulfilled only at certain points in both flow types but not in most areas along 

3=j . In IHL the deviation from local equilibrium is strongly position dependent, 

whereas in RBC it is widely constant in the inner part of the channel. 

 

The molecular diffusion ( )mED ,  is not significant in the central region ( )8121 3 . x. ≤≤≈  

in both flow types. In IHL it has the maximum close to the upper wall and has a small 

contribution close to the lower wall. Whereas in RBC it has the maxima close to the 

upper and lower walls.  

 

The turbulent diffusion ( )t,ED  distributes E′  within different regions along 3=j . The 

negative values indicate the extraction and positive values indicate the supply of en-

ergy to the respective region. The above figures show that t,ED  is the balance be-

tween production and dissipation in the central region, not only that, it is quite signifi-

cant close to the upper and lower walls in both flow types.  Therefore, it is concluded 

that t,ED  is very important in both flow types, and that it requires special attention. 

Hereafter, t,ED  which consists of Eu ′′3  and pu ′′3  will be investigated. They are usu-

ally modeled together in the gradient-diffusion model as given in eqn (2.7) (see e.g. 

Launder and Spalding (1972)). 
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Fig. 3-22       Vertical profiles of tED ,  and its model analyzed from the DNS data of 
IHL, 710=Ra . 
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Fig. 3-23       Vertical profiles of tED ,  and its model analyzed from the DNS data of 
RBC of air. 

Figures 3-22 and 3-23 show the comparisons between tED ,  and its gradient-diffusion 

model according to Launder and Spalding (1972) as in eqn (2.7), along 3=j  in IHL 

and RBC. These depict that the gradient-diffusion model for tED ,  is not adequate in 

these flow types and its improvement is inevitable. This deficiency is considerable in 

RBC, but it is completely unacceptable in IHL. This can be regarded as one of the 

reasons that the standard ε′−′E  type RANS model fails completely as it was already 

experienced by Dinh and Nourgaliev (1997) to describe such thermally stratified flow 

types like IHL.  
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Fig. 3-24      Vertical profile of the closure terms of tED ,  analyzed from the DNS 

data of IHL, 710=Ra . 
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Fig. 3-25     Vertical profile of the closure terms of t,ED  analyzed from the DNS data 
of RBC of air. 

The gradient-diffusion model for tED ,  assumes that pu j ′′  and Eu j ′′  can be modeled 

together. On the contrary, figures 3-24 and 3-25 show their different behavior and 

importance in IHL and RBC along 3=j . These figures also reveal that pu ′′3  is sig-

nificant close to the upper and lower walls in both flow types.  This is due to decelera-

tion or acceleration of the upward and downward moving plumes in these flow types 

(see Grötzbach (1982a) and Wörner and Grötzbach (1998)). In IHL Eu ′′3  have larger 

values away from the walls, whereas in RBC the values are lower than that of pu ′′3 . 
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In tED ,  not the size of the terms as given in figures 3-24 and 3-25 is of interest but 

their vertical derivative; but this will behave similarly. This means, the contributions of 

both correlations in the flow types is even qualitatively quite different. Based on a 

DNS study of the effects of shear on turbulent RBC, Domaradzki and Metcalfe (1988) 

had also explained the importance of pu ′′3 . They indicated towards a need of careful 

modeling of this term. Considering these studies, in the next chapter an extended 

version of the gradient-diffusion model for tED ,  will be derived. 



 

 51

4 Mathematical modeling of t,ED  

In this chapter extended versions of the existing gradient diffusion model for the tur-

bulent diffusion of E′  ( t,ED ) will be deduced. The development will be based on the 

DNS data of IHL and RBC.  

4.1 Modeling approach  

One approximation for linking the two contributions to tED ,  was developed by Lumley 

(1978). He showed that Eupu jj ′′=′′−
5
1  holds in homogeneous turbulence. DNS ana-

lyzed values of tED ,  in RBC indicate that apart from the thermal boundary layers tED ,  

is roughly constant, which indicates towards homogeneous turbulent energy transfer, 

see figure 3-21. However, in the case of IHL the vertical distribution of tED ,  is 

strongly non-constant, so that the turbulent energy transfer is hardly locally homoge-

neous between the walls, see figure 3-20. This may explain why this Lumley (1978) 

approximation holds only at certain height points in this flow type. It has already been 

explained that the gradient-diffusion model for tED ,  as in eqn (2.7) assumes that 

pu j ′′  and Eu j ′′  can be modeled together. On the other hand, figures 3-24 and 3-25 

reveal that Eu j ′′  is having higher importance in comparison to pu j ′′  in most of the 

central region ( )81251 3 . x. ≤≤≈  in IHL. Whereas pu j ′′  is the dominant term in RBC, in 

contrast to the approximation by Lumley. Further, pu j ′′  is significant close to the 

walls in both flow types. This different behavior and importance of Eu j ′′  and pu j ′′  in 

IHL and RBC were already reported and explained by the differences in the driving 

mechanisms by e.g. Wörner and Grötzbach (1998). Therefore, in the present study 

Eu j ′′  and pu j ′′  are modeled separately. Afterwards these models will be joined. This 

results in an extended RANS model 1 for tED , . Using this strategy also an extended 

RANS model 2 for tED ,  will be obtained. These models for tED ,  include both effects 

of buoyancy and of pu j ′′ . 
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In order to obtain the separate RANS models for Eu j ′′  and pu j ′′  the following as-

sumptions are used: 

- The flow types are horizontally homogeneous and there is no mean 

flow so that the flows are shear free. In this study, 1,2x  indicates the 

horizontal and 3x  is the vertical direction. 

- The cross-correlations of the velocity fluctuations are smaller than 

their auto-correlations i.e. 2
jji uuu ′<<′′   ,  jifor ≠ 3 2 1 with ,,j,i = . 

4.2 Derivation of a RANS model for Eu j ′′   

Additionally, following strategy and assumptions are employed to derive the RANS 

model for Eu j ′′ : 

- Starting point for the model development is a non-dimensional form 

of the transport equation for Eu j ′′ . 

- In the transport equation for Eu j ′′  some of the closure terms are ap-

proximated according to the available literature. 

- Following Weinstock (1989) 
jj

j
j x

pE~
x

u
u

∂
′∂′

∂

′∂
′

2
2  is used with a coeffi-

cient of magnitude greater than or equal to 1. Following this author, 

this approximation is also applicable in case of horizontally homoge-

neous fluid layer. It has been used in the present work to obtain a 

simplified extension of the gradient-diffusion approximation. 

Considering 2

2
1

iuE ′=′ , the non-dimensional form of the transport equation for Eu j ′′  

(see Hanjalić and Launder (1972) and Moeng and Wyngaard (1989)) is as follows, 
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(4.1) 

 
In eqn (4.1) all terms except the convection and the production due to Reynolds 

stresses and its gradient are the closure terms. In the present case, both flow types 

are shear free. Therefore, the convection and production due to mean shear vanish, 

i.e. 
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The contribution of buoyancy ( ) 3
2

2   jj TuTE
PrRe

Ra
δ′′+′′  is non-zero only along 3=j .  

The turbulent diffusion of Eu j ′′   consists of the pressure and turbulent transport,  

( )jlljlj
l

j uupEuu
x

Eu δ′′′+′′′
∂
∂

−=′′ of diffusion Turbulent .   

 
jlδ  denotes the Kronecker delta. The fourth-order velocity fluctuation correlations in 

the turbulent transport are approximated according to Millionshtchikov (1941) i.e. that 

when the triple-correlations are small and their distribution do not differ substantially 
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from those of a Gaussian one, the fourth-order correlations may be approximated in 

terms of second-order correlations,  which is as follows, 

( )( ) ( )( ) ( )( )jkliljkilkjilkji uuuuuuuuuuuuuuuu ′′′′+′′′′+′′′′≈′′′′ . (4.2) 

 
The proof of this simplification of the fourth-order correlations in terms of the second-

order correlations is available in Monin and Yaglom (1971).  

Using the above relation gives, 

( )( ) ( )( )lijiijlilj uuuuuuuuuu ′′′′+′′′≈′′′ 222 .  

 

Considering   2
jji uuu ′<<′′ or  2

lli uuu ′<<′′  ,  jlifor ≠≠ with 3 2 1 ,,l,j,i =   results in, 
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Re
 can be neglected at high Re . Following the ap-

proach of Hanjalić and Launder (1972) and Weinstock (1989), the pressure contribu-

tion is modeled as in Rotta (1951); the dissipation term is approximated with Zeman 

and Lumley (1976) model. These results in, 
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(4.3) 

 

ε′
′

=ττ′ EC,    scale, time a is    and  tcoefficien a is   Here 1 , a coefficient c  is introduced to 

account for 
jjj

j
j x

pEc
x
pE

x
u

u
∂

′∂′≈
∂

′∂′+
∂

′∂
′

2
2  in accordance with the approximation as in 

Weinstock (1989). Following this author, this is also applicable in horizontal homoge-

neous fluid layer. This simplification may also satisfy a criterion of the above ap-

proximation, that the magnitude of the pressure contribution is greater than that of 
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the dissipation term as in eqn (4.3).  However, the proof of this is not available at pre-

sent. The right hand side of this equation is known as the relaxation term i.e. triple-

correlation divided by the time scale (see e.g. Lumley et al. (1978)).  

Buoyancy ( ) 3
2  jj TuTE δ′′+′′  acts along the vertical direction which results in strong 

anisotropy between the vertical and horizontal components of the velocity fluctua-

tions. The figures 3-16 and 3-18 indicate that most of the turbulent kinetic energy E′  

is produced in the vertical component of the velocity fluctuations. Thus, it can be con-

cluded that the buoyancy term may be simplified to, 

.TuTuTE jjjj 3
2

3
2 2 δ′′≈δ⎟

⎠
⎞⎜

⎝
⎛ ′′+′′  (4.4) 

 
Eqn (4.4) further reduces the number of unknowns that appear in the transport equa-

tion for Eu j ′′  as given in eqn (4.1). This assumption may not be sufficient in case of 

RBC. In the present case, the priority to achieve a better modeling for IHL is higher 

than RBC. 

Considering fully developed flow, that means the steady state i.e. 
t
Eu j

∂

′′∂
=0, using 

 2
jji uuu ′<<′′ or  2

lli uuu ′<<′′  ,  jlifor ≠≠ with 3 2 1 ,,l,j,i =  and introducing eqn (4.1a), 

(4.2a) and (4.4) in eqn (4.1) gives, 
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Introducing the sink term model from eqn (4.3) in the above equation one obtains, 
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Rearrangement of the above equation and 
ε′
′

=τ
E  (see e.g. Launder et al. (1975) re-

sults in results in the required model for the triple-correlation, 
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 Here 
1

1
1

C
C

′
≈  is a coefficient with 170040 1 .C. ≤≤  (see figures B-3 and B-4 in Ap-

pendix B). The range of this coefficient is expected to reduce in IHL with a very high 

Ra  as a result of homogeneity away from the walls as in RBC along the vertical di-

rection.  Eqn (4.5) is a new RANS model for Eu j ′′ . In this model, the first term can be 

regarded as an anisotropic form of the gradient-diffusion approximation for Eu j ′′  

which includes the velocity fluctuations. The second term is the buoyancy contribu-

tion which is non-zero along 3=j . The last term is the pressure-transport. All three 

still contain closure terms. These will be approximated or discussed in the sections 

4.4 and 4.5. Thus, this RANS model for Eu j ′′  as in eqn (4.5) compared to the stan-

dard model by Launder (1989) has two additional terms along with an anisotropic 

form of the gradient-diffusion approximation for Eu j ′′ . 

4.3 A modified RANS model for pu j ′′  

In order to obtain a modified RANS model for pu j ′′ ,  this correlation is represented as 

in Donaldson (1969), which is as follows, 
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2      (4.6) 

 
According to this author the RANS model as in eqn (4.6) is a redistribution term. 

Here, 2C ′  is a coefficient and l  is a length scale.  
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Using the Rotta (1951) dissipation model for high Reynolds number flows, l  is de-

fined as a function of E ′  and ε′  i.e. 
ε′
′

=
23 /

El . Daly and Harlow (1970) indicates that 

2C ′  is a function of the turbulent Reynolds number tRe  (see Appendix A for the verti-

cal profiles) which is usually employed in the near-wall damping functions. Wörner et 

al. (1997) had found that some of the model coefficients for the closure terms in the 

transport equations for E′  and turbulent heat fluxes have to be increased by a large 

factor in IHL. Based on these observations and figure B-1 in Appendix B, α=′
tRe

CC 2
2  

has been introduced here with 80.=α . In this approximation 2C  is a positive coeffi-

cient. Moreover, using 3 2 1   2 ,,jlforuuu jjl =≠′<<′′  in eqn (4.6) results in the re-

quired modified RANS model for pu j ′′  which is as follows, 
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It is possible to calculate the coefficients 1C  and 2C , which are involved in the above 

RANS models (see eqn (4.5) and (4.7)) using the DNS data. The vertical profiles of 

these coefficients in IHL and RBC are given in the Appendix B (see figures B-3 to B-

6). 751 2 ≤≤ C.  is used in the present work. 

 In flow types like RBC, where the contribution of Eu j ′′  to t,ED  is small, a better model 

for the derivative of pu j ′′  which appears in t,ED  may be needed. Therefore, another 

way to model the derivative of pu j ′′  is explained in the Appendix C. 

4.4 RANS model for tED ,  

In accordance with the sub-section 4.1, the separate RANS models for Eu j ′′  and 

pu j ′′  have been presented. The RANS model for the terms appearing in tED ,  is de-

rived by adding eqn (4.5) and (4.7), which is as follows, 
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(4.8a) 

 

In this RANS model for tED ,  using the present scaling results in 
PrRe

Ra
2 =1. This 

model for tED ,  includes the contribution of buoyancy and a higher-order pressure 

term. The first and last term in the RHS of eqn (4.8a) without their coefficients indi-

cates to follow the approximation as in eqn (4.2). The Einstein-summation is not ap-

plicable to the index j  which appears also in the LHS of eqn (4.8a). 

4.4.1 Analysis of buoyancy and higher-order pressure term 

In the RANS model for tED ,  as in eqn (4.8a) the buoyancy term and the pressure 

term need to be modeled. Among these terms, the pressure term is problematic. Its 

importance and behavior in IHL and RBC are supposed to be different due to the dif-

ferent mechanisms in IHL and RBC leading to pressure and velocity fluctuations (see 

e.g. Wörner and Grötzbach (1998)). Such higher order correlations between pressure 

and velocity fluctuations are not very well understood in both flow types.  
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Fig. 4-1    Vertical profiles of the terms in RANS model as in eqn (4.8a) evaluated 

from the DNS data of IHL with 710=Ra , 1701 .C = . 
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Fig. 4-2   Vertical profiles of the terms in RANS model as in eqn (4.8a) evaluated 

from the DNS data of RBC of air, 0801 .C = . 

In order to understand the importance of the buoyancy term and the pressure term in 

the modeling of tED , , their contributions to puEu jj ′′+′′  (terms appearing in tED , ) are 

analyzed from the DNS data of IHL and RBC along 3=j  as in figures 4-1 and 4-2. 

The results indicate that the buoyancy term and the pressure term have different na-

ture in IHL and RBC. These also reveal the small contribution of the pressure term to 

puEu j ′′+′′3  in IHL. On the other hand, the pressure-term is not negligible in RBC. In 

the present work the primary goal is to obtain a RANS model for tED ,  in IHL. Since 

there is no reliable model available at present for the pressure term, it will be ne-

glected in the final form of RANS model for tED ,  i.e. jl
l

j

x
upEC δ

∂

′′∂

ε′
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−
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1  will be set to 

zero in eqn (4.8a) which results in, 
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(4.8b) 

 

As a result of neglecting jl
l

j

x
upEC δ

∂

′′∂

ε′
′

−
2

1  some deviations between tED ,  and its 

modeled values may be expected in RBC. 
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4.4.2  Modeling of the buoyancy term 

The buoyancy term as in eqn (4.8b) contains the unknown Tu j ′′ 2  which can be mod-

eled as follows: 

4.4.2.1  Daly and Harlow approximation 

Using the Daly and Harlow (1970) approximation and introducing the assumption  

3 2 1   2 ,,jiforuuu jji =≠′<<′′  results in, 

.
x
u

Tu
x
Tu

uECTu
j

j
j

j

j
jj ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∂

′∂
′′+

∂

′′∂
′

ε′
′

−≈′′ θ

2
22 2    (4.9a) 

 
Here, θC  is a coefficient. In most of the literature the values of this coefficient are as-

sumed to be constant. On the contrary, Dol et al. (1997) had shown that this coeffi-

cient is not a constant in a buoyant flow type.  Whereas, Wörner et al. (1997) had 

found that some of the model coefficients have to be increased by about a factor of 

100 in IHL that means, the model needs improvement. There are indications in litera-

ture e.g. in Daly and Harlow (1970) that this coefficient may depend on the turbulent 

Reynolds number tRe . Thus, instead of using the above values it is assumed that 

also this coefficient depends on tRe  which results in, 
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Here ( )tReCθ′  represents a function of tRe . Based on the observation in eqn (4.7) 

which also satisfies the finding of Wörner et al. (1997), this coefficient will be treated 

in an analogous manner. This will be directly tested along with the complete RANS 

model for t,ED  (see e.g. eqn (4.14)). In order to differentiate between eqn (4.9a) and 

eqn (4.9b) in writing, they will be referred to as Daly and Harlow (DH) model for Tu j ′′ 2  

and variable Daly and Harlow (VDH) model for Tu j ′′ 2 , respectively.  
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4.4.2.2  Daly and Harlow Extended approximation 

According to an assessment by Dol et al. (1997), the DH model for Tu j ′′ 2  needs im-

provement. This section deals with an extended version of the DH model. It can be 

observed from eqn (4.8b) that the buoyancy term is non-zero only along 3=j , ac-

cordingly Tu ′′ 2
3  will be discussed. 

4.4.2.2.1   Analysis of the transport equation for Tu ′′ 2
3  

In order to investigate Tu ′′ 2
3  in more details, the terms in the transport equation for 

Tu ′′ 2
3  as given in Dol (1998) are analyzed using the DNS data of IHL and RBC.  

Based on this analysis an extended version of the DH model for Tu ′′ 2
3  is presented. 

This model is referred to as the Daly and Harlow Extended (DHE) model for Tu ′′ 2
3 . 

The non-dimensional form of the transport equation for Tu ′′ 2
3  is as follows, 
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Using the scaling as in section (2.1) results in GrRe =  and 
PrRe

Ra
2 =1. In this equa-

tion all the terms other than the convection and the production due to Reynolds 

stresses and turbulent heat fluxes are the closure terms. In the absence of mean 

shear the production is only due to the mean temperature gradient (ProT).  
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Fig. 4-3     Vertical profiles of the terms in the transport equation for Tu ′′ 2

3   in IHL with 
710=Ra . 
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Fig. 4-4 Vertical profiles of the terms in the transport equation for Tu ′′ 2

3   in RBC of 
air. 

The DH model for Tu ′′ 2
3  as in eqn (4.9a) can be derived by using the production by 

the Reynolds stresses and turbulent heat fluxes (ProS), the turbulent transport 
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(TurbT) and the dissipation terms (D). On the other hand, there are additional terms 

which can be important in the different flow types. Therefore, all the terms in eqn 

(4.10) which remain at the steady state will be analyzed.  
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Fig. 4-5     Vertical profiles of some of the terms in the transport equation for Tu ′′ 2

3   in 
IHL with 710=Ra . 
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Fig. 4-6     Vertical profiles of some of the terms in the transport equation for Tu ′′ 2

3   
in RBC of air. 

A software package has been developed and implemented in the analyzing program 

of the TURBIT code to analyze all terms in eqn (4.10). The vertical profiles of the 

terms in the transport equation for Tu ′′ 2
3  analyzed from the DNS data of IHL and 

RBC are shown in figures 4-3 and 4-4. These also include the budget or out of bal-
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ance of this equation which is calculated using all terms. This term is smaller in com-

parison to most of the terms. There is a second form of the transport equation Tu ′′ 2
3  

in literature which is deduced by Sander (1998). The values of the out of balance 

term calculated from his equation are found to be considerably larger than that of the 

out of balance term as calculated using the equation by Dol (1998). This could indi-

cate to a formal problem in the equation by Sander (1998) especially in the molecular 

and dissipative terms. 

Some of the terms in this transport equation which are having smaller values are 

shown in separate figures 4-5 and 4-6 for both flow types again. These show that 

none of the terms can simply be classified in both flow types e.g. the production due 

to the Reynolds stresses and heat fluxes has both positive as well as negative signs 

in RBC and the dissipation terms are not everywhere positive. The natures of these 

terms in the flow types depend on the gradients which are involved therein. The clas-

sification of these terms is only formal and not based on their real action. As the 

terms have different nature in these flow types, in the modeling of Tu ′′ 2
3  it is difficult 

to consider the aspect of local equilibrium. The only practical way to model Tu ′′ 2
3  is to 

identify the terms which may have higher importance. The production due to Rey-

nolds stresses and turbulent heat fluxes (ProS) and the turbulent transport (TurbT) 

have higher significance in RBC than in IHL. The production due to the temperature 

gradient (ProT) is important close to the walls due to the increase of the temperature 

gradient with increasing Ra  in both flow types (see figures 3-10 and 3-11). The con-

tribution of the buoyancy term (ProB) is comparable to the dissipative terms (D) in 

IHL. The higher values of the pressure-transport (Dput) and of the pressure-strain 

(Pdut) close to the walls in RBC can be accounted to the presence of a local region 

of high values of the pressure fluctuations as well as the turbulent heat flux close to 

the walls. The molecular terms (M) need attention close to the walls due to the pres-

ence of strong viscous effects. The appearance of Pr  in the denominator of the mo-

lecular terms of Tu ′′ 2
3  and dissipative terms shows that their contribution will be en-

hanced in the liquid metal case (see eqn (4.10)). Therefore, these observations indi-

cate that in addition to the production due to Reynolds stresses (ProS), turbulent 

transport (TurbT) and dissipative terms (D), the production due to the temperature 
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gradient (ProT), buoyancy contribution (ProB) and molecular terms (M) need to be 

included in a model for Tu ′′ 2
3  .  

4.4.2.2.2 Modeling of Tu ′′ 2
3  

In order to obtain the RANS model for Tu ′′ 2
3  the transport equation for Tu ′′ 2

3  as given 

in eqn (4.10) has been used in which the following assumptions are employed, 

- The fluid layers are horizontally homogeneous.  

- As the flow types are shear free, convection and production due to 

mean shear vanish in eqn (4.10). 

- The cross-correlations of the velocity fluctuations are smaller than 

their auto-correlations i.e. 2
jji uuu ′<<′′   ,  jifor ≠ 3 2 1  with ,,j,i = . 

- Following a similar approach as in Hanjalić and Launder (1972) the 

pressure term (P) is modeled as in Rotta (1951) and the Dissipative 

terms (D) in eqn (4.10) is modeled as in Zeman and Lumley (1976) 

as a relaxation term (see e.g. Lumley et al. (1978)) which is as fol-

lows, 

t.coefficein a as   with
2

3 C,
Tu

CDP
'

τ
′

−≈−  

          Here, 
ε′
′

=τ
E  is the typical turbulence time scale.  

- The higher-order correlation in the turbulent transport TurbT in eqn 

(4.10) is modeled with the Millionshtchikov (1941) approximation as 

in Hanjalić and Launder (1972); see e.g. eqn (4.2). 

- As a first extension, the contribution of buoyancy ProB and produc-

tion due to temperature gradient ProT as in eqn (4.10) will be intro-
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duced analogous to the turbulent diffusion of the temperature vari-

ance as in Dol et al. (1999)). 

- Considering high Re  and moderate Pr  the molecular terms (M) are 

not considered. 

Assuming fully developed convection in the steady state and introducing the above 

assumptions as explained in eqn (4.10) results in, 
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Here, 
C

~C 1
1θ′  is a coefficient. Analogous to the results of Dol et al. (1997) and 

Wörner et al. (1997) and considering figure B-2 in Appendix B it is concluded that 

β
θ

θ ≈′
tRe

C
C 1

1  with 520.≈β  and 2501 .C ≈θ  (see figures B-7 and B-8 in Appendix B) will 

be used in the present work. The DH model as in eqn (4.9a) contains only the first 

two terms on the rhs of eqn (4.11). The DHE model for Tu ′′ 2
3  as in eqn (4.11) also 

includes the production due to the mean temperature gradient and the contribution of 

buoyancy. In this model the last two terms involves higher-order correlations 3
3u′  and 

2
3Tu ′′ . These are the closure terms in this model for Tu ′′ 2

3 . One of the other closure 

terms namely 3
3u′  may be modeled according to Launder (1989) as in eqn (4.16).  An 

improved model for 2
3Tu ′′  has been derived by Otić et al. (2005) as given in eqn 

(2.10). Before application of the Otić model for 2
3Tu ′′  to the DHE model for Tu ′′ 2

3  its 

behavior should first be investigated and validated in IHL. 
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4.4.3 Extended RANS model 1 for tED ,  

Using the VDH model for Tu j ′′ 2  as in eqn (4.9b) in eqn (4.8b) and taking the partial 

derivative with respect to jx  gives, 

{ }

.

x
u

EEC

x
u

Tu
x
Tu

uE
PrRe

RaECC

x

x
EuEC

x
puEu

x

jl
l

j

j
j

j
j

j

j
j

j

jl
l

j
j

jj
j

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

δ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

′∂
′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

ε′
′

′+

δ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

′∂
′′+

∂

′′∂
′

ε′
′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ε′
′

′

∂
∂

−

⎭
⎬
⎫

⎩
⎨
⎧

δ
∂

′∂′
ε′
′

−
∂
∂

≈′′+′′
∂
∂

θ

2

2

3

2
2

21

2
1

22

   
 (4.12) 

 

Here the formulation as already introduced with eqn (4.7), α=′
tRe

CC 2
2  is used. In eqn 

(4.12) there appear several unknown coefficients. The number of these coefficients 

should be reduced for practical applications. Since, θ′C  is a function of tRe  it implies 

( )tRefCC =′θ12 . Therefore, let us consider that there exists a coefficient     pC ′ such 

that ≈′θCC12 ( )tp RefC  =′  2C ′≈ . This coupling between the VDH model for Tu j ′′ 2  as in 

eqn (4.9b) with the modified model pu j ′′  as in eqn (4.7) may also compensate some 

of the deficiencies in the VDH model for Tu j ′′ 2  due to the dominant nature of pu j ′′ ; 

see e.g. figures 3-24 and 3-25 in certain regions in both flow types. Using the coeffi-

cient     pC ′ in the RANS model as in eqn (4.12) results in, 
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The Einstein-summation is not applicable to the index j  which appears both in the 

lhs and rhs of eqn (4.13). Here, pC  is a coefficient. These simplifications can be re-
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garded as the constraints in the extended RANS model for tED ,  as given in eqn 

(4.13). In this RANS model, the effect of buoyancy and pu j ′′  have been introduced. 

For comparison, the simple gradient-diffusion model for tED ,  as explained in eqn 

(2.7) is as follows, 

.,,, 3 2 1  with =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
′∂

σ
ν

−≈′′+′′ j
x
EpuEu

jk

t
jj    

 
Considering the simple gradient-diffusion approximation for tED ,  and the extended 

RANS model for tED ,  as in eqn (4.13) reveals the additional contribution in the ex-

tended RANS model for tED ,  and how the anisotropy of the fluctuation field is intro-

duced here.  

A simplified version of the extended RANS model for tED ,  has been deduced and 

validated by Chandra and Grötzbach (2005). In this model the contribution of Tu j ′′ 2  

was not introduced. Therefore, the extended RANS model for tED ,  as given in eqn 

(4.13) is expected to be more accurate in thermally stratified flow types. 

Not only in RANS but also in LES the gradient-diffusion model for tED ,  requires im-

provement for investigating the buoyant flow types (e.g. Moeng and Wyngaard 

(1989)). The results of this work can also be used to deduce improved sub-grid scale 

(SGS) models in that case, that the variables in the LES are defined by linear filter 

variables. This holds for the common volume integration to deduce the equations for 

the resolved scales. These equations look formally identical to the RANS equations, 

and so are also the models very similar. The main difference between a RANS model 

and SGS model is typical the different length and time scales. So, to get a SGS ver-

sion of the deduced model, one has mainly to consider adapting these scales to their 

SGS character. 

The eqn (4.13) shows that the contribution of buoyancy is non-zero only along 3=j . 

Considering the horizontally homogeneous fluid layers like IHL and RBC one obtains, 
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The applications of the RANS model for tED ,  as given in eqn (4.14) require an addi-

tional transport equation for 2
3u′ . In other words, this model extends the ε′−′E  

model to a 2
3uE ′−ε′−′  model which is a 3-equation model.    

 

The transport equation for 2
3u′  (see e.g. Launder et al. (1975)) in a non-dimensional 

form is as follows,  
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In order to obtain the non-dimensional form of the transport equation for 2
3u′  the scal-

ing as explained in section (2.1) is used. In eqn (4.15) 3P  is the production of 2
3u′  

due to the mean shear and turbulent heat flux (buoyancy), t,D3  is its turbulent diffu-

sion, 3Π  is its pressure strain or a redistribution term, m,D3  is its molecular diffusion 

and 3ε′  is its dissipation. In this equation except the convection and m,D3  all are clo-

sure terms.  

The information on the closure assumptions should be well known because 2
3u′  is 

just one component of the shear stresses from a full-second order Reynolds stress 

model. In order to calculate 3P  the closure assumptions of the actually used turbu-

lence models have to be applied, in the ε′−′E  model e.g. as in eqn (2.4). The veloc-
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ity fluctuation triple-correlation term in t,D3  can be modeled with the anisotropic-

gradient diffusion approximation as in Launder (1989) which is as follows, 
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Considering 2
jji uuu ′<<′′   ,  jifor ≠ 3 2 1  with ,,j,i =  the above model can be further 

reduced to only one component. This is as follows, 
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The velocity-pressure fluctuation correlation term in t,D3  can be modeled either with 

the Durbin (1991) approach or by using 3=j  in eqn (4.7) which is recommended 

here for consistency.  

3Π  is generally approximated with the return to isotropy model by Rotta (1951) which 

is as follows, 
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Here, 3260.CR =  (as in Rotta (1951)) is a coefficient. An extended version of this 

Rotta model for 3Π  which also include e.g. the production term 3P , is explained in 

Launder (1989). 

At high Re  numbers 3ε′  as in eqn (4.15) can be calculated by considering the follow-

ing isotropic form, see e.g. Sander (1998), 

ε′≈ε′
3
2

3 . (4.18) 
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The above approximations close the transport equation for 2
3u′ . Consequently, the 

extended RANS model for tED ,  as given in eqn (4.14) can be computed in the 

framework of the 2
3uE ′−ε′−′  model.  

If the turbulent heat flux in 3P  is calculated using the ASM model from eqn (2.5), 

which is according to the current understanding in the turbulence modeling commu-

nity for buoyant flow a necessity, then the 2
3uE ′−ε′−′ model further extends to a 

22
3 TuE ′−′−ε′−′ model which is a 4-equation ASM model. 

4.4.4 Extended RANS model 2 for tED ,  

To derive the extended RANS model 1 for t,ED  the VDH model for Tu j ′′ 2  as in eqn 

(4.9b) was used in eqn (4.8b). In order to obtain the extended RANS model 2 for t,ED  

the DHE model for Tu ′′ 2
3  as given in eqn (4.11) is introduced in eqn (4.8b) for 3=j  

which results in, 
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(4.19) 

 
Taking the derivative of eqn (4.19) along 3=j  gives, 
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 (4.20) 

 
The eqn (4.20) is the extended RANS model 2 for t,ED . The coefficients which ap-

pear in this model have already been explained in section 4.2, 4.3 and in 4.4.2.2.2 

(see also Appendix B). It can be observed that also here the additional transport 

equation for 2
3u′  is required which is already given in sub-section 4.4.3. This model 

includes two additional closures 3
3u′  and 2

3Tu ′′ . The closure term 3
3u′  can be mod-

eled by an anisotropic gradient diffusion approximation as in eqn (4.16).The closure 

term 2
3Tu ′′ occurred already in eqn (4.11). Here it could also be modeled by the gra-

dient diffusion approximation as in e.g. Hossain and Rodi (1974) or by an improved 

model as in Otić et al. (2005). In order to validate this model (eqn (4.20)) the closure 

terms will be analyzed from the DNS data of IHL and RBC. In this model the same 

values of the coefficients and parameters as in eqn (4.5), (4.7) and (4.11) will be 

used.  

4.5 Model summary 

The turbulent diffusion of t,ED  as in eqn (2.6) is defined as, 

( )puEu
x

D jj
j

t,E ′′+′′
∂
∂

−=  .   

 

Table 4 shows the different RANS models for  Eu j ′′  and pu j ′′  and  Tu ′′ 2
3  which are 

involved in the present work for developing the extended RANS models for t,ED . 
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Different closure terms RANS Models for the closure terms 

Eu j ′′  RANS model as in eqn (4.5). 

pu j ′′  Modified RANS model as in eqn (4.7). 

RANS model for t,ED   Sum of eqn (4.5) and (4.7) and neglecting 

higher-order pressure term results in eqn 

(4.8b). 

Tu ′′ 2
3  (closure term in eqn (4.8b))                  (1)   VDH model as in eqn (4,9b)    

           (2)    DHE model as in eqn (4.11). 

 

Table 4. RANS models for the different closure terms. 

Table 5 shows the different extended RANS models for t,ED  which are based on the 

different models for Tu ′′ 2
3 . In these models Eu j ′′  and pu j ′′  are calculated according 

to eqn (4.5) and eqn (4.7), respectively (see table 4). In order to derive the model 1 

for t,ED  the VDH model as in eqn (4.9b) is used in eqn (4.8b). To obtain the model 2 

for t,ED  the DHE model as in eqn (4.11) is employed in (4.8b). 

Extended RANS models for 
t,ED  

RANS model for Tu ′′ 2
3  

Extended model 1, eqn (4.14) VDH model as in eqn (4.9b) is 

used in eqn (4.8b). 

Extended model 2, eqn (4.20) DHE model as in eqn (4.11) is 

used in eqn (4.8b). 

 

Table 5. Different Extended RANS models for t,ED .   
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5  Validation of proposed models  

This chapter deals with the validation of the RANS models for Eu j ′′  as in eqn (4.5), 

for pu j ′′  as in eqn (4.7), Daly and Harlow Extended (DHE) model for Tu j ′′ 2  as in eqn 

(4.11), extended RANS model 1 for t,ED  as in eqn (4.14),  and a extended RANS 

model 2 for t,ED  as in eqn (4.20). In the present case, the horizontal plane and time 

averaged variables depends only on 3x  . Therefore, in the validation the RANS mod-

els are considered only in this direction.  

The validation will be based on the DNS data of IHL and RBC. In addition to the 

DNS-data used in the development of the models, here additional DNS data of IHL at 
810=Ra and DNS data of RBC of liquid metal at 510=Ra  and 0250.Pr = , for the 

validation of the model 1 for t,ED  will be used. To validate the model 2 for t,ED  in ad-

dition to the DNS data that are used in the development of the different model terms 

DNS data of IHL at 810=Ra will be used. 

As explained, t,ED  is defined by eqn (2.6), 

( ) .,,j,puEu
x

D jj
j

t,E 3 2 1  with =′′+′′
∂
∂

−=
 

  

 

This implies that the derivatives (here it means partial derivatives) of Eu j ′′  and pu j ′′  

will be the deciding factors regarding their importance in different flow types. 

5.1 Validation of the RANS model for Eu ′′3   

In order to validate the RANS model for Eu ′′3  as given in eqn (4.5), the coefficient 1C  

is set to 0.17 for IHL and 0.08 for RBC. 
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Fig. 5-1   Vertical profiles of Eu ′′3  and its model analyzed from the DNS data of IHL 
with 710=Ra , 1701 .C = . 
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Fig. 5-2   Vertical profiles of Eu ′′3  and its model analyzed from the DNS data of RBC 
of air, 0801 .C = . 

The comparisons between the vertical profiles of Eu ′′3  and its model analyzed from 

the DNS data of IHL and RBC are shown in figures 5-1 and 5-2. In IHL the modeled 

values show an acceptable agreement with Eu ′′3 . In RBC the RANS model over-

predicts values of Eu ′′3 . However, the modeled values have roughly the required 

qualitative distribution. In IHL figure 3-24 indicates that the derivative of Eu ′′3  is 

greater than the derivative of pu ′′3  in most of the central region ( )81251 3 . x. ≤≤≈ . 
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Therefore, Eu ′′3  is more significant in this flow type.  Further, the derivative of Eu ′′3  is 

very small close to the walls in IHL. Consequently, in this flow type its contribution to 

tED ,  is not significant in this region. In RBC figure 3-25 indicates that the derivative of 

Eu ′′3  is smaller than the derivative of pu ′′3 . Therefore, Eu ′′3  is less significant in this 

case.   

5.2 Validation of the modified RANS model for pu ′′3   

In order to validate the modified RANS model for pu ′′3  as in eqn (4.7) the coefficient 

2C  is set to 1.5 for IHL and 3.0 for RBC and the parameter 80.=α . 

The comparisons between the vertical profiles of pu ′′3  and its model analyzed from 

the DNS data of IHL and RBC are shown in figures 5-3 and 5-4. 
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Fig. 5-3     Vertical profiles of pu ′′3  and its model analyzed from the DNS data of IHL 

with 710=Ra , 512 .C = , 80.=α . 
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Fig. 5-4      Vertical profiles of pu ′′3  and its model analyzed from the DNS data of 
RBC of air, 032 .C = , 80.=α . 

These results indicate an acceptable qualitative and quantitative agreement between 

pu ′′3  and its modeled values in both flow types. Moreover, pu ′′3  is very significant 

close to the walls in both flow types. In IHL, figure 3-24 indicates that the derivative of 

pu ′′3  is smaller than the derivative of Eu ′′3  in most of the central re-

gion ( )81251 3 . x. ≤≤≈ . It implies, pu ′′3  has a lower contribution to tED ,  in this region 

for this flow type. As a consequence, the model for pu ′′3  will not play a significant role 

in this region. In RBC, figure 3-25 indicates that the derivative of pu ′′3  is greater than 

the derivative of Eu ′′3 . It implies, pu ′′3  has a higher contribution to tED ,  in this flow 

type.  

So far, each of the RANS models for the closure terms in tED ,  was found to model 

roughly acceptable its contributions especially in those areas in which the corre-

sponding terms are relevant in both flow types.  
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5.3 Validation of the DHE model for Tu ′′ 2
3  

In order to validate the DHE model for Tu ′′ 2
3  as in eqn (4.11) the coefficients, 

1θC =0.25 and β =0.52 is used in IHL and RBC. For this study 3
3u′  and 2

3Tu ′′  are ana-

lyzed from DNS data of both flow types. 
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Fig. 5-5       Vertical profiles of Tu ′′ 2

3  and its models analyzed from the DNS data of 
IHL with 710=Ra .  
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Fig. 5-6       Vertical profiles of Tu ′′ 2

3  and its models analyzed from the DNS data of 
RBC of air. 

The comparisons between Tu ′′ 2
3  and its models in IHL and RBC are shown in figures 

5-5 and 5-6. These figures indicate that DH model as in eqn (4.9a) with 110.C ≈θ  
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and VDH model as in eqn (4.9b) with 80

350
.Re

.C ≈′θ  need improvement in both flow 

types. The Daly and Harlow Extended (DHE) model as given in eqn (4.11) shows a 

small improvement in the prediction of Tu ′′ 2
3  in IHL except close to the lower wall. In 

RBC the DHE model shows an acceptable agreement close to the walls. 

5.4 Validation of the RANS models for tED ,  

This section deals with the validation of the RANS models for tED , . For the extended 

RANS model 1 for tED ,  as in eqn (4.14), 1701 .C = , 70.=pC  (see figures B-9 and 

B10 in Appendix B) and 80.=α  is used. For the extended RANS model 2 for tED ,  as 

in eqn (4.20) the coefficients and parameters ,.C 1701 = ,.C 2501 =θ ,C 22 =  

 0.8 =α 520  and .=β  is used. 

5.4.1 Validation of the extended RANS model 1 for tED ,  
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Fig. 5-7     Vertical profiles of tED ,  and its models analyzed from the DNS data of IHL 

with 710=Ra . 
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Fig. 5-8     Vertical profiles of tED ,  and its models analyzed from the DNS data of IHL 
with 810=Ra . 

The comparisons between vertical profiles of tED ,  and its models analyzed from the 

DNS data of IHL with water and at different Ra  are shown in figures 5-7 and 5-8. 

These depict that the model 1 for tED ,  has significant improvement in the prediction 

of tED ,  in comparison to the standard gradient-diffusion model for tED , (see eqn (2.7)) 

in this flow type. The model gives acceptable results at both Ra . Therefore, the ap-

plication of this model in CFD codes may provide more accurate results for such flow 

types.  
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Fig. 5-9     Vertical profiles of tED ,  and its models analyzed from the DNS data of 

RBC with air. 
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Fig. 5-10     Vertical profiles of tED ,  and its models analyzed from the DNS data of 

RBC with liquid metal. 

The comparisons between the vertical profiles of tED ,  and its models analyzed from 

the DNS data of RBC at different Ra  and Pr  (air and liquid metal) are shown in fig-

ures 5-9 and 5-10. These reveal that the extended RANS model 1 for tED ,  has 

roughly the required distribution as tED , in RBC with liquid metal. The deviations be-

tween tED ,  and its modeled values are smaller in the model 1 in comparison to the 

gradient-diffusion model. These deviations can be attributed to both the use of VDH 

model for Tu ′′ 2
3  and the pressure term in eqn (4.8a) which is neglected in this ex-

tended RANS model for tED , . 

From these validations it can be concluded that the extended RANS model 1 for tED ,  

as given in eqn (4.14) gives a considerable improvement in comparison to the gradi-

ent-diffusion model for tED ,  as in eqn (2.7). In RBC this model shows small im-

provement in comparison to the standard gradient-diffusion model for tED , . 
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5.4.2 Validation of the extended RANS model 2 for tED ,  

To validate this model the closure terms 3
3u′  and 2

3Tu ′′  are analyzed from the DNS 

data of IHL and RBC. 
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Fig. 5-11      Vertical profiles of tED ,  and its models analyzed from the DNS data of 
IHL with 710=Ra . 
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Fig. 5-12  Vertical profiles of tED ,  and its models analyzed from the DNS data of 

IHL with 810=Ra . 
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Fig. 5-13  Vertical profiles of tED ,  and its models analyzed from the DNS data of 

RBC with air. 

Comparison between tED ,  and its models analyzed from the DNS data reveals that 

the model 2 as given in eqn (4.20) has even better predictive capability than the ex-

tended model 1 for tED ,  as in eqn (4.14) in IHL with 710=Ra  and 810  especially 

close to the upper wall, see figures 5-11 and 5-12. Thus, the application of the model 

2 for tED ,  may provide more accurate results in such thermally stratified flow types. 

In RBC of air the model 2 for tED ,  shows almost no difference close to the walls 

comparison to the model 1, see figure 5-13. At certain points the model 2 shows 

slightly better agreement with tED ,  compared to the model 1. 
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6 Conclusions and Outlook 

The literature review shows that the standard Reynolds Averaged Navier Stokes 

(RANS) models, like the ε′−′E  model, are not adequate for investigating certain 

buoyant flow types (e.g. Dinh and Nourgaliev (1997)). Different strategies to improve 

the standard RANS models use the transport equation for the turbulent kinetic energy 

E ′ . In this transport equation the turbulent diffusion appears as one of the closure 

terms. This term consists of velocity-fluctuation triple correlation Eu j ′′  and velocity-

pressure fluctuation correlation pu j ′′ . They are generally modeled together in the 

standard gradient diffusion approximation as given in eqn (2.7). Based on a large 

eddy simulation (LES) investigation in meteorology Moeng and Wyngaard (1989) had 

shown that the gradient-diffusion model for the turbulent diffusion of the turbulent ki-

netic energy is not adequate in buoyant flow types. In order to improve this model, 

they recommended the inclusion of the effect of buoyancy. These studies provide the 

basis for the present work which deals with the extensions of the gradient-diffusion 

model for the turbulent diffusion of the turbulent kinetic energy. 

For this purpose, two different buoyant flow types have been considered as a vehicle, 

namely, internally heated fluid layers and Rayleigh Bénard convection. In Rayleigh-

Bénard convection the fluid layers are unstably stratified along the complete height of 

the channel. Whereas in internally heated fluid layers the presence of both unstably 

and stably stratified fluid layers make it more difficult in RANS modeling compared to 

Rayleigh-Bénard convection. Hence, in this study the priority to achieve a better 

modeling for internally heated fluid layers is higher than for Rayleigh-Bénard convec-

tion. 

Direct numerical simulation (DNS) investigations of internally heated fluid layers at 
910=Ra , 7 =Pr  and Rayleigh-Bénard convection of air at 51036 ×= .Ra  , 710.Pr =  

reveal that the criterion of local equilibrium between the production and dissipation of 

turbulent kinetic energy is fulfilled only at certain points, at other heights it is not ful-

filled in both flow types. Anisotropy between the different components of the root 

mean square values of the velocity fluctuations are also observed in both flow types. 

This can be attributed to the effect of buoyancy and the presence of the walls. Analy-
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sis of the closure terms Eu j ′′  and pu j ′′  using the DNS data show their different im-

portance and behavior in internally heated fluid layers with 710=Ra  and in Rayleigh-

Bénard convection of air. This was already reported by Wörner and Grötzbach (1998) 

and the mechanisms leading to this difference were discussed. Therefore, in the pre-

sent study the closure terms in the turbulent diffusion are modeled separately in order 

to extend the gradient-diffusion model for the turbulent diffusion.  

In order to derive a RANS model for the triple-correlation Eu j ′′ , the transport equation  

for this closure term has been used. In this equation the turbulent transport term is 

modeled according to Milionshtchikov (1941). Following the approach of Hanjalić and 

Launder (1972) and Weinstock (1989), the pressure contribution is modeled as in 

Rotta (1951) and the dissipation term is modeled as in Zeman and Lumley (1976). 

The new RANS model for the triple-correlation incorporates the contribution of buoy-

ancy and pressure transport along with an anisotropic gradient-diffusion approxima-

tion. Starting with the Donaldson (1969) approximation for the velocity-pressure cor-

relation pu j ′′  and introducing that the cross-correlations of the velocity fluctuations 

are smaller than their auto-correlations, a modified RANS model for the velocity-

pressure correlation is obtained. The RANS models for the triple-correlation and the 

velocity-pressure correlation are joined to deduce the model for the turbulent diffu-

sion. This model includes a buoyancy term which contains 3
2  jj Tu δ′′ , a higher-order 

pressure term and the velocity-pressure correlation. Analysis of the buoyancy and 

higher-order pressure term using DNS data reveal that in internally heated fluid lay-

ers the higher-order pressure term is having a small contribution to the turbulent dif-

fusion of turbulent kinetic energy which consists of ( )puEu jj ′′+′′ . Due to non availabil-

ity of a reliable model for the higher-order pressure term, and in accordance with the 

priority of obtaining better modeling of internally heated fluid layers compared to 

Rayleigh-Bénard convection in the present work, it is neglected in the RANS model 

for turbulent diffusion of turbulent kinetic energy as given in eqn (4.8b). Of course the 

contribution of buoyancy term Tu j ′′ 2  is non-zero only along the vertical direction 

3=j . 
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According to the existing literature, the Daly and Harlow model for the buoyancy term 

needs improvement. In order to obtain more detailed information for its vertical com-

ponent Tu ′′ 2
3  all the terms in its transport equation are analyzed using the DNS data 

of internally heated fluid layers and Rayleigh-Bénard convection. Based on these in-

vestigations, a Daly and Harlow Extended (DHE) model for the buoyancy term as in 

eqn (4.11) is obtained. This model includes both the effect of buoyancy and the pro-

duction due to the temperature gradient. In this model buoyancy term 2
3Tu ′′  and 

3
3u′ are the additional closure terms. Otić et al. (2005) have recently proposed an im-

proved model for the buoyancy term. In this model, the contribution of the molecular 

fluid properties is introduced in addition to the gradient-approximation. This model 

was successfully validated using the DNS data of Rayleigh-Bénard convection. As a 

result, one of the closure problems of the DHE model can be solved at least for RBC. 

The second closure term 3
3u′  in the DHE model can be modeled with the anisotropic 

gradient approximation as in Launder (1989).  

By incorporating a variable Daly and Harlow (VDH) model for Tu j ′′ 2  in the RANS 

model for the turbulent diffusion of turbulent kinetic energy as in eqn (4.8b) results in 

an extended model 1 for the turbulent diffusion as given in eqn (4.13). By introducing 

the DHE model in eqn (4.8b) results in an extended model 2 for the turbulent diffu-

sion of turbulent kinetic energy as given in eqn (4.20). Both the models 1 and 2 for 

the turbulent diffusion include the effect of buoyancy and velocity-pressure correla-

tion. According to e.g. Lumley et al. (1978) and Moeng and Wyngaard (1989), inclu-

sion of the effect of buoyancy may explain the counter gradient transport of E ′  .s 

The DNS data of internally heated fluid layers and Rayleigh-Bénard convection are 

used to validate the RANS models for the triple-correlation, velocity-pressure correla-

tion, buoyancy term and turbulent diffusion of turbulent kinetic energy along the verti-

cal direction. In internally heated fluid layers with 710=Ra , the model values show 

an acceptable agreement with the triple-correlation. In this flow type the contribution 

of triple-correlation to the turbulent diffusion is greater than that of the velocity-

pressure correlation in most of the central region ( )81251 3 . x. ≤≤≈ . Whereas, the tri-

ple-correlation is having a very small contribution to the turbulent diffusion close to 
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the walls in this flow type. The comparison between the triple-correlation and its 

model shows the over prediction of the triple-correlation in Rayleigh-Bénard convec-

tion of air. However the modeled values have roughly the required qualitative distribu-

tion in this flow type. A comparative study between the triple-correlation and the ve-

locity-pressure correlation reveals the higher importance of the velocity-pressure cor-

relation in the turbulent diffusion in this flow type. The comparisons between the ve-

locity-pressure correlation and its model show an acceptable qualitative and quantita-

tive agreement in internally heated fluid layers and Rayleigh-Bénard convection. The 

analysis of the velocity-pressure correlation using the DNS data depicts its higher 

contribution to the turbulent diffusion compared to the triple-correlation in Rayleigh-

Bénard convection. Further, the velocity-pressure correlation is more significant in 

comparison to the triple-correlation close to the walls in both flow types. These stud-

ies show that the RANS models for the triple-correlation and the velocity-pressure 

correlation can roughly explain these quantities especially in those areas in which 

they are relevant in both flow types along the vertical direction. The comparison be-

tween the buoyancy term Tu ′′ 2
3  and its model in internally heated fluid layers show 

an improvement in DHE model in comparison to the DH and VDH model except close 

to the lower wall. In Rayleigh-Bénard convection the DHE modeled values have 

roughly the required distribution as of the buoyancy term analyzed from the DNS data 

close to the walls.  

Analysis of the model 1 as given in eqn (4.14) shows a considerable improvement in 

the prediction of the turbulent diffusion of turbulent kinetic energy compared to the 

gradient-diffusion approximation in internally heated fluid layers with 87 10 10 ,Ra = . 

This model gives a small improvement in comparison to the gradient-diffusion ap-

proximation for predicting the turbulent diffusion in Rayleigh-Bénard convection of 

liquid metal at 510  =Ra , 0250r .P = . In case of Rayleigh-Bénard convection of air 

this model for the turbulent diffusion does not show any negative consequences.   

The analysis of the model 2 as given in eqn (4.20) reveals its better predictive capa-

bility compared to the model 1 for the turbulent diffusion of turbulent kinetic energy in 

internally heated fluid layers with 87 10 10 ,Ra = , especially close to the upper wall. In 

Rayleigh-Bénard convection of air there is almost not much difference between the 

model 2 and model 1 close to the walls for the turbulent diffusion. In certain height 
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points the model 2 shows slightly better prediction of the turbulent diffusion compared 

to model 1 in this flow type. The inclusion of these models in the CFD codes or with 

the advanced models allows expecting more accurate results in such thermally strati-

fied flow types. It is also possible to adapt these RANS models to LES. This holds for 

the common volume integration to deduce the equations for the resolved scales. 

These equations look formally identical to the RANS equations, although they have 

different meaning and physics involved. Thus, mainly the length and time scales 

which are involved in these equations need to be suitably adapted from RANS to 

LES. 

The applications of models 1 and 2 for the turbulent diffusion make use of an addi-

tional transport equation for the auto-correlation 2
3u′ . These models for the turbulent 

diffusion extend the standard ε′−′E  model to a 2
3uE ′−ε′−′ model which is a 3-

equation model. The transport equation for the auto-correlation is a particular form of 

the transport equation for the Reynolds stresses as given in e.g. Launder et al. 

(1975). This additional transport equation is necessary to incorporate the strong ani-

sotropic effects due to the buoyancy and the presence of the walls along the vertical 

direction. This also follows the notion of Durbin (1991) to include the near-wall effects 

of in-homogeneity and anisotropy in the form of an additional transport equation. The 

investigations in meteorology and in astrophysics recommend the use of an algebraic 

model (ASM) for the turbulent heat flux as in Launder (1988) for describing the heat 

transfer in buoyant flow types. This ASM model makes use of an additional transport 

equation for the temperature variance ( )2T ′ . Therefore, incorporating this ASM model 

for the turbulent heat flux into the present work further extends the 2
3uE ′−ε′−′  model 

to a 22
3 TuE ′−′−ε′−′  model which is a 4-equation ASM model. 

Additionally an approach to model not the velocity-pressure correlation but its deriva-

tive has been presented. In this method, the differential equations for the velocity-

pressure correlation are derived. In these equations an anisotropic-form of the gradi-

ent diffusion model for the triple-correlation is used. For validation, a simplified RANS 

model form of these differential equations as in eqn (C.7) along the vertical direction 

has been obtained. The RANS model for the derivative of velocity-pressure correla-

tion is acceptable in internally heated fluid layers and Rayleigh-Bénard convection. 
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This model for the derivative of velocity-pressure correlation also makes use of the 

additional transport equation for the auto-correlation 2
3u′  in order to introduce the ef-

fect of anisotropy as explained above.  

The validations of the models 1 and 2 for the turbulent diffusion of the turbulent ki-

netic energy show that these models are having acceptable predictive capability in 

internally heated fluid layers and Rayleigh-Bénard convection along the vertical direc-

tion. The model 2 may be more accurate in comparison to the model 1 especially in 

internally heated fluid layers. On the other hand, the model 2 includes additional 

terms. This means, more computational effort compared to the model 1. Thus, the 

application of these models depends on the type of problems and their accuracy re-

quirement.  

An approach to model the derivative of the velocity-pressure correlation is also pre-

sented. In case of flow types like, e.g. Rayleigh-Bénard convection, in which the tri-

ple-correlation is having smaller contribution to the turbulent diffusion of turbulent ki-

netic energy it may be sufficient to apply a simple model for the triple-correlation and 

use the RANS model for the derivative of velocity-pressure correlation. Conse-

quently, a priori information about the flow type and the closure terms in the turbulent 

diffusion is needed for applying this model.  

Future activities, following this thesis, could be on the following subjects: 

The time development of the DNS of internally heated fluid layers with 910=Ra  

shows that this simulation should be proceeded to achieve the accurate fully devel-

oped steady state. The analysis of the turbulent kinetic energy in internally heated 

fluid layers with different Ra  indicates that a fully turbulent regime in which the distri-

bution of statistical turbulence data is qualitatively independent of Ra  is not yet 

achieved. Thus, simulations of this flow type at even higher Ra  are needed for the 

validation of the various turbulence models in this flow type.   

Implementation of the RANS models 1 and 2 for the turbulent diffusion of the turbu-

lent kinetic energy in the commercial or in-house code is required to test their practi-

cal performance in other flow type, e.g. flows in which both shear and buoyancy plays 

an important role and flows which are not horizontally homogeneous. Such tests can 
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explore the limitations of these models. Inclusion of these models for the turbulent 

diffusion in engineering CFD codes may further enhance the predictive capability of 

the standard as well as advanced RANS models in investigating buoyant flow types. 

The above discussion indicates that a 22
3 TuE ′−′−ε′−′  model which is a 4-equation 

ASM model can be used to compute engineering buoyancy influenced flows in hori-

zontal fluid layers. For even better prediction in the thermally stratified flow types an 

additional transport equation for the dissipation of 2T ′ ( )Tε′  is needed at Pr  widely  

different form 1, see e.g. Carteciano (1996) and Otić et al. (2005) which further ex-

tends the 22
3 TuE ′−′−ε′−′  to a TTuE ε′−′−′−ε′−′ 22

3  model which is a 5-equation 

ASM model. This means additional computational effort to solve the system of equa-

tions. Therefore, the best compromise will be a 22
3 TuE ′−′−ε′−′ model in case Pr  

around 1. If Pr  significantly differs from 1 then a TTuE ε′−′−′−ε′−′ 22
3  model is re-

quired. This system can be implemented in the Turbulence Model for Buoyant Flows 

(TMBF) model as in Carteciano (1996) with the help of an additional transport equa-

tion for 2
3u′ . This allows expecting even better predictive capability of this advanced 

model in buoyant flow types. 
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Appendix A   The turbulent Reynolds number in IHL and RBC 

The coefficients in the RANS models for pu j ′′  as in eqn (4.7) and for Tu ′′ 2
3  as in eqn 

(4.9b) may not be constant. There are indications e.g. as in Daly and Harlow (1970), 

Dol et al. (1997) and Wörner et al. (1997) that these coefficients may depend on the 

local turbulent Reynolds number. Therefore, this quantity is analyzed in this Appen-

dix.  
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Fig. A-1      Vertical profiles of the turbulent Reynolds number analyzed from the DNS 

data of IHL. 
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Fig. A-2    Vertical profiles of the turbulent Reynolds number analyzed from the DNS 

data of RBC. 

The vertical profiles of turbulent Reynolds number 
ε′ν

′
=

2ERet  analyzed from the DNS 

data of IHL and RBC are shown in figures A-1 and A-2. In IHL the values of this term 
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are much smaller in comparison to RBC. This is in principle accordance with the find-

ing by Wörner et al. (1997) that some of the coefficients which appear in the different 

standard RANS models (e.g. modified RANS model for pu j ′′  as in eqn (4.7)) have 

higher values in IHL. Thus, this indicates a possibility to correlate the coefficient e.g. 

2C ′ , with tRe .  
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Appendix  B    Coefficients in the RANS model for Eu j ′′ , pu j ′′ , Tu ′′ 2
3  

and t,ED  
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Fig. B-1 The coefficient ′

2C  as in eqn (4.7) analyzed from the DNS data of IHL at 
1813 .x ≈ . 
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Fig. B-2 The coefficient ′

θ1C  as in eqn (4.11) analyzed from the DNS data of IHL at 
36613 .x ≈ . 

The logarithmic plot of ′
2C  versus the turbulent Reynolds number tRe  indicates an 

inverse relationship of the form α
′

tRe
~C 1

2  as in figure B-1 in IHL. The logarithmic 

plot of ′
θ1C  versus the turbulent Reynolds number tRe  also indicates   an inverse re-
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lationship of the form β
′

tRe
~C 1

2  in figure B-2 in IHL. The exponents α  and β  are 

estimated at a certain 3x . However, these values will be applied throughout the 
height of the channel in IHL i.e. for all values of 3x . Same values of these exponents 
will be used in RBC as well. 
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Fig. B-3        Vertical profile of the coefficient 1C  as in eqn (4.5) analyzed from the 

DNS data of IHL. 
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Fig. B-4       Vertical profile of the coefficient 1C  as in eqn (4.5) analyzed from the 

DNS data of RBC or air. 
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Fig. B-5      Vertical profile of the coefficient 2C  with 80.=α  as in eqn (4.7) analyzed 

from the DNS data of IHL. 
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Fig. B-6      Vertical profile of the coefficient 2C  with 80.=α  as in eqn (4.7) analyzed 

from the DNS data of RBC of air. 

The coefficients which are involved in the RANS models for Eu j ′′  as in eqn (4.5) and 

for pu j ′′  as in eqn (4.7) with 80.=α  (see figure B-1) are analyzed from the DNS re-

sults in IHL and RBC. Their vertical profiles are shown in the figures B-3, B-4, B-5 

and B-6. The positive values of the coefficients indicate the region of similar qualita-

tive behavior. The negative values indicate the region in which the RANS models are 

not adequate in this flow type. However, the figure 3-24 shows that Eu j ′′  is having a 

significant contribution to t,ED  in IHL away from the walls. As a result, its model plays 

an important role only in the central region in this flow type. Higher values of the coef-
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ficients, e.g. close to the walls, in IHL and RBC indicate that the modeled values of 

Eu j ′′  and pu j ′′  are smaller than their DNS analyzed values. A recommended com-

mon range of values for 170040 1 .C. ≤≤  and for 751 2 ≤≤ C.  in both flow types.  
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Fig. B-7      Vertical profiles of Tu ′′ 2

3  and its DHE model as in eqn (4.11) analyzed 
from the DNS data of IHL at different 1θC  ( Ct1≡ ). 
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Fig. B-8      Vertical profiles of Tu ′′ 2

3  and its DHE model as in eqn (4.11) analyzed 
from the DNS data of RBC of air at different 1θC ( Ct1≡ ). 

Comparisons between Tu ′′ 2
3  and its DHE modeled values as in eqn (4.11) at differ-

ent 1θC  are shown in figures B-7 and B-8 in IHL and RBC. The under prediction and 

over prediction of Tu ′′ 2
3  in most of the regions for different values of 1θC  indicates its 
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possible range of values in between 0.08 and 0.5 in both flow types. In the validation 

2501 .C =θ  is used as an optimal value for both flow types. 
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Fig. B-9     Vertical profiles of t,ED  and its model 1 as in eqn (4.14) analyzed from 

the DNS data of IHL at different pC . 
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Fig. B-10     Vertical profiles of t,ED  and its model 1 as in eqn (4.14) analyzed from 

the DNS data of RBC of air at different pC . 

Comparisons between t,ED  and its modeled values as given by eqn (4.14) at differ-

ent pC  are shown in figures B-9 and B-10 in IHL and RBC. Under and over predic-

tion of t,ED  in IHL indicates a possible range of the values of pC  in between 0.4 and 

1.0. In RBC the modeled values show significant difference only close to the walls at 
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different pC . For validation pC  is set to 0.7 in the model 1 in both flow types as an 

optimal value. 

Appendix C      Mathematical modeling of the derivative of  pu j ′′  

In flow types like e.g. RBC, in which contribution of Eu j ′′  to t,ED  is small, a better 

model for the derivative of pu j ′′  may be needed. In this Appendix, a RANS model for 

the derivative of pu j ′′  is deduced. The work by Oberlack and Peters (1993) is consid-

ered as a starting point to derive a differential equation for pu j ′′  using the transport 

equation of E ′  (eqn (2.6)). This results in a RANS model for 
j

j

x
pu

∂

′′∂
. In this study the 

anisotropy between the different components of velocity fluctuations (see figures 3-16 

and 3-17) will be taken into account.  

C.1 Model development 

Taking the gradient of the transport equation for E ′   as given in eqn (2.6) results in, 
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Considering the convection in the horizontal fluid layer is shear free (as in the present 

case) and using the E ′  equation in the steady state, eqn (C.1) reduces to, 
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Let us consider,  
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In other words,  
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Here the indices within [ ] indicate each component separately and no Einstein-

summation. The eqn (C.3) is valid under the constraint given by eqn (C.4). This equa-

tion indicates the dependence of the derivative of thj   component of the velocity-

pressure fluctuation correlation with respect to [ ]jx  along the thj  direction only. It is 

clear that the above approximation is a limitation in this derivation. Using eqn (C.3) in 

eqn (C.2) results in, 
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The eqn (C.5) represents three differential equations for the three velocity-pressure 

fluctuation correlations. In accordance with Launder (1989) the velocity-fluctuation 

tripe correlation on the RHS is approximated by, 
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σ

ν
−≈′′  with ,uC jjt τ′=ν µ

2  for .,,j 321=  

This means, here jtν  is an anisotropic eddy viscosity and τ  is a time scale (Durbin 

(1993)). The previous author has defined the time scale τ  as follows, 

 

( )( )21/
/C,/Emax ε′νε′′=τ τ . 

 
This definition of τ  also includes the effect of viscosity. In the present case for sim-

plicity the following standard definition of τ  has been used, 

 
ε′′=τ /E . 

 
Using the above definition for τ  it follows, 
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( )ε′′′= /EuC ν jµjt
2 . 

 
This Durbin definition of jtν  was intended to avoid the use of damping functions in 

the isotropic eddy viscosity. Using the above simplifications in eqn (C.5) gives, 
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In order to validate eqn (C.6), it can be reduced to a simple form making use of   

to average the variables, i.e. the averaged variables depend only on 3x . Finally from 

integrating eqn (C.6) with respect to 3x  follows, 
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Here, E ′′  indicates the turbulent kinetic energy in which the variables are averaged 

using , e.g. 2

2
1

iuE ′′=′′ , and EP ′′  is the production of E ′′  and ε ′′  is its dissi-

pation. Application of this RANS model for pu ′′′′3  as in eqn (C.7) requires an addi-

tional transport equation for 2
3u ′′  (see sub-section 4.4.3). µC  is the well known coef-

ficient from the E ′′ - ε ′′  model, 090.Cµ =  and puC 3  is the relevant new coefficient.  

 

C.2    Validation of the RANS model for 
3

3

x
pu

∂
′′∂  

In order to validate the RANS model for 
3

3

x
pu

∂
′′∂
 as given in eqn (C.7) puC 3 =0.7 seems 

to be an adequate value. In case of the modified RANS model for pu ′′3 as in eqn (4.7) 

the coefficient 2C  is set to 1.5 for IHL and 3.0 for RBC and the parameter 80.=α . 
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Fig. C-1      Vertical profiles of 
3

3

x
pu

∂
′′∂  and its models analyzed from the DNS data of 

IHL with 710=Ra . 
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Fig. C-2   Vertical profiles of 
3

3

x
pu

∂
′′∂  and its models analyzed from the DNS data of 

RBC of air. 

The comparisons between 
3

3

x
pu

∂
′′∂ and its RANS models (see eqn (4.7) called the 

modified Donaldson model and eqn (C.7) called the derivative model) analyzed from 

the DNS data of IHL and RBC are shown in figures C-1 and C-2. In IHL both RANS 

models for 
3

3

x
pu

∂
′′∂  show acceptable agreement with 

3

3

x
pu

∂
′′∂ . These also indicate that 
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the RANS model for
3

3

x
pu

∂
′′∂  as given in eqn (C.7) has a somewhat better agreement 

with 
3

3

x
pu

∂
′′∂  analyzed from the DNS data of RBC in most of the region along 3=j . 

However, both models predict the position of the minima of 
3

3

x
pu

∂
′′∂  close to the 

boundaries approximately at the same value of 3x  in this flow type. These figures are 

also showing some deviations between 
3

3

x
pu

∂
′′∂  and its modeled values in both flow 

types, especially in the central region ( )8121 3 .x. ≤≤ .   
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