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Singular conductance of a spin 1 quantum dot
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We interpret the recent observation of a zero-bias anomaly in spin-1 quantum dots in terms of an
underscreened Kondo effect. Although a spin-1 quantum dots are expected to undergo a two-stage
quenching effect, in practice the log normal distribution of Kondo temperatures leads to a broad
temperature region dominated by underscreened Kondo physics. General arguments, based on the
asymptotic decoupling between the partially screened moment and the leads, predict a singular
temperature and voltage dependence of the conductance G and differential conductance g, resulting
in dg/dT ∼ 1/T and dG/dV ∼ 1/V . Using a Schwinger boson approach, we show how these
qualitative expectations are borne out in a detailed many body calculation.
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Single-electron transistors (SETs) offer the intriguing
opportunity to probe and explore classes of strongly cor-
related electron behavior associated with the Kondo ef-
fect that are difficult to access in bulk materials[1, 2, 3, 4,
5]. The possibility of observing a break-down in Landau
Fermi liquid behavior that accompanies the overscreened

two-channel Kondo effect in quantum dots has been a
subject of particular recent interest[6, 7]. In this paper,
we propose that singular deviations from Landau Fermi
liquid behavior associated with the underscreened Kondo
effect, hitherto unobserved in bulk materials, will develop
in conventional quantum dots with even numbers of elec-
trons and a triplet ground-state[8, 9, 10]. These devi-
ations from conventional Fermi liquid behavior are pre-
dicted to lead to singular voltage, field and temperature
dependences in the conductance.

The Kondo effect in quantum dots with odd numbers
of electrons, predicted more than fifteen years ago, [2, 3]
is now well-established by experiment [4, 5]. Subsequent
observations have shown that zero-bias anomalies associ-
ated with a Kondo effect can also occur in quantum dots
with even occupancies, where Hund’s coupling between
the electrons can lead to novel degeneracies, through the
formation of higher spin states, or the accidental de-
generacy of singlet and triplet states. Zero-bias anoma-
lies in integer spin quantum dots were first reported by
Schmid et al.[8]. Sasaki et al[9] later discovered a zero-
bias anomaly in even electron quantum dots, associated
with the degeneracy point between singlet and triplet
states, tuned by a small magnetic field. Most recently,
Kogan et al[10] have shown that the singlet-triplet exci-
tation energy in lateral quantum dots can be tuned by
the gate voltage, explicitly demonstrating that the zero
bias anomaly develops once the triplet state drops below
the singlet configuration.

Pustilnik and Glazman[11] have analyzed the low-
temperature Fermi liquid physics of higher spin quantum
dots. Their analysis shows that lateral quantum dot in
a triplet configuration develops two screening channels

which fully screen the local moment at the lowest tem-
peratures. Using the Landauer formula, they deduce the
conductance G of the Fermi liquid which develops to be

G =
2e2

h
sin2(δ1 − δ2) (1)

where δ1 and δ2 are the scattering phase shifts of the two
screening channels. According to this line of reasoning,
the development of a unitary phase shift in each channel,
δ1 = δ2 = π/2 leads to a complete suppression of the zero
bias anomaly in a triplet quantum dot[12]. Why then, are
zero-bias anomalies, with near unitary conductance seen
in triplet quantum dots?

In this paper we propose an interpretation of this un-
expected behavior in terms of an underscreened Kondo
effect. Our key observation is that the antiferromagnetic
Kondo coupling constants Jλ (λ = 1, 2) associated with
the two screening channels in a triplet quantum dot will
generally be distributed independently. Since the Kondo
temperature depends exponentially on the coupling con-

stant TKλ = D
√
Jλρe

− 1

Jλρ , a normal distribution of the
coupling constants will drive a log-normal distribution in
the two Kondo temperatures [13], with the potential to
generate exponentially large separations in the relative
magnitude of the Kondo temperatures of each channel.
If we assume that ln(TK1/TK2) = 1

J2ρ − 1
J1ρ >> 1, then

over the exponentially broad temperature range given by
log(TK1) >> logT >> log(TK2), the underlying physics
is that of a one channel spin-1 Kondo model, in which
the spin is partially screened to a spin 1/2.

From this perspective, triplet dots with a large zero
bias anomaly are those where the Kondo coupling con-
stants of the two channels are severely mis-matched, giv-
ing rise to decades of behavior dominated by the under-
screened Kondo effect in a single channel. Previous work,
both analytic[11] and numerical [12, 14] has focussed on
the equilibrium behavior of triplet quantum dots with
Kondo temperatures of comparable magnitude. We now
examine the singular consequences of a wide separation
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between these two scales in both finite temperature and
finite voltage properties.

In the underscreened spin-1 Kondo effect, the residual
spin-1/2 moment is ferromagnetically coupled to leads,
with a coupling that scales logarithmically slowly to
zero[15]. The ground-state which develops is a “singular
Fermi liquid”, in which the electrons do behave as Lan-
dau quasiparticles which are elastically scattered with
unitary phase shift, but where, on the other hand, a loga-
rithmically decaying coupling generates a singular energy
dependence in the scattering phase shift and a divergence
in the resulting quasiparticle density of states[16, 17, 18].
The Hamiltonian for the underscreened quantum dot is

H = H0 + Jψ†
α~σαβψβ · ~S,

H0 =
∑

k,λ=R,L,σ

ǫkc
†
kλσckλσ (2)

where ψσ =
∑

k αckLσ +βckRσ denotes the linear combi-
nation of right and left channels that couples to the dom-
inant screening channel. Much is known about the equi-
librium physics of this model. At low temperatures, the
spin is partially screened from spin S to spin S − (1/2).
The residual moment is ferromagnetically coupled to the
conduction sea, with a residual coupling that slowly flows
to weak coupling according to

Jρ(Λ) = − 1

ln(TK

Λ )
+O

(

1

ln2(TK

Λ )

)

(3)

where Λ ∼ max(T, µBB) is the characteristic cut-off en-
ergy scale, provided in equilibrium, by the temperature
or magnetic field. At low energies and temperatures, the
partially screened magnetic moment scatters electrons
elastically, with a unitary phase shift, however the cou-
pling to the residual spin (S − 1

2 ) gives rise to a singu-
lar energy dependence of the scattering phase shift. The
low energy scattering phase shift can be directly deduced
from the Bethe Ansatz, and has the asymptotic form

δ(ω) =
π

2
− πρJ(ω) =

π

2

(

1 +
(S − 1

2 )

ln(TK/ω)

)

. (4)

The logarithmic term on the right hand side is pro-
duced by the residual coupling between the electrons
and the partially screened moment. While the elec-
trons at the Fermi energy scatter elastically off the lo-
cal moment with unitary scattering phase shift, as in
a Fermi liquid, the logarithmically singular dependence
of the phase shift leads to a divergent density of states,

N(ω) ∼ 1
π

dδ(ω)
dω ∼ 1

|ω| , which means that we can not as-

sociate this state with a bona-fide Landau Fermi liquid.
For this reason, the ground-state of the underscreened
Kondo model has recently been called a “singular Fermi
liquid”[17].

These singular features of the underscreened Kondo ef-
fect are expected to manifest themselves in the properties
of the triplet quantum dot. For example, we expect the
low-field conductance to follow the simple relation

G(B) =
2e2

h
sin2 δ(B) ∼ 2e2

h



1 − π2

16

1

ln2
(

TK

B̃

)



 , (5)

for B̃ << TK . This relationship was previously obtained
by other means from the TK2 → 0 of the two-channel
model[11]. Notice that the field derivative of the conduc-

tance diverges as dG
dB ∝ 1/

(

Bln3(TK/B̃)
)

at low fields.

The prediction of the finite temperature, and finite volt-
age conductance can not be made exactly, however we
expect the above form to hold, for the differential con-
ductance at finite temperature or voltage, with an appro-
priate replacement of cut-offs, namely

G(V, T ) ∼ e2

h



1 − π2

16

1

ln2
(

TK

max(T,eV )

)



 (6)

and dG/dT ∼ 1/max(T, V ).
To model this behavior in more detail it is useful to

consider a simplified model of the quantum dot in which
the Hund’s coupling is taken to be infinite. In this limit,
the states of the quantum dot can be described using a
Schwinger boson representation as

|d1, σ〉 = b†σχ
†|0〉, |d2,M〉 = b†σb

†
M−σ|0〉, (7)

Written in this representation the model becomes

H = H0 + t
∑

σ

[

ψ†
σχ

†bσ + b†σχψσ

]

+ Edχ
†χ (8)

subject to the constraint nb + χ†χ = 2.
To develop a controlled many body treatment of this

Hamiltonian, we use a large-N expansion, extending the
number of spin components σ from two to N . To pre-
serve a finite scattering phase shift as N → ∞, we intro-
duce K = kN bosonic “replicas”, where k is fixed. With
this device we obtain a (dynamical) mean field theory
with scattering phase shift δ = πk and the qualitatively
correct logarithmic energy dependences [18]. The Hamil-
tonian used in the large N expansion is then

H = H0 +
t̃√
N

∑

σ,µ

[

ψ†
σχ

†
µbσ + b†σχψσ

]

+ Ed

kN
∑

µ=1

χ†
µχµ.(9)

In the large N limit, there are two self-consistent non-
crossing approximations to the Dyson equations for the
self-energies of the conduction electrons and χ fermions
(Fig. 1). Here we sketch the main elements of the deriva-
tion. As in the corresponding equilibrium calculation[18],
the boson behaves as a sharp excitation in the large N
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limit, with an average occupancy 〈nbσµ〉 = nb/N . From
the Dyson equations we obtain sets of self-consistent in-
tegral equations for both the retarded and Keldysh self-

energies. The explicit expressions for the the retarded
self-energies Σχ

R and Σc
R of the slave fermion (χ) and the

conduction electrons (c) are

Σχ
R(ω) = −t̃2nbGA(λ− ω) − t̃2

∫

dω′

π
fc(ω

′)
1

ω′ + ω − λ+ iδ
ImGR(ω′),

Σc
R(ω) = −t̃2knbJA(λ− ω) − t̃2k

∫

dω′

π
fχ(ω′)

1

ω′ + ω − λ+ iδ
ImJR(ω′). (10)

Here JR(ω) = [ω − Ed − Σχ
R(ω)]−1 and Gc

R(ω) =
[(−πρ)−1 − Σc

R(ω)]−1 are the retarded propagators for
the χ fermions and conduction electrons.

ν

= +

= +

ω ω ω ω

ω ω ω ω

ν

ν
ω

ων −

−

FIG. 1: The non-crossing approximation for the self-energies
of conduction electrons and χ fermions. The solid line denotes
the Larkin Ovchinnikov matrix propagator for the conduction
electrons. The dashed line denotes the corresponding Green’s
function of the auxiliary (χ) fermions and the wavy line is the
bosonic propagator. Thin lines denote the bare propagator
and full lines the dressed propagator. Each vertex corresponds

to the factor t̃
√

N
.

The ratio of the Keldysh to the retarded self-energies
self-consistently determines the fermion distribution
functions. We can summarize the results of our calcu-
lation of the Keldysh self-energies by providing the dis-
tribution functions that they generate. The distribution
function of the conduction electrons is the average

fc =
1

2
[fL(ω) + fR(ω)] , (11)

where fL,R(ω) = 1/(eβ(ω∓eV/2 + 1) is the equilibrium
distribution function in the left/right-hand lead. The
distribution function of the auxiliary fermion is

fχ(ω) =
nb[1 − fc(ω)]

nb + fc(ω)
, (12)

where nb = 1/(eβλ + 1) determines λ. This relationship
can be simply understood as the result of detailed balance
between rate of the decay processes c → b + χ and b +
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FIG. 2: Imaginary part of dot T-matrix for a variety of
voltages for the case k = 0.4. As the voltage is increased, the
singular central peak splits into two components.

χ → c, and it reverts to the equilibrium Fermi Dirac
distribution in the limit V → 0.

From these results, we compute the temperature and
voltage dependent current, given by [19]

I(V, T ) = N
e2V

h
ρ

∫

dω
[fL(ω) − fR(ω)]

eV
ImtR(ω) (13)

where tR(ω) = Σc
R(ω)/[1 − iπρΣc

R(ω)] is the scattering
t-matrix.

We have solved these equations numerically, and the
key results are shown in Figs 2-4. Fig. 2. shows the volt-
age dependent t-matrix at zero temperature. At zero
voltage, the t-matrix contains a logarithmic singular-
ity noted in previous work[14, 18] which splits into two
peaks at a finite voltage. In our calculation, the split
Kondo resonance retains its singular structure, although
this is most likely an artifact of taking a limit where
the bosons behave as a sharp excitation. In Fig. 3.,
we show the temperature dependent conductance. The
temperature-dependent deviations from unitary conduc-
tance are determined by the logarithmic singularity in
the phase shift, and in our calculation, these are propor-
tional to 1/ ln(TK/max(eV, T )). In the Schwinger boson
approach, the number of bound bosons in the Kondo sin-
glet never exceeds N/2 and the region K ≥ N/2 does not



4

1 2 3 4 5
T�TK

0.2

0.4

0.6

0.8

1

G
�������

GU

T/TK

g(T )

gU

TK/T

1

gU

dg

dT

FIG. 3: Temperature dependence of the differential conduc-

tance, normalized with respect to gU = N e
2

h
sin2(πk) for the

representative case k = 0.4. Insert shows the 1/T divergence
of the derivative dg/dT .

describe an underscreened Kondo model. Consequently,
we are limited to static phase shifts δ = π(K/N) < π/2,
so the strictly particle-hole symmetric case δ = π/2 is
outside the limits of our approach. Nevertheless, our
numerical results do capture the expected singularities.
Fig. 3. shows the singular form of the temperature de-
pendent conductance, with singular 1/T divergence in
dg/dT . Finally, Fig. 4. shows the voltage dependence of
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FIG. 4: Voltage dependent conductance G(V ) = I(V )/V for
the case k = 0.4. Insert: dG(V )/dV showing 1/V divergence.

the conductance, which has a similar logarithmic singu-
larity at low voltage.

In summary, we have proposed that the monotonically
increasing conductance observed as the temperature is
lowered in triplet quantum dots is associated with an
underscreened Kondo effect. The singular energy and
temperature dependence associated with the Kondo res-

onance is predicted to give rise to a 1/T divergence in the
temperature dependence of the differential conductance,
and a 1/V divergence in the second derivative of the
voltage dependent current d2I/dV 2. These ideas have
been developed qualitatively and illustrated within an
integral equation treatment of the underscreened Kondo
model. Experimental observation of these singular fea-
tures would constitute a first realization of the under-
screened Kondo effect.

The authors wish to thank H. Kroha, G. Zarand and
M. Eschrig for discussions related to this work. This
research was partly supported by the Alexander Von
Humboldt foundation (AP) and DOE grant DE-FG02-
00ER45790 (PC).

[1] Leo Kouwenhoven and Leonid Glazman, Physics World
14, 33 (2001).

[2] L. I. Glazman and M. E. Raikh, JETP Lett. 47, 452
(1988).

[3] T. K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 (1988).
[4] D. Goldhaber-Gordon, Hadas Shtrikman, D. Mahalu,

David Abusch-Magder, U. Meirav and M. A. Kastner,
Nature 391, 156 (1998)

[5] S.M. Cronenwett et al., Science, 281, 540 (1998).
[6] Yuval Oreg, David Goldhaber-Gordon, Phys. Rev. Lett.

90, 136602 (2003).
[7] M.G. Vavilov, L.I. Glazman, cond-mat/0404366 , (2004).
[8] J. Schmid, J. Weis, K. Eberl, and K. v. Klitzing, Phys.

Rev. Lett. 84, 5824 (2000).
[9] S. Sasaki, S. De Franceschi, J. M. Elzerman, W. G. van

der Wiel, M. Eto, S. Tarucha and L. P. Kouwenhoven,
Nature 405, 764 (2000).

[10] A. Kogan, G. Granger, M. A. Kastner, D. Goldhaber-
Gordon, H. Shtrikman, Phys. Rev. B 67, 113309 (2003).

[11] M. Pustilnik and L. I. Glazman, Phys. Rev. Lett. 87,
216601 (2001).

[12] W. Hofstetter, G. Zarand, Phys. Rev. B 69, 235301
(2004).

[13] O. O. Bernal, D. E. MacLaughlin, H. G. Lukefahr, B.
Andraka, Phys. Rev. Lett. 75, 2023 (1995); R. N. Bhatt
and D. S. Fisher, Phys. Rev. Lett. 68, 3072, 1992; V.
Dobrosavljevic, T. R. Kirkpatrick and G. Kotliar, Phys.
Rev. Lett. 69, 1113 (1992).

[14] W. Hofstetter & Herbert Schoeller, Phys. Rev. Lett. 88,
016803 (2002)

[15] P. Nozières, Journal de Physique C 37, C1-271, 1976 ; P.
Nozières and A. Blandin, Journal de Physique 41, 193,
1980.

[16] P. Coleman and C. Pepin, Phys. Rev. B 68, 220405(R)
(2003).

[17] Pankaj Mehta, L. Borda, G.Zarand, N. Andrei, P. Cole-
man, cond-mat/0404122 (2004).

[18] I. Paul and P. Coleman, cond-mat/0404001 (2004).
[19] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512

(1992).

http://arXiv.org/abs/cond-mat/0404366
http://arXiv.org/abs/cond-mat/0404122
http://arXiv.org/abs/cond-mat/0404001

