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A model for the turbulent diffusion of turbulent kinetic energy in natural

convection

Abstract

The widely used standard Reynolds Averaged Navier-Stokes models, e.g. 1-equation or 2-
equation models, use the transport equation for the turbulent kinetic energy. They are known
to be problematic in describing thermally stratified flow. In the transport equation for the tur-
bulent kinetic energy the turbulent diffusion term is modeled with the gradient-diffusion ap-
proximation which is inadequate in internally heated fluid layers and Rayleigh-Bénard con-
vection. These flow types are explained by means of direct numerical simulation (DNS) data.
The data also include a new simulation of internally heated fluid layers with Rayleigh number
Ra =10° and Prandtl number Pr=7.0. This simulation is performed using the TURBIT

code.

One of the possible deficiencies in the gradient-diffusion model for the turbulent diffusion of
the turbulent Kkinetic energy is discussed using the direct numerical simulation data. Based on
this study and the investigations in meteorology, extended forms of the gradient diffusion
model for the turbulent diffusion are derived. For this deduction, the different closure terms in
the turbulent diffusion, namely the velocity-fluctuation triple correlation and the velocity-
pressure fluctuation correlation, are modeled separately. Coupling of these models results in a
Reynolds Averaged Navier Stokes model for the turbulent diffusion. In this model a variable
Daly and Harlow model for the buoyancy contribution, i.e. the turbulent convection of the
heat flux, is used to derive an extended Reynolds Averaged Navier Stokes model 1 for the
turbulent diffusion. Based on an analysis of the transport equation for the buoyancy contribu-
tion a Daly and Harlow extended model for this term is obtained. Incorporating this extension
in the model for the turbulent diffusion gives an extended Reynolds Averaged Navier Stokes
model 2 for the turbulent diffusion.

The modified or new models for the closure terms in the turbulent diffusion are validated us-
ing the direct numerical simulation data of internally heated fluid layers and Rayleigh-Bénard



convection. The Daly and Harlow extended model for the buoyancy contribution is also tested

on both flow types.

Also, the extended models 1 and 2 for the turbulent diffusion are analyzed and validated using
the direct numerical simulation data of internally heated fluid layers. Their performance is
also tested in Rayleigh-Bénard convection. The model 1 shows an acceptable improvement in
comparison to the gradient-diffusion model for the turbulent diffusion in internally heated
fluid layers. In Rayleigh-Bénard convection a small improvement is observed. The model 2
gives a slight improvement over model 1 in certain height points in these flow types. The re-
sulting 3-equation model should lead to more accurate calculations for buoyant convection in

fluid layers involving both stable and unstable stratification.
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1 Introduction

Natural fluid flow and convective heat transfer are important in environmental, astro-

physical and industrial flow types. These flow types are generally turbulent in nature.

Mostly the local and instantaneous detail of turbulence is not of practical importance.
That is why methods of numerical investigation for turbulence are based on the so-
called Reynolds equations. It means averaging of conservation equations for mass,
momentum and energy is performed over suitable time intervals to filter out the turbu-
lence effect. This approach is the RANS (Reynolds Averaged Navier-Stokes)
method. In due course, the unknown Reynolds stresses and turbulent heat fluxes
appear in the Reynolds equations. Mostly, the concept of eddy diffusivity and eddy

conductivity has been employed to calculate these stresses and heat fluxes.

Instead of above, solving the local and the instantaneous Navier-Stokes equations is
known as the direct numerical simulation (DNS). The structures which appear in tur-
bulence are broadly classified into two categories, one is so-called the ‘Large eddies’
whose size is comparable with the width of the computational domain. Whereas,
those eddies which are smaller than the Large eddies or the width of the computa-
tional cells are the ‘Small eddies’. The Ratio of the size of largest to the smallest eddy
increases with the increasing Reynolds number (Re). In order to perform a DNS
even the smallest scale needs to be resolved. Therefore, DNS is restricted only to
low Re even with the fastest computer available. In the high Re flows it is only possi-
ble to resolve the large eddies and the small eddies are modeled by the sub-grid
scale (SGS) models. This approach is known as the large eddy simulation (LES).
LES is benefited with the facts that the large eddies which determine the characteris-
tics of turbulence are directly simulated. The small eddies that need to be modeled,
found to obey widely universal laws. Therefore, LES can be regarded as fairly univer-
sal but not fully. As a result, it has been used for some industrial flow problems in-
stead of RANS.



1.1 Motivation and problem specification

The present work deals with buoyant convection which requires special attention in
many technical applications. Several efforts have been made to study the buoyant
convection in meteorological and industrial flows which involve different types of fluid,
e.g. air, water or liquid metal (e.g. Lumley et al. (1978), Moeng and Wyngaard (1989),
and Canuto and Daalsgaard (1998)). Another crucial phenomenon which occurs in
the natural or industrial flows is called the thermal stratification. It appears due to the
temperature/density difference between the different layers of fluid. In fluid layers with
the warmer (lighter) fluid over the colder (denser) fluid gives rise to stable thermal
stratification whereas the colder (denser) fluid over the warmer (lighter) fluid results in

an unstable thermal stratification.

Buoyancy effect as a result of the thermal stratification plays an important role in the
different types of fluid flow, e.g. Rayleigh-Bénard convection (RBC), internally heated
fluid layers (IHL) and Convective Boundary Layer (CBL). The CBL in atmosphere
arises if turbulence generated by buoyancy due to upward heat flux from the surface
dominates relative to turbulence generated by mean shear due to horizontal wind.
The sign of temperature gradient can be used to classify the thermal stratification as
stable (positive temperature gradient), unstable (negative temperature gradient) and
neutral (zero temperature gradient). The unstable stratification amplifies whereas the

stable stratification attenuates the turbulence. This damping cannot be accounted by
the isotropic assumption in the standard RANS model (e. g. £'—¢' model see e.g.
Davidson (1990), here the notation for turbulent kinetic energy E' and its dissipation

¢’ are used instead of k¥ and ¢ ). LES investigation of the unstably stratified fluid lay-
ers by Lee and Pletcher (2001) indicates that the sub-grid scale models are not per-
fect and that they need further improvement. Therefore, analytical, numerical (DNS)
and experimental methods have been used to study the thermal stratification. How-
ever, the DNS is restricted to only low Re flows depending on the available computa-
tional resources. This limitation of DNS makes the turbulence modeling approaches

(RANS/LES) inevitable for numerically investigating the different flow types.

Mostly the RANS method is applied for the numerical study of engineering flow prob-

lems. Some of these problems are also thermally stratified in which the Rayleigh



(Ra ) number, which is the ratio of buoyant force and the product of viscous drag and
rate of heat diffusion, can attain very high values (e.g. Dinh and Nourgaliev (1997)).
The experimental investigations in such cases are usually supported and their results
are usually transferred to the actual technical parameters by numerical simulations in
which engineering codes are employed. The quality of the numerical results strongly

depends on the reliability of the turbulence models. Dinh and Nourgaliev (1997) had
used a standard low Reynolds number E'—¢ - Pr, model to recalculate an experi-

ment of natural convection in fluids with an internal heat source. According to the au-
thors, this model fails to describe the mean temperature or heat transfer in the regime
of interest. They proposed several phenomenological corrections for this model. Fi-
nally, they concluded the need of further development to improve the predictive ca-
pability of this RANS model.

The standard RANS models (e.g. E'-¢ model) use the transport equation for the

turbulent kinetic energy (?). In this equation the turbulent diffusion appears as one

of the closure terms. The turbulent diffusion consists of the turbulent-transport (veloc-

ity-fluctuation triple correlation «’E’ term) and the pressure-transport (velocity-

pressure fluctuation correlation u’p’" term). They are modeled together in the gradi-

ent-diffusion model for the turbulent diffusion. Worner et al. (1997) had shown that

this gradient diffusion model for the turbulent diffusion of E' is not adequate in IHL.

Such inadequacy of the gradient diffusion model for the turbulent diffusion was also
observed in a LES study of CBL by Moeng and Wyngaard (1989). They observed
that the gradient diffusion model for the turbulent transport can not explain the

counter gradient transport of E'. The importance of the counter gradient transport of

E’ in the upper part of the atmospheric boundary layer was described by Lumley et

al. (1978). According to the authors, the anisotropic effect of buoyancy (see e.g.

Schemm and Lipps (1976)) could explain the counter gradient flux of E'. Therefore,

Moeng and Wyngaard (1989) recommended the inclusion of the buoyancy effect in
the modelling of turbulent transport of E'. This could also be one of the possible rea-

sons that the standard low Reynolds number E'—¢ - Pr, model fails seriously to ex-



plain such thermally stratified flow types as experienced by Dinh and Nourgaliev
(1997).

The above studies indicate that the effect of buoyancy needs to be included in the
RANS as well as in the LES modeling approaches to improve their predictive capabil-

ity for investigating thermally stratified flow types.

1.2 Literature status

During the last few decades many scientists had provided a basic know-how about
the effect of buoyancy /stratification in general. Monin and Yaglom (1971) and Ten-
nekes and Lumley (1972) are among some of the classical authors in the discipline of

turbulence theory and RANS modelling approach. These authors had given a bird-

eye view of the effect of stratification/buoyancy and explained its influence on E'.

The widely used RANS model for the velocity-fluctuation triple correlation term in the

turbulent diffusion of £’ was derived by Hanjali¢ and Launder (1972); it is a tensorial
model. Afterwards, Deardorff (1974) had employed this model for a LES investigation
of the mean structures of planetary boundary layer. A simplified form of this model is

the gradient-diffusion model for the turbulent diffusion of E' (see e.g. Launder and
Spalding (1972)). In this model the contribution of buoyancy was not considered. In
order to include the effect of buoyancy, Lumley et al. (1978) had investigated the tur-
bulent transport term in the transport equations for turbulent kinetic energy, turbulent
heat flux etc. In his model the presence of the buoyancy effect makes the different

third order-moments in the different transport equations inter dependent.

One way to include the influence of buoyancy in stable stratification is the introduc-
tion of additional near-wall damping functions in the eddy viscosity and eddy conduc-
tivity as explained by Murakami et al. (1996). These functions were introduced to de-

scribe the damping effect of buoyancy in the stable stratification.

A better approach to deal with the effect of buoyancy is the algebraic stress modeling
(ASM) or the algebraic turbulent heat flux modeling. Launder et al. (1975) had devel-
oped an ASM model for the Reynolds stresses. This model found to be suitable for

4



both the homogeneous and inhomogeneous shear flows. Later on, Davidson (1990)
had developed a hybrid model for the Reynolds stresses. This model takes from an

algebraic Reynolds stress model that part of the non-isotropic Reynolds stresses

which is due to the buoyancy, and the remaining part from the standard E'—¢'
model. As an extension of this approach and based on Hanijali¢ et al. (1996), Liu and
Wen (2002) had introduced additional wall-reflection functions in the model for Rey-
nolds stresses and turbulent heat fluxes. In absence of the vertical solid surface
these functions reduce to zero. According to this study, these modifications have
achieved quantitatively good agreement with the experimental data of velocity and
temperature distributions in buoyant diffusion flames. Using the Davidson (1990)

ASM model for the Reynolds stress, Yan and Holmstedt (1999) had proposed a

modified form of the standard E'—¢' model in which the turbulent heat flux is ap-
proximated in accordance with the Daly and Harlow (1970) model. A comparison be-

tween predicted and experimental values in case of a two-dimensional plane thermal

plume shows a better agreement in comparison to the standard E'—¢' model. How-

ever, the authors considered that further development in this direction will enhance

the predictive capability of this modified E'—¢' model. Considering the algebraic heat
flux model by Launder (1988) and Nagano and Kim (1988), Oti¢ et al. (2005) have

proposed a modified 4-equation model which is based on the transport equation for

F, for the dissipation of E' (?) for the temperature variance (ﬁ) and for the dissi-

pation of F(E) This model should be applicable for wide range of low Prandtl
number ( Pr) flows (see e.g. Grétzbach et al. (2004)). In these approaches the gradi-

ent-diffusion approximation for the turbulent diffusion of E’ has been used.

A more sophisticated method to study the buoyant flow types is the second-moment
closure modeling. Hanjali¢ (1999) had discussed the improvements of the second-
order closure approach over the eddy-viscosity model for complex flow types. In an
investigation of the turbulent natural convection, Dol et al. (1997) had made a com-
parative assessment of the statistical (RANS) models which are related to the trans-
port equations for turbulent heat fluxes and to the turbulent temperature variance.
They observed that the coefficients which appear in the Daly and Harlow (1970)
model for the turbulent diffusion terms in these transport equations are not constant.
Afterwards, Dol et al. (1999) had modified the Daly and Harlow (1970) model for the

5



turbulent diffusion of temperature variance and used the statistical second moment-
closure approach to study the buoyant convection. Later on, Carteciano (1996) had

successfully developed a 7-equation Turbulence Model for Buoyant Flows (TMBF).

!

This is a combination of the standard E'—¢' model for the turbulent Reynolds

stresses and a full second-order model for the turbulent heat fluxes including the

transport equations for 72 and E for buoyancy influences. In recalculating a forced

jet experiment with this model, it has been found that the mean temperature field is

!

better predicted by the TMBF in comparison to the E —g' - Pr, (see e.g. Carteciano

and Groétzbach (2003)). These sophisticated approaches show remarkable improve-
ment over the standard RANS models for also investigating the turbulent natural con-

vection which involves different types of fluids.

Usually LES and RANS are discussed in separate framework. However, the idea of
blending LES and RANS was proposed by Spalart et al. (1997) which is known as
the detached eddy simulation (DES). According to this concept, whole boundary layer
which is populated with the ‘attached eddies’ is entrusted to a RANS model, and only
in the separated region, the ‘detached eddies’ is entrusted to LES. In order to capture
the coherent large-scale structures, while still remaining within the RANS framework
a combination of LES and RANS strategies was analyzed by Hanjali¢ (2002)). He
discussed the concept of very large eddy simulation (VLES) in which the large coher-
ent eddy structures are resolved. The remaining incoherent parts are modeled by a

RANS-type closure, serving as a sub-scale model. Even these approaches use the

transport equation for E’. Hanjali¢ (2002) emphasized on the inclusion of buoyancy
effect in the RANS models for the turbulent diffusion of turbulent heat fluxes and

temperature variance. He has not considered the effect of buoyancy in the turbulent

diffusion of £’ in order to obtain a simple model for this term.

Most of the above approaches (RANS/LES/combination of LES and RANS) use the

gradient-diffusion model for the turbulent diffusion of E'. Thus, any improvement in
this model may further enhance the predictive capability of the standard or the ad-

vanced models for numerically investigating buoyant flow types. Based on experi-

ence, the gradient-diffusion model for the turbulent diffusion of E' assumes that the



velocity fluctuation triple correlation uE’ and velocity-pressure fluctuation correlation
u'.p" can be modeled together. On the other hand, Worner and Grotzbach (1998)

had described the different behavior and importance of »’ £’ and u’p" in IHL and

RBC. At the same time, Dwyer et al. (1997) based on a LES of airflow above and

within forest canopy had investigated the different terms in the transport equation for
E'. They found that the pressure-transport in the turbulent diffusion of E' plays a

significant role. These studies show that »£" and u’p’" should not be modeled to-
gether in IHL and RBC. Moreover, u’ p’ needs special attention in the model for the

turbulent diffusion of E’.

At the same time some authors (e.g. Zeman and Lumley (1976)) consider the contri-

bution of buoyancy in the turbulent diffusion of E' as a significant one. So far this

effect has not been included along with the gradient-diffusion model for the turbulent

diffusion of E'.
Finally from the above studies, it can be concluded that:

- The different closure terms » £’ and u;p" in the turbulent diffusion

of E' require separate modeling.

- The buoyancy effect needs to be included in the model for the turbu-

lent diffusion of E'.

1.3 Objectives

The aim of this work is to improve the gradient-diffusion model for the turbulent diffu-

sion of E’. In order to extend the gradient-diffusion model for the turbulent diffusion,
the conclusion of Moeng and Wyngaard (1989) and analysis of the DNS data of RBC

and IHL will be used as a starting point. For the deduction of a model, the velocity-

fluctuation triple correlation u’E' and the velocity-pressure fluctuation correlation
u,p" will be modeled separately. The RANS models for «’E’ and u’ p" will be cou-

7



pled to derive the required extended RANS models for the turbulent diffusion. In this

study, RBC and IHL are used as a model problem.

In RBC, an infinite fluid layer between two horizontal isothermal walls which is heated
uniformly from below and cooled from the top is considered. Whereas in IHL, the iso-
thermal walls are at a lower temperature than the fluid confined in-between which is
having a uniform volumetric energy source. The fluid layers in RBC are unstably
stratified over the complete height of the channel. On the other hand, in IHL most of
the region over the height of the channel is stably stratified with an unstably stratified
upper thermal boundary layer. This thin layer drives the vertical heat and momentum

exchange.

In IHL, presence of both the unstably and stably stratified fluid layers makes it prob-

lematic for modeling in comparison to RBC. At the same time, it is expected that the

gradient-diffusion RANS model for the turbulent diffusion of E' may provide an ac-
ceptable result in the upper unstable region. This may not be acceptable near or in
the stable region. Hence, in order to study the effect of buoyancy IHL is preferred
which is also a prototype of the natural convection in astrophysics (see e.g. Canuto
and Dalsgaard (1998)). Subsequently, the extended RANS model for the turbulent

diffusion of E’ will be tested in RBC. For this purpose the analyzing module of the
TURBIT code (see e.g. Schumann (1973), Grotzbach (1977)) will be extended and

employed to compare the existing and new models against DNS data.

Considering the above in this Ph.D. work, the following aspects are included in this

thesis:

- Brief description of RANS modeling approach and some of the stan-
dard RANS models.

- Description of DNS and analysis of the DNS results of IHL and RBC.

This also includes a recently performed DNS of IHL with Ra =10°
and Pr=7.



Analysis of the terms in the transport equation for E' using the DNS
data of IHL and RBC.

Derivation of a RANS model for the velocity-fluctuation triple correla-
tion uE". For this purpose the transport equation for »'E" will be

used. In this model the effect of buoyancy will be introduced.

Short analysis of a modified RANS model for the velocity-pressure

fluctuation correlation u’,p" .

The RANS models for uE" and u’p’ will be joined to obtain an ex-

tended RANS model 1 for the turbulent diffusion of E'. This model

includes both the effect of buoyancy and ) p’. In this model the

buoyancy term ung’ will be approximated with a variable Daly and

Harlow (1970) model (VDH).

In another approach for modeling the turbulent diffusion of E', the

terms in the transport equation for «,?7" will be analyzed using the

DNS data of both flow types. Based on this analysis an extended

form of the Daly and Harlow (DH) model for ung’ will be obtained.

This will be referred to as Daly and Harlow Extended model for

ul’T" (DHE).

Derivation of the extended RANS model 2 for the turbulent diffusion

of E' using the DHE model for »}°T’ and the modified RANS model

for u’p'.

Validation of the RANS models for «'E' and u’p’ using the DNS

data of IHL and RBC.



Validation of the DHE model for 47" in both IHL and RBC.

Validation of the model 1 and 2 for the turbulent diffusion of E’ in

both flow types.

Additionally, a RANS model for the derivative of W will be derived

and validated using the DNS data of both flow types.

10



2 Description of RANS

This chapter deals with the basic RANS equations and some of the closure assump-
tions which are commonly used to solve the system of equations for thermally strati-
fied flow types. In the present study two buoyant flow types, namely, IHL and RBC

are considered.
2.1 Basic RANS equations

The basic equations for laminar and turbulent convection are the equations for the
conservation of mass, momentum and energy. In the present case, the linear de-
pendence of the stresses on the velocity deformation for the Newtonian fluid is con-
sidered. For simplicity, the Boussinesq approximation is adopted. This implies the
assumption, that the physical properties in all terms of these equations are consid-
ered as constant except for the buoyancy. In this term a linear dependence of the
density with temperature is assumed. Gray and Giorgini (1976) had shown that this
approximation is valid in water and air up to a very high temperature difference. Sugi-
yama et al. (1991) had shown that this approximation is even applicable in liquid
metals. Hence, without loss of generality, this approximation is employed in the pre-

sent investigation which involves different types of fluid with 0.025< Pr<7.0.

If the Cartesian co-ordinates are used with x; and x, as the horizontal and x5 as the

vertical direction, the conservation equations for mass, momentum and energy for the

velocity component u,(i=12,3), pressure p and temperature 7 in the non-

dimensional form are given by (see e.g. Oertel (2004)),

ou; —0,
X,
~ Ouu, - Ou,
Ou, My 1 0 [0u M, —a—p+(AT)8i3,withi:1,2,3, (2.1)
or  Ox, NGr Ox;( Ox;, Ox;, | Ox
or o) 1 o Da
or  Ox, Pr~Gr 8xj2 PriGr
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The Einstein summation rule is applied to all the terms bearing the same subscript
twice. The eqn (2.1) is normalized with the plate spacing D, the temperature differ-

ence AT,, the time scale 7, = D/ii,, the pressure scale p, =pu,-, where p is the

density and the velocity scale u, =(g”§/Af013)1/2. Here Pr and Gr are the well known
Prandtl and Grashof numbers, respectively. Another important dimensionless number
is the Damkdhler number Da = §,D? /(XAf‘O) characterizing the volumetric or sink of

heat in the fluid.

In [HL Afo is the maximum temperature difference across the height of the channel.

This is not fixed but is a dependent variable; it is linked by means of Da to ¢, . In

A

RBC AT, =T, —T where T,

lower uppper lower

and f’w indicate the temperature at the lower

er

plate and upper plate, respectively, with the volumetric heat source ¢,=0 and

Da =0. The velocity scale u, is chosen to normalize the buoyancy term to unity.

Using suitable time intervals it is possible to capture slow as well as fast changes of

the physical variables (e.g.y = (ui,p or T)). Application of the classical time average

(Reynolds ansatz) decomposes these physical variables into their mean (;) and

fluctuating parts (y'),

y=y+y', with ;:; and y' =0.

Here, (') is the representation of the classical time average and ( )' is the fluctuation

with respect to (). The time interval, over which the time mean value is taken, is
chosen such that the lowest frequencies of the turbulent fluctuations are averaged
out. So, the time mean values may still be dependent on larger time-scales which are
associated with the change in the time mean field. Let us consider 7 and z are any
two variables. Application of the time averaging operator to their product results in

(see e.g. Monin and Yaglom (1971)),

yz:(;+y’)(§+z'):;Z+y’2+}z'+ﬁ.
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Considering the property of the time averaging operator one obtains finally,

yz=yz+yz'. (2.2)

The first term in the right hand side of this equation is the product of time averaged

values and the last term is the time average of the product of fluctuations.

The RANS equations are obtained by applying the time averaging operator to the
system of equations as given in eqn (2.1) and using the property of this operator as in

eqgn (2.2), which are as follows,

aw
ox;

v - ou  ouu w ou ) op —

Oty Qw1 0N 0w M) 9P AT s, withi =123, (2.3)
or  ox, ox, JJGrox,\éx, o | o

or - or __ouT 1 T _Da
a

= + + :
ox . 8xj Prx/a 8xj2 Prx/a

J

In the TURBIT code a combined plane and time average operator < ) is employed in

analyzing statistical data from the DNS or LES results. This linear operator is defined

as mean over Xx,-X, plane and time(t). The eqgn (2.2) and (2.3) look formally identi-
cal with both (") and ( ). The main difference is that ( ) averaged quantities depend
only on x, whereas () averaged quantities depend on x,,i=123. However, the

present theoretical discussion continues further using the classical () operator.
2.2 Widely used closure assumptions

In eqgn (2.3) the unknown Reynolds stresses uu/ and turbulent heat fluxes u/T" ap-

pear as a result of the Reynolds averaging. These are usually calculated using iso-
tropic eddy viscosity and eddy conductivity models. Thus, in the first order models,

the Reynolds stresses and heat fluxes are computed by assuming gradient diffusion:

13



3 7 A
_ ’ (2.4)
oT
T'=—¢, —
ul H ax

e Pr,

Where, v, =c, E% and € =c, E7(—’ ) are the iSOtrOpiC eddy ViSCOSity and
€

isotropic eddy conductivity, respectively, and Pr, is called the turbulent Prandtl num-

ber for heat transport. This is one of the possibilities to calculate these unknowns. In

the standard RANS models ¢, =0.09 and Pr, =0.9 is used. Calculation of v, and

g, using the transport equations for £’ and &' is known as the E'—¢' (k—¢) model
(Launder and Spalding (1972)). In most codes basing on eqn (2.4) the new un-
knowns are calculated by means of the E'—¢ (k—s) model and by the Reynolds

analogy.

The linear isotropic eddy-viscosity models (EVM) have two major problems associ-
ated with them: (a) They cannot account for the anisotropy and (b) the assumption
that the position of maximum mean velocity and change of sign of the turbulent
stresses coincide which is seldom (see e.g. Speziale (1991)). Although these defi-
ciencies are known, the majority of turbulent flow calculations are carried out using
the linear EVM. According to several authors, the full second-moment closures can
overcome the limitations of the linear EVM (see e.g. Hanjali¢ (1999)). At the same
time, this method requires six additional transport equations for the Reynolds
stresses to be solved which cannot compete with the robustness and efficiency of the
linear EVM. Therefore, the nonlinear EVM (see e.g. Lumley (1978), Shih et al.
(199%5)) and the algebraic stress models (ASM) (see e.g. Launder et al. (1975)) were
developed to combine the computational robustness and efficiency of the linear EVM
with the improved model accuracy of the second-moment closures. Nonlinear EVM
also contains higher-order contributions from the strain and vorticity fields, e.g. prod-

uct of strain and strain, vorticity and strain, and vorticity and vorticity.

Bauer et al. (2000) had applied nonlinear EVM to recalculate some of the complex

flow types which include backward facing step, curved mixing layer and low-speed
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internal flow in a strongly curved U-duct. They found that the nonlinear EVM are able
to predict the presence of recirculation zones, flow separation etc. more precisely
than the linear EVM. In this study moderate increase in the CPU-time had been ob-

served. The computational robustness was slightly decreased in comparison to the

standard E'—¢' model.

In the above approaches the effect of buoyancy in the Reynolds stresses was not
considered. Davidson (1990) had proposed a hybrid model for these Reynolds

stresses which is as follows:

In this model, the ASM part contains the effect of buoyancy which is anisotropic.
Thereafter, Durbin (1991) had introduced an anisotropic form of the eddy viscosity

which has been applied to the channel flow and boundary layer.

Grotzbach (1982a) had shown that the isotropic eddy conductivity model as in egn
(2.4) for the turbulent heat fluxes is not adequate in IHL. This is due to the presence
of a wide range of the Counter Gradient Heat Flux (CGHF). Schumann (1987) had
given a detailed account of the occurrence of CGHF in the stably stratified part of
different flow types. In order to overcome such limitations, Launder (1988) had pro-

posed an algebraic model for the turbulent heat fluxes, which is as follows:

A i

k X

At A 78]: Ay aﬁ_ AA 4
T =—cyt| i), — +u, T —-—7g,T"
ox )

The above model in a non-dimensional form using the present length, velocity, time

and temperature scales reduces to,

— or ou, =
ul'= —cer[u;u,; g+ u,’{T’gu’—T’ZSBJ : (2.5)
k k
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Here 1 :il is a time scale and ¢, is an empirical coefficient. This model requires for
€
buoyant flow an additional transport equation for 7'2 and for even better prediction at

Pr deviating from 1 the transport equation for E is necessary. This results in a

E'-¢'—T'"> ¢, model which is a 4-equation model (see e.g. Nagano and Kim

(1988), Hanjali¢ et al. (1996)). Seki et al. (2003) have proposed a model which satis-
fies the linearity principle as in Lai and So (1990), and also the near-wall asymptotes

for the turbulent heat transfer in the channel flow.

So far some of the well known models have been presented. All use the transport

equations for E'ande'. Therefore, these equations will be considered as the next.

The transport equation for E' (see e.g. Rotta (1951), Hossain and Rodi (1974) etc.)

in the non-dimensional form is given by,

- _ 2
' - ——Ou. ou!
OFE +i[u/ E']:—u;u;i+6/3u;T'— L [i}
Ot ﬁxj ‘ axj o N Gr axj
Rate of Change Convection P %{—/
S ¢ (2.6)
0 1 OFE' 0 —
+ - {u'AE'+u'A .
x {«/Gr 6xj} ox, "’ ’p}
DE,m DE‘z

In eqn (2.6), P, is the production of E’ due to the mean shear and turbulent heat

fluxes (buoyancy), €' is the dissipation of E’, D, is its molecular diffusion and D,

is its turbulent diffusion.

The flow types, IHL and RBC, are shear free, i.e. the production of E'is only due to
the buoyancy along the vertical direction (j:3). This can be calculated using the
approximations as explained above. Therefore, the closure terms that remain in the
transport equation for £’ are ¢’ and D, .. The eqn (2.6) shows that D, consists of
ﬁ and m They are generally modeled together in the gradient diffusion model

which is as follows (Launder and Spalding (1972)),
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Je ],With j=12,3. (2.7)

Here, o, is the turbulent Prandtl number of E'. The model as in egn (2.7) has been
used in the standard RANS models which are available in different commercial
codes. In these codes one uses o, =1.0, in general. Some of the problems which
are associated with the above model for D,, have been discussed in the introduc-
tion. One of the most important problems is that this model does not account for the

counter gradient transport of E' (see e.g. Lumley et al. (1978) and Moeng and Wyn-
gaard (1989)).

As explained, ¢’ is one of the closure terms in the transport equation for E' (see eqgn

(2.6)). In order to calculate ¢', its transport equation is employed within the E'—¢'
framework. In the non-dimensional form it is as follows (see e.g. Daly and Harlow
(1970)),

Qu, [ ou; | &%, | [ ou]

+ u' +
o¢' — ¢ 1 |0x; | ox, ox, | oxox, | 7\ ox,
— 4u,— =-

o o NG \ou, (Gul oul
Rate of change (Eéct_it;n J
ox, ij axk
Fq
1 (au ou! ou’ ]{au 8TJ6
o i3
VGr || Ox, Ox; Ox, Ox; Ox, 2.8)

F.2

2 —

[ %), 1o

Gr{ ox;0x, Gr ox?;
Le

[ —— M
Da,m

1 o (oY [0 o'
- u' + -1
VGr Ox; ox, ox, Ox,

Dn,t
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To obtain the non-dimensional form the scaling as already explained is used (see

e.g. Hiltner (1993)). In eqn (2.8) P,, is the production of ¢’ due to the mean shear,
P, is the production of ¢’ due to the velocity and temperature fluctuations, y, is the

destruction of &', D, is its molecular diffusion and D,, is its turbulent diffusion. As

e,m

the flow types are shear free, the production of €' is only due to P,,. The closure

terms in egn (2.8) are modeled as follows (see e.g. Rodi (1972), Hossain and Rodi
(1974)):

&
PaZ zca'] 7(PE)’
—,2
€ &2 E,’
p. 0 xo
ox; | o, Ox,

Here, o, is called the turbulent Prandtl number of g . Using the above approximation
it is possible to solve the eqn (2.4). Therefore, the system of equations (eqn (2.3)) is

closed in the framework of the E'—¢&’ model.

In this chapter some of the standard RANS models have been explained. All these
RANS models, whether it is the 1-equation Kolmogorov-Prandtl Energy-length model
(Prandtl (1945)), 2-equation E’—¢' model; all use the transport equation for £’ (egn
(2.6)). So far the models as implemented in most of the commercial codes use the
above framework. On the other hand, the investigations in meteorology and in astro-

physics recommend the use of eqn (2.5) for computing the turbulent heat fluxes. This

model needs additional transport equations for the temperature variance 72 and for

even better prediction with Pr deviating from 1 the transport equation for the dissipa-
tion of 772 (Z) This results in a 3-equation (F—?—F) or in a 4-equation

(F—Q—T'Z —E) model. The following is the transport equation for 72 in dimen-

sional form (see e.g. Rodi (1972)),
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oT'? —oT" —=0oT ,.0T'oT' o |(.oT"%)| o6u'T"?
= +u,——=-2uT"—-2k——+—| K -
ot OX, Oox, ox, Ox, Ox, oX;, X, (2.9)
Rateof change (5 yection Pr 3 o Dy,

,m

In the above equation P, is the production of F & is its dissipation, D, is its mo-

m,t

lecular diffusion and D, is its turbulent diffusion. In this equation only P, can be cal-
culated using egn (2.5) as explained, whereas E can be calculated using the model

form of the transport equation for E as explained by Hossain and Rodi (1974). A
new model for the remaining closure term D, is proposed by Otic¢ et al. (2005) which

is as follows:

T2 A2
2 T Au'T'2+E—aT

uilT’z :_CGZ T “new Bx%i -

(2.10)

Here C,, is an empirical coefficient and A is the Laplacian operator. In egn (2.10)

Tt denotes a time-scale which is calculated as follows:

new

T(Z

o
€r

=]

new [

m

2
is the geometrical mean of the thermal time scale — and me-
er

The time scale 1,

w

!

chanical time scale — . The model for u,T'* as given in eqn (2.10) was successfully
€

validated with RBC.

Even the 3 or 4-equation models involve the transport equation for E'. Therefore,

any model improvements in the F-equation will also improve all the other more
complicated models. Thus, in the subsequent chapter the terms in this transport

equation will be investigated using the DNS data of IHL and RBC.
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3 DNS and analysis of a RANS model for D,

This chapter deals with the DNS data of IHL and RBC, and the standard gradient-

diffusion RANS model for D, ,, and is arranged as follows:

The first section defines the problem and introduces some of the important literature
for such flow types. Subsequently, a short mathematical description of DNS, valida-

tion of a DNS of IHL, and some statistical features of IHL and RBC are analyzed from

the DNS data and are presented. Finally, the terms in the transport equation for E'

and the gradient-diffusion model for D, will be analyzed using the DNS data.

3.1 The flow types
3.1.1 Internally heated fluid layers (IHL)

Natural convection and heat transfer in a fluid layer of height D which is heated in-
ternally by a homogeneous volumetric energy source g, are of interest in certain
geophysical, astrophysical, and technological problems. For example, it is also impor-
tant in the safety analysis of nuclear reactors to explain the phenomena of cooling of
a molten core. In this case the fluid is bounded between the two isothermal parallel
plates (its own solid crust) at a temperature lower than the molten core (the freezing

temperature), see figure 3-1.

The important dimensionless numbers which characterize the physical problem are

the internal Rayleigh number Ra, and the Prandtl number Pr=v/x. The critical

internal Rayleigh number for the onset of convection is 3.74x10* (see e.g. Kulacki

and Richards (1985)). In practical applications Ra, can attain very high values and

simulations of IHL get their importance in these cases only at high Rq, .
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Fig. 3-1 Geometry as in TURBIT to describe internally heated fluid layers (IHL).

In IHL the maximum temperature difference across the height of the channel Afo is

not known a priori for a given ¢,, and hence Da is also not known (see section 2.1).

For fully developed convection, where IévdV is completely removed at the top and
V

bottom wall, it follows by an energy balance that Da equals the sum of the Nusselt

numbers (Nu ), i.e. Da = Nu +Nu,,,.. This is used as a measure for AT,. An-

upper

other dependent dimensionless number is the Grashof number Gr = Ra, /(Pr Da).

Kulacki and Goldstein (1972) had experimentally investigated this flow type. They

obtained correlations between Nu and Ra, at the upper and lower walls. These are

as follows,

Nu,, . =1.428 Ra,"*,
Nu =0.329 RaIO.zse‘

upper
Regarding the measurement of turbulent quantities in IHL, no reliable information is
available so far for the fluid layer with equal temperature at the lower and upper wall.

Among the numerical studies of IHL, Grotzbach (1982a, 1987, 1989) and Schmidt et
al. (1997) had performed several accurate DNS with water (Pr =7) up to Ra, =10°
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which is fully turbulent. Dinh and Nourgaliev (1997) had found that the standard Rey-
nolds model F—?—Prt fails seriously in reproducing the corresponding mean tem-
perature or Nu . This is due to the presence of counter gradient heat flux and counter

gradient E’ flux. Thus, DNS and LES are regarded as the promising alternatives.
Recently, Tasaka and Takeda (2005) have studied the effects of a non-uniform inter-
nal heat source distribution on the onset of convection. They have considered an iso-
thermal upper wall and an adiabatic lower wall. Based on the linear analysis, they
have investigated the conditions for the onset of convection, namely, the critical

Rayleigh number and the critical wave number.

In the previous simulation of IHL it was already tried to reach Ra, =10° and Pr=7
(see Schmidt et al. (1997)), but the periodic length (X, ,) was not enough to record all
the large scale structures. Therefore, during the present work a new DNS of IHL with
Ra, = 10° and Pr=7 has been performed. Here a larger domain size has been used

and the resolution has been adapted. This will be presented in the subsequent sec-

tion.
3.1.2 Rayleigh-Bénard convection (RBC)

Turbulent RBC occurs in a horizontal layer of fluid submitted to a gravity field, heated
from the bottom and cooled from the top (see figure 3-2). In this case the fluid layer is

unstably stratified throughout the height of the channel.

NN
T
gy Tw_r D
/ ”

Tlm.er
PN
Ky
/ T < Torar
 — 7, o

Fig. 3-2 Geometry as in TURBIT to describe Rayleigh-Bénard convection (RBC).
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The independent dimensionless numbers which characterize this physical problem

are the external Rayleigh number (RaE) and the Prandtl number (Pr). Another

. , . R
dependent dimensionless number is the Grashof number Gr = ;E . For Ra, less
r

than a critical value of about 1700 the fluid layers is at rest. At a higher Ra, slightly

greater than the critical value, steady laminar convection in the form of cells and rolls

occurs. Increase in Ra, causes the flow to become unsteady and complex (see e.g.
Clever and Busse (1974)). It is generally accepted that the flow is fully turbulent for

Ra, >10° at moderate Pr.

Krishnamurti (1970a, 1970b) had experimentally investigated this flow type for a wide
range of Pr and Ra,. She reported the occurrence of distinct transitions before the

flow becomes turbulent. Later on, Clever and Busse (1974, 1981) had carried out a
detailed theoretical study of this flow type even at low Pr. According to the authors,
transition from the steady convection to time-dependent convection depends strongly

on the wave-number of the structures.

Among the numerical studies, Grétzbach (1982b) had reported the first DNS of turbu-
lent RBC with air (Pr=0.71). He achieved Ra, =3.8x10° and presented a detailed

account of the structures which appear in this flow type. He compared the DNS data
with the experimental data of Deardorff and Willis (1967). He had also reported the

reversal in the mean temperature profile in the central region at low Ra,. This was
attributed to the coalescence of larger number of warm ‘blobs’ near the cold wall and

of cold ‘blobs’ near the warm wall. It was not observed at higher Ra, =3.8x10°. Af-

terwards, Eidson (1985) had performed a LES study of RBC up to Ra, =2.5x10°. In

this study, he used a modified version of the Smagorinsky model. He compared the
simulation results also with the experimental measurements of Deardorff and Willis
(1967).

At a later stage Domaradzki and Metcalfe (1988) had investigated the effect of shear
on turbulent RBC in a plane Couette flow with DNS. They found that at moderate

Ra,(~10,000 -50,000) shear tends to organize the flow into quasi-two dimensional
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rolls parallel to the mean flow which enhances the heat transfer. While at a higher
Ra,(>150,000), shear tends to disrupt the formation of convective plumes which re-

duces the heat transfer. Nieuwstadt (1990) in a review paper had discussed some of
the performed DNS and LES of free convection which also includes RBC. He con-
cluded that the modeling studies are quite successful in simulating the characteristic
features of these buoyant flow types. This is because of the fact that the large-scale
flow structures like rolls, cells or thermals can be accurately resolved. Later on,
Worner (1994) had carried out DNS of RBC with Pr=0.006 at Ra, =3,000, 6,000,

12,000 and 24,000.

Based on a DNS study of RBC with an aspect ratio (length/height) of 6:6:1, Kerr

(1996) had explained the transition from the soft to hard turbulence regime. He found
that in the hard turbulence regime Nu ~ Ra,”’". Kimmel and Domaradzki (2000) had
presented LES of RBC up to Ra, =10° based on an estimation model. According to

the authors, this approach is more accurate than the Smagorinsky model. Further,
they showed that it did not require any wall function for correct near wall behavior of

the flow. It has been observed that, at a lower Ra, the plumes are continuous. But
with the increase of Ra the plumes break up into smaller scales. Hartlep et al. (2003)
had reported diverse DNS of RBC up to Ra, =10" with Pr=0.7 and 7. They found

that the structures can be classified as large or small scale as a result of a gap in the

spatial spectra of the heat flux. Moreover, they showed that, with the increase of Ra,
the spectral gap is more pronounced. Recently, Oti¢ and Grétzbach (2004) have re-
ported a DNS of RBC with Ra, = 10° and Pr=0.025. They found that the tempera-
ture field even at this Ra, and Pr is considerably influenced by the conduction. They

used their data for intensive statistical analysis of closure terms and model develop-

ment.
In this section some of the important literature for IHL and RBC is discussed. The

dimensionless numbers which characterize these flow types are also presented.

Hereafter, instead of Ra, or Ra, they will be simply referred to as Ra.
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3.2 Description of DNS

3.2.1 Basic equations

In order to perform a DNS of IHL with Rz =10° and Pr =7 the TURBIT code is used
(see e.g. Grotzbach (1987), Woérner (1994) and others.). This solves the time-
dependent, three-dimensional conservation equations of mass, momentum and en-
ergy. The Boussinesq approximation is adopted. The non-dimensional form of these

equations are integrated over the mesh volume V' = Ax;Ax,Ax5, which results in the

volumetric average for any variable y,

Y- 1

7= i M, (0o s, 52)
1 2 3

Using the Gaussian theorem, the volume average of the partial derivatives is trans-

formed into a finite-difference form of the surface averaged values i;, where i de-
notes the index of the direction normal to the respective mesh cell surface

'F =V Ax; (Schumann (1973, 1975)),

& L{i;(x,- +&j_i;(’@ _ﬁﬂ =5,y (3:3)

Application of the operators (3.2) and (3.3) to the well known conservation equations

provides the following formulae,

S, u, =0
v— J
0 u, 1 Ou, Ou, = v .
7’+8;]”1”] —\/55] (ﬁxl + ax'/J—8i1p+8i3 iT—Trq ),i =123, (3.4)
j i
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In the above equation, §,, is the Kronecker delta which gives 1 if i =3 and 0 other-

wise. The averaged non-linear terms can be rewritten using the definitions implied by
the volume-averaging procedure. The averaging operator as explained in eqn (3.2),
splits the velocity and temperature into spatial averages directly resolved by the grid,

j_
uj,

T, with typical wavelengths larger than Ax; and into ‘sub-grid scale’ parts, not
resolved by the grid which are denoted by u; =u; —ju_j and T'=T-'T, respectively,
with typical wavelengths smaller than Ax;. Thus, using this operator one obtains a

formally identical expression as in egn (2.2) i.e.

_ i iy
uu; = u; utuu,

(3.5)

J J—im i

u,T =" u, T+ ujT'

The first term on the right hand side of eqn (3.5) represents the spatially resolvable
part of the instantaneous turbulent stresses and heat fluxes, respectively. The sec-
ond term represents the sub-grid scale (SGS) parts to be modeled. An important
point need to be noted that, unlike the common volume-averaging procedure without
application of Gaussian theorem, in the Schumann approach the sub-grid scale
fluxes are not averaged over the mesh cell volumes but over single surfaces of mesh
cells. This has an important advantage, to deal with anisotropic grids (Grétzbach
(1977)). The other advantage, in contrast to Leonard’s filtering procedure, no Leo-
nard terms, in other words, no cross correlations between sub-grid scale and re-
solved scale variables appear, because of the linear filter function; in addition it has

the advantage of Galilean invariance property (Speziale (1985)).
3.2.2 Turbulence assumptions for DNS

The unknown SGS stresses ju;u;. and heat fluxes ‘fu_;T' in the eqgn (3.5) are those,

which are not resolved by the grids. Thus they tend to zero if the resolution is high
enough or Ax; — 0. This is true in particular for the flows with low Ra, where the size
of smaller vortices are not much smaller than the channel width and hence can be
resolved better than that of flows with high Ra, where the size of vortices varies from

very large (comparable with the channel width) to a very small one. In DNS the SGS
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terms are neglected which means ju;u; =ju;.T’=O. As a result, the entire system of

eqgn (3.4) does not contain a single adjustable parameter except for problem-
identifying parameters Gr and Pr. Numerically, there exist open parameters that are
the domain size and the mesh width. It must be ensured that the mesh-width resolves
even the smallest relevant turbulence elements to justify neglecting the SGS-terms
and that the domain size records the largest turbulent scales (Grotzbach (1981,
1983)).

3.2.3 Boundary and initial conditions

Using the above assumptions in egn (3.4) results in a closed system of the five cou-
pled partial differential equations. These equations need to be solved for

u=(uy,u,,uy ), p and T . The no-slip conditions for the velocity field at both imperme-

able horizontal walls are used, i.e.

u(xq,xp,x3 =18) = u(xy,x5,x3 =2,t) =0.

For the temperature field in IHL equal wall temperatures are used i.e.

T(X1,.xZ,X3 :1,t) :T(X1,X2,X3 :2,t):O

In RBC,

T(xy,x,,x3 =1¢t)=1and T(x,,x,,x,=2,t)=0.

In the above description x; =1 indicates the lower wall and x; =2 indicates the up-

per wall.

The discretization of these boundary conditions in the convection term of the conser-
vation equations as given in egn (3.4) creates no serious problem as they fulfill on a
staggered grid these equations. On the other hand the viscous and thermal diffusion
terms require special care. The boundary conditions for the gradient of velocities for
the wall shear stresses, gradient of temperature for the wall heat fluxes are defined

as follows (from eqn (3.4)),
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In the above equations ‘I and ‘u’ stands for the lower and upper wall, respectively. As
the fine grid resolves the viscous and thermal boundary layer, the above operator can

be numerically calculated with first order finite difference approximations.

To simulate the convection in a fluid layer with a large horizontal extension, periodic

boundary conditions are used. Let us consider N, and N, are the number of mesh
cells in x, and x, directions, respectively. Assuming X,(i=12) as the size of the

computational domain along the horizontal directions x,(i = 1,2) which are defined as,

Xi=N; Ax,
X, =N, Ax,
Here Ax,, indicate the grid widths in the x,(i =1,2) direction. In the TURBIT code the

periodic boundary conditions are used along the horizontal directions for any variable

V.
VX1, Xy, X3 )=Y(x;+m X, x,+n X,, x5) With mneZ (3.6)

Where Z denotes the set of non-negative integer.

In order to perform a DNS of IHL with Ra =10° and Pr =7, the simulation results from
a similar problem with Ra =10% and Pr=7 at time ¢, =264.29 from Schmidt et al.

(1997) have been used as the initial condition. These results are interpolated to the
new grid. Such initial values are very close to realistic fields and need short comput-
ing time for redistribution and redevelopment of an equilibrium state. Also the IHL
with Ra =10® and Pr=7 has been further simulated starting with the results for this

case at time ¢, = 264.29.
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3.3 Selection of grid widths for a DNS of IHL and case specifications

The spatial discretization required for DNS is explained in Grotzbach (1981, 1983). In
case of IHL with Pr=7.0 the thickness of thermal boundary layers are smaller than
that of the viscous boundary layers. Hence, the vertical grid widths near the upper

and lower walls Ax should be adequate to resolve the thermal boundary

3, lower / upper
layers. With increasing Ra the thickness of upper and lower thermal boundary layers

decreases (see figure 3-10). Therefore Ax have to be accordingly reduced

3, lower / upper
to resolve the steep temperature gradients near the walls. According to Grétzbach
(1987) in order to record adequately the wall heat fluxes the allowable vertical grid

widths near the lower wall 7 and near the upper wall & are given by,

3,lower 3,upper

A A

and Ax, <h, =_D2 (3.7)

<h - =
3,lower — "'3,lower 3upper — "*3upper
3Nu,,,, “ P 3Nu

Ax
upper

The eqn (3.7) was deduced by discretizing the thermal boundary layers by three
nodes. To analyze closure terms, much finer grids near the walls may be required.

According to the same author the maximum allowable mean grid width

B = (Ax,Ax,Ax,)""® for an isotropic grid in IHL is given by,

K3

!

€

max

Ra
Re® Pr’Da’

(3.8)

0.25
h, =3.45[ J , With &'y = (Nu, — Nu,)

In eqn (3.8) €', indicates the maximum value of dissipation which is calculated near

the upper wall.

The grid widths of the DNS of IHL with different Ra and Pr =7 performed by Schmidt
et al. (1997) and in this thesis are shown in the figure 3-3. The lines indicate the

maximum allowable mean grid width 4, asin eqgn (3.8) and 4, and 4, asin

eqgn (3.7).
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Fig. 3-3 Plot of the grid widths for DNS of IHL with different Ra and Pr =7 (dx,is
used instead of Ax,).

The figure 3-3 also shows that all the selected grid widths are either smaller than or
equal to the corresponding limiting values except the maximum value of the grid

width Ax in the vertical direction. In contrast, Ax <h and Ax <h

3, max 3, lower 3, lower 3, lower 3, lower

indicate that the presence of more than 3 nodes in the thermal boundary layers close

to the lower and upper walls is achieved.

Table 1 shows the different cases of IHL which are explained in sub-section (3.2.3).

IHL Ra Pr X, 2/ﬁ Ax,, Ax Ny=N, | N, L final

3, lower / upper

INTE8 | 108 7 4 0.025 lower: 0.012 160 55 | 450.714
upper: 0.0057
INTE9 | 10° 7 4 0.0125 | lower: 0.008 320 77 | 361.86

upper: 0.0035

Table 1: Case specification of IHL.

Here, the node numbers N,, required at least in the x,, directions are:
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The node number N, required in the x, direction can be estimated for a non-

equidistant grid by starting with % from the walls and slowly increasing the

3.lower / upper
grid width up to 4, . The last column in table 1 shows the final non-dimensional time
up to which the simulations are performed starting from the corresponding initial data.
The DNS of IHL with Ra=10% and Pr =7 requires about 13 hours of computational
time on the Fujitsu/Siemens VPP5000 to proceed from ¢, =264.29 to ¢, ,= 450.714.

On the other hand, the DNS of IHL with Ra=10%and Pr=7 needs 37 hours of
computational time on the VPP5000 to proceed from ¢, =264.29 to ¢, ,=361.86.

Table 2 shows the DNS datasets of IHL and RBC which will be used in the subse-

quent sections and chapters.

Flow Type Ra Pr Source of the DNS data
RBC 10° 0.025 Oti¢, Grotzbach and
Worner (2005)
RBC 6.3x10° 0.71 Wérner (1994)
IHL 5x10%,107,108 7 Worner, Schmidt and
Grotzbach (1997)
IHL 10° 7 new simulation

Table 2. DNS datasets used in the analysis.

Some of the cases as mentioned in table 2 are discussed in the context of table 1.
The sources of the DNS datasets of IHL and RBC are given in the last column of this
table. These include the DNS data of RBC from Oti¢ et al. (2005) with liquid metal
Pr=0.025 and from Worner (1994 ) with a standard fluid like air Pr=0.71.

3.4 Statistical evaluation of DNS data

In the statistical analysis modules of the TURBIT code < > has been employed to

average the variables over the homogeneous horizontal planes and over time and
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( )"indicates their fluctuating parts. From application of these operators to any vari-

able y follows,
y=(r)+y".

Due to horizontal averaging, <y> and y" depend only onx,.

FlOW Ra Ntime tmax Ntav Atav

Type

RBC 10° 27,000 617.265 16 86.502
RBC 6.3x10° 5,200 204.425 20 20.155
IHL 5x10° 16,560 78.228 12 46.007
IHL 107 8,800 111.258 36 17.594
IHL 108 21,620 450.714 30 82.299
IHL 10° 21,560 360.01 11 40.903

Table 3. DNS Data used for the statistical evaluation

In table 3, N

time

is the number of time steps of the performed DNS within the final

time interval Az, up to the maximum time ¢, . N, is the number of time steps dis-

tav

tributed within the time interval Az, over which mean values have been taken. In the

analysis, physical variables at every analyzed time points are averaged over the hori-
zontal plane. In the time averaging these surface averaged quantities are averaged

over N, .

3.5 Validation of the new DNS of IHL

This section deals with the validation of the DNS of IHL with Ra=10° and Pr=7.
Only Nu is available from experiments for this set of parameters; there is no reliable
information regarding the mean temperature or any other turbulent quantities. There-
fore, the validation is based on the previous experience of this flow type at lower Ra
(Grotzbach (1982a) and (1987)). Considering these studies as the basis and the cri-
teria that are used, validation of the DNS of IHL has been carried out as follows.
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3.5.1 Time development

Starting with the initial data as explained, the time integration of IHL has been carried
out. This generates a restart-file which is further integrated in time until the flow be-

comes steady. During this procedure the time dependent integral quantities e.g. the

surface averaged heat fluxes close to the upper and lower walls 351 and 3§u, the

volume averaged (over complete channel) kinetic energy and temperature <E> and

<T> are obtained. These can be used to characterize the steady state of the flow

field.
*1E-3 —q,
4.5 q,
h/\—ﬁ\hﬁfw
3.0
X
=
I
(0]
T 1.5
- /\—/—/—/—/_—/—/w
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Fig. 3-4 Time development of the surface averaged wall heat fluxes evaluated from
the DNS data of IHL with Ra =10°.

Figures 3-4, 3-5 and 3-6 show the time development of the surface averaged wall
heat fluxes, the volume averaged total kinetic energy and temperature in IHL. In each
of these curves 843 values are plotted beginning at the time 264.29 and ending at
the time 361.86. Starting from the initial condition the development of the flow field is
represented by the sharp rise in the heat flux at the upper wall, kinetic energy, and a
small increase in temperature. After 1 ~ 270 the flow field tends towards the steady

state.
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Fig. 3-5 Time development of the volume averaged total kinetic energy evaluated
from the DNS data of IHL.
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Fig. 3-6 Time development of the volume averaged temperature of IHL.

In the figures 3-5 and 3-6, the slight increase in the volume averaged kinetic energy

and temperature with time (¢) indicates that for more accurate analyses the simula-

tion should be proceeded to achieve the accurate fully developed steady state.

This DNS of IHL was performed to develop and analyze an extended model for the

turbulent diffusion of £’ which will be discussed in the subsequent chapters. On the
other hand, the time development of the different characteristic integral quantities
shows that the flow field in this case has not yet fully reached the steady state. Fur-
ther simulation of this case was not possible during the course of the present work.
As a result, the available DNS data of IHL with Ra =10° and Pr=7.0 may not be

accurate enough for the statistical evaluation of the RANS model for the turbulent
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diffusion of E’. Hence, the existing DNS data of IHL at a lower Ra (107,108) at same
Pr will be used for the deduction and evaluation of the model for the turbulent diffu-

sion of E'.

3.5.2 Domain size for resolving the large scales

In order to investigate the domain size which is required to resolve the large scale
structures the two-point correlations of the velocity fluctuations are considered. These

correlations in the x, direction are defined as follows:

<i“_[i] (x1,x2,x3)iu_[i] (x1 +Ax1,x2,x3)>
Ry (Ax1) =

A_!2
< U (x1 X, X3 )>

[ ] indicates no Einstein-summation over ;.

1.00 -
y~ 0.75
n i
5
= 0.50 41
)
8 J
8 0.254
k=
o
[oN
& 0.004
S
'—
0.25 T T T T 1
0.0 0.5 1.0 1.5 2.0 2.5

Fig. 3-7 Two-point correlations R, of the velocity fluctuations in IHL at x, =1.52
(here'd' isusedinstead of A).

The figure 3-7 depicts that the two-point correlations near the mid-plane at x, =1.52

are very close to zero over a wide range in the x, direction up to half the periodic

length % This implies that the assigned periodic length X, =4(see Table 1) is

large enough to reach statistical independence within the different zones of the re-
corded flow volume. Therefore, the selected domain size X,, is considered as suffi-
cient.
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3.5.3 Vertical grid width for resolving the thermal boundary layers

= Nu atupper wall (DNS)

Nu atupper wall (Kulacki & Goldstein (1972))
4 Nu atlower wall (DNS)

Nu atlower wall (Kulacki & Goldstein (1972))
fffffffffff Linear fitto Nu atlower wall

50] .

1E5 1E6 1E7 1E8 1E9
Ra

Fig. 3-8 Nusselt number over Rayleigh number in IHL.
Figure 3-8 shows the comparison between the data analyzed from the DNS and the

experimental value of Nu represented by the correlations as in eqn (3.1) at the upper

and lower walls. The Nu analyzed from the DNS data of IHL with Ra=10° and
Pr =7 is in good agreement with the experimental value of Nu at the upper wall. This
indicates that the selected vertical grid resolution is sufficient for resolving the steep
temperature gradient near the upper wall. The linear fit (dotted line) of Nu at the
lower wall indicates the slight difference between the slopes of the experimental and
DNS analyzed values of Nu. The difference of about 8% between the DNS and the
experimental value of Nu at the lower wall may be attributed to the higher value of

Ax in comparison to #,, or that the Ax,, should really be somewhat smaller

3, max

than & __ and not only equal to %

max

(see figure 3-3). A third reason could be due to

max

the still not fully developed flow state.

3.5.4 Grid width for resolving the smallest scales

One of the important tools to analyze the adequacy of the grid resolution for the small
scale turbulent fluctuations for a DNS is the one-dimensional energy spectrum of the
turbulent fluctuations. The one-dimensional energy spectra of the different velocity

fluctuation components at x, =1.27 analyzed from the DNS data are shown in figure

3-9.
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Fig. 3-9  One-dimensional energy spectra of the different velocity fluctuations
evaluated from the data of IHL with Ra =10° at x, =1.27 with k, = 21/x, .

Here, k, is the wave-number in the x, direction. The figure 3-9 shows that most of

the energy of the different velocity fluctuations is associated with low wave numbers.
The anisotropy between the different velocity fluctuations can be observed except the
lowest wave number region close to the lower wall. This figure also reveals that at

higher wave-numbers the energy spectra of the velocity fluctuations are having a
slope ~ k1'7. In the highest wave-numbers the energy spectra of the velocity fluctua-

tions are even steeper. This indicates that the selected grid is fine enough to resolve

the smallest scales in IHL, because Isz(k)dk gives the maximum contribution to
0

the dissipation at E(k)~ k™ this integral converges for a steeper spectrum, i.e. with a
slope much steeper than k{3 it is expected that the dissipation scales are sufficiently

resolved. So far the experience shows that a slope ~ k1‘7 means that the small

scales are very well resolved (see e.g. Grotzbach (1987) for IHL with lowerRa ).
Thus, it can be excluded that the problem with Nu at the lower wall as in figure 3-8

may be due to large Ax,, values.

These investigations show that the present DNS is better than the previous DNS of

IHL with Ra =10°. It is not perfect, but for basic analysis of the principle behavior of

the different closure terms and of related turbulence models it should be applicable.
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3.6 DNS results for IHL and RBC
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Fig. 3-10  Vertical profiles of the time mean temperature <T> in IHL.

The time mean temperature profiles in IHL with water (Pr=7.0) and at different Ra
indicate that the thickness of the upper and lower thermal boundary layers decrease
with increasing Ra, see figure 3-10. Moreover, the thickness of the upper thermal
boundary layer is smaller than that of the lower thermal boundary layer. The maxi-
mum value of the mean temperature occurs near the edge of the upper boundary
layer. This thin upper boundary layer is unstably stratified and thus drives the turbu-
lent heat and momentum exchange. Whereas the rest of the region along the vertical
direction (downward) is stably stratified that attenuates the turbulent exchange.
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Fig. 3-11 Vertical profiles of the time mean temperature <T> in RBC.
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The time mean temperature profiles in RBC at different Ra and Pr show that the
fluid layer in RBC is unstably stratified as in figure 3-11. The thickness of thermal
boundary layers in RBC with liquid metal (Pr=0.025) are greater than that of RBC
with air (Pr=0.71). This indicates that the temperature field in RBC with liquid metal
is considerably influenced by conduction even at this large Ra . This can be attrib-
uted to the dominance of the large thermal conductivity in the thermal boundary layer
and due to the strong damping of the temperature fluctuations in low Pr flows. With
further increase of Ra, the vertical profile of the mean temperature in RBC with liquid

metal should move towards the profile in RBC with air.

Moreover, Gr in RBC with liquid metal is higher (Gr = 4x10°) than that of RBC with

air (Gr=9x105). The statistical features of the velocities including the scales are

comparable at about same value of Gr as shown in Woérner (1994). He referred it as
the Grashof analogy. Thus, the velocity scales in case of RBC with liquid metal are
smaller in comparison to RBC with air. This implies that the dissipation of turbulent
kinetic energy in the RBC with liquid metal will extend to higher wave-numbers in
comparison to RBC with air and therefore, finer grids are required in the liquid metal

case.

0.6

0.9
| —
1.0

Fig. 3-12 Vertical cut through the calculated temperature field in IHL with
Ra=10%and Pr=7 at x, =2.3438 and t = 361.86.

A snap-shot of the vertical cut of the calculated temperature field in IHL as in figure 3-
12 shows the cold fluid close to the upper and lower isothermal walls. The fluid which
is confined in between these layers has higher temperature. Due to the Rayleigh-
Taylor instability plumes are generated close to the upper wall. These plumes plunge

down from the unstable layer deeply into the stable layer.
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Fig. 3-13  Horizontal cut through the calculated temperature field in IHL with
Ra=10° and Pr=7 at x, =1.9483 and t = 361.86.

In the horizontal cut through the temperature field within the upper thermal boundary
layer at the same time in figure 3-13 it can be detected that the plumes form open
and closed cells. As the time progresses, new cells or parts of them are formed.
Smaller cells finally contract to knots. Some of the plumes have sufficient kinetic en-
ergy to reach even the lower stably stratified thermal boundary layer (see figure 3-
12). There they re-distribute along the horizontal direction close to the lower wall as a

result of continuity, later called “wall damping”.

The cell structures as shown in figure 3-13 can only be found in the upper third of the
channel including the upper thermal boundary layer. The critical wavelength of these
cell structures at Ra, is A, =n/ 2, see Tveitereid (1978). The experiments by Ku-
lacki and Goldstein (1972) and Jahn (1975) reveal that the largest scale of this type
of flow decrease with increasing Ra. Based on DNS investigation, Schimdt et al.
(1997) had shown that the size of the cells decreases with increasing Ra in IHL with
Pr=7.0. Therefore, this aspect can also be used as a qualitative validation of the
DNS of IHL.
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Fig. 3-14 Vertical cut of the calculated temperature field in RBC with

Ra=6.3x10° and Pr=0.71 at x, =7.5042 and t = 203.18.
l |
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Fig. 3-15 Horizontal cut of the calculated temperature field in RBC with

Ra=6.3x10° and Pr=0.71at x, =1.07 and t = 203.18.

A snap-shot of the vertical cut of the calculated temperature field in RBC of air as in
figure 3-14 shows the cold boundary layer near the upper wall and the hot boundary
layer near the lower wall. Hot plumes rise from the lower wall and cold plumes fall
from the upper wall. Both plunge into the opposite boundary layers. In this cut the

spatial arrangement does not indicate any regular horizontal structures.
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The horizontal cut of the instantaneous calculated temperature field which is close to
the lower wall is shown in figure 3-15 for the same time. This reveals the presence of
cellular structures. These are quite unlikely to be detectable at the mid-plane be-
cause of the interpenetration of the plumes coming from both boundary layers (see
Grotzbach (1990)). The knots indicate the upward rise of warm fluid and the relatively

calm region in between these knots indicates the downward fall of cold fluid which re-

distributes along the horizontal direction close to the lower wall.

The anisotropy between the RMS velocity fluctuations u,, = <u"2>1/2 = <(u —<u>)2>1/2

evaluated from the DNS data of IHL and RBC can be observed in figures 3-16 and 3-
17. The anisotropy between these RMS velocity fluctuations is attributed to both the
effect of buoyancy and presence of wall in both flow types.
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Fig. 3-16  Vertical profiles of the Root Mean Square (RMS) velocity fluctuations in

IHL with Ra =10°.
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Fig. 3-17 Vertical profiles of the Root Mean Square (RMS) velocity fluctuations in
RBC of air.
In IHL, most of the turbulent kinetic energy is produced in the vertical velocity com-
ponent away from the walls due to the effect of buoyancy (see figure 3-16). The
maximum in each of the horizontal components of the RMS values can be observed
close to the upper wall in this flow type. Further, there appear small extrusions in the
horizontal components close to the lower wall. These extrusions were not prominent
in the earlier studies of IHL with Pr=7.0 at lower Ra . With the increase of Ra these
extrusions may grow further in IHL. Both the presence of the maximum and the ex-
trusions indicate a considerable amount of energy transfer from the vertical velocity
component to the horizontal components close to the walls in IHL. This can be attrib-
uted to the pressure strain term in the transport equation for the auto-correlation of

the velocity fluctuations (see Grétzbach (1989)).

Similarly, in RBC of air there appear maxima close to the walls in each of the horizon-
tal velocity components. These can also be attributed to the energy transfer from the
vertical to the horizontal velocity components in this flow type. Perot and Moin (1995)
had given an explanation of this inter-component energy transfer close to the walls
based on a DNS investigation of the shear-free turbulent boundary layer. They con-
sider this event is due to the presence of a local region of stagnation that arises from

the fluid impinging on the boundary. This region influences the pressure strain term in
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the transport equation for auto-correlation which is responsible for the inter-

component energy transfer.

The RMS velocity fluctuations of the two horizontal components are not equal in
RBC, see figure 3-17. These differences are regarded as a result of the presence of
large scale roll structures which could be interpreted from the band-like arrangement
of the knots with rising warm fluid and of the more calm areas with down coming cold
fluids in figure 3-15. Presence of such structures was observed in Grotzbach (1990)
and more recently Hartlep et al. (2003) had described the classification of these

structures based on a spectral analysis.
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Fig. 3-18 Vertical profiles of (E”) (TKE) evaluated from the DNS data of IHL.
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Fig. 3-19  Vertical profiles of (E") (TKE) evaluated from the DNS data of RBC.
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The vertical profiles of <E"> evaluated from the DNS data of IHL as in figure 3-18

show the increase of the maximum value of (E”) with the increasing Ra. This in-

crease in the maximum value depicts a kind of transition regime. Whereas, after cer-

tain Ra the maximum value of <E”> is almost the same. However, presence of small

extrusions in the horizontal components of the RMS velocity fluctuations as in figure
3-16 indicates that the flow has not reached the fully turbulent regime in which the
distribution of statistical turbulence data is qualitatively independent from Ra . It can

be concluded from these observations that the flow is tending towards the fully turbu-

lent regime. On the contrary, in RBC with liquid metal higher values of <E”> in com-

parison to RBC with air are observed. These reveal both the regime in which the flow

is not fully turbulent and presence of the large scale structures in RBC with liquid

metal. Therefore, with further increase of Ra the values of <E”> in RBC with liquid

metal should move towards the values of <E”> in RBC with air.

Hereafter, for simplicity the standard notations for the mean (_) and fluctuations

components () of any variable are preserved in writing instead of () and ( ), re-

spectively. These are already used in several equations (see e.g. eqn (2.6)).

3.7 Analysis of the E' equation for IHL and RBC

This section deals with the analysis of the terms in the transport equation for E' (egn
(2.6)) in IHL and RBC based on the DNS data. Subsequently, the gradient-diffusion

model results and the DNS data of the turbulent diffusion of E’ (DEJ) will be com-

pared in both flow types.
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Fig. 3-20 Vertical profiles of the terms in the transport equation for E' (TKE) in
IHL with Ra =10°.
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Fig. 3-21 Vertical profiles of the terms in the transport equation for £' (TKE) in
RBC of air.

The terms in the transport equation for £’ (see eqn (2.6)) in IHL and RBC show their
different behavior in these flow types, see figures 3-20 and 3-21. In the present case
the flow types do not have any imposed mean flow, e.g. wind, as a result the mean

values of the velocities averaged over horizontal plane vanish. Therefore the flow
types are shear free. Thus, the production of E' (P, ) is exclusively due to the buoy-

ancy along ;=3 which is represented by the turbulent heat flux. In RBC this is al-
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ways positive, whereas in IHL it has even negative values in the strongly stably strati-

fied lower thermal boundary layer.

In RBC, dissipation (3) has the maxima close to the walls along j =3, where the
fluid layers are strongly unstably stratified. In IHL, this shows a monotonically in-
creasing tendency along j =3. In this case the maximum value is close to the upper

wall. The above figures depict that the criterion of local equilibrium between P, and

!

¢ is fulfilled only at certain points in both flow types but not in most areas along

j=3. In IHL the deviation from local equilibrium is strongly position dependent,

whereas in RBC it is widely constant in the inner part of the channel.

The molecular diffusion (DE,m) is not significant in the central region(~12 < x; <18)

in both flow types. In IHL it has the maximum close to the upper wall and has a small
contribution close to the lower wall. Whereas in RBC it has the maxima close to the

upper and lower walls.

The turbulent diffusion (DEJ) distributes £’ within different regions along j=3. The

negative values indicate the extraction and positive values indicate the supply of en-
ergy to the respective region. The above figures show that D;, is the balance be-
tween production and dissipation in the central region, not only that, it is quite signifi-
cant close to the upper and lower walls in both flow types. Therefore, it is concluded

that D, is very important in both flow types, and that it requires special attention.

Hereafter, D;, which consists of u3E’ and u;p" will be investigated. They are usu-

ally modeled together in the gradient-diffusion model as given in eqn (2.7) (see e.g.
Launder and Spalding (1972)).
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Fig. 3-22 Vertical profiles of D, and its model analyzed from the DNS data of
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Fig. 3-23 Vertical profiles of D, and its model analyzed from the DNS data of
RBC of air.

Figures 3-22 and 3-23 show the comparisons between D, , and its gradient-diffusion

model according to Launder and Spalding (1972) as in eqn (2.7), along j =3 in IHL

and RBC. These depict that the gradient-diffusion model for D, is not adequate in

these flow types and its improvement is inevitable. This deficiency is considerable in
RBC, but it is completely unacceptable in IHL. This can be regarded as one of the
reasons that the standard E' — ¢’ type RANS model fails completely as it was already
experienced by Dinh and Nourgaliev (1997) to describe such thermally stratified flow
types like IHL.
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Fig. 3-25 Vertical profile of the closure terms of D, analyzed from the DNS data

of RBC of air.

The gradient-diffusion model for D,, assumes that u’;p" and u’;E’ can be modeled

together. On the contrary, figures 3-24 and 3-25 show their different behavior and

importance in IHL and RBC along j =3. These figures also reveal that ujp’ is sig-

nificant close to the upper and lower walls in both flow types. This is due to decelera-

tion or acceleration of the upward and downward moving plumes in these flow types

(see Grotzbach (1982a) and Waorner and Grotzbach (1998)). In IHL u3E’ have larger

values away from the walls, whereas in RBC the values are lower than that of u;p’.
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In D, not the size of the terms as given in figures 3-24 and 3-25 is of interest but

their vertical derivative; but this will behave similarly. This means, the contributions of
both correlations in the flow types is even qualitatively quite different. Based on a

DNS study of the effects of shear on turbulent RBC, Domaradzki and Metcalfe (1988)
had also explained the importance of u;p'. They indicated towards a need of careful

modeling of this term. Considering these studies, in the next chapter an extended

version of the gradient-diffusion model for D, will be derived.
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4 Mathematical modeling of D,

In this chapter extended versions of the existing gradient diffusion model for the tur-
bulent diffusion of E’ (Dg,) will be deduced. The development will be based on the

DNS data of IHL and RBC.
4.1 Modeling approach

One approximation for linking the two contributions to D, was developed by Lumley

(1978). He showed that —u/; p’ :%u}E’ holds in homogeneous turbulence. DNS ana-

lyzed values of D, in RBC indicate that apart from the thermal boundary layers D,

is roughly constant, which indicates towards homogeneous turbulent energy transfer,

see figure 3-21. However, in the case of IHL the vertical distribution of D, is

strongly non-constant, so that the turbulent energy transfer is hardly locally homoge-
neous between the walls, see figure 3-20. This may explain why this Lumley (1978)
approximation holds only at certain height points in this flow type. It has already been

explained that the gradient-diffusion model for D,, as in eqn (2.7) assumes that

u;p' and ﬁ can be modeled together. On the other hand, figures 3-24 and 3-25
reveal that ﬁ is having higher importance in comparison to W in most of the
central region (=125 < x, <18) in IHL. Whereas W is the dominant term in RBC, in
contrast to the approximation by Lumley. Further, m is significant close to the

walls in both flow types. This different behavior and importance of «’£E" and u;p’ in

IHL and RBC were already reported and explained by the differences in the driving

mechanisms by e.g. Woérner and Grotzbach (1998). Therefore, in the present study

uE" and u’;,p" are modeled separately. Afterwards these models will be joined. This
results in an extended RANS model 1 for D, ,. Using this strategy also an extended

RANS model 2 for D, will be obtained. These models for D, include both effects

of buoyancy and of u;p".
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In order to obtain the separate RANS models for »;E" and u’p" the following as-

sumptions are used:

The flow types are horizontally homogeneous and there is no mean

flow so that the flows are shear free. In this study, x,, indicates the

horizontal and x, is the vertical direction.

The cross-correlations of the velocity fluctuations are smaller than

their auto-correlations i.e. u/u’; << u}z for i+ j, withi,j=12,3.

4.2 Derivation of a RANS model for u_’,.E’

Additionally, following strategy and assumptions are employed to derive the RANS

model for u’,.E’:

Starting point for the model development is a non-dimensional form

of the transport equation for u’ £’ .

In the transport equation for »’; £’ some of the closure terms are ap-

proximated according to the available literature.

- o)’
Following Weinstock (1989) u/,

~ E'ai is used with a coeffi-

ij 8xj

cient of magnitude greater than or equal to 1. Following this author,
this approximation is also applicable in case of horizontally homoge-
neous fluid layer. It has been used in the present work to obtain a

simplified extension of the gradient-diffusion approximation.

Considering F:%uf , the non-dimensional form of the transport equation for £’

(see Hanjali¢ and Launder (1972) and Moeng and Wyngaard (1989)) is as follows,
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In egn (4.1) all terms except the convection and the production due to Reynolds
stresses and its gradient are the closure terms. In the present case, both flow types
are shear free. Therefore, the convection and production due to mean shear vanish,

i.e.

—Ou'E' ou . Ou.
u,— :O=E’u,'—’+u;ui'ul’i. (4.1a)
0ox, ox, ox,

The contribution of buoyancy Rjzap (E'T'+u;2T’) 3,5 is non-zero only along j=3.
e r ’ ’

The turbulent diffusion of u’,E” consists of the pressure and turbulent transport,

Turbulent diffusion of u/E' = —%(u;ul’E' +putud, )
!

6, denotes the Kronecker delta. The fourth-order velocity fluctuation correlations in

the turbulent transport are approximated according to Millionshtchikov (1941) i.e. that

when the triple-correlations are small and their distribution do not differ substantially
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from those of a Gaussian one, the fourth-order correlations may be approximated in

terms of second-order correlations, which is as follows,

! ! ! ’ ’ ! ’ ! ! ! ! ’ ’ ’ ’ !
uuu g (u,.u_/Xuku,)+ (uiuquju,)—i- (uiu,Xukuj). (4.2)

The proof of this simplification of the fourth-order correlations in terms of the second-

order correlations is available in Monin and Yaglom (1971).

Using the above relation gives,

r!r2~(!r !2+2!!er)
w'uu!” = \uu', fu] uju' Nujuj).

Considering uju, <<u'? or uju] <<u;® for i#1# j, with i,j,/=1,2,3 results in,

- ou'u' —ouul ou'u E' —c%z? E'
{u.’u', ulul +E’ J l}_[ J ! Jz_u'? J 6 _u!'z aE 8 . (42a)

1 1
" ox, ox, ox, oox, 7 ox,

2. 1 1
The molecular diffusion Ri{ 3 v } can be neglected at high Re. Following the ap-
e X,

proach of Hanjali¢ and Launder (1972) and Weinstock (1989), the pressure contribu-
tion is modeled as in Rotta (1951); the dissipation term is approximated with Zeman

and Lumley (1976) model. These results in,

" Ou' ' ou'; ' ou'u; u'E'
- 2u'; Ou; Ou, +u; Ou; Sy |1 cE'aL—p' 7 a~—C .
Re ox; Ox; ox; Ox; ox 0x; T (4.3)

Dissipation Pressure contribution

¢

!

Here, C} is a coefficient and t isatime scale,t=:’, a coefficient ¢ is introduced to
&

—5 0u op' op' . . o ,
account for u’, +E' ~cE' in accordance with the approximation as in

4 ij ij 8xj

Weinstock (1989). Following this author, this is also applicable in horizontal homoge-
neous fluid layer. This simplification may also satisfy a criterion of the above ap-

proximation, that the magnitude of the pressure contribution is greater than that of
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the dissipation term as in eqn (4.3). However, the proof of this is not available at pre-
sent. The right hand side of this equation is known as the relaxation term i.e. triple-

correlation divided by the time scale (see e.g. Lumley et al. (1978)).

Buoyancy (E’T'+u}2T’)8j3 acts along the vertical direction which results in strong
anisotropy between the vertical and horizontal components of the velocity fluctua-

tions. The figures 3-16 and 3-18 indicate that most of the turbulent kinetic energy E'
is produced in the vertical component of the velocity fluctuations. Thus, it can be con-

cluded that the buoyancy term may be simplified to,

(BT T o5 ~ 2077 5. (4.4)

Eqn (4.4) further reduces the number of unknowns that appear in the transport equa-

tion for uE" as given in eqn (4.1). This assumption may not be sufficient in case of

RBC. In the present case, the priority to achieve a better modeling for IHL is higher
than RBC.

! !’

Considering fully developed flow, that means the steady state i.e. L;’t =0, using

', <<u'? or uluj <<u® for i=I# j, with i,j,/=12,3 and introducing eqn (4.1a),

(4.2a) and (4.4) in egn (4.1) gives,

E' R o op'u;
0~ —u'jz 0 5+ 2a (ZM}ZT') 03— PY
ox; Re“ Pr

" ou! " ou, ' ou'?
i 21/{; aul 6”1 _I_ul( aul J —I¢E' ap _pr J i
Re Ox; Ox; Ox; Ox; Ox 0ox;

Introducing the sink term model from eqn (4.3) in the above equation one obtains,

-7 112 o

2 OE' Ra ( 2 ) op'u’ u' E
—u', S5, + 2u'°T") 8 ., — 5, -C/—L—.
7 ox, " Re*pr ‘"’ 72 ox, "1 ' 1

0=
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!

Rearrangement of the above equation and t :i’ (see e.g. Launder et al. (1975) re-
€

sults in results in the required model for the triple-correlation,

e - 112
— E'| —30E' Ra 2 op'u;
WpE = Oy = S 12 B T s - S s, L (45)
’ 8' ax, ’ Re P]/' [ axl
R Buoyancy | —
Grad. Approx. Press. Transport

Here C; z% is a coefficient with 0.04 <C, <017 (see figures B-3 and B-4 in Ap-
1

pendix B). The range of this coefficient is expected to reduce in IHL with a very high

Ra as a result of homogeneity away from the walls as in RBC along the vertical di-
rection. Eqn (4.5) is a new RANS model for £’ . In this model, the first term can be
regarded as an anisotropic form of the gradient-diffusion approximation for u’E’

which includes the velocity fluctuations. The second term is the buoyancy contribu-

tion which is non-zero along j =3. The last term is the pressure-transport. All three
still contain closure terms. These will be approximated or discussed in the sections

4.4 and 4.5. Thus, this RANS model for ﬁ as in egn (4.5) compared to the stan-
dard model by Launder (1989) has two additional terms along with an anisotropic

form of the gradient-diffusion approximation for u'E’.
4.3 A modified RANS model for u’ p’

In order to obtain a modified RANS model for u’;p", this correlation is represented as

in Donaldson (1969), which is as follows,

T | 72 aru;
!

According to this author the RANS model as in eqgn (4.6) is a redistribution term.

Here, C, is a coefficient and / is a length scale.
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Using the Rotta (1951) dissipation model for high Reynolds number flows, / is de-
o - —;3/2
fined as a function of E' and ¢’ i.e. [ =———. Daly and Harlow (1970) indicates that

; .

€

C; is a function of the turbulent Reynolds number Re, (see Appendix A for the verti-

cal profiles) which is usually employed in the near-wall damping functions. Worner et

al. (1997) had found that some of the model coefficients for the closure terms in the

transport equations for E' and turbulent heat fluxes have to be increased by a large

&

factor in IHL. Based on these observations and figure B-1 in Appendix B, C; = P
et

has been introduced here with a=0.8. In this approximation C, is a positive coeffi-

cient. Moreover, using wuu’; << u}z for 1#j=12,3 in eqn (4.6) results in the re-

quired modified RANS model for u’.p’ which is as follows,

—2 4 2
"ot C E' ou;
u,p =- 2 [ = - }Sﬂ- (4.7)

It is possible to calculate the coefficients C, and C,, which are involved in the above

RANS models (see eqgn (4.5) and (4.7)) using the DNS data. The vertical profiles of
these coefficients in IHL and RBC are given in the Appendix B (see figures B-3 to B-

6). 1.5<C, <7 is used in the present work.

In flow types like RBC, where the contribution of u'E’ to D,, is small, a better model
for the derivative of u,p" which appears in D,, may be needed. Therefore, another

way to model the derivative of u;p’ is explained in the Appendix C.

4.4 RANS model for D,

In accordance with the sub-section 4.1, the separate RANS models for uA'],E' and

u’;p" have been presented. The RANS model for the terms appearing in D, , is de-

rived by adding eqn (4.5) and (4.7), which is as follows,
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u,E' +u'p'~

E—0F E R Fopu’  C, [E o
-Ci=u;"—06,+2C,=——u"TS; -C,= 4 8, — 2| — 0, | (4.8a)

g 0X, e’ Re® Pr g ox Re!| & ox

Grad.Approx. Buoyancy term Pressure term

. . . . R .
In this RANS model for D, using the present scaling results in 7 26; =1. This

e r

model for D;, includes the contribution of buoyancy and a higher-order pressure

term. The first and last term in the RHS of eqn (4.8a) without their coefficients indi-
cates to follow the approximation as in eqn (4.2). The Einstein-summation is not ap-

plicable to the index ; which appears also in the LHS of eqn (4.8a).
4.4.1 Analysis of buoyancy and higher-order pressure term

In the RANS model for D,, as in eqn (4.8a) the buoyancy term and the pressure

term need to be modeled. Among these terms, the pressure term is problematic. Its
importance and behavior in IHL and RBC are supposed to be different due to the dif-
ferent mechanisms in IHL and RBC leading to pressure and velocity fluctuations (see
e.g. Woérner and Groétzbach (1998)). Such higher order correlations between pressure

and velocity fluctuations are not very well understood in both flow types.
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Fig. 4-1 Vertical profiles of the terms in RANS model as in eqn (4.8a) evaluated
from the DNS data of IHL with Ra =107, C, =0.17.
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Fig. 4-2 Vertical profiles of the terms in RANS model as in eqn (4.8a) evaluated
from the DNS data of RBC of air, C, =0.08.

In order to understand the importance of the buoyancy term and the pressure term in
the modeling of D, their contributions to u.;.E'—IrW (terms appearing in D, ) are
analyzed from the DNS data of IHL and RBC along ;j =3 as in figures 4-1 and 4-2.

The results indicate that the buoyancy term and the pressure term have different na-

ture in IHL and RBC. These also reveal the small contribution of the pressure term to

usE'+u’,p" in IHL. On the other hand, the pressure-term is not negligible in RBC. In
the present work the primary goal is to obtain a RANS model for D, , in IHL. Since

there is no reliable model available at present for the pressure term, it will be ne-

112

Al Pl '
glected in the final form of RANS model for D, i.e. —C1£, ];u-’ 6, will be set to
€ X,
zero in eqn (4.8a) which results in,
—  F30F F Ra 7. G [E 0uf
WE +u p~-C2uw? 5 vo0,= 9 iy o2\ 2 T 05 L
J iP 18' J ax, J 18' RezPr J Jj3 Re®| & axl J (4.8b)

Buoyancy term

112

o'
As a result of neglecting —C1=,%8ﬂ some deviations between D, , and its
€ X,

modeled values may be expected in RBC.
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4.4.2 Modeling of the buoyancy term

The buoyancy term as in eqn (4.8b) contains the unknown u;zT' which can be mod-

eled as follows:
4.4.2.1 Daly and Harlow approximation

Using the Daly and Harlow (1970) approximation and introducing the assumption

ul'u; << u}z for i+ j=1,2,3 results in,

Oox ; 8xj

20 E' Tau}T' ﬁa”}z
W T e =Cy = 2u)f T | (4.9a)

Here, C, is a coefficient. In most of the literature the values of this coefficient are as-

sumed to be constant. On the contrary, Dol et al. (1997) had shown that this coeffi-
cient is not a constant in a buoyant flow type. Whereas, Woérner et al. (1997) had
found that some of the model coefficients have to be increased by about a factor of
100 in IHL that means, the model needs improvement. There are indications in litera-
ture e.g. in Daly and Harlow (1970) that this coefficient may depend on the turbulent

Reynolds number Re,. Thus, instead of using the above values it is assumed that

also this coefficient depends on Re, which results in,

—ou'T" ——ou’
— L (4.9b)

E’
u;ZT'z—Cé(Re,): 21/1;2 j
' g boox, : Ox

Here Cé(Ret) represents a function of Re,. Based on the observation in egn (4.7)

which also satisfies the finding of Worner et al. (1997), this coefficient will be treated
in an analogous manner. This will be directly tested along with the complete RANS

model for D,, (see e.g. eqn (4.14)). In order to differentiate between eqn (4.9a) and

eqgn (4.9b) in writing, they will be referred to as Daly and Harlow (DH) model for u}ZT'

and variable Daly and Harlow (VDH) model for u.;.ZT’, respectively.
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4.4.2.2 Daly and Harlow Extended approximation

According to an assessment by Dol et al. (1997), the DH model for u;zT' needs im-

provement. This section deals with an extended version of the DH model. It can be

observed from eqn (4.8b) that the buoyancy term is non-zero only along j =3, ac-

cordingly «4°T" will be discussed.

4.4.2.21 Analysis of the transport equation for ung’

In order to investigate ung’ in more details, the terms in the transport equation for

u'32T' as given in Dol (1998) are analyzed using the DNS data of IHL and RBC.

Based on this analysis an extended version of the DH model for ung’ is presented.

This model is referred to as the Daly and Harlow Extended (DHE) model for ung'.

The non-dimensional form of the transport equation for ung' is as follows,

6ué2T' _ u—aung' N
ot o,

us 1/l3T
)Ck axk

(7 oup T’ oy Ougzu J
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axk axk 6xk Re“ Pr
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(4.10)

Pressure terms (P)
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Using the scaling as in section (2.1) results in Re =+/Gr and Iza =1. In this equa-

Re® Pr
tion all the terms other than the convection and the production due to Reynolds

stresses and turbulent heat fluxes are the closure terms. In the absence of mean

shear the production is only due to the mean temperature gradient (ProT).
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Fig. 4-3  Vertical profiles of the terms in the transport equation for ung’ in IHL with

Ra=10".
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Fig. 4-4 Vertical profiles of the terms in the transport equation for ung' in RBC of
air.

The DH model for ugZT’ as in eqn (4.9a) can be derived by using the production by

the Reynolds stresses and turbulent heat fluxes (ProS), the turbulent transport
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(TurbT) and the dissipation terms (D). On the other hand, there are additional terms
which can be important in the different flow types. Therefore, all the terms in egn

(4.10) which remain at the steady state will be analyzed.
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Fig. 4-5  Vertical profiles of some of the terms in the transport equation for ung' in
IHL with Ra =10".
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Fig. 4-6 Vertical profiles of some of the terms in the transport equation for u’32T'
in RBC of air.

A software package has been developed and implemented in the analyzing program

of the TURBIT code to analyze all terms in eqn (4.10). The vertical profiles of the

terms in the transport equation for ung' analyzed from the DNS data of IHL and

RBC are shown in figures 4-3 and 4-4. These also include the budget or out of bal-
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ance of this equation which is calculated using all terms. This term is smaller in com-

parison to most of the terms. There is a second form of the transport equation u'32T'

in literature which is deduced by Sander (1998). The values of the out of balance
term calculated from his equation are found to be considerably larger than that of the
out of balance term as calculated using the equation by Dol (1998). This could indi-
cate to a formal problem in the equation by Sander (1998) especially in the molecular

and dissipative terms.

Some of the terms in this transport equation which are having smaller values are
shown in separate figures 4-5 and 4-6 for both flow types again. These show that
none of the terms can simply be classified in both flow types e.g. the production due
to the Reynolds stresses and heat fluxes has both positive as well as negative signs
in RBC and the dissipation terms are not everywhere positive. The natures of these
terms in the flow types depend on the gradients which are involved therein. The clas-

sification of these terms is only formal and not based on their real action. As the

terms have different nature in these flow types, in the modeling of u4°T" it is difficult

to consider the aspect of local equilibrium. The only practical way to model ugZT’ is to

identify the terms which may have higher importance. The production due to Rey-
nolds stresses and turbulent heat fluxes (ProS) and the turbulent transport (TurbT)
have higher significance in RBC than in IHL. The production due to the temperature
gradient (ProT) is important close to the walls due to the increase of the temperature
gradient with increasing Ra in both flow types (see figures 3-10 and 3-11). The con-
tribution of the buoyancy term (ProB) is comparable to the dissipative terms (D) in
IHL. The higher values of the pressure-transport (Dput) and of the pressure-strain
(Pdut) close to the walls in RBC can be accounted to the presence of a local region
of high values of the pressure fluctuations as well as the turbulent heat flux close to
the walls. The molecular terms (M) need attention close to the walls due to the pres-

ence of strong viscous effects. The appearance of Pr in the denominator of the mo-

lecular terms of ung’ and dissipative terms shows that their contribution will be en-

hanced in the liquid metal case (see eqn (4.10)). Therefore, these observations indi-
cate that in addition to the production due to Reynolds stresses (ProS), turbulent

transport (TurbT) and dissipative terms (D), the production due to the temperature
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gradient (ProT), buoyancy contribution (ProB) and molecular terms (M) need to be

included in a model for ung’ .

4.4.2.2.2 Modeling of u}°T"

!’

In order to obtain the RANS model for ung’ the transport equation for u32T' as given

in egn (4.10) has been used in which the following assumptions are employed,

The fluid layers are horizontally homogeneous.

- As the flow types are shear free, convection and production due to

mean shear vanish in eqn (4.10).

- The cross-correlations of the velocity fluctuations are smaller than

their auto-correlations i.e. u/u); << u}z for i+ j, with i,7=12,3.

- Following a similar approach as in Hanjali¢ and Launder (1972) the
pressure term (P) is modeled as in Rotta (1951) and the Dissipative
terms (D) in eqn (4.10) is modeled as in Zeman and Lumley (1976)
as a relaxation term (see e.g. Lumley et al. (1978)) which is as fol-

lows,

uézT'

P-D=~-C ,with C as a coefficeint.

T

!

Here, 1= g is the typical turbulence time scale.
€

- The higher-order correlation in the turbulent transport TurbT in egn
(4.10) is modeled with the Millionshtchikov (1941) approximation as
in Hanjali¢ and Launder (1972); see e.g. eqn (4.2).

- As a first extension, the contribution of buoyancy ProB and produc-

tion due to temperature gradient ProT as in eqn (4.10) will be intro-
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duced analogous to the turbulent diffusion of the temperature vari-
ance as in Dol et al. (1999)).

- Considering high Re and moderate Pr the molecular terms (M) are

not considered.

Assuming fully developed convection in the steady state and introducing the above

assumptions as explained in eqn (4.10) results in,

_ar_z—v! 0 r2 A !2T!
0~ 22 Wl s | 3 OT o Ra (e ot T
0x,4 X5 [ Re® Pr T

Rearranging the above equation gives,

usT' | (4.11)

E'l —70uiT"  —— us’ T R
ul?T' ~—Cj = | 2u}? YTy u,T' Yy uy’ or _ _2a
g’ Ox, Ox,4 0Ox, Re” Pr

Here, C,, ~% is a coefficient. Analogous to the results of Dol et al. (1997) and

Woérner et al. (1997) and considering figure B-2 in Appendix B it is concluded that

Ce z% with B~ 0.52 and Cyy = 0.25 (see figures B-7 and B-8 in Appendix B) will
e

t

be used in the present work. The DH model as in eqn (4.9a) contains only the first

two terms on the rhs of eqn (4.11). The DHE model for ugZT’ as in egn (4.11) also

includes the production due to the mean temperature gradient and the contribution of

buoyancy. In this model the last two terms involves higher-order correlations E and

uyT'? . These are the closure terms in this model for ung’. One of the other closure

terms namely u;f* may be modeled according to Launder (1989) as in eqn (4.16). An

improved model for u,T'> has been derived by Oti¢ et al. (2005) as given in egn

(2.10). Before application of the Oti¢ model for u.7'? to the DHE model for u4°T" its

behavior should first be investigated and validated in IHL.
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4.4.3 Extended RANS model 1 for D,

Using the VDH model for u;zT’ as in eqn (4.9b) in eqgn (4.8b) and taking the partial

derivative with respect to x, gives,

—E ) '}~—{—c1 St }
X X X,
— — T 2
(E') Ra E'| —zo0uT" ——ou]
5 2C1CG[QJR62PVQ{2% Ox; rul Ox; Ot (4.12)
ox — 2
J "\—| ou’
+C§[£]E{ ! JS P
g’ ox,

C, .
2_ s used. In egn
Re?

t

Here the formulation as already introduced with eqn (4.7), C, =

(4.12) there appear several unknown coefficients. The number of these coefficients

should be reduced for practical applications. Since, Cy is a function of Re, it implies

2C,Cy = f(Re,). Therefore, let us consider that there exists a coefficient C/ such

that 2C,Cy ~ C, = f(Re,) ~ Cj. This coupling between the VDH model for «/*T" as in

eqgn (4.9b) with the modified model u’; p" as in eqn (4.7) may also compensate some

of the deficiencies in the VDH model for ufT' due to the dominant nature of u’ p’;

see e.qg. figures 3-24 and 3-25 in certain regions in both flow types. Using the coeffi-

cient C, inthe RANS model as in eqn (4.12) results in,

0 AN 0 F ,28?
aqu +ujp}za{—(]1:u. — j/}

j j g ox,
SIS ) I Pl (s Ly
Ox; Ref\ &' )|Re”* Prg'| ' ox, T ox, 72 x, |

The Einstein-summation is not applicable to the index ; which appears both in the

lhs and rhs of eqn (4.13). Here, C, is a coefficient. These simplifications can be re-

67



garded as the constraints in the extended RANS model for D, , as given in egn

(4.13). In this RANS model, the effect of buoyancy and u;p’ have been introduced.
For comparison, the simple gradient-diffusion model for D,, as explained in eqn

(2.7) is as follows,

v, OF'

Gy Ox;

u}E’+u;p'z—( },Withj:’|,2,3.

Considering the simple gradient-diffusion approximation for D, and the extended
RANS model for D, as in eqn (4.13) reveals the additional contribution in the ex-
tended RANS model for D;, and how the anisotropy of the fluctuation field is intro-

duced here.

A simplified version of the extended RANS model for D, , has been deduced and

validated by Chandra and Groétzbach (2005). In this model the contribution of u_;.zT’
was not introduced. Therefore, the extended RANS model for D, as given in eqgn

(4.13) is expected to be more accurate in thermally stratified flow types.

Not only in RANS but also in LES the gradient-diffusion model for D, , requires im-

provement for investigating the buoyant flow types (e.g. Moeng and Wyngaard
(1989)). The results of this work can also be used to deduce improved sub-grid scale
(SGS) models in that case, that the variables in the LES are defined by linear filter
variables. This holds for the common volume integration to deduce the equations for
the resolved scales. These equations look formally identical to the RANS equations,
and so are also the models very similar. The main difference between a RANS model
and SGS model is typical the different length and time scales. So, to get a SGS ver-
sion of the deduced model, one has mainly to consider adapting these scales to their
SGS character.

The eqn (4.13) shows that the contribution of buoyancy is non-zero only along j=3.

Considering the horizontally homogeneous fluid layers like IHL and RBC one obtains,
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Ox, Ox, g' 8x3
Grad. Approx. (4 . 1 4)

C E°l [ — rTr 2 ) 2
_i p E: Rza E: 2”:'52 6“3 rTlau:i +E' au?: )
Ox; Re \ &' || Re” Pr ¢ Ox4 Ox, Ox4

The applications of the RANS model for D, as given in eqn (4.14) require an addi-

o

tional transport equation for u;“. In other words, this model extends the E'-¢

model to a E'—¢'—u4? model which is a 3-equation model.

The transport equation for uéz (see e.g. Launder et al. (1975)) in a non-dimensional

form is as follows,

oul’  —oul? ——Ou, | —— 0 - oul
S pu, —2 = =2 ulul = |+ 2ul T ———\ulul® + 2ul p's,, |+ 2p'—=
ot ox, ox, ox, Ox,4
%/_/
Convection P, Dy, I,

(4.15)

1 %uy® 2 (ou
\/Gr ka JGr ox,
Dy, Py

In order to obtain the non-dimensional form of the transport equation for uéz the scal-

ing as explained in section (2.1) is used. In eqn (4.15) P, is the production of E
due to the mean shear and turbulent heat flux (buoyancy), D,, is its turbulent diffu-
sion, I1; is its pressure strain or a redistribution term, D, is its molecular diffusion
and g is its dissipation. In this equation except the convection and D, all are clo-

sure terms.

The information on the closure assumptions should be well known because ugz is

just one component of the shear stresses from a full-second order Reynolds stress

model. In order to calculate P, the closure assumptions of the actually used turbu-
lence models have to be applied, in the £'—¢’ model e.g. as in eqn (2.4). The veloc-
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ity fluctuation triple-correlation term in D,, can be modeled with the anisotropic-

gradient diffusion approximation as in Launder (1989) which is as follows,

T 12
112 ~-C ﬁg 81/13
uuy” =~ —=C ujuy = :

g'| Ox,

Considering Tu;<<E for i# j, with i,j =123 the above model can be further

reduced to only one component. This is as follows,

3 2 E'| ouy’
ul® zCuu32:{ “s J (4.16)

The velocity-pressure fluctuation correlation term in D;, can be modeled either with
the Durbin (1991) approach or by using j =3 in eqn (4.7) which is recommended

here for consistency.

I1, is generally approximated with the return to isotropy model by Rotta (1951) which

is as follows,

raué g 12 2_/
p o, R ,( 3 73 j ( )

Here, C, =0.326 (as in Rotta (1951)) is a coefficient. An extended version of this
Rotta model for IT, which also include e.g. the production term P,, is explained in

Launder (1989).

At high Re numbers g as in eqn (4.15) can be calculated by considering the follow-

ing isotropic form, see e.g. Sander (1998),

el zgg. (4.18)
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The above approximations close the transport equation for ; Consequently, the

extended RANS model for D,, as given in eqn (4.14) can be computed in the

framework of the E'—¢'—u4°* model.

If the turbulent heat flux in P, is calculated using the ASM model from eqgn (2.5),

which is according to the current understanding in the turbulence modeling commu-

nity for buoyant flow a necessity, then the F—?—uéz model further extends to a

E'—g —u}’ — 7" model which is a 4-equation ASM model.

4.4.4 Extended RANS model 2 for D,

To derive the extended RANS model 1 for D,, the VDH model for «/°T" as in eqn

(4.9b) was used in eqn (4.8b). In order to obtain the extended RANS model 2 for D,

the DHE model for ung' as given in eqn (4.11) is introduced in eqn (4.8b) for ;=3

which results in,

el 112
BRI T REP e | o ey ey CREP
t

Cy E' Ra E' o2 OusT’ ——ouy” —50T , Ra (_ ) " (4.19)
Ox,4 Ox,4 0,4 Re® Pr
T2 a2
N C, E_ 8u32
Re | &' Ox,

t

Taking the derivative of eqn (4.19) along j =3 gives,
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The eqn (4.20) is the extended RANS model 2 for D,,. The coefficients which ap-

pear in this model have already been explained in section 4.2, 4.3 and in 4.4.2.2.2
(see also Appendix B). It can be observed that also here the additional transport
equation for E is required which is already given in sub-section 4.4.3. This model
includes two additional closures E and ué? The closure term E can be mod-
eled by an anisotropic gradient diffusion approximation as in egn (4.16).The closure

term u,T'? occurred already in eqn (4.11). Here it could also be modeled by the gra-

dient diffusion approximation as in e.g. Hossain and Rodi (1974) or by an improved
model as in Oti¢ et al. (2005). In order to validate this model (eqn (4.20)) the closure
terms will be analyzed from the DNS data of IHL and RBC. In this model the same
values of the coefficients and parameters as in eqn (4.5), (4.7) and (4.11) will be

used.
45 Model summary

The turbulent diffusion of D,, as in eqn (2.6) is defined as,

Dy, =_a%(m+m)
j

Table 4 shows the different RANS models for u’E" and u’;p" and ung’ which are

involved in the present work for developing the extended RANS models for D, .
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Different closure terms

RANS Models for the closure terms

’ !
qu

RANS model as in egn (4.5).

!

'
Lljp

Modified RANS model as in eqn (4.7).

RANS model for D,

Sum of eqn (4.5) and (4.7) and neglecting
higher-order pressure term results in egn
(4.8b).

ul’T" (closure term in eqn (4.8b))

(1) VDH model as in egn (4,9b)

(2) DHE model as in egn (4.11).

Table 4. RANS models for the different closure terms.

Table 5 shows the different extended RANS models for D, which are based on the

different models for ung'. In these models u’;£" and u’;p" are calculated according

to eqn (4.5) and eqn (4.7), respectively (see table 4). In order to derive the model 1

for D, the VDH model as in eqn (4.9b) is used in eqn (4.8b). To obtain the model 2

for Dy, the DHE model as in eqn (4.11) is employed in (4.8b).

D

Et

Extended RANS models for RANS model for ugZT’

Extended model 1, eqn (4.14) VDH model as in eqn (4.9b) is

used in egn (4.8b).

Extended model 2, eqn (4.20) DHE model as in eqn (4.11) is

used in egn (4.8b).

Table 5. Different Extended RANS models for D, .
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5 Validation of proposed models

This chapter deals with the validation of the RANS models for «'E" as in eqgn (4.5),

! !

for up" as in eqn (4.7), Daly and Harlow Extended (DHE) model for u;zT' as in egn
(4.11), extended RANS model 1 for D,, as in eqn (4.14), and a extended RANS
model 2 for D,, as in eqn (4.20). In the present case, the horizontal plane and time
averaged variables depends only on x, . Therefore, in the validation the RANS mod-

els are considered only in this direction.

The validation will be based on the DNS data of IHL and RBC. In addition to the
DNS-data used in the development of the models, here additional DNS data of IHL at

Ra =10%and DNS data of RBC of liquid metal at Ra =10° and Pr=0.025, for the
validation of the model 1 for D,, will be used. To validate the model 2 for D,, in ad-
dition to the DNS data that are used in the development of the different model terms

DNS data of IHL at Ra =10% will be used.

As explained, D,, is defined by eqn (2.6),

D,, :_ai(u;E'w;p'), with j=12,3
X .

J

This implies that the derivatives (here it means partial derivatives) of u’E" and u/p’

will be the deciding factors regarding their importance in different flow types.

5.1 Validation of the RANS model for u3E’

In order to validate the RANS model for u;E" as given in eqgn (4.5), the coefficient C,

is set to 0.17 for IHL and 0.08 for RBC.
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Fig. 5-1 Vertical profiles of u5E" and its model analyzed from the DNS data of IHL
with Ra=10", C, =0.17 .
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Fig. 5-2
of air, C, =0.08.

Vertical profiles of uzE’ and its model analyzed from the DNS data of RBC

The comparisons between the vertical profiles of u;E’ and its model analyzed from

the DNS data of IHL and RBC are shown in figures 5-1 and 5-2. In IHL the modeled

values show an acceptable agreement with u;E’. In RBC the RANS model over-

predicts values of ujE’. However, the modeled values have roughly the required

qualitative distribution. In IHL figure 3-24 indicates that the derivative of u3E’ is

greater than the derivative of u4p’ in most of the central region(~125< x, <18).
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Therefore, uzE’ is more significant in this flow type. Further, the derivative of u3E’ is

very small close to the walls in IHL. Consequently, in this flow type its contribution to

Dy, is not significant in this region. In RBC figure 3-25 indicates that the derivative of

usE' is smaller than the derivative of u;p'. Therefore, u3E' is less significant in this

case.

5.2 Validation of the modified RANS model for ujp’

In order to validate the modified RANS model for @ as in eqgn (4.7) the coefficient

C, is set to 1.5 for IHL and 3.0 for RBC and the parameter . =0.8.

The comparisons between the vertical profiles of u;p" and its model analyzed from

the DNS data of IHL and RBC are shown in figures 5-3 and 5-4.
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Fig. 5-3  Vertical profiles of u;p" and its model analyzed from the DNS data of IHL
with Ra=10", C, =1.5, a=0.8.
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Fig. 5-4  Vertical profiles of u3p’ and its model analyzed from the DNS data of
RBC of air, C, =3.0, a=0.8.

These results indicate an acceptable qualitative and quantitative agreement between

usp' and its modeled values in both flow types. Moreover, ujp’ is very significant

close to the walls in both flow types. In IHL, figure 3-24 indicates that the derivative of

usp' is smaller than the derivative of ujE’ in most of the central re-
gion(=125 < x, <18). It implies, usp' has a lower contribution to Dy , in this region
for this flow type. As a consequence, the model for @ will not play a significant role
in this region. In RBC, figure 3-25 indicates that the derivative of @ is greater than
the derivative of u3E’. It implies, u5p’' has a higher contribution to Dy, in this flow

type.

So far, each of the RANS models for the closure terms in D, , was found to model

roughly acceptable its contributions especially in those areas in which the corre-

sponding terms are relevant in both flow types.

77



5.3 Validation of the DHE model for u}*T"

In order to validate the DHE model for ung’ as in egn (4.11) the coefficients,

C,,=0.25 and B=0.52 is used in IHL and RBC. For this study «,° and «,T'? are ana-

3

lyzed from DNS data of both flow types.

*1E-3 IHL, Ra =1E7,Pr=7.0
0.6 — m—DNS <u3"u3"T">
E —e—Daly and Harlow (DH)
0.3 - —4a—Variable Daly and Harlow (VDH)
’ —wv—Daly and Harlow Extended (DHE)
AL,
/A »
A 0.0- e — e
(= M2 -
f") \-:ww -/V/
=) i | . v //
» -0.3 - v 4
> -\- “w. / /
v \-\- “w. -
\I\- AN -/ b 4
-0.6 - Ty
l VV/V
'09 T T T T T T T T T 1
1.0 1.2 1.4 1.6 1.8 2.0
X

Fig. 5-5 Vertical profiles of ung’ and its models analyzed from the DNS data of
IHL with Ra =107
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Fig. 5-6 Vertical profiles of ung' and its models analyzed from the DNS data of
RBC of air.

The comparisons between ung’ and its models in IHL and RBC are shown in figures

5-5 and 5-6. These figures indicate that DH model as in egn (4.9a) with C, =~ 0.11
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0.35

ReOAB

and VDH model as in egn (4.9b) with C; = need improvement in both flow

types. The Daly and Harlow Extended (DHE) model as given in eqn (4.11) shows a

small improvement in the prediction of ung’ in IHL except close to the lower wall. In

RBC the DHE model shows an acceptable agreement close to the walls.

5.4 Validation of the RANS models for D,

This section deals with the validation of the RANS models for D, ,. For the extended
RANS model 1 for D, as in eqn (4.14), C,=0.17,C, =0.7 (see figures B-9 and
B10 in Appendix B) and o =0.8 is used. For the extended RANS model 2 for D, , as

in eqn (4.20) the coefficients and parameters C,=0.17,Cy =0.25C, =2,
a=0.8 and B=0.52 is used.

5.4.1 Validation of the extended RANS model 1 for D,
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Fig. 5-7  Vertical profiles of D, and its models analyzed from the DNS data of IHL
with Ra =10".
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Fig. 5-8  Vertical profiles of D, and its models analyzed from the DNS data of IHL
with Ra =10°.

The comparisons between vertical profiles of D, and its models analyzed from the

DNS data of IHL with water and at different Ra are shown in figures 5-7 and 5-8.

These depict that the model 1 for D, , has significant improvement in the prediction

of Dy, in comparison to the standard gradient-diffusion model for D, (see eqn (2.7))

in this flow type. The model gives acceptable results at both Ra . Therefore, the ap-
plication of this model in CFD codes may provide more accurate results for such flow
types.
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Fig. 5-9  Vertical profiles of D, and its models analyzed from the DNS data of
RBC with air.
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Fig. 5-10 Vertical profiles of D, and its models analyzed from the DNS data of
RBC with liquid metal.

The comparisons between the vertical profiles of D, and its models analyzed from

the DNS data of RBC at different Ra and Pr (air and liquid metal) are shown in fig-
ures 5-9 and 5-10. These reveal that the extended RANS model 1 for D, has

roughly the required distribution as D, ,in RBC with liquid metal. The deviations be-
tween D, and its modeled values are smaller in the model 1 in comparison to the

gradient-diffusion model. These deviations can be attributed to both the use of VDH

model for ung’ and the pressure term in eqn (4.8a) which is neglected in this ex-

tended RANS model for D, .

From these validations it can be concluded that the extended RANS model 1 for D,

as given in eqn (4.14) gives a considerable improvement in comparison to the gradi-

ent-diffusion model for D,, as in eqn (2.7). In RBC this model shows small im-

provement in comparison to the standard gradient-diffusion model for D, .
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5.4.2 Validation of the extended RANS model 2 for D,

To validate this model the closure terms u}> and u}T"?

data of IHL and RBC.

are analyzed from the DNS
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Fig. 5-11 Vertical profiles of D, and its models analyzed from the DNS data of
IHL with Ra =10".
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Fig. 5-12 Vertical profiles of D, and its models analyzed from the DNS data of

IHL with Ra =10°.
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Fig. 5-13 \Vertical profiles of D, , and its models analyzed from the DNS data of
RBC with air.

Comparison between D, , and its models analyzed from the DNS data reveals that

the model 2 as given in eqn (4.20) has even better predictive capability than the ex-

tended model 1 for D, , as in egn (4.14) in IHL with Ra=10" and 10° especially

close to the upper wall, see figures 5-11 and 5-12. Thus, the application of the model

2 for D, may provide more accurate results in such thermally stratified flow types.
In RBC of air the model 2 for D, shows almost no difference close to the walls

comparison to the model 1, see figure 5-13. At certain points the model 2 shows

slightly better agreement with D, , compared to the model 1.

83



6 Conclusions and Outlook

The literature review shows that the standard Reynolds Averaged Navier Stokes

(RANS) models, like the E'—¢’ model, are not adequate for investigating certain
buoyant flow types (e.g. Dinh and Nourgaliev (1997)). Different strategies to improve

the standard RANS models use the transport equation for the turbulent kinetic energy
E'. In this transport equation the turbulent diffusion appears as one of the closure

terms. This term consists of velocity-fluctuation triple correlation »’E’ and velocity-

pressure fluctuation correlation W They are generally modeled together in the

standard gradient diffusion approximation as given in egn (2.7). Based on a large
eddy simulation (LES) investigation in meteorology Moeng and Wyngaard (1989) had
shown that the gradient-diffusion model for the turbulent diffusion of the turbulent ki-
netic energy is not adequate in buoyant flow types. In order to improve this model,
they recommended the inclusion of the effect of buoyancy. These studies provide the
basis for the present work which deals with the extensions of the gradient-diffusion

model for the turbulent diffusion of the turbulent kinetic energy.

For this purpose, two different buoyant flow types have been considered as a vehicle,
namely, internally heated fluid layers and Rayleigh Bénard convection. In Rayleigh-
Bénard convection the fluid layers are unstably stratified along the complete height of
the channel. Whereas in internally heated fluid layers the presence of both unstably
and stably stratified fluid layers make it more difficult in RANS modeling compared to
Rayleigh-Bénard convection. Hence, in this study the priority to achieve a better
modeling for internally heated fluid layers is higher than for Rayleigh-Bénard convec-

tion.

Direct numerical simulation (DNS) investigations of internally heated fluid layers at
Ra=10°, Pr=7 and Rayleigh-Bénard convection of air at Ra =6.3x10° , Pr=0.71
reveal that the criterion of local equilibrium between the production and dissipation of
turbulent kinetic energy is fulfilled only at certain points, at other heights it is not ful-
filled in both flow types. Anisotropy between the different components of the root
mean square values of the velocity fluctuations are also observed in both flow types.

This can be attributed to the effect of buoyancy and the presence of the walls. Analy-
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sis of the closure terms u’E’ and u)p’ using the DNS data show their different im-

portance and behavior in internally heated fluid layers with Ra =10 and in Rayleigh-
Bénard convection of air. This was already reported by Woérner and Grotzbach (1998)
and the mechanisms leading to this difference were discussed. Therefore, in the pre-
sent study the closure terms in the turbulent diffusion are modeled separately in order

to extend the gradient-diffusion model for the turbulent diffusion.

In order to derive a RANS model for the triple-correlation «’E’, the transport equation

for this closure term has been used. In this equation the turbulent transport term is
modeled according to Milionshtchikov (1941). Following the approach of Hanjali¢ and
Launder (1972) and Weinstock (1989), the pressure contribution is modeled as in
Rotta (1951) and the dissipation term is modeled as in Zeman and Lumley (1976).
The new RANS model for the triple-correlation incorporates the contribution of buoy-
ancy and pressure transport along with an anisotropic gradient-diffusion approxima-

tion. Starting with the Donaldson (1969) approximation for the velocity-pressure cor-

relation u’ p" and introducing that the cross-correlations of the velocity fluctuations

are smaller than their auto-correlations, a modified RANS model for the velocity-
pressure correlation is obtained. The RANS models for the triple-correlation and the

velocity-pressure correlation are joined to deduce the model for the turbulent diffu-

sion. This model includes a buoyancy term which contains u;zT’Sﬁ, a higher-order

pressure term and the velocity-pressure correlation. Analysis of the buoyancy and
higher-order pressure term using DNS data reveal that in internally heated fluid lay-

ers the higher-order pressure term is having a small contribution to the turbulent dif-
fusion of turbulent kinetic energy which consists of (ﬁJfW) Due to non availabil-
ity of a reliable model for the higher-order pressure term, and in accordance with the
priority of obtaining better modeling of internally heated fluid layers compared to

Rayleigh-Bénard convection in the present work, it is neglected in the RANS model

for turbulent diffusion of turbulent kinetic energy as given in eqn (4.8b). Of course the

contribution of buoyancy term u;zT’ is non-zero only along the vertical direction

j=3.
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According to the existing literature, the Daly and Harlow model for the buoyancy term

needs improvement. In order to obtain more detailed information for its vertical com-

ponent ung' all the terms in its transport equation are analyzed using the DNS data

of internally heated fluid layers and Rayleigh-Bénard convection. Based on these in-
vestigations, a Daly and Harlow Extended (DHE) model for the buoyancy term as in

eqgn (4.11) is obtained. This model includes both the effect of buoyancy and the pro-

duction due to the temperature gradient. In this model buoyancy term u.T'> and

ug3 are the additional closure terms. Oti¢ et al. (2005) have recently proposed an im-

proved model for the buoyancy term. In this model, the contribution of the molecular
fluid properties is introduced in addition to the gradient-approximation. This model
was successfully validated using the DNS data of Rayleigh-Bénard convection. As a

result, one of the closure problems of the DHE model can be solved at least for RBC.

The second closure term E in the DHE model can be modeled with the anisotropic

gradient approximation as in Launder (1989).

By incorporating a variable Daly and Harlow (VDH) model for u;zT' in the RANS

model for the turbulent diffusion of turbulent kinetic energy as in eqn (4.8b) results in
an extended model 1 for the turbulent diffusion as given in eqn (4.13). By introducing
the DHE model in eqn (4.8b) results in an extended model 2 for the turbulent diffu-
sion of turbulent kinetic energy as given in eqn (4.20). Both the models 1 and 2 for
the turbulent diffusion include the effect of buoyancy and velocity-pressure correla-

tion. According to e.g. Lumley et al. (1978) and Moeng and Wyngaard (1989), inclu-

sion of the effect of buoyancy may explain the counter gradient transport of E' s

The DNS data of internally heated fluid layers and Rayleigh-Bénard convection are
used to validate the RANS models for the triple-correlation, velocity-pressure correla-
tion, buoyancy term and turbulent diffusion of turbulent kinetic energy along the verti-
cal direction. In internally heated fluid layers with Ra =107, the model values show
an acceptable agreement with the triple-correlation. In this flow type the contribution
of triple-correlation to the turbulent diffusion is greater than that of the velocity-

pressure correlation in most of the central region (=~125< x, <18). Whereas, the tri-

ple-correlation is having a very small contribution to the turbulent diffusion close to
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the walls in this flow type. The comparison between the triple-correlation and its
model shows the over prediction of the triple-correlation in Rayleigh-Bénard convec-
tion of air. However the modeled values have roughly the required qualitative distribu-
tion in this flow type. A comparative study between the triple-correlation and the ve-
locity-pressure correlation reveals the higher importance of the velocity-pressure cor-
relation in the turbulent diffusion in this flow type. The comparisons between the ve-
locity-pressure correlation and its model show an acceptable qualitative and quantita-
tive agreement in internally heated fluid layers and Rayleigh-Bénard convection. The
analysis of the velocity-pressure correlation using the DNS data depicts its higher
contribution to the turbulent diffusion compared to the triple-correlation in Rayleigh-
Bénard convection. Further, the velocity-pressure correlation is more significant in
comparison to the triple-correlation close to the walls in both flow types. These stud-
ies show that the RANS models for the triple-correlation and the velocity-pressure
correlation can roughly explain these quantities especially in those areas in which

they are relevant in both flow types along the vertical direction. The comparison be-

tween the buoyancy term 4’7" and its model in internally heated fluid layers show
an improvement in DHE model in comparison to the DH and VDH model except close
to the lower wall. In Rayleigh-Bénard convection the DHE modeled values have

roughly the required distribution as of the buoyancy term analyzed from the DNS data

close to the walls.

Analysis of the model 1 as given in eqn (4.14) shows a considerable improvement in
the prediction of the turbulent diffusion of turbulent kinetic energy compared to the
gradient-diffusion approximation in internally heated fluid layers with Ra=10",108.
This model gives a small improvement in comparison to the gradient-diffusion ap-
proximation for predicting the turbulent diffusion in Rayleigh-Bénard convection of
liquid metal at Ra=10°, Pr=0.025. In case of Rayleigh-Bénard convection of air

this model for the turbulent diffusion does not show any negative consequences.

The analysis of the model 2 as given in eqn (4.20) reveals its better predictive capa-
bility compared to the model 1 for the turbulent diffusion of turbulent kinetic energy in
internally heated fluid layers with Ra =10",10%, especially close to the upper wall. In
Rayleigh-Bénard convection of air there is almost not much difference between the

model 2 and model 1 close to the walls for the turbulent diffusion. In certain height
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points the model 2 shows slightly better prediction of the turbulent diffusion compared
to model 1 in this flow type. The inclusion of these models in the CFD codes or with
the advanced models allows expecting more accurate results in such thermally strati-
fied flow types. It is also possible to adapt these RANS models to LES. This holds for
the common volume integration to deduce the equations for the resolved scales.
These equations look formally identical to the RANS equations, although they have
different meaning and physics involved. Thus, mainly the length and time scales
which are involved in these equations need to be suitably adapted from RANS to
LES.

The applications of models 1 and 2 for the turbulent diffusion make use of an addi-

tional transport equation for the auto-correlation u;2 . These models for the turbulent

diffusion extend the standard E'—¢' model to a E'—¢'—u4’ model which is a 3-

equation model. The transport equation for the auto-correlation is a particular form of
the transport equation for the Reynolds stresses as given in e.g. Launder et al.
(1975). This additional transport equation is necessary to incorporate the strong ani-
sotropic effects due to the buoyancy and the presence of the walls along the vertical
direction. This also follows the notion of Durbin (1991) to include the near-wall effects
of in-homogeneity and anisotropy in the form of an additional transport equation. The
investigations in meteorology and in astrophysics recommend the use of an algebraic
model (ASM) for the turbulent heat flux as in Launder (1988) for describing the heat

transfer in buoyant flow types. This ASM model makes use of an additional transport

equation for the temperature variance (T’Z). Therefore, incorporating this ASM model

for the turbulent heat flux into the present work further extends the E'—¢'—u}> model

toa E'—¢ —u,’> —T'> model which is a 4-equation ASM model.

Additionally an approach to model not the velocity-pressure correlation but its deriva-
tive has been presented. In this method, the differential equations for the velocity-
pressure correlation are derived. In these equations an anisotropic-form of the gradi-
ent diffusion model for the triple-correlation is used. For validation, a simplified RANS
model form of these differential equations as in eqn (C.7) along the vertical direction
has been obtained. The RANS model for the derivative of velocity-pressure correla-

tion is acceptable in internally heated fluid layers and Rayleigh-Bénard convection.
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This model for the derivative of velocity-pressure correlation also makes use of the

additional transport equation for the auto-correlation E in order to introduce the ef-

fect of anisotropy as explained above.

The validations of the models 1 and 2 for the turbulent diffusion of the turbulent ki-
netic energy show that these models are having acceptable predictive capability in
internally heated fluid layers and Rayleigh-Bénard convection along the vertical direc-
tion. The model 2 may be more accurate in comparison to the model 1 especially in
internally heated fluid layers. On the other hand, the model 2 includes additional
terms. This means, more computational effort compared to the model 1. Thus, the
application of these models depends on the type of problems and their accuracy re-

quirement.

An approach to model the derivative of the velocity-pressure correlation is also pre-
sented. In case of flow types like, e.g. Rayleigh-Bénard convection, in which the tri-
ple-correlation is having smaller contribution to the turbulent diffusion of turbulent ki-
netic energy it may be sufficient to apply a simple model for the triple-correlation and
use the RANS model for the derivative of velocity-pressure correlation. Conse-
quently, a priori information about the flow type and the closure terms in the turbulent

diffusion is needed for applying this model.

Future activities, following this thesis, could be on the following subjects:

The time development of the DNS of internally heated fluid layers with Ra =10°
shows that this simulation should be proceeded to achieve the accurate fully devel-
oped steady state. The analysis of the turbulent kinetic energy in internally heated
fluid layers with different Ra indicates that a fully turbulent regime in which the distri-
bution of statistical turbulence data is qualitatively independent of Ra is not yet
achieved. Thus, simulations of this flow type at even higher Ra are needed for the

validation of the various turbulence models in this flow type.

Implementation of the RANS models 1 and 2 for the turbulent diffusion of the turbu-
lent kinetic energy in the commercial or in-house code is required to test their practi-
cal performance in other flow type, e.g. flows in which both shear and buoyancy plays

an important role and flows which are not horizontally homogeneous. Such tests can

89



explore the limitations of these models. Inclusion of these models for the turbulent
diffusion in engineering CFD codes may further enhance the predictive capability of

the standard as well as advanced RANS models in investigating buoyant flow types.

The above discussion indicates that a £'—¢ —u}? —T'2 model which is a 4-equation

ASM model can be used to compute engineering buoyancy influenced flows in hori-

zontal fluid layers. For even better prediction in the thermally stratified flow types an

!

additional transport equation for the dissipation of i (5) is needed at Pr widely

different form 1, see e.g. Carteciano (1996) and Oti¢ et al. (2005) which further ex-

tends the E'—¢'—u,>~T'"? to a E'—& —u,> ~T">—¢, model which is a 5-equation

ASM model. This means additional computational effort to solve the system of equa-

tions. Therefore, the best compromise will be a F—E—ugf —F model in case Pr

around 1. If Pr significantly differs from 1 then a E'—¢'—u}’ —F—E model is re-

quired. This system can be implemented in the Turbulence Model for Buoyant Flows

(TMBF) model as in Carteciano (1996) with the help of an additional transport equa-

tion for u;2 . This allows expecting even better predictive capability of this advanced

model in buoyant flow types.
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Appendix A The turbulent Reynolds number in IHL and RBC

The coefficients in the RANS models for v’ p’ as in eqn (4.7) and for ung' as in eqgn

(4.9b) may not be constant. There are indications e.g. as in Daly and Harlow (1970),
Dol et al. (1997) and Woérner et al. (1997) that these coefficients may depend on the

local turbulent Reynolds number. Therefore, this quantity is analyzed in this Appen-
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12
The vertical profiles of turbulent Reynolds number Re, = — analyzed from the DNS

ve'

data of IHL and RBC are shown in figures A-1 and A-2. In IHL the values of this term
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are much smaller in comparison to RBC. This is in principle accordance with the find-

ing by Wérner et al. (1997) that some of the coefficients which appear in the different

standard RANS models (e.g. modified RANS model for m as in eqgn (4.7)) have

higher values in IHL. Thus, this indicates a possibility to correlate the coefficient e.g.
C,, with Re,.
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Appendix B Coefficients in the RANS model for u/E', u'p’, u}’T’

and Dg,
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Fig. B-1 The coefficient CZ' as in egn (4.7) analyzed from the DNS data of IHL at

x; =1.18.
IHL, Pr=7.0 —m—C' Theta 1
fffffffff Linear Fit
... Ra=5E®6

1_: \ B=0.52(approx)

C' Theta 1
Py
Q
1
m
~y
;A
A
I
m
(0 ¢]

0.1 . . —————y
0.1 1

Re

t

Fig. B-2 The coefficient Cm' as in eqgn (4.11) analyzed from the DNS data of IHL at
x; ~1.366.

The logarithmic plot of CZI versus the turbulent Reynolds number Re, indicates an

inverse relationship of the form Czl ~% as in figure B-1 in IHL. The logarithmic

t

plot of C,, versus the turbulent Reynolds number Re, also indicates an inverse re-
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lationship of the form Cz' ~LB in figure B-2 in IHL. The exponents o and [ are

estimated at a certain x3. However, these values will be applied throughout the
height of the channel in IHL i.e. for all values of x;. Same values of these exponents
will be used in RBC as well.
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Fig. B-3 Vertical profile of the coefficient C, as in eqn (4.5) analyzed from the
DNS data of IHL.
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Fig. B-4 Vertical profile of the coefficient C, as in eqn (4.5) analyzed from the
DNS data of RBC or air.
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Fig. B-5  Vertical profile of the coefficient C, with o =0.8 as in eqn (4.7) analyzed
from the DNS data of IHL.
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Fig. B-6  Vertical profile of the coefficient C, with o =0.8 as in eqn (4.7) analyzed
from the DNS data of RBC of air.

The coefficients which are involved in the RANS models for £’ as in egn (4.5) and

for W as in eqn (4.7) with a =0.8 (see figure B-1) are analyzed from the DNS re-

sults in IHL and RBC. Their vertical profiles are shown in the figures B-3, B-4, B-5
and B-6. The positive values of the coefficients indicate the region of similar qualita-

tive behavior. The negative values indicate the region in which the RANS models are

not adequate in this flow type. However, the figure 3-24 shows that «’E" is having a
significant contribution to D, in IHL away from the walls. As a result, its model plays

an important role only in the central region in this flow type. Higher values of the coef-
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ficients, e.g. close to the walls, in IHL and RBC indicate that the modeled values of

u'E’ and u'p" are smaller than their DNS analyzed values. A recommended com-

mon range of values for 0.04 < C, <0.17 and for 1.5 <C, <7 in both flow types.
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Fig. B-7  Vertical profiles of ung’ and its DHE model as in eqn (4.11) analyzed
from the DNS data of IHL at different Cyq (= Ct1).
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Fig. B-8  Vertical profiles of ung' and its DHE model as in egn (4.11) analyzed
from the DNS data of RBC of air at different Cy; (= Ct1).

Comparisons between ung’ and its DHE modeled values as in eqn (4.11) at differ-

ent Cyq are shown in figures B-7 and B-8 in IHL and RBC. The under prediction and

over prediction of «}°T" in most of the regions for different values of Cy, indicates its
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possible range of values in between 0.08 and 0.5 in both flow types. In the validation

Cgq =0.25 is used as an optimal value for both flow types.
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Fig. B-9 Vertical profiles of Dy, and its model 1 as in eqn (4.14) analyzed from
the DNS data of IHL at different C,, .
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Fig. B-10  Vertical profiles of Dy, and its model 1 as in eqn (4.14) analyzed from
the DNS data of RBC of air at different C,, .
Comparisons between Dy, and its modeled values as given by eqn (4.14) at differ-
ent C, are shown in figures B-9 and B-10 in IHL and RBC. Under and over predic-
tion of Dy, in IHL indicates a possible range of the values of C,, in between 0.4 and

1.0. In RBC the modeled values show significant difference only close to the walls at
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different C, . For validation C,, is set to 0.7 in the model 1 in both flow types as an

optimal value.

Appendix C  Mathematical modeling of the derivative of u/p’

In flow types like e.g. RBC, in which contribution of u E' to D,, is small, a better
model for the derivative of W may be needed. In this Appendix, a RANS model for
the derivative of W is deduced. The work by Oberlack and Peters (1993) is consid-

ered as a starting point to derive a differential equation for «’p’ using the transport

! !

_ ou'
equation of E’ (eqn (2.6)). This results in a RANS model for 4P . In this study the

axj

anisotropy between the different components of velocity fluctuations (see figures 3-16

and 3-17) will be taken into account.

C.1 Model development

Taking the gradient of the transport equation for E’ as given in eqn (2.6) results in,

0E & (—— — 8| 1 9E| 0 ——
\% +—rI|u,E'||=V|P. -+ — u' E'+u' p'(]. C.1
{az axj( j ﬂ [ ™ {Q/Gr ax]} ox, T TP }} ©1)
Considering the convection in the horizontal fluid layer is shear free (as in the present

case) and using the E' equation in the steady state, eqn (C.1) reduces to,

V(PE —§)+ V(aij {\/% ij} - ; ' {ﬁ +W}] =0 (C.2)

Let us consider,

[; 2 4
0 [_auff]p J_ 0? ”[f]zp fork#j=123. (C.3)
Ox[e] |\ O[] O[]
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In other words,

ouf;1p’
Ox[]

= f(x[j]),forj =1,2,3. (C4)

Here the indices within [ ] indicate each component separately and no Einstein-

summation. The eqgn (C.3) is valid under the constraint given by eqgn (C.4). This equa-

n

tion indicates the dependence of the derivative of j* component of the velocity-
pressure fluctuation correlation with respect to x;;; along the j™ direction only. It is

clear that the above approximation is a limitation in this derivation. Using egn (C.3) in

eqgn (C.2) results in,

azu[k]p'Na(P—e)+ (I {8ZFJ b [8@

, for j, k=123 . C5
ax[k]z axk A\ Gr ka 8x2j J f / ( )

_8xk Ox

The eqgn (C.5) represents three differential equations for the three velocity-pressure
fluctuation correlations. In accordance with Launder (1989) the velocity-fluctuation

tripe correlation on the RHS is approximated by,

v. AR S
u a—E, with v, = C,u'’t, for j=123.
G, OX, ' '

u;E'z—

This means, here v, is an anisotropic eddy viscosity and < is a time scale (Durbin

(1993)). The previous author has defined the time scale t as follows,
T= max(?/?, C. (v /;)1/2 )

This definition of t also includes the effect of viscosity. In the present case for sim-

plicity the following standard definition of t has been used,
t=E'/¢".

Using the above definition for t it follows,
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v, = CﬂE(F/?)

Jt

This Durbin definition of v, was intended to avoid the use of damping functions in

the isotropic eddy viscosity. Using the above simplifications in eqn (C.5) gives,

82 1o . 2 V. L
p o O N(p )| 1 E . 0 (v, o
A Gr 8xj 6xj

ax[k]Z u3p a

J ,k=123. (C.6)

G, OX,

In order to validate eqn (C.6), it can be reduced to a simple form making use of < )
to average the variables, i.e. the averaged variables depend only on x,. Finally from

integrating eqn (C.6) with respect to x, follows,

0. oo S ] o

Here, <E”> indicates the turbulent kinetic energy in which the variables are averaged
using ( ), e.g. <E”>=%<u;’2>, and (P;}) is the production of (E") and (¢") is its dissi-
pation. Application of this RANS model for <u§p"> as in egn (C.7) requires an addi-

tional transport equation for <u§2> (see sub-section 4.4.3). C, is the well known coef-

n

ficient from the (E£")-(c") model, C, =0.09 and C,,, is the relevant new coefficient.

C.2  Validation of the RANS model for 222

Ox,

In order to validate the RANS model for Gusp’ as givenin eqgn (C.7) C,;,=0.7 seems
X3

to be an adequate value. In case of the modified RANS model for u;p"as in eqn (4.7)

the coefficient C, is setto 1.5 for IHL and 3.0 for RBC and the parameter o =0.8.
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Fig. C-2 Vertical profiles of

X3

and its models analyzed from the DNS data of

RBC of air.

The comparisons between auiand its RANS models (see eqn (4.7) called the

Ox,4

modified Donaldson model and eqgn (C.7) called the derivative model) analyzed from
the DNS data of IHL and RBC are shown in figures C-1 and C-2. In IHL both RANS

Ouz p'

X3

models for

show acceptable agreement with M These also indicate that

X3

108



the RANS model foréui as given in egn (C.7) has a somewhat better agreement
X3

with Gusp’ analyzed from the DNS data of RBC in most of the region along j=3.
X3

Ouz p'

0x,

However, both models predict the position of the minima of close to the

boundaries approximately at the same value of x, in this flow type. These figures are

Ouy p’
Ox,4

also showing some deviations between and its modeled values in both flow

types, especially in the central region (1.2 < x, <1.8).
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12.05.1975

Status

1981-1989

1989-1991

1991-1993

1995-1998

1998-2000

2000-2002

since 2002-

Resume
Born in India (Kumardhubi, Dhanbad)
Unmarried
Visited Middle School Nirsha, Dhanbad
Visited S. S. K. B. C. High School Nirsha, Dhanbad
Studied in the R. S. More College Govindpur Dhanbad
B. Sc. (Hons.) from the Banaras Hindu University, Varanasi
M. Sc. from the University of Roorkee (lIT Roorkee), Roorkee.
M.Sc. from the University of Kaiserslautern, Kaiserslautern.
Working in the Institute for Nuclear and Energy Technologies,
Forschungszentrum Karlsruhe GmbH, Karlsruhe.
Head of Institute: Prof. Dr. —Ing. T. Schulenberg

Supervisor: Dr. —Ing. G. Grétzbach.
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