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Abstract Since the early nineties transactional cache proto-
cols have been intensively studied in the context of client-
server database systems. Research has developed a variety
of protocols and compared different aspects of their quality.

In this paper we present a new transactional cache
protocol, called ”Optimistic Caching Timestamp Protocol”
(OCTP). OCTP is a pure optimistic protocol and represents a
strong improvement over OCC – a classical optimistic trans-
actional cache protocol. OCC is known to have very low
message overhead but suffers from high transaction abort
rates. In contrast, OCTP’s message overhead is the same
as that of OCC but its abort rates are considerably lower.
OCTP does not require locks to coordinate concurrent trans-
actions but uses a backward validating timestamp-based ap-
proach instead. As opposed to all other known transactional
cache protocols, it can allow transactions to commit which
have read stale cached data elements while still asserting se-
rializability. Its computational complexity is moderate and
in particular, it does apply a potentially costly serializabil-
ity graph test. We also present an extension of OCTP called
”Semi-Optimistic Caching Timestamp Procotol” (SOCTP),
which reduces abort rates further. In certain cases, SOCTP
efficiently uses locks to prevent transaction aborts.

This paper explains the concepts behind OCTP and
proves its correctness using a multiversion transaction for-
malism. It sketches an efficient implementation of OCTP
and compares OCTP as well as SOCTP against two leading
conventional protocols, namely OCC and CBL. Simulation
experiments show that both SOCTP and OCTP outperform
OCC and CBL given that the network represents the bottle-
neck of a related database system.
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1 Introduction

In the early nineties database researchers have started to
study client-server database systems. At this type of sys-
tems, clients may access a central database over the network
in order to perform transactions. For read and write access,
a client downloads a fixed unit of data from the server data-
base and stores it in a local cache. Depending on the type of
the system the data units may be pages or objects or both.

Fig. 1 illustrates the basic architecture of a client-server
database system. A client may access several pages within
the same transaction and store page content in a local cache
even across transactions. At transaction commit, all changes
performed by the transaction must eventually be propagated
to the server and must be written to the server’s stable mem-
ory. For simplicity we make an abstraction by assuming that
every client executes at most one transaction at a time.1

It is widely accepted that client-server database systems
should meet two important requirements:

– Client transactions should be serializable at the database
server. (Serializability is a well-known consistency re-
quirement for database systems [5].)

– Execution of client requests should be as efficient as
possible. This includes high transaction throughput, low
transaction latency and a low probability of transaction
aborts.

Obviously, the protocol for processing client operations
has a crucial impact on these requirements. Any such pro-
tocol which caches downloaded pages at the client side and
which meets the first two of the above requirements is called
a transactional cache protocol. In the following we refer to
it more shortly as a protocol.

Another often less crucial requirement for protocols is
the so-called external consistency [1]. It ensures that a valid
serialization order of committing transactions is (about) the

1 If a client is expected to perform several concurrent transaction lo-
cally it can coordinate its local transactions by applying a conventional
concurrency protocol (e.g. two phase locking). Since this strategy can
be well separated from the essential structure of a transactional cache
protocol it is not in the focus of this paper.
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Fig. 1 Basic Architecture of a Client-Server Database System

same as the realtime commit order at the server. Often it is
acceptable, if the serializiation order and the realtime com-
mit order deviate from each other within certain well-defined
bounds.

One of the goals of various research contributions in the
field of client-server database systems was to invent highly
efficient protocols [1,6,8,11,12,16–18] and/or to compare
existing protocols with respect to their efficiency [9]. Since
many parts of a client-server database system are already
fixed by its core architecture and by hardware parameters,
the essential algorithm behind a protocol can only optimize
a few efficiency-related parameters. These include:

– the number and the size of messages transferred between
client and server,

– the degree to which message processing happens syn-
chronously or asynchronously, respectively and

– the probability of transaction aborts.

A protocol can also strive to optimize server-side processor
time consumption. However, for modern hardware settings,
the client-server network and the server-side disks represent
the most critical resources. Thus, even if a protocol slightly
improves or worsens CPU cost, the effect on system effi-
ciency remains small.

The two leading classical transactional cache protocols
are CBL [8,16] and OCC [1]. CBL is a lock-based protocol
which has a moderate message overhead and very low trans-
action abort rates. OCC is an optimistic backward-validating
protocol which offers very low message overhead but can
cause (intolerably) high transaction abort rates.

In this paper we present a new transactional cache proto-
col whose message overhead is as low as that of OCC, but at
the same time, it offers much lower transaction abort rates.
The new protocol is called ”Optimistic Caching Timestamp
Protocol” (OCTP) and may be considered an extension and
an improvement of OCC.

OCTP does not require server-side locks to assert seri-
alizability but uses backward-validation instead. OCTP as-
signs timestamps to transactions at commit time. Moreover,
it computes additional information about access conflicts
that violate the well-known timestamp rule of timestamp-
based protocols. Using this additional information, OCTP
can assess more accurately than OCC whether a transac-
tion must be aborted or not. In many cases OCTP can com-
mit transactions which have read stale data elements given

that these data elements have not been invalidated ”too long
ago”. In comparison with OCC, this quality is the key to re-
ducing the probability of transaction aborts. E. g., consider
two transactions T1 and T2 where T1 has just committed and
T2 is still active. Assume further that T1 wrote a data ele-
ment that T2 read even before T1 had started. Using OCC,
T2 would definitely be aborted. Using OCTP, T2 is likely to
be committed but also, the resulting history remains serial-
izable.

OCTP can be implemented efficiently with respect to
processor time and memory consumption. In particular it
does not apply a potentially costly serializability graph test.
OCTP cannot assert ”perfect” external consistency, but the
bounds for its worst-case deviation from perfect consistency
are clearly defined and well controllable.

Compared to OCC, OCTP lowers transaction abort rates
with respect to read/write conflicts of active transaction.
However if there is write/write conflict between two active
transaction, OCTP still aborts one of them. To accommo-
date this problem, we present an improvement of OCTP
which uses server-side locks but only for write operations.
This extension of OCTP is called ”Semi Optimistic Caching
Timestamp Protocol” (SOCTP). Under SOCTP a client uses
an asynchronous approach to acquire write locks, whenever
this is suitable.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the basic idea behind OCTP. In Section 3 we
characterize the key qualities of OCTP using a formal ap-
proach and prove that these qualities guarantee serializabil-
ity. In Section 4 we develop a basic but memory-efficient
implementation of OCTP and explain the implementation
details. Section 5 compares the complexity of OCTP and
OCC and states the tradeoffs of the new protocol with re-
spect to external consistency. Section 6 states some general
improvements of the presented implementation and also dis-
cusses a more fundamental improvement of OCTP which
leads to SOCTP. Section 7 studies important efficiency as-
pects of OCTP, SOCTP, OCC and CBL using simulation ex-
periments. The experiments follow benchmarking approach
which is established by various papers in the field of trans-
actional cache protocols. Section 8 discusses OCTP’s links
to related work in detail. The paper closes with a conclusion
(Section 9).

2 Idea

This Section explains the basic idea behind the new protocol.
Just like OCC, OCTP is optimistic and detection-based

according to the taxonomy of [9]. When applying optimistic
protocols, different clients might cache and access different
versions of the same data element. E.g. one client might have
written a certain page while some other client still holds the
former version of the same page in its cache. Multiversion
serializability theory [4,5] has been developed to reflect just
this type of situations and consequently we make use of it
in our context. Unlike for many other transactional cache
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protocols, the correctness arguments behind OCTP are not
straight forward to understand, and so we resort to a formal
approach to study the protocol’s key qualities.

OCTP is timestamp protocol which means that it totally
orders transactions using a timestamp function ts.2 To under-
stand the basics of OCTP, consider the multiversion history
H1 with the timestamp function ts(Ti) = i and the version
order x0 � x1 � x2:

H1 = r0[x0] w1[x1] c1 r2[x1] w2[x2] c2 r3[x1] c3.

Here, r3[x1] does not read the last committed version of x
(which would be x2) but an older version. Although the oper-
ations w2[x2] < r3[x1] are ordered according to the timestamp
order ts(T2) < ts(T3) the resulting edge in H1’s multiversion
serializability graph is T3 → T2 and points ”backwards” with
respect to the timestamp order imposed by ts. In general, we
call edges whose direction does not match the transactions’
timestamp order reverse edges. Edges which do match the
timestamp order are called regular edges.

Situations such as characterized by H1 frequently occur
in the context of optimistic transactional cache protocols:
E.g., assume there are two clients C1 and C2 which together
produce a prefix of the history H1. At first, C1 executes T1,
commits it and stores x1 in its local cache. Afterwards C2
executes T2 and causes a cache miss when reading x. There-
fore it fetches x1 writes x2 and eventually commits. Finally
C1 starts to execute T3, finds x1 (a stale version x) in its cache
and performs a read on it.

The multiversion history H1 is clearly serializable (or
more precisely 1-serializable) and so, none of the 3 transac-
tions would have to be aborted by a protocol. However OCC
does always abort transactions which read stale versions of
data elements and so OCC would unnecessarily abort T3. In
contrast, OCTP would commit T3.

In order to allow read access to stale versions of data ele-
ments for committing transactions, OCTP basically behaves
as follows: Using the timestamp function, OCTP is able to
distinguish reverse edges and regular edges. When an oper-
ation of a transaction Ti causes a reverse edge, OCTP tracks
this and computes the timestamp of the transaction to which
the reverse edge refers. OCTP avoids cycles in the resulting
serializability graph, by asserting the following invariant: If
an operation produces a reverse edge Ti → Tj then no com-
mitting transaction with a timestamp larger than or equal to
ts(Tj) may cause regular edges pointing to Ti. Otherwise Ti
will be aborted.

Fig. 2 aims to further illustrate this idea. It captures
a multiversion serializability graph for the transactions
T1, . . . ,T6 with the timestamp function ts(Ti) = i. The dashed
arrows represent reverse edges while the remaining arrows
represent regular edges.

The graph edge T5 → T6 violates the above stated in-
variant because of the reverse edge T6 → T4. Therefore, it is
crossed out in Fig. 2. Similarly, T3 → T4 violates the invari-
ant due to the reverse edge T2 → T3. But how about T3 → T6?

2 However, it does not apply the classical timestamp rule such as
known from [5].
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Fig. 2 A Multiversion Serializability Graph to Illustrate the Idea be-
hind OCTP

It adheres to the stated invariant and still leads to the graph
cycle T3 → T6 → T4 → T2 → T3. In this case it does not suf-
fice to consider single reverse edges. Instead, the invariant
from above needs to be generalized such that one considers
paths of reverse edges. In Fig. 2 a path of reverse edges start-
ing from T6 leads back to T2. Therefore, no transactions with
ts(Ti) ≥ ts(T2) should point to T6 which indeed excludes
T3 → T6 from the graph. By applying the generalized invari-
ant we can eliminate all regular edges in Fig. 2 that lead to
graph cycles.

The so-called fitting timestamp function ts f it(Ti) com-
putes the minimum timestamp of all those transactions that
can be reached from a transaction Ti via paths consisting
exclusively of reverse edges. OCTP computes ts f it dynami-
cally for all active transactions and uses it to assert the above
stated generalized invariant. A detailed Definition of ts f it

will be given in Section 3.2.
With the help of ts f it the generalized invariant can be

expressed more formally for multiversion histories:
(
Ti → Tj ∈ MVSG ∧ ts(Ti) < ts(Tj)

) ⇒ ts(Ti) < ts f it(Tj).

Here, MVSG represents a history’s multiversion serializabil-
ity graph. As we will see below, this is the crucial quality to
ensure that OCTP generates serializable histories.

3 A Formalism for OCTP

In this section we formalize the key qualities of OCTP and
prove that they guarantee serializablity. To do so, we make
use of a well-established multiversion formalism from [5].

In order to present this paper’s contribution in a sound
and self-contained way, Appendix A briefly states those for-
mal basics of multiversion transaction histories, which are
most relevant in our context. E.g., Appendix A defines con-
ventional multiversion histories and multiversion serializ-
ability graphs according to [5]. Moreover, we formally in-
troduce timestamp functions and recoverable multiversion
histories. To keeps things short, we omit the definition of se-
rializable (or more specifically 1-serializable) multiversion
histories and assume that the reader is familiar with the cor-
responding serializability theorem (see [5]).

3.1 Histories for Transactional Cache Protocols

This section clarifies, how the standard multiversion formal-
ism can be utilized to reflect the operations of a transactional
cache protocol.
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When considering transactional protocols, data elements
of a history such as x or y represent database pages if the
server is a page server according to [7] and objects if the
server comes as an object server. Since most parts of for this
paper’s contribution, it does not matter whether the consid-
ered data units are objects or pages, we simply assume that
the system deals with pages.

When a database client writes a page x as part of a trans-
action Ti, one has to distinguish two cases:

1. The transaction Ti has already performed a read opera-
tion ri[xh] on the version xh of page x. In this case the
write operation is simply represented by wi[xi].

2. Ti has not yet read page x. Since for the case of trans-
actional caching, writing always implies a prior read of
the page, the client’s write operation must be represented
formally by ri[xh]wi[xi], where xh is some version that the
client either reads from its local cache or fetches from the
server.

If a client writes the same page more than once as part of the
same transaction, we only need to represent it by one write
operation wi[xi] in the corresponding history. The reason for
this is that, if at all, only the last written version of the page
will ever become visible to other transactions.3

To model read operations of transactional cache proto-
cols appropriately, it is useful to distinguish cache hits and
cache misses:

– At a cache miss, a client transaction Ti reads the last com-
mitted version xh of a page x from the server.

– At a cache hit, the client transaction Ti reads the version
xk of page x which is currently in the client’s cache. xk
might well be different from the last committed version
of x, either because xk is a stale version of the page or
because Ti has written xk itself (and so i = k).

Note that in the case of an optimistic transactional cache
protocol, the order of read and write operations of differ-
ent transactions cannot always be determined because the
clients do not (necessarily) synchronize their access opera-
tions with each other. However, it can always be determined
which version of page a client reads or writes, but this is suf-
ficient to construct a respective multiversion serializability
graph. Commits operations are synchronized at server and
so they are totally ordered.

3.2 OCTP

This section defines qualities of multiversion histories which
are specific to OCTP. Below, we will prove that these quali-
ties lead to serializable histories.

For our protocol we use a version order that arranges
versions of data elements according to a timestamp order:

3 Remember that we assume that a client can only execute one trans-
action at a time.

Definition 1 Let H be a multiversion history with transac-
tions T = {T1, . . . ,Tn} and a timestamp function ts. A version
order � is a timestamp version order with respect to ts iff
∀x ∈ D : ∀xi,x j ∈V (x) : (xi � x j ∧ i �= 0) ⇒ ts(Ti) < ts(Tj).

We expect commits to be totally ordered and choose a
timestamp function which arranges timestamps according to
the commit-order:

Definition 2 A multiversion history H is commit-ordering,
iff ∀ci,c j ∈ H : ci < c j ∨ c j < ci. A timestamp function ts for
a multiversion history H is commit-ordering, iff ∀ci,c j ∈ H :
ci < c j ⇒ ts(Ti) < ts(Tj).

For clearity, we define the terms ”reverse edge” and ”reg-
ular edge” such as introduced in Section 2 more formally.

Definition 3 Let H be a multiversion history with transac-
tions {T1, . . . ,Tn}, a timestamp function ts, a version order
� and a resulting serializability graph MVSG. An edge
Ti → Tj ∈ MVSG is called a regular edge, iff ts(Ti) < ts(Tj).
Otherwise it is called a reverse edge.

In the following, we assume that a protocol produces
commit-ordered and recoverable histories which is easy to
realize. Moreover, we apply a commit-ordered timestamp
function ts. In practice this means that timestamps are as-
signed at commit time. Since one may choose a version or-
der � when constucting a multiversion serializability graph
of a history, we apply a timestamp version order. Under these
conditions, a reverse edge Ti → Tj can only occur if the fol-
lowing pattern of operations exists in a respective history:
wk[xk] < wj[x j] < c j < ri[xk] < ci with ck < c j. The pattern
states that a committing Ti has read an invalidated and com-
mitted version of a data element x via ri[xk]. The proof of
Theorem 1 from below shows that the above pattern indeed
characterizes all situations leading to reverse edges.

As explained in Section 2, the fitting timestamp func-
tion ts f it(Ti) computes a timestamp ts(Tj) of a transaction
Tj at the end of a path consisting entirely of reverse edges
and starting at Ti. If there are several such paths ts f it(Ti)
chooses the one leading to the oldest Tj. ts f it operates on
a history to find corresponding reverse edges and in essence,
it tries to match the above stated pattern. ts f it(Ti) is recur-
sively defined on the set of committing transactions. The
definition uses the minimum function to find the oldest Tj

which is reachable from Ti via reverse edges. If there are
no reverse edges starting at Ti, the path length is zero and
ts f it(Ti) = ts(Ti) follows.

Definition 4 Let H be a multiversion history with transac-
tions {T1, . . . ,Tn} and a timestamp function ts. The fitting
timestamp function

ts f it : {Ti | i ∈ {1, . . . ,n}∧ ci ∈ Ti}→ N

is computed as follows:

ts f it(Ti) = min
({ts(Ti)}∪{ ts f it(Tj) | ∃wj[x j],ri[xk] ∈ H :

ts(Tk) < ts(Tj) < ts(Ti)∧ c j,ck ∈ H }).
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Fig. 3 Illustration of the Idea Behind the Proof of Theorem 1

Obviously, fitting timestamps are well-defined.
As a simple example of applying ts f it , consider the his-

tory H1 from Section 2: H1 is obviously commit-ordered and
the timestamp function ts(Ti) = i is also commit-ordered.
Moreover, x0 � x1 � x2 is a timestamp version order for H1.
The above stated pattern matches with respect to w1[x1] <
c1 < w2[x2] < c2 < r3[x1] < c3 and results in the reverse edge
T3 → T2. Similarly one obtains ts f it(T3) = 2 when applying
the formula from Definition 4. The fitting timestamp for T1
and T2 are ts f it(T1) = 1 and ts f it(T2) = 2.

We are now able to formalize the generalized invariant
that was stated in Section 2. If a corresponding history ful-
fills this quality, we called it ”t-fitting”.

Definition 5 Let H be a multiversion history with transac-
tions {T1, . . . ,Tn} and a timestamp function ts. Further let�
be a timestamp version order with respect to ts and MVSG
be the corresonpding serializability graph for H. Then H is
t-fitting with respect to ts iff

∀i, j ∈ {1, . . . ,n} :
(
Ti → Tj ∈ MVSG ∧ ts(Ti) < ts(Tj)

)

⇒ ts(Ti) < ts f it(Tj).

Theorem 1 A recoverable, commit ordering and t-fitting
multiversion history H with a commit-ordering timestamp
function ts is serializable (or more specifically 1-
serializable).

In the following, we sketch the main idea behind the
proof of Theorem 1 with the help of Fig. 3. A detailed proof
of the theorem can be found in Appendix B. The goal of our
considerations is to find an edge Ti → Tj in an imaginary
serializability graph cycle C, such that Ti → Tj violates the
quality t-fitting of H. We start our search for this edge at
the transaction Tk whose timestamp is minimal in C. Since C
consists of at least two nodes, there must be a reverse edge in
C pointing to Tk. We even look for the longest path of reverse
edges in C leading to Tk. As illustrated in Fig. 3, this path
starts at some transaction Tj. Because C cannot consist of re-
verse edges only, there must also be a regular edge Ti → Tj in
C. Due to the path of reverse edges Tj → . . . → Tk it follows
that ts f it(Tj) ≤ ts(Tk). We also have ts(Tk) ≤ ts(Ti) because
Tk’s timestamp is minimal in C. Thus, ts f it(Tj) ≤ ts(Ti) fol-
lows and so Ti → Tj violates the quality t-fitting of H. There-
fore C cannot exist.

Obviously, there is still a gap between the definition of
qualities that lead to serializable histories and the specifica-
tion of respective protocol. Fortunately, a useful implemen-
tation which computes ts f it and which asserts t-fitting, is not
too difficult and will be discussed in the next section.

4 Implementation

In this section, we present a basic but memory-efficient im-
plementation of OCTP. To develop the protocol, we first dis-
cuss a simple implementation of OCC which serves as a ba-
sis. Afterwards it will be extended for the requirements of
OCTP.

One major challenge when implementing the check for
t-fitting in OCTP is to determine whether two conflicting
operations lead to a regular or to a reverse edge. In Section
4.3 we will explain the non-trivial rationale behind a related
if-clause in the presented code for OCTP.

4.1 Base Protocol

As mentioned above, we use a simple variant of OCC as a
basis to present an implementation of OCTP. Fig. 4 presents
the related Java pseudo-code.4

The classes defined in Line 1 to 5 are used to represent
operations, messages and pages, respectively. Pages as well
as clients are uniquely identified by numbers. The imple-
mentation distinguishes four types of messages:

– a message to fetch a page which is not in a client’s cache
(FetchPageMsg).

– the server’s response to a ”fetch page message”, which
is simply the page itself (Page),

– a message that enables a client to try a commit
(CommitMsg),

– the server’s response to a commit try
(TryCommitResMsg).

From the client’s perspective, all messages are sent synchro-
nously using the method sendSync() method. (The method
is not further detailed.) For simplicity we also disregard mes-
sage loss. The class OCCClient represents the client part of
the database system. A client-side application would invoke
op() to access a page and tryCommit() to initiate a com-
mit for the current transaction. Afterwards, a new transaction
implicitly begins at the client. The field cache represents the
client’s cache which maps page numbers to page objects. For
simplicity we assume that the cache’s size is unbounded. (In
reality the corresponding system would apply a replacement
strategy such as LRU.)

The server is represented by an instance of the class
OCCServer. For convenience, we assume that there is fixed
number of clients which is known to the server and stored

4 In order to represent data types conveniently, the code applies
parametric polymorphism (also known as ”generics” in the Java world
[10]).



6 Daniel Pfeifer

in the field CLIENTS. The field dir represents the page di-
rectory. It maps page numbers to client IDs and holdd the
type MultiMap because multiple page numbers may be as-
sociated with a single client ID. An entry in dir tells that
the referenced page is cached at the referenced client. The
field disk helps to model disk access but it is not further de-
tailed. In this context, we also disregard the existence of a
server-side page cache. The field invalidPidsPerClient
associates a lists of page numbers with client IDs. An entry
in a respective list means that the corresponding client holds
a version of the referenced page in its cache and the page got
invalidated by a committed transaction. The server keeps the
lists up-to-date and notifies a client about invalidated pages
as part of a commit response message.

The methods handleFetchPageMsg() and
handleCommitMsg() handle incoming client messages. We
assume that there is a global message handler in place at the
server, which dispatches client messages and invokes the
two methods appropriately.

The presented implementation of OCC lacks many opti-
mizations which are relevant to real-world implementations
of the protocol. (E.g. it does not support early aborts such
as described in [11].) However, in this section we disregard
from these features because we want focus on the core struc-
ture of the protocol.

4.2 Implementation of OCTP

Using the code from Fig. 4 this section is going to present
a basic but memory-efficient version of OCTP. Fig. 5 ex-
tends the classes OCCClient and OCCServer accordingly.
At the client side the class OCTPClient does not add
any new code. At the server side the class OCTPServer
mainly introduces additional fields and overrides the method
handleCommitMsg(). Moreover, the class Tx is used to
store information about committed transactions at the server.
The data in a Tx-object includes a transactions’ timestamp
(ts), its fitting timestamp (tsFit) and its operations (ops).
The use of the field poisoned will be explained below.

The field OCTPServer.nextTs acts as a counter to gen-
erate the next timestamp that will be assigned to a vali-
dating transaction. The array invalidatingTxsPerClient
stores lists of transaction objects, whereby a respective
transaction has invalidated a certain page stored at a cer-
tain client. The array is organized in the same way as
the field OCCServer.invalidatedPisPerClient. E.g., if
a client with the ID 1 has cached page 23 and the page
got invalidated, there will be a respective entry in the
list invalidatedPidsPerClient[1] at position p. At the
same time the list invalidatingTxsPerClient[1] con-
tains an entry representing the transaction which caused the
invalidation. The transaction entry is also stored at position
p. If there is more than one invalidating transaction, a re-
spective entry in invalidatingTxsPerClient is guaran-
teed to refer to the invalidating transaction with the oldest
timestamp.

1class Op { int page; boolean read; ... }
2class FetchPageMsg { int cid; int pid; ... }
3class CommitMsg { int cid; List<Op> ops; ... }
4class CommitResMsg { List<int> invalidPids; boolean abort; ... }
5class Page { ... }
6
7class OCCClient {
8int cid; // A client’s ID
9Map<int,Page> cache; // Maps page numbers to pages
10List<Op> ops = new List<Op>();
11
12OCCClient(int cid) { this.cid = cid; cache = ...; }
13
14Page op(int pid, boolean read) {
15if (!cache.containsKey(pid)) {
16Page p = (Page) sendSync(new FetchPageMsg(cid, pid));
17cache.put(pid, p);
18}
19ops.add(new Op(pid, read));
20return p;
21}
22
23boolean tryCommit() {
24CommitResMsg msg =
25(CommitResMsg) sendSync(new CommitMsg(cid, ops));
26// Remove invalidated pages from cache
27for (int pid : msg.invalidPids) cache.remove(pid);
28if (msg.abort) // Remove written pages in case of an abort
29for (Op op : ops) if (!op.read) cache.remove(op.pid);
30ops.clear();
31return msg.abort;
32}
33}
34
35class OCCServer {
36int CLIENTS = ...;
37MultiMap<int,int> dir; // The page directory maps page numbers to client IDs
38Disk disk; // To represent (non-cached) disk access
39// List of invalidated pages per client
40List<int>[] invalidPidsPerClient = new List<int>[CLIENTS];
41
42public OCCServer() {
43dir = ...; disk = ...;
44for (int i = 0; i < CLIENTS; i++)
45invalidPidsPerClient[i] = new List<int>();
46}
47
48Page handleFetchPageMsg(int cid, int pid) {
49Page p = disk.read(pid); // Read page from disk
50dir.put(pid, cid); // Update directory
51return p; // Send page to client
52}
53
54synchronized CommitResMsg handleCommitMsg(int cid, List<Op> ops) {
55// Get a copy of the client’s invalidated pages
56List<int> invalidPids = new List<int>(invalidPidsPerClient[cid]);
57invalidPidsPerClient[cid].clear();
58// Check if invalidated pages of client overlap with transaction operations
59for (Op op : ops)
60if (invalidPids.contains(op.pid)) {
61prepareAbort(ops); // If yes, abort and send abort message
62return new CommitResMsg(invalidPids, true);
63}
64for (Op op : tx) // No overlap, so commit
65if (!op.read) // Update page invalidation lists of other clients
66for (int ocid : dir.get(op.pid))
67if (ocid != cid) {
68invalidPidsPerClient[ocid].add(pid);
69dir.remove(pid, ocid);
70}
71
72return new CommitResMsg(invalidPids, false); // Commit message
73}
74
75void prepareAbort(List<Op> ops) {
76// Remove entries for pages written by transaction from directory
77for (Op op : ops)
78if (!op.read) dir.remove(op.pid, cid);
79}
80...
81}

Fig. 4 A Simple Implementation of OCC

The list recentlyCommitted stores Tx-objects of all
transactions which have recently committed. The ob-
jects are stored in commit order such that the oldest
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transaction occupies position 0 in the list. The code
in handleCommitMsg() ensures that recentlyCommitted
contains at most RECENT_MAX entries.

The size limitation of recentlyCommitted is the
key to the protocol’s memory efficiency. OCTP ensures
that no active transaction causes a reverse edge referenc-
ing a committed transaction which is not contained in
recentlyCommitted. Otherwise the active transaction will
be aborted.

By adjusting RECENT_MAX the protocol can be made
more or less tolerant with respect to active transactions read-
ing stale versions of pages. A larger value for RECENT_MAX
allows potentially committing transactions to read rather
”old” invalidated pages. This has a positive influence on the
transaction abort rate but potentially lowers the degree of ex-
ternal consistency. A related discussion can be found in Sec-
tion 5.2. If RECENT_MAX is set to 0, the system never tolerates
access to stale pages. As a matter of fact, at RECENT MAX =
0 the presented OCTP and OCC implementations behave
identically. OCC may therefore be considered a special case
of OCTP.

The method OCTPServer.handleCommitMsg() be-
haves as follows: In Lines 25 to 27 it creates local copies
of the invalidation lists addressing the client that sent the
commit message. In Line 30 the method creates a transac-
tion object tx for the transaction Ti that is to be validated.
tx is assigned a timestamp which also serves as the initial
value for the fitting timestamp (Line 31). Afterwards all op-
erations of Ti are inspected in order to compute the correct
value for ts f it(Ti). If an operation o of Ti accessed an in-
validated page p, the algorithm determines the transaction
Tj with the oldest timestamp that invalidated p and stores it
in invTx. Obviously a respective invalidation leads to a re-
verse edge Ti → Tj. If o is a write operation, then Ti must
be aborted (Line 35). (The reasons for this are detailed in
Section 4.3.)

Using the field invTx.poisoned the algorithm checks
if the invalidating transaction Tj is still contained in the
list recentlyCommitted. If not, the reverse edge Ti → Tj
cannot be accepted and Ti must be aborted. Moreover, if
Tj is in the list recentlyCommitted, it might itself hold
a reverse edge to an even older transaction which is not in
recentlyCommitted anymore. In this case Tj’s poisoned-
field is also true and Ti will be aborted as well.

In Line 39 Ti’s fitting timestamp is updated, if the de-
tected reverse edge to Tj produces a path of reverse edges
referencing an older transaction than tx.tsFit. After pass-
ing line 40 the algorithm has considered all reverse edges
from Ti to recently committed transactions and so the value
tx.tsFit is correct. Based on this result, the next part of
the validation ensures that t-fitting holds for Ti.

From Line 41 to Line 57 all operations of Ti are exam-
ined to see whether they cause regular edges between re-
cently committed transactions and Ti. Line 42 determines
the invalidating transaction Th for the currently considered
operation o and assigns it to invTx. If no Th exists, invTx is
set to null. Line 45 loops over all recently committed trans-

actions. Let Tj be such a transaction, then Line 46 loops over
Tj’s operations. The Lines 47 to 53 check if the considered
operations of Ti and Tj produce a conflict and if the conflict
leads to a regular edge. The rationale behind the check is in-
tricate and will be discussed separately in Section 4.3. If the
algorithm detects a regular edge, it checks the invariant for
t-fitting in Line 54 and aborts Ti if necessary.

After Ti has passed the check for t-fitting, it is ready to be
committed (Line 58). At first, the tx-object is assigned Ti’s
operation list and tx.poisoned is set to false. Afterwards Ti

is added to the list of recently committed transactions (Line
61). If recentlyCommitted has become too long, Line 64
removes the oldest transaction from the list. The removed
transaction’s poisoned-flag must be set to true (Line 66). If
a recently committed transaction valTx holds a reverse edge
to the removed one, then valTx does become ”poisonous”
too (Line 69 to 70).

The last part of the algorithm updates the
data structures invalidatingTxsPerClient and
invalidatingTxsPerClient. This process is similar
to the one in OCCServer.handleCommitMsg(). In Line
78, the protocol checks if there already exists an invali-
dation entry for the considered page and the considered
client. If so, the corresponding invalidating transaction is
guaranteed to have an older timestamp than Ti because
it must have committed before Ti. In this case the data
structure invalidatingTxsPerClient must remain un-
changed because as mentioned above, a respective entry in
invalidatingTxsPerClient[ocid] is supposed to refer
to the oldest invalidating transaction.

4.3 Handling Reverse and Regular Edges

One important question regarding the OCTP implementation
is how the protocol can efficiently determine whether a con-
flict between a recently committed transaction and a trans-
action under validation produces a regular edge or a reverse
edge. In Fig. 5 the Lines 50 to 53 ensure that a considered
conflict indeed produces a regular edge. In the following we
explain the rationale behind this code on a formal basis. To
do so the next definition clarifies the event of an invalidation
with respect to multiversion histories.

Definition 6 Let H be a multiversion history with transac-
tions T = {T1, . . . ,Tn}. A transaction Ti ∈T invalidates a ver-
sion xk of a data element x iff wi[xi],ci ∈ H and xk � xi.

Let Ti be the transaction which the server is validating
and Tj be a recently committed transaction. Further, let pi
and qj be two conflicting operations with pi ∈ Ti and qj ∈ Tj.
Obviously, we have ts(Tj) < ts(Ti) because timestamps are
assigned in commit order. When the algorithm reaches line
50, there can only occur one of the following situations with
respect to Ti and Tj:

1. pi = ri[xk] is a read operation and q j = wj[x j] is a write
operation: There might be a third committed transaction
Th which has invalidated xk. If there is no such Th then q2
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1 class Tx {
2 int ts; int tsFit; // Timestamp ts and fitting timestamp ts f it
3 // Whether an active transaction may produce reverse edges to this one or not
4 boolean poisoned;
5 List<Op> ops; // Operations of this transaction (set at commit-time)
6 }
7
8 class OCTPCClient extends OCCClient {} // No change for the client
9

10 class OCTPServer extends OCCServer {
11 int nextTs = 0; // The next assignable timestamp
12 // The list of transactions that invalidate a certain page at a client
13 List<Tx>[] invalidatingTxsPerClient = new List<Tx>[CLIENTS];
14 // The list of recently validated transactions (in timestamp order)
15 List<Tx> recentlyCommitted = new List<Tx>();
16 int RECENT_MAX = ...; // The maximum size of recentlyCommitted
17
18 public OCTPServer() {
19 for (int i = 0; i < CLIENTS; i++)
20 invalidatingTxsPerClient[i] = new List<Tx>();
21 }
22
23 synchronized CommitResMsg handleCommitMsg(int cid, List<Op> ops) {
24 // Get a copy of the client’s invalidated pages
25 List<int> invalidPids = new List<int>(invalidPidsPerClient[cid]);
26 List<Tx> invalidatingTxs =
27 new List<int>(invalidatingTxsPerClient[cid]);
28 invalidPidsPerClient[cid].clear();
29 invalidatingTxsPerClient[cid].clear();
30 Tx tx = new Tx(); // Create a new transaction entry and set the timestamp
31 tx.ts = tx.tsFit = nextTs++; // and the initial value for ts f it
32 for (Op op : ops) // Compute ts f it by handling reverse edges
33 if (invalidPids.contains(op.pid)) {
34 Tx invTx = invalidatingTxs.get(invalidPids.indexOf(op.pid));
35 if (!op.read || invTx.poisoned) { // Abort for write/write conflicts
36 prepareAbort(ops); // or if invTx is ”poisoned”
37 return new CommitResMsg(invalidPids, true);
38 }
39 if (invTx.tsFit < tx.tsFit) tx.tsFit = invTx.tsFit;
40 }
41 for (Op op : ops) // Ensure that t-fitting holds
42 Tx invTx =
43 invalidPids.indexOf(op.pid) == -1 ?
44 null : invalidatingTxs.get(invalidPids.indexOf(op.pid));

45for (Tx valTx : recentlyCommitted) {
46for (Op valOp : valTx.ops) {
47if (valOp.pid == op.pid)
48// If there is conflict,
49// ensure that the resulting and here considered edge is a regular edge
50if ((valOp.read && !op.read) || // See Section 4.3 ...
51(!valOp.read && // for details ...
52(invTx == null || // on this ...
53valTx.ts < invTx.ts))) { // if-clause
54if (valTx.ts >= tx.tsFit) { // Abort if t-fitting is violated
55prepareAbort(ops);
56return new CommitResMsg(invalidPids, true);
57}
58// Commit
59tx.ops = ops; tx.poisoned = false;
60// Add tx to the list of recently validated transactions
61recentlyCommitted.add(tx);
62// Remove transaction from list if it is too long
63if (recentlyCommitted.size() > RECENT_MAX) {
64remTx = recentlyCommitted.remove(0);
65// No reverse edges from active transactions to the removed one
66remTx.poisoned = true;
67remTx.ops = null;
68// Mark validated transactions which have reverse edges to the removed one
69for (Tx valTx : recentlyCommitted)
70if (valTx.tsFit == remTx.ts) valTx.poisoned = true;
71}
72for (Op op : tx) // Update page invalidation lists of other clients
73if (!op.read)
74for (int ocid : dir.cids(op.pid))
75// Also add the invalidated page and the invalidating transaction
76/ if none have been entered before
77if (ocid != cid &&
78invalidPidsPerClient[ocid].indexOf(pid) == -1) {
79invalidPidsPerClient[ocid].add(pid);
80invalidatingTxsPerClient[ocid].add(tx);
81dir.remove(pid, ocid);
82}
83return new CommitResMsg(invalidPids, false); // Commit message
84}
85...
86}

Fig. 5 A Simple Implementation of OCTP (Based on Fig. 4), Includes Server-Side Memory Management for Validated Transactions

has read the last committed version of x and so j = k or
x j � xk. Therefore pi ∦ qj then results in a regular edge.
If, on the other hand, a Th exists, we require Th’s
timestamp to be minimal (amongst all corresponding
candidates). Assume pi ∦ qj results in a regular edge,
then ts(Tj) < ts(Th) must hold. If ts(Th) ≤ ts(Tj) held,
h = j∨xh � x j would follow because of the chosen ver-
sion order. But also x j � xk must hold because of the
regular edge. This leads to xh � xk and so Th could not
have invalidated xk (contradiction).
Assume alternatively that pi ∦ qj results in a reverse
edge. In this case Tj also invalidates xk. Then ts(Tj) ≥
ts(Th) must hold because otherwise Th’s timestamp as
chosen above would not be minimal.
Altogether, this leads to the conclusion that pi ∦ qj re-
sults in a regular edge if and only if Th does not exist
or ts(Tj) < ts(Th) holds. The condition is covered by the
Lines 52 and 53 of Fig. 5.

2. pi = wi[xi] is a write operation and q j = r j[xk] is a
read operation: Tk must have committed since the pro-
tocol asserts recoverability and so xk � xi follows due
to the chosen commit order. Thus, the resulting edge is
a regular edge. This case is covered by the expression
(valOp.read && !op.read) in Line 50 of Fig. 5.

3. pi = wi[xi] is a write operation and also q j is a write oper-
ation: For this case, note that the protocol always implies

that a page, which is written by Ti, will first be read by Ti.
So with respect to pi we actually have pi = ri[xk]wi[xi].
The operations wi[xi] and wj[x j] do not conflict but, ri[xk]
and wj[x j] do. Thus the situation is the same in 1) and it
is also covered by the Lines 52 and 53 of Fig. 5.
If an invalidating transaction Th exists with respect to
xk, then one obtains the reverse edge Ti → Th because of
ri[xk]. Moreover the operation rh[xl] (which must precede
wh[xh]) and wi[xi] cause a regular edge Th → Ti because
xh � xi holds. Therefore Ti should be aborted if a related
Th exists. The algorithm follows this policy due to the
check !op.read in Line 35 of Fig. 5.

The code from Fig. 5 does not store version tags of pages
to determine the direction of conflict edges but uses informa-
tion about invalidating transactions instead. The advantage
of the latter option is that on average, it is less memory con-
suming than version tags. When using version tags, the sys-
tem has to store one tag per entry in the page directory plus
one tag for every database page (which is stored on disk). It
was argued in [1] that the added version tags might consid-
erably increase the physical size of a database.

Therefore, the approach from Fig. 5 only stores entries
for invalidated cached pages at the server. This is more ef-
ficient, since usually, the client caches contain a lot more
up-to-date pages than invalidated pages. In essence our ap-
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proach follows the line of arguments from [1], where the
authors prefer to store invalidation lists for OCC in memory
instead of storing version tags on disk. However, we extend
this concept to the informational needs of OCTP.

5 Important Qualities of OCTP

5.1 Complexity of OCTP Versus OCC

In the following we briefly compare the memory and the
runtime complexity of OCC and OCTP.

In comparison with OCC the (server-side) memory over-
head of OCTP is low: Let c be the number of clients and S
be the maximum size of a client’s cache. OCC stores at most
c · S entries in the page directory. At worst, c · S entries will
be found in the server-side invalidation lists.

In addition, OCTP stores at most RECENT_MAX Tx-
objects in recentlyCommitted. Since in practice
RECENT_MAX is a small constant, the related memory
overhead is small. Apart from this, no more than c · S
Tx-objects will be found in invalidatingTxsPerClient
and a respective Tx-object references no operation list
unless it is also contained in invalidatingTxsPerClient.
As a result, the memory cost for OCC lies in O(c · S) and
the one for OCTP lies in O(c ·S+RECENT MAX).

To compare the runtime complexity of OCC and OCTP
we assume that the algorithms from Fig. 4 and Fig. 5 are im-
proved by some basic optimizations, which we describe be-
low. The only interesting part for comparing the protocols’
runtime complexity is obviously the validation of a transac-
tion. Let ops be a transaction’s number of operations. In Line
58, OCC loops over every operation and checks if the opera-
tion is contained in an invalidation list. If we use a hash table
the to represent an invalidation list, this process has the com-
plexity O(ops). Afterwards O(c) invalidation lists must be
updated per operation. Thus, the total complexity for OCC
is O(ops+ops · c) = O(ops · c).

In the case of OCTP, the computation of ts f it has the
complexity O(ops), again assuming that an invalidation list
is represented by a hash table (Lines 32 to 40). During the
test for t-fitting the loops from Line 41 and Line 45 cause
the complexity O(ops · RECENT MAX). In an optimized ver-
sion of the algorithm the loop of Line 46 can be entirely
avoided. Instead, one can use a hash table to determine if a
recently committed transaction has accessed a certain page.
Since the complexity for the commit part of OCTP is the
same as for OCC, the total runtime complexity for OCTP re-
sults in O(ops + ops · RECENT MAX+ ops · c) = O(ops · (c +
RECENT MAX)).

In practice, even a relatively small value for RECENT MAX
will provide OCTP’s benefits of reduced transaction abort
rates. In this context, Section 7.2.3 studies the quantitative
influence of RECENT_MAX on a system’s transaction abort
rate. It turns out that RECENT MAX= 100 is usually sufficient.
Other experiments from Section 7 reveal that the added com-

putational complexity of OCTP does not affect system effi-
ciency.

5.2 External Consistency

External consistency asserts that a valid serialization order
of (committed) transactions does not deviate ”too much”
from the realtime commit order of the respective transac-
tions. At perfect external consistency a database system
guarantees the existence a valid serialization order which is
identical to the transactions’ realtime commit order [1]. Giv-
ing a formal definition of (non-perfect) external consistency
is beyond the scope of this paper. Fortunately we are still
able to discuss OCTP’s effect this consistency criterion.

External consistency might suffer under OCTP because
with respect to a serialization order, an active transaction
Ti that reads an invalidated page version (and commits)
will range behind the transaction Tj that invalidated the
corresponding page version. In the worst case, Ti’s posi-
tion in the serialization order might lag up to RECENT_MAX
timestamps behind if Tj is stored at position 0 in the list
recentlyCommitted from Fig. 5.

A page version read by Ti might have been invali-
dated up to RECENT_MAX times given that all transactions in
recentlyCommitted have written the respective page. Al-
though in practice, this case is extremely unlikely, it might
still be desirable to set a lower limit l for the number times
a page version may be invalidated but without changing the
value of RECENT_MAX. The OCTP implementation of Fig. 5
can be easily extended to cover this requirement: When up-
dating the array invalidPidsPerClient (in Line 74 to 82)
the system can also maintain counters that store, how of-
ten a particular page version, which is cached at a certain
client, got invalidated. This information can be used during
the validation process of a transaction in Line 35 of Fig. 5.
A transaction will then also be aborted, if it has read a page
version which got invalidated more than l times.

The above considerations lead to the conclusion that
if perfect external consistency represents premium require-
ment, OCTP is not the protocol of choice. In all other cases
though, OCTP’s worst case deviations from perfect external
consistency are clearly defined and can be well controlled.

As already mentioned in Section 4.2, the protocol never
tolerates access to stale pages, if RECENT_MAX is set to 0.
In this case OCC and OCTP behave identically. (Using the
formalism from Section 3 this can also be proven.)

6 Improvements

6.1 General Improvements

For real-world scenarios, the protocol implementations from
Fig. 4 and 5 should be optimized in several ways:
– As mentioned in the previous section, one may apply

more efficient data structures e.g. to manage invalidation
lists.
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– One can integrate the support of early aborts according to
[11]. When early aborts are enabled, a transaction is par-
tially validated whenever it performs server access. The
partial validation is based on the operations that a trans-
action has executed so far. Early aborts avoid wasted
work resulting from transactions which have to aborted
anyway but they increase a transaction’s total validation
cost.

– As proposed in [11] client-side before-images of writ-
ten pages ensure that a page must not be discarded from
a client cache if the client’s current transaction gets
aborted.

– As opposed to the code from Fig. 4 and 5, information
about invalidated pages maybe piggy-backed on every
message addressing a client and not just commit re-
sponse messages. [11] describes this strategy for OCC
and classifies it as ”eager reactive”.

In general, all of these improvements are well-understood
from other contributions in the field and their application
to OCTP is straight forward. Therefore, we do not discuss
them here in depth. Note however, that in order to get useful
results with respect to the experiments from Section 7, we
realized all of the above mentioned improvements.

As it has been done for CBL and OCC, one may also
derive an adaptive variant of OCTP. When using adaptive
protocols such as AOCC or ACBL [11,19] the granularity
of data elements may dynamically change between pages
and objects in order to minimize message overhead and the
chance conflicts. Developing and studying an adaptive vari-
ant of OCTP is part of our future work.

6.2 SOCTP

As explained in Section 4.3, OCTP always aborts a transac-
tion which (read and) wrote an invalidated version of a page.
To avoid this type of aborts, OCTP can be extended such that
write access to pages is coordinated by means of server side
write locks.

The related locking mechanism is partially asynchro-
nously and will explained below. To a certain extend it is
similar to the locking mechanism of CBL but it only affects
write operations. An (explicit) read operation of a transac-
tion is still performed optimistically and without any locks.
However for write operations, clients try to acquire exclusive
locks which they release at the end of a transaction. When
compared to CBL, the peculiarity of the locking mechanism
is that lock requests may be performed synchronously or
asynchronously and therefore, we focus on this aspect in the
description from below. The idea of mixing synchronous and
asynchronous lock requests is inspired by [12,15] (see also
Section 8).

The resulting variant of OCTP is called ”Semi-
Optimistic Caching Timestamp Protocol” (SOCTP) because
it only handles read/write conflicts in a purely optimistic
way.

When a client C writes a page using SOCTP, it always
tries to acquire a respective write lock from the server. If the
page is not in C’s cache, it simply performs a lock request
as part of the page request. The more interesting case is a
cache hit: At a cache hit the client sends a lock request to the
server either in a synchronous or in an asynchronous man-
ner. (What request mode it chooses when, will be explained
below.)

If the client sends a synchronous lock request, it waits
for a response message from the server. In this context, the
response message either grants the requested lock or tell’s
the client to abort its current transaction. A transaction abort
might be necessary for two reasons: Either the server an
early abort check for the transaction fails or the transaction
causes a deadlock when waiting for the requested write lock.
If some other transaction already owns the write lock re-
quested by C, then the server delays the response message
until the lock becomes available. (The other transaction re-
leases the lock at termination.)

If C sends an asynchronous lock request, it does not wait
for a response message from the server but proceeds imme-
diately with its current transaction. When the server gets the
asynchronous lock request it checks whether another client
already owns the lock. If the lock is available, then client C
obtains it and the server creates a corresponding entry in the
page directory. If some other client owns the lock, C’s cur-
rent transaction will be aborted. The server informs C about
the transaction abort by means of an asynchronous message.

To decide whether C acquires a write lock synchronously
or asynchronously, C maintains a data structure which is
called a write warning list. The write warning list contains
information about all pages which are cached by C and
which were written by active transactions. If a page that C
intends to write is referenced in its write warning list, then
it performs a synchronous lock request for that page. Other-
wise it sends an asynchronous lock request.

The write warning list is updated via information which
is piggy-backed on messages sent from the server to C. So,
whenever the server sends a message to C, it is also in charge
of delivering the latest write warnings. The server knows
early about write intentions from other clients due to their
respective lock requests (which they send synchronously or
asynchronously). Still, C’s write warning list might be out
of date e.g. because some other client has obtained the write
lock for a page but the server has not yet had chance to in-
form C about it. In this case, if C intends to write this page,
it sends an asynchronous lock request where it would have
better sent a synchronous one. As explained above, C’s cur-
rent transaction will then be aborted.

SOCTP avoids many of situations where OCTP would
cause an abort due to a write/write conflict of two active
transactions. If such a situation is likely to occur, SOCTP
makes one of the participating clients wait until the other
client’s transaction has terminated. This is done via a syn-
chronous lock request. Whenever it is more likely that a
transaction will obtain the requested lock right away, it does
not make sense to wait for the server’s lock acknowledg-
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ment. In this case the client takes the risk and performs
an asynchronous lock request. Note that OCTP as well as
SOCTP still must abort a transaction, which has read an in-
validated version of page and which tries to write the same
page in a following operation.

SOCTP incurs a larger message overhead than OCTP
but most of the additional messages are asynchronous and
so they do not block a corresponding transaction. Moreover,
most of the additional synchronous messages indeed prevent
transaction aborts. In following section we study the related
effects in detail.

7 Evaluation

7.1 Experiments

7.1.1 Simulation System

As in former studies on transactional cache protocols we use
a simulation system to evaluate the quality of OCTP. The
simulation system models a page-based client-server data-
base system such as described in Section 1. Fig. 6 presents
the overall structure of the simulator: A client consists of
a transaction generator which produces sequences of access
and commit operations according to a workload model. The
workload specifies the fixed length of committing transac-
tions, the fixed probability of transaction restarts (in case a
transaction was aborted), the probability of read and write
operations and the related distributions for referenced pages.

The client protocol manager executes transaction opera-
tions and either produces a hit at its local cache or delegates
the request to the server. The client cache has a fixed size and
applies an LRU replacement strategy. Moreover, a client has
a CPU component for modeling client-side processor time
consumption. The number of clients can vary – it is equiv-
alent to the number of concurrent transactions causing load
on the simulated database system.

A CPU component manages incoming instruction re-
quests that represent certain protocol-related activities us-
ing a FIFO wait queue. A protocol related activity, such as
handling a cache hit, is associated with a fixed amount of
instructions and depending on the CPU speed, the system
derives the amount of CPU-related simulation time which it
charges for performing the activity.

If a client cannot perform an operation locally, it dele-
gates the operation to the server via an emulated network.
Much as the CPU components, the network charges simula-
tion time for transferring messages between clients and the
server and it is also represented by a FIFO wait queue. The
message cost depends on the simulated network bandwidth,
the message size and a random network delay. As in [12,15,
18] a network delay happens at a certain probability but with
a fixed delay time. A delay does not affect waiting times of
other messages in the network’s FIFO wait queue.

At the server the related protocol manager handles in-
coming operation requests. Page read operations are per-

formed via a server-side cache. The cache has a fixed size
and applies an LRU replacement strategy. At a page miss,
the related operation is forwarded to one of the disk com-
ponents. Page writes cause a cache reference but are always
delegated to a disk component because the system models a
write through strategy for pages.

There are several server-side disks which are all repre-
sented by independent FIFO wait queues. Every database
page is uniquely assigned to a disk on which it is stored and
every disk is in charge of about the same amount of pages.
Disk access times are determined by a uniform random dis-
tribution with a fixed lower and upper bound.

Apart from disk access cost, the execution of a server-
side operation incurs cost at one of the server-side CPUs.
The related CPUs share a single FIFO wait queue. The
system distinguishes ”user activities” such as validating a
page and ”system activities”. The CPUs give higher prior-
ity to system activities. Moreover, sending a message from
a client to the server or vice versa does include CPU cost
on both sides of the communication channel. For every mes-
sage there is a fraction of fixed CPU cost and a variable CPU
cost, where the latter one depends on the message size. Disk
access and message sending are the only types system activ-
ities.

Table 1 states the values for the system parameters dis-
cussed in the previous paragraphs. The parameter setup rep-
resents a situation where the network is slow and message
delays are frequent and relatively long. This is typically the
case when client and server communicate via a wide area
network, e.g. the Internet. The related values are taken from
[15]. In this case the network becomes the bottleneck and
message overhead dominates system performance. Note that
the situation may change when the network is fast. In the lat-
ter case the server-side disk components tend to become the
system bottleneck and protocols with low message overhead
loose a significant advantage over protocols causing higher
message overhead.

The transaction protocols such as implemented for the
experiments all support early aborts according to [11]. They
also store before images of an active transaction’s written
pages at the client side [11]. This way the related pages can
be easily restored at the client in case of a transaction abort.

As in [1,11] we charge server-side CPU cost for a valida-
tion step at optimistic protocols. With respect to OCC there
are at least ops validation steps at a transaction’s commit
time, where ops is the transaction’s number of access oper-
ations. Since early aborts are enabled, a transaction might
also be partially validated before it commits which results
in additional validation steps (see also Section 6).5 With re-
spect to OCTP, there are ops · RECENT MAX validation steps
at commit time and potentially additional validation steps re-
sulting from early abort checks. Due to its nature, CBL does
not cause validation cost. As in [1,11] we do not charge cost
for CBL’s deadlock detection. Similarly, there is no cost in-
volved for deadlock detection under SOCTP.

5 Regardless of early abort checks, all ops operations must be (re-
)validated at commit time.
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Fig. 6 Structure of the Simulation System

When varying the number of clients for an experiment,
we set RECENT MAX = 100 for OCTP and SOCTP. As it will
discussed in Section 7.2.3 the value 100 is sufficient to pro-
vide the intended reduction of abort rates under OCTP and
SOCTP.

7.1.2 Workloads

For the sake of a more compact presentation we only dis-
cuss the results of two important workloads which are well-
known from other contributions [6,8,9,11,18].

The UNIFORM workload has no per-client locality and
a high degree of data contention. At this workload, every
client accesses every database page with the same probabil-
ity. The HOTCOLD workload has a high degree of locality
per client and a moderate amount of data sharing and data
contention among clients. Most of the time a client accesses
data from its private region but it may also access data from
the rest of the database. Clients may update data in both re-
gions.

Fig. 2 presents the parameters characterizing the work-
loads. Similar settings for the two workloads can be found
in [6,8,9]. The parameter restartProb states the probability
that a transaction that got aborted is restarted (with the same
sequence of access operations). According to [11] and [12] a
restart probability of 1 favours OCC whereas restartProb =
0 favours CBL. As in [12] we therefore chose the value
restartProb = 0.5 for the HOTCOLD workload. Concerning
the UNIFORM workload, the value 0.5 still favours OCC
(and OCTP) due to a heavily increased cache hit rate for
restarted transactions. Therefore we set restartProb = 0 for
the UNIFORM workload.

To obtain a data point, the system was first warmed up
until all data structures had reached (up to an epsilon) a fixed
point with respect to their filling size under the given work-
load. Afterwards the measuring phase began and lasted until
a thousand commits were observed. Given a certain number
of clients, this procedure was repeated ten times with differ-
ent random seeds for the transaction generators. An entry in
the resulting graph displays the average result of the six data
points as well as error bars for the 90% confidence interval.

Table 1 System Parameters for the Simulation Experiments

Name Description Value

System Settings

pageSize Size of a database page 4 KByte
dbSize Size of database in pages 2000
clientCacheSize Client cache size in pages 250
serverCacheSize Server cache size in pages 1000
clientCPUMips Client CPU speed 100 MIPS
serverCPUMips Server CPU speed 300 MIPS
serverCPUs Number of Server CPUs 2
minDiskTime Minimum time for page access

on disk
3ms

maxDiskTime Maximum time for page access
on disk

6ms

serverDisks Number of server disks 8
bandWidth Network bandwidth 80Mbps
delayProb Probability of msg. delay 0.5
delayTime Time of msg. delay 10ms

Instruction Cost per Activity

f ixedMsgInstrs Fixed number of instrs. per
msg.

20000

perByteMsgInstrs Additional instrs. per msg. byte 4
registerIntrs Instrs. for (un)registering page

at client cache
300

lookupInstrs Instrs. for page lookup at client
cache

300

validateInstrs Instrs. for a validation step 600
dirLookupInstrs Instrs. for access of page dir. 600
diskAccessInstrs Instrs. for disk access 5000

Protocol Qualities

earlyAborts Enable early aborts for opti-
mistic protocols

yes

saveBe f oreImage Save before image at client yes
replStrategy Cache replacement stategy at

client and server
LRU

toDiskStrategy When written committed pages
are saved to disk (write through
or write back)

Write
through

RECENT MAX Max. number of recently com-
mitted transactions which are
stored in memory

100 (or
varying)

7.2 Results

7.2.1 Number of Messages

This paragraph discusses the average number of messages
sent per committing transaction with respect to the studied
protocols.

Analysis: Before presenting the experimental results, we
briefly develop an analytical model, which aims to predict
the measured numbers for the UNIFORM workload. The
model is simple but still important because it helps to ex-
plain the experimental results and increases trust in their
correctness. Surprisingly, previous studies of transactional
cache protocols have not tried to substantiate their simula-
tion results this way.

Let c be the number of clients running concurrent
transactions under the UNIFORM workload. Let pr =
coldWrtProb be the probability that an operation performs a
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Table 2 Workload Parameters for the Simulation Experiments

Workload UNIFORM HOTCOLD

transSize 20 pages 20 pages
hotBounds – p to p+49 with p = 50·

i, i ∈ {0, . . . ,39}
coldBounds All of DB Rest of DB
hotAccProb 0 0.8
coldAccProb 1 0.2
hotWrtProb 0 0.2
coldWrtProb 0.2 0.2
perPageInstrs 30000 30000
thinkTime 0 0
restartProb 0 0.5
c (Number of Clients) {1,2,5,10,15, . . . ,40}

read access and ops = transSize be the number of operations
per transaction. Given that a client cache fills up completely,
the corresponding hit rate is phit = clientCacheSize/dbSize.

For OCC and OCTP, estimating the number of messages
mOCC/OCTP for a committing transactions is straight forward.
mOCC/OCTP only depends on the number of operations ops
per transaction and the cache hit rate:

mOCC/OCTP = 2 ·ops · (1− phit)︸ ︷︷ ︸
2 Messages for Every Cache Miss

+ 2.︸︷︷︸
Commit Operation

At CBL, a client C needs to acquire a write lock from the
server for almost every write operation (and this results in
two additional messages). The case where the client already
possesses the write lock is ignored because it is rare: The
client must have written the respective page before but in
the same transaction. This event is unlikely since ops � D.
About phit · (c− 1) clients cache the page that C is about
to write, which results in callback messages. Thus, one can
estimate the number of messages mCBL as follows:

mCBL = 2 ·ops ·((1− phit)︸ ︷︷ ︸
Cache Miss

+ (1− pr) · phit︸ ︷︷ ︸
Cache Hit but Writing

+ (1− pr) · phit · (c−1)︸ ︷︷ ︸
Callbacks (Write Ops. with Cache Hits at Other Clients)

)
+ 2.︸︷︷︸

Commit

In contrast to CBL, SOCTP generates lock request mes-
sages for write operations but no callbacks. A synchronous
lock request from a client causes two messages but an asyn-
chronous request causes only one message unless the server
immediately aborts the respective transaction.

Assume a client C intends to write a page p. The
probability that p has not yet been written by an-
other client’s active transaction is about punlocked = (1 −
1/dbSize)0.5·ops·(1−pr)·(c−1). The formula implies that the re-
maining c− 1 clients have each finished their active trans-
actions about half way. For simplicity, we assume that write
warning lists are always up-to-date. Thus, the average num-
ber of messages for a lock request of a page cached by C is
punlocked · 1 + (1− punlocked) · 2 = 2− punlocked . The total the

CBR, Analytical OCC/OCTP Analytical SOCTP, Analytical
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Fig. 7 Analytical Number of Messages per Committed Transactions
under the UNIFORM Workload

number of messages mSOCTP sent for a committing transac-
tion is about

mSOCTP = ops · (2 · (1− phit)︸ ︷︷ ︸
Cache Miss

+ (1− pr) · phit︸ ︷︷ ︸
Req. Write L. for Cache Hit

·

(2− punlocked)︸ ︷︷ ︸
Synchronous or Asynchronous Write L. Request

)
+ 2︸︷︷︸

Commit

.

Fig. 7 presents analytical results for the number of mes-
sage per committing transaction under the UNIFORM work-
load in a graph.

Simulation Results: Fig. 8 presents the measured results for
the number of message per committing transaction under the
UNIFORM workload. As one can see, there is an excellent
match with the analytical forecasts from Fig. 7.6 With regard
to our analysis from above, it is not surprising that OCTP in-
deed produces the same number of messages as OCC. Since
cache hits are rare under the UNIFORM workload, SOCTP
rarely produces extra messages to request write locks at the
server. (Remember that under SOCTP, additional write lock
requests only occur if a write operation causes a cache hit.)
The rising number of messages under CBL is caused by call-
back messages.

Fig. 9 presents similar results as Fig. 8 but for the HOT-
COLD workload. Again, OCC and OCTP cause about the
same number of messages. SOCTP produces more messages

6 We decided to present the analytical and the experimental results
in separate figures because the graphs match so well that otherwise
they would be hard to discern.
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Fig. 8 Number of Messages per Committed Transactions under the
UNIFORM Workload
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Fig. 9 Number of Messages per Committed Transactions under the
HOTCOLD Workload

than OCTP and OCC because under the HOTCOLD work-
load, cache hits are frequent and only a write operation hit-
ting the cache will cause an additional lock request mes-
sage. However, most of the additional messages produced
by SOCTP are asynchronous thanks to the use of write warn-
ing lists. Therefore these messages incur little blocking at a
requesting client. We measured that from all write lock re-
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Fig. 10 Throughput in Transactions per Second under the UNIFORM
Workload

quest messages produced by SOCTP, no more than 2% were
synchronous under the HOTCOLD workload.

7.2.2 Throughput

Fig. 10 shows the throughput of the four protocols in com-
mitting transactions per second under the UNIFORM work-
load. For the given system configuration with a slow net-
work and fast server disks (see Section 7.1.1) the optimistic
protocols clearly outperform CBL. OCTP and SOCTP at-
tain an even higher throughput than OCC because of their
lower transaction abort rates. (Details on transaction abort
rates follow in Section 7.2.3).

When more than 35 clients run concurrent transactions
under the UNIFORM workload, then for CBL, the client
caches do not fill up to their maximum size of 250 cachable
pages. The effect also occurs for OCC, OCTP and SOCTP
but at slightly higher numbers of concurrent clients. The ef-
fect is a result of competing page roll-ins and page removals
at client caches. In [13], we studied this phenomenon in de-
tail and explained the related system behavior by means of a
simple but accurate analytical model. Under the UNIFORM
workload the throughput of CBL is very sensitive to low-
ered cache filling sizes and so the performance degrades for
c ≥ 35. Surprisingly the phenomenon of lowered cache fill-
ing sizes has never been examined by other studies in the
field transactional caching, although its existence is even de-
tectable in some of the graphs of [9].

Fig. 11 depicts transaction throughput under the HOT-
COLD workload. Again, the optimistic protocols outper-
form CBL. The performance difference between OCC and
OCTP is not as distinct as under the UNIFORM workload
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Fig. 11 Throughput in Transactions per Second under the HOTCOLD
Workload

Table 3 Average Reduction of the Abort Rate Relative to OCC for
c ∈ {5,10, . . . ,40} in %

Protocol CBL OCC OCTP SOCTP

UNIFORM 94.0 0 59.3 75.6
HOTCOLD 98.8 0 67.6 79.8

because the HOTCOLD workload causes more moderate
transaction abort rates even for OCC. Moreover, the small
message overhead for write lock requests hardly affects the
performance of SOCTP when compared to the other two op-
timistic protocols.

7.2.3 Abort Rate

Fig. 12 and 13 present transaction abort rates in ”aborts
per commits” under the UNIFORM workload and under the
HOTCOLD workload, respectively. In both cases, OCTP of-
fers considerably lower abort rates than OCC and SOCTP
lowers these rates even further. However, CBL still offers
better results. Thus when comparing SOCTP and CBL, there
remains a trade-off between high performance and low abort
rates but it is less extreme as in the case of CBL and OCC. In
order to summarize the relative improvements of OCTP and
SOCTP, Table 3 shows the average reduction of abort rates
(in ”aborts per commits”) with respect to OCC across client
numbers that range between 5 and 40.

Fig. 14 presents the transaction abort rate when the para-
meter RECENT MAX from Section 4 is varied under the UNI-
FORM workload. The number of clients remained fixed at
c = 25 for all data points. As one can see, values as little as
RECENT MAX = 20 provide good improvements of the abort
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Fig. 12 Aborted Transactions Per Committed Transactions under the
UNIFORM Workload
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Fig. 13 Aborted Transactions Per Committed Transactions under the
HOTCOLD Workload

rate already. At RECENT MAX = 0 OCTP behaves exactly as
OCC and causes the same transaction abort rate. SOCTP be-
haves slightly better already because it avoids aborts related
to certain write/write conflicts. At RECENT MAX = 50 the
abort rate becomes stable for both OCTP and SOCTP. The
graphs ”OCTP, t-Fitting Violated” and ”SOCTP, t-Fitting
Violated” display the number of transaction aborts resulting
from violations of the quality ”t-fitting”. For SOCTP, almost
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Fig. 14 Aborts per Commits for OCTP and SOCTP under the UNI-
FORM Workload When Varying RECENT MAX and Keeping the Num-
ber of Clients Fixed at c = 25

all of the transaction aborts at RECENT MAX ≥ 50 result from
violations of ”t-fitting”.

As described in Section 2 and 3 ”t-fitting” is the essential
criterion that OCTP and SOCTP assert for committing trans-
actions. Bigger values for RECENT MAX enable a reasonably
accurate check for t-fitting but they cannot avoid the actual
violations of this criterion. Therefore, the curve ”SOCTP, t-
Fitting Violated” initially rises and then reaches about the
level of the curve ”SOCTP”. For OCTP, the difference be-
tween the curves ”OCTP” and ”OCTP, t-Fitting Violated”
at RECENT MAX≥ 50 is due to the additional aborts result-
ing from write/write conflicts of active transactions. (As ex-
plained before, OCTP does not prevent this type of aborts.)

8 Related Work

In this Section we organize aspects of related work as fol-
lows: At first, we try to categorize SOCTP and OCTP ac-
cording to a well-known taxonomy of transactional cache
protocols established in [9]. Afterwards, we discuss two
more recently published protocols, namely ADCC and
AACC. At last, we consider relationships between OCTP
and pure server-based transaction protocols.

According to [9] OCTP is best classified as a ”detec-
tion based protocol” which in the worst case, defers its va-
lidity check ”until commit”. Moreover, change notification
hints are given ”after commit” and the respective remote up-
date action is ”invalidation”. Therefore OCTP appears in the
same position of the taxonomy as ”Cache Locks” [17].

SOCTP cannot be well categorized along the taxonomy
of [9] because it is detection based with respect to read/write
conflicts and avoidance based with respect to write/write
conflicts. On top of this, the avoidance based aspect uses
both ”synchronous” and ”asynchronous validity checks”.

As it became clear in Section 4, OCTP is an improve-
ment and an extension of OCC In contrast to OCC it can
validate transactions even though they have accessed invali-
dated cached pages.

As mentioned in Section 6.1, there exist adaptive vari-
ants for CBL and OCC which are called AOCC or ACBL
[19,11]. Adaptive protocols dynamically change the granu-
larity of managed data elements between page and object in
order to lower message sizes and the chance conflicts. We
believe that it is well possible to develop an adaptive vari-
ants of OCTP and SOCTP. The corresponding task is part of
our future work.

ADCC [18] is the most recently published transactional
cache protocol which uses direct client-to-client communi-
cation in order to offload the server and to increase total sys-
tem performance. The authors of [18] compared ADCC with
CBL using simulation: ADCC consistently outperformed
CBL while offering the same low abort rate as CBL. Direct
client-to-client communication forms the basis of ADCC’s
efficiency improvements but it is also its major handicap.
Client-to-client communication is not desirable if clients
should remain anonymous with respect to each other. (E.g.
this is typically the case for rich client applications that com-
municate over the Internet.) Also, if the number of clients is
high and/or fluctuating, there is considerable communica-
tion and management overhead to ensure that every client is
registered at all its peers.

AACC [12,15] is an asynchronous, adaptive and pure
server-based protocol whose abort rates are as low as those
of ACBL. Using simulation, the authors of [12,15] showed
that AACC outperforms ACBL for a given, fixed number
of concurrent clients. Moreover, AACC also outperforms
AOCC for the same number of clients but only under SH-
HOTCOLD workload.7 The authors state that these results
depend on the relative speed of the server CPUs and disks
as well as on the probability of transaction restarts (with re-
spect to aborted transactions).

Unfortunately a direct comparison between AACC and
OCTP is difficult because we have not implemented AACC
and so there are no experimental results available for a com-
parison.

Note that AACC is an adaptive protocol while OCTP is
not. However, the descriptions of AACC in [12,15] make
it obvious that the protocol can be easily modified to work
in a non-adaptive way. (Interestingly, this point counters a
whole line of arguments from [18] claiming that AACC is
not applicable in the context of pure page servers because it
is adaptive.)

In the following, we discuss essential differences of
AACC, OCTP and other protocols on a theoretical basis

7 SH-HOTCOLD is a variant of the HOTCOLD workload catering
to adaptive protocols.
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Table 4 How Different Protocols Handle Important Conflict Situations

Situation r1[x] < w2[x], T1 not com-
mitted, T2 tries to commit
first

w1[x] < w2[x], T1 and T2
not committed

CBL not possible, T2 blocks at
w2[x] instead

T2 blocks at w2[x]

AACC T2 blocks at commit until
T1 commits

T2 blocks at w2[x] or ei-
ther T1 or T2 aborts

OCC T2 commits, T1 aborts either T1 or T2 aborts
OCTP T2 commits, T1 likely to

commit
either T1 or T2 aborts

SOCTP T2 commits, T1 likely to
commit

T2 blocks at w2[x] or ei-
ther T1 or T2 aborts

while assuming a non-adaptive version of AACC is at hand.
Table 4 characterizes important situations where conflicts
between active transaction lead to blocking or transaction
aborts. The table compares the behaviour of several proto-
cols regarding these situations.

To keep things short, we only discuss the situation
w1[x] < w2[x] from Table 4 for AACC: AACC acquires write
locks in an asynchronous or deferred manner. This means,
a client tries to acquire a respective write lock from the
server but it does not wait for it and continues its transaction
processing instead. Problems arise if two concurrent trans-
actions T1 and T2 write the same data element x. If client
T1 writes x much earlier than T2, then the client executing
T2 will receive a related callback message before it exe-
cutes w2[x] and acknowledge this message. Afterwards T2
will have to wait until T1 has terminated (and released the
write lock). If T2 writes x before the callback message ar-
rives, then either T1 or T2 will be aborted.8

As explained in Section 6.2, SOCTP handles the situa-
tion w1[x] < w2[x] from Table 4 in a similar way as AACC.
However, SOCTP does not use synchronous callbacks to
inform concurrent clients of write lock requests. Instead it
piggy-backs the related information as write warning lists
on other messages. As opposed to callbacks, write warnings
incur less potential blocking but they are more likely to ar-
rive ”too late”, which may lead to higher transaction abort
rates than callbacks.

When compared to CBL, AACC considerably improves
the time a transaction must wait for a server response or for
other transactions to finish certain operations (e.g. to com-
mit). However, waiting still occurs under AACC. The opti-
mistic protocols from Table 4 trade in waiting times for po-
tential transaction aborts. E.g. under OCC and OCTP, trans-
actions almost never wait for each other. If the network is the
major system bottleneck, then communication latency in-
creases waiting times for CBL and AACC more than for the
optimistic protocols. High network latency frequently oc-
curs when client server communication is Internet-based. In
such a case, OCTP and SOCTP offer very good performance

8 The latter situation is the same as the one that we captured in the
third item of Section 4.3 and therefore AACC must perform a related
transaction abort.

because they produce little waiting times but also moderate
transaction abort rates.

OCTP is remotely related to multiversion timestamp
transaction protocols such as introduced in [14] and de-
scribed in [5]. A multiversion timestamp scheduler treats
an incoming operation ri[x] of a transaction Ti as follows:
To execute ri[x], the scheduler tries to find the version xk
written by a committed transaction Tk such that Tk has the
largest timestamp with ts(Tk) ≤ ts(Ti). The protocol implies
that an underlying database system stores several versions of
the data element x along with a version tag. If xk from above
is not stored in the database anymore (e.g. because it is too
old) then the scheduler will reject ri[x].

The situation is different in the context of OCTP: A
client-based transaction Ti simply reads the version xk that
is cached at the client. In this case, the server-side protocol
manager does not have ”the luxury” of choosing an appro-
priate xk for Ti. Instead it adjusts Ti’s fitting timestamp ac-
cordingly and checks if Ti ”can get away” with reading xk.
Also note, that our protocol does neither store version tags
nor several page versions in the server database.

[2] presents an optimistic timestamp-based multiversion
concurrency control scheme. In essence, it is an optimistic
variant of the multiversion timestamp protocol introduced
by [14] and therefore the differences to OCTP are alike.

The authors of [3] suggest the concept of ”dynamic
timestamps”. A dynamic timestamp is not necessarily
assigned at transaction begin or commit but when the
first conflict with another active transaction occurs. Dy-
namic timestamps eliminate certain cases where a plain
one-version timestamp protocol aborts transactions. E.g.
consider the (one-version) history r1[x]w2[y]c2r1[y]. If
timestamps are assigned at a transaction’s first operation,
then one obtains ts(T1) < ts(T2) and r1[y] will be rejected
under the one-version timestamp protocol. (Similar prob-
lems can occur if timestamps are assigned at commit time
instead.) A dynamic timestamp is related to the fitting
timestamp from Section 3 because both are computed on the
basis of the prefix of a transaction history. However our ap-
proach differs from the concept suggested in [3], because
OCTP still relies on fixed timestamps which are assigned at
commit time. Moreover fitting timestamps rely on a recur-
sive definition while dynamic timestamps do not.

9 Conclusion and Future Work

This paper has presented two new optimistic transactional
cache protocols – OCTP and SOCTP. OCTP maybe consid-
ered an extension and improvement of OCC – the currently
leading optimistic transactional cache protocol. SOCTP is
in turn an improvement of OCTP. As opposed to OCC,
OCTP and SOCTP considerably reduce transaction abort
rates while attaining higher transaction throughput.

In contrast to all other known transactional cache pro-
tocols, OCTP and SOCTP allow many transactions to com-
mit which have read invalidated versions of pages from a
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client’s cache. This quality is the key to the reduced abort
rates. When two active transaction cause a write/write con-
flict, OCTP still must abort one of them. To accommodate
this, SOCTP efficiently uses server-side locks but only with
respect to write operations.

Since the correctness of the new protocols is not triv-
ial to see, we applied multiversion transaction theory in or-
der to prove that they indeed produce serializable histories.
Multiversion transaction theory is well suited in our the con-
text because it can reflect the fact that different clients may
concurrently cache and access different versions of the same
page.

The new protocols essentially differ from existing, pure
server-based multiversion transaction protocols. Unlike a
classical multiversion scheduler, the server-side manager for
OCTP and SOCTP can rarely choose the version of a page
that a client-side transaction will read. Instead, it has to cope
with the fact that the transaction reads a given version such
as found in the client’s cache. Moreover, the two new pro-
tocols are not related to serializability graph test protocols
since they do not perform explicit cycle checks in a related
graph.

OCTP and SOCTP guarantee serializability but they may
lower the degree of external consistency. Still, their worst
case deviation from perfect external consistency is bounded
and controllable via system parameters. When compared to
OCC, the two protocols increase the complexity of transac-
tion validation, but experiments showed that in practice the
additional runtime and memory cost remains insignificant.
The added memory cost results from the fact that the new
protocols store information about a bounded number of re-
cently committed transactions. In the context of our experi-
ments, an upper bound of less than fifty recently committed
transaction was already sufficient to provide the benefits of
lowered abort rates under SOCTP and OCTP.

Much as OCC, the new protocols incur very little mes-
sage overhead and little transaction blocking times. Their
performance clearly dominates the one of CBL whenever
the network forms the bottleneck of the system. This situa-
tion frequently occurs if the clients and the database server
communicate over the Internet. In addition to OCC, OCTP
and SOCTP reduce transaction abort rates and as a result
of this, they enable an even higher transaction throughput
than OCC. E.g., for the experiments presented in this paper,
SOCTP reduced the abort rate of OCC on average by more
than 75%.

We have not yet developed or studied adaptive versions
of OCTP and SOCTP but we believe that this feature is
straight forward to integrate. We implemented all other stan-
dard improvements for transaction cache protocols including
early aborts, client-side before images and piggy-backed in-
validation messages. An open question that we want to ad-
dress it under what conditions a potentially adaptive version
of OCTP or SOCTP performs better or worse than AACC –
the currently leading avoidance-based protocol.

A promising approach that we want to investigate is the
development of an optimistic (multiversion) serializability

graph test protocol tailored to the requirements of transac-
tional caching. Much as in the case of OCTP, a respective
protocol should inspect only a limited list of recently com-
mitted transactions. In comparison with OCTP and SOCTP
an SGT protocol might reduce the probability of transaction
aborts even further. However there is a tradeoff between the
potentially reduced abort rate and the added cost and com-
plexity for cycle checks regarding the serializability graph.
The related dependencies deserve in-depth considerations
and represent a part of our future work.

Acknowledgements Thanks to Michael Klein for a thorough reading
of this paper.

A Multiversion Histories

Definition 7 Let {T1, . . . ,Tn} be a set of transactions. A multiversion
history H is defined as H = { h(p) | p ∈�n

i=1 Ti) } with a partial or-
dering relation <. Further, the function h must fulfill the following cri-
teria:

– ∀ai,ci,wi[x] ∈�n
k=1 Tk : h(ai) = ai ∧h(ci) = ci ∧h(wi[x]) = wi[xi],

– ∀r j[x] ∈�n
k=1 Tk : ∃i ∈ {1, . . . ,n} : h(r j[x]) = r j[xi],

– ∀i ∈ {1, . . . ,n} : ∀p,q ∈ Ti : p <i q ⇒ h(p) < h(q),
– ∀wi[x],ri[x] ∈�n

k=1 Tk : wi[x] <i ri[x] ⇒ h(ri[x]) = ri[xi],
– ∀r j[x]∈�n

k=1 Tk : h(r j[x]) = r j[xi]⇒ (i = 0∨∃wi[xi]∈H : wi[xi] <
r j[xi]),

– ∀r j[x] ∈�n
k=1 Tk : (h(r j[x]) = r j[xi]∧ i �= j∧ c j ∈ H) ⇒ ci ∈ H.

An xi is called a version of the data element x.

The definition assumes that prior to any write operation, there al-
ready exists an initial version x0 for every data element x.

Definition 8 Let H be a multiversion history for the transactions T =
{T1, . . . ,Tn}. Let D be the set of data elements in H, so D = {x | ∃Ti ∈
T : ri[x] ∈ Ti ∨wi[x] ∈ Ti)} and let V (x) be the set of versions of x in H,
so V (x) = {x0}∪{xi | ∃wi[xi] ∈ H}. A version order � establishes for
every data element x ∈ D a total order of its versions, such that x0 is
the smallest version:

∀x ∈ D : ∀xi,x j ∈V (x)\{x0} :

x0 � xi ∧ (i �= j ⇒ xi � x j ∨ x j � xi).

Definition 9 Let H be a multiversion history for the transactions
{T1, . . . ,Tn} and � be a corresponding version order. The serializabil-
ity graph MVSG⊆T2 for H and � is given be the following predicate:

(Ti,Tj) ∈ MVSG :⇔ ci ∈ Ti ∧ c j ∈ Tj ∧∃rk[xl ],wm[xm] ∈ H :

(i �= j∧m = i = l∧ k = j)∨
(i �= j∧m = i∧ l = j∧ xm � xl)∨
(i �= j∧ k = i∧m = j∧ xl � xm).

Instead of writing (Ti,Tj) ∈ MVSG we simply write Ti → Tj. If one of
the last two disjunctive clauses holds, then Ti → Tj is called a version
order edge.

Definition 10 Let H be an multiversion history with transactions T =
{T1, . . . ,Tn}. ts : T → N is a timestamp function iff ∀i, j ∈ {1, . . . ,n} :
ts(Ti) = ts(Tj) ⇒ i = j.

Definition 11 A multiversion history H is recoverable, iff
∀wi[xi],r j[xi] ∈ H : c j ∈ H ⇒ ci ∈ H.
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B Proof of Theorem 1

Proof Let H consist of the transactions {T1, . . . ,Tn}. When construct-
ing H’s multiversion serializability graph MVSG we use the timestamp
version order � of the t-fitting history H.

At first, we prove that for a reverse edge Ti → Tj in MVSG, the
quality ts f it(Ti) ≤ ts(Tj) must hold. To do so, we consider the three
disjunctive clauses from Definition 9 which produce edges in the seri-
alizability graph.

If the reverse edge Ti → Tj is created by the first disjunctive clause
of Definition 9, one has wi[xi] < ci < r j[xi] < c j because H is recov-
erable. However ci < c j implies ts(Ti) < ts(Tj) because ts is commit
ordering, but the latter contradicts the assumption that Ti → Tj is a re-
verse edge. Thus, this case cannot occur.

If the reverse edge Ti → Tj is created by the second disjunctive
clause of Definition 9, one has xi � x j which implies ts(Ti) < ts(Tj)
because � is a timestamp version order. Again this contradicts the
assumption that Ti → Tj is a reverse edge. Thus the reverse edge cannot
result from the second disjunctive clause of Definition 9.

If the reverse edge Ti → Tj is created by the third disjunctive clause
of Definition 9, one has ri[xl ],wj[x j] and xl � x j. The timestamp ver-
sion order � implies ts(Tl) < ts(Tj), which gives ts(Tl) < ts(Tj) <
ts(Ti) because Ti → Tj is a reverse edge. Since H is recoverable, cl ∈H
must hold and therefore ts f it(Ti) ≤ ts(Tj) follows according to Defini-
tion 4.

The rest of the proof shows that a cycle in the serializability graph
is impossible. Assume H’s serialization graph MVSG was cyclic. A
cycle in MVSG has at least a length of 2, because according to Defini-
tion 9, i �= j holds for a corresponding edge Ti → Tj. A cycle in MVSG
consists of at least one reverse edge. Otherwise one would obtain a cy-
cle Tk → . . .→ Tk with regular edges only and so ts(Tk) < ts(Tk) would
hold (contradiction).

Now, let C be a cycle in MVSG and Tk be the node in C with the
smallest timestamp. There must be a reverse edge Th → Tk ∈ C for
some Th because otherwise Tk’s timestamp would not be minimal with
respect to C. Further, let Tj → . . . → Tk be the longest acyclic path in
C consisting entirely of reverse edges. Then, there must be an edge
Ti → Tj ∈C which is a regular edge. If Ti → Tj did not exist, C would
consist of reverse edges only and one would obtain C = Tk → . . . → Tk
with ts(Tk) < ts(Tk) (contradiction).

Since Ti → Tj is a regular edge, one has ts(Ti) < ts(Tj) and even
ts(Ti) < ts f it(Tj), due to H being t-fitting. Since Tj → . . . → Tk only
consists of reverse edges, an inductive application of the considerations
from above results in ts f it(Tj)≤ ts(Tk). This leads to ts(Ti)< ts(Tk) and
contradicts the assumption that Tk’s timestamp is minimal in C. Thus,
MVSG must be acyclic. ��
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