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Abstract

We present a software library Stxxl, that enables practice-oriented experimentation with
huge data sets. Stxxl is an implementation of the C++ standard template library STL for
external memory computations. It supports parallel disks, overlapping between I/O and
computation and is the first external memory algorithm library that supports the pipelin-

ing technique that can save more than half of the I/Os. Stxxl has already been used
for the following applications: implementations of external memory algorithms for comput-
ing minimum spanning trees, connected components, breadth-first search decompositions,
constructing suffix arrays, and computing social network analysis metrics for huge graphs.

1 Introduction

Massive data sets arise naturally in many domains: geographic information systems, computer
graphics, database systems, telecommunication billing systems [20], network analysis [23], and
scientific computing [28]. Applications working in those domains have to process terabytes of
data. However, the internal memories of computers can keep only a small fraction of these huge
data sets. During the processing the applications need to access the external storage (e.g. hard
disks). One such access can be about 106 times slower than a main memory access. For any such
access to the hard disk, accesses to the next elements in the external memory are much cheaper.
In order to amortize the high cost of a random access one can read or write contiguous chunks
of size B. The I/O becomes the main bottleneck for the applications dealing with the large data
sets, therefore one tries to minimize the number of I/O operations performed. In order to increase
I/O bandwidth, applications use multiple disks, in parallel. In each I/O step the algorithms try
to transfer D blocks between the main memory and disks (one block from each disk). This model
has been formalized by Vitter and Shriver as Parallel Disk Model (PDM) [38] and is the standard
theoretical model for designing and analyzing I/O-efficient algorithms.

Theoretically, I/O-efficient algorithms and data structures have been developed for many prob-
lem domains: graph algorithms, string processing, computational geometry, etc. (for a survey
see [27]). Some of them have been implemented: sorting, matrix multiplication [36], search trees
[8, 30, 4, 1], priority queues [7], text processing [10]. However there is an ever increasing gap
between theoretical achievements of external memory algorithms and their practical usage. Sev-
eral external memory software library projects (LEDA-SM [11] and TPIE [22]) have been started
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to reduce this gap. They offer frameworks which aim to speed up the process of implementing
I/O-efficient algorithms, abstracting away the details of how I/O is performed.

TPIE and LEDA-SM projects are excellent proofs of concept of external memory paradigm,
but have some drawbacks which impede their practical usage. This led us to start the development
of a performance–oriented library of external memory algorithms and data structures Stxxl,
which tries to avoid those obstacles. The following are some key features of Stxxl:

• Transparent support of parallel disks. The library provides implementations of basic parallel
disk algorithms. Stxxl is the only external memory algorithm library supporting parallel
disks. Such a feature was announced for TPIE in [35, 22].

• The library is able to handle problems of very large size (up to dozens of terabytes).

• Improved utilization of computer resources. Stxxl supports explicitly overlapping between
I/O and computation. Stxxl implementations of external memory algorithms and data
structures benefit from overlapping of I/O and computation.

• Small constant factors in I/O volume. A unique library feature “pipelining” can save more
than half the number of I/Os performed by many algorithms.

• Shorter development times due to well known STL-compatible interfaces for external mem-
ory algorithms and data structures. STL – Standard Template Library [34] is the library of
algorithms and data structures which is a part of the C++ standard. STL algorithms can
be directly applied to Stxxl containers (code reuse); moreover the I/O complexity of the
algorithms remains optimal in most of the cases.

Stxxl library is open source and available under the Boost Software License 1.0
(http://www.boost.org/LICENSE_1_0.txt). The latest version of the library, a user tutorial
and a programmer documentation can be downloaded at http://stxxl.sourceforge.net. Cur-
rently the size of the library is about 15 000 lines of code.

The remaining part of this paper is organized as follows. Section 2 discusses the design of
Stxxl. We explain how the generic interfaces of the library support high performance exter-
nal memory computations using parallel disks, overlapping between I/O and computation, and
pipelining. The section provides several examples. In Section 3 we implement a short benchmark
that computes a maximal independent set of a graph and use it to study the performance of
Stxxl. Section 4 gives a short overview of the projects using Stxxl. We make some concluding
remarks and point out the directions of future work in Section 5.

The shortened version of this paper is also published as [14].

Related Work

TPIE [35, 5] was the first large software project implementing I/O-efficient algorithms and data
structures. The library provides implementation of I/O efficient sorting, merging, matrix opera-
tions, many (geometric) search data structures (B+-tree, persistent B+-tree, R-tree, K-D-B-tree,
KD-tree, Bkd-tree), and the logarithmic method. The work on the TPIE project is in progress.

LEDA-SM [11] external memory library was designed as an extension to the LEDA library
[25] for handling large data sets. The library offers implementations of I/O-efficient sorting,
external memory stack, queue, radix heap, array heap, buffer tree, array, B+-tree, string, suffix
array, matrices, static graph, and some simple graph algorithms. However, the data structures
and algorithms can not handle more than 231 bytes. The development of LEDA-SM has been
stopped.
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LEDA-SM and TPIE libraries currently offer only single disk external memory algorithms and
data structures. They are not designed to explicitly support overlapping between I/O and com-
putation. The overlapping relies largely on the operating system that caches and prefetches data
according to a general purpose policy, which can not be as efficient as the explicit approach. Fur-
thermore, overlapping based on system cache on most of the operating systems requires additional
copies of the data, which leads to CPU and internal memory overhead.

The idea of pipelined execution of the algorithms which process large data sets not fitting
into main memory is well known in relational database management systems [33]. The pipelined
execution strategy allows to execute a database query with minimum number of external memory
accesses, to save memory space to store intermediate results, and to obtain the first result as soon
as possible.

The design framework FG [13] is a programming environment for parallel programs running
on clusters. In this framework, parallel programs are split into series of asynchronous stages,
which are executed in the pipelined fashion with the help of multithreading. The pipelined
execution allows to mitigate disk latency of external data accesses and communication network
latency of remote data accesses. I/O and communication could be automatically overlapped with
computation stages by the scheduler of FG environment.

2 Stxxl Design

Stxxl is a layered library; it consists of three layers (see Figure 1). The lowest layer, the
Asynchronous I/O primitives layer (AIO layer) abstracts away the details of how asynchronous
I/O is performed on a particular operating system. Other existing external memory algorithm
libraries rely only on synchronous I/O APIs [11] or allow reading ahead sequences stored in a file
using the POSIX asynchronous I/O API [22]. These libraries also rely on uncontrolled operating
system I/O caching and buffering in order to overlap I/O and computation in some way. However,
this approach has significant performance penalties for accesses without locality. Unfortunately,
asynchronous I/O APIs are very different on different operating systems (e.g. POSIX AIO and
Win32 Overlapped I/O). Therefore, we have introduced the AIO layer to make porting Stxxl

easy. Porting the whole library to a different platform (for example Windows) requires only
reimplementing the AIO layer using native file access methods and/or native multithreading
mechanisms. Stxxl has already several implementations of the layer which use different file
access methods under POSIX/UNIX systems.

The Block management layer (BM layer) provides a programming interface simulating the
parallel disk model. The BM layer provides abstraction for a fundamental concept in the ex-
ternal memory algorithm design – block of elements. The block manager implements block
allocation/deallocation allowing several block-to-disk assignment strategies: striping, random-
ized striping, randomized cycling, etc. The block management layer provides implementation of
parallel disk buffered writing [21], optimal prefetching [21], and block caching. The implemen-
tations are fully asynchronous and designed to explicitly support overlapping between I/O and
computation.

The top of Stxxl consists of two modules. The STL-user layer provides external memory
sorting, external memory stack, external memory priority queue, etc. which have (almost) the
same interfaces (including syntax and semantics) as their STL counterparts. The Streaming layer
provides efficient support for pipelining external memory algorithms. Many external memory
algorithms, implemented using this layer, can save factor of 2–3 in I/Os. For example, the
algorithms for external memory suffix array construction implemented with this module [15]
require only 1/3 of I/Os which must be performed by implementations that use conventional data
structures and algorithms (either from Stxxl STL-user layer, or LEDA-SM, or TPIE). The win
is due to an efficient interface, that couples the input and the output of the algorithm–components
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Figure 1: Structure of Stxxl

(scans, sorts, etc.). The output from an algorithm is directly fed into another algorithm as input,
without needing to store it on the disk in between. This generic pipelining interface is the first
of this kind for external memory algorithms.

2.1 Asynchronous I/O Primitives (AIO) Layer

The purpose of the AIO layer is to provide a unified approach to asynchronous I/O. The layer hides
details of native asynchronous I/O interfaces of an operating system. Studying the patterns of
I/O accesses of external memory algorithms and data structures, we have identified the following
functionality that should be provided by the AIO layer:

• To issue read and write requests without having to wait for them to complete,

• To wait for the completion of a subset of issued I/O requests,

• To wait for the completion of at least one request from a subset of issued I/O requests,

• To poll the completion status of any I/O request,

• To assign to an I/O request a callback function, which is called upon completion (asyn-
chronous notification of completion status), with ability to co-relate callback events with
the issued I/O requests.

The AIO layer exposes two user objects: file and request ptr. Together with I/O waiting
functions wait all, wait any, and poll any they provide the functionality mentioned above.
Using a file object, the user can submit asynchronous read and asynchronous write requests
(methods file::aread and file::awrite). These methods return a request ptr object which
is used to track the status of an issued request. The AIO layer functions wait all, wait any,
and poll any facilitate tracking a set of request ptrs. The last parameter of the methods
file::aread and file::awrite is a reference to a callback function object (callback functor).
The functor’s operator()(request ptr ) method is called when the I/O request is completed.

As a part of the AIO layer Stxxl library provides various I/O performance counters (stats
class). The class counts the number and the duration of performed I/O operations as well as the
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transferred volume. The counting of read and write operations is done separately. Stxxl also
measures the time spent by the processing thread(s) waiting for the completions of I/Os. This
metric helps to evaluate the degree and the impact of overlapping between I/O and computation
in an application.

Listing 1 shows a simple example how to use AIO objects to program asynchronous I/O.
All Stxxl library objects are defined in the namespace stxxl. For convenience, in Line 1 we
bring all names from the Stxxl namespace to the local scope. In the Line 8 a file object
myfile is constructed. syscall file is an implementation of Stxxl file interface which uses
UNIX/POSIX read and write system calls to perform I/O. The file named "storage" in the
current directory is opened in read-only mode. In Line 9 an asynchronous read of the 1 MB
region of the file starting at position 0 is issued. The data will be read into the array mybuffer.
When the read operation completes, my handler::operator() will be called with a pointer to
the completed request. The execution stops at Line 11 waiting for the completion of the issued
read operation. Note that the work done in the function do something1() is overlapped with
reading. When the I/O is finished, one can process the read buffer (Line 12) and free it (Line 13).

Listing 1: Example of how to program with the AIO layer.

1 using namespace stxxl ;
2 struct my_handler { // I /O complet ion handler
3 void operator ( ) ( request_ptr ptr ) {
4 std : : cout << "Request ’"<< ∗ptr <<"’ completed ."<<std : : endl ;
5 }
6 } ;
7 char ∗ mybuffer = new char [ 1 024∗1024 ] ; // a l l o c a t e 1 MB bu f f e r
8 syscall_file myfile ("./storage" , file : : RDONLY ) ;
9 request_ptr myreq = myfile . aread ( mybuffer , 0 , 1024∗1024 , my_handler ( ) ) ;

10 do_something1 ( ) ; // do something1 ( ) i s over lapped with read ing
11 myreq−>wait ( ) ; // wait f o r read complet ion
12 do_something2 ( mybuffer ) ; // proce s s the read bu f f e r
13 delete [ ] mybuffer ; // f r e e the bu f f e r

AIO Layer Implementations. There are several implementation strategies for Stxxl AIO
layer. Some asynchronous I/O related APIs (and underlying libraries implementing them) already
exist. The most well known framework is POSIX AIO, which has implementation on almost every
UNIX/POSIX system. Its disadvantage is that it has only limited support for I/O completion
event mechanism 1. The Linux AIO kernel side implementation 2 of POSIX AIO does not have
this deficit, but is not portable since it works only under Linux.

Our AIO layer implementation follows a different approach. It does not rely on any asyn-
chronous I/O API. Instead we use synchronous I/O calls running asynchronously in separate
threads. For each file there is one read and one write request queue. The main thread posts
requests (invoking file::aread and file::awrite methods) in the file queues. The thread,
associated with the file, executes the requests in FIFO order. This approach is very flexible and
it does not suffer from limitations of native asynchronous API.

Our implementation of the AIO layer is based on POSIX threads and supports several Unix
file access methods: the syscall method uses read and write system calls, the mmap method
uses memory mapping (mmap and munmap calls), the sim disk method simulates I/O timings of
a hard disk provided a big memory disk. To avoid superfluous copying of data between user and

1The Linux glibc implementation of POSIX AIO also has a performance drawback. It launches one user thread
for each I/O operation.

2http://freshmeat.net/projects/linux-aio/
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kernel buffer memory, the syscall method has an option to use unbuffered file system access.
Alternatively, the file access methods can be used for raw disk I/O bypassing the file system.

The implementation does not need to be ported to other UNIX compatible systems, since
POSIX threads is the standard threading API on all POSIX operating systems.

2.2 Block Management (BM) Layer

As already mentioned above, the BM layer provides an implementation of the central concept in
I/O-efficient algorithms and data structures: block of elements (typed block object). Besides,
it includes a toolbox for allocating, deallocating, buffered writing, prefetching, and caching of
blocks. The external memory manager (object block manager) is responsible for allocating and
deallocating external memory space on disks. The manager supports four parallel disk allocation
strategies: simple striping, fully randomized, simple randomized [6], and randomized cycling [37].

The BM layer also delivers a set of helper classes that efficiently implement frequently used
sequential patterns of interaction with (parallel disk) external memory. The optimal parallel disk
queued writing [21] is implemented in the buffered writer class. The class operates on blocks.
buf ostream class is build on top of buffered writer and has a high level interface, similar to
the interface of STL output iterators. Analogously, classes block prefetcher and buf istream

contain an implementation of an optimal parallel disk prefetching algorithm [21]. The helper
objects of the BM layer support overlapping between I/O and computation, which means that
they are able to perform I/O in the background, when user thread is doing useful computations.

The BM layer views external memory as a set of large AIO files — one for each disk. We will
refer to these files as disks. The other approach would be to map a related subset of blocks (e.g.
those belonging to the same data structure) to a separate file. This approach has some perfor-
mance problems. One of them is as follows: since those (numerous) files are created dynamically,
during the run of the program, the file system allocates the disk space on demand, that might
in turn introduce severe uncontrolled disk space fragmentation. Therefore we have chosen the
“one-large-file-per-disk” approach as our major scheme. However the design of our library does
not forbid for data structures to store their content in separate user data files (e.g., as an option,
stxxl::vector can be mapped to a user file, see Section 2.3).

The external memory manager (object block manager) is responsible for allocating and deal-
locating external memory space on the disks. The block manager reads information about avail-
able disks from the Stxxl configuration file. This file contains the location of each disk file, the
sizes of the disks, and file access method for each disk. When allocating a bunch of blocks, a
programmer can specify how the blocks will be assigned to disks, passing an allocation strategy
function object. The block manager implements the first fit allocation heuristic. When an appli-
cation requests several blocks from a disk, the manager tries to allocate the blocks contiguously.
This reduces the bulk access time. On allocation requests, the block manager returns BID ob-
jects – Block IDentifiers. An object of type BID describes the physical location of an allocated
block, including the disk and offset of a region of storage on disk. One can load or store the
data that resides at the given by BID location using asynchronous read and write methods of a
typed block object.

The full signature of the Stxxl “block of elements” class is
typed block<RawSize,T,NRef,InfoType>. The template parameter RawSize defines the
total size of the block in bytes. Since block size is not a fixed global constant in Stxxl, a
programmer can simultaneously operate with several block types having different blocks sizes. A
critical requirement for many external memory data structures is that a block must be able to
store links to other blocks. An Stxxl block can store NRef objects of type BID. Additionally,
one can equip a block with a field of type InfoType, that can hold some per-block information.
Block elements of type T can be easily accessed by the array operator [] and via random access
iterators.
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In Listing 2 we give an example how to program block I/O using objects of the BM layer. In
Line 2 we define the type of block: its size is one megabyte and the type of elements is double. The
pointer to the only instance of the singleton object block manager is obtained in Line 5. Line 6
asks the block manager to allocate 32 blocks in external memory. The new blocks call writes the
allocated BIDs to the output iterator, given by the last parameter. The std::back inserter

iterator adapter will insert the output BIDs at the end of the array bids. The manager assigns
blocks to disks in a round-robin fashion as the striping() strategy suggests. Line 7 allocates
32 internal memory blocks. The internal memory allocator new alloc<block type> of Stxxl

allocates blocks on a virtual memory page boundary, which is a requirement for unbuffered file
access. Along Lines 8–10 the elements of blocks are filled with some values. Then the blocks are
submitted for writing (lines 11–12). As in the AIO example, I/O is overlapped with computations
in function do something(). After the completion of all write requests (Line 14) we perform some
useful processing with the written data (function do something1()). Finally we free the external
memory space occupied by the 32 blocks (Line 16).

Listing 2: Example of how to program using the BM layer.

1 using namespace stxxl ;
2 typedef typed_block <1024∗1024 ,double> block_type ;
3 std : : vector<block_type : : bid_type> bids ; // empty array o f BIDs
4 std : : vector<request_ptr> requests ;
5 block_manager ∗ bm = block_manager : : get_instance ( ) ;
6 bm−>new_blocks<block_type >(32 , striping ( ) , std : : back_inserter ( bids ) ) ;
7 std : : vector<block_type , new_alloc<block_type> > blocks ( 3 2 ) ;
8 for ( int ii = 0 ; ii < 32 ; ii++)
9 for ( int jj=0; jj < block_type : : size ; jj++)

10 blocks [ ii ] [ jj ] = some_value (ii , jj ) ;
11 for ( int i = 0 ; i < 32 ; i++)
12 requests . push_back ( blocks [ i ] . write ( bids [ i ] ) ) ;
13 do_something ( ) ; // do something ( ) i s over lapped with wr i t ing
14 wait_all ( requests . begin ( ) , requests . end ( ) ) ; // wait u n t i l a l l I /Os f i n i s h
15 do_something1 ( bids . begin ( ) , bids . end ( ) ) ;
16 bm−>delete_blocks ( bids . begin ( ) , bids . end ( ) ) ; // d e a l l o c a t e ext . memory

2.3 STL-user Layer

When we started to develop the library we decided to equip our implementations of external
memory data structure and algorithms with well known generic interfaces of data structures and
algorithms from the Standard Template Library, which is a part of C++ standard. This choice
would shorten the application development times, since the time to learn new interfaces is saved.
Porting internal memory code that relies on STL would also be easy, since interfaces of STL-
user layer data structures (containers in the STL terminology) and algorithms have the same
syntax and semantics. Another advantage is that compatible interfaces will allow to reuse the
I/O-efficient code, existing in STL (e.g. scanning and selection algorithms).

Containers

We go over the containers currently available in Stxxl.
The most universal Stxxl container is stxxl::vector. Vector is an array whose size can

vary dynamically. The implementation of stxxl::vector is similar to LEDA-SM array [11].
The content of a vector is striped block-wise over the disks using an assignment strategy given
as a template parameter. Some of the blocks are cached in a vector cache of fixed size (also
a parameter). The replacement of cache blocks is controlled by a specified page-replacement
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strategy. Stxxl has implementations of LRU and random replacement strategies. The user
can provide his/her own strategy as well. Stxxl vector has STL compatible Random Access
Iterators. One random access costs O(1) I/Os in the worst case. Sequential scanning of the vector
costs O(1/DB) amortized I/Os per vector element. In the paper we use the classical notation
from [38], where M is the size of main memory, B is the block size in bytes, D is the number of
disks, and N is the input size measured in bytes.

The I/O-efficient stxxl::stack is perhaps the simplest external memory data structure. Four
different implementations of stack are available in Stxxl. Some of the implementations are opti-
mized to prefetch data ahead and to queue writing, efficiently overlapping I/O and computation.
The amortized I/O complexity for push and pop stack operations is O(1/DB).

External memory priority queues are the central data structures for many I/O-efficient graph
algorithms [39, 9, 27]. The main technique in these algorithms is time-forward processing [9, 3],
easily realizable by an I/O efficient priority queue. I/O efficient priority queues also find their
application in large-scale discrete event simulation and online sorting. The Stxxl implementation
of priority queue is based on [31]. This queue needs less than a third of I/Os used by other
similar cache (I/O) efficient priority queues (e.g. [7, 18]). The implementation supports parallel
disks and overlaps I/O and computation.

The current version of Stxxl also has an implementation of external memory map (based on
B+-tree) and external memory FIFO queue.

As in other external memory algorithm libraries [11, 22] Stxxl has the restriction that the
data types stored in the containers can not have C/C++ pointers or references to other el-
ements of external memory containers. The reason is that these pointers and references get
invalidated when the blocks containing the elements they point/refer, are written to disk. To
get around this problem, the links can be kept in the form of external memory iterators (e.g.
stxxl::vector::iterator). The iterators remain valid while storing to and loading from exter-
nal memory. When dereferencing an external memory iterator, the pointed object is loaded from
external memory by the library on demand (if the object is not already in the cache of the data
structure).

Stxxl containers differ in treating allocation and distinguishing between uninitialized and
initialized memory from the STL containers. Stxxl containers assume that the data types they
store are plain old data types (POD). The constructors and destructors of the contained data
types are not called when a container changes its size. The support of constructors and destructors
would imply significant I/O cost penalty, e.g. on the deallocation of a non-empty container, one
has to load all contained objects and call their destructors. This restriction sounds more severe
than it is, since external memory data structures can not cope with custom dynamic memory
management anyway, the common use of custom constructors/destructors. However, we plan to
implement special versions of Stxxl containers which will support not only PODs and handle
construction/destruction appropriately.

Algorithms

The algorithms of STL can be divided into two groups by their memory access pattern: scanning
algorithms and random access algorithms.

Scanning algorithms. These are the algorithms that work with Input, Output, Forward,
and Bidirectional iterators only. Since random access operations are not allowed with these
kinds of iterators, the algorithms inherently exhibit strong spatial locality of reference. Stxxl

containers and their iterators are STL-compatible, therefore one can directly apply STL scan-
ning algorithms to them, and they will run I/O-efficiently (see the use of std::generate and
std::unique algorithms in the Listing 4). Scanning algorithms are the majority of the STL
algorithms (62 out of 71). Stxxl also offers specialized implementations of some scanning algo-
rithms (stxxl::for each, stxxl::generate, etc.), which perform better in terms of constant
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Listing 3: Definitions of classes.

1 struct edge { // edge c l a s s
2 int src , dst ; // nodes
3 edge ( ) {}
4 edge ( int src_ , int dst_ ) : src ( src_ ) , dst ( dst_ ) {}
5 bool operator == ( const edge & b ) const {
6 return src == b . src && dst == b . dst ;
7 }
8 } ;
9 struct random_edge { // random edge generator functor

10 edge operator ( ) ( ) const {
11 edge Edge ( random ()−1 ,random () −1);
12 while ( Edge . dst == Edge . src )
13 Edge . dst = random ( ) − 1 ; //no s e l f −l oop s
14 return Edge ;
15 }
16 } ;
17 struct edge_cmp { // edge comparison functor
18 edge min_value ( ) const {
19 return edge ( std : : numeric_limits<int > : : min ( ) , 0 ) ; } ;
20 edge max_value ( ) const {
21 return edge ( std : : numeric_limits<int > : : max ( ) , 0 ) ; } ;
22 bool operator ( ) ( const edge & a , const edge & b ) const {
23 return a . src < b . src | | (a . src == b . src && a . dst < b . dst ) ;
24 }
25 } ;

factors in the I/O volume and internal CPU work. These implementations benefit from accessing
lower level interfaces of the BM layer instead of using iterator interfaces, resulting in smaller
CPU overhead. Being aware of the sequential access pattern of the applied algorithm, the Stxxl

implementations can do prefetching and use queued writing, thereby leading to the overlapping
of I/O with computation.

Random access algorithms. These algorithms require RandomAccess iterators, hence may
perform many random I/Os 3. For such algorithms, Stxxl provides specialized I/O-efficient im-
plementations that work with STL-user layer external memory containers. Currently the library
provides two implementations of sorting: an std::sort-like sorting routine – stxxl::sort, and
a sorter that exploits integer keys – stxxl::ksort. Both sorters are highly efficient parallel disk
implementations. The algorithm they implement guarantees close to optimal I/O volume and
almost perfect overlapping between I/O and computation [16]. The performance of the sorters
scales well. With eight disks which have peak bandwidth of 380 MB/s it sorts 128 byte elements
with 32 bit keys achieving I/O bandwidth of 315 MB/s.

Listing 4 shows how to program using the STL-user layer and how Stxxl containers can
be used together with both Stxxl algorithms and STL algorithms. Definitions of classes edge,
random edge and edge cmp are in Listing 3. The purpose of our example is to generate a huge
random directed graph in sorted edge array representation. The edges in the edge array must be
sorted lexicographically. A straightforward procedure to do this is to: 1) generate a sequence of
random edges, 2) sort the sequence, 3) remove duplicate edges from it. If we ignore definitions of
helper classes the STL/Stxxl code for it is only five lines long: Line 1 creates an Stxxl external
memory vector with 10 billion edges. Line 2 fills the vector with random edges (generate from

3The std::nth element algorithm is an exception. It needs a linear number of I/Os on average.
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Listing 4: Generating a random graph using the STL-user layer.

1 stxxl : : vector<edge> ExtEdgeVec (10000000000 ULL ) ;
2 std : : generate ( ExtEdgeVec . begin ( ) , ExtEdgeVec . end ( ) , random_edge ( ) ) ;
3 stxxl : : sort ( ExtEdgeVec . begin ( ) , ExtEdgeVec . end ( ) , edge_cmp ( ) ,
4 512∗1024∗1024) ;
5 stxxl : : vector<edge > : : iterator NewEnd =
6 std : : unique ( ExtEdgeVec . begin ( ) , ExtEdgeVec . end ( ) ) ;
7 ExtEdgeVec . resize ( NewEnd − ExtEdgeVec . begin ( ) ) ;

STL is used). In the next line the Stxxl external memory sorter sorts randomly generated edges
using 512 megabytes of internal memory. The lexicographical order is defined by functor my cmp,
stxxl::sort also requires the comparison functor to provide upper and lower bounds for the
elements being sorted. Line 6 deletes duplicate edges in the external memory vector with the
help of the STL unique algorithm. The NewEnd vector iterator points to the right boundary of
the range without duplicates. Finally (Line 7), we chop the vector at the NewEnd boundary. Now
we count the number of I/Os performed by this example: external vector construction takes no
I/Os; filling with random values requires a scan — N/DB I/Os; sorting will take 4N/DB I/Os;
duplicate removal needs no more than 2N/DB I/Os; chopping a vector is I/O free. The total
number of I/Os is 7N/DB.

2.4 Streaming Layer

The streaming layer provides a framework for pipelined processing of large sequences. Many
external memory algorithms implemented with the Stxxl streaming layer save a factor at least
two in I/Os. The pipelined processing technique is well known in the database world [33]. To
the best of our knowledge we are the first who apply this method systematically in the domain
of external memory algorithms. We introduce it in the context of an external memory software
library.

Usually the interface of an external memory algorithm assumes that it reads the input from
external memory container(s) and writes output in external memory container(s). The idea of
pipelining is to equip the external memory algorithms with a new interface that allows them to
feed the output as a data stream directly to the algorithm that consumes the output, rather than
writing it to external memory. Logically, the input of an external memory algorithm does not
have to reside in external memory, it could be rather a data stream produced by another external
memory algorithm.

Many external memory algorithms can be viewed as a data flow through a directed acyclic
graph G = (V = F ∪ S ∪R, E). The file nodes F represent physical data sources and data sinks,
which are stored on disks (e.g. in the external memory containers of STL-user layer). A file node
outputs or/and reads one stream of elements. The streaming nodes S read zero, one or several
streams and output zero, one or several new streams. Streaming nodes are equivalent to scan
operations in non-pipelined external memory algorithms. The difference is that non-pipelined
conventional scanning needs a linear number of I/Os, whereas streaming nodes usually do not
perform any I/O, unless a node needs to access external memory data structures (stacks, priority
queues, etc.). The sorting nodes R read a stream and output it in a sorted order. Edges E in
the graph G denote the directions of data flow between nodes. The question “When a pipelined
execution of the computations in a data flow graph G is possible in an I/O-efficient way?” is
analyzed in [15].

In Stxxl, all data flow node implementations have an Stxxl stream interface, which is similar

10



to STL Input iterators4. As an input iterator, an Stxxl stream object may be dereferenced to
refer to some object and may be incremented to proceed to the next object in the stream. The
reference obtained by dereferencing is read-only and must be convertible to the value type of the
Stxxl stream. The concept of Stxxl stream also defines a boolean member function empty()

which returns true iff the end of the stream is reached.
Now we tabulate the valid expressions and the expression semantics of Stxxl stream concept

in the style of STL documentation.

Notation

X, X1, . . ., Xn A type that is a model of Stxxl stream
T The value type of X
s, s1, . . ., sn Object of type X, X1, . . ., Xn
t Object of type T

Valid expressions

Name Expression Type requirements Return type

Constructor X s(s1,...,sn) s1, . . ., sn are convertible to
X1&, . . ., Xn&

Dereference *s Convertible to T

Member access s->m T is a type for which t.m is
defined

Preincrement ++s X&

End of stream check (*s).empty() bool

Expression semantics

Name Expression Precondition Semantics Postcondition

Constructor X s(s1,...,sn) s1, . . ., sn are the n
input streams of s

Dereference *s s is incrementable
Member access s->m s is incrementable Equivalent

to (*s).m

Preincrement ++s s is incrementable s is incrementable
or past-the-end

The binding of a Stxxl stream object to its input streams (incoming edges in a data flow
graph G) happens at compile time, i.e. statically. The other approach would be to allow binding
at running time using the C++ virtual function mechanism. However this would result in a
severe performance penalty because most C++ compilers are not able to inline virtual functions.
To avoid this disadvantage, we follow the static binding approach using C++ templates. For
example, assuming that streams s1, . . ., sn are already constructed, construction of stream s

with constructor X::X(X1& s1,..., Xn& sn) will bind s to its inputs s1, . . ., sn.
After creating all node objects, the computation starts in a “lazy” fashion, first trying to

evaluate the result of the topologically latest node. The node reads its intermediate input nodes,
element by element, using dereference and increment operator of the Stxxl stream interface.
The input nodes procede in the same way, invoking the inputs needed to produce an output
element. This process terminates when the result of the topologically latest node is computed.

4Do not confuse with the stream interface of the C++ iostream library.
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Figure 2: Data flow graph for the example in Listing 5.

This style of pipelined execution scheduling is I/O-efficient, it allows to keep the intermediate
results in-memory without needing to store them in external memory.

Streaming layer of Stxxl library offers generic classes which implement the functionality of
sorting, file, and streaming nodes:

• File nodes: Function streamify serves as an adaptor that converts a range of ForwardIter-
ators into a compatible Stxxl stream. Since iterators of stxxl::vector are RandomAc-
cessIterators, streamify can be used to read external memory. The set of (overloaded)
materialize functions implement data sink nodes, they flush the content of a Stxxl

stream object to an output iterator. The library also offers specializations of streamify

and materialize for stxxl::vector, which are more efficient than the generic implemen-
tations due to the support of overlapping between I/O and computation.

• Sort nodes: Stream layer stream::sort class is a generic pipelined sorter which has the
interface of an Stxxl stream. The input of the sorter may be an object complying to Stxxl

stream interface. As the STL-user layer sorter, the pipelined sorter is an implementation
of parallel disk merge sort [16] that overlaps I/O and computation. The implementation
of stream::sort relies on two classes that encapsulate the two phases of the algorithm:
sorted run formation (class runs creator) and run merging (runs merger). The separate
use of these classes breaks the pipelined data flow: the runs creator must read the entire
input to compute the sorted runs. This facilitates an efficient implementation of loops and
recursions: the input for the next iteration or recursion can be the sorted runs stored on
disks [26, 15]. The templated class runs creator has several specializations which have
input interfaces different from Stxxl stream interface: a specialization where elements to
be sorted are push back’ed into the runs creator object, and a specialization that accepts
a set of presorted sequences. All specializations are compatible with the runs merger.

• Streaming nodes: In general, most implementation effort for algorithms with the streaming
layer goes to the streaming nodes. The Stxxl library exposes generic classes that help to
accelerate coding the streaming node classes. For example stream::transform is similar
to the std::transform algorithm: it reads n input streams s1, . . ., sn and returns the
result of a user-given n-ary function object functor(*s1,...,*sn) as the next element of
the output stream until one of the input streams gets empty.

As mentioned above, Stxxl allows streaming nodes to have more than one output. In this
case only one output of a streaming node can have the Stxxl stream interface. The other outputs
must then be passed to file nodes (e.g. via calling the method push back of stxxl::vector) or
sorting nodes (they have a push back interface too).

Now we “pipeline” the random graph generation example shown in the previous chapter.
The data flow graph of the algorithm is presented in Figure 2 in the appendix. Listing 5 shows
the pipelined code of the algorithm, the definitions of edge, random edge, and edge cmp are in
Listing 3. Since the sorter of the streaming layer accepts an Stxxl stream input, we do not need to
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Listing 5: Generating a random graph using the Streaming layer.

1 using namespace stxxl ;
2 class random_edge_stream {
3 int64 counter ;
4 edge current ;
5 random_edge_stream ( ) ;
6 public :
7 typedef edge value_type ;
8 random_edge_stream ( int64 elements ) :
9 counter ( elements ) , current ( random_edge ( ) ( ) ) { }

10 const edge & operator ∗ ( ) const { return current ; }
11 const edge ∗ operator −>() const { return &current ; }
12 random_edge_stream & operator ++ () {
13 −−counter ;
14 current = random_edge ( ) ( ) ;
15 return ∗ this ;
16 }
17 bool empty ( ) const { return counter==0; }
18 } ;
19 random_edge_stream RandomStream (10000000000 ULL ) ;
20 typedef stream : : sort<random_edge_stream , edge_cmp> sorted_stream ;
21 sorted_stream SortedStream ( RandomStream , edge_cmp ( ) , 512∗1024∗1024) ;
22 typedef stream : : unique<sorted_stream> unique_stream_type ;
23 unique_stream_type UniqueStream ( SortedStream ) ;
24 stxxl : : vector<edge> ExtEdgeVec (10000000000 ULL ) ;
25 stxxl : : vector<edge > : : iterator NewEnd =
26 stream : : materialize ( UniqueStream , ExtEdgeVec . begin ( ) ) ;
27 ExtEdgeVec . resize ( NewEnd − ExtEdgeVec . begin ( ) ) ;

output the random edges. Rather, we generate them on the fly. The random edge stream object
(model of Stxxl stream) constructed in Line 19 supplies the sorter with a stream of random
edges. In Line 20, we define the type of the sorter node; it is parameterized by the type of the
input stream and the type of the comparison function object. Line 21 creates a SortedStream

object attaching its input to the RandomStream. The internal memory consumption of the sorter
stream object is bounded to 512 MB. The UniqueStream object filters the duplicates in its input
edge stream (Line 23). The generic stream::unique stream class stems from the Stxxl library.
Line 26 records the content of the UniqueStream into the external memory vector. As in the
Listing 4 (Line 27), we cut the vector at the NewEnd boundary. Let us count the number of
I/Os the program performs: random edge generation by RandomStream costs no I/O; sorting in
SortedStream needs to store the sorted runs and read them again to merge — 2N/DB I/Os;
UniqueStream deletes duplicates on the fly, it does not need any I/O; and materializing the final
output can cost up to N/DB I/Os. Totally the program incurs only 3N/DB I/Os, compared to
7N/DB for the nonpipelined code in Section 2.3.

3 Performance

We demonstrate some performance characteristics of Stxxl using the external memory maximal
independent set (MIS) algorithm from [39] as an example. This algorithm is based on the time-
forward processing technique. As the input for the MIS algorithm, we use the random graph
computed by the examples in the previous Sections (Listings 4 and 5). Our benchmark also
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Listing 6: Computing a Maximal Independent Set using Stxxl.

1 struct node_greater : public std : : greater<node_type> {
2 node_type min_value ( ) const {
3 return std : : numeric_limits<node_type > : : max ( ) ;
4 }
5 } ;
6 typedef stxxl : : PRIORITY_QUEUE_GENERATOR<node_type , node_greater ,
7 PQ_MEM , INPUT_SIZE /1024 > : : result pq_type ;
8 pq_type depend ( PQ_PPOOL_MEM , PQ_WPOOL_MEM ) ; // keeps ”not in MIS” events
9 stxxl : : vector<node_type> MIS ; // output

10 for ( ; ! edges . empty ();++edges ) {
11 while ( ! depend . empty ( ) && edges−>src > depend . top ( ) )
12 depend . pop ( ) ; // d e l e t e o ld events
13 i f ( depend . empty ( ) | | edges−>src != depend . top ( ) ) {
14 i f ( MIS . empty ( ) | | MIS . back ( ) != edges−>src )
15 MIS . push_back ( edges−>src ) ;
16 depend . push ( edges−>dst ) ;
17 }
18 }

includes the running time of the input generation.
Now we describe the MIS algorithm implementation in Listing 6, which is only nine lines long

not including declarations. The algorithm visits the graph nodes scanning lexicographically sorted
input edges. When a node is visited, we add it to the maximal independent set if none of its vis-
ited neighbours is already in the MIS. The neighbour nodes of the MIS nodes are stored as events
in a priority queue. In Lines 6-7, the template metaprogram [12] PRIORITY QUEUE GENERATOR

computes the type of priority queue that will store events. The metaprogram finds the optimal
values for numerous tuning parameters (the number and the maximum arity of external/inter-
nal mergers, the size of merge buffers, external memory block size, etc.) under the constraint
that the total size of the priority queue internal buffers must be limited by PQ MEM bytes. The
node greater comparison functor defines the order of nodes of type node type and minimum
value that a node object can have, such that the top() method will return the smallest contained
element. The last template parameter tells that the priority queue can not contain more than
INPUT SIZE elements (in 1024 units). Line 8 creates the priority queue depend having prefetch
buffer pool of size PQ PPOOL MEM bytes and buffered write memory pool of size PQ WPOOL MEM bytes.
The external vector MIS stores the nodes belonging to the maximal independent set. Ordered
input edges come in the form of an Stxxl stream called edges. If the current node edges->src

is not a neighbour of a MIS node (the comparison with the current event depend.top(), Line 13),
then it is included in MIS (if it was not there before, Line 15). All neighbour nodes edges->dst of
a node in MIS edges->src are inserted in the event priority queue depend (Line 16). Lines 11-12
remove the events already passed through from the priority queue.

To make a comparison with other external memory libraries, we have implemented the
graph generation algorithm using TPIE and LEDA-SM libraries. The MIS algorithm was im-
plemented in LEDA-SM using its array heap data structure as a priority queue. The I/O-
efficient implementation of the MIS algorithm was not possible in TPIE, since it does not
have an I/O efficient priority queue implementation. For TPIE, we report only the running
time of the graph generation. The source code of all our implementations is available under
http://i10www.ira.uka.de/dementiev/stxxl/paper/index.shtml.

To make the benchmark closer to real applications, we have added two 32-bit integer fields in
the edge data structure, which can store some additional information associated with the edge.
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The implementations of priority queue of LEDA-SM always store a pair <key,info>. The info
field takes at least four bytes. Therefore, to make a fair comparison with Stxxl, we have changed
the event data type stored in the priority queue (Listing 6), such that it also has a 4-byte dummy
info field.

The experiments were run on a 2-processor workstation, having 2 GHz Xeon processors (only
one processor was used) and 1 GB of main memory (swapping was switched off). The OS was
Debian with Linux kernel 2.4.20. The computer had four 80 GB IDE (IBM/Hitachi 120 GXP
series) hard disks formatted with the XFS file system and dedicated solely for the experiments.
We used LEDA-SM version 1.3 with LEDA version 4.2.15 and TPIE of January 21, 2005. For
compilation of Stxxl and TPIE sources, the g++ compiler version 3.3 was used. LEDA-SM
and LEDA were compiled with g++ compiler version 2.95, because they could not be compiled
by later g++ versions. The compiler optimization level was set to -O3. For sorting we used
library sorters that use C++ comparison operators to compare elements. All programs have been
tuned to achieve their maximum performance. We have tried all available file access methods
and disk block sizes. In order to tune the TPIE benchmark implementation, we followed the
performance tuning section of [22]. The input size (the length of the random edge sequence, see
Listing 4) for all tests was 2000 MB6. The benchmark programs were limited to use only 512 MB
of main memory. The remaining 512 MB are given to operating system kernel, daemons, shared
libraries and file system buffer cache, from which TPIE and LEDA-SM might benefit. The Stxxl

implementations do not use the file system cache.

Table 1: Running time (in seconds)/I/O bandwidth (in MB/s) of the MIS benchmark running
on single disk. For TPIE only graph generation is shown (marked with *).

LEDA-SM Stxxl-STL Stxxl-Pipel. TPIE

Input Filling 51/41 89/24 40/52
graph Sorting 371/23 188/45

100/20
307/28

generation Dup. removal 160/26 104/40 109/39
MIS computation 513/6 153/21

128/26
–N/A–

Total 1095/16 534/33 228/24 456*/32*

Table 1 compares the MIS benchmark performance of the LEDA-SM implementation with
array heap priority queue, the Stxxl implementation based on the STL-user level, a pipelined
Stxxl implementation, and a TPIE implementation with only input graph generation. The
running times, averaged over three runs, and average I/O bandwidths are given for each stage
of the benchmark. The running time of the different stages of the pipelined implementation
cannot be measured separately. However, we show the values of time and I/O counters from the
beginning of the execution till the time when the sorted runs are written to the disk(s) in the run
formation phase of sorting, and from this point to the end of the MIS computation. The total
time numbers show that the pipelined Stxxl implementation is significantly faster than the other
implementations. It is 2.4 times faster than the second leading implementation (Stxxl-STL).
The win is due to reduced I/O volume: the Stxxl-STL implementation transfers 17 GB, the
pipelined implementation needs only 5.2 GB. However the 3.25 fold I/O volume reduction does not
imply equal reduction of the running time because the run formation fused with filling/generating
phase becomes compute bound. This is indicated by the almost zero value of the Stxxl I/O
wait counter, which measures the time the processing thread waited for the completion of an I/O.
The second reason is that the fusion of merging, duplicate removal and CPU intensive priority

5Later versions of the LEDA are not supported by the last LEDA-SM version 1.3.
6Algorithms and data structures of LEDA-SM are limited to inputs of size 2 GB.
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queue operations in the MIS computation is almost compute bound. Comparing the running
times of the total input graph generation we conclude that Stxxl-STL implementation is about
20 % faster than TPIE and 53 % faster than LEDA-SM. This could be due to better (explicit)
overlapping between I/O and computation. Another possible reason could be that TPIE uses
a more expensive way of reporting run-time errors, such as I/O errors7. The running time of
the filling stage of Stxxl-STL implementation is much higher than of TPIE and LEDA-SM.
This is due to the fact that those libraries rely on operating system cache. The filled blocks do
not go immediately to the disk(s) but remain in the main memory until other data needs to be
cached by the system. The indication of this is the very high bandwidth of 52 MB/s for TPIE
implementation, which is even higher than the maximum physical disk bandwidth (48 MB/s) at
its outermost zone. However, the cached blocks need to be flushed in the sorting stage and then
the TPIE implementation pays the remaining due. The unsatisfactory bandwidth of 24 MB/s
of the Stxxl-STL filling phase could be improved by replacing the call std::generate by the
native stxxl::generate call that efficiently overlaps I/O and computation. With a single disk
it fills the vector in 60 seconds with a bandwidth of 33 MB/s. Stxxl STL-user sorter sustains
an I/O bandwidth of about 45 MB/s, which is 95 % of the disk’s peak bandwidth. The high
CPU load in the priority queue and not very perfect overlapping between I/O and computation
explain the low bandwidth of the MIS computation stage in all three implementations. We also
run the graph generation test on 16 GByte inputs. All implementations scale almost linearly
with the input size: the TPIE implementation finishes in 1h 3min, Stxxl-STL in 49min, and
Stxxl-Pipelined in 28min.

The MIS computation of Stxxl, which is dominated by PQ operations, is 3.35 times faster
than LEDA-SM. The main reason for this big speedup is likely to be the more efficient priority
queue algorithm from [31].

Table 2: Running time (in seconds)/I/O bandwidth (in MB/s) of the MIS benchmark running
on multiple disk.

Stxxl-STL Stxxl-Pipelined
Disks 2 4 2 4

Input Filling 72/28 64/31
graph Sorting 104/77 80/100

98/20 98/20

generation Dup. removal 58/69 34/118
MIS computation 127/25 114/28

112/30 110/31

Total 360/50 291/61 210/26 208/27

Table 2 shows the parallel disk performance of the Stxxl implementations. The Stxxl-STL
implementation achieves speedup of about 1.5 using two disks and 1.8 using four disks. The rea-
son for this low speedup is that many parts of the code become compute bound: priority queue
operations in the MIS computation stage, run formation in the sorting stage, and generating ran-
dom edges in the filling stage. The Stxxl-Pipelined implementation was almost compute bound
in the single disk case, and as expected, with two disks the first phase shows no speedup. However
the second phase has a small improvement in speed due to faster I/O. Close to zero I/O wait time
indicates that the Stxxl-Pipelined implementation is fully compute bound when running with
two or four disks. We had run the Stxxl-Pipelined implementation on very large graphs that

7TPIE uses function return types for error codes and diagnostics, which can become quite expensive at the level
of the single-item interfaces (e.g. read item and write item) that is predominantly used in TPIEs algorithms.
Instead, Stxxl checks (I/O) errors on the per-block basis. We will use C++ exceptions to propagate errors to the
user layer without any disadvantage for the library users. First experiments indicate that this will have negligible
impact on runtime.
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require the entire space of four hard disks (360 GBytes). The results of this experiment, using a
faster Opteron system, are shown in Table 3.

Table 3: Running time of the Stxxl-Pipelined implementation running on very large random
graphs (Opteron system).

Input volume N/M #nodes #edges #edges/#nodes D Running time
100 GB 200 2.1 · 109 13.4 · 109 6.25 4 2h 34min
100 GB 200 4.3 · 109 13.4 · 109 3.13 4 2h 44min

4 Applications

Stxxl has been successfully applied in implementation projects that studied various I/O-efficient
algorithms from the practical point of view. The fast algorithmic components of Stxxl library
gave the implementations an opportunity to solve problems of very large size on a low-cost
hardware in a record time.

The performance of external memory suffix array construction algorithms was investigated in
[15]. The experimentation with pipelined Stxxl implementations of the algorithms has shown
that computing suffix arrays in external memory is feasible even on a low-cost machine. Suffix
arrays for long strings up to 4 billion characters could be computed in hours.

The project [2] has compared experimentally two external memory breadth-first search (BFS)
algorithms [29, 24]. The pipelining technique of Stxxl has helped to save a factor of 2–3 in
I/O volume of the BFS implementations. Using Stxxl, it became possible to compute BFS
decomposition of node-set of large grid graphs with 128 million edges in less than a day, and for
random sparse graph class within an hour.

Simple algorithms for computing minimum spanning trees (MST), connected components, and
spanning forests were developed in [17, 32]. Their implementations were built using STL-user-
level algorithms and data structures of Stxxl. The largest solved MST problem had 232 nodes,
the input graph edges occupied 96 GBytes. The computation on a PC took only 8h 40min.

The number of triangles in a graph is a very important metric in social network analysis
[19]. We have designed and implemented an external memory algorithm that counts and lists all
triangles in a graph. Using our implementation we have counted the number of triangles of a
web crawl graph from the WebBase project 8. In this graph the nodes are web pages and edges
are hyperlinks between them. For the computation we ignored the direction of the links. Our
crawl graph had 135 million nodes and 1.2 billion edges. During computation on an Opteron
SMP which took only 4h 46min we have detected 10.6 billion triangles. Total volume of 851
GB was transferred between 1GB of main memory and seven hard disks. The details about
the algorithm and the source code are available under http://i10www.ira.uka.de/dementiev/
tria/algorithm.shtml.

5 Conclusions

We have described Stxxl: a library for external memory computation that aims for high per-
formance and ease-of-use. The library supports parallel disks and explicitly overlaps I/O and
computation. The library is easy to use for people who know the C++ Standard Template Li-
brary. Stxxl supports algorithm pipelining, which saves many I/Os for many external memory

8http://www-diglib.stanford.edu/~testbed/doc2/WebBase/
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algorithms. Several projects using Stxxl have been finished already. With help of Stxxl, they
have solved very large problem instances externally using a low cost hardware in a record time.
The work on the project is in progress. Future directions of Stxxl development cover the im-
plementation of the remaining STL containers, improving the pipelined sorter with respect to
better overlapping of I/O and computation, implementations of graph and text processing exter-
nal memory algorithms. We plan to submit Stxxl to the collection of the Boost C++ libraries
(www.boost.org) which includes a Windows port.
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