Diploma Thesis

Taclets vs. Rewriting Logic
Relating Semantics of Java

by cand. inform.

Ralf Sasse

Responsible Supervisor: Prof. Dr. Peter H. Schmitt
Supervisor: Dr. Wolfgang Ahrendt, Andreas Roth

Institute for Logic, Complexity and Deduction Systems
Department of Computer Science
University of Karlsruhe

D)

April 28, 2005



Statement

I hereby declare to have written this work independently and I did not use
any other than the stated resources.

Karlsruhe, April 28, 2005

Ralf Sasse

Acknowledgments

Here I want to thank all those who kindly supported me during the work on
this thesis. First of all, I want to thank Dr. Wolfgang Ahrendt for proposing
the topic of this thesis as well as for his involved supervision of my work. I also
want to thank Professor Peter Schmitt for making this thesis possible with
supervision outside the University of Karlsruhe. Many thanks go to Andreas
Roth for being my local supervisor and providing many helpful comments
on my work and the implementation. I am also grateful to Steffen Schlager,
Richard Bubel and Philipp Rimmer for their help on questions related to
KeY and Java. I am also grateful to Professor Reiner Hiahnle and Professor
Peter Schmitt for making the stay in Gothenburg possible. Last but certainly
not least, I want to thank my parents for their ongoing support of my studies.



Contents

1 Preliminaries

1.1 KeY
1.1.1

Taclets . . . . . . ..

1.1.2  Code Transformation Taclets . . . .. ... ... ...
1.1.3 Propositional Logic Taclets . . . . .. .. .. .. ...
1.1.4 Schema Variables and their Types . . . . . . . .. . ..
1.2 Rewriting Logic . . . . . ..

1.2.1

Maude Language . .

1.2.2  Programming Language Semantics in Maude . . . . . .
1.2.3 Maude Java Semantics . . . . . . . .. ... ... ..
1.3 Goal of this Work . . . . . .
1.4 Outline of this Work . . . .

2 Correctness of Code Transformation Taclets
2.1 Ideas for Taclet Correctness
2.2 Validating Taclets with the MJS . . . . . . .. ... ... ...

Technicalities on Maude w.r.t. Schematic Code . . . . .

Handling Schema Variables in General . . . . .. . ..

2.2.1
2.2.2
2.2.3
224
2.2.5
2.2.6
2.2.7
2.2.8
2.29

2.3.1
2.3.2

SV: Program Variable
SV: Static Variable .
SV: Lefthandside . .
SV: Simple Expression

SV: Nonsimple Expression . . . . . ... .. ... ...

SV: Expression . . .

Equivalence of Configurations Modulo New Variables .
2.3 Restrictions on the Correctness Statement . . . . . . . . . ..
Missing Features . . . . . .. .. .. ... ... ..
Incomplete Features . . . . . . ... ... ... ....

3 Lifting the Semantics
3.1 Preparations . . . . . . ... Lo

3.1.1

Pausing the Execution

3.1.2 Handling New Variables . . . . ... ... ... ....

3

11
13
13
14
15
17
18
23
23

25
25
29

31
33
36
38
39
39
40
43
44
45
46



3.2 Lifting for Expressions . . . . . ... ... ... ... ... 53
3.2.1 Rules for Applying a Side Effect Schematically . . . . . 53
3.2.2  Helper Operator to Finish the Expression Evaluation . 60
3.2.3 Extended Conditional Values for Schematic Side Effects 61
3.2.4  Configuration Memory Changes by Side Effects . . . . 64
3.2.5 Delayed Configuration Memory Changes . . . . . . .. 66
3.2.6 Configuration Snapshots . . . . . . ... ... .. ... 69
3.2.7 Effects and Results of Expressions . . . . . . . .. ... 70
3.2.8 Shortcomings of the Schematic Side Effect Handling . . 75

4 Changes to the Maude Java Semantics 77

41 BugFixes . . . . . . .. 7
4.1.1 Mistake in && and || wrt. the JLS . . . 0 000 0L 78
4.1.2 Array Creation Typo . . . . . .. ... ... ... ... 79
4.1.3 Method Call Exrror . . . . . ... ... ... ...... 80
4.1.4 Bad Internal Handling which Stops the Execution . . . 83
4.1.5 Block Semantics . . . . . . . .. ... ... ... ... 84
4.1.6  Missing Default Constructor Workaround . . . . . . . . 85

4.2  Extensions of the MJS - with JLS Defined Constructs . . . . . 85
4.2.1 Type Check for Type Casts . . . . ... ... .. ... 85
4.2.2 Type Check for Assignments . . . . . . ... ... ... 87

4.3 Extensions of the MJS - with Taclet Language Constructs . . 90
4.3.1 Simultaneous Updates . . . . .. ... .. ... .. .. 90

5 Configuration Generation 93

5.1 Configuration Generation from Taclets by Java. . . . . . . .. 93

5.2  Configuration Generation Maude Interface . . . . . . ... .. 94
5.2.1 Special Constants . . . . . . . . .. ... ... ..... 94
5.2.2 Basics for Adding Data and Code to the Configuration 96
5.2.3 Adding Data to the Configuration . . . . . . . ... .. 97
5.2.4 Adding Case Information . . . . . . . . ... ... ... 99
5.2.5 Examples of the Commands and their Results . . . . . 99

5.3 Usage with Respect to Taclets . . . . . . . ... ... ... .. 102

6 Propositional Logic Taclets in Rewriting Logic 104

6.1 Basics . . . . . ... 104

6.2 Taclets Imitated . . . . . . . . ... ... 105

6.3 Propositional Logics Semantics . . . . .. .. ... ... ... 105

6.4 Validating Imitated Taclets with Help of the Semantics . . . . 106

6.5 Embedding Taclets into Rewriting Logic . . . . .. .. .. .. 108



6.6 Validating Embedded Taclets with Help of the Semantics . . . 109
Conclusions 110

Code for Examples 112
A.1 Examples for Chapter 2.2 . . . . .. . ... ... ... .... 112

Automated Use to Prove Sets of Taclets 119
B.1 Technical Details . . . . . . . . . . . . . ... 119

Propositional Logic Taclets Maude Code 120
C.1 Examples for Use of the Imitated Taclets . . . . . .. ... .. 130
C.2 Propositional Logics Semantics Test Examples . . . . . . . .. 131






]. Preliminaries

This work is about the problem of a formal validation of the rules of a pro-
gramming language proof calculus. This is important to make sure that
proofs given by the calculus will be correct. Otherwise for everything which
is proven with the help of the calculus that proof only holds relative to the
correctness of the calculus, meaning it could well be wrong. We attack this
problem with a cross-validation of the rules with a semantics for the target
language.

A cross-validation uses the fact that different formalizations have been done
by different authors and thus contain different errors for the most part. Thus
one can find the errors which are not the same in both formalizations and by
eliminating these errors will end up with less total errors.

First, we need a semantics for the target programming language which in
our work is Java. We decided to use a semantics which is given in rewriting
logic. Then we can consider the calculus for a program logic whose rules
we want to validate, which is the calculus for the KeY system. We validate
the rules, implemented as so called taclets, of the KeY system with the
help of the rewriting logic semantics for Java using Maude. Maude is an
implementation of a rewriting logic system in which that Java semantics is
already implemented.

The central problem we solved is that the rewriting logic semantics for Java
is a semantics for concrete Java code while the Java code within the rules
we want to validate is schematic. The main contribution of this work is the
lifting of the semantics for Java to be able to cope with schematic Java code.

Our goal is to validate a large part of two kinds of rules:

1. code transformation taclets using the cross-validation with the rewrit-
ing logic semantics for Java in Maude,

2. propositional logic taclets using only Maude.

7



The rest of this chapter provides the necessary background information to
understand our work and to sketch its context. This work has been done as
part of the KeY project, which we will describe first. We describe the other
used formalism, namely rewriting logic and the Maude language, second.

We focus on our approach for code transformation taclets in this work. There
we find out that the relevant changes only happen in the schematic code.
With the lifted Java semantics given in Maude, which is capable of executing
schematic code, we can compare the two schematic code parts of a code trans-
formation taclet. To automate that comparison, we implement a generation
procedure which creates the generic starting states for such a comparison
which is then executed by the semantics. Depending on the content of a
taclet there are quite a lot of generic starting states necessary to show the
taclet correct for all starting states and thus the automation is required.

In our other approach we implement a simple semantics for propositional
logics in text-book style in Maude and then cross-validate that semantics with
an imitation of the axiomatic taclets for propositional logics also implemented
in Maude. This is possible because the axiomatic taclets for propositional
logics implicitly specify a semantics for propositional logics, too.

1.1 KeY

The KeY project [ABB*05], which is a joint work of the University of Karls-
ruhe, Chalmers University of Technology, Gothenburg, and the University
of Koblenz, aims at integrating formal specification and verification of Java-
Card programs into standard industry-used CASE tools to facilitate the use
of formal methods in the software development community. Therefore the
KeY project developed a sequent-based interactive proof system which gets
its proof obligations from a CASE tool. As specification language it uses
the Object Constraint Language (OCL) which ships with the widely used
Unified Modeling Language (UML). OCL constraints are the basis for the
proof obligation generation, e.g. to show that an implementation of a method
really meets its specification. By now there is also a Java Modeling Language
(JML) front end available which allows to give the constraints in JML in
addition to giving them in OCL.

The proof obligations are given in a special logic, called JavaCard Dynamic
Logic [Bec00, Bec01] (DLy). For DL there are the two standard modalities
box ([]) and diamond (<>). Programs will appear within these modalities

8



1.1 KeY 9

in DL;. Let p be a program and ¢ and ¢ first order (or DL;) formulas,
then < p > ¢ expresses that p terminates in a state where ¢ holds and it is a
formula in DL ;. Another example is the formula ¢ —< p > 1 which states
that when ¢ holds in a state then after the execution of p from that state
the formula v will hold in the resulting state. This formula is also similar to

the Hoare triple {¢}p{¢}.

In short DL; is a program logic that can be seen as an extension of Hoare
logic. The Dynamic Logic can also be viewed as a modal predicate logic with
a modality for programs.

Example 1.1.1
A simple example rule, which has been simplified in its presentation in that
there are no contexts for example, is

<x=x+1;> ¢
<4+ +x> ¢

Pragmatically one has to read these rules bottom-up to get from complicated
proof obligations to easier ones which can then hopefully be discharged. [

The calculus of the KeY system is a sequent calculus which is based on DL
formulas and on both sides of a rule there are lists of DL ; formulas. The rules
of the system are implemented as taclets. Taclets are, in the nomenclature
of other (semi-)automated provers, basically light-weight tactics. They are
used to describe and implement sequent calculi. We will devote Section 1.1.1
to taclets as they form the core of the prover and the goal of this work is
to validate the code transformation taclets. We do that by cross-validating
those taclets with the rewriting logic semantics for Java.

1.1.1 Taclets

Taclets represent rules which contain so-called schema variables (SV). Such
a rule can be applied in infinitely many cases, namely those with a matching
instantiation for its schema variables.

The main reference for taclets is the work reported in [BGHT04]. Taclets
are the rules of the calculus used within KeY. They are easy to master and
provide good flexibility in designing a proof system. They substitute meta
languages which are employed in other frameworks for interactive theorem
proving.



10 Chapter 1: Preliminaries

We only present the parts of a taclet that are important for this work. These
are the following parts for code transformation taclets:

e find: The find part is the part of the sequent which is changed by the
taclet. There has to be a matching instantiation for the find part to
match the part of the sequent which is to be changed.

e replacewith: The replacewith part replaces everything which has been
matched by the find part and has to be instantiated accordingly.

So the formula the find part matched on is replaced by the replacewith part
with the same instantiation when the taclet is applied. These rules have to
be read bottom-up again as they expand that way.

Example 1.1.2
We will show three example taclets, the first one, with b a boolean schema
variable, is:
not_left {
find (! b==>)
replacewith(==> b)
heuristics(alpha) };

This taclet replaces !b on the left side of the sequent with b on the right side.
In the usual way of writing rules this taclet would look like this:

'==>0A
Lh==>A

The second taclet, with #x a schema variable of type lefthandside, is:

preincrement {

find (#allmodal{{.. ++#x; ...} }(post))
replacewith (#allmodal {{.. #x =

(#typeof(#x))(#x+1);...} }(post))
heuristics (simplify_int)};

In this taclet there is a lot of syntactic sugar but the basic properties are
that the find part is the code ++#x; and the replacewith part is made up of
the code #x = (#typeof(#x))(#x+1) where the (#typeof(#x)) is a cast onto
the type of the variable matched by #x.

The #allmodal states that this taclet can be applied with any modality. There
are other elements of the taclet language which would only allow this to work
with, for example, a box modality.



1.1 KeY 11

The #typeof is a meta construct in the taclet language which takes the type
of its argument and puts it where #typeof was before. Meta constructs are
instantiated when the taclet is applied and can also be a lot more complicated
than just getting the type of its argument. There is, for example, a meta
construct which puts the method body of a method call in its place.

The constructs .. and ... represent the context. The ... can be any code
while .. is restricted to opening braces and try-statements, so that the code
after .. is the first active statement.

The third taclet is using a new variable and in this taclet #nse is a schema
variable of type nonsimple expression and #se is a SV of type simple expres-
sion and #lhs is a SV of type lefthandside.

compound_multiplication_1 {

find (#allmodal {{.. #lhs = #nse % #se; ...} }( post))
varcond (typeof(#nse) #v new)

replacewith (#allmodal {{.. #typeof(#nse) #v = #nse;
#lhs = #v x #se; ...} }(post))

heuristics (simplify_prog)

displayname " multiplication”};

We want to focus on the varcond part which includes one new variable, namely
#v. A new variable is a variable which is new w.r.t. the rest of the given
program by its definition. We will take a closer look at new variables in
Section 2.2.9 U

1.1.2 Code Transformation Taclets

Code transformation taclets (CTT) are a special case of taclets and they are
crucial in this work as they form one subset of taclets we want to validate
in Section 2. The other subset of taclets we look into in more detail are
propositional logic taclets in Section 6

Definition 1.1.3 (Code Transformation Taclets)
Code transformation taclets contain a find part

find <1l > b
and exactly one replacewith part

replacewith < II' > b



12 Chapter 1: Preliminaries

with IT and IT" pieces of code and b any formula. There can also be other
parts as seen above which we have omitted here. O

A code transformation taclet is basically a sequent rule without branching
where all changes happen within the modality, i.e. in the code. This means
that a code transformation taclet can only ever change Java code to other
Java code which is a fortunate restriction and will later allow us to work with
them quite well.

If we take a look at the example 1.1.2 from above we can see that the second
and third taclets are code transformation taclets because the only changes
which happen there are in the code. The first taclet on the other hand is not
a code transformation taclet as there are changes on the sequent level, apart
from no code being there anyway.

Example 1.1.4
Let us take the second taclet from Ex. 1.1.2 to see an example of a taclet
application. The taclet is:

preincrement {

find (#allmodal{{.. ++#x; ...} }(post))
replacewith (#allmodal{{.. #x =

(#typeof(#x))(#x+1);...} }(post))
heuristics (simplify_int)};
Given
i ++i; (f)
where i is an integer variable and f is some formula which we do not want
to spell out then the taclet can be applied with #x instantiated to i and post

instantiated to f. In that case #typeof(#x) turns out to be int as i is an
integer variable. Then the result of one application of the given taclet is:

i = (int) i+1; i+4; (f)

O

So we have now seen that a taclet can change a dynamic logic sequent to
another such sequent.



1.1 KeY 13

1.1.3 Propositional Logic Taclets

Propositional logic taclets are taclets which only contain sequents of formulas
of propositional logic. In addition to the taclets we have already seen they
have some extra parts, which are:

e if, this part has to appear in the sequent too if the taclet is to be
applied. Instantiations which are necessary to match the if part have
to allow the find part to be matched, too.

e goaltemplate, it consists of a replacewith part and an add part. The
add part is optional and we will not have any add parts appear in this
work. Thus each goaltemplate part reduces to a replacewith part here.
There can be multiple goaltemplates per taclet which split the sequent
into multiple goals.

We have already seen an example of a propositional logic taclet, which is the
first example in Ex. 1.1.2. Another example is:

Example 1.1.5
This taclet finds an equivalence b <—> c on the right side of the sequent and
replaces the sequent by two sequents, one in which b is on the left side of
the sequent and c is on the right side and the other one has the variables in
switched places.
equiv_right { find (==>b <—> ¢)

replacewith (b ==>c);

replacewith(c ==>b)

heuristics(split ,beta) };

1.1.4 Schema Variables and their Types

As mentioned above, the taclets include so called schema variables. These
schema variables are variables which can match code or terms, depending
only on their type. A schema variable type is for example program expres-
sion, which is able to match on any Java expression. Another example is
program lefthandside, which will only match on expressions which can appear
on the lefthand side of an assignment. There are a few other types of schema
variables and all of them are described, together with the consequences they
have in Section 2.2.



An example of a schema variable can be found in the above Ex. 1.1.2 and is
#x. In the above example #x is a schema variable of type program lefthand-
side.

1.2 Rewriting Logic

We will first describe rewriting logic in short. This section’s beginning has
been taken from the rewriting logic road map paper [MOMO02] with only
slight modifications. In that paper you can find a more detailed explanation
and references to a whole lot of work in the area as it includes a very large
bibliography.

In rewriting logic the fundamental axioms are rewrite rules of the form ¢ —
t' where in general ¢ and t' are expressions in a given language. You can
read such a rewrite t — ¢’ in two complementary ways, one logical and one
computational:

e logically, the rewrite rule t — t' is interpreted as an inference rule, so
that we can infer formulas of the form ' from formulas of the form t.

e computationally, the rewrite rule t — ¢’ is interpreted as a local tran-
sition in a concurrent system, meaning ¢ and t’ describe patterns for
parts of the distributed state of a system. The rule states how a local
concurrent transition can take place in such a system, thereby changing
the local state pattern from an instance of ¢ to one of ¢'.

A rewrite theory is basically an instance of rewriting logic. Where rewriting
logic proscribes the form of rules, the rewriting theory provides the concrete
rules. A rewrite theory is a 4-tuple R = (X, F, L, R) where (X, F) is the
equational theory modulo which we rewrite, L is a set of labels and R is
a set of labeled rules. Rewriting modulo equations means that all rewrites
happen on equivalence classes which naturally have to be independent of the
current representative. For now we assume that R consists of unconditional
labeled rules but all this also extends easily to conditional rules that may
even contain rewrites in their condition.

Example 1.2.1

Take a simple rewrite theory [MOM99] whose rewrite rules rewrite ground
multisets, which are built out of some constants, by means of an associative
and commutative multiset union operator, denoted e.g. by ®.

14



1.2 Rewriting Logic 15

This rewrite theory has an obvious computational reading as a (place/tran-
sition) Petri net. There is also a logical reading for which you best see
[MOM99].

In the case of a Petri net, 3 consists of the binary multiset union operator
® and one constant for each place in the net. E consists of the associativity
and commutativity equations for multiset union, L is the set of labels of the
net’s transitions and R is the set of transitions. Since we rewrite modulo the
equations E we are actually rewriting equivalence classes of terms modulo
E.

In the Petri net example that corresponds to the fact that each transition
rewrites a part of the current multiset of places (graphically depicted as a
“marking”, with as many “tokens” in a place as its multiplicity) modulo the
associativity and commutativity of multiset union. O

So all relevant sentences of R, provable or not, are sequents of the form
[t|]zg — [t']g where t and ' are Y-terms, maybe involving variables, and
[t|r denotes the equivalence class of the term ¢ modulo the equations E.
The provable sentences are exactly those derivable by the 4 inference rules
Reflexivity, Congruence, Replacement and Transitivity for unsorted
unconditional rewriting logic. With unsorted unconditional rewriting logic
we mean rewriting logic without conditional equations or rules and no sorts
are used.

Again one can distinguish the computational and logical view. Computation-
ally, the provable sequents describe all the complex concurrent transitions of
the system axiomatized by R. Logically, they describe all the possible com-
plex deductions from one formula to another in the logic axiomatized by
R.

It is also worth to mention the fact that rewriting logic can be used as a
logical and semantic framework as shown in the paper [MOMO00].

1.2.1 Maude Language

The Maude language is based on rewriting logic and you can find detailed
information about it in the Maude manual [CDE*00]. Maude is the sys-
tem that implements rewriting logic using the Maude language. In Maude
you can give executable specifications of anything representable as a rewrite
theory. Maude also allows a wide array of user-defined syntax which makes



16 Chapter 1: Preliminaries

it particularly easy to write a semantics for a programming language. This
semantics is then in itself an executable specification of the chosen language
and can be used to execute code of that language in interpreter style.

Maude is also quite efficient and performed all the tasks in this work suf-
ficiently fast. It is also simple enough that readers unfamiliar with Maude
should be able to understand the basic code used within this work relating
to the Maude semantics for Java.

To allow rewriting with the rules modulo equations in Maude the equations
are required to be terminating and confluent and after each rule application
equational simplification happens as far as possible.

We will now give a first simple example of a rewrite theory in Maude to get
familiar with the syntax and also see more of a rewrite theory.

fmod EX-NAT is

sort Nat
op zero : —> Nat
op s_. : Nat —> Nat

op _+- : Nat Nat —> Nat

vars N M : Nat

eq zero + N =N .

eq s N+ M= s(N+ M)
endfm

The keywords fmod and endfm denote the start respectively end of a Maude
module. EX—NAT is the module name and the is always follows after the
name of the module. The keyword sort declares a new sort, which is like
a type in programming languages. So here we declare the sort of Nat’s, i.e.
natural numbers. With the keyword op, we create an operator, or function,
zero, in this case with 0 arguments so it is a constant and has its image in
Nat. It represents the 0 element. Then we have the operator s_ which takes
one argument of sort Nat (behind the colon and before the arrow are the
arguments) and with the underscore after the s it means that you can write
for example s zero instead of s(zero) which is always allowed for operators. It
is similar for _+_, which uses a mix-fix notation, and takes two Nat arguments
to result in a Nat. Then there are two variables declared with the keyword
vars and they are given the type Nat. Now with all the declarations done we
can give equations to work on the sort. They are given with the keyword
eq and the first one allows us to reduce zero added to N to just N. The



1.2 Rewriting Logic 17

second takes the successor of N added to M and reduces it to N added to M
and takes the successor of that. These two equations reduce any expression
given with the operators provided here to a canonical form. It is obviously
a terminating process for every given expression and it is also confluent as
there is always only one of the two equations applicable. In a nutshell, we
have developed a rewrite theory for the natural numbers given by zero and
the successor function s, with the addition operator +. It does not matter
that there is actually no rewrite rule given at all, this is still a rewrite theory
but with an empty rule set.

1.2.2 Programming Language Semantics in Maude

To show that it is possible to specify the semantics of a programming lan-
guage such a specification was developed for an imagined language quite sim-
ilar to CaML. We mention this semantics because it is very similar in style
to the Maude Java Semantics and it is also very well documented [MRO04]. It
also is much smaller so it allows a quicker start into the look and feel of such
executable specifications of semantics with the help of Maude and rewriting
logic if one is interested in that.

The semantics of a CaML-like language using rewriting logic and imple-
mented in Maude is given in great detail and with a lot of explanations
in [MRO4]. This semantics of a CaML-like language is also an executable
specification which can be used to execute CaML-like code, so one got an
interpreter for free. It contains arithmetic and boolean expressions, condi-
tional statements, higher-order functions, lists, let bindings, recursion with
let rec, side effects via variable assignments, blocks and loops, exceptions,
and concurrency via threads and synchronization.

The semantics for the CaML-like language uses continuation passing style
(CPS), similar to the way CPS is used in CaML. Thus the actual code to be
executed is within a continuation. Continuations can roughly be seen as an
executable stack of statements which can be restored anytime. We do not
have the complete state in the continuation but only the code with, possibly,
some intermediate results. We always use this continuation and execute the
code from it.



18 Chapter 1: Preliminaries

1.2.3 Maude Java Semantics

The Maude Java Semantics (MJS) is hinted on in [MR04, FCMR04, FMR04]
and is an executable specification of the semantics of Java. It is built similar
to the smaller size semantics of aa CaML-like language from above. The
Maude Java Semantics is experimental only and does not cover all of Java.
One of the main features which needs to be taken into account in this work
is that it uses an explicit environment and memory model for Java. We
will call the environment, memory and other state information altogether
the “configuration” from now on. For more information on the MJS take a
look at the paper about Java source code, [FCMRO04], and the paper working
with Java Virtual Machine (JVM) code, [FMRO04]. They are both mainly
concerned with working on a Java Formal Analyzer tool which needs the MJS
as its core at least for source code verification. There is no real documentation
of the MJS we could point you to and therefore we give some detail on the
simpler CaML-style language in Section 1.2.2 to allow the reader to get a
feeling for the MJS.

The MJS requires that the code which is to be executed with the MJS is
changed a little bit compared to regular Java code, but the modifications
are small and merely syntactic. An interpreter for Java code is obtained
which is driven by the specification given in the MJS. We will use it to
compare the results of two different code fragments later on, to show that
they are equivalent in a certain sense. In the following we take a look at
how a configuration of the MJS interpreter looks like. This is supposed to
help understanding the modifications to the configuration which we introduce
later on.

During the work we could compare the readability of the Java semantics
given by the KeY taclets and the MJS. While single taclets are easier to
understand, the execution of a more complex program with them is not that
easy to imagine. On the other hand in the MJS there are no meaningful,
small and easy to understand, parts but the whole has to be investigated
and can then facilitate execution of programs. For somebody who does know
neither taclets nor Maude, the semantics given by the taclets will be easier
to comprehend as it can be viewed in smaller parts.



1.2 Rewriting Logic 19

Configuration Structure

This part is designed to be useful as a later reference to understand what the
rules and equations work on. It might be good to take a short look at it now
to know what to expect and later see when returning here could be helpful.

As said above a configuration is the total state information, including the
memory and environment as well as the code, of any point in the execution
of a Java code fragment within the MJS.

In the following configuration you will see a lot of operators which are either
from the original MJS or are added by us. The added parts are described in
more detail, when they are really going to be used, see Sections 3 and 4.

So let us start looking into the MJS by first investigating the structure of
configurations. In the following X:Sort, which is an ad-hoc declaration of a
variable of sort Sort with the name X, is there so you can easily see what sorts
the elements have to have where they appear. This is opposed to the way of
first declaring every variable with a sort in the form var X : Sort . and then
in the remainder of the code use the shorter X only. That is only useful when
variables are used more than once which they are not in this configuration.

run(c(k(CODE: BlockStatements —> pause —> K: Continuation),

e(E:Env),
o(o(STATICTYPE: CType ,DYNAMICTYPE: CType ,OE: ObjEnv))),

m(M: Store ),

n(l:Int),

cl (LISTOFALLCLASSES: Classes),

s (STATICENV: ObjEnv),

out (O: Output),

I (noLock),

w(nolLock),

nextSnapshot(N:Int),

snapshots(SNL: SnapshotList)

)

Now let us look at this step by step. First we see that everything is wrapped
within a run (...) . The operator run is defined on a MyState, whose elements
are StateAttributes, and makes the whole expression to be of type Output.

o c(k(CODE: BlockStatements —> pause —> K: Continuation),
e(E:Env),
o(o(STATICTYPE: CType , DYNAMICTYPE: CType , OE: ObjEnv))



20 Chapter 1: Preliminaries

)

This part is made up by a wrapping c (...) which takes a Context, which
is made up of Contextltems, and the three inner lines:

— The first line is wrapped in a k (...) and is a Contextltem which
itself takes a continuation. The continuation is
CODE:BlockStatements —> pause —> K:Continuation where the code
within CODE will get executed first, then there is a pause and
afterwards there is a rest K of the Continuation. Intuitively this is
the program which is run.

This pause operator was invented by us to allow separating the
execution of different code blocks. It allows us to stop after the
code part of a taclet. This is relevant for us as we get code from
taclets which we want to execute and after that code there can be
quite a lot more unrelated code which we do not want to execute.

— The second line is wrapped in an e (...) which also is a
Contextltem and which has an Env as argument. Env stands for
environment. An environment basically maps variable names to
locations and is realized as a multiset of such pairs. This maps
all the variables which appear in the program to locations in the
memory. At those locations their value can then be found.

— The third line is wrapped in an o (...) which is a Contextltem and
takes an object as parameter. This object is the current object
upon which the current computation, basically a method call, hap-
pens. The object is wrapped inside the inner o (...) and has three
parts: its static type, its dynamic type, both of sort CType, and
the ObjEnv which represents the object environment of this object.
An object environment is actually similar to a normal environment
with the difference that to each variable name-location pair there
is a CType attached which is the class to which the attribute rep-
resented by this variable name belongs.

e m(M: Store),
n(l:Int)

Now there is the memory represented by the following where m(...)
wraps a Store to make it a StateAttribute. A store is a multiset of
location-value maps. This is what we will view as the memory of a con-
figuration. Then n (...) wraps a single integer to make it a StateAttribute



1.2 Rewriting Logic 21

too and this has the meaning that the wrapped integer is the next free
location in the memory, as locations are written as [(I:Int).

e cl(LISTOFALLCLASSES: Classes)

There is also this where cl (...) wraps an element of Classes, which itself
is a multiset made up of elements of sort Class, so it is a StateAttribute.
In here all class definitions of all the classes which are used in a program
run can be found. This is important for example for method calls so
that the right method body can be found.

e s(STATICENV: ObjEnv)

Then there is the static environment wrapped inside s (...) which is also
an object environment but with a different meaning than above. This
object environment includes all static attributes of all classes, again
as a triple with the class type, the name (of the attribute) and the
location. The wrapper also builds a StateAttribute.

e out(O:Output)

This is the accumulated output which is wrapped inside out (...) and
takes an Output. This is used in the very end of the computation to
create the resulting output. The wrapper also builds a StateAttribute.

e |(noLock), w(noLock)

There are also some locking mechanisms which are part of the config-
uration but we will not be using these as we only use sequential pro-
grams and therefore do not need any locks. The wrappers also builds
StateAttributes.

e nextSnapshot(N:Int),
snapshots(SNL: SnapshotList)

Additionally this two items are concerned with snapshots, which are
introduced by us because we later on need them to identify when the
execution of an expression with side effects has been started, see Sec-
tion 3.2. One wrapper is nextSnapshot (...) which depends on an in-
teger and is the identifying number of the next snapshot similar to
n(...) for the next free memory element. snapshots (...) , which takes a
SnapshotList and is the memory for all snapshots that are taken during
the execution, is the other wrapper. The result of both of them is of
type StatementAttribute.



22 Chapter 1: Preliminaries

Smaller subparts of the configuration

Now we investigate smaller parts of the configuration.

We should first look at the environments. They map variable names n to
locations [ in the form [n,[]. One single mapping is already an environment
and concatenations of two environments are again an environment. Con-
catenation is performed by using juxtaposition, i.e. just a space between two
environments.

Stores are very similar. They map locations [ to values v in the form [I, v].

So in order to get from a name to its value you need to do two steps in this
memory modeling:

1. the variable name maps to a location in the environment,
2. that location maps to a value in the store.

Object environments are built up like environments. To make it an object
environment you use the following: (CT, Env) where CT is any class type and
Env is an environment, which by the definition of environments above can
consist of multiple name to location mappings. This has the meaning that
all the environment parts which belong to a class type are its attributes.
Multiple object environments are again put together by juxtaposition.

Now it is also worthwhile to look at how an object is structured. In fact,
calling it an object is a bit misleading as it really is more a rich object
reference. The form is as follows: o(ST, DT, OE) where ST is the static type,
DT is the dynamic type and OE is the object environment.

When this object reference gets assigned another object, the static type may
not change according to the Java language specification but only the other
two parts can differ. We had to do some modifications to the MJS to make
the assignment of object references work correctly. In the original MJS the
static type for an object reference was changed around at will which is wrong
according to the JLS. When the static type has to be changed while evalu-
ating an expression due to a type cast on the name representing the object
reference then this is possible in intermediate states but does not change the
object reference in memory, only the one on the continuation. The static
type in the intermediate state is also only changed if it is a correct cast.

Note the overloading of the operator o. It is used to



1. create a StateAttribute when its argument is an object,

2. create an object when its arguments are the objects static type, dy-
namic type and object environment.

Thus, o(o (...)) appears quite often in configurations.

1.3  Goal of this Work

The goal of this work is to investigate the correctness of taclets with the help
of Maude. We consider two areas:

1. code transformation taclets with the help of the MJS,
2. propositional logic taclets, using only Maude.

We want to make sure that the code transformations used in the taclets are
exactly reflecting the Java Language Specification (JLS) [GJSB00]. Up until
now the taclets have been written with the JLS on the developer’s knees and
hoping that no errors happen. Now we can compare the execution of the
code in the MJS with the code transformation in taclets and by that should
be able to find mistakes easily.

1.4 Outline of this Work

The rest of the work is organized as follows. In Chapter 2 we present our
general ideas on how to validate code transformation taclets and then focus
on the different kinds of schema variables and their possible instantiations
which are relevant for that validation. Also the handling of new variables is
pointed out. Restrictions of our approach are shown, too.

We expanded the MJS, which works on concrete Java, to allow for execution
of the schematic Java used in code transformation taclets in Chapter 3. We
focus on ways to handle schematic expressions for this. Our actual work on
this was to lift the original MJS, a semantics for concrete Java code, to our
current MJS which is a semantics capable to cope with schematic Java code.
An interesting point of this is, for example, how to write into an unknown
memory location to simulate an unknown side effect.

23



24 Chapter 1: Preliminaries

We show bug fixes that we did to the MJS and extensions of the MJS for
handling constructs defined in the JLS but not before supported by the MJS.
We also add some features to the MJS which are nice to have when working
with the taclet language. See Chapter 4 for this.

To automate the proving process we extended KeY, using Java, so that KeY
can provide an output usable by the MJS in Maude. We also created an in-
terface on the Maude side in the MJS to facilitate this information exchange.
This is all needed to create the configurations for the MJS, see Chapter 5.

All of the above focuses on code transformation taclets but we also want to
validate the propositional logic taclets. We do that in Chapter 6 where we
validate that small subset of the KeY taclets correct by imitating the taclets
in Maude. We also try an embedding of propositional logic taclets for which
an application mechanism for taclets is given in Maude but do not validate
the taclets again this way.

We sum everything up and show what could be done as future work in the
conclusion, Chapter 7.



2 Correctness of Code
Transformation Taclets

In this chapter we will focus on why it is enough to show the equivalence of
the two code sections of a code transformation taclet to validate it. Ideas for
the way the semantics is denoted in this chapter came from the book [NN92].

2.1 Ideas for Taclet Correctness

As we have seen in the last chapter, a taclet application can change the Java
code as well as the surrounding dynamic logic formula. We would like to
show the correctness of the KeY taclets in this generality but for now we will
have to restrict ourselves to code transformation taclets due to two reasons.
The first is that working with the code transformation taclets is much easier
than working with general taclets and we can use the Maude Java Semantics
for the code transformation taclets exhaustively as only changes on the code
level are made and so both states, before and after the taclet application,
can be easily represented in Maude. The second reason for the restriction is
merely the practical observation that a very large part of the taclets used in
KeY are actually code transformation taclets. According to our counts there
are roughly 350 taclets specific to Java code. About 140 of these 350 are code
transformation taclets, i.e. 40%. We already proved 55 of those and a few
more should be doable with minor technical enhancements. The difference
between the amount of taclets we could prove and the number of code trans-
formation taclets comes from the fact that in those taclets meta constructs
of KeY are used which are not easily transferable to the MJS. Another factor
for this are the restrictions which come from the MJS problems, i.e. mainly
its missing features.

Apart from the fact that these code transformation taclets are a large part of
the taclets they are also important to be validated because their correctness
depends on the actual Java Semantics which one might easily misinterpret
from the JLS. Checking this is normally not easy. Here the fact that there

25



26 Chapter 2: Correctness of Code Transformation Taclets

is a Java semantics for Maude helps tremendously because we check those
taclets which have been developed with a certain interpretation of the Java
semantics in mind against another interpretation implemented by different
people and thus it is probable to find mistakes due to misinterpretations.
This is a cross-validation of the KeY code transformation taclets and the
Maude Java Semantics. We assume that we are working with syntactically
correct Java code as otherwise that code is not meaningful and we could not
properly treat it.

Just to remind you, code transformation taclets in general contain the fol-
lowing
find <II >0b replacewith <II' > b

according to Def. 1.1.3.

Example 2.1.1
We take up Ex. 1.1.4:

preincrement {

find (#allmodal{{.. ++#x; ...} }(post))
replacewith (#allmodal {{.. #x =

(#typeof(#x))(#x+1);...} }(post))
heuristics (simplify_int)};

In this case Il = ++#x;
and IT" = #x = (#typeof(#x)) (#x + 1);. O

Now we will use a big step structural operational semantics (SOS)-like se-
mantics [NN92] with a transition relation “—” which will do as many rewrites
as necessary. This means that in case of a starting code segment given on
the left-hand side and no code segment remaining on the right-hand side
then as many rewrites as necessary are done to completely execute that code
segment. This is not limited to SOS big step semantics in theory but is used
in practice within the Maude Java semantics since there we will execute code
until the end or until a “pause” is encountered.

To evaluate what IT and IT" do we execute both on the same state and look at
the resulting state. State is used in the SOS sense. Then we can say that the
two code segments are equivalent if they both induce the same changes on
all states, i.e. both code segments have for any start state the same resulting
state if they have a resulting state (not necessary one resulting state for all
start states though). In such a case, the taclet replacing Il by II' has no
effect on the state after code execution, and thus the taclet is validated.



2.1 Ideas for Taclet Correctness 27

Calling the starting state s and using the above SOS-like semantics we can
write the equivalence of the two code segments as the following, where the
equation has to hold for all states s:

<Il,s >==<1I',s >

where we will take a closer look at the equality sign == in the next subsection.
Now let us consider what happens when we execute the code II in s:

<II,s >—=<e¢ s >

with a state s’.

Actually the taclet language [ABBT05] allows some code segments to be in
front of 1I but II has to consist of the first active statements, i.e. everything
in front of it are opening braces or try-statements. Naturally there can be
code segments after II, say ¥ so the above state transition should be

<II U,5s>—=< ¥, s >

when we only want the code of IT executed, but as the code in II (respectively
code in II" if it appears before W) can not change the code in ¥ and as ¥
is the same behind any code segment in front of it, i.e. behind IT as well as
behind IT’, we do not need to consider ¥ here, but consider its execution for
later. To facilitate this in practice our new pause operator is used in the MJS
implementation for such partial executions.

If we are given that for all states s
<II,s >—=<e¢s >
holds, or, written in the usual way when there is no code left,
<Il,s>— s
holds, and we can then show that
<Il',s >— &

holds, we know that II and I’ create the same final state for each common
starting starting state and therefore the taclet is correct.



28 Chapter 2: Correctness of Code Transformation Taclets

Now we can not do this for all possible states s per se but if we can find one
or more generic states which together represent all of the possible states we
could then show the above execution result on those generic starting states.
By that we know that it holds in all states and thus we have proven the
taclet’s correctness.

Note, that taclets contain schematic code, as we have seen in Ex. 1.1.2. That
schematic code needs to be instantiated which we will here in general do by
substituting generic “skolem” constants for all schematic code elements.

To have the check
<Il,s >==<1I',s >

done automatically and the property checked by a tool we can employ Maude
and its Maude Java Semantics (MJS). The generic starting states s men-
tioned above can then be configurations for the MJS which are comprised of
generic “skolem” constants and after the code execution we compare the re-
sulting states in both cases. For the code to be executable in the MJS it also
has to be replaced by a concrete program started in a generic configuration
< Ik, S, >, respectively < II7,, sg, >. How they are obtained is explained
in the next section.

We would also like to note here that the configurations are not completely
generic, but instead depend heavily on the code which is to be executed.
This code puts some minimal requirements on the configuration, e.g. for
all appearing variables there must be an environment and memory entry,
similar for attributes, etc. Thus we need to generate fitting generic starting
configurations. This dependance also motivates the definition of the equality
“==". For details on this we refer to Section 2.2.

Concretized code, i.e. code which is generated from the schematic code as de-
scribed below, suffices to draw conclusions about the schematic code because
of the way it is constructed and can represent any possible code fitting the
schema. An obvious issue which would generally be different in two different
concrete instances of a schematic code part is the variable naming. On the
other hand this is no problem as the variables actual names do not matter
at all as long as that naming is consistent. To compare the result of two
programs we can simply require the instantiation in both starting states to
use the same names for the same variables or even perform a renaming after
the program execution.

At least equally important is the treatment of expressions. Their side ef-
fect and result can be different in different instantiations. This is part of



the problem which gets solved in Chapter 3 and makes all the effort there
necessary and worthwhile. Details can be found there.

We now execute the Java code in the MJS, shown by using «MJ%» as the
state transition instead of “—” from above. With

MJS
< g, Sgp >—> &'

and
1

< T, sk SUI
the above task of showing the results of these two code executions to be equal
is reduced to the need to show that s == §”. Showing this for a generic
starting state is the same as showing it for all possible states as stated above.

To summarize, we can conclude the correctness of the taclet if we can show
the following: For all states if

<Il,s >— &

holds, then
<Il',s >— ¢

holds. This is correct if we can prove s’ == s” from above and as we explained
why the concrete programs and starting state can be used we have validated
the taclet.

On a side note, one generic starting configuration will not be able to always
cover all possibilities, but the sum of the cases which are developed below
will do. That is why we have to take such a close look at the schema variables
in the following parts. We will show the equality property from above for all
possible cases of the generic starting configurations to prove correctness.

2.2 Validating Taclets with the Help of the Maude
Java Semantics

As we have seen above we need a generic state and a concrete generic program
to be executed. Concrete generic programs from the schematic code of the
taclets need a lot of case distinctions depending on the contained schema
variables. First of all we need to take a closer look at what we can do about
the generic starting state, which also depends on the schema variables.

29



30 Chapter 2: Correctness of Code Transformation Taclets

Code which is executed in the MJS is evaluated on a configuration and pos-
sibly changes the configuration during its run. The starting point to take a
look at the Java code transformation taclets of KeY, with the help of the
Maude Java Semantics, is a generic configuration to be used as the generic
starting state. This generic configuration can be filled with skolem constants
describing the state as general as possible, within the restrictions imposed
by the considered code. The actual code will then be executed in the given
configuration, where it is treated as being part of a method which was called
on some generic object.

In order to get the resulting configurations s’ and s” from a generic starting
configuration s we compute the result of the code from the find part of a
taclet in the starting configuration s to get s’. We compute the result of the
execution of the code from the replacewith part in the configuration s, where
only the code is exchanged, and possibly new variables with their locations
and values have been added, and which is otherwise unchanged, to get s”.
If the resulting configurations are the same we can conclude that the two
programs are equivalent and thus we can deduct the validity of the original
taclet.

To be able to actually execute any of the schematic code from the taclets
we need to transform it into generic code without schema variables but with
concrete generic variables. We can first of all note that a different naming of
variables (if it is consistent) does not change the results at all. With concrete
generic variables we mean any Maude variables which are uninterpreted, like
[:Int. It is concrete in being an Int Maude variable, yet generic because it is
a placeholder for anything of sort Int.

2.2.1 Technicalities on Maude w.r.t. Schematic Code

We want to be able to put skolem constants into the configuration and make
it generic. Therefore one needs to work on intermediate states which are
created by the given run(Classes Exp) method from Maude when stopping
the execution during the run. One can not use this run of the MJS to create
a generic configuration as no variable memory elements and names can be
given because everything put into this run has to be concrete and parse-able
by Maude according to the MJS. However, the intermediate state can be
manipulated as much as desired and therefore the configuration can be filled
with generic variables, integers, objects, etc. There the operator run (...) also
appears, but it is overloaded and has different argument types and a different



2.2 Validating Taclets with the MJS 31

number of arguments compared to the one above and there are no problems
with generic elements.

An important change to the taclet code when translated to code for Maude
is that variable declarations, of variables which have been declared as new in
the varcond part, do not appear as declarations in the code. They are already
integrated into the environment and memory of the Maude Java Semantics
by our creation of that configuration. Otherwise there would be no way
to ensure that these variables are new. Actually the generated code would
not be correct Java if the integration of the declarations into the Maude
configuration did not happen before. Because of that integration we can
consider all these variables as having been declared before so the code is
syntactically correct Java.

Type casts do not appear if they cast to a #typeof meta-construct due to
problems in the translation of those in code. This is no problem as those
type casts would only be relevant when throwing exceptions, which we can
not handle anyway, see Section 2.3. There we exclude the corresponding
cases from our consideration.

We will also not handle any taclets with a division / or modulo % inside
because of problems of the Maude internal type handling of these. But these
are not too interesting anyway as they appear only in a taclet when there is
a similar taclet using +, — and * so the untreated operators / and % should
be correct when the treated operators +, — and x are correct. It is possible
that there could be some mistake with division by zero as it is a special case
not relevant to the other operators.

There are also other minor syntactic changes necessary which we will not
comment on in length. An example for this is that a + 1 has to be written

as + #i(1).

2.2.2 Handling Schema Variables in General

We now define the translation of elements of schematic code, i.e. schema
variables, to concrete generic code.

In the next subsections we will describe how schema variables from taclets
can be translated and put into the starting configurations of the Maude
Java Semantics to test those taclets. In general a schema variable has
a type and a name. In the actual taclets the schema variables are de-



32 Chapter 2: Correctness of Code Transformation Taclets

clared with a type and name. Given a schema variable named #sv we
will name it svName:Name. The :Name defines that it is of the type of
all variables. Also for each variable named as above appearing in a taclet
we will add [svName:Name, svLoc:Location] to a certain environment, see be-
low for details of when to put it in which environment, and we will add
[svLoc:Location, svVal:Value] to the memory part of the configuration.

Later on we will see the necessity for differentiating between values of an arbi-
trary type and values with a special type, like primitive types. It is necessary
to already allow for that right here, so the svVal:Value can be replaced by one
of the special subtypes of Value, like integer or String, if that is necessary
for any of the operations that are to be performed on it. That is because for
example the addition + is only defined on integers in the MJS. We will check
whether generic Values are enough or not in Chapter 5. If it is not possible to
use the generic type Value then all acceptable (by the check) subtypes have
to be used and extra start configurations generated for every case but we will
later look into that in detail.

With the generic locations we use it is quite possible that in a real execution
some generic locations, i.e. two or more of them, are actually the same loca-
tion. Now we have multiple, possibly different, values for that one location.
One could think we need to decide which one to take as the real value but
that is not the case. As we only compare two codes with each other then if
both are equivalent that means that they correspond on all generic locations
and thus it does not matter which value is the “real” one and which values
have already been overwritten. That is because our results correspond on all
locations and we are only concerned with the correctness of our approach.
Thus we need not give a second thought about multiple locations falling
together and being just one.

The motivation of the sequel is not to justify the design of the different types
of schema variables. That means that we can not motivate all of these in
greater detail but instead refer to [BGHT04] and [ABB105]. So we are only
listing the different schema variable types and state what they match on so
we later know what cases we have to create for each schema variable. The
creation of each case and how we do that was our work on the other hand.



2.2 Validating Taclets with the MJS 33

2.2.3 SV: Program Variable

Schema variables of type program variable represent local variables and also
attributes of the current object. Attributes of other objects can not be
matched this way as they need a prefix with the object to which they belong.

The name of a variable here is derived as described above, so a program
variable #sv would be called svName:Name. For all of the cases distinguished
below the mapping [svName:Name, svLoc:Location] is always present in some
environment. Which environment is taken differs for different cases and is
specified below for each variant. Suppose the mapping is called ee, i.e. ee :=
[svName:Name, svLoc:Location]. Each case defines in which environment the ee
mapping has to appear. A schema variable of type program variable can be
instantiated in the following ways. They are all part of the following list:

e local variable,

e attribute of the current object without explicit this,
e attribute of the current object with explicit this,

® passive expression.

Passive expressions are only of interest when taking static initialization into
account and they are a special intermediate construct of the taclet language
showing that no more static initialization is necessary. Thus they are no
real part of the Java language and can not be handled by our semantics
subsequently.

In the case of the schema variable being a local variable, ee has to be part of
the local environment, i.e. c(e(ee ENV), STATE) with ee added into the local
environment and ENV is the local environment before the addition and STATE
is the rest of the state attributes within c (...) . In the Maude Java code the
#sv is then replaced by svName:Name.

If the schema variable is an attribute of the current object, then ee is added
to the environment of the current object as part of the object environment.
ee has the static type of the object, i.e. the environment of the current object
looks like this with ee already inside: (CT, CT', OBJENV (CT , ee). Here CT
is the static type of the object, CT' is the dynamic type of the object and
OBJENYV is the old object environment. The schema variable could also be
an attribute of some superclass of type CT. That does not change anything
during the execution because it is accessible either way. This, i.e. using CT



34 Chapter 2: Correctness of Code Transformation Taclets

directly, makes it easier to write down because otherwise one would instead
have to give a hierarchy of super classes which is not bounded. One would
have to try any conceivable length, which is every positive integer and which
obviously makes this impossible to do in practice.

In the Maude Java code the #sv is replaced by svName:Name in the case with
an implicit this and by this . svName:Name in case of an explicit this.

Whenever a SV of type program variable appears in a taclet, all above men-
tioned cases are possible and the correctness of the taclet has to be shown
for each of them. Also, if there is more than one SV, every combination with
all interpretations of other schema variables has to be taken into account in
general.

Special short notation for examples

For the convenience of readers unexperienced with Maude we will use a spe-
cial notation to make the configurations in the examples much easier to read.
The full (real and running) configurations for the examples can be found in
the appendix, Section A.1.

The structure of configurations has been described in subsection 1.2.3. For
any of those wrapping operators W there, like m, e, k, ¢ and so on, we
will use the notation X € W for any (fitting) X to state that this X is
an additional part of the (usually multiset) listing which is wrapped by W
with the usual concatenation operator. So [L:Loc, V:Value] € m stands for
m([L:Loc, V:Value] M:Store) where M:Store was inside m before so this actually
only adds elements into the wrapping operators, it does not state its whole
interior.

Example 2.2.1

We return to the second taclet from Ex. 1.1.2 with the SV name changed from
#x to #lhsl and the type of the SV #lhs1 is now program variable. We have I1
= ++#lhsl; and II' = #lhsl = (#typeof(#lhsl)) (#lhsl + 1); and the concrete
code would look as follows together with the configuration, depending on
which of the above mentioned cases we look at. The type casts are dropped
as argued in Section 2.3.

The whole (executable) configurations for each part can be found in the
appendix A.1.

1. If #lhsl is a local variable, the programs are:



2.2 Validating Taclets with the MJS 35

I,z = ++ Ihs1Name:Name :
IT’, = IhsIName:Name = (lhsIName:Name + #i(1)) ;

Here we compare the result of Ily; with the result of II’, when both
are started in a configuration made up by the changes

o [IhsIName:Name, lhslLoc:Location] € e and
e [lhslLoc:Location, int(lhslVal:Int)] € m
and the respective program as the first code on the continuation.

2. If #lhsl is an attribute of the current object without an explicit this,
then again:

11, = ++ lhs1Name:Name ;
I, = lhsIName:Name = (lhsIName:Name + #i(1)) ;

Here we compare the results of I, and II, started in the configuration
with these changes:

o [IhsIName:Name, lhslLoc:Location] € o which means that it is in the
object environment of o, i.e. the current object.

e [lhsllLoc:Location, int(lhs1Val:Int)] € m

Compared to the above case the only difference is that here the first
mapping is inside a different environment.

3. If #lhsl is an attribute of the current object with an explicit this, then
the only difference to the case above with an implicit this is that in
front of all occurrences of lhsiIName:Name there will be a this . :

II,;, = ++ this . lhsiName:Name ;
IT’, = this . lhs1Name:Name = (this . lhsIName:Name + #i(1)) ;

Here we compare the results of the two programs started in the config-
uration with these changes again:

o [lhs1Name:Name, IhslLoc:Location] € o
o [lhsllLoc:Location, int(lhs1Val:Int)] € m

Compared to the case 1 above the difference is that here the first map-
ping is inside a different environment and there is a this . in front of
every appearance of lhsiName:Name. Compared to case 2 there is only



36 Chapter 2: Correctness of Code Transformation Taclets

one difference, which is that this . appears in front of every appear-
ance of lhsiIName:Name.

O

2.2.4 SV: Static Variable

Schema variables of type static variable represent the static attributes of any
object. They are of the form T.a, where T is a type reference, or o.a where
o is an object reference.

In each case below [svName:Name, svLoc:Location] is put in some environ-
ment. We call this pair ee. We consider it to be a mapping, i.e. ee :=
[svName:Name, svLoc:Location]. Each case defines in which environment ee
has to be. A schema variable of type static variable can be instantiated in
the following ways. They are all part of the following list:

1. T.ay.....a, with aq, ..., a, static attributes and T" a type reference,
2. o0.aj.....a, with aq, ..., a, static attributes and o an object reference.

Only one dereferencing is actually allowed by the taclet language definition,
i.e. this will be typeref . svName:Name or obj . svName:Name.

In both cases a type is attached to ee to make it an ObjEnv, i.e. an object
environment, which is then put into the set of static environments.

In the case 1 ee is put in an object environment with the type svCT:CType
which is the type of the type reference. In real Java though it could actually
be a static attribute of any superclass of that type, meaning it should be
put into the object environment with that superclass’ type, but this does
not matter as the dereferencing leads to the same result with either type
together with ee. The static attribute environment will then look like this:
s((svCT:CType, ee) OBJENV) where OBJENV is the static attribute environ-
ment before adding this new static attribute. In the code this #sv is re-
placed by svCT:CType . svName:Name where the svCT:CType is a skolem con-
stant representing the type of the type reference which we consider to have
this attribute.

In the case 2 the ee is put in an object environment together with svCT:CType.
In this case the #sv is replaced by svObjRef:Name . syName:Name where
svObjRef:Name is actually a reference to the object reference

o(svCT:CType, svDT:CType, svObjEnv:ObjEnv) where svCT:CType is the object



2.2 Validating Taclets with the MJS 37

reference’s static type and is used in the static environment mentioned above.
The dynamic type of the object is svDT:CType and the object environment for
this object is svObjEnv:ObjEnv. Also this object is in the memory in a mapping
of [svObjRefLoc:Location, o(svCT:CType, svDT:CType, svObjEnv:ObjEnv)] and the
variable is mapped to that location in the local environment,
[svObjRef:Name, svObjRefLoc:Location].

Example 2.2.2

We return to Ex. 2.2.1, but with #lhsl of type static variable. Then Il =
++#lhsl; and II" = #lhsl = (#typeof(#lhsl))(#Ihsl + 1);. The concrete code
can again be found in appendix A.1. Here the examples depend on which of
the above mentioned cases we look at.

e If #lhsl is a static attribute of the form T.a.....a,:
IIsx = ++ lhs1CT:CType . lhsIName:Name ;

IT’, = Ihs1CT:CType . lhsiName:Name
= (Ihs1CT:CType . lhs1Name:Name + #i(1)) ;

Here we compare the result of Ily, with the result of II’, when both
are started in a configuration made up by the changes:

— (Ihs1CT:CType, [IhsIName:Name, lhslLoc:Location]) € s which means
that it is in the static environment.

— [lhslLoc:Location, int(lhslVal:Int)] € m

and the respective program II as the first piece of code on the contin-
uation.

o If #lhsl is a static attribute, with a program variable as the first ele-
ment, followed by a sequence of attribute accesses. The program vari-
able has to be an object reference therefore:

11, = ++ Ihs1ObjRefName:Name . lhsiName:Name ;

IT’,, = Ihs1ObjRefName:Name . IhsIName:Name
= (Ihs1ObjRefName:Name . IhsIName:Name + #i(1)) ;

Here we compare the results of the two programs started in the config-
uration with these changes:

— (Ihs1CT:CType, [IhsIName:Name, lhsllLoc:Location]) € s,

— [lhslLoc:Location, int(lhslVal:Int)] € m,



38 Chapter 2: Correctness of Code Transformation Taclets

— [Ihs1ObjRefName:Name, lhs1ObjRefLoc:Location] € e,

— [Ihs1ObjRefLoc:Location,
o(lhs1CT:CType, Ihs1DT:CType, Ihs1ObjEnv:ObjEnv)] € m

Compared to the first case above the difference is that here
Ihs10bjRefName is added in the environment and the location it is map-
ped to is added to the memory with the fitting generic value from above
and an object reference appears first instead of a type reference.

O

2.2.5 SV: Lefthandside

After we have seen what is done about program variables and static variables
we can use them to define lefthandsides. A schema variable of type lefthand-
side simply subsumes by definition the program variable and static variable
cases.

A lefthandside can either be a program variable or a static variable. In
addition, in the case of a static variable it can have longer dereferencing
chains which we do not model. So it could be a . b . ¢ but we restrict this
to length two as otherwise arbitrary length would have to be generated which
is not possible. This is also enough because all greater length would just be
dereferenced more often to return the same result, presuming that there are
just more steps in between. Using more steps in between could only show
whether the handling of multiple dereferencing is working correctly within
the MJS, which it is in fact, but which is not what we want to examine. So
what actually is happening boils down to exactly one attribute access in the
static case.

Also static initialization could happen when treating schema variables of type
lefthandside but that is something we can not do anything about because of
the Maude Java Semantics. The MJS simply creates all static attributes at
the beginning and so there is no static initialization left to do during run-
time, which is a wrong model of Java. The static initialization has actually
a lot of very subtle points where one needs to be careful in Java but we have
to ignore that, see Section 2.3.

There is no need for an example as one can take the examples of program
variables and static variables and all subparts in those are possible here.



2.2 Validating Taclets with the MJS 39

2.2.6 SV: Simple Expression

Schema variables of type simple expression represent those expressions which
do not have side effects. They are actually restricted a bit more as we de-
tail below but the following description should be good enough for a first
impression.

Schema variables of type simple expression can take multiple forms. Among
those are all the possibilities of schema variables of type program variable
which are handled as described there. So in total, the following can appear:

e all possibilities of program variables,
e (negated) literals, like 1, true, —1,
e instanceof .

The instanceof case is not described more precisely because it is not imple-
mented in the Maude Java Semantics so we are not going to be able to use
and check this at all (see Section 2.3).

Literals can take the following forms: a boolean value, represented by a
skolem constant of type bool, an integer value, represented by a skolem con-
stant of type int, a string value, represented by a skolem constant of type
string and a float value, represented by a skolem constant of type float. In
these cases no changes to the environments or memory are necessary and
these values get the following names with which they are put into the code
(for a SV named #sv): bool(svBool:Bool), int(svint:Int), str(svStr:String),
fl (svFl:Float). If we do not know or care which type such a literal has we
put the generic value svVal:Value into the code.

All proper examples for simple expressions would include a nonsimple ex-
pression or a general expression so we delay giving an example for a simple
expression until Section 2.2.8.

2.2.7 SV: Nonsimple Expression

A schema variable of type nonsimple expression is more complicated than a
schema variable of type simple expression as it can have side-effects. The set
of simple expressions and the set of nonsimple expressions are distinct. So
here we can have any expression which is not covered by the simple expression
case.



40 Chapter 2: Correctness of Code Transformation Taclets

For nonsimple expressions we will simply work as with expressions. If we can
show the necessary points for an expression it certainly holds for nonsimple
expressions too, as they are a subset.

This will not lead to problems because of which we can not prove some
taclets. This is because they were designed with full expressions in mind. The
distinction between nonsimple expressions and simple expressions is only used
to facilitate proof search in KeY. So we refer to Section 2.2.8 on expressions
to see how these are handled.

2.2.8 SV: Expression

A schema variable of type expression can take the form of any conceivable
Java expression. This subsumes the simple expression and nonsimple expres-
sion cases.

It gets more complicated if schema variables of type expression appear since
they can have side effects. Such an expression is completely characterized
by the side effects it generates together with the resulting value, if it termi-
nates normally. Otherwise there will be some exception thrown and some
side effects will still happen. As usual we have schematic expressions so we
do not know what they do exactly, but we can write down a list of location
and value pairs, using uninterpreted constants, as well as we can take such
a constant for the resulting value. For a terminating expression this char-
acterizes the expression completely. Special constructs have been added to
Maude’s Java Semantics to handle expressions this way and put the changes
the side effects induce into all stores, by way of the extended conditional
values (see Section 3.2.3) which are also implemented in the Maude Java
Semantics. Those stores with new locations as location element are exempt
from the side effect induced changes. An extended conditional value is basi-
cally a value which depends on the location where it was stored at the time
of the side effect execution.

As we only ever compare two resulting configurations with each other there
is no need to explicitly evaluate extended conditional values as long as they
are the same in both configurations which resulted from the computation.
You can find more details about the extra constructs in Chapter 4.

Termination is only an issue if we can not prove two code segments equal. If
we can prove them equal then obviously all expressions have started in the
same state (for each expression appearance in both codes) and thus if one



2.2 Validating Taclets with the MJS 41

does not terminate the other does not either and they are then equal as they
have the same result, which is non-termination. If we can not prove two code
segments equal they still might be equal in the special case that both do not
terminate but for different reasons, which we do not care about as we need
them to be equal in every case.

Please note that the side effects depend on the state in which the expression
is evaluated. Another thing to note about this handling of side effects is, that
all side effects of an expression will appear simultaneously, which is sufficient
for sequential programs as we use them anyhow. On the contrary it would
not be sufficient for concurrent execution of more than one thread as there
would then be an uninterruptible assignment to multiple locations. This is
no problem if one does not use the special construct for this feature which
can not be in any normal Java program anyway and this command can be
safely used in sequential programs as it could be replaced by a number of
single assignments.

In the code a #sv of type expression is replaced by

eval (svEN:ExpressionName, RESULTTYPE) where RESULTTYPE is the type the
expression returns and such that it can work with the other operators in the
code, i.e. it passes a type check.

Example 2.2.3

We now reuse the third taclet from Ex. 1.1.2. With that we look at a taclet
with a condition about a new variable varcond (typeof(#nse) #v new) which
means that there is a new variable #v with the type that #nse has. Here,
#nse is a nonsimple expression, #se is a simple expression and #lhs is of type
lefthandside. See more about new variables below with the equivalence mod-
ulo new variables (Section 2.2.9) and in Chapter 4 where the technicalities
are presented. The programs are

II = #lhs = #nse x #se ;

and

IT" = #v= #nse ; #lhs = #v * F#se ;

For a nonsimple expression, like #nse, we said that we use the same method
as for expressions. Therefore we only get one new case for this, apart from
all the possibilities from all other types. For simple expressions, like #se, we
have to use all cases of program variables and (negated) literals. For sake of
brevity of the example we will only use a literal and for the case of a program
variable the sub case with a local variable. That gives us two cases, because
1 (number of new cases the #nse is split into) * 2 (number of cases we show



42 Chapter 2: Correctness of Code Transformation Taclets

for the #se) = 2. Now a literal could also have many different types which
could substantially increase the amount of cases we get but as we are using
a multiplication on the #se there are only two possibilities left for which it
can be evaluated, which is int and float. As these cases are the same apart
from changing the occurrences of int into float or fl we only show the case
of an integer literal. The lefthandside schema variable #lhs also contributes
all its possible cases (multiplicatively) to the number of cases to check, so
here we only show it for a local variable. So now here are the two cases, first
with the integer literal as #se, then with the local variable for it, also of type
int. So in total we end up with a huge amount of cases which is: 5 (#lhs)* 6
(#nse) * 4(#se) = 120.

e First, we look at the case of #se being an integer literal, #nse returning
an integer and #lhs being an integer local variable.

II,;, = lhsName:Name
= eval(nseEN:ExpressionName, int—result) * int(selnt:Int) ;

IT!, = vName:Name = eval(nseEN:ExpressionName, int—result) ;
lhsName:Name = vName:Name x* int(selnt:Int) ;

We run those code sections in the configuration with:
— [IhsName:Name, IhsLoc:Location] € e,
— [lhsLoc:Location, int(lhsVal:Int)] € m.

e Second, we look at the case of #se being an integer local variable, #nse
returning an integer and #lhs being an integer local variable.

II,;, = IhsName:Name
= eval(nseEN:ExpressionName, int—result) * seName:Name ;

H’sk = vName:Name = eval(nseEN:ExpressionName, int—result) ;
I[hsName:Name = vName:Name * seName:Name ;

We run those code sections in the configuration with the following
additions, where the difference to above is that additionally seName is
in the local environment and its location is in the memory:

— [IhsName:Name, IhsLoc:Location] € e,
— [lhsLoc:Location, int(lhsVal:Int)] € m,

— [seName:Name, seLoc:Location] € e,



2.2 Validating Taclets with the MJS 43

— [seLoc:Location, int(seVal:Int)] € m.

2.2.9 Equivalence of Configurations Modulo New Variables

Simple example for motivation:

Example 2.2.4
Given two different states, where #v is a new variable:

1. #v =4, #x =17
2. #x =17

Then these two states are, when we take the new variable #v away, identical.
Actually those state descriptions are more complicated in the real MJS but
the principle stays the same. U

We define what equivalence modulo new variables means by first giving a
more general definition:

Definition 2.2.5 (Equivalence modulo a set of variables)

We define ==y in the following way as an equivalence: Two states s; and
s are equivalent modulo the variables in the set X of variables, i.e.
s ==x S9, if they are equal when we delete all variables in the set X. O

Deleting all variables in the set X means that wherever one of the variables
which are part of the set of variables X appears in an environment, i.e. in
that environment the variable is mapped to some location, this mapping is
deleted. All locations encountered that way are memorized. For each of those
memory locations, the memory location with its associated value or object
reference inside is deleted, too.

After both states have been modified according to this description the re-
sulting states have to be identical, i.e. equal with Maude’s equality “=="
for them to be equivalent modulo X.

Then we use that to define equivalence modulo new variables. New variables
are a special sort in the MJS about which you will learn more in subsection
3.1.2.

Definition 2.2.6 (Equivalence modulo new variables)
Given two states, we define a set X which consists of all new variables ap-



pearing in any of the two states.

Then two states are equivalent modulo the new variables if the two
states are equivalent modulo X as defined above. [l

The definition of equivalence modulo new variables is useful for comparing
the resulting state of two code segments being executed when one was created
from the other by a taclet with a varcond new var part in the taclet. Then
this new variables only exists in one of the two states. It can also not be
used again at any time after that code segment has been executed, so keeping
the new variables and their values is pointless and they can be ignored after
the code segment created by the taclet was executed. Thus it is sufficient to
check whether two states are equivalent modulo the new variables which are
declared in the taclet to see if the two code segments yield the same results.
Especially it is not necessary to require the two states to be identical.

In practice there is a Maude operator created by us which can take care
of this. It does not take a set of “new variables” however but instead the
new variables and their locations have a special sort of their own and have
to be put into the initial configuration accordingly. More on this can be
found in the chapter about changes to the Maude Java Semantics. This in
effect purges all new variables and the locations they have been mapped to,
together with whatever values have been put into these locations, from the
configuration.

Details on the generic configuration can be found in the preliminaries chapter
in Section 1.2.3.

2.3 Restrictions on the Correctness Statement

The missing and incomplete features in this section are not allowed to appear
in code we validate. This means that our approach is only correct when none
of these features happen to be used by the validated code. So we have only
shown the taclets for this subset of Java code which does not use any of the
missing or incomplete features.

We now provide lists of the features which are problematic.

44



2.3 Restrictions on the Correctness Statement 45

2.3.1 Missing Features

There are a couple of Java constructs which are not implemented within
the MJS and so we cannot make use of them. All of them are given in the
following list:

e throw

e try-catch-finally

e switch

e break

e continue

e conditional expression
e interfaces

e method overloading

As the MJS does not handle exceptions we need to think about how much
that limits our correctness statement. Actually as the Java language elements
throw, try, catch and finally are missing we are only restricted to taclets where
none of these elements appear. In case some code throws an exception which
is not caught and we show the taclet it appears in to be correct that is still
valid. This is because in a case, where an expression which could potentially
throw an exception appears, and our method says that it is correct, all such
expressions are executed in exactly the same states for each code segment.
Therefore if one expression throws an exception, the other will do so too and
thus their resulting states are equivalent, too.

We have, in our extensions of the MJS, given a way for throwing some ex-
ceptions but it is limited. We simply allow critical expressions to throw
exceptions without catching them. This has the advantage that we will not
get any false positives, i.e. we will not show a taclet correct when it is not.
This is because even in the case that both code sections throw the same
exception they cannot be completely executed as the thrown exception stops
the execution and therefore the comparison fails. It was also an easy feature
to add, compared to a full exception handling mechanism at least.

As interfaces are missing we can only guarantee the correctness of taclets for
code where no interfaces are used.



46 Chapter 2: Correctness of Code Transformation Taclets

2.3.2 Incomplete Features

There are also some features which partially work but do not completely
adhere to the proscriptions of the JLS.

e method calls in general, they do not pay attention to the differences of
private and public and static methods,

e object creation, it needs the workaround for a default constructor given
in Section 4.1.6,

e static initialization, it is completely done at the start which is wrong.
The JLS requires static initialization to happen later and not for all
classes at once.

Static initialization is not handled correctly by the MJS, so our correctness
statements can only ever apply when no static initialization is necessary.

In addition, the meta-constructs, like #typeof, pose some problems. We have
removed declarations which include #typeof from the code they appear in.
Removing these declarations does not matter as such declarations exist for
new variables only and new variables are integrated into the configuration
beforehand by our configuration generation mechanism. This point thus boils
down to the fact that the code from which these declarations are removed is
by itself not syntactically correct, but it is syntactically correct in the states
we execute it as those new variables are already internal to these states.

Termination does not put any limits on our approach as whenever we can
prove something correct that means that all expressions are executed in the
same states and thus if one does not terminate the other does not either and
in the semantics of KeY two non-terminating pieces of code are equal.

The MJS also only supports integers and no other forms of numbers. Addi-
tionally the mathematical integers are used and not the Java integers. Even
though floats are partially declared in the MJS there are no operations de-
fined for them so we can not make use of them.



Lifting the Semantics

Here we describe all the extensions which are not immediately related to the
Java Language Specification. These have been used by us to get easier access
to all parts of the configuration and to get functionality needed to handle ex-
pressions for example. We also use these extensions to automatically handle
the equivalence of two programs modulo new variables for instance.

In short, the need for this section arises from the fact that we must compare
two pieces of code given only as schemas using a semantics for concrete code.
So we have to lift the semantics to be able to compare those schematic pieces
of code. This is important to keep in mind to see why all the little details
which follow are necessary.

3.1 Preparations

In this section we will see a few preparatory constructs which will be used
later and knowing them first should be helpful.

3.1.1 Pausing the Execution

There is one general extension which we put in for the purpose of easier
access to the complete resulting configuration because we do not want to
have only the output left after the execution. A program ending with stop
does one extra rewrite to get an output from the last configuration and leaves
everything else out. As we consider only parts of programs we might want
to execute more code after the block we are currently interested in and for
that reason we need to retain the whole configuration including the memory
to make that possible.

Thus, we introduce a new operator, to be put into the continuation, named
pause —>.

47



48 Chapter 3: Lifting the Semantics

op pause —> _ : Continuation —> Continuation

If this is the first item on the continuation, then no further equations or
rules are applicable inside the run (...) where pause —> ... appears. This is
because it is a new operator for which the old semantics has no rules and we
have not given any rules to work on this either. Therefore it does what its
name suggests, i.e. pause the execution, until it is removed (by the user for
example). Now one can take a look at the complete configuration including
the memory. One could also continue with the rest of the code by simply
removing the pause —> from the continuation. Therefore pause has multiple
advantages, for our purposes, over stop.

3.1.2 Handling New Variables and Equivalence Modulo New
Variables

New variables are a concept of the taclet language of KeY and their semantics
is explained in more detail in Section 2.2.9. In short, they are given with
respect to a certain code segment and are new to that segment, i.e. they
do not appear anywhere inside the segment. In the Maude Java Semantics
all variables are bound to some locations by environments and these new
variables will be bound to new locations, i.e. locations which were not used
before and also have a special sort in our Maude specification.

Example 3.1.1

A simple example using a new variable is the third example from Ex. 1.1.2,
in which #lhs is a schema variable of type lefthandside, #nse is a SV of type
nonsimple expression and #se is a SV of type simple expression.

compound_multiplication_1 {

find (#allmodal {{.. # |hs=#nse % #se; ...} }( post))
varcond (typeof(#nse) #v new)

replacewith (#allmodal {{.. #typeof(#nse) #v=#nse;
#lhs=jv + ftse; ...} }(post))

heuristics (simplify_prog)

displayname " multiplication”};

For now the interesting part is the varcond one, where #v is declared to be
a new variable of the same type as #nse. In the replacewith part this new
variable is used and because of the requirement of being new we know that it
is not the same as any of the previously existing variables inside the nonsimple



3.1 Preparations 49

expression #nse and it is also not the same as #lhs or inside #se. This taclet
facilitates splitting complex expressions into all their simple parts. O

To make Maude aware of the new variables, we first define sorts for new
variables and new locations and put them in relation to already existing
sorts:

sort TacletNewVarName
subsort TacletNewVarName < Name .

sort TacletNewlLocation
subsort TacletNewlLocation < Location

This means that every usual operation defined on locations and variables, i.e.
names, can be performed on elements of these new sorts. We can use the fact
that they are members of a special subsort to define extra rules which take
care of special properties of new variables and their locations. For example
new variables, or rather their locations, are not affected by the side effects
of the old code segment. This will be detailed in the next subsection.

Constructs to Describe Equality

Now we want to concentrate on using the handle we have on new variables
to facilitate finding out whether two configurations are equivalent. There
are a couple of constructs needed for this. We start with the operator which
allows for comparing two program runs, where a program run is having that
program code as part of a valid configuration, which are of sort Output in the
Maude Java Semantics, to see whether they have the same resulting state. It
waits until both computations have finished, recognizable by having pause as
the first element on the continuation. Then it compares the two results with
Maude’s “==" equality operator which is automatically created for each and
every module and checks whether the terms are equal modulo the equations
and built-in axioms declared for that term.

var K : Continuation
vars cnt cnt’' : Context . vars state state ' : MyState
op compareResult : Output Output —> Bool
eq compareResult(run(c(k(pause —>K), cnt), state) ,
run(c(k(pause —>K), cnt'), state') )
= run(c(k(pause —>K), cnt), state)
==run(c(k(pause —>K), cnt'), state ')



50 Chapter 3: Lifting the Semantics

This does not suffice if new variables appear in one of the two results, which
is the common case for us. An example for this is the taclet in the example
above. We therefore remove all new variables from all the environments as
well as the new locations from the stores, i.e. the memory. The first operators’
defining equations will be given further down with a few extra comments.
For now, think of removeNewVarsLocs as doing what the name suggests, i.e.
removing the new variables and locations. Also removeNewVarsLocs removes
itself when it has done all possible work on the term which is its argument.
We can then define the second operator in terms of the first. Note that all
removing action will be done before the removeNewVarsLocs operator removes
itself. So only after both removeNewVarLocs are finished in their places in the
equation below, it will be possible for compareResult to do its work according
to its definition from above.

op removeNewVarsLocs : Output —> Output
op compareResultsModNewVars : Output Output —> Bool
eq compareResultsModNewVars
(run(c(k(pause —>K), cnt), state)
run(c(k(pause —> K), cnt'), state ') )
= compareResult
(removeNewVarslLocs
(run(c(k(pause —>K), cnt), state)),
removeNewVarsLocs
(run(c(k(pause —>K), cnt'), state')))

Removing new variables and locations

In the following we describe the removal process of new variables and loca-
tions in detail. There are four equations necessary. Equation 1 requires a
new variable to be mapped to a new location inside the local environment
and that new location to be mapped to any value in the memory. In such a
case the equation removes both mappings. Equations 2 and 3 remove new
variables from the configuration snapshots that have been taken during the
run. Configuration snapshots are a way to save the current state of the mem-
ory and relevant environments for later reference in what state an expression
has been executed (see Section 3.2.6). Equation 2 removes the new variable
to new location mapping from the environment within the snapshot while
equation 3 removes the new location to some value mapping from the mem-
ory of a snapshot. Removing these new variables is important as the value
of the new variables might be different between two runs or a new variable



3.1 Preparations 51

might not even exist in one of the cases. It is safe to remove the new variables
and be sure that their presence did not change anything about the evalua-
tion of expressions because the expressions did not depend and did not write
on those new variables for the simple reason that the new variables are new
w.r.t. the old code, of which the expression is a part. Equation 4 finishes the
process when the first three are not applicable any more, as can be seen by
the [owise] tag.

Equation 1 is enough to remove all occurrences of new variables and loca-
tions from the configuration outside the snapshots because the new variables
and locations can only appear together in this fashion as environment en-
try [ Variable, Location] and memory entry [Location, Value] because they are
only put into initial configurations by us. At the end, or pause, of a run one is
always at the same method call level as at the beginning so the environment
is retained and at best enlarged. The business about putting the new entries
in there in this fashion is done by our method to create the initial configu-
rations which only ever creates a new variable with a new location and puts
it into the environment and memory in this way. Thus there can not be an
unpaired memory or environment entry. There are other environments apart
from the local environment but again no new variables can appear there as
we do not put them there. For removing the new variables and their loca-
tions from the snapshots this does not necessarily hold because a snapshot
could be taken within a method call, which could give a snapshot with quite
a different environment in which possibly no new variable exists but the new
locations are still in the memory of the snapshot. Therefore they have to be
removed on their own and do not necessarily appear in such pairs.

var TNVN : TacletNewVarName . var TNL : TacletNewlLocation
vars CT CT'" CT' " : CType . var V : Value . Var M : Store
var Env : Env . var OE : ObjEnv

1. equation:

eq removeNewVarsLocs(run(c(e([TNVN, TNL] Env), cnt),
m([TNL, V] M), state))
= removeNewVarsLocs (run(c(e(Env), cnt),
m(M), state))

2. equation:

eq removeNewVarsLocs(run(
snapshots((snap(N), c(e([TNVN, TNL] Env), cnt),
state), SNL), state'))



52 Chapter 3: Lifting the Semantics

= removeNewVarsLocs(run (
snapshots ((snap(N), c(e(Env), cnt),
state), SNL), state "))

3. equation:

eq removeNewVarsLocs(run(
snapshots((snap(N), m([TNL, V] M),
state), SNL), state "))
= removeNewVarsLocs (run(
snapshots ((snap(N), m(M),
state), SNL), state "))

4. equation:

eq removeNewVarsLocs(run(state))
= run(state) [owise] .

Now there is one point remaining which is worth mentioning and that is
variable re-declarations. It could happen that by mistake somebody could
maybe try to re-declare a new variable and would then create a normal vari-
able with the same name instead. Then the entry for that normal variable in
the environment would replace the original environment entry that included
the new variable according to the semantics.

A new location can only be removed together with its new variable as you can
see in the first equation above. This would mean that then the new location
in the memory could not be removed any longer as there is no corresponding
new variable anymore.

Luckily it can not happen that a re-declared variable overwrites a new vari-
able. The reason is found in the way these new variables are introduced.
They are only ever given as variableName: TacletNewVarName which is a format
and sort any normally declared variable can never have. This is because
those are of sort Qid, i.e. they have to be a quoted identifier and then they
are of sort Name and not TacletNewVarName.

As we only look at syntactically correct Java code (see Section 2.1) there can
not be any re-declarations (of local variables over local variables).

So in whole, if two starting configurations s and s’ exist they can be checked
for equivalence modulo new variables by typing the following in Maude, after
only loading the extended Maude Java Semantics. Creating those starting



configurations is another task which will be explained later in this work, in
chapter 5 to be precise.

rew compareResultsModNewVars(s, s')

The discussion of why removing the new variables and locations is acceptable
can be found in the chapter about correctness, i.e. Chapter 2.

3.2 Lifting for Expressions

In this section we look at the handling of schematic variables of type expres-
sion and nonsimple expression in a concrete semantics and will end up with
lifting the semantics to be able to work with schematic code.

3.2.1 Rules for Applying a Side Effect Schematically

In this subsection a lot of operators will be used which have not yet been
declared and no defining equations have been given for them yet. Whenever
such operators occur we describe informally what they are supposed to do
in the accompanying text and their precise definitions will follow over the
Sects. 3.2.2 through 3.2.7. So if you are eager to know what some operator
really does you can just browse ahead and look that up before you return to
the equation where it appears.

Schematic code with the possibility of having a side effect will be written
as in the Maude rules of this subsection and its execution has to be done
by a rule because it basically writes to the memory for the unknown side
effect. Also at the moment of executing an expression the snapshot of the
configuration is created and all the needed parts, i.e. the memory and the
local environment as well as the current object, are copied there. The rules
take eval out and leave another construct, the evalResultAfterCompleted, on the
continuation which will only be executed after the side effect has had its effect
on all memory elements and thus blocks subsequent code from interfering and
it leaves the value given to the side effect on the continuation.

evalResultAfterCompleted can disappear with either noStore left to manipulate
by the side effect change or with some change still necessary, but that change
needs to be done on a store which is not concrete so that it has to be post-
poned and has to stay in the memory that way. That non-concrete store

23



54 Chapter 3: Lifting the Semantics

could not have been accessed before, because it does not contain concrete
elements. Thus it is of no concern that now it cannot be accessed by the nor-
mal rules anymore because of the side effect memory change operator which
wraps it and which is not yet applied and cannot be applied.

All of the rules below are (as a whole) responsible for the evaluation of
expressions which could have side effects. Each covers a special case as
described at each rule.

The side effects take place immediately. After use of any of these rules no one
(i.e. no other thread) can get to any of the old values so this is a completely
uninterruptible change on the memory with all cells affected at the same
time. This is not what usually happens when an expression has more than
one side effect, though for a sequential program this is a sufficient model!

Expression with a Result of Some Primitive Type

The following rule is applicable when the result of the expression is of any
primitive type. The eval operator is the one which is put into the code
during the initial configuration generation and it states the name of the
expression which is evaluated as well as the type of its result. The rule
then creates a generic value of that primitive type and puts it into the
evalResultAfterCompleted operator (see Section 3.2.2) and it is just holding
the value in place and waits until the change on the memory is done. Then
it does the usual sideEffMemChange on the memory (see Section 3.2.4) which
puts the change into every memory cell. It also takes a snapshot of the mem-
ory, the local environment, and the current object. So snapshots is a list of
the already existing snapshots and the nextSnapshot is the index number of
the snapshot which is taken next. The operator snap just holds the index
number for the snapshot it belongs to (see Section 3.2.6 for these three op-
erators). Also there is the effectof _ in _ operator which is the schematic
skolem constant for the effect the given expression has when executed in the
recorded snapshot (see Section 3.2.7) together with locs and vals which are
operators that extract the list of locations which are changed and the list of
values those locations are changed to from the former operator.

var EN : ExpressionName
var PR : PrimitiveExpressionResultType
var K : Continuation . var M : Store

var SNL : SnapshotList . var Nn : Nat



3.2 Lifting for Expressions 95

rl [SideEffect_primitive] :
c(k(eval (EN, PR) —> K), cnt), m(M) , snapshots(SNL),
nextSnapshot (Nn)
=> c(k(evalResultAfterCompleted
(resultof EN in snap(Nn) GetsResType PR)
—>K), cnt),
m(sideEffMemChange
([locs(effectof EN in snap(Nn)) ;
vals(effectof EN in snap(Nn))],
M)
)
snapshots(SNL , (snap(Nn), (c(cnt), m(M)))),
nextSnapshot(Nn + 1) .

Expression with an Object Result with No Explicit Attribute

The next rule is used when the result type is an object type, CT, and it does
not require an explicit attribute in the memory. Then the generic object
is given as result value. Its dynamic type is the same as its static type.
This is because any memory write with it will check whether the dynamic
type is a subtype of the generic type which it can not decide for a generic
dynamic type as we would want here. Of the new operators here obj—result
(see Section 3.2.7) just states that the result is an object of this type as can be
seen on the right-hand side of the rule. The RestObjEnv is just the schematic
placeholder for the rest of the object environment of the given object (see
also Section 3.2.7).

var CT : CType

rl [SideEffect_obj_noExplicitAttribute] :
c(k(eval (EN, obj—result(CT)) —> K), cnt),
m(M) , snapshots(SNL),
nextSnapshot (Nn)
=> c(k(evalResultAfterCompleted (
o(CT, CT, RestObjEnv(EN, snap(Nn))
)
—>K), cnt),
m(sideEffMemChange
([locs(effectof EN in snap(Nn)) ;
vals(effectof EN in snap(Nn))],
M



56 Chapter 3: Lifting the Semantics

)
)

snapshots(SNL ap(Nn),

(sn
(c(ent), m(M)))),
nextSnapshot(Nn + 1) .

Expression with an Object Result with Explicit Attribute and a
Former Side Effect Memory Write Remains

The following rule can be employed when the result of the expression is
to be an object which has type CT and an attribute X which itself is of
some primitive type. Also there has been an expression which left a side
effect in the memory before. Then this creates an object as the rule above
does but this object also explicitly has the given attribute in its environ-
ment mapped to a location. That location is mapped to some value in the
memory next to the unconcrete store because it was a part of that before
and is made explicit here. It is not a new creation! There we also see the
sideEffMemChangeNotConcrete on the memory (see Section 3.2.4) and it allows
to do the side effect change on what was before part of the unconcrete store.
Also we use ResAttLoc and AttVal which are the schematic skolem constants
for the location of the attribute of the resulting object and the value of that
attribute (see Section 3.2.7). In addition there is the GetsResType operator,
which is explained in the same subsection as the two above operators, and
which guarantees that the value which is its first argument is given as the
type which is its second argument.

var X : Name .

rl [SideEffect_obj_notFirstSE ]
c(k(eval (EN, obj—result(CT, X, PR)) —> K), cnt),
m(M sideEffMemChangeNotConcrete (SEL, M"))
snapshots(SNL), nextSnapshot(Nn)
=> c(k(evalResultAfterCompleted (
o(CT, CT, RestObjEnv(EN, snap(Nn))
(CT, [X, ResAttLoc(EN, snap(Nn), X)])))
—>K), cnt),
m(sideEffMemChange
([locs(effectof EN in snap(Nn)) ;
vals(effectof EN in snap(Nn))],
M



3.2 Lifting for Expressions 27

sideEffMemChangeNotConcrete (SEL,
MY
[ResAttLoc (EN, snap(Nn), X)
AttVal(EN, snap(Nn), X) GetsResType PR])

)
)
snapshots(SNL , (snap(Nn),
(c(cnt),
m(M sideEffMemChangeNotConcrete(SEL, M"))))),
nextSnapshot(Nn + 1) .

Expression with an Object Result with Explicit Attribute as First
Side Effect

The next rule is applicable when the result of the expression is to be an
object which has type CT and an attribute X which itself is of some primitive
type. Also there is no sideEffMemChangeNotConcrete left in the memory so
this is the first side effect. We know that because OldSideEfflnside is not true
for this memory according to the condition. It is basically a predicate that
checks whether there is a sideEffMemChangeNotConcrete(...) inside the store
(see Section 3.2.5).

crl [SideEffect_obj_FirstSE] :
c(k(eval (EN, obj—result(CT, X, PR)) —> K), cnt), m(M)
snapshots(SNL), nextSnapshot(Nn)
=> c(k(evalResultAfterCompleted(
o(CT, CT, RestObjEnv(EN, snap(Nn))
(CT, [X, ResAttLoc(EN, snap(Nn), X)])))
—>K), cnt),
m(sideEffMemChange
([locs(effectof EN in snap(Nn
vals(effectof EN in snap(Nn
M [ResAttLoc (EN,snap(Nn),
AttVal (EN, snap(Nn), X)

)
;],
Ge:csResType PR])
)
snapshots(SNL , (snap(Nn), (c(cnt), m(M)))),
nextSnapshot (Nn + 1)
if OldSideEfflnside(M) =/= true



58 Chapter 3: Lifting the Semantics

Expression with an Array Result with Explicit Member and a For-
mer Side Effect Memory Write Remains

The following rule can be applied when the result is an array of some type and
has an explicit member at the position of the integer |. There has been some
side effect in the memory before. Then the result is an array of the given type
with a generic ArrEnv except for the integer | which has a mapping to some
generic location and at that location there is a generic value. This Location-
Value pair is an argument of the sideEffMemChangeNotConcrete and next to the
unconcrete memory. Here we have the ResArrLoc and ArrVal which are very
similar to the above mentioned ResAttLoc and AttVal (see Section 3.2.7) and
describe the location of the array element of the resulting array and the value
of that. Also there is PrimResType used (see Section 3.2.7) and it just does a
conversion of the type it gets to an element of the PrimitiveExpressionResultType
which the GetsResType operator needs.

rl [SideEffect_arr_NotFirstSE] :
c(k(eval (EN, arr—result(T, I)) —> K), cnt),
m(M sideEffMemChangeNotConcrete (SEL, M"))
snapshots(SNL), nextSnapshot(Nn)
=> c(k(evalResultAfterCompleted (
a(T, RestArrEnv(EN, snap(Nn))
[1, ResArrLoc(EN, snap(Nn), 1)]))
—>K), cnt),
m(sideEffMemChange
([locs(effectof EN in snap(Nn)) ;
vals(effectof EN in snap(Nn))],
M
sideEffMemChangeNotConcrete (SEL, M’
[ResArrLoc(EN,snap(Nn), 1) ,
ArrVal(EN, snap(Nn), |) GetsResType
PrimResType(T)])

)
)
snapshots(SNL , (snap(Nn), (c(cnt),
m(M sideEffMemChangeNotConcrete(SEL, M"))))) ,
nextSnapshot(Nn + 1) .



3.2 Lifting for Expressions 29

Expression with an Array Result with Explicit Member as First
Side Effect

The next rule can be used when the result is some array and has an explicit
member at the position of the integer I. There are no remainders of an earlier
side effect in the memory. Then the result is an array of the given type with
a generic ArrEnv except for the integer | which has a mapping to some generic
location and at that location there is a generic value.

crl [SideEffect_arr_FirstSE] :
c(k(eval (EN, arr—result(T, I)) —> K), cnt), m(M),
snapshots(SNL), nextSnapshot(Nn)
=> c(k(evalResultAfterCompleted (
a(T, RestArrEnv(EN, snap(Nn))

Nn)

[, ResArrLoc(EN, snap( . )1))
—>K), cnt),
m(sideEffMemChange
([locs(effectof EN in snap(Nn)) ;
vals(effectof EN in snap(Nn))],
M [ResArrLoc(EN,snap(Nn), 1) ,
ArrVal(EN, snap(Nn), |I) GetsResType

PrimResType(T)])
)
snapshots(SNL , (snap(Nn), (c(cnt), m(M)))),
nextSnapshot (Nn + 1)
if OldSideEfflnside (M) =/= true

Expression with an Array Result with No Explicit Member

Finally the following rule is executed when the result is an array of some
type and we do not need an explicit member of it.

rl [SideEffect_arr_noindex] :
c(k(eval (EN, arr—result(T)) —> K), cnt),
m(M) , snapshots(SNL),
nextSnapshot (Nn)
=> c(k(evalResultAfterCompleted(
a(T, RestArrEnv(EN, snap(Nn))))
—>K), cnt),
m(sideEffMemChange
([locs(effectof EN in snap(Nn))



60 Chapter 3: Lifting the Semantics

vals(effectof EN in snap(Nn))],
M

)
) .
snapshots(SNL , (snap(Nn), (c(cnt), m(M)))),
nextSnapshot(Nn + 1) .

3.2.2 Helper Operator to Finish the Expression Evaluation

As eval has been defined by the rules above we only now see the declaration
of it which is that it takes an ExpressionName en and a ExpressionResultType
rt with the following meaning: If eval(en, rt) is the first command on a
continuation en is executed yielding a result of the type rt and as usual
creating side effects. See Section 3.2.1.

The conditional equations for evalResultAfterCompleted are given below which
can only work if the result value does not contain a GetResType anymore and
there are no more memory changes, due to the side effect, left to be done.
That can be seen by having noStore under the sideEffMemChange and in the
other case already having the sideEffMemChange reduced to
sideEffMemChangeNotConcrete. The UndefValType predicate is responsible for
checking whether there is a GetResType left inside the value. It is explained
in Section 3.2.5. It basically makes sure that the value is finally typed and
does not have a type definition left inside.

sort ExpressionName

op eval : ExpressionName ExpressionResultType —> StExp
op evalResultAfterCompleted : Value —> StExp

op sideEffMemChange : SideEffectList Store —> Store
op sideEffMemChangeNotConcrete : SideEffectList Store
—> Store

var SEL : SideEffectList

ceq c(k(evalResultAfterCompleted(V) —> K ), cnt),
m(M sideEffMemChange (SEL, noStore))
=c(k(V—-=>K), cnt),
m(M)
if UndefValType(V) =/= true



3.2 Lifting for Expressions 61

ceq c(k(evalResultAfterCompleted (V) —> K ), cnt),
m(M sideEffMemChangeNotConcrete (SEL, M"))
=c(k(V—->K), cnt),
m(M sideEffMemChangeNotConcrete(SEL, M"))
if UndefValType(V) =/= true

The following operator is not directly related to expression evaluation but
only to what can take the place of an expression. A value is a sub case of
expression as well as of nonsimple expression. To be able to put that value
into code it needs to be an expression and that is what reslsValue does in a
fashion similar to the way #i does for integers and #b does for booleans.

op reslsValue : Value —> Exp .
eq k(reslsValue (V) —> K) = k(V —> K)

3.2.3 Extended Conditional Values for Schematic Side Effects

In the KeY taclets we are facing schematic expressions of certain types.
These can have side effects about which we do not know anything and they
will return something of the type mentioned above, if they terminate and do
not end with an exception. Modeling the effects of such an expression with
side effects in Maude’s explicit memory representation is described here. The
reason why this is enough can be found in Chapter 2. First of all we can
note that a normally terminating expression is completely characterized by
the side effects it has on the configuration and the resulting value which all
depend on the state of the configuration the expression is started in. Also
note that the new variables introduced above can not be in any way affected
by these side effects because they are by definition new w.r.t. the code given
and thus there can be no reference to them in there and subsequently no
change to them.

Example 3.2.1

Let us start with an easy example, say we want to execute the code:

int a =0; int b=0; #v = #e,

where #e is a schema variable of type expression, i.e. any possible expression
could take its place. Modeling this with a side effect and a result one could
replace #e by sideEffectAndResult (varl — vall, resultval ), where that should
change the variable varl to the value vall and give resultval as its result. Now
varl could either be a or b and it could put any integer into those variables.
That is actually not enough. Another possibility for #e is that it could be



62 Chapter 3: Lifting the Semantics

an expression which changes a as well as b. So in general we do not know
how many side effects there are so we use a list of side effects with no fixed
length. This list also depends on the state of the configuration in which the
expression is started. O

First we define a list of side effects which is made up of two lists, a list of
locations and a list of values, with the meaning that each location from the
location list gets assigned the corresponding value from the value list.

sort SideEffectList
op [-;-] : LocationList ValuelList —> SideEffectList

The expressions we are concerned with are schematic, meaning we do not
know their concretization in advance and then we also do not know the set
of side effects they will introduce. To allow for this we decided to present
extended conditional values, that is values which are set depending on where
they were stored at the time of the expression execution. They can be used
like any other values even if they look a bit complex at first sight. As we aim
at comparing two program runs it is obvious that no further evaluation of
the conditional values will be necessary. To allow for an easier presentation
we omit some of the detail when facing specially typed values, like integers,
booleans and strings but only present an operator for integers. This operator
even has versions for CTypes and ObjEnvs. The first operator has the meaning
that if the given location is equal to one of the elements of the location list
the construct gets the value of the corresponding element of the value list,
otherwise it keeps the original value, which is the last argument. The second
operator is very similar except for the fact that it does not take a Value as
fourth argument but an Int and what it creates is also an Int and not a Value.
We refer to Section 3.2.4 why we need to do this.

op _in_?7_::_ : Location LocationList ValuelList Value
—> Value

op _in_?7_::_int : Location LocationList Valuelist Int
—> Int

This following example motivates how the operator works. The operator is
similar to a conditional expression with the difference that the boolean part
is limited to the inclusion test of a location in a list of locations and that the
result is either, on first glance, a list of values or a value. In case the list of
values is selected the result is actually the value in that list at the position
that the given location was found at in the location list. This example is just



3.2 Lifting for Expressions 63

for motivating the operator and to show the way it should be viewed, it does
not replace a rigorous definition. There will actually be no definition on how
to evaluate this construct as that will not be necessary for our purposes.

Example 3.2.2

Let 11 and 12 be two distinct locations, 12 is then also a location list with just
one element. Let v2 be a value list with as many elements as the location
list, i.e. one element, which is the value v2, and let vl be a value. Now the
result of the above operator applied to some cases would be:

11 in 12 2?7 v2 :: vl yields vl because I1 is not an element of the list 12.

12 in 12 ?? v2 :: vl yields v2 because 12 is an element of the list 12. It is the
first element and thus the result is the first element of the value list v2 which
is the value v2.

Adding larger location lists 11, 12 and 12, 11 and a larger value list v11, v12
we can see that

11 in 11, 12 ?? v11, v12 :: vl yields v11 because I1 is the first element of the
location list and v11 is the first element of the value list,

12 in 11, 12 ?? v11, v12 :: vl yields v12 because 12 is the second element of
the location list and v12 is the second element of the value list,

12 in 12, 11 ?? v11, v12 :: vl yields v11 because 12 is the first element of the
location list and v11 is the first element of the value list.

With another distinct location 13 we can finally see that

13 in 11, 12 77 v11, v12 :: vl yields vl because 13 is not an element of the
location list. 0

In case you wonder what this is useful for: As we have seen in example
3.2.1 one side effect, for which a simple conditional expression would have
sufficed, is not enough to describe an expression in general, because it can
have multiple side effects. To describe these multiple side effects we use
the extended conditional value operator we just defined and do so with the
following meaning:

Given a Location LO at which the Value VO is stored and we have a side ef-
fect which changes all elements of the LocationList “I” to the element of the
ValueList “0” then at the Location LO in the memory section of the configura-
tion we would get the new Value “L0 in [ ?? ¥ :: V0”. This has the meaning
that if LO is an element of the list of locations then the resulting value is the



64 Chapter 3: Lifting the Semantics

value from the value list which corresponds to the location and otherwise,
i.e. if LO is not in that location list, the original value stays unchanged.

As we get a list of locations for a side effect, locs( effectof_in_ ), and a list
of values, vals( effectof_in_ ), one can now see how this will be used when a
SideEffectList has been created to show the effect that side effect had on each
memory cell and it is used in subsection 3.2.7.

There is quite a good analogy for these extended conditional values, which
is, that a simple conditional value is very similar to an if _ then _ else ex-
pression while these extended conditional values are much more like a case
statement, where the original value is the base case which is used if no other
match is found.

3.2.4 Side Effect Induced Changes in the Configuration Memory

Before we take a look at how exactly the sideEffMemChange works we want to
consider another example with an important cue about that operator.

Example 3.2.3
Let us look at the following code:

#He[#e0] ++ ;

which is transformed to, with #v and #v0 new variables of fitting types,

#Hv = #He ; #v0 = #e0 ; #v[#v0] = #v[#v0] + 1 ;

That is the order in which the first statement is to be evaluated according to
the KeY taclets. Now, such unknown side effects, like #e and #e0 can have,
can not affect new variables by definition. If those side effects could affect
new variables we would have the following effect: After #e is evaluated and
stored in #v, having had side effects on all other variables, #e0 is evaluated
and stored in #v0, and has side effects. These side effects could change #v
if changing new variables would be allowed for unknown side effects. On the
other hand in the original statement that could not happen, as #e is already
evaluated when #e0 gets evaluated and there can be no changes on the value
of #e by the execution of #e0. Therefore side effects, created by the generic
side effect lists we use, must not be applicable to our new variables. O

The side effect will not change the store when the location is one of the
new locations as argued above. If the location is a normal one, i.e. not a



3.2 Lifting for Expressions 65

new one, its value is updated to be a conditional expression with the given
meaning. If there are no concrete location and value pairs left in the memory
and the rest is not the noStore, which is treated as described above, then it
is wrapped in an extra construct showing that this is memory which is not
concrete but still is possibly subject to the change by the side effect. Take
a special look at the second equation, here the case of a primitive integer is
treated so that afterwards the result is an integer again which is the only
acceptable type-correct memory write anyway. There are similar equations
in the implementation for the other primitive types (and more) which are not
shown here. The third equation also has to check whether the value it is going
to treat has a defined type, if that is not the case it has to wait for that to
happen by the condition and then one of the other specially typed equations
will be usable and used because that equation has the [owise] attribute.

var Local : LocationlList . var VI : Valuelist
var L : Location . var V : Value
var | : Int

eq sideEffMemChange ([Local ; VI], [TNL,V] M)
= [TNL, V]
sideEffMemChange ([Local ; VI], M)

ceq sideEffMemChange ([Local ; VI], [L, int(l)] M)

= [L, int(L in LocaL ?7 VI :: | int)]
sideEffMemChange ([Local ; VI], M)
if not L :: TacletNewLocation

ceq sideEffMemChange ([Local ; VI], [L,V] M)
= [L, L in LocaL ?7 VI :: V]
sideEffMemChange ([Local ; VI], M)
if not L :: TacletNewlLocation
and UndefValType(V) =/= true [owise] .

ceq sideEffMemChange ([Local ; VI], M)
= sideEffMemChangeNotConcrete ([Local ; VI], M)
if M=/= noStore [owise] .

The special treatment of the integer value, as well as the special treatment
of all the other primitive types which are not shown here, is necessary for
the following reasons. An int(l:Int) is of type Value but it is special within
Value in that by the int () the semantics knows explicitly that this value is of
sort Int and then the equations defining e.g. + can be applied which are not



66 Chapter 3: Lifting the Semantics

defined on Values but only on Ints for example.

All of the above changes can be safely performed by equations and do not
need rewrite rules because they are, when viewed by the unextended se-
mantics, happening at once. That is because everything which is not yet
changed is caught under the sideEffMemChange operator where other memory
access rules can not work. Also the evalResultAfterCompleted operator holds
the current thread’s execution until all memory changes are done. Even other
threads can not interfere as the part of the memory which is not yet modified
by the side effect is safely wrapped inside the changing operator. This is not
a point of concern when working with sequential programs, which we are
doing. In case of using multi-threading though this means that there is an
uninterruptible, parallel change of a lot of data which is not something that is
really possible. But because we are not concerned with multi-threading this
is no problem as this special extra operator can not be part of a usual multi-
threaded Java program and thus does not harm the capability of executing
multi-threaded Java, provided one does not make use of this operator.

To sum up, the so-called new variables can not be affected by the side effects,
which is clear, as the code with the side effect is given first and the new
variable is selected such that it is new w.r.t. this code.

3.2.5 Delayed Configuration Memory Changes

As we have seen with the rules for applying eval on something in Section 3.2.1
it is possible, and necessary, to put Location-Value pairs under the

sideEffMemChangeNotConcrete operator because these Location-Value pairs
have been part of the unconcrete store until now but we need to access them
so we have to take them out of the unconcrete store. Thus they stand next
to the unconcrete store, as argument to the old change operator created by
a side effect, if one exists. As follows there are the equations for the case in
which the side effect is applied just as usual but delayed because the memory
element was unconcrete when the side effect was originally being performed.
The first six equations define that application for special types, the condi-
tional equation for all other values. A little bit of help is necessary for the
conditional equation in the form of the seventh equation which defines the
UndefValType operator. That is a predicate on the kind level which checks
whether the GetsResType has been evaluated already in case it was there. If
that has not yet been evaluated the Value which includes it can not be pulled
outside of the side effect construct in memory. The GetsResType is explained



3.2 Lifting for Expressions 67

in 3.2.7 but it is appropriate to say a bit more about it now. See the example
below the following defining equations for that.

—1
eq sideEffMemChangeNotConcrete ([Local ; VI],
[L, int(1)] M)
= [L, int(L in Local ?? VI :: | int)]
sideEffMemChangeNotConcrete ([Local ; VI], M)

-2
eq sideEffMemChangeNotConcrete ([Local ; VI],
[L, fI(F:Float)]
= [L, fI(L in LocaL ?? VI :: F:Float fl)]
sideEffMemChangeNotConcrete ([Local ; VI], M)

M)

3
eq sideEffMemChangeNotConcrete ([Local ; VI],
[L, str(S:String)] M)
= [L, str(L in LocaL ?? VI :: S:String str)]
sideEffMemChangeNotConcrete ([Local ; VI], M)

'}
eq sideEffMemChangeNotConcrete ([Local ; VI],
[L, bool(B:Bool)] M)
= [L, bool(L in LocaL ?? VI :: B:Bool bool)]
sideEffMemChangeNotConcrete ([Local ; VI], M)

——5
eq sideEffMemChangeNotConcrete ([Local ; VI],

[L, alloc(T:Type)] M)

= [L, alloc(L in LocaL ?? VI :: T:Type alloc)]

sideEffMemChangeNotConcrete ([Local ; VI], M)

——6
eq sideEffMemChangeNotConcrete ([Local ; VI],
[L, o(ST:CType,
DT:CType,
OE:ObjEnv )] M)
= [L, o(ST:CType,
L in LocaL 7?7 VI :: DT:CType ctype,
L in LocaL ?? VI :: OE:ObjEnv objenv)]
sideEffMemChangeNotConcrete ([Local ; VI],



68 Chapter 3: Lifting the Semantics

M)
op UndefValType : Value —> [Bool] .
——7
eq UndefValType(V GetsResType PR) = true
———38
ceq sideEffMemChangeNotConcrete ([Local ; VI], [L,V] M)

= [L, L in LocaL ?? VI :: V]
sideEffMemChangeNotConcrete ([Local ; VI], M)
if UndefValType(V) =/= true

Before we get to the example there is a small thing we want to point out about
equation 6 above which does a change on an object reference. The static type
can not be changed so only the dynamic type and object environment are
subject to change. The change in those is very similar,

L in LocalL ?? VI :: DT:CType ctype and

L in LocalL ?? VI :: OE:ObjEnv objenv, which looks like it would return the
same Value V if L happens to be in the LocationList Local and once it is a
CType and the other time it is an ObjEnv. In such a case when evaluating the
construct the Value V would need to be a pair and the fitting part is taken in
each case. This does not matter to us as we never evaluate these constructs.

Example 3.2.4

The GetsResType gets used when looking at the result of an expression to
make sure it has the right type. If the result of an expression must be an
integer the rules create the following:

resultof EN in snap(Nn) GetsResType int—result

where EN is the expression name and Nn is the integer index of the snapshot
when the expression was executed. This is not yet of the required format
which is int(1:Int) but that is what GetsResType assures. When it is executed
the above gets changed to the following:

int(resultof EN in snap(Nn) int)
with resultof_in_int another operator defined in the later subsection 3.2.7

which just means that it is a result but has type Int instead of Value. ([l

Also we need the information whether there is a non concrete side effect
construct left in a store so therefore we define the operator below. This



3.2 Lifting for Expressions 69

predicate is true on a store when a side effect has already happened and its
effect, i.e. a sideEffMemChangeNotConcrete is left in the memory surrounding
some store which we consider to be not concrete.

op OldSideEfflnside : Store —> [Bool] .
eq OldSideEfflnside (M
sideEffMemChangeNotConcrete(SEL, M")) = true

3.2.6 Configuration Snapshots

The actual side effect list depends on the state in which the expression is
executed. We use a configuration snapshot of a part of the configuration to
define exactly when the expression was executed so that this can be compared
for two different runs of the expression. For that we need an easy naming of a
snapshot which do by just calling it snap(N) with N a natural number. There
are two additional StateAttributes in the configuration now, snapshots is the
list of snapshots already taken and nextSnapshot is the number of the next
snapshot. The notation for lists of snapshots is as usual for lists in Maude
and the final operator comprises a name and a state as a snapshot.

sort Snapshot

sort SnapshotName

sort SnapshotState

sort SnapshotList

subsort Snapshot < SnapshotlList

op snap : Nat —> SnapshotName
op snapshots : SnapshotlList —> StateAttribute
op nextSnapshot : Nat —> StateAttribute
op emptylist : —> SnapshotlList
op _,. : SnapshotList SnapshotList
—> Snapshotlist [assoc comm id: emptylist] .
op (-,-) : SnapshotName MyState —> Snapshot

In the MyState in this special case there will be the current memory, the local
environment and the object on which the current continuation is executed.
The snapshot is meant to hold all parts of the configuration upon which
a side effect depends and which could possibly change. The above named
three are all such parts. The memory is quite obvious among them, the local
environment could be different if the expression is in one case started within



70 Chapter 3: Lifting the Semantics

a method call and in the other case outside of it. The same holds for the
current object which could be changed in that way.

Then one could think that maybe the static attribute environment needs
to be put into the snapshot but that is not the case as there is no static
initialization in the MJS but all static attributes are created in the beginning.
All other parts of the configurations are quite obviously not needed in the
snapshot.

3.2.7 Effects and Results of Expressions

To model the list of side effects we say that an expression started in a certain
configuration has the effect effectof_in_ as below. The locs and vals operators
are used to create the lists of locations and values from the effect of the side
effect so they can be used as described above with extended conditional
values.

sort ExpressionEffect

op effectof_in_ : ExpressionName SnapshotName
—> ExpressionEffect
op locs : ExpressionEffect —> LocationlList

op vals : ExpressionEffect —> Valuelist

Before we go on with the result of such an expression we have to investigate
some fundamental things first. Earlier we already looked at some intricate
differences between Values and Ints and how they are related on the other
hand (see Section 3.2.4). We repeat a bit of that here and go further then.
An int(l:Int) is of type Value but it is special within Value in that by the
int (...) the semantics knows explicitly that this value is of type int and then
the equations defining e.g. + can be applied which are not defined on Values
but only on int (...) s and certain other special types. This makes it necessary
to differentiate between results of type Value and results of primitive types.

Also it would be much more work if one tried to integrate this differentia-
tion into the rules given for eval (...) which were given in subsection 3.2.1.
To avoid this some of the following constructs are used, most noticeably
GetsResType. With them, we can just give one rule for all primitive cases of
the evaluation of eval and can define the GetsResType to work locally. The
only thing we have to be careful about then is that this has to be evaluated
before the value of which it is a part can be otherwise used. This can be



3.2 Lifting for Expressions 71

seen in Section 3.2.2, 3.2.4 and 3.2.5. There it is obvious that GetsResType is
evaluated first because of the use of the predicate UndefValType.

Having considered the side effects of an expression we now have to consider
the result of an expression. We will use a similar operator called resultof_in_ .
Now here we have to again distinguish between the general case of any value
when we do not care about exactly which type the value has and those
cases where the value is of some specific primitive type, represented by the
other four operators which are necessary after the considerations we presented
above.

op resultof_in_ : ExpressionName SnapshotName —> Value

op resultof_in_int . ExpressionName SnapshotName
—> Int

op resultof_in_float : ExpressionName SnapshotName
—> Float

op resultof_in_string : ExpressionName SnapshotName
—> String

op resultof_in_bool : ExpressionName SnapshotName
—> Bool

In order to get all these operators working together with the different types we
need to do a few things for which we need the operators described below. The
sorts ExpressionResultType and PrimitiveExpressionResultType with their subsort
inclusion represent the types a result value can take. The operators are all
constants used to identify the kind of type. A general resultof.in. will be
transformed to a typed TYPE(resultof_in_TYPE) with TYPE being replaced by
the possibilities below when TYPE is primitive. The _GetsResType_ is doing
that transformation using the equations below.

sort ExpressionResultType

sort PrimitiveExpressionResultType

subsort PrimitiveExpressionResultType
< ExpressionResultType

op int—result : —> PrimitiveExpressionResultType
op float—result : —> PrimitiveExpressionResultType
op string—result : —> PrimitiveExpressionResultType
op bool—result . —> PrimitiveExpressionResultType

op non—primitive—result
—> PrimitiveExpressionResultType



72 Chapter 3: Lifting the Semantics

op _GetsResType_ : Value PrimitiveExpressionResultType
—> Value

eq resultof EN in snap(Nn) GetsResType int—result =
int(resultof EN in snap(Nn) int)

eq resultof EN in snap(Nn) GetsResType float—result =
fl(resultof EN in snap(Nn) float)

eq resultof EN in snap(Nn) GetsResType string—result =
str(resultof EN in snap(Nn) string)

eq resultof EN in snap(Nn) GetsResType bool—result =
bool(resultof EN in snap(Nn) bool)

eq resultof EN in snap(Nn) GetsResType
non—primitive —result = resultof EN in snap(Nn)

The above types are not all possible ExpressionResultTypes, here are the other,
more complex, ones. In the case that the result is an object we allow two
ways for that:

1. The first way is for the operator to take a type and an attribute name
with its associated type. Then the result is an object of that type and
one has explicit access to the given attribute which holds a value of the
given result type.

2. The second way is for the operator to just take a type for the object
and therefore an object of that type is the result but it has no explicitly
accessible attributes.

These two different creation methods are necessary because sometimes we
can, by statically looking at the code, find out that the result object of an
expression evaluation needs to have a certain attribute. On the other hand
there are times where it does not need any attribute and then the object
might not have an attribute at all so we can not just use the first operator
but need to use the second in case there really exists no attribute for the given
object. The second operator does not at all state that there is no attribute for
the given class type but only that there is no explicitly accessible attribute
given by the operator.

For arrays this is similar, the first case yields an array of the given type and
the member at the position given by the integer is explicitly accessible while
the second case creates an array of the type with no member being explicitly
accessible.

op obj—result : CType Name PrimitiveExpressionResultType



3.2 Lifting for Expressions 73

—> ExpressionResultType
op obj—result : CType —> ExpressionResultType

op arr—result : Type Int —> ExpressionResultType
op arr—result : Type —> ExpressionResultType

To process this information inside the configuration and keep it generic we
need the following helpful operators:

e ResAttLoc which is the location where the attribute of the resulting
object is stored,

e AttVal which is the value the attribute has,

e RestObjEnv which represents the rest of the environment of the object
with all other (possibly many) attributes in there.

These get into a configuration during the application of the rules defining
eval as you can see in Section 3.2.1:

op ResAttLoc : ExpressionName SnapshotName Name
—> Location

op AttVal : ExpressionName SnapshotName Name
—> Value

op RestObjEnv : ExpressionName SnapshotName —> ObjEnv

Similarly for arrays we have:

e ResArrLoc is the location of the array element which is explicitly acces-
sible,

e ArrVal is the value of that element,

e RestArrEnv is the rest of the environment.

op ResArrLoc : ExpressionName SnapshotName Int
—> Location
op ArrVal : ExpressionName SnapshotName Int —> Value

op RestArrEnv : ExpressionName SnapshotName —> ArrayEnv

Similar to the resultof_in_TYPE operators above we have the following special
operators for the value of the object’s attribute. There are also the equations
which do the type evaluation similar to above. Then the same happens for
the value of the array’s element also with the defining equations.



74 Chapter 3: Lifting the Semantics
op AttVallnt ExpressionName SnapshotName Name
—> Int
op AttValFloat ExpressionName SnapshotName Name
—> Float
op AttValString ExpressionName SnapshotName Name
—> String
op AttValBool ExpressionName SnapshotName Name
—> Bool
eq AttVal(EN, snap(Nn), X) GetsResType int—result =
mt(AttVaIInt( snap(Nn), X))
eq AttVal(EN, snap(Nn), X) GetsResType float—result =
fl (AttValFloat(EN, snap(Nn), X))
eq AttVal(EN, snap(Nn), X) GetsResType string—result =
str( AttValString (EN, snap(Nn), X))
eq AttVal(EN, snap(Nn), X) GetsResType bool—result =
booI(AttVaIBooI(EN, snap(Nn), X))
eq AttVal(EN, snap(Nn), X) GetsResType
non—primitive—result =
AttVal(EN, snap(Nn), X)
op ArrVallnt ExpressionName SnapshotName Int
—> Int
op ArrValFloat ExpressionName SnapshotName Int
—> Float
op ArrValString ExpressionName SnapshotName Int
—> String
op ArrValBool ExpressionName SnapshotName Int
—> Bool
eq ArrVal(EN, snap(Nn), |) GetsResType int—result =
mt(ArrVaIInt( snap(Nn), 1))
eq ArrVal(EN, snap(Nn), ') GetsResType float—result =
fl (ArrValFloat(EN, snap(Nn), 1))
eq ArrVal(EN, snap(Nn), |) GetsResType string—result =
str(ArrValString (EN, snap(Nn), 1))
eq ArrVal(EN, snap(Nn), |) GetsResType bool—result =
booI(ArrVaIBooI(EN, snap(Nn), 1))
eq ArrVal(EN, snap(Nn), |) GetsResType
non—primitive—result =
ArrVal(EN, snap(Nn), I)



3.2 Lifting for Expressions 75

To decide which PrimitiveExpressionResultType’s defining equation from the list
above has to be used one needs a PrimitiveExpressionResultType while we only
have a Type. Therefore we hereby present the operator PrimResType which
extracts that from a normal Type and was used in Section 3.2.1 already.

op PrimResType : Type —> PrimitiveExpressionResultType
var Ty : Type

eq PrimResType(int) = int—result

eq PrimResType(float) = float—result

eq PrimResType(String) = string—result

eq PrimResType(boolean) = bool—result

eq PrimResType(Ty) = non—primitive—result [owise] .

3.2.8 Shortcomings of the Schematic Side Effect Handling

There are some problems remaining for the handling of schematic side effects
which can not be easily remedied. To illustrate this we can first take a look
at an example.

Example 3.2.5

Let us consider two expression which could have side effects, say E1 and E2.
If the result of E1 is of an array type and the result of E2 is an integer we
could look at the following code: E1 [E2]. Here we get into trouble because to
evaluate the array element access we need the array returned from E1 to have
an explicitly given element at the integer position which E2 returns. But E2
returns a resultof E2 in snap(X) int where X is some integer which we can not
know beforehand. So there is no easy way to make sure that the array E1
returns has an explicit element at that position unless going to considerable
length at the analysis of the code during the configuration creation. What
happens if the array element is not explicitly there is that the execution
simply stops and we therefore do not get a comparison between the two code
segments. U

Actually as we know how a starting configuration is built up, we could count
the number of expressions in the code which happen before E2, and there-
fore in the above example find out what integer E2 will return, which is
resultof E2 in snap(initSnapCounter + Z) int where initSnapCounter is the unin-
terpreted constant from the configuration generation which represents the
next number a snapshot gets when this execution started and Z is the num-
ber of expressions which trigger a snapshot being made before E2 is executed.



76 Chapter 3: Lifting the Semantics

Finding that Z is not easy though and using the initSnapCounter seems dubi-
ous because it means we exploit our knowledge of the creation process a lot.
That aside it would work in practice but it has not been implemented.

This problem is limited to array access for a simple reason. Trying to do
something like this with, for example, an attribute access of an object, say
E1l . E2, is not possible as in this case E2 would not be an acceptable expres-
sion but the whole term is just one expression with one result. As above
we can use E1 . a where a is just any variable as then we statically know
which attribute E1 needs to have. That it is ok to give the attribute to E1
explicitly is because the compiler would have to have checked that this is a
valid access on the static type of E1 and thus this is ok. Even if it would
be a non-acceptable access we can not do anything useful about it without
exception handling.

In addition to that we are in trouble when using these expressions as booleans.
If such an expression is the first element of a conjunction then the second
element is only ever executed and evaluated if the expression is either true or
“not yet decided”. The expression, which returns such a generic value of type
bool is always “not yet decided” though! At this point in the evaluation the
semantics just sees that it is some generic value and can not match it with
false directly so the second element will always be evaluated. As described
in Section 4.1.1 that is not the way the boolean conjunction in Java should
be evaluated. The right hand side element should only be evaluatend when
the first boolean is true.



4 Changes to the Maude Java
Semantics

The Maude Java Semantics is not complete and not completely correct in
the features that are available and so we had to make some modifications to
it. We also add some functionality. In this chapter we will detail what has
been modified and why that was necessary. In general the Maude variables
appearing in each section will be declared in the first Maude code part they
appear in. They will not be repeated in the remainder of that section in
most cases even though sometimes they might reappear. So if you find a
Maude variable, recognizable by starting with a capital letter, say X and do
not remember its type just search for var X, starting at the beginning of the
section you encounter that X and you will easily find its declaration.

There are three different sorts of modifications to the Maude Java Semantics:

e There are bug fixes, including fixes to e.g. equations which lead to a
deadlock. In that case Maude does not go on with the execution of the
program even though it should be possible. There are also bugs in the
sense that the execution’s result was not meeting the specified result
according to the Java language specification.

e There are extensions of the Maude Java Semantics which are necessary
so that more features of Java code can be covered.

e There are extensions for the purpose of our work, to get the possibility
to easily use some constructs from the taclet language.

4.1 Bug Fixes

In this section we will expose the bugs we have found and give a fix for them.

7



78 Chapter 4: Changes to the Maude Java Semantics

4.1.1 Mistake in && and || w.r.t. the Java Language Specifica-
tion

According to the Java Language Specification [GJSB00] [15.22,15.23] for &&
and for || it is specified that these operators have to be evaluated “lazily”,
i.e. the right-hand side is only evaluated if the left-hand side is true (resp.
false) in the && case (in the || case).

To reflect this the following two equations of the original semantics, for each
of the operators, have been removed and instead there are four equations
given for each case.

The old, “strict” and therefore faulty, defining equations of &&

vars EE'" : Exp . var K : Continuation . vars B B’ : Bool
eq k((E && E') —> K)

=k((E,E') —> && —>K) .
eq k((bool(B),bool(B")) —> && —> K)

= k(bool(B and B') —> K) .

have been replaced by equations which evaluate the whole expression in a
“lazy” way as the Java specification requires. The first equation puts the
lefthand side expression of the conjunction to the front of the continuation
for evaluation and “hides” the second expression behind the conjunction sign.
In the case that the evaluation of the first expression yields false the second
equation makes sure that the second expression is not evaluated and the
result is false. The third equation evaluates the conjunction after both sides
have been evaluated. The fourth and last equation only works if none of the
others is applicable, i.e. it is not the case that both sides have been evaluated
and also the lefthand side was not false. Then it swaps the second expression
to the front of the continuation to be evaluated such that the third equation
can finish the work afterwards when both sides are evaluated. The fourth
equation can thus only be used at most once for every evaluation of &&.

eq k((E && E') —> K)
=k(E —>&& —> (E' —> K)) .

eq k(bool(false) —> && —> (E' —> K))
= k(bool(false) —> K) .

eq k(bool(B)—> && —> (bool (B') —> K))
= k(bool (B’ and B) —> K)

eq k(bool(B) —> &&—> (E' —> K)
= k(E" —> && —> (bool(B) —> K)) [owise] .



4.1 Bug Fixes 79

The old, “strict” and therefore faulty, defining equations of ||

eq k((E [[ E') —>K)
= k((E,E") => || —>K)

eq k((bool(B),bool(B")) —> || —> K)
= k(bool (B or B') —> K)

have been replaced by equations which evaluate the whole expression in a lazy
way as required by the Java specification, here basically the same explanation
as for the && case holds, except that true is in the second equation instead
of false for obvious reasons.

eq (( [l E) —>K)
=> [ => (F" => K))
true) —> || => (E" —> K))
ool(true) —> K) .
B) —> || —> (bool(B") —> K))
ool (B' or B) —> K)
B) —> || —> (€ —> K))
—> || —> (bool(B) —> K)) [owise]

eq k( boo

=k
eq k(boo

| E
k(E

I(

k(boo

eq k(bool(
(b

I(

= k(E’

4.1.2 Array Creation Typo

Here the elements of an array of a primitive type are created. The second
equation is wrong because instead of making an integer array element, as the
left hand side suggests, it creates a float array element, i.e. instead of an int
it creates a float. Also the first equation has the exact same lefthand side
which is not acceptable. Because of the first equation it is safe to assume
that this was a typo and that this should create a float array element like it
does in the third equation. The third equation is given by us and replaces the
second one in the actual semantics while the first one stays unchanged. The
first and second equation have been part of the original semantics. The lines
——— original and ——— modified are here to show where each of the equations
is from. They are comments as usually denoted by ——— in Maude.

var K : Continuation
eq k(noVal —> newArray(int) —> K) = k(int(0.0) —> K)

——— original
eq k(noVal —> newArray(int) —> K)

k(f1(0.0) —> K)



80 Chapter 4: Changes to the Maude Java Semantics

——— modified
eq k(noVal —> newArray(fl) —> K) = k(fl(0.0) —> K)

4.1.3 Method Call Error

This is a quite severe problem which leads to non-executability of code and
the computation stopping at a method call which should be executable. The
problem arises as soon as a method of a super-class is called on an object of
a sub-class.

Example 4.1.1

Let us look at a simple example: Two classes A and B are given, with class A
having a method m and class A being the superclass of class B. Now we have
an object o of type B. This should allow us to call the method m on the object
o, that is do something like: o . m(). In the given semantics this might or
might not work. That is because in this case a search is started which method
m we are talking about here, even though in this case we have only one
available method. That search looks like this: getMethod(B, m, A{...} B{...}),
where the first B is the type of the object on which the method is called,
the m is the method name and the set A{...} B{...} is the set of all existing
classes, i.e. their specifications, which are searched for the method.

Please note that the getMethod operator yields a multiset of possible candi-
date methods out of which later on the right one is picked but the mistake
happens here already. The if SuperOf(A, B, B{...}) getM(m, A{...}) below has
to be read like this: In the case that the predicate is true the result of the
getM operator is part of the multiset of possible methods otherwise the line
yields the empty element. The second equality below then arises from a re-
finement of the second line of the intermediate state of the multiset and has
to be read accordingly, like the whole second execution order further down.
Between two lines which are not separated by a = imagine a multiset union,
which we have denoted, as often done in Maude, by juxtaposition, i.e. just
using a space between elements.

What happens now is that there are two different orders in which this can
be evaluated, first, and correct, is this one:

getMethod (B, m, A{...} B{...})

= if SuperOf(A, B, B{...}) getM(m, A{...})
getMethod (B, m, B{...})



4.1 Bug Fixes 81

= if SuperOf(A, B, B{...}) getM(m, A{...})
if SuperOf(B, B, ) getM(m, B{...})

The SuperOf is always evaluated with respect to its third argument, the list
of classes. Also the list of classes is reduced in every step here, to keep
track of what has been visited and what has not yet been visited. There
is information lost on the way and the evaluation of SuperOf can get wrong
w.r.t. the original set of classes. Above the first SuperOf is true, because in the
class B in the third argument we will have the information that B extends A.
The second SuperOf is trivially true.

Second, and wrong, is this execution.

getMethod (B, m, A{...} B{...})

= if SuperOf(B, B, A{...}) getM(m, B{...})
getMethod (B, m, A{...})

= if SuperOf(B, B, A{...}) getM(m, B{...})
if SuperOf(A, B, ) getM(m, A{...})

Above the first SuperOf expression is trivially true but the second one is false,
because A is no superclass of B if we do not know anything about the classes
which is the case here as we only have the empty set of classes remaining.
That is wrong, because A is really a superclass of B. Thus we do not find
the method in this case. This is due to the loss of information to keep track
what we have done already.

An easy remedy for this is to keep a second set of the classes, which does not
get changed and is used in creating the checks whether a class is a superclass
of another one.

This problem is especially severe as these two execution paths show that the
equational specification is non-confluent! U

On a more detailed level we will now show what changes we made to the
semantics to get this to work correctly.

As suggested before we will need two sets of the class list and for that reason
the old operator, given first, is replaced by a new one which takes an extra
Classes argument and is given second below. We will use these sets of classes
as mentioned before. The first one will be consumed during the search to



82 Chapter 4: Changes to the Maude Java Semantics

make sure everything is checked exactly once as it happens in the old seman-
tics. The second set will be given as argument to all the checks for super
classes so all available information is there and it will not be changed at all.

op GetMethodList : CType MName Classes
—> MethodList

gets replaced by

op GetMethodList : CType MName Classes Classes
—> MethodList

The second equation replaces the first, which makes sure that the initial call
to GetMethodList gets the Classes list twice.

var CT : CType . var mn : MName . var Cl : Classes
eq GetMethods(CT, mn, Cl) =
Compact(GetMethodList(CT, mn, Cl), Cl)

eq GetMethods(CT, mn, Cl) =
Compact(GetMethodList (CT, mn, CI, CI), CI)

We will restrict ourselves here to the base case and one of the four possible
ways a class can be given, the others work the same way. Here we have those
from the old semantics, where after applying the second equation the size of
the set of classes in the SuperOf operator decreases with every use:

var md : Modifier . var Xc : Qid
var sp : Supers . var cb : ClassBody

eq GetMethodList(CT, mn, noClass) = none

eq GetMethodList(CT, mn, ((md Class Xc sp cb) Cl)) =
(if SuperOf(#c(Xc), CT, CI)
then GetMethodList(CT, mn, #c(Xc), cb)
else none fi), GetMethodList(CT, mn, CI)

On the contrary in the changed semantics this does not happen. The set
of classes used to create the checks about being a superclass is always the
unchanged version in the last argument of the operator. Thus it is additional
ballast to be carried through all the appearances of the operator but does
its actual work only in the SuperOf operator where it is used instead of the
smaller set of classes which is worked through. In the changed semantics the



4.1 Bug Fixes 83

above two equations are replaced by these two, using the same variables as
above.

eq GetMethodList(CT, mn, noClass, Cl') = none

eq GetMethodList(CT, mn, ((md Class Xc sp cb) Cl), Cl') =
(if SuperOf(#c(Xc), CT, CI")
then GetMethodList(CT, mn, #c(Xc), cb)
else none fi), GetMethodList(CT, mn, ClI, Cl")

4.1.4 Bad Internal Handling which Stops the Execution

This is a fairly technical point because it requires precise knowledge about
other internal operators which have not been exposed here but it deserves to
be mentioned nonetheless.

The first rule is the faulty one from the original specification and the second
one is its replacement. First, all variables are declared as usual.

var L : Location . var E : Exp . var K : Continuation
var V : Value . var cnt : Context . var M : Store
——— original

rl c(k(L —>4+=(E) —> K), cnt), m([L,V] M)
=>c(k([E | V] —>+ —>
(set&fetch (L) —> K)), cnt), m([L,V] M)

——— modified
rl c(k(L —> +=(E) —> K), cnt), m([L,V] M)
=>c(k(V —> [E | noVal] —> + —>
(set&fetch (L) —> K)), cnt), m([L,V] M)

This replacement is necessary because the only equations given that can
handle [-|-] have a value V as the first element in the continuation, i.e.
V —> [El|VI], with El being an expression list and VI a value list. There is
no equation which can handle a continuation beginning with [E | V] which
the faulty rule creates and thus stops the computation. Simply putting the
V —> in front and taking it out of the value list fixes the problem of stopping
the execution and it sends the V to the right position, i.e. into the value list,
during future equation applications.



84 Chapter 4: Changes to the Maude Java Semantics

Similar changes are necessary and have been done for the operators —=, =,
/= and %=.

4.1.5 Block Semantics

For a block of Java code there are a few things to note. First, everything
which is visible when entering the block is visible inside and can be changed.
All variables declared within the block are on the other hand only visible
inside the block and not anymore after leaving the block. This is something
the compiler checks at compile time so at runtime this should not be a prob-
lem, except in some special cases. It actually can get to be a problem with
blocks within methods. Let us look at an example for this:

Example 4.1.2

Having any Java class with the attribute int i; declared and a method m()
which does the following: { {int i; i =0; } i =1;} the following happens.
According to the Java language specification the last assignment of i to
1 should change the attribute i of the class. In the MJS because of the
handling of blocks this assignment changes the i locally declared within the
block, which is wrong. O

Another interesting point is also that the authors of the MJS have obviously
thought about this as in the code we find the following:

var bs : BlockStatements . var K : Continuation
var Env : Env

——— eq k({bs} —>K), e(Env) = k(bs —> Env —> K), e(Env)

eq k({bs} —>K), e(Env) = k(bs —>K), e(Env)

The first equation is commented out so this one is not really used but it is
the one which is correct because it restores the local environment from before
the block at the end of the block again. The second is not correct as we have
seen in the example above. So we simply changed the comments from the
first equation to the second equation, meaning that now the first equation is
in the MJS and the second is not anymore.



4.1.6 Missing Default Constructor Workaround

There is no default constructor implemented so for every class which is given
in the set of classes for a program run one has to manually define the default
constructor and also call the constructor of the superclass first. This can be
done in the following way:

Class 'B extends #c('A)
{'BOA{#m(CA) () .-} }

Where the 'B () is the default constructor of class 'B and the first thing it
does is a call to the constructor of the superclass "A.

4.2 Extensions of the Maude Java Semantics - with
JLS Defined Constructs

There are several features which could be added to the Maude Java Seman-
tics. Here we describe what we have added. The selection we took was
mainly influenced by what we thought was necessary for the program trans-
formations we intend to prove.

4.2.1 Type Check for Type Casts

We are only concerned with the correctness of run-time type casts on objects.
Mistakes about primitive type casts are in Java caught by the compiler.

In the original MJS type casts were simply done, without a check whether
they are allowed or not. This can be seen in the first equation. The second
equation replaces the first and checks whether the new static type for the
reference is a super-type of the dynamic type of the object. To do that it
needs the set of classes Cl. Only in the case that the type check is positive
the cast is allowed and the execution in the MJS will proceed as in the
first equation. Otherwise an exception is generated. There is no exception
handling so this is not very useful but at least it stops the computation and
we can not get a false positive this way, i.e. no two pieces of code will be
considered equivalent wrongly, as it could have happened without the type
check.

vars CT CT' CT' " . CType . var oEnv : ObjEnv

85



86 Chapter 4: Changes to the Maude Java Semantics

var K : Continuation . var Cl : Classes

——— original

eq k(o(CT, CT', oEnv) —> {CT""} —> K) =
k(o(CT'"", CT", oEnv) —> K)

——— modified
eq c(k(o(CT, CT', oEnv) —> {CT""} —> K), cnt), cl(Cl) =
c(k(if SuperOf(CT'', CT', CI)
then o(CT"', CT', oEnv) —> K

else

throw ClassCastException(CT""', o(CT, CT', oEnv)) ;
—>K fi),

cnt), cl(Cl) .

Now one can still only cast class types and there are two primitive type casts.
But those class type casts now check type correctness and raise exceptions in
case of error. Only ints can be cast to floats and vice versa floats to ints for
the primitive types in the original semantics. These type casts are done by
using native Maude operators which do this so it might or might not do the
cast exactly as Java would. This is not a problem for us as we only concern
ourselves with comparing two configurations and then in both of those this
would happen in the same way which means that in Java it would be done the
same way both times, too. In addition we are not using any actual integers or
floats with which this could be a problem but only typed skolem constants.
Also in case of overflow in Java this would not happen in the MJS because it
uses the mathematical integers which are internal to Maude, so that is not
modeled truthfully.

We added the possibility to cast a primitive type onto itself with the following
equations which actually have an implicit type check:

var | : Int . var f : Float . var str : String
var B : Bool

eq k(int(l) =>{int} —>K) = k(int(l) —> K)
eq k(fl(f) —> {float} —>K) = k(flI(f) —> K)
eq k(str(str) —> {String} —> K) = k(str(str) —> K)
eq k(bool(B) —> {boolean} —> K) = k(bool(B) —> K)



4.2 Extensions of the MJS - with JLS Defined Constructs 87

4.2.2 Type Check for Assignments

In the original semantics assignments have been executed without a type
check and they also did not respect the static type of a reference.

Example 4.2.1

After creating an object reference with the declaration A a; with A a class
and A being a superclass of B one would expect that the code a = new B();
creates an object of type B which the reference a points to. Also a should
still have static type A and thus attributes of type B should not be accessible
without a prior type cast. Actually in the implementation the assignment
a = new B() removes any knowledge about a being of type A and it will be
treated as being of type B. This has been fixed by the extensions and changes
below. O

We added two new operators for this type checking. The first one introduces
a run-time type check and the second one does the actual change after the
type check was found to be ok. Also this change then respects the static type
in contrast to the original. The first argument of typecheck is the value from
the memory, which also contains its type, respectively its static type if it is a
reference. We want to compare it with the type of the second value which is
the one we want to assign to that location. The operator change—checked just
works as change originally did, except for not writing directly over the memory
location but using the originally provided, but not yet utilized, ReplaceWith
construct, which replaces the dynamic type and the object environment, in
the case of an object reference, but leaves the static type as it is.

op typecheck (_,_,.) —> _

Value Value Location Continuation —> Continuation
op change—checked (_-,-) —> _

Value Location Continuation —> Continuation

There needs to be only one addition to the ReplaceWith construct, so it can
work on generic values too if a certain value is not defined more precisely by
the original equations, seen by the [owise] attribute.

eq ReplaceWith(V, V') = V [owise] .

The first rule below is the rule which governed memory changes in the original
semantics and is the root of all problems. It does not check the types of V
and V' and overwrites V' completely so any knowledge about the static type
of V', if it was an object reference, is lost. It is replaced by the second rule,



88 Chapter 4: Changes to the Maude Java Semantics

which even though we only want the static type of V needs to be a rule and no
equation. That is because we want what is inside V to be fully equationally
simplified before taking it out again, which is guaranteed when we use a rule.

vars V V' : Value . var L : Location

var K : Continuation . var M : Store . var cnt : Context

——— original

rl c(k(change(V, L) —>K), cnt), m([L, V'] M) =>
c(k(K), cnt), m([L, V] M)

———— modified
rl c(k(change(V, L) => K), cnt), m([L, V'] M) =>
c(k(typecheck(V', V, L) =>K), cnt), m([L, V'] M)

Below follows the rule that does the actual memory write, like change did
in the original version. The difference is that this is only invoked after the
type check has been done, which is explained further down. Note that it
leaves the way how one object reference is replaced by another, actually any
value replaced by another, to the definition of ReplaceWith. The ReplaceWith
construct keeps the static type of the reference as it should be and also works
correctly for primitives as well as arrays, which also have a static type like
object references.

rl c(k(change—checked(V, L) —> K), cnt), m([L, V'] M)
=>c(k(K), cnt), m([L, ReplaceWith(V', V)] M)

For “objects” the type check works as defined by the equation below. The
dynamic type of the “object” reference that is assigned to the location has to
be a subtype of the static type of the “object” reference at that location. In
the notation used below CT is the static type of the object at the location and
CT"" is the dynamic type of the object that shall be written into the location.
We are writing “object” because what is called object in this semantics is
actually not an object but more like a “rich reference” to the object. SuperOf
is another operator provided by the original semantics. It checks whether
the first argument is a super class type (or the same class type) of the second
argument w.r.t the given set of classes inside the third argument. If the
SuperOf check yields true we actually do the change but if it is not true
then a ClassCastException is thrown. Even though there is no exception
handling we know when looking at a final configuration, which this creates,
or also a complete trace, what happened. This could not be executed further
anyway because we would not know what the exception handler would do



4.2 Extensions of the MJS - with JLS Defined Constructs 89

and thus the results we get might differ from the result the Java Language
Specification requires, which is not acceptable.

vars CT CT" CT'" CT"" " : CType . var Cl : Classes
eq c(k(typecheck(o(CT, CT', oEnv),
o(CT"", CT""", oEnv"),
L) —> K), cnt), cl(Cl) =
c(k(if SuperOf(CT, CT'"", CI)
then change—checked(o(CT"", CT""', oEnv'), L) —> K
else throw
ClassCastException (o(CT, CT', oEnv),
o(CT"", CT""", oEnv"),
L); —> K
fi),
cnt), cl(Cl)

Arrays require a separate and special treatment for the type check too, as
in this case we can have also Type[] as types, where Type is any type. This
can also happen in multiple layers, i.e. Type [|[][] . We can use the Assignable
check, which takes care of the possibility of having [|] in the type, possibly
more than once, too. Inside it uses SuperOf as above and Assignable is also
provided by the original semantics.

var T : Type . vars aEnv aEnv' : ArrayEnv .
eq c(k(typecheck(a(T, aEnv), a(T', aEnv'), L) —> K), cnt),
cl(Cl) =
c(k(if Assignable(T, T', CI)
then change—checked(a(T', aEnv'), L) —> K
else throw ClassCastException(a(T, aEnv),
a(T', aEnv'), L) ;
—>K
fi), cnt), cl(Cl)

For all other cases, i.e. primitive types, we do not type check at run-time
because it is the compiler’s job to make sure that nothing bad happens here.

eq c(k(typecheck(V', V, L) —=>K), cnt), cl(Cl) =
c(k(change—checked(V, L) —> K ), cnt),
cl(Cl) [owise] .

A problem related to this treatment, in particular to the handling of the
owise case where we assume to work with primitive types, is that no type
check is performed if not both sides, the value at the location and the value



which is to be written there, are either objects or arrays. Thus one could
write something like this: int a; a = new A() and it would be executed as if
a would have been declared with type A. In these cases however it is the
compiler’s job to catch the problems before. Thus we need to make sure that
everything is checked by the compiler first.

There is a minor mistake in the implementation of Assignable which is that it
does not take into account the special treatment required by type Object. It
can be assigned any higher-order array than it is itself. We therefore added
one equation to the definition of Assignable before its owise equation:

var Tl TI" : Types . var Cl : Classes .
eq Assignable((Object, TI), (T[], TI"), CI)
= Assignable ((Object, TI), (T', TI"), Cl)

4.3 Extensions of the Maude Java Semantics - with
Taclet Language Constructs

In this section we will take a look at special things we added to the MJS to
be able to easily integrate functionality of the schematic Java in the taclet
language.

4.3.1 Simultaneous Updates

Simultaneous Updates are another special construct used in KeY. They are
basically assignments but have a few restrictions on them. These are that no
expression appearing on any side of an update can have side effects. With
the “simultaneous” one wants to motivate that all right hand sides of the
updates are evaluated first, that is in the state before any of the assignments
is really completed, i.e. written to memory. After all right hand sides have
been evaluated they are assigned to their respective left hand sides in order
of appearance. That means especially that if a left hand side appears twice
as left hand side only the latest assignment to it will be effective. Here we
show a way to enter simultaneous updates into an initial configuration and
how it will be evaluated.

First we declare the sorts Update and UpdateList, with their subsort inclusion,
as well as the operator which creates an update. The unit () symbol is the
identity for sets of update lists.

90



4.3 Extensions of the MJS - with Taclet Language Constructs 91

sort Update
op _:=_; : Exp Exp —> Update
sort Updatelist
subsort Update < Updatelist
op ‘(') : —> Updatelist
op -- : Updatelist Updatelist
—> Updatelist [assoc id: ()]

The simUpd... operator takes the updates in a way the KeY user would expect
it to work. The simUpdList... operator is an internal one into which the
updates get put in the format listleft | listright with listleft the list of
left hand sides and listright the list of right hand sides, where the i-th left
hand side element belongs to the i-th right hand side element.

op simUpd_ —> _ : UpdatelList Continuation —> Continuation
op simUpdList_. | - —> _ : Exps Exps Continuation
—> Continuation

The following three equations create simUpdList(El | EI') —> nolLoc from a
simUpd(el :=el’; e2:=¢€2 ';..) where the order of el, €2 ,... in the El list
and el’, e2 ',... in the EI' list stays the same as in the original. An empty
initial update list is not allowed because then there is no need to put an
update construct there anyway!

var E E' : Exp . var ElI EI'" : Exps . var UD : Updatelist
var Local : LocationlList . var L : Location

eq k(simUpd((E := E" ;) UD) —> simUpdList EI | EI' —> K) =
k(simUpd(UD) —> simUpdList EI, E | EI', E' —> K)

eq k(simUpd((E := E" ;) UD) —> K) =
k(simUpd(UD) —> simUpdList E | E' —> nolLoc —> K)
[owise] .

eq k(simUpd(()) —> K ) = k(K)

Now we need to evaluate the lefthand sides to their locations and keep those
locations in reserve without assigning anything yet. In the first equation
below, the first expression of the left hand side list is put to the front and is
evaluated to a location by the existing rules. The evaluated location is then
put behind the simUpdList... in a location list by the second equation below.
Note that only the left set of expressions, the left hand sides, gets evaluated
this way and is transformed into locations.



92 Chapter 4: Changes to the Maude Java Semantics

When all location expressions are removed from the operator and the oper-
ator is the first thing on the continuation with the () as its first argument,
i.e. all locations are evaluated and in a list behind the operator, the third
equation creates a continuation which evaluates all the expressions in the
second expression list into a value list which is the first item on the contin-
uation then. The second argument is the list of locations which cannot be
seen here as that is subsumed in the K variable. The continuation, a value
list followed by a location list, leads to the assignment of all the values to
their corresponding locations. For details on how all this works internal to
the full original semantics see [FCMRO04].

eq k(simUpdList E, EI | EI' —> K) =
k(loc(E) —> simUpdList EI | EI' —> K) .
eq k(L —> simUpdList EI | EI'" —> LocalL —> K) =
k(simUpdList EI | EI'" —> Local, L —> K)

eq k(simUpdList () | E, El —>K) =
k(E —> [ElI | noVal] —> K)



5 Configuration Generation

In this chapter we describe how we automatize the creation of the starting
configurations for the MJS from a taclet. We will do the configuration gen-
eration in a two step process. The first part of that process extracts the
required information from the taclets and it is in Java. It will format its
output in a way such that the second part can create the real configuration,
using Maude. We will first state a few things about what the Java imple-
mented part does. Then we describe what we did in Maude to see what
kind of interface specifications the Java implemented part has to meet and
generally see how such a configuration can be generated quite easily. At the
end we will see how the two parts work together to create all the necessary
configurations for a taclet.

5.1 Configuration Generation from Taclets by Java

Starting with a code transformation taclet we create all possible combinations
of the sub cases of its schema variables. For each of these complete sub cases
a separate string along the lines of Section 5.2 is created. This string is the
starting point to generate a configuration. It is then given to Maude where
the actual configuration is created and executed. This happens for each case.
All this works not only for a single taclet but for sets of taclets. It is also
very fast as e.g. for 55 taclets the part which creates the string set, written
in Java, takes about 5 seconds and the final generation together with the
execution in Maude takes about 35 seconds for those 55 taclets.

This string creation including sub case building is done as a part of the KeY
prover code, using a lot of the work already done there. It is especially
important to name the parsing of the taclets which we did not need to re-do.
We will not give any details on this part of the generation as it is straight-
forward Java programming.

The output of this is a file containing a string for each combination of the

93



types of schema variables, where the string is as described in Section 5.3 and
you can see Section 2.2.2 for the combinations of types of schema variables.
Those strings are required for each taclet in the set of taclets which are to
be validated. This file is then loaded by the modified extended MJS. For the
interface points it offers for the generated text see Section 5.2.

5.2 Configuration Generation Maude Interface

This interface is actually added to the Maude Java Semantics and it is not
implemented as a separate module. This facilitates the run of the actual pro-
gram after the configuration has been created. Also a lot of the definitions
of the MJS are already used during the configuration generation. With the
Maude implementation given below we not only provide the interface for the
Java written part but actually do a lot of internal work. The Java imple-
mented part does not integrate everything into the configuration but only
makes a list of what has to be entered. This Maude based implementation
then takes care of this task and integrates everything into a real configura-
tion. The Java implemented part of the generation creates a string which is
read in by Maude as a usual rewriting command. So this string is in the for-
mat the Maude module requires and below we define what “helper functions”
are available.

5.2.1 Special Constants

For an initial configuration we need a few skolem constants which can be
interpreted as exactly that, which is there, for every “real” configuration.
Those skolem constants will not be used as usual variables and constants but
will remain unchanged, even though some of them can be overwritten and
thus disappear. Now let us get on with the actual implementation.

This is a special sort with one operator which takes the place where later
on the actual code is put. The second operator is just the standard way of
getting any element of the sort, i.e. the first operator, into a continuation.

var CODE : BlockStatements . var AL : AddList

sort InitialCode

op initCodePlaceHolder : —> InitialCode

op - —> _ : InitialCode Continuation —> Continuation

94



5.2 Configuration Generation Maude Interface 95

The first operator below marks where the initial code ends, which is created
by the Java part later on, so it can be easily read from the string the Java
implemented part has produced. The second operator is the constant repre-
senting the basic starting configuration upon which we expand with the help
of the add operator later on.

op endOflnitCode : —> Continuation
op basiclnitConfiguration : —> Output

To be able to define the basicInitConfiguration from above equationally we
need quite a few “Maude Constants” which from our point of view are skolem
constants. They all start with init for easier recognition in the resulting
states.

These constants create “junk” [CDET00] for some of the sorts but that is
ok, we do want these constants to remain in our computation. Now we do
not protect these sorts any more which were, in part, imported with the
protecting attribute, but that is just a minor point of fixing declarations in
the sub-modules.

The names of these constants are quite self-explanatory especially when one
looks-up in the definition of the starting configuration where they are put so
there is not much to explain here.

op initRemainderOfCode : —> Continuation
op initLocalEnv : —> Env

op initStaticClassType : —> CType

op initDynamicClassType : —> CType

op initObjEnv : —> ObjEnv

op initMemCounter : —> Nat

op initMemory : —> Store

op initSetOfClasses : —> Classes

op initStaticAttEnv : —> ObjEnv

op initSnapCounter : —> Nat

op initSnaplList : —> Snapshotlist
op initOutput : —> Output

This equation defines the basic initial configuration with the help of the
above given constants. On this configuration we work with the add operator.
Just a word on the nolLock’s in there. We do not need locks as we only work
with sequential programs. Therefore these do not get some “initialConstant”
value but really nolLock.



96 Chapter 5: Configuration Generation

eq basiclnitConfiguration
= run(c(k(initCodePlaceHolder —> pause
—> initRemainderOfCode)

e(initLocalEnv),

o( o(initStaticClassType,
initDynamicClassType,
initObjEnv

)
).

n(initMemCounter),
m(initMemory),

| (noLock),

w(noLock),
cl(initSetOfClasses),
s(initStaticAttEnv),
nextSnapshot(initSnapCounter),
snapshots(initSnaplList),
out(initOutput)

) .

5.2.2 Basics for Adding Data and Adding the Code to the Con-
figuration

We will arrange the addition of all data in small parts, i.e. one add... at a
time. We will then have a list of such items which need to be added. These
items will thus form a list, called AddList which is built as defined below. The
single items will be AddListElements.

The last operator builds up the starting configuration (of sort output) re-
quired by the taclet by basically holding the configuration together. It takes
a current configuration and adds all elements of the AddList to the configu-
ration and in the end takes the code from the continuation and puts it into
the configuration so the execution can proceed.

sort AddList
sort AddListElement
subsort AddListElement < AddList
op emptyAddList : —> AddList
op __ : AddList AddList
—> AddList [assoc id: emptyAddList] .



5.2 Configuration Generation Maude Interface 97

op add : Output AddList Continuation —> Output

This equation replaces the place holder code with the real initial code when
no further items need to be added to the configuration and it allows the
actual Java semantics to start. The initCodePlaceHolder stops all rules of the
MJS from working before this happened. Also this equation removes the
wrapping add operator at the same time.

eq add(run(c(k(initCodePlaceHolder —> pause —> K),
cnt), state
)v
emptyAddList,
CODE —> endOflInitCode)
= run(c(k(CODE —> pause —> K), cnt), state)

5.2.3 Adding Data to the Configuration

Now we look at the operators with their defining equations which add things
into the configuration:

The first operator adds a Location-Value pair to the memory. It puts the
given location and value into the memory as one Store.

The second operator adds a Name-Location pair to the local environment,
i.e. a mapping of a variable name to a location. It puts the given name and
location into the local environment as one Env.

The third operator adds a Name-Location pair to the environment of the
current object. There it is seen as an attribute of the class type of the
current object’s static type.

op addToMemory : Location Value —> AddListElement
ceq add(run(m(M), state),
addToMemory (L, V) AL,

K)
= add(run(m(M [L,V]), state),
AL, K)
if not L :: TacletNewlLocation

op addTolLocalEnv : Name Location —> AddListElement
ceq add(run(c(e(Env), cnt), state),



98 Chapter 5: Configuration Generation

addTolocalEnv(X, L) AL,

K)
= add(run(c(e(Env [X, L]), cnt), state), AL, K)
if (not X :: TacletNewVarName)

and (not L :: TacletNewLocation)

op addToCurrentObjEnv : Name Location —> AddListElement
ceq add(run(c(o(o(CT, CT', oEnv)) ,cnt), state),
addToCurrentObjEnv (X, L) AL,
K)
= add(run(c(o(o(CT, CT', oEnv (CT, [X, L]))).
cnt), state),

AL, K)
if (not X :: TacletNewVarName)
and (not L :: TacletNewlLocation)

This puts the name and location together in an Env and together with the
given CType they form an ObjEnv which is put into the environment of static
attributes, where all static attributes of all class types are.

op addToStaticEnv : CType Name Location —> AddListElement
ceq add(run(s(oEnv), state),
addToStaticEnv(CT, X, L) AL,

K)
= add(run(s(oEnv (CT, [X, L])), state),
AL, K)
if (not X :: TacletNewVarName)
and (not L :: TacletNewlocation)

This adds a mapping of the given new variable to the given new location
into the local environment and the mapping of the new location to the given
value into the memory.

op addNewTolLocalEnvAndMem
TacletNewVarName TacletNewlocation Value
—> AddListElement
eq add(run(c(e(Env), cnt), m(M), state),
addNewTolLocalEnvAndMem (TNVN, TNL, V) AL,
K)
= add(run(c(e(Env [TNVN, TNL]), cnt), m(M [TNL, V]),
state), AL, K)



5.2 Configuration Generation Maude Interface 99

5.2.4 Adding Case Information

To keep track of the current case when there are a lot of taclets with a lot of
sub cases for each taclet we introduce a new operator, caselnfo, which takes
the actual code to be rewritten and wraps it together with two integers. The
first is the taclet number and the second is the case number. With these one
can look into the generated test file and find the taclet and case which one
is interested in easily.

op caselnfo : Int Int Bool —> Bool

eq caselnfo(N1l:Int, N2:Int, B:Bool) = B:Bool

This wrapper is of no relevance to the actual result which is of type Bool
and that is allowed for by the one equation which is given. This result is the
result of the comparison of two program runs on configurations which each
have sort Output.

5.2.5 Examples of the Commands and their Results

Here we will take a look at a few examples of how to use these add commands
and see what the resulting configurations look like.

Example 5.2.1

This first example will take a look at the two most basic commands
addToMemory and addTolLocalEnv. First you see the command to create a
starting configuration with two variables, both of them defined in the local
environment, and their respective values are put into the memory. No real
code is used because we just want to see where each of the add part goes
which we can best do if the execution stops because of not having real code.

rew add(basiclnitConfiguration ,
addTolLocalEnv(X1:Name, L1:Location)
addToMemory(L1: Location, V1:Value)
addTolLocalEnv(X2:Name, L2:Location)
addToMemory(L2: Location , V2:Value)

NoRealCodeToExecute: BlockStatements
—> endOflnitCode)

This results in the following configuration:



100 Chapter 5: Configuration Generation

run(c(k(NoRealCodeToExecute: BlockStatements —> pause —>
initRemainderOfCode),
e(initLocalEnv [X1:Name,Ll:Location]
[X2:Name, L2:Location]),
o(o(initStaticClassType , initDynamicClassType,
initObjEnv))),
n(initMemCounter),
m(initMemory [L1l:Location,V1:Value]
[L2: Location, V2:Value]),
| (noLock),w(noLock),cl(initSetOfClasses),
s(initStaticAttEnv),out(initOutput),
snapshots(initSnapList),nextSnapshot(initSnapCounter))

Continuing with this example we can use some real code. To keep it simple
we just add the two variables which we now define to have values of type
integer.

rew add(basiclnitConfiguration ,
addTolLocalEnv(X1:Name, L1l:Location)
addToMemory(L1: Location, int(V1:Int))
addTolLocalEnv(X2:Name, L2:Location)
addToMemory(L2: Location , int(V2:Int))

(X1:Name = X1:Name + X2:Name ;) —> endOflnitCode)

Next is the intermediate state of the execution where the configuration has
been completely created but the execution within the actual MJS has not
yet started.

run(c(k((X1:Name = X1:Name + X2:Name ;) —> pause —>
initRemainderOfCode),
e(initLocalEnv [X1:Name,Ll:Location]
[X2:Name, L2: Location]),
o(o(initStaticClassType , initDynamicClassType,
initObjEnv))),
n(initMemCounter),
m(initMemory [L1l:Location,int(V1l:Int)]
[L2: Location ,int(V2:1Int)]),
| (noLock ) ,w(noLock),cl(initSetOfClasses),
s(initStaticAttEnv),out(initOutput),
snapshots(initSnapList),nextSnapshot(initSnapCounter))

And this is the final result of the execution of the generated initial configu-



5.2 Configuration Generation Maude Interface 101

ration.

run(c(k(pause —> initRemainderOfCode),
e(initLocalEnv [X1:Name,Ll:Location]
[X2:Name, L2: Location]),
o(o(initStaticClassType ,initDynamicClassType ,
initObjEnv))),

n(initMemCounter),

m(initMemory [L1l:Location,int(V1l:Int + V2:Int)]
[L2: Location ,int(V2:1Int)]),

I (noLock) ,w(noLock),cl(initSetOfClasses),

s(initStaticAttEnv),out(initOutput),

snapshots(initSnapList),nextSnapshot(initSnapCounter))

g

After this simple example we can now see all of the available commands in
action on one starting configuration in the next example.

Example 5.2.2

This is the example code which generates a starting configuration and uses
all available commands to show precisely where each part is put.

rew add(basiclnitConfiguration ,
addTolLocalEnv(X1:Name, L1:Location)
addToMemory(L1: Location, V1:Value)
addToCurrentObjEnv (X2:Name, L2:Location)
addToMemory(L2: Location , V2:Value)
addToStaticEnv(ST:CType, X3:Name, L3:Location)
addToMemory(L3: Location, V3:Value)
addNewToLocalEnvAndMem

(X4:TacletNewVarName, L4:TacletNewlLocation,
V4:Value)

NoRealCodeToExecute: BlockStatements
—> endOflnitCode)

The execution results in this initial configuration. In practice the
NoRealCodeToExecute:BlockStatements would be replaced by some actual code
and the execution could start right away.

run(c(k(NoRealCodeToExecute: BlockStatements —> pause —>
initRemainderOfCode),



e(initLocalEnv
[X4:TacletNewVarName,L4: TacletNewLocation ]
[X1:Name,L1l: Location]),
o(o(initStaticClassType ,initDynamicClassType,
initObjEnv
initStaticClassType ,[X2:Name,L2: Location]))),
n(initMemCounter),
m(initMemory [L4:TacletNewLocation ,V4:Value]
[L1:Location ,V1:Value] [L2:Location ,V2:Value]
[L3:Location,V3:Value]),
| (noLock ) ,w(noLock),cl(initSetOfClasses),
s(initStaticAttEnv
ST:CType,[X3:Name, L3: Location]),
out(initOutput),
snapshots(initSnapList),nextSnapshot(initSnapCounter))

O

5.3 Usage with Respect to Taclets

All of the above is used in the following way by the Java implemented part
with respect to a taclet. First of all, the code sections are extracted from the
find and replacewith parts. Then the variables are extracted from those and
all possible combinations are created, but let us focus on just any one of those
for now. For that fully decided (in the sense that for each schema variable
we know the case) case we then reformat the code mentioned above for use
with the MJS in the current case. The modified code part for the find part
gets called codel while the one for the replacewith part gets called code2. We
get a list of things to add, call it add—a—lot, consisting of the AddListElements,
from that. The mentioned combinations result from the possible different
forms and types a schematic variable can take. From the varcond part of
the taclet we find out which new variables are necessary, here we instantiate
the new variables according to the original variables. Let us call that list of
new variables we need to add add—new—vars and it is in the AddListElements
format. Then for this one combination the rewrite which has to be true for
the taclet to be possibly true is the following:

rew compareResultsModNewVars(
add(basiclnitConfiguration , add—a—lot, codel),
add(basiclnitConfiguration , add—a—lot add—new—vars,

102



5.3 Usage with Respect to Taclets 103

code2)) .

To really validate the taclet this rewrite has to yield true for all possible
combinations, i.e. for all cases.



Propositional Logic Taclets in
Rewriting Logic

A different approach to validate taclets w.r.t. Maude is the one shown in this
section. It turned out that only a very limited kind of taclet could be treated
this way.

Part of the notation, and implementation, was inspired by the way the paper
[CMO00] treated linear logic, but the main point of that paper, using reflection
in the maude language, was not brought to bear here. All of the modules
mentioned in this chapter can be found in full in the Appendix C.

6.1 Basics

The idea here is to validate taclets for propositional logic by means of a
semantics for propositional logic where both are implemented in rewriting
logic, i.e. in Maude. For details on propositional logic taclets see Section 1.1.3.

First of all we have a module PROPO which includes truth values as well
as atoms and the usual connectives of conjunction, disjunction, negation,
implication and equivalence. This is the syntax of a propositional logic.
This module gets extended by PROPO-SEQUENT to a propositional logic
with sequents. Here we get the definition of sequents and how they can
be built up but again this is only the syntax. The PROPO-SEQUENT
module gets extended in both approaches mentioned above, i.e. when giving
an imitation of the propositional taclets of KeY in rewriting logic that is built
upon PROPO-SEQUENT’s syntax as well as the semantics for propositional
logic which is also based on that module.

104



6.2 Taclets Imitated

We have an imitation of taclets in the module PROPO-SEQUENT-TAC-
LETS-IMITATION where KeY taclets have been translated to rewriting logic
equations by hand but following a method with which they can be system-
atically created and thus could be automatically generated. Taclets which
only have a find, replacewith and if part and only work on the top level, i.e.
with a sequent (==> respectively |—) in each part, the translation works like
this:

find (x ==>y) if (a==>0b) replacewith (r==>1t)

gives rise to the equation

eq a , x , RestL |— b , y , RestR
=a , r , RestL |— b , t , RestR

Both rests, i.e. RestL and RestR, are variables of the corresponding type which
is FormulaMultiSet. If one of the other variables is not included in the taclet,
i.e. one or more of x, y, a, b, r, t are missing they can simply be left out in
all their positions in the rewriting logic equation. In case that the whole if
part is left out a and b can be dropped completely.

Taclets with find (b), where no sequent ==> exists, lead to problems. This
is the case for example with the “replace_known_left” taclet. But taclets of
that form are not part of the axiomatic propositional logic taclet set and will
not be looked into here.

Now with PROPO-SEQUENT-TACLETS-IMITATION we have a calculus
for propositional logic which returns closedgoal if it is given a universally
valid formula in propositional logic. Example inputs for this can be found in
the appendix C.1.

6.3 Propositional Logics Semantics

We also have a semantics for propositional logics given in
PROPO-SEQUENTS-SEMANTICS which works on formulas but can take
sequents as input and translates them to formulas according to the equiva-
lence of the sequent

(blu ¢27 ce (bn = w17w27 72/}m

105



and the formula
/\?:l¢i - V?ilwi

The evaluation of a propositional logic formula requires a mapping of each
atom to a truth value and then uses the usual evaluation by the interpreta-
tion function which applies the mapping. The final truth value is computed
according to the usual truth table which is also given in the semantics. There
is a special operator TorF which rewrites to either true or false by a rewrite
rule and therefore by mapping each atom to TorF all possible combinations
of variable to truth value mappings can be achieved. To really check the
result of all of them and not just an arbitrary one we use a search for final
states with Maude’s built-in search command. If the only possible result is
true then the formula which is evaluated is universally valid. If false is a
final state then the formula is not universally valid and one gets a variable
mapping which makes the formula false by looking at the path which yields
the final state false. Examples for this can be found in appendix C.2.

6.4 Validating Imitated Taclets with Help of the Se-
mantics

As stated in the beginning the goal is to validate the imitated taclets in
rewriting logic with help of the semantics. As we have the taclet imitation
and the semantics we can look at how to do that. Given a Sequent A on
which a taclet T can be applied call the result of the taclet application A’.
By applying the taclet we mean using the equation which specifies the taclet.
Now we can use the given semantics to find the value of the Sequent A for
every atom to truth value assignment as well as for the sequent A’. For the
taclet to be correct the semantics has to correspond on the final value of A
and A’ for all assignments. We do not use any example sequent on which 7'
can be applied but a generic one with skolem constants so it could represent
just any sequent on which 7" is applicable.

Therefore we can create a pair of formulas, or sequents which can be trans-
lated to formulas, (A, A’) with one atom to truth value mapping M, namely
the one where all atoms get mapped to TorF, for both formulas and then
look at all created final pairs with the help of a search by which from the
rewriting of all TorF constants all possible combinations of true and false are
created. The resulting pairs can be (true, true), (true, false), (false, true)

106



and (false, false). By using the equivalence < on the elements of the pair
one gets true if both formulas agree and false otherwise. So it boils down
to eval(A, M) < eval(A’, M). If the only result is true that means that A
and A’ agree for every assignment and thus the taclet which transformed
A to A’ is validated. This is done by PROPO-SEQUENT-SEMANTICS-
PROOFTACLETS.

So we face the question of how to give a generic sequent A upon which a taclet
can be used to get A" and then check the equivalence of A and A’ under all
possible assignments M. We propose that it is adequate to assume all parts
of the sequent are atoms and then by checking all assignments M all possible
combinations of truth values for the generic sequent will be checked. One
could worry about what happens if there are some elements, i.e. formulas,
which depend on each other but that is just a special (sub-)case of checking
all independent combinations. Therefore it suffices to consider the elements
as atoms and check all atom mappings to proof the taclet correct.

As an example for this let us look at the “not_left” taclet which allows to
put a negated formula on the left-hand side of the sequent to the right-hand
side of the sequent but in positive form:

-A,Ar+=Br = Art+ A, Br

Here Ar and Br are multisets of Propo, i.e. basically multisets of formulas.
In the compilation of the sequent to a formula all of the elements of Ar (Br),
which are Propos, are connected conjunctively (disjunctively). We can assume
that that has happened before, so both are just one Propo and not a multiset
of many Propos. To evaluate the equivalence of the sequent before the taclet
application and the sequent after the taclet application it suffices to take Ar
and Br as atoms with Ar, Br and A being independent, that is different,
atoms. If they are dependent on each other then the atom assignment (still
thinking of them as atoms) would be limited in what combinations are pos-
sible but nothing more. Thus showing the formula true for the independent
case proves it for the special case of dependent formulas too. Thinking of the
possibly interdependent formulas as atoms is acceptable as all the formulas
are put together into one conjunctive (disjunctive) formula anyway and that
can only be true or false in any case.

Basically all possible combinations of truth values for all elements (atoms!)
get created and even if there are dependencies in the instance of the sequent
which is looked at, all combinations which are allowed by the restriction
because of the dependencies, will be checked anyway:.

107



108 Chapter 6: Propositional Logic Taclets in Rewriting Logic

6.5 Embedding Taclets into Rewriting Logic

In contrast to the imitated taclets in the earlier part now we would like
to embed taclets into rewriting logic in the sense that they are not defined
by a rewriting logic equation or rule but that there is an actual operator
which takes a taclet very close to the usual form it is given in and cre-
ates a configuration (of sort StateAttribute) from it. Then an application
mechanism is needed. All that is defined in PROPO-SEQUENT-TACLETS-
EMBEDDING. Right now the operator representing a taclet looks like this:

op taclet : LState —> StateAttribute

By this, one defines a taclet as a state. In this state there can be its name,
a sequent as the find part and multiple goaltemplates which include replace-
with and add parts in their state because the replacewith and add parts
always appear as pairs inside goaltemplates. There can be more than one of
those pairs per taclet. There can also be another sequent representing the if
part. This representation is easily extensible as one can simply add another
ingredient to the state multiset.

A taclet contains schema variables which have to correspond to certain formu-
las from the sequent on which the taclet is applied. These schema variables
can not be Maude variables but have to be constants of a sort SchemaVariable.
These constants have to be mapped to the formulas of the sequent which is
done by the function map. It maps an element of sort SchemaVariable to a
formula (-multiset). One has to check if the set of mappings resulting at a
taclet application is acceptable and this is done by the function ok—mapset
and its helper functions. It checks that each SchemaVariable is only mapped to
at most one formula. It could not be mapped to anything at all for this test
but then the mapping would not be complete and the execution would sim-
ply stop. So every schema variable which is mapped to a formula is mapped
to exactly one formula. Then we also need a function that gets the formula
which a schema variable has been mapped to in a map set. Equipped with
all these things it is possible to write down a set of (conditional) equations
which can apply a given taclet to a given sequent if it is applicable. It is not
capable of finding a fitting taclet out of a set of taclets to be applied to a
sequent chosen out of a multiset of sequents.

At the moment this is also severely limited as only simple SchemaVariables
can be part of the taclets and no terms over SchemaVariables are possible.
Those terms are a necessary addition to be able to check all propositional



logic taclets but adding them in, modifying the mapping to work on them
and so forth is a lot of technical work for a very small gain, which is to have
the taclets mechanically checked again with one step less done by hand.

6.6 Validating Embedded Taclets with Help of the
Semantics

In a very similar way to the section about the validation of imitated taclets
it is possible to validate the embedded taclets too. Only two taclets can
actually be validated with the restriction to simple schema variables without
connectives as we have it now.

The code for the tests of the taclets requires the module
PROPO-SEQUENT-TACLETS-EMBEDDING-SEMANTICS-PROOF.

This works by the above schema again, i.e. a pair of a sequent A and the ap-
plication of the taclet tc which is to be checked on the sequent A get compared
under the same atom assignment. So we get the pair (A , apply(tc , A)) and
check that under all atom assignments M the two elements agree as seen
above.

109



7 Conclusions

In this work we have shown ways to validate KeY code transformation taclets
with the help of the Maude Java Semantics (MJS) and propositional logic
taclets with the help of Maude.

Our main focus was on the code transformation taclets. There are about 140
code transformation taclets out of the 350 Java code related taclets, i.e. 40%.
We already proved 55 of the code transformation taclets, see Section 2.1. A
few more taclets should be provable with just minor technical enhancements.
The difference between the amount of code transformation taclets we could
prove and the total number of code transformation taclets comes from the
fact that in these taclets meta constructs of the taclet language of KeY are
used which are not easily transferable to the MJS. Another, even bigger,
factor are the restrictions which come from the limitations of the MJS.

The majority of our work was done to lift a semantics for concrete Java
code to a semantics for schematic Java code. This was necessary because we
compare the two code segments of code transformation taclets which are not
composed of ordinary Java code but of schematic Java code. This posed a
number of questions and difficulties which were solved during our work.

Our approach for code transformation taclets is extensible to cover all code
transformation taclets without meta constructs when all elements of Java are
covered correctly by the MJS. With enough effort some of the meta constructs
could possibly be translated, too. The number of taclets which we cannot
handle without being able to work with all meta constructs is roughly 20. Of
the remaining 120 taclets we already proved 55 and could prove another 20
when division and modulo computations on variables, i.e. non-ground terms,
works. Out of the other 45 taclets about 25 require the MJS to be completed
to cover the respectively used Java language constructs and the remaining
20 are problematic because of boolean decisions, like if.

The paper [MRO04] introduces a rewriting logic semantics for a CaML-like lan-
guage. It was important to us for understanding the principles of rewriting

110



Chapter : Conclusions 111

logic semantics, using continuations, for programming languages. It was thus
a very good starting point to understand the MJS, for which no documenta-
tion exists as far as we know. In this paper the MJS was also mentioned as
a semantics for Java but no comments on its quality and completeness were
made. We then found out that there are quite some problems with the MJS,
i.e. errors, and that the MJS does not cover all of the Java language.

The Maude Java Semantics availability was of paramount importance for this
work. Even though we were restricted by its errors and its incompleteness
it was of tremendous help. To use it properly a lot of work on our part was
necessary because the mistakes, and their remedies, were far from obvious
in most cases. Some of the errors we found could be corrected while others
were so deeply rooted that in the limited time frame of this work we could
not mend them. We also added some features to the MJS which we deemed
necessary for our work.

In the other approach, the one looking at propositional logic taclets, we
were able to prove all axiomatic propositional logic taclets given in the KeY
system.

As future work we thus propose some technical enhancements of our method
and the completion of the MJS. With that done one could go ahead and inves-
tigate the problems we have with decisions on boolean variables. Whenever
an if, or a similar construct which needs to know whether the boolean value,
which is its argument, is true or false and a generic constant which repre-
sents its value is not enough, appears, it seems like it is necessary to split
the execution in two parts and then look at the two reduced problems.

Proving taclets which include meta constructs is an interesting open question,
too. It might be possible to exploit the fact that the meta constructs are
implemented as Java code but it was not done yet. A necessary requirement
is the completeness of the MJS though.

We see this work as a contribution to the field of (semi)-automated provers
and their correctness. We specifically did a step towards validating the KeY
system with this approach by validating part of the rules underlying the KeY
system’s prover .



A Code for Examples

A.1 Examples for Chapter 2.2

The three code sections below are related to Ex. 2.2.1.

o If #lhsl is a local variable, the whole (executable) configuration is:

rew compareResult(

run (
c(k((++ IhslName:Name ; )
—> pause —> RoP: Continuation),

e ([lhsIName:Name, lhslLoc:Location]
RestOfLocalEnvironment:Env),
o(o(#c(ct:Qid), #c(ct':Qid), objEnv:ObjEnv))),
m([lhslLoc:Location, int(lhslVal:lInt)]

RestOfMemory: Store ),
n(mC:Nat), cl(setOfClasses: Classes),
s(RestOfStaticAttributeEnvironments:ObjEnv)

out(anyOutput:Output), I(noLock), w(noLock))

run (
c(k((lhsIName:Name = (lhsIName:Name + #i (1)) ;)

—> pause —> RoP: Continuation),
e ([lhs1Name:Name, |hslLoc:Location]
RestOfLocalEnvironment:Env),
o(o(#c(ct:Qid), #c(ct':Qid), objEnv:ObjEnv))),
m([lhslLoc:Location, int(lhslVal:Int)]

RestOfMemory: Store ),
n(mC:Nat), cl(setOfClasses: Classes),
s(RestOfStaticAttributeEnvironments:ObjEnv),

out(anyOutput:Output), |(noLock), w(nolLock))

)

o [f #lhsl is an attribute of the current object without an explicit this,

112



1.1 Examples for Chapter 2.2

113

the whole (executable) configuration is:

rew compareResult(
run (
c(k((++ Ihs1Name:Name ; )

—> pause —> RoP: Continuation),
e(RestOfLocalEnvironment:Env),
o(o(#c(ct:Qid), #c(ct ':Qid), objEnv:ObjEnv

(#c(ct:Qid),
[lhsIName:Name, lhslLoc:Location]) ))),
m([lhslLoc:Location, int(lhslVal:Int)]
RestOfMemory: Store ),
n(mC:Nat), cl(setOfClasses: Classes),
s(RestOfStaticAttributeEnvironments:ObjEnv),
out(anyOutput:OQutput), I(noLock), w(noLock))

run (
c(k((!hsIName:Name =
(IhsIName:Name + #i (1)) ;)

—> pause —> RoP: Continuation),
e(RestOfLocalEnvironment:Env),
o(o(#c(ct:Qid), #c(ct'":Qid), objEnv:ObjEnv

(#c(ct:Qid),
[ThsIName:Name, lhslLoc:Location]) ))),
m([lhslLoc:Location, int(lhslVal:Int)]
RestOfMemory : Store ),
n(mC:Nat), cl(setOfClasses: Classes),
s(RestOfStaticAttributeEnvironments:ObjEnv),
out(anyOutput:Output), I(noLock), w(noLock))

) .

o If #lhsl is an attribute of the current object with an explicit this, then
the only difference to the case above without an explicit this is that in

front of all occurrences of lhsiName:Name there will be a this .
whole (executable) configuration is then:

rew compareResult(
run (
c(k((++ this . IhslName:Name ; )

—> pause —> RoP: Continuation),
e(RestOfLocalEnvironment:Env),
o(o(#c(ct:Qid), #c(ct ':Qid), objEnv:ObjEnv

(#c(ct:Qid),

. The



114 Chapter A: Code for Examples

[ThsIName:Name, lhslLoc:Location]) ))),
m([lhslLoc:Location, int(lhslVal:Int)]
RestOfMemory: Store ),
n(mC:Nat), cl(setOfClasses: Classes),
s(RestOfStaticAttributeEnvironments:ObjEnv),
out(anyOutput:Output), I(noLock), w(noLock))

run (
c(k((this . IhslName:Name =
{int} (this . IhslName:Name + #i (1)) ;)
—> pause —> RoP: Continuation),
e(RestOfLocalEnvironment:Env),
o(o(#c(ct:Qid), #c(ct ':Qid), objEnv:ObjEnv
(#c(ct:Qid),
[IThsIName:Name, lhslLoc:Location]) ))),
m([lhslLoc:Location, int(lhslVal:Int)]
RestOfMemory: Store ),
n(mC:Nat), cl(setOfClasses: Classes),
s(RestOfStaticAttributeEnvironments:ObjEnv),
out(anyOutput:Output), |(noLock), w(noLock))

).

Now to the two code sections related to Ex. 2.2.2:

o [f #lhsl is a static attribute with a type reference followed by a sequence
of static attribute accesses, the whole (executable) configuration is:
rew compareResult(
run (

c(k((++ Ihs1CT:CType . lhslName:Name ; )
—> pause —> RoP: Continuation),
e(RestOfLocalEnvironment:Env),
o(o(#c(ct:Qid), #c(ct':Qid), objEnv:ObjEnv))),
m([lhslLoc:Location, int(lhslVal:Int)]
RestOfMemory: Store ),
n(mC:Nat), cl(setOfClasses: Classes),
s((!hs1CT:CType, [lhs1Name:Name, lhslLoc:Location])
RestOfStaticAttributeEnvironments:ObjEnv),
out(anyOutput:Output), |(noLock), w(nolLock))

run (
c(k((lhs1CT:CType . lhsIName:Name =
{int} (Ihs1CT:CType . lhslName:Name + #i (1)) ;)



1.1 Examples for Chapter 2.2 115

—> pause —> RoP: Continuation),
e(RestOfLocalEnvironment:Env),
o(o(#c(ct:Qid), #c(ct ':Qid), objEnv:ObjEnv))),
m([lhslLoc:Location, int(lhslVal:Int)]
RestOfMemory: Store ),
n(mC:Nat), cl(setOfClasses: Classes),
s((lhs1CT:CType, [lhs1Name:Name, |hslLoc:Location])
RestOfStaticAttributeEnvironments:ObjEnv),
out(anyOutput:Output), I (noLock), w(noLock))

o If #lhsl is a static attribute, with a program variable as the first ele-
ment, followed by a sequence of attribute accesses. The difference to
the case above is that there is an extra object reference in the local
environment and that reference is added to the memory too. Also in
the code that object reference’s name replaces the type reference from
above. The whole (executable) configuration is then:

rew compareResult(
run (
c(k((++ lhs1ObjRef:Name . IhslName:Name ; )
—> pause —> RoP: Continuation),
e([lhs1ObjRef:Name, Ihs1ObjReflLoc:Location]
RestOfLocalEnvironment:Env),
o(o(#c(ct:Qid), #c(ct ':Qid), objEnv:ObjEnv))),
m([lhslLoc:Location, int(lhslVal:Int)]
[lhs1ObjReflLoc: Location ,
o(lhs1CT:CType, IhslDT:CType, lhs1ObjEnv:ObjEnv)]
RestOfMemory: Store ),
n(mC:Nat), cl(setOfClasses: Classes),
s((lhs1CT:CType, [lhs1Name:Name, |hslLoc:Location])
RestOfStaticAttributeEnvironments:ObjEnv),
out(anyOutput:Output), I (noLock), w(noLock))
run (
c(k((lhs1ObjRef:Name . lhsIName:Name = {int}
(Ihs1ObjRef:Name . lhsIName:Name + #i (1)) ;)
—> pause —> RoP: Continuation),
e([lhs1ObjRef:Name, Ihs1ObjReflLoc:Location]
RestOfLocalEnvironment:Env),
o(o(#c(ct:Qid), #c(ct ':Qid), objEnv:ObjEnv))),
m([lhslLoc:Location, int(lhslVal:Int)]



116 Chapter A: Code for Examples

[Ihs1ObjRefLoc: Location ,
o(Ihs1CT:CType, Ihs1DT:CType, lhs1ObjEnv:ObjEnv)]
RestOfMemory: Store ),
n(mC:Nat), cl(setOfClasses: Classes),
s((!hs1CT:CType, [lhslName:Name, lhslLoc:Location])
RestOfStaticAttributeEnvironments:ObjEnv),
out(anyOutput:Output), | (noLock), w(noLock))

)

Following are the two code sections related to Ex. 2.2.3:

e First, we look at the case of #se being an integer literal, #nse return-
ing an integer and #lhs being an integer local variable. The whole
(executable) configuration is then:

rew compareResultsModNewVars(
run (
c(k((lhsName:Name =
eval (nseEN:ExpressionName, int—result)
x #i(selnt:Int) ;)
—> pause —> RoP: Continuation),
e ([lhsName:Name, lhsLoc:Location]
RestOfLocalEnvironment:Env),
o(o(#c(ct:Qid), #c(ct':Qid), objEnv:ObjEnv))),
m([lhsLoc:Location, int(lhsVal:lInt)]
RestOfMemory: Store ),
n(mC:Nat), cl(setOfClasses: Classes),
s(RestOfStaticAttributeEnvironments:ObjEnv),
out(anyOutput:Output), |(noLock), w(noLock),
snapshots(SnaplList:SnapshotList),
nextSnapshot (numOfSnaps: Nat))

run
(
c(k((vNewVar: TacletNewVarName =
eval (nseEN: ExpressionName , int—result) ;
IhsName:Name =
vNewVar: TacletNewVarName
« #i(selnt:Int) ;)
—> pause —> RoP: Continuation),
e ([lhsName:Name, lhsLoc:Location]
[vNewVar: TacletNewVarName,
vNewLoc: TacletNewLocation ]
RestOfLocalEnvironment:Env),



1.1 Examples for Chapter 2.2 117

o(o(#c(ct:Qid), #c(ct':Qid), objEnv:ObjEnv))),

m([lhsLoc:Location, int(lhsVal:Int)]

[vNewLoc: TacletNewlLocation, int(vNewlnt:Int)]

RestOfMemory: Store ),
n(mC:Nat), cl(setOfClasses: Classes),
s(RestOfStaticAttributeEnvironments:ObjEnv),
out(anyOutput:Output), I (noLock), w(noLock),
snapshots(SnapList:SnapshotList),
nextSnapshot (numOfSnaps: Nat))

) -

e Second, we look at the case of #se being an integer local variable, #nse

returning an integer and #lhs being an integer local variable, the whole
(executable) configuration is:

rew compareResultsModNewVars(
run (

c(k((lhsName:Name =
eval (nseEN: ExpressionName, int—result)
* seName:Name ;)

—> pause —> RoP: Continuation),

e ([IhsName:Name, lhsLoc:Location]
[seName:Name, seloc:Location]
RestOfLocalEnvironment:Env),

o(o(#c(ct:Qid), #c(ct ':Qid), objEnv:ObjEnv))),

m([lhsLoc:Location, int(lhsVal:Int)]
[seLoc:Location, int(seVal:Int)]
RestOfMemory : Store ),

n(mC:Nat), cl(setOfClasses: Classes),

s(RestOfStaticAttributeEnvironments:ObjEnv),

out(anyOutput:Output), I(noLock), w(nolLock),

snapshots(SnaplList:SnapshotList),

nextSnapshot (numOfSnaps: Nat))

run (
c(k((vNewVar: TacletNewVarName =

eval (nseEN: ExpressionName , int—result) ;
IhsName:Name =

vNewVar: TacletNewVarName
* seName:Name ;)

—> pause —> RoP: Continuation),

e ([lhsName:Name, |hsLoc:Location]
[seName:Name, selLoc:Location]



118 Chapter A: Code for Examples

[vNewVar: TacletNewVarName,
vNewLoc: TacletNewLocation ]
RestOfLocalEnvironment:Env),
o(o(#c(ct:Qid), #c(ct':Qid), objEnv:ObjEnv))),
m([lhsLoc:Location, int(lhsVal:Int)]
[seLoc:Location, int(seVal:Int)]
[vNewLoc: TacletNewlLocation, int(vNewlnt:Int)]
RestOfMemory: Store ),
n(mC:Nat), cl(setOfClasses: Classes),
s(RestOfStaticAttributeEnvironments:ObjEnv),
out(anyOutput:Output), | (noLock), w(noLock),
snapshots(SnaplList:SnapshotList),
nextSnapshot (numOfSnaps:Nat))



Automated Use to Prove Sets
of Taclets

B.1 Technical Details

The execution of the class “CheckPrgTransfSoundness” [see the KeY im-
plementation] with a “key” file which includes the taclets which are to be
validated creates an intermediate text file. This intermediate text file has
to be executed by Maude, after loading the extended MJS, with the output
written to a result text file. Now open the resulting file with a text editor
of your choice. To find out whether all taclets are correct you now have to
search for certain result strings. First you can search for “result Bool: false”,
if you find that the corresponding taclet is not correct. If you do not find
that string you need to search for “result [Bool]” and if you find an instance
of that you have a case where there will be the resulting configuration from
which the MJS cannot continue any more and so there probably is some
problem with what this work supports and what your taclet needs. The
“[Bool]” represents the kind of expressions of sort “Bool” which means that
they are those which could not be reduced to the ground terms, true or false.
If you can find none of the two things above then it is safe to assume that
all results will be “result Bool: true” and thus all your taclets are correct.

119



C Propositional Logic Taclets
Maude Code

We now present the Maude modules which were used for the implementation
of the validation of propositional logic taclets. Not all comments in here are
very helpful, some of them were meant as reminders during the implementa-

tion.

fmod ATOM is
sort Atom
ops a b cde: —> Atom . ——— number of atoms is arbitrary!

endfm

mod PROPO is
including ATOM .
including QID

sort Propo
subsort Qid < Atom < Propo

sort TruthValue
subsort TruthValue < Propo

ops t f: —> TruthValue

op !_ : Propo —> Propo [prec 30]

op -&_ : Propo Propo —> Propo [assoc comm prec 32] .

op -|- : Propo Propo —> Propo [assoc comm prec 33] .

op -—>_ : Propo Propo —> Propo [prec 35] .

op -<—>_ : Propo Propo —> Propo [assoc comm prec 37] .
endm

mod PROPO-SEQUENT is
including PROPO .
sort FormulaMultiSet
subsort Propo < FormulaMultiSet

op nil : —> FormulaMultiSet
op -,- : FormulaMultiSet FormulaMultiSet

—> FormulaMultiSet [assoc comm id: nil prec 40]
———in KeY this is a duplicate—free list , list structure

———is not necessary here as there is no user—interaction
———sadly it is not really a "set” as duplicate entries
——— are possible , we would like to get rid of them with
——— idempotency as below but that is a problem:

———ceq Ar , Ar = Ar if (Ar =/= nil). <—— this is not
——— possible because matching modulo assoc and idempotency
——— is not currently available

sort Sequent
op closedgoal : —> Sequent

120



Chapter C: Propositional Logic Taclets Maude Code

121

op -|—- : FormulaMultiSet FormulaMultiSet —> Sequent [prec 45] .

sort OpenGoals
subsort Sequent < OpenGoals

op -- : OpenGoals OpenGoals
—> OpenGoals [assoc comm id: closedgoal prec 50] .
———eq closedgoal closedgoal = closedgoal
endm

mod PROPO-SEQUENT—SEMANTICS is
including PROPO-SEQUENT .

sort VariableToTruthVal
op -mappedto_ : Atom TruthValue —> VariableToTruthVal

sort VariableMap .
subsort VariableToTruthVal < VariableMap
op emptyvarmap : —> VariableMap
op -- : VariableMap VariableMap
—> VariableMap [assoc comm id: emptyvarmap ]

op evalFormula : Propo VariableMap —> TruthValue

——— evaluation of formulas over true and false, i.e. on truth values

——— the equations below can also be seen as the truth table
eq ! t =1
eq ! f =1t

eq
eq
eq
eq

— —h o+

R

— o+ —h
Il

- —h —h

eq
eq
eq
eq

- —h + +
([l
-+ o+ ot

eq t —>
eq t —>
eq f —>
eq f —>

t
f =
t
f

|
+ ot =

eq t
eq t
eq f
eq f

——— this is the interpretation function which, when given a formula
———and a atom—to—truthvalue mapping takes the formula apart and
——— replaces the atoms by their truthvalues , afterwards the truth

——— table above takes over
vars A B C : Propo

vars M N : VariableMap

var X : Atom

var V : TruthValue

eq evalFormula (! A , M) = | evalFormula(A , M) .
eq evalFormula(A & B , M) = evalFormula(A , M) & evalFormula (B
eq evalFormula(A | B , M) = evalFormula(A , M) | evalFormula(B

. M)
» M)



122 Chapter C: Propositional Logic Taclets Maude Code

eq evalFormula(A —>B , M) = evalFormula(A , M) —> evalFormula(B , M)
eq evalFormula(A<—>B , M) = evalFormula(A , M) <—> evalFormula(B , M)

eq evalFormula(X , M (X mappedto V)) =V .
eq evalFormula(V , M) =V .

——— this makes sure each atom is mapped to one and the same truth
——— value everywhere! here you can give atoms mapped to TorF, that
———is this atom can be either true or false. we cannot allow the
——— rewrites " AssignTrue” and " AssignFalse” to happen later as then
———an atom "a” might in one place be set to true and false in

——— another. this happens in this extra wrapper functions.

——— For this there is a third truth value added to the constants.
——— This is what all atoms are mapped to initially.

op evForm : Propo VariableMap —> TruthValue

op fixAllAtomAssignments : Propo VariableMap VariableMap —> TruthValue
op TorF : —> TruthValue

eq evForm(A , M)
= fixAllAtomAssignments (A , M , emptyvarmap)

eq fixAllAtomAssignments(A , M (X mappedto t) , N)
= fixAllAtomAssignments(A , M , N (X mappedto t)) .
eq fixAllAtomAssignments(A , M (X mappedto f) , N)
= fixAllAtomAssignments(A , M , N (X mappedto f)) .
rl [AssignTrue] : TorF =>t
rl [AssignFalse] : TorF => f
eq fixAllAtomAssignments(A , emptyvarmap , N) = evalFormula(A , N)

——— translation of Sequents to formulas.

op FormulaFromSequent : Sequent —> Propo
vars F GH I : FormulaMultiSet
ceq FormulaFromSequent(F , G , H |- 1)
= FormulaFromSequent( F & G , H |- I)
if (F=/= nil) and (G =/= nil) .
ceq FormulaFromSequent(l |— F , G , H)
= FormulaFromSequent( | |— F | G , H)
if (F=/=nil) and (G=/= nil)
eq FormulaFromSequent( nil |— A) = A .
eq FormulaFromSequent( A |— nil) =1 A .
eq FormulaFromSequent( A |— B) = A —->B
eq FormulaFromSequent(closedgoal) = t
endm

mod PROPO-SEQUENT-SEMANTICS—PROOFTACLETS is
including PROPO-SEQUENT-SEMANTICS

——sort TruthValuePair .
——op -;- : TruthValue TruthValue —> TruthValuePair

op evFormPair : Propo Propo VariableMap —> TruthValue
op fixAllIAtomAssignmentsForPairs : Propo Propo VariableMap VariableMap
—> TruthValue

vars A B C : Propo
vars M N : VariableMap



Chapter C: Propositional Logic Taclets Maude Code 123

var X : Atom

eq evFormPair(A , B , M)
= fixAllAtomAssignmentsForPairs(A , B , M , emptyvarmap) .

eq fixAllAtomAssignmentsForPairs(A , B , M (X mappedto t) , N)
= fixAllAtomAssignmentsForPairs(A , B , M , N (X mappedto t)) .

eq fixAllAtomAssignmentsForPairs(A , B , M (X mappedto f) , N)
= fixAllAtomAssignmentsForPairs(A , B , M , N (X mappedto f)) .

eq fixAllAtomAssignmentsForPairs(A , B , emptyvarmap , N)
= evalFormula(A , N) <—> evalFormula(B , N) .

endm

mod PROPO-SEQUENT—TACLETS—IMITATION is
including PROPO-SEQUENT .

vars A B C : Propo
vars Ar Br : FormulaMultiSet

———— taclets below, line numbers refer to key/proof/rules/propRule.key
———be careful about the rules and reading top/down...

——— closegoal line: 25
eq A, Ar |— A, Br

closedgoal

——close_by_false { find (false ==>) close goal heuristics(closure) };
eq f , Ar |— Br

closedgoal

——close_by_true { find (==> true) close goal heuristics(closure) };
eq Ar |— t , Br

closedgoal

——— true_left line: 39
eq t , Ar |— Br

——— false_right line: 40
eq Ar |— f , Br

——— not_left line: 39
eq ' A, Ar |- Br

Ar |— A , Br

——— not_right line: 40
eq Ar |- ' B , Br

B , Ar |- Br



124

Chapter C: Propositional Logic Taclets Maude Code

line: 45
A—->B

——— imp_left
€q

, Ar | — Br

(B , Ar |— Br)

(Ar |— A , Br)

——— imp_right line: 49
eq Ar |— A—->B , Br
A, Ar |- B , Br
——— and_left line: 52
eq A&B , Ar |- Br
A, B, Ar |- Br
——— and_right line: 53
eq Ar |— A& B , Br
(Ar |— A, Br) (Ar |- B , Br)
——— or_left line: 55
eq A | B, Ar |- Br
(A, Ar |— Br) (B , Ar |— Br)
——— or_right line: 57
eq Ar |— A | B , Br
Ar |— A , B , Br
——— equiv_left line: 63
eq A<—>B , Ar |- Br
(A,B, Ar|—Br) ( Ar|—A , B, Br)
——— equiv_right line: 72
eq Ar |— A<—>B , Br
(A, Ar|—B , Br) (B, Ar|— A , Br)
endm

mod PROPO-SEQUENT-TACLETS—EMBEDDING

is

including PROPO-SEQUENT .

sort TCName .
subsort Qid < TCName

sort StateAttribute
sort LState
subsort StateAttribute

op empty : —> LState
op |-

op taclet LState —>
op tacname

op find

op goaltemplate

LState LState —> LState [assoc comm id:

< LState

empty ]

StateAttribute

TCName —> StateAttribute
Sequent —> StateAttribute

LState —> StateAttribute



Chapter C: Propositional Logic Taclets Maude Code 125

op rplcw : Sequent —> StateAttribute
op add : Sequent —> StateAttribute

op if : Sequent —> StateAttribute

——— This application is meant to apply one FITTING taclet to a single

——— given sequent. This is only the application, it does not decide
——— whether a taclet is applicable though it will not allow unfitting
——— taclets to have any effect, but that ends in a non—rewritable term
——— as then a "apply—tc(Taclet , Sequent)” term will stay as is.

op apply—tc : LState Sequent —> OpenGoals

var N : TCName

vars XY A B Rr Ra Tr Ta RestL RestR : FormulaMultiSet
vars S E : Sequent

var RestState RestState2 RestState3 : LState

——— SchemaVariableTERM needs to be added and the mapping needs to
——— be accordingly generalized!
——— otherwise only a very limited amount of taclets can be checked

———and used
sort SchemaVariable
subsort SchemaVariable < TruthValue . ——— < Propo

——— variables of sort SchemaVariable
vars SVX SVY SVRr SVTr SVRa SVTa SVA SVB : SchemaVariable

——— constant of sort SchemaVariable, characterizing the "empty”,
——— or non—existing , SV.
op mtsv : —> SchemaVariable

sort Map
sort MapSet
subsort Map < MapSet

op empty—map : —> Map
op map : SchemaVariable FormulaMultiSet —> Map

op -_ : MapSet MapSet —> MapSet [assoc comm id: empty—map prec 60]

op ok—mapset : MapSet —> Bool
op ok—mapset—help : Map MapSet —> Bool
op ok—map—pair : Map Map —> Bool

vars SV1 SV2 : SchemaVariable
vars Mp Mp2 : Map
var MSet : MapSet

eq ok—mapset( Mp ) = true
eq ok—mapset( Mp MSet ) = ok—mapset—help( Mp , MSet )
and ok—mapset (MSet)

eq ok—mapset—help( Mp , empty—map) = true
eq ok—mapset—help( Mp , Mp2 MSet)
= ok—map—pair(Mp , Mp2) and ok—mapset—help(Mp , MSet)

eq ok—map—pair( map(SV1 , A) , map(SV1 , A) ) = true .
ceq ok—map—pair( map(SV1l , A) , map(SV1l , B) ) = false if A=/=B



126 Chapter C: Propositional Logic Taclets Maude Code

ceq ok—map—pair( map(SV1l , A) , map(SV2 , B) ) = true if SV1 =/= SV2

——— This is giving the formula that the given schemavariable was mapped to
———in the given mapset! If there is nothing SV1 was mapped to this will
——— return map—1(SV1 , empty—map) and can’t be rewritten any more (see
——— the 2 equations below).

op map—1 : SchemaVariable MapSet —> FormulaMultiSet

eq map—1(SV1 , map(SV1 , A) MSet) = A .
ceq map—1(SV1 , map(SV2 , A) MSet) = map—1(SV1 , MSet) if SV1 =/= SV2

——— taclet application general case ; the second part of the condition
———is there because if A and B are equal to nil there is no find part
——— basically!
ceq apply—tc( taclet( find(SVX |— SVY) || goaltemplate(rplcw(SVRr | — SVTr)
|| add(SVRa |— SVTa) ) || if(SVA |— SVB)
|| RestState )
, (X, A, RestL |- Y , B, RestR) )
= (map—1(SVRr , map(SVX , X) map(SVY , Y) map(SVA , A)
map (SVB , B) map(mtsv , nil)) ,
map—1(SVRa , map(SVX , X) map(SVY , Y) map(SVA , A)
map (SVB , B) map(mtsv , nil))
, A, RestL |—
map—1(SVTr , map(SVX , X) map(SVY , Y) map(SVA , A)
map (SVB , B) map(mtsv , nil)) ,
map—1(SVTa , map(SVX , X) map(SVY , Y) map(SVA , A)
map (SVB , B) map(mtsv , nil))
, B, RestR)
apply—tc( taclet( find(SVX |— SVY) || if(SVA |— SVB) || RestState )
, (X ., A, RestL |— Y , B, RestR) )
if ok—mapset( map(SVX , X) map(SVY , Y) map(SVA , A) map (SVB , B)
map(mtsv , nil) ) and (A =/= nil or B=/= nil)

——— taclet application in case a goal is closed ; the second part of the
——— condition is there because if A and B are equal to nil there is no
——— find part basically!
ceq apply—tc( taclet( find (SVX |- SVY)
|| goaltemplate( rplcw( closedgoal )
|| RestState2 )
[| if(SVA |— SVB) || RestState )
, (X, A, RestL |- Y , B, RestR) )
= (closedgoal)
apply—tc( taclet( find(SVX |— SVY) || if(SVA |— SVB) || RestState )
., (X, A, RestL |—Y , B, RestR) )
if ok—mapset( map(SVX , X) map(SVY , Y) map(SVA , A) map (SVB , B)
map(mtsv , nil)) and (A =/= nil or B=/= nil) .

——— taclet application in case all replacewith/add pairs have been
——— used up, i.e. no goaltemplates are left over!
ceq apply—tc( taclet( RestState ) , (X , A , RestL |[—Y , B , RestR) )
= closedgoal
if taclet—has—goaltemplate( taclet( RestState) ) =/= true

——— necessary for the case with no goaltemplates left over
——— (construction inspired by page 71 of the maude manual)
op taclet—has—goaltemplate : [LState] —> [Bool]
eq taclet—has—goaltemplate( taclet( goaltemplate(RestState2)
|| RestState ) )
= true



Chapter C: Propositional Logic Taclets Maude Code 127

——— constants of sort SchemaVariable to be used as Schema” Variables”
ops SA SB SC SD : —> SchemaVariable

——— taclets given as constant operators below

———// closing goals

op tc—close—goal : —> LState
eq tc—close—goal =
taclet ( tacname(’'close—goal) || find(mtsv |- SB)
|| goaltemplate( rplcw(closedgoal) ) || if(SB |— mtsv) ) .
——close_goal { if (b==>) find (==>b) close goal
B heuristics(closure) };
op tc—close—goal—antec : —> LState
eq tc—close—goal—antec =
taclet ( tacname(’'close—goal—antec) || find(SB |— mtsv)
|| goaltemplate( rplcw(closedgoal) ) || if(mtsv |[— SB) ) .
——— close_goal_antec { if (==>b) find (b ==>) close goal };

———to be applicable with the above application mechanism terms

——— (better schemavariableterms) have to be allowed where now only

——— schemavariables may stand, see also line 33 of this module.

——— this holds for all taclets below!!!

K oK oK K KK K KKK KK R KK KK KR R KK KK K KK K KK R oK K K oK K K oK K K oK K K oK K K oK K K oK K K oK K K oK K K oK K KK K KK KoK K

op tc—close—goal—by—false : —> LState
eq tc—close—goal—by—false =
taclet ( tacname('close—goal—by—false) || find(f |— mtsv)
|| goaltemplate( rplcw(closedgoal) ) || if(mtsv |— mtsv) )
——— close_by_false { find (false ==>) close goal heuristics(closure) };
op tc—close—goal—by—true : —> LState
eq tc—close—goal—by—true =
taclet ( tacname('close—goal—by—true) || find(mtsv |— t)
|| goaltemplate( rplcw(closedgoal) ) || if(mtsv |— mtsv) )
——— close_by_true { find (==> true) close goal heuristics(closure) };

———// junctor rules

op tc—true—left : —> LState
eq tc—true—left =
taclet ( tacname('true—left) || find(t |— mtsv)
|| goaltemplate( rplcw(mtsv |— mtsv) || add(mtsv |— mtsv) )
[| if(mtsv |— mtsv) ) .
——— true_left { find (true ==>) replacewith(==>)
o heuristics(concrete) };
op tc—false—right : —> LState
eq tc—false—right =
taclet ( tacname('false—right) || find(mtsv |— f)
|| goaltemplate( rplcw(mtsv |— mtsv) || add(mtsv |— mtsv) )
[| if(mtsv |— mtsv) ) .

——— false_right { find (==> false) replacewith(==>)
—_ heuristics(concrete) };

op tc—not—left : —> LState



128

Chapter C: Propositional Logic Taclets Maude Code

eq tc—not—left =

taclet ( tacname('not—left) || find (! SB |- mtsv)
|| goaltemplate( rplcw(mtsv |— SB) || add( mtsv | — mtsv) )
[| if(mtsv |— mtsv) )

——— not_left { find (! b ==>) replacewith(==>b) heuristics(alpha) };

op tc—not—right : —> LState
eq tc—not—right =
taclet ( tacname('not—right) || find(mtsv |— | SB)
|| goaltemplate( rplcw(SB |— mtsv) || add(mtsv |— mtsv) )
[| if(mtsv |— mtsv) )

——— not_right { find (==>!b) replacewith(b ==>) heuristics(alpha) };

———PROBLEM: 2 replacewith parts!
op tc—imp—left : —> LState
eq tc—imp—left =

taclet ( tacname('imp—left) || find(SB —> SC |— mtsv)
|| goaltemplate( rplcw(mtsv |— SB) || add(mtsv |— mtsv) )
|| goaltemplate( rplew(SC |— mtsv) || add(mtsv |— mtsv) )
[| if(mtsv |— mtsv) )

——— imp_left { find (b —> c==>)

replacewith(==>b);
replacewith (c ==>)
heuristics(split ,beta) };

op tc—imp—right : —> LState
eq tc—imp—right =
taclet ( tacname('imp—right) || find(mtsv |— SB —> SC)
|| goaltemplate( rplew(SB |— SC) || add(mtsv |— mtsv) )
|| if(mtsv |— mtsv) )

——imp_right { find (==>b —> c) replacewith(b==> ¢)

heuristics(alpha) };

op tc—and—left : —> LState
eq tc—and—left =
taclet ( tacname('and—left) || find(SB & SC |— mtsv)
|| goaltemplate( rplcw(SB , SC |— mtsv)
|| add(mtsv |— mtsv) )
[| if(mtsv |— mtsv) )

———and_left { find (b & ¢ ==>) replacewith(b, c==>)

heuristics(alpha) };

——— PROBLEM: 2 replacewith parts!
op tc—and—right : —> LState
eq tc—and—right =

taclet ( tacname(’'and—right) || find(mtsv |— SB & SC)
|| goaltemplate( rplcw(mtsv |— SB) || add(mtsv |— mtsv) )
| goaltemplate( rplcw(mtsv |— SC) || add(mtsv | — mtsv) )
| if(mtsv |— mtsv) )

|
———and_right { find (==>b & c) replacewith(==>b); replacewith(==> c)

heuristics(split ,beta) };

———PROBLEM: 2 replacewith parts!
op tc—or—left : —> LState
eq tc—or—left =

taclet ( tacname('or—left) || find(SB | SC |— mtsv)
|| goaltemplate( rplcw(SB |— mtsv) || add(mtsv |— mtsv) )
|| goaltemplate( rplew(SC |— mtsv) || add(mtsv |— mtsv) )
[| if(mtsv |— mtsv) )
——— or_left { find (b | ¢ ==>) replacewith(b ==>); replacewith(c ==>)



Chapter C: Propositional Logic Taclets Maude Code 129

—_— heuristics(split ,beta) };

op tc—or—right : —> LState
eq tc—or—right =
taclet ( tacname('or—right) || find(mtsv |— SB | SC)
|| goaltemplate( rplcw(mtsv |— SB , SC)
|| add(mtsv | — mtsv) )
[| if(mtsv |— mtsv) ) .

——— or_right { find (==>b | c) replacewith(==>b, ¢)
e heuristics(alpha) };

op tc—equiv—left : —> LState
eq tc—equiv—left =
taclet ( tacname('equiv—left) || find(SB <—>SC |— mtsv)
|| goaltemplate( rplcw(SB , SC | — mtsv)
|| add(mtsv |— mtsv) )
|| goaltemplate( rplcw(mtsv |— SB , SC)
|| add(mtsv |— mtsv) )
if(mtsv |— mtsv) ) .
——— equiv_left { find (b <—>c==>)
_ replacewith (b, ¢ ==>);

- replacewith(==>b, c)
—_— heuristics(split ,beta) };

op tc—equiv—right : —> LState
eq tc—equiv—right =
taclet ( tacname('equiv—right) || find(mtsv |— SB <—> SC)
|| goaltemplate( rplcw(SB |— SC) || add(mtsv |— mtsv) )
|| goaltemplate( rplew(SC |— SB) || add(mtsv |— mtsv) )
[| if(mtsv |— mtsv) ) .

——— equiv_right { find (==> b <—>¢)

—_— replacewith (b ==>c);
- replacewith (c ==>b)
—_ heuristics(split ,beta) };

mod PROPO-SEQUENT-TACLETS—-EMBEDDING-SEMANTICS—PROOF is
including PROPO-SEQUENT-SEMANTICS
including PROPO-SEQUENT—TACLETS-EMBEDDING .

——sort TruthValuePair .
—op -;- : TruthValue TruthValue —> TruthValuePair

op evFormPair : Propo Propo VariableMap —> TruthValue
op fixAllAtomAssignmentsForPairs : Propo Propo VariableMap VariableMap
—> TruthValue

vars A B C : Propo
vars M N : VariableMap
var X : Atom

eq evFormPair(A , B , M)
= fixAllAtomAssignmentsForPairs(A , B , M , emptyvarmap) .

eq fixAllAtomAssignmentsForPairs(A , B , M (X mappedto t) , N)
= fixAllAtomAssignmentsForPairs(A , B , M , N (X mappedto t)) .
eq fixAllAtomAssignmentsForPairs(A , B , M (X mappedto f) , N)



= fixAllAtomAssignmentsForPairs(A , B , M , N (X mappedto f)) .

eq fixAllAtomAssignmentsForPairs(A , B , emptyvarmap , N)
= evalFormula(A , N) <—> evalFormula(B , N) .
endm

C.1 Examples for Use of the Imitated Taclets

Here we have the examples for the subsection 6.2.

This first example is a check whether the combination of all possibilities of
disjunction of 4 variables (and their negations) which are in turn connected
by conjunction each, and the whole is afterwards negated, always returns
true, or here returns closedgoal, which it does. Then the same happens in
the 3 variable case and the 2 variable case.

4 Vars:

rew nil

|—

I (alb|c|d
& (a | b | c | ! d)
& (a | b | ! c | d)
& (a | b | ! c | Vd)
&(a | ' b | c | d)
&(a | ' b | c| !V d)
& (a | ' b | I c| d)
&(a | b | Ve | 1 d)
& ('a | b | c | d)
& (''a | b | c | ! d)
& ('a | b | ! c | d)
& ('a | b | ! c | ! d)
& ('a | ' b | c | d)
& ('a | ' b | c | ! d)
& ('a | !'b | ! c | d)
& (ta | Vb | ! c | I d))

3 Vars:

rew nil

130



N~~~ NN
—_— A — 0 0O —

—_———a— DV L W

Lo LY ——
—_— 0 0O~ O ~——

RRRRRRR

O — —

(1a|1b)).

There are also more examples which we do not mention here.

C.2 Propositional Logics Semantics Test Examples

These are examples which test the semantics of propositional logic taclets
given in Maude above.

——— result is true
search evForm( FormulaFromSequent( nil

' (a [ b ] c]d)

& (a | b | ¢ | ! d)

& (a | b | ! c | d)
&(a | b |1 c | ! d)
& (a | ' b | c | d)

& (a | ' b | c | ! d)
& (a | ' b |1 c | d)
&(a | ! b | e | ! d)
& ('a | b | c | d)

& ('a | b | c | ! d)
& ('a | b | ! c | d)
& ('a | b | ! c | ! d)

131



132 Chapter C: Propositional Logic Taclets Maude Code

& ('a | V' b | c | d)

& ('a | V'b | c | ! d)

& (Ma | !'b | ! c| d)

& ('a | !'b | ! c ] ' d))) , (a mappedto TorF)

(b mappedto TorF) (c mappedto TorF)
(d mappedto TorF) )
=>! X:TruthValue

———— result is true, false:

——— this is not universally valid, the negation (!) of
————the last atom "d" is missing

search evForm( FormulaFromSequent( nil

|
H(

- - - — T T T T
coococoocooT————

— =0 0
- — 00 —-—"—0o00 0 ——

coco———F ——— ——

T < B 3 I S I R R S O )

RRRRRRLRRLRRRRRRRRER
LY YL LY LoD

AN AN AN AN AN AN S /N N

d)
c | d)
' b | ' c | d))) , (a mappedto TorF)
(b mappedto TorF) (c mappedto TorF)
(d mappedto TorF) )
=>! X: TruthValue



Bibliography

[ABB*05]

[Bec00]

[Bec01]

[BGH*04]

[CDE*00]

[CMO0]

Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard
Bubel, Martin Giese, Reiner Hahnle, Wolfram Menzel, Woj-
ciech Mostowski, Andreas Roth, Steffen Schlager, and Peter H.
Schmitt. The KeY tool. Software and System Modeling, 4:32-54,
2005.

Bernhard Beckert. A dynamic logic for java card. In Proceedings,
2nd ECOOP Workshop on Formal Techniques for Java Programs,
Cannes, France, pages 111-119, 2000.

Bernhard Beckert. A dynamic logic for the formal verification of
Java Card programs. In I. Attali and T. Jensen, editors, Java
on Smart Cards: Programming and Security. Revised Papers,
Java Card 2000, International Workshop, Cannes, France, LNCS
2041, pages 6—24. Springer, 2001.

Bernhard Beckert, Martin Giese, Elmar Habermalz, Reiner
Héhnle, Andreas Roth, Philipp Riimmer, and Steffen Schlager.
Taclets: A new paradigm for constructing interactive theorem
provers. Revista de la Real Academia de Cliencias Exactas, Fisicas
y Naturales, Serie A: Matemdticas (RACSAM), 98(1), 2004. Spe-
cial Issue on Symbolic Computation in Logic and Artificial Intel-
ligence.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet,
J. Meseguer, and J. Quesada. A Maude Tutorial. SRI Inter-
national, 2000. Available from http://maude.cs.uiuc.edu/
papers/.

Manuel Clavel and José Meseguer. Reflection and strategies in
rewriting logic. In J. Meseguer, editor, Electronic Notes in Theo-
retical Computer Science, volume 4. Elsevier Science Publishers,
2000.

133



134

Chapter C: Propositional Logic Taclets Maude Code

[FCMRO04]| Azadeh Farzan, Feng Chen, José Meseguer, and Grigore Rosu.

[FMRO4]

(GISBOO]

[IMOMO99]

IMOMO0]

IMOMO02]

[MRO4]

INN92]

Formal analysis of java programs in javafan. In Rajeev Alur
and Doron Peled, editors, CAV, volume 3114 of Lecture Notes in
Computer Science, pages 501-505. Springer, 2004.

Azadeh Farzan, José Meseguer, and Grigore Rosu. Formal jvm
code analysis in javafan. In Charles Rattray, Savi Maharaj,
and Carron Shankland, editors, AMAST, volume 3116 of Lecture
Notes in Computer Science, pages 132-147. Springer, 2004.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification Second Edition. Addison-Wesley, Boston,
Mass., 2000.

N. Marti-Oliet and J. Meseguer. Action and change in rewriting
logic. In R. Pareschi and B. Fronhofer, editors, Dynamic Worlds:
From the Frame Problem to Knowledge Management, volume 12
of Applied Logic Series, pages 1-53. Kluwer Academic Publishers,
1999.

Narciso Marti-Oliet and José Meseguer. Rewriting logic as a log-
ical and semantic framework. In J. Meseguer, editor, Electronic
Notes in Theoretical Computer Science, volume 4. Elsevier Sci-
ence Publishers, 2000.

Narciso Marti-Oliet and José Meseguer.  Rewriting logic:
roadmap and bibliography. Theor. Comput. Sci., 285(2):121-154,
2002.

José Meseguer and Grigore Rosu. Rewriting logic semantics:
From language specifications to formal analysis tools. In Proceed-
ings of the IJCAR’04, Cork, Ireland, volume 3097, pages 1-44.
Springer-Verlag LNCS, July 2004.

Hanne Riis Nielson and Flemming Nielson. Semantics with Ap-
plications: A Formal Introduction. Wiley, 1992.



