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1 Introduction

This textbook on fluid mechanics is aimed at engineering students at Bachelor’s degree level.
In Chapter 2 the fundamentals of fluid mechanics, needed for the description and analysis
of flows in technology, are presented. One-dimensional stream filament theory, along with
the momentum integral and angular momentum integral equations, already present us with
one method of constructing fluid technological appliances and experiments. For example, the
dimensions of a machine can be determined quite accurately in one first step and predictions
made about the flow losses which occur.

However, these methods fail when machines are to be optimized, or when appliances are to
be developed to operate under extreme conditions, such as silent operation, high efficiency,
small dimensions, greatly damped oscillatory behavior, etc. In addition to this, even for
most simple cases of application, simple fluid mechanical fundamentals cannot determine
the operating behavior of a machine accurately enough. This requires extensive experiments
to be carried out and these can be very costly and time consuming.

At this point we refer to more detailed textbooks which progress systematically from the
fundamental fluid mechanical equations and their methods of solution to the application of
fluid mechanical software.

The methods used in fluid mechanics are analytical, numerical and experimental. Although
numerical methods are increasingly used to replace experimental methods, all three are still
needed to solve fluid mechanical problems. This book is restricted to theoretical, that is
analytical, methods. After working through this book, students are qualified to understand
the basics and phenomena of fluid mechanics, and will have obtained an initial insight into
fluid mechanical software, even if further studies into the fundamental equations of fluid
mechanics and numerical methods are necessary for the application of this software.

The composition of this book is partly very theoretical. In order not to lose sight of the
connection to technical applications during the extensive derivations, we have selected flows
past airplane wings, flows past vehicles and flows in pipes of process engineering systems as
representative examples to illustrate the basics of one-dimensional fluid mechanics.

We now introduce the student to the great variety of fluid mechanical applications, demon-
strating that flows are all around us in our technological environment, by describing selected
examples of flows in the following introductory sections.

1.1 Flows in Technology

Flows are responsible for most transport and mixing processes, such as those which occur
in the transport of pollutants in our environment, in industrial processes, and in living
organisms. The combustion of the limited fossil fuels currently produces the majority of
electrical and heat energy. Optimizing the flows in these combustion processes serves to
reduce oil and pollutant emissions. Flows are also of interest in the propulsion of airplanes,
ships and vehicles, in pumping oil and gas through pipelines, and in the production and
coating of materials. It is the flow of oxygen and carbon dioxide in organisms which permits
life. Flows are of importance in the construction of low drag automobiles and airplanes;
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in the development of booster rockets and space craft for transport to space stations; in
energy and environmental technology; from process engineering to the simulation of entire
production plants; in geophysics and astrophysics; and from meteorology and climatology to
medicine, where innovations frequently go hand in hand with fluid mechanical optimization
of artificial heart valves, hearts and artificial vessels.

We now turn to examples of technical flows. Our environment is characterized by flow
phenomena in many different ways. The optimization of flows leads to a decrease in the drag
of airplanes, trains and vehicles and thus to savings in fuel. In drive assemblies it leads to an
increase in efficiency and a reduction in polluting emissions. When materials are constructed
from a melt, flow optimization determines the inner structure and thus the strength and
load capacity of the material. In chemical production plants and pipelines, the optimization
of flows reduces losses, and thus also the pump power needed to manufacture and transport
liquids and gases.

The development of airplanes and trains over the last decades is shown in Figure 1.1. The aim
here has been to find low drag body shapes corresponding to the transport velocity, in order
to keep the engine fuel or the electrical power of the driving motors as low as possible. The
development of civil air travel began in the 1930’s with the legendary Ju 52. It transported
17 passengers with a velocity of 250 km/h and was driven by three piston air motors. The
endeavor to fly as fast as possible from one place to another led to the development of the
jet engine, which currently makes it possible to fly at an altitude of 10 km, at a speed
of 950 km/h. Jumbo jets can transport up to 450 passengers, with the next generation
carrying up to 650 passengers. The first member of this aerodynamic new generation of
airplane was the Boeing 707 (center Figure 1.1). The decisive aerodynamic discovery was
the swept wing in the early 1940’s at the aerodynamic laboratory in Göttingen. This only
allowed low drag flight at so-called transonic velocities. The Airbus A310 is a representative
of the new generation of civil aircraft. Here the body of the plane is much larger, in order to
transport as many passengers as possible. And still a considerable saving of fuel is attained
compared to the Boeing 707. As well as the improved aerodynamics of transonic airfoils, it
is the lighter materials and improved production engineering, together with new fan engines
and the automated two-pilot cockpit, which have led to this saving in fuel and thus to the
reduction in polluting emissions. Fan engines have a considerably larger diameter than jet
engines. One part of the cold air condensed by the fan is guided past the hot propulsion jet
as an air coating. This has the additional useful effect of reducing the noise emissions of jet
engines drastically while simultaneously increasing their efficiency.

A similar course of development has also been seen in trains over the past decades. Because
the power required increases with the cube of the velocity and the drag with the square,
at velocities over 100 km/h it is necessary to adapt the aerodynamic shaping suitably.
Whereas in the case of conventional steam engines, the flow optimization merely shielded
the driver’s cab from smoke using side-mounted wind deflectors, in the case of Inter-City
(IC) trains, a better low drag design of the locomotive and the air deflectors close to the
carriage wheels were realized. It is only in the case of Inter-City-Express (ICE) trains,
where speeds of 330 km/h are reached, that a thorough aerodynamic shaping has been
technically implemented, although even here the current collectors, for example, could use an
aerodynamic covering. The fluid mechanical development of trains is also not yet completed.
At present there are projects planned for travel in pipes at speeds of up to 500 km/h.
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In the past, the aerodynamics of airplanes and trains were developed entirely in wind tun-
nels. Figure 1.2 shows the wind tunnel model of the Airbus A340 in its take-off phase.
Scales integrated into the mounting support of the model measure six components of the
aerodynamic forces. Because the model, at rest in the wind tunnel, is in an air flow with
a wind speed of about 300 km/h, the floor of the wind tunnel has to be moved with the
same speed. These are very thorough experiments and are a key factor in determining the
time needed to develop an airplane, a process which can take up to eight years, from the
definition of requirements (flight speed, payload), through the design phase, to the introduc-
tion of the product. These very long and expensive development processes have now been
reduced considerably with the use of fluid mechanical simulation on large-scale computers.
Flow simulation permits reasonably simple variations in the geometry and flow parameters,
without the need to build new wind tunnel models each time. In future projects, both fluid
mechanical software on large-scale computers and the wind tunnel will be tools of develop-

Fig. 1.1 : Development of airplanes and trains
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ment for design engineers. Wind tunnel experiments will increasingly be used to verify the
computer results.

The low drag aerodynamic shaping of an automobile was already resolved technically in
1938. The Mercedes-Benz racing car built in 1937 to beat the world land-speed record is
shown in Figure 1.3. The present-day usual drag coefficient cW (dimensionless drag force)
is 0.365, but by lowering the driver in the racing car and covering the wheels, a so-called
streamline body (Chapter 2.3.2) was achieved, with the drastic reduction in drag to a cW

value of 0.17. Figure 1.4 demonstrates that the optimal obtainable aerodynamic value is
0.15, indicating just how remarkable was the achievement of those Mercedes-Benz engineers.
These findings on motor vehicles were really only taken into account in the 1980’s, after the
oil crisis made fuel savings necessary. At present, the automobile industry has reached a
compromise in the drag coefficient with a value of about 0.26. This permits a comfortable
passenger area with the necessary all-round view.

This introduction to technical examples can be supplemented with an anecdote. In 1952,
the only wind tunnel for the aerodynamic development of motor vehicles in Germany which
was operational and equipped with the appropriate scales was in Schlichting’s institute in
Braunschweig. So it stood to reason that the neighboring Wolfsburg factory should use the
Braunschweig wind tunnel to measure the aerodynamic drag of the Volkswagen V W11 and
V WX2 models. The wind tunnel results are shown in Figure 1.5. The prototype V WX2

showed a considerably better drag coefficient of 0.22, while the VW Beetle which was fi-
nally produced had a very poor drag coefficient of 0.4. Schlichting was so annoyed by the
lack of attention paid to his work, that he presented the results in Figure 1.5 at the next

Fig. 1.2 : Model of an Airbus A 340 in a wind tunnel
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Fig. 1.3 : Mercedes-Benz W125 in a wind tunnel

international conference, much to the infuriation of the company involved.

A further technical example of building aerodynamics is shown in Figure 1.6. The Tacoma
Narrows bridge, which has now become famous for its erroneous aerodynamic construction,
extends 1.81 km over the narrows of Puget Sound in Washington State. On the 7th of
November 1940, the wind was blowing with a speed of about 68 km/h at right-angles to
the bridge. This caused a periodic separation of the air, known as a Kármán vortex street,
to form at the opposite side of the bridge. Unfortunately, the eigenfrequency of the bridge
was the same as the frequency of the periodic flow separation, so that mechanical eigen-
oscillations were stimulated, leading to the bridge’s collapse.

The optimization of flows is also important in the construction of internal combustion
engines. The well-known cycle of an Otto engine is shown in Figure 1.7. The fuel-air
mixture is sucked in through the open intake valve by the backward motion of the piston.
In order to attain a mixture which is as homogeneous as possible, a rotating flow, called a

1920 1960 2000Jahr

c   = 0.15w wc   = 0.16

0.8

0.4

0.2

wc  

c  = 0.26w

Fig. 1.4 : Development of the cW

value of motor vehicles
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Fig. 1.5 : Measurement of automobile drag
coefficients in the wind tunnel

tumble, is superimposed on the flow. In the second step, the valve is closed and the fuel-
air mixture is compressed, so that, after igniting the combustion, the expanding hot gas
moves the piston for the mechanical propulsion downwards. When the combustion cycle is
completed, the exhaust is expelled through the outlet valve (step 4). It might be expected
after more than 100 years of development of combustion engines that the flow processes

Fig. 1.6 : Aerodynamically excited oscil-
lations of Tacoma Bridge
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ExhaustCombustionCompressionSuction

Fig. 1.7 : Cycle of an Otto engine

of intake, compression, combustion and exhaust expulsion would already be optimized; yet
the need for an additional catalyst to reduce emission of pollutants shows that this is still
not the case. For example, intensive efforts are being made to realize the direct injection of
fuel, usual in diesel engines, in Otto engines too. This is expected to yield a fuel saving of
about 10%, with a simultaneous increase in efficiency. Figure 1.8 shows a direct fuel-injection
Otto engine. In the compression phase, the combustible gas mixture introduced through the
injection valve is ignited directly at the spark plug via the bend in the cavity. However, the
fluid mechanical problem of optimizing the combustion with respect to pollutant emissions
remains.

Flows with chemical reactions are very important for many applications in energy, chem-
ical and combustion technology. Figure 1.9 shows an example of a flame, whose structure
is due to a flow. Flames are characterized by a wide spectrum of time and length scales.
Typical length scales of the flow vary from the size of the combustion chamber right down to

valve
Outlet

valve
Intake

combustible
gas mixture

valve
Injection

Fig. 1.8 : Otto engine with direct fuel in-
jection
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Fig. 1.9 : Flow structure of a flame

the smallest vortex in which kinetic energy is dissipated. The chemical reactions occurring
in combustion determine the wide spectrum of time scales. Knowledge of the interaction of
these combustion time scales with the spatial structure of the flow is required to predict the
pollutants in combustion processes.

Flows are also involved in the production of materials such as in the microscopic struc-
ture of solidified steel in Figure 1.10. We see convection cells which have formed at the
solidification front as the hot molten metal becomes rigid. They are due to lift flows and
determine the material properties of steel, such as its strength.

In process engineering and chemical production plants (Figure 1.11), it is pipe flows
in bends and junctions which introduce losses. If there are liquid separators in use, as in
refineries, multi-phase flows with drops and bubbles have to be taken into account, as they
can complicate matters considerably in optimizing the flow processes.

There are many more examples of flow in technology. If you have followed the text so far,
your interest will be awakened to move on to the basics and methods of fluid mechanics in
the following chapters, so that you too will be able to solve fluid mechanical problems in
engineering.

We conclude this introduction by referring to additional literature. To supplement this

Fig. 1.10 : Microscopic structure of solid-
ified steel
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Fig. 1.11 : Production plant in chemical
process engineering

text on fluid mechanics, we recommend PRANDTL–Guide of Fluid Mechanics 2001 for
additional material on the fundamentals of fluid mechanics. This text describes further areas
of fluid mechanics, such as aerodynamics, turbulent flows, fluid mechanical instabilities, flows
with heat and material transfer, two phase flows and flows with chemical reactions, flows
in the atmosphere and in the ocean, biological flows, as well as flow machinery. The fluid
mechanical phenomena derived from technical problems are to be found in our textbook H.
OERTEL jr., M. BOEHLE 1999. Further information on analytical and numerical methods
is to be found in the textbooks H. OERTEL jr., E. LAURIEN 2002, H. OERTEL jr., J.
DELFS 1996, H. OERTEL jr. 1994. Analytical descriptions of the fluid mechanics basics and
methods are to be found in G. K. BATCHELOR 1994, K. GERSTEN, H. HERWIG 1992, W.
SCHNEIDER 1978, J. H. SPURK 1997, F.M. WHITE 1974 and the technical application of
boundary layer theory in H. SCHLICHTING, K. GERSTEN 1999. The mathematical basics
may be found in more detail in the books by K. MEYBERG, P. VACHENAUER 1997,1998.

1.2 Flow Regimes

The first contact one makes with a flow might be at a water faucet. If you hold your finger
in the stream of water, you will feel a force ~F which the flow exerts on the finger. This
force is called the drag, and is experienced by a body in a flow. The drag is dependent on
the geometry of the body in the flow, the properties of its surface, the flowing medium and
the flow variables. The drag has a different value for a stream of gas than for the water
stream we have considered. In order not to constantly have to distinguish between gases
and liquids, we will use the generic term fluid.
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The moving fluid is considered to be a continuum. This means that we neglect the molecular
structure of the fluid, since the mean free path of the molecules is small compared to the
characteristic macroscopic dimensions of the flow field. The characteristic physical quantities
of the flow field of Figure 1.12, such as the velocity vector ~v with components in three
directions u, v, w, the pressure p, the density ρ and the temperature T , are assumed to be
continuous functions of position ~x = (x, y, z) and time t.

Let the finger in the stream of water which we considered initially be replaced by a horizontal
plate, as in Figure 1.12. The unperturbed flow w∞ points in the vertical direction and
has the index ∞. In order to describe the flow, the three scalar field quantities p, ρ and T ,
as well as the three components (u, v, w) of the vector velocity ~v have to be calculated as
functions of the coordinates (x, y, z) and the time t:

p(x, y, z, t) , ρ(x, y, z, t) , T (x, y, z, t) , ~v(x, y, z, t) =





u(x, y, z, t)
v(x, y, z, t)
w(x, y, z, t)



 (1.1)

In order to calculate these six flow quantities, we have the continuum mechanical funda-
mental equations of mass, momentum and energy conservation as well as the ther-
modynamic equations of state at our disposal.

In Figure 1.13, the example of a horizontal plate in a flow is considered further, in order
to introduce some fundamental terms needed for the description of flows. The left-hand
picture shows flow paths made visible with small aluminum particles. One particular point
is noticeable in the middle of the plate. This is called the stagnation point, where the
streamlines branch to the left and right. In the stagnation point of a flow field, the velocity
vector ~v is equal to zero, and the pressure p is at a maximum.

The right-hand illustration in Figure 1.13 is a sketch of the flow. The no-slip condition
holds at the surface of the plate. Here again the velocity is equal to zero, but the pressure
generally varies along the coordinate x. The velocity perpendicular to the plate at the
position under consideration varies from the value zero to the constant velocity of the outer

w

F

v = (u,v,w),
p,   ,T

Fig. 1.12 : Forces acting in a flow
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u
Boundary layer

z

x

y

Stagnation point

Fig. 1.13 : Liquid jet at a horizontal plate

flow. This presents us with an initial division into different flow regimes: the boundary
layer flow and the outer flow. If we take into consideration the flow properties, such as
the viscosity µ (see Chap. 2.1), responsible for the friction in the flow, the boundary layer
flow is the viscous part of the flow field, and the outer flow is the inviscid part.

The origin of the internal friction is the inter-molecular interaction forces of the fluid.
Whereas two elastic spheres (Figure 1.14) exchange momentum and energy completely and
instantaneously, and thus have the infinitely large interaction force sketched in Figure 1.14,
the interaction between molecules of a moving fluid is characterized by repulsive or attrac-
tive interaction forces (see Chap. 2.1), depending on their distance apart r. These interaction
forces between the molecules determine the transport properties of the fluid, such as the
viscosity (friction), heat conduction (energy transport) and diffusion (mass transport).

u1 2u

u’21u’

1m m2

2m’m’1

After collision

Before collision

Fig. 1.14 : Collision between two spheres
(point mechanics)
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F

r

Fig. 1.15 : Interaction force in the collision
of hard spheres

For the different regimes of the moving fluid we have the corresponding fundamental equa-
tions of continuum mechanics: mass, momentum and energy conservation. These are valid
for both viscous boundary layers flows, as well as for inviscid outer flows.

If we consider the flow quantities velocity ~v and density ρ, we are led to a completely different
division of the flow regimes. We speak of an incompressible flow if the density ρ in the
flow field is constant for a given temperature, e.g. in water flows. The flow is compressible
if the density varies in the flow field, e.g. in air flows. If the velocity vector ~v is equal to zero,
the medium at rest is called hydrostatic (ρ = const.) or aerostatic (ρ variable). Similarly
regimes where the fluid is in motion are called hydrodynamic or aerodynamic.

Examples

F

moving
liquid

Fa

G

wF

gas
movingAtmosphere 

at rest

T, p
0

of water
standing column 

Hz

0
p

incompressible

Hydrostatic

Material at rest

Aerostatic Hydrodynamic Aerodynamic

Flow

compressible compressibleincompressible

Fig. 1.16 : Division of flow regimes
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Examples are shown in Figure 1.16. For example, hydrostatics treats the linear pressure
distribution in a standing column of water, aerostatics the pressure and temperature (or
density) distributions in the atmosphere at rest, hydrodynamics the water flow past a plate,
and aerodynamics the flow past a wing.

Flow Past a Wing

Let us consider the first technical flow problem, the flow past the wing of an airplane. This
was already introduced in Chapter 1.1. Figure 1.17 shows the wing of an Airbus A310.
The flow is from the left of the wing, with Mach number M∞ (ratio of the free stream
velocity u∞ to the speed of sound a∞, velocity of propagation of small perturbations).
The free stream here has a subsonic Mach number of M∞ ≈ 0.8. A further dimensionless
characteristic number which describes the viscous boundary layer regime of the flow past
a wing is the Reynolds number, ReL, which is made up of the free stream velocity u∞,
the depth of the wing L and the kinematic viscosity ν (ν = µ/ρ): ReL = u∞ ·L/ν. For civil
airplanes it has a value of about ReL ≈ 7 · 107.

In flights, the flow losses must be kept low, so that the ratio between lift and drag attains as
high a value as possible. In order to achieve this, the engineer must be aware of the different
flow phenomena, so that the computational methods can be applied appropriately.

However, it is not only the flow past a wing at altitude which is of interest. The design
of the wing must be such that it generates enough lift at take-off and landing, with the
use of additional high lift flaps. In addition, the development of an airplane must take into

8u

Fig. 1.17 : Wing of a civil airplane
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account how the fuselage and engines of the plane affect the flow past the wing, and what,
for example, the best position is for the engines.

Analytical and, to an even greater extent, numerical methods are used to answer all these
questions. During the design phase, the engineer endeavors, with the help of a few wind
tunnel experiments, to keep the development costs and time as low as possible. In addition,
the optimization of an Airbus wing and the investigation of the lift and drag behavior
at different angles of attack, for example, would be inconceivable without modern fluid
mechanical methods.

The flow regimes at a section of a wing are shown in Figure 1.18, both with the dimensionless
pressure distribution indicated, as well as the flow made visible with small particles. For
the discussion that follows, we need the dimensionless pressure coefficient cp, which is
defined as follows:

cp =
p − p∞

1
2
· ρ∞ · u2

∞

. (1.2)

p is the pressure at an arbitrary position in the flow field, with p∞, ρ∞ and u∞ denoting the
pressure, density and velocity respectively in the free stream. Figure 1.18 shows the values
of −cp on the wing, indicating the negative pressure on the upper side (suction side) and
the over-pressure on the lower side (pressure side) compared to the free stream. The free
stream with the velocity u∞ is decelerated along the stagnation line. At the leading edge
of the wing, the flow comes to rest, reaching its maximum pressure coefficient of cp (−cp

minimum). This point on the wing is called the stagnation point.

Wake
u

Boundary layer

inviscid flow

shock

p-C

-1

x

-

+

-
+

-c p

-

+
-

+

Flow made visible with small particles

Fig. 1.18 : Flow regimes and pressure distribution on a wing
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Moving away from the stagnation point, the stagnation line branches towards the suction
and pressure sides. We will first look at −cp along the suction side. The flow is greatly
accelerated from the stagnation point along the upper side (the −cp value becomes larger)
and on the front part of the wing it reaches supersonic velocities. Further downstream, the
flow is decelerated through a jump in pressure, called a shock wave, to subsonic velocities
again (there is a sharp drop in the −cp value). The flow is then further decelerated towards
the trailing edge.

On the pressure side, the flow is also accelerated away from the stagnation point. However
the acceleration close to the nose is not as great as that on the suction side, so that no
supersonic velocities occur on the entire pressure side. At about the middle of the wing, the
flow is again decelerated, and the −cp value approaches the −cp value on the suction side
downstream. At the trailing edge, the pressure coefficients of the pressure and suction sides
are approximately the same.

A thin boundary layer forms on the suction and pressure sides. The suction and pressure
side boundary layers meet at the trailing edge and form the wake flow further downstream.
Both the flow in the boundary layer and the flow in the wake are viscous. Outside these
regions, the flow is essentially inviscid.

The different properties of the different flow regions result in different equations to compute
each flow. In boundary layer flows it is the boundary layer equations which hold, to good
approximation. On the other hand, calculating the wake flow and the flow close to the trailing
edge is more difficult. In these regions the Navier-Stokes equations have to be solved. The
inviscid flow in the region in front of the shock may be tackled with comparatively less
difficulty using the inviscid equation.

Fig. 1.19 : Flow traces on the surface of a
wing in a wind tunnel
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Figure 1.19 shows traces of color indicating the flows on a wing in a wind tunnel experiment.
It is seen that the color follows straight lines in a large area of the width of the wing. The
statements made above are valid in these regions. Close to the body of the plane, the flow
lines are no longer straight, and they form a vortex on the rear surface of the wing. In the
following chapters, this concept will be used together with the idea of flow separation,
which has a considerable influence on the behavior of an airplane.

As we conclude the example of a wing, we consider the question of why the wing of a civil
airplane, in contrast to that of a glider, is swept. This is because of the Mach number depen-
dence of the dimensionless drag coefficient cw at high Mach numbers of 0.8. We introduce
the drag coefficient cw with

cw =
W

1
2
· ρ∞ · u2

∞ · A (1.3)

where W is the drag and A the cross-sectional area of the wing. The drag increases greatly
for transonic flows. Since the aim in civil aircraft is to fly as fast as possible (high Mach
number), but with as low a drag as possible to keep the fuel consumption down, the wing
is swept to about φ = 30◦. The geometric relation

M = M∞ · cos(φ)

lowers the local Mach number at that section in the profile of the wing by the value cos(φ),
reducing the drag coefficient by the corresponding amount. This means a civil aircraft can
fly at Mach number M∞ = 0.8 at an altitude of 10 km with a velocity of 950 km/h.

Flow Past an Automobile

One of the first steps in developing an automobile is to decide on its contour. This is
determined more by the designer than by the aerodynamic engineer. The limits within
which the engineer determines the possible variations in the contour (Figure 1.20) are small
compared to the length or width of the automobile to be developed.

Taking these guidelines into account, the aerodynamic engineer optimizes the contour so
that the flow drag is as small as possible. In recent years vehicles have been developed
whose drag coefficients cw are smaller than 0.3.

However, minimizing the drag is certainly not the only job of the aerodynamic engineer at
the design stage. At the same time, all the forces and moments which arise in an air flow
have to be taken into account in optimizing the contour. In particular, the lift force, the
side-wind force and the moment about the main axis of the vehicle are important, since
these influence the driving stability to the greatest degree. In addition, the aerodynamic
engineer has to ensure that the wind noises are minimal, that the windows do not become
dirty during travel, that the side mirrors do not vibrate at high speeds, and so on.

In contrast to the flow past the wing of an airplane, the flow past an automobile can
be described as incompressible to good approximation. This is because the variations in
density are small. As in the case of the wing, in Figure 1.21 we differentiate between different
flow regimes: inviscid flow, boundary layer flow and viscous wake flow.
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U
inviscid flow

Wake

Boundary layer

Fig. 1.20 : Flow past an automobile

The pressure distribution has a stagnation point at the radiator. The flow is accelerated
along the hood, leading to a pressure drop. At the windshield, the flow is again blocked,
leading to an increase in pressure. After the pressure minimum has been reached on the
roof, the flow is decelerated, with a pressure rise. Downstream of the trunk the boundary
layer flow turns into the wake flow.

The flow in the wind tunnel experiment is made visible with smoke, and this shows that
downstream from the back of the automobile, a backflow region forms. This is shown as the
dark region into which no flow indicators (white smoke particles) can penetrate.

If we consider the flow under the automobile we see that the lower ground flow can be
considered to be a gap flow whose upper boundary is rough. The average height of the
roughness is about ≈ 10 cm for an automobile. This means that the flow directly at the
upper wall has to be assumed to be swirled.

-

+

-

-

- -

+

+

Boundary layer
inviscid flow

Wake
u

wake flow

Fig. 1.21 : Flow regions and pressure force on an automobile
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Abb.1.29 
Fig. 1.22 : Structure of the wake flow of a vehicle

In order to avoid the flow being swirled like this, front spoilers are placed on many automo-
biles in the lower region of the vehicle, in front of the entrance to the gap. The result of this
is that a large part of the flow does not pass under the vehicle, where the swirling would
lead to an increase in the drag. The savings made in this way are greater than the losses
due to the extra drag of the spoiler.

The pressure force on the upper contour is considerably smaller in most regions than that
under the vehicle, and this pressure difference leads to a lift. In the aerodynamic design, one
attempts to keep both the lift and the drag small. As already mentioned in the discussion
of the flow below the automobile, in many cases of application, changes are made to the
contour and spoilers are introduced, which divert the flow so that the vehicle experiences a
reduction in lift.

Let us come back to the wake flow downstream of the vehicle. In Figure 1.22 the structure
of the flow in a cross-section through the vehicle is considered. We recognise the backflow
region with a stagnation point on the surface of the vehicle, together with a saddle point
downstream in the the flow field, where the flow lines branch into the wake flow and the
backflow region. Completing the three-dimensional structure of the wake flow, as in the
right-hand picture in Figure 1.22, we see that in the upper region of the roof of the trunk a
so-called horseshoe vortex forms, seen when snow is driven together at the rear of a vehicle.

Liquid-Steam Separator

In chemical production plants quite different flow regimes have to be taken into consid-
eration. If we take the example of a liquid-steam separator, we have to differentiate between
liquid flows in pipes and bubble flows, drop flows and steam flows. Liquid-steam separators
are to be found, for example, in refineries for the extraction of heavy hydrocarbons from
crude oil gas.
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Figure 1.23 shows a basic sketch of such a set-up. It consists of a throttle valve, the separator
(demister), the steam compressor and the pump which produces a pressure drop and under-
cooling of the liquid.

An incompressible liquid is present in flow region 1. This is guided via a throttle valve
into flow region 2, a two-phase flow (liquid and steam). By means of an adiabatic throttle
process, an obstacle such as a shut-off valve or a test diaphragm is used to produce a
pressure drop ∆p = p1 − p2 with p2 < p1, with the temperature T , or the enthalpy h of the
liquid remaining constant (log(p)-h diagram). The two-phase flow in 2 is then directed to a
separator or demister, where isobaric separation of liquid and steam takes place.

After separation, a compressible steam flow is present in region 3, and an incompressible
liquid flow in region 5. These processes can be discussed by means of a thermodynamic
log(p)-h diagram. Here the pressure p is plotted on a logarithmic scale against the enthalpy
h of the medium.

A mixture of liquid and steam is present in the two-phase or wet steam regime. This regime
is defined to the left by the lower limiting curve and to the right by the upper limiting
curve. Both curves meet at the critical point K. The lower limiting curve is the connecting
line of all points at the start of evaporation, and separates the liquid from the two-phase
regime. The upper limiting curve is the connection of all points at the end of evaporation
and separates the two-phase regime from the steam. As is usual in thermodynamics, the
variable X denotes the amount of steam in the vapor, so that the lower limiting curve is
denoted by X = 0 and the upper by X = 1.

By choosing different pressure differences ∆p in the throttle, different flow regions 2 in the
two-phase regime can be attained. This is indicated on the log(p)-h diagram by the thin
lines. The steam flow 2 is compressed, leading to a compressible gas flow in flow region 4. In
general, steam is any gas-like substance close to the limiting curve. The compressor ensures
that the thermodynamical state of the medium in region 4 in the log(p)-h diagram is at a
greater distance from the limiting curve than the steam in region 3. That is why the flow
downstream from the compressor is called a gas flow rather than a steam flow.

Inside the pump, where the incompressible liquid flow passes over from flow region 5 to flow
region 6, the accelerating moving liquid can produce large pressure drops. Therefore it has
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Fig. 1.23 : Sketch and pressure-enthalpy diagram of a liquid-steam separator
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Fig. 1.24 : Flow regions in a two-phase
flow

to be ensured that the minimum static pressure pmin does not fall below the steam pressure
pD. This would lead to damaging cavitation effects which could destroy the pump.

The flow regime 1 as well as the regions 5 and 6 are typical examples of the incompressible
flows through straight or curved pipes which frequently appear in technical applications. As
a fluid flows through such pipes, friction effects lead to pressure losses ∆pV which have to be
determined. For example, knowledge of these pressure losses is necessary in order to choose
suitable pumps with appropriate efficiency. The flow region 2 of the two-phase flow, where
the fluid is present in two aggregate states, is a typical example from process engineering.
Flow regions 3 and 4 are examples of compressible flows, where, as well as the variations in
pressure and velocity, the variation in the state variables density ρ and temperature T also
have to be taken into account.

Figure 1.24 shows the flow regimes of the two-phase flow. In the different pipe systems of
the liquid-steam separator we distinguish between the liquid flow with X = 0, the bubble
flow in in liquid with 0 < X << 1, the drop flow with fluid film at the walls of the pipe
with 0 << X < 1, and the steam flow with X = 1.

1.3 Product Development

Whereas the aim of a scientist is to determine the mathematical and physical descriptions
of flow processes, and thus derive the continuum mechanical fundamental equations, the
engineer must implement this scientific knowledge in new products. The fundamentals of
fluid mechanics described in Chapter 2 are necessary to do this, but so too are the analytical
and numerical methods of solution and the fluid mechanical software of Chapter 3 needed
to solve the fundamental equations. The formal development process of a new product is
therefore always the same.
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If we follow the development of a wing of an airplane, we first have to set out the require-
ments. The airplane has to convey, for example, 250 passengers at an altitude of 10 km over
a distance of 7, 500 km at Mach number M∞ = 0.8. The requirements which, for example,
the Airbus A300 satisfies lead to the following lift coefficient required for transport of the
payload:

ca =
A

1
2
· ρ∞ · u2

∞ · AF

(1.4)

with lift force A, free stream velocity u∞ and wing surface area AF . It also has to be taken
into consideration that the airplane will take off and land with a speed of about 250 km/h.
This necessitates the integration of high-lift flaps into the wings, to increase the surface area
of the wing at take-off and landing in correspondence to the lower velocity, so as to reach
the required lift.

The development engineer must design a wing which will have as low a drag as possible,
in order to minimize the engine’s fuel consumption. The flight Mach number of M∞ = 0.8
leads to a sweep angle of φ = 30◦. In addition, the integration of the wing into the cylindrical
body of the airplane must be carried out, and the number of engines necessary for propulsion
determined.

The first job for the development engineer is the preliminary design, as shown in Figure
1.25. The curvature of the wing profile is provisionally determined, using simple methods
which we will meet in Chapter 2. The pressure distribution cp sketched in Figure 1.26
has to satisfy the required lift coefficient ca and simultaneously have a drag coefficient cw
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Fig. 1.25 : Product development
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which is as low as possible. In the second step, the calculation of the swept wing designed
with this profile is carried out. At this stage, the warping of the wing and its integration
into the body of the plane also have to be taken into account. To do this we require the
fluid mechanical software as presented in Chapter 3, as well as the simplifications of the
fundamental equations in the different flow regions. These equations form a system of partial
differential equations which have to be solved approximately using numerical methods. The
first calculation of the wing generally will not attain the required lift coefficient ca, or the
computed drag coefficient cw will still be too large. A further iteration step is then necessary
to get an improved preliminary design with the computed data. This design iteration is
carried out in 2 to 3 steps.
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x/Lx / L

p-c

Wind tunnel experiment
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Fig. 1.26 : Wing design: preliminary design, calculation, wind tunnel experiment, verifica-
tion and validation
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If the required aerodynamic coefficients are satisfied, the second step of the design process
takes place, the construction and the building of the wind tunnel model. This generally
consists of stainless steel, and has numerous pressure holes to allow the measurement of the
pressure distribution at different cross-sections of the wing.

In Chapter 2 we will learn that the integral of this pressure distribution permits the cal-
culation of the required forces. As shown in Figure 1.26, the wing model is fitted out with
model engines, so that the airplane model in the wind tunnel is geometrically similar to the
original.

Extensive measurements are now carried out in different wind tunnels. The wing is in-
vestigated at the free stream Mach number M∞ = 0.8 (950 km/h, 10 km altitude) and
at different angles of attack, as well as in the take-off and landing phases with extended
landing flaps, that is, with a larger wing surface and a lower speed of 250 to 300 km/h.

The results of the calculation may not initially agree with the wind tunnel results. This is
because of the mathematical and physical difficulty of the numerical solutions, and because
of experimental errors and disturbances in the wind tunnel.

The next important step in the design process is verification and validation. These require
all the engineering skills of the developer. Verification is the comparison of the experimental
results with the numerical results, as well as the adaptation of the numerical methods of
solution and the instrumentation in the wind tunnel. Validation requires the further devel-
opment of the physical models in the fundamental equations of the different flow regimes.
This is a very time-consuming process which has a great influence on the development time
of an airplane.

As shown in Figure 1.26, in the verification and validation phases, the calculation, or the
preliminary design, are corrected in 3 to 4 iteration steps, until the initial requirements are
satisfied. In each iteration step, a new wind tunnel model has to be built, and the time-
consuming measurements in the wind tunnels repeated. The fewer the number of iteration
steps which have to be carried out, the more successful the design process.

We have described the development steps of an airplane using the example of the aerody-
namics of the wing. Similar development processes are also carried out for the structure
of the plane, the development of the engines, the flight mechanics and the system integra-
tion in the cockpit. Therefore different disciplines are interconnected in the different design
processes. If we consider how many different companies in different countries are involved
in the European project Airbus (Figure 1.27), for example, we can see how complex the
development of an airplane is. The same is true of the development of an automobile, a flow
engine or a process engineering production plant. For each of these, the development pro-
cess described, using the example of a wing, has to be carried out for each of the disciplines
involved.

At the end of the development process comes the verification of the finished product. In
the case of an airplane, this is its first flight and consequent registration. The airplane has
to prove itself in certain extreme flight conditions. Only minimal changes to the airplane
can now be carried out. Any development errors which were discovered during the design
cycle can now only be corrected up to a point. For example, when developing the Airbus
A320, the interaction between the relatively large engines and the body of the plane was
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Fig. 1.27 : Construction elements of an Airbus A320

not given enough attention. This manifests itself in an unpleasant drone in the body of the
plane during take-off. The experiences gained in the final verification are retained in the
databases of the airplane manufacturers and can be taken into account right at the start of
the preliminary design of the next project.
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2 Fundamentals of Fluid Mechanics

2.1 Flow Properties

We distinguish between the kinematic properties of the flow, and the transport proper-
ties and thermodynamic properties of the fluid. While the kinematic properties velocity
~v, angular velocity ~ω, acceleration ~b, and vortex strength ~ωR are properties of the flow field
and not of the fluid itself, we will see in Chapter 2.3.1 that the transport properties viscosity,
heat conduction and mass diffusion, as well as the thermodynamic properties pressure p,
density ρ, temperature T , enthalpy h, entropy s, the specific heats cp, cv, and the expansion
coefficient α are properties of the fluid. First of all we present the definitions of the funda-
mental concepts. For further details we recommend PRANDTL-Guide of Fluid Mechanics
2001, and BIRD, STEWART, LIGHTFOOT 1960.

2.1.1 Transport Properties

One transport property which we have already met is the friction. It determines the mo-
mentum transport in the viscous flow regimes and is linked to the gradient of the velocity
vector ~v. For example, heavy oil or tar need a long time to flow out of a container, whereas
light oil flows faster.

In order to introduce the shear stress τ , we look at the one-dimensional flow problem in
Figure 2.1. Between a lower plate at rest and an upper plate moving with constant velocity
U , there is a constant shear rate with linear velocity profile u(z). This is called Couette
flow. The boundary condition on the surfaces of the plates is the no-slip condition, which
on the lower plate leads to u = 0 and on the upper plate u = U . In order to maintain
the constant velocity U in the presence of the friction, a constant force F is required. The
applied force is proportional to the drag velocity F ∼ U , proportional to the plate surface
area A, F ∼ A and inversely proportional to the height of the gap H, F ∼ 1/H.

Thus the force is

F ∼ U · A
H

z

U

F
A

u(z)H

Fig. 2.1 : Couette flow, definition of shear
stress τ
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or with the constant of proportionality µ

F = µ · U · A
H

.

µ is a material constant of the fluid which is called the dynamic viscosity. It has the dimen-
sions [F · T/L2] with the force F , the characteristic time T and the characteristic length L,
in our example the gap height H, and the units {Ns/m2}.
The shear stress τ (shear rate) is

τ =
F

A
= µ · U

H

with the units {N/m2}. For Couette flow we have the linear velocity profile

U

H
=

du

dz
.

This yields

τ = µ · du

dz
. (2.1)

If this linear relationship between the shear stress τ and the velocity gradient du/dz holds,
the fluid is a Newtonian fluid. Examples of Newtonian media are water, smoothly flowing
oil and gases.

Using the relationship already derived, we can already discuss an important technical ap-
plication. Air bearings have a particularly small friction drag. If, for example, we move a
glass plate on a 0.1 mm thick air cushion with a constant velocity of 0.1 m/s, we have

du

dz
=

U

H
= 103

{
1

s

}

,

for air at 20◦ C, µ = 1.71 · 10−5 Ns/m2, and so

τ = µ
du

dz
= 1.71 · 10−2

{
N

m2

}

.

With a plate surface area of A = 0.01 m2 we obtain the very small force

F = τ · A = 1.71 · 10−4{N} .

In general flows are not, as assumed until now, one-dimensional. There are three shear stress
components for each spatial direction, that is 9 components of the shear stress tensor τij.
These characterize the friction in the three-dimensional flow field. In this terminology, the
shear stress component τxz in Couette flow determines the velocity profile u(z), with x the
direction of flow and z the vertical coordinate

τxz = µ

(
∂u

∂z
+

∂w

∂x

)

.
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For the one-dimensional theory, to be treated in Chapter 2.3, with w and ∂w/∂x equal to
zero, it suffices to set

τxz = τ = µ
du

dz
.

As well as Newtonian fluids, we also have non-Newtonian fluids. In this case the functional
relation in equation (2.1) is non-linear. Some examples of non-Newtonian fluids are shown
in Figure 2.2. The curves for fluids which cannot withstand a shear rate must go through
the origin. So-called yielding fluids have a finite shear stress even for vanishing velocity
gradients. These fluids behave partly as rigid bodies and partly as fluids. The slope of the
curves for pseudo-elastic fluids such as molten metal or high polymers decrease as the shear
stress increases. In contrast to this, dilatant fluids, such as suspensions, have an increase in
the slope. Toothpaste and mortar are examples of ideal Bingham materials. The finite value
of τ at du/dz = 0 follows the linear progression of a Newtonian fluid. In addition to this, the
shear stress of some non-Newtonian media is time dependent. Even if the shear rate is kept
constant, the shear stress changes. An ansatz frequently used for non-Newtonian media is

τxz ≈ K · τn
xz , (2.2)

where K and n are material constants. For n < 1 we have a pseudo-elastic fluid, n = 1 with
K = µ is a Newtonian fluid, and for n > 1 a dilatant fluid. Note that the ansatz (2.2) yields
unrealistic values for the root in Figure 2.2.

Numerous other laws have been derived for non-Newtonian media, mainly from experimen-
tal results. In what follows we will no longer consider these and will restrict ourselves to
Newtonian fluids.

The viscosity µ of a Newtonian fluid is directly related to the interaction forces between
the molecules of the flowing medium. If we consider the interaction force between two
molecules in the air (nitrogen, oxygen) in Figure 2.3, we see that at large distances r the
molecules have a negative attraction, and at small distances they have a positive repulsion.
The attractive force between the molecules results from the Van der Waals interaction, whose
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dilatant medium

medium

medium

du/dz

Abb. 2.2:

Fig. 2.2 : Shear stress τ for Newtonian and
non-Newtonian fluids
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origin lies in the dipole moment produced by the deformation of the electron shells. The
almost exponential repulsion is due to the electrostatic repulsion of shells with like charge.
In a collision between molecules due to their eigen-motion, this interaction will first act to
attract the molecules and then to repel them strongly. This interaction of the 1023 molecules
per mole in the air causes not only friction, but also heat conduction and diffusion. Since
the eigen-motion of the molecules, and thus also their collision probability, depends on the
temperature T and pressure p, the viscosity µ is also temperature and pressure dependent.

Figure 2.4 shows the qualitative temperature dependence for liquids and gases at constant
pressure. In liquids, the kinematic viscosity µ decreases with increasing temperature, whereas
in gases it increases. The viscosity of liquids and gases increases with increasing pressure.

Following this brief digression into molecular physics, we look at the reason for the boundary
conditions at fixed walls. The no-slip conditions ~v = 0 is due to the fact that the interaction
between the molecules of the fluid and the crystal lattice at the fixed surface is considerably
larger than that between the fluid molecules themselves. In continuum mechanical condi-
tions, to which we will restrict ourselves in this textbook, each fluid molecule sticks to a
fixed wall on collision.

The energy transport through heat conduction can be developed analogously to the fric-
tion. In Figure 2.5 the linear temperature profile T (z) in a fluid layer at rest between two
horizontal plates with the temperature T1 and T2 corresponds to the linear velocity profile
u(z) of Couette flow. The heat flux q, which is the amount of heat transferred per unit time
Q per area A, corresponds to the shear stress τ .

τ =
F

A
= µ · du

dz
; q =

Q

A
= −k · dT

dz
. (2.3)

The heat flux q can be written as the Fourier law

q = −k · 5T . (2.4)

For the one-dimensional case under consideration, dT/dz corresponds to the velocity gra-
dient du/dz. This analogy is only valid for the one-dimensional case. For three-dimensional
flow, we have already stated that the shear stress τij is a tensor with 9 components, while
~q is a vector.

attractionrepulsion

+

-

F

r

Fig. 2.3 : Inter-molecular interaction force
~F
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Introducing the kinematic viscosity with

ν =
µ

ρ

[
L2

T

] {
m2

s

}

,

the thermal diffusivity a = k/(ρ · cp), which has the same dimensions as ν, can be used to
form a dimensionless characteristic number

Pr =
ν

a
.

The Prandtl number Pr describes the ratio of momentum transport (friction) to energy

heat conduction

T2
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Q

z

U

z

Couette flow

Fig. 2.5 : Analogy between friction and heat conduction
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transport (heat conduction) in the fluid under consideration. Gases have the Prandtl number
0.71, water 6.7, oils several thousand.

The mass diffusion (mass transport) in the fluid may be treated equivalently if two media
with partial densities ρi (i = 1, 2) mix together due to a concentration gradient. The con-
centrations of the two components are Ci = ρi/ρ, with the total density of the mixture ρ.
In analogy to friction and heat conduction, we postulate that the mass flux per unit time
mi for the substance i is written as

mi

A
= −D · 5(ρi) ,

with the diffusion coefficient D[L2/T ]{m2/s}. For mass concentrations Ci, Fick’s law is
written

mi

A
= −D · 5(ρ · Ci) .

In analogy to the Prandtl number, the dimensionless Schmidt number Sc and the Lewis
number Le for the mass diffusion can be defined as follows:

Sc =
ν

D
, Le =

D

a

The Schmidt number describes the ratio of momentum transport to mass diffusion, the
Lewis number the ratio of mass diffusion to energy transport.

2.1.2 Thermodynamic Properties

Classical thermodynamics, as taught in freshman courses, cannot be directly applied to
fluid mechanics, since a viscous flow is not in thermodynamic equilibrium. However, in most
technical applications, the deviation from local thermodynamic equilibrium is so small
that it may be neglected. There are two exceptions: flows with chemical reactions and sudden
changes in the thermodynamic variables of state, such as can occur in strong shock waves,
to be treated in Chapter 2.3.3.

The most important thermodynamic quantities are pressure p, density ρ, temperature T ,
entropy s, enthalpy h and the internal energy e. Two of these six quantities suffice to
determine a thermodynamic state uniquely, as long as these are thermodynamic variables
of state. The most important relations which we will need in the following chapters will now
be discussed briefly.

The first law of thermodynamics is written

dE = dQ + dW , (2.5)

with dE the total energy of the system under consideration, dQ the heat supplied and dW
the work done by the system. For a fluid at rest

dW = −p · dV , dQ = T · ds ,
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where V is the volume. Thus (2.5) per unit mass becomes

de = T · ds +
p

ρ2
· dρ . (2.6)

Writing the total differential describing the change in the internal energy as

de =
∂e

∂s
· ds +

∂e

∂ρ
· dρ ,

we obtain

T =
∂e

∂s
|ρ , p = ρ2 · ∂e

∂ρ
|s .

The enthalpy is by definition

h = e +
p

ρ
,

and so with (2.6) the first law of thermodynamics can be written in the form

dh = T · ds +
1

ρ
· dp . (2.7)

The temperature T and 1/ρ are then

T =
∂h

∂s
|p ,

1

ρ
=

∂h

∂p
|ρ.

The thermal equation of state for the ideal gas is

p = R · ρ · T , (2.8)

with the gas constant R. This yields the speed of sound a

a2 =
∂p

∂ρ
|s = κ · R · T , (2.9)

with the dimensionless ratio of the specific heats κ

κ =
cp

cv

, cp =
∂h

∂T
|p , cv =

∂e

∂T
|v . (2.10)

For flows with heat transport, the thermal expansion coefficient α is required:

α = −1

ρ
· ∂ρ

∂T
|p . (2.11)

For ideal gases this yields

α =
1

T
.
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Liquids generally have thermal expansion coefficients which are smaller than 1/T . Negative
values can also occur, such as in the case of water close to the freezing point. The thermal
expansion coefficient can be used to write the dependence of the enthalpy on the pressure
as

dh = cp · dT + (1 − α · T ) · dp

ρ
. (2.12)

For an ideal gas, the second term vanishes and the enthalpy depends only on the temperature
h = h(T ).

In multi-phase flows, as met first in Chapter 1.2, the thermodynamic states close to the
critical point are of particular interest. Figure 2.6 shows the isothermal lines of a liquid-
steam mixture. The different thermodynamic behavior in the liquid and in the steam phase
can be explained by considering the different inter-molecular interaction forces. If a gas is
compressed isothermally, the mean translational energy of the molecules remains constant
and the mean spacing between neighboring molecules decreases. If the specific volume 1/ρ
of the gas becomes so small that the mean spacing is only a few molecular diameters, the
attractive forces between the molecules become significant. If the temperature exceeds a
critical value Tc, a further reduction in the specific volume leads to an unstable state where
the molecules are beyond the region of the inter-molecular attractive interaction forces and
so begin to form molecule clusters.

This intermediate state between the liquid and gas phases in unstable to the smallest dis-
turbance. A minimal increase in the pressure will lead to complete condensation to a ho-
mogeneous liquid with consequently large density, or a small drop in pressure will cause the
homogeneous steam phase to occur with correspondingly small density. The almost constant
pressure in the transition phase is called the saturation steam pressure.

At temperatures above the critical temperature Tc, the translational energy of the molecules
becomes so large that the formation of molecule clusters is prevented. A continuous tran-
sition occurs along the isothermal lines from the gas phase to the liquid phase, while the
specific volume decreases. In this temperature regime, the Van der Waals equation describes

steam

isothermals

critical point

liquid T=Tc

p

1/
Fig. 2.6 : Isothermal lines of a liquid-steam
mixture
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the thermodynamic state of real gases:

p =
R · ρ · T
1 − b · ρ − c · ρ2 , (2.13)

where b and c are constants along the isothermal lines which characterize the attractive
force between the molecules.

A further property of fluids is the surface tension σ of liquids and the interface tension
between different liquids, or between liquids and solids. The temperature dependence of the
surface tension can cause flows. Surface and interface tension is also due to the interaction
forces between the molecules. Figure 2.7 shows the forces of a molecule in a liquid and
of a molecule at the interface between liquid and gas. Within the liquid, the forces on
the molecule under consideration balance each other out on average since the molecule is
surrounded by the same number of molecules on all sides. At the surface of the liquid, the
interaction between the liquid and gas molecules is considerably smaller than that between
the liquid molecules. This causes the resulting force ~R, which causes the surface tension σ.
By definition this is

σ =
| ~F |
L

, (2.14)

with the surface force ~F and the length of the surface L. For example, for the interface
between water and air σ = 7.1 · 10−2 N/m at a given temperature.

At a doubly curved surface with radii of curvature R1 and R2, the balance of the forces at
the surfaces leads to a pressure jump

∆p = σ

(
1

R1

+
1

R2

)

. (2.15)

This results in a higher pressure on the concave side of the curved surface. For a bubble or
drop, with R1 = R2 = r, the pressure difference across the surface is

∆p =
2 · σ

r
.

A soap bubble with an inner and an outer surface has the following increased pressure inside:

∆p =
4 · σ

r
.

gas

liquid

R

Fig. 2.7 : Surface tension
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This pressure difference in a drop causes, for example, a hole in a solid surface to be filled
with liquid. The hole is then only filled when the angle of contact α between the liquid
and the surface is smaller than 90◦.

This angle of contact between the liquid and solid surface is determined by the energy of
the interfaces. It causes the raising and lowering of a liquid in a capillary.

Let us consider the interfaces between different liquids in Figure 2.8. For example, on a glass
surface a mercury droplet will not cause any wetting. The angle of contact α is larger than
90◦ (about 150◦) and the surface tension σ of the mercury is larger than the adhesion force
between mercury and glass. For a water droplet on a glass surface, the contact angle α is
smaller than 90◦ and so there is wetting. The surface tension σ of water is smaller than the
adhesion force between water and glass. On the other hand, for a water droplet on a wax
surface, there is no wetting and the contact angle is thus greater than 90◦. The wetting of
oil on glass is almost complete, so α → 0. The surface tension of the oil is vanishingly small
compared to the adhesion force between oil and glass.

The angle of contact α between solid surfaces, liquids and gases can be computed using
Young’s equation

σsolid/gas = σsolid/liquid + σgas/liquid · cos(α) , (2.16)

as long as the individual surface tensions are known.

Because of the surface tension, the liquid tends to form minimal areas. This is seen in the
experiment shown in Figure 2.9. A thread with a loop is laid onto a surface of soap suds. If
the soapy skin inside the loop is burst, a circle forms, so that the remaining liquid surface
forms a minimal area. Gradients of the surface tension 5σ cause shear forces τ in the
surrounding media A and B, as, for example, at the interface between a liquid and a gas,

5σ = τA + τB .

The surface moves in the direction of greater surface tension, and by means of the shear
stresses τA and τB, causes flows in the different media. Gradients in the surface tension can
be caused by concentration gradients along the surface. This causes, for example, pieces
of camphor to move back and forth sporadically on a water surface, since the camphor
molecules locally reduce the surface tension. Another example are the tears in wine or
cocktail glasses. Because of the concentration gradients in the water-alcohol mixture, the
liquid at the glass is raised up and then flows back down into the liquid as regular drops. The

09090

mercury water oil

gas

Fig. 2.8 : Angle of contact between solid, mercury, water, oil and air
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Fig. 2.9 : Minimal areas

evaporation of the alcohol causes a reduction of the alcohol content and thus an increase
in the surface tension. The liquid is continually transported from the middle of the glass to
the edge.

Temperature gradients also cause gradients in the surface tension, bringing us back again
to the thermodynamic properties of fluids. If a thin metal plate wetted with silicon oil is
heated from below with a hot rod, a hole in the oil film occurs at the heated point. The
increase in the temperature leads to a decrease in the surface tension. The liquid surface
moves in the direction of the colder areas with greater surface tension. A piece of ice on the
oil surface has the opposite effect. The liquid film causes a swelling in the colder region.

The same effect can be used to transport bubbles in a liquid which is heated from one side.
The cold side of the bubble has a higher surface tension than the warm side, and so it pulls
the surface from the warm side, setting the bubble into motion.

2.2 Hydro-Aerostatics

In this chapter we will treat the properties and fundamental equations of fluids at rest.
As in Chapter 1.2, hydrostatics describes incompressible fluids at rest and aerostatics
compressible fluids at rest. When a fluid is at rest no shear stresses occur, so that the forces
acting at each point on any volume element are normal to each surface. Therefore these
forces can only be pressure or tractive forces. In a liquid, only pressure forces occur. Here
pressure force ~Fp on a surface element A increases with the size of the surface element. We
introduce the scalar quantity pressure p as the pressure force per unit area.

p =
Fp

A
, with dimensions

[
F

L2

]

and units

{
N

m2

}

. (2.17)

The objective of hydro-aerostatics is to determine the pressure p(x, y, z) at the different
points of the fluid at rest.

2.2.1 Hydrostatics

In order to compute the pressure p(z) in a column of water at rest, we consider the balance
of forces on some cubic liquid element dV = dx · dy · dz (Figure 2.10). Let the pressure
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on the lower side of the liquid element be p, i.e. the pressure force on the surface element
dx · dy is Fp = p · dx · dy. The pressure changes over the height of the fluid element dz.
The pressure change can be written as a Taylor series, up to first order. Thus the pressure
on the upper side of the fluid element is (p + (dp/dz) · dz + ...) and the pressure force
(p+(dp/dz) ·dz) ·dx ·dy. The pressure forces on the side surfaces of the fluid element cancel
each other out, as they are the same all around at any given level and all act normal to the
surface element. In addition, we have the gravitation G = dm ·g = ρ ·dV ·g = ρ ·g ·dx ·dy ·dz
which acts on the center of mass of the fluid element.

The balance of forces on the fluid element at rest is therefore

p · dx · dy − (p +
dp

dz
· dz)dx · dy − ρ · g · dx · dy · dz = 0 .

If we divide this equation by the fluid element dV = dx ·dy ·dz we obtain the fundamental
hydrostatic equation for the pressure change in a column of water due to gravitation

dp

dz
= −ρ · g . (2.18)

This is a first order ordinary differential equation which, on integrating once, yields the
linear pressure distribution

p(z) = −ρ · g · z + c .

The constant of integration c can be determined with the boundary condition of the given
problem. For the vessel shown in Figure 2.11 with boundary condition p(z = 0) = p0, c = p0

and the linear pressure distribution is

p(z) = p0 − ρ · g · z . (2.19)

Two important consequences follow from this relation. Figure 2.12 shown three containers
with the same base area and height. The pressure on the base of each container is the same:
p0 = p∞+ρ·g ·h. With the same base area, the pressure force is therefore the same, although

dp
dz

p + dz( ) dxdy

dx

dz

dy

dydx dzgG=

p dydx

z

x

y

Fig. 2.10 : Balance of forces on a fluid el-
ement at rest
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p
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z

p

p p p
Fig. 2.11 : Linear pressure distribution in
a gravitational field

the weight of the fluid in each of the containers is different. This fact is obvious when one
considers (2.19) and is called the hydrostatic paradox.

In communicating pipes, the pressure in both sides of the pipe is equal to the outer pressure
p∞. Therefore the surface of the liquid must be at the same height in both, since, according
to (2.19), the pressure depends uniquely on the height.

A U-pipe can also be used as a pressure gauge. If a pressure vessel filled with gas is attached
to one end of the U-pipe in the right-hand picture in Figure 2.12, an overpressure p1 occurs,
so that there is a height difference ∆h in the two sides of the U-pipe. Since the density of
the gas ρG is considerably smaller than the density of the liquid ρF , (2.19) can be written
as

p1 = p∞ + ρF · g · ∆h . (2.20)

By measuring ∆h, the overpressure p1 in the gas container can be computed using (2.20).

A further conclusion can be drawn from the hydrostatic fundamental equation. This is
known as Archimedes’ principle. For a body of volume VK completely submerged
in liquid, the upthrust ~FA is equal to the weight of the fluid displaced ~G. In
order to derive this law, we consider a cubic fluid element of base area dA and height ∆h,
completely submerged in a liquid of density ρF , as shown in Figure 2.13.

h∆

h

p

8

p p
1

p

8
8

Fig. 2.12 : Hydrostatic paradox, commu-
nicating pipes, U-pipe pressure gauge
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The pressure p2 on the lower side of the body is larger than the pressure p1 on the upper
side of the body, due to the hydrostatic pressure distribution. The difference in the pressure
forces ~F2 and ~F1 results in an upthrust ~FA, directed vertically upwards. The magnitude of
this upthrust is

d|~FA| = |~F2| − |~F1| = p2 · dA − p1 · dA = (p2 − p1) · dA .

Using the solution of the hydrostatic fundamental equation (2.19), p2 = p1 + ρF · g · ∆h, it
follows that

d|~FA| = ρF · g · ∆h · dA = ρF · g · dVK ⇒ |~FA| =

∫

VK

ρF · g · dVK = ρF · g · VK ,

upthrust |~FA| = ρF · g · VK . (2.21)

In a rotating vessel, moving with constant angular velocity ~ω (Figure 2.14), as well as the

gravitation ~G, there is also the centrifugal force ~Z. This causes a liquid surface which would
be horizontal were there no rotation to become deformed to a parabolic surface. The water
surface is always perpendicular to the resulting force acting. For an observer rotating with
the vessel, the liquid is at rest, so that the hydrostatic fundamental equation (2.18) has to

be extended by the radially acting centrifugal force ~Z. The magnitude of the centrifugal
force for a fluid element dV is

|~Z| = ρ · dV · ω2 · r ,

with r2 = x2+z2. Integrating the hydrostatic fundamental equation for a uniformly rotating
liquid yields

p = p0 +
1

2
· ρF · ω2 · r2 − ρF · g · z . (2.22)

In the vertical direction, the pressure decreases linearly with the height z, as in a non-
rotating liquid. In the horizontal direction it increases quadratically with the distance from

2
F

P

dA

dA

1
F

1
p

2
p

g

h
dA

dA

Fig. 2.13 : Determining the upthrust
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Fig. 2.14 : Pressure in a rotating liquid

the axis of rotation. On the surface of the liquid, with p = p0, we find

p0 = p0 +
1

2
· ρF · ω2 · r2 − ρF · g · z .

Therefore the surface of the liquid forms a paraboloid of rotation:

z =
ω2 · r2

2 · g .

2.2.2 Aerostatics

The most important example of aerostatics is the computation of the pressure, density and
temperature distributions in the atmosphere. Figure 2.15 shows that the pressure p in the
earth’s atmosphere decreases continually with increasing height. In the different layers of the
atmosphere, the temperature first decreases to about −56◦ C, and then, because of chemical
processes in the air, increases again. At higher altitudes, the temperature again drops with
height, only to increase again at even greater altitudes with radiation from the sun.

The lower layer of the atmosphere is called the troposphere, and can be between 9 and
11 km thick, depending on the time of year. According to the ideal gas equation for air
(2.8), the temperature and pressure decrease is associated with a decrease in density, and
so the cold, heavy air is situated above the warm, lighter air. This air layering is thermally
unstable, and causes the weather in the troposphere.

The next layer is the stratosphere, at a height of between 11 and 47 km. Here the temperature
initially remains constant and then increases again with increasing height. The ozone layer
forms in this atmospheric layer. This absorbs the UV-radiation from the sun and thus leads
to a temperature increase. The stratosphere is thermally stable, since the warmer lighter air
is now layered above the cold, heavy air. This is reason why civil aircraft fly in the stable
lower stratosphere whatever the weather.

At altitudes between 47 and 86 km, the air chemistry dominant in the mesosphere again
causes a thermally unstable temperature decrease. A small decrease in the density of the
air with increasing height is connected with this chemistry. In this somewhat greater air
density, small meteors glow and are seen as shooting stars. The dust from volcano eruptions
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can also reach these heights, and can influence the chemistry of the air considerably for
many decades.

The transition to the ionosphere occurs at heights above 87 km. Here the highly energetic
sun and particle radiation leads to the ionization of the air molecules. This again leads to a
thermally stable temperature increase with increasing height. The stable temperature and
density layering in the ionosphere ensures that the atmosphere of the earth does not escape
from the earth. The electrically charged particles lead to electrical flows in the ionosphere
which can affect short-wave radio signals considerably.

In this chapter we restrict ourselves to the lower atmosphere (troposphere and lower strato-
sphere), where 99 % of the mass of the atmosphere is, and whose temperature, density and
pressure distributions can be found in the internet as the so-called US standard atmo-
spheres.

http://aero.stanford.edu/StdAtm.html

The standardized temperature distribution is shown in Figure 2.16. In the troposphere the
temperature decreases linearly

T (z) = T0 + a · (z − z0) , (2.23)
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Fig. 2.15 : Temperature and pressure distribution in the atmosphere
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with T0 = 288.16 K at the surface of the earth z0 = 0, the constant a = −6.5 · 10−3 K/m
and the air pressure at the surface of the earth p0 = 1.013 · 105 N/m2.

In the lower stratosphere, the temperature is assumed to be constant

T = T1 = 216.66 K = const. , with p(z = z1 = 11 km) = p1 . (2.24)

For the given temperature distribution, the fundamental aerostatic equation yields the
associated pressure and density distributions p(z), ρ(z). Again the starting point is the
fundamental hydrostatic equation (2.18)

dp

dz
= −ρ(z) · g .

However now the density ρ is a function of the height coordinate z. With the thermal
equation of state for an ideal gas (2.8)

p = R · ρ · T ⇒ ρ(z) =
p(z)

R · T (z)
,

we find the fundamental aerostatic equation

dp

p
= − g

R
· dz

T
. (2.25)

This is again a first order differential equation which is uniquely solvable with one boundary
condition and a given temperature distribution.

For the temperature distribution in the troposphere (2.23), we obtain

dz =
1

a
· dT .

Substituting dz into (2.25) and integrating the aerostatic fundamental equation yields

dp

p
= − g

R · a · dT

T
⇒

∫ p

p0

dp

p
= − g

R · a ·
∫ T

T0

dT

T
⇒ [ln(p)]pp0

= − g

R · a [ln(T )]TT0
,

z/km

25

11

0
220 240 280160 T/K

Fig. 2.16 : Standardized temperature dis-
tribution in the troposphere and lower
stratosphere (US standard atmosphere)
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ln

(
p(z)

p0

)

= − g

R · a · ln
(

T (z)

T0

)

⇒ p(z)

p0

= exp

[

− g

R · a · ln
(

T (z)

T0

)]

=

(
T (z)

T0

)−
g

R·a

,

p(z) = p0 ·
(

T (z)

T0

)−
g

R·a

, (2.26)

ρ(z) follows from p(z), using the equation of state for ideal gases

R =
p(z)

ρ(z) · T (z)
=

p0

ρ0 · T0

⇒ p(z)

p0

=
ρ(z) · T (z)

ρ0 · T0

⇒ ρ(z)

ρ0

=
T0

T (z)
·
(

T (z)

T0

)−
g

R·a

,

ρ(z)

ρ0

=

(
T (z)

T0

)−1

·
(

T (z)

T0

)−
g

R·a

=

(
T (z)

T0

)−
g

R·a
−1

,

ρ(z) = ρ0 ·
(

T (z)

T0

)−( g

R·a
+1)

. (2.27)

Pressure and density decrease with increasing height in the atmosphere for the given linear
temperature distribution, according to the power laws (2.26) and (2.27).

In the lower stratosphere the temperature distribution is isothermal T = T1 (2.24) and there
is an exponential decrease in the pressure.

1

p
· dp = − g

R · T1

· dz ⇒
∫ p

p1

1

p
· dp = − g

R · T1

∫ z

z1

·dz ⇒ [ln(p)]pp1
= − g

R · T1
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Fig. 2.17 : Temperature and pressure distributions in the US standard atmosphere
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ln

(
p

p1

)

= − g

R · T1

· (z − z1) ⇒
p

p1

= exp

(

− g

R · T1

· (z − z1)

)

,

p(z) = p1 · exp

(

− g

R · T1

· (z − z1)

)

. (2.28)

The results of the pressure distributions are shown in Figure 2.17. ρ(z) follows from p(z)
with the ideal equation of state ρ(z) = p(z)/(R · T1),

ρ(z) =
p1

R · T1

· exp

(

− g

R · T1

· (z − z1)

)

= ρ1 · exp

(

− g

R · T1

· (z − z1)

)

. (2.29)

2.3 Hydro-Aerodynamics, Stream Filament Theory

2.3.1 Basic Kinematic Concepts

Before we turn to the computation of flows within the framework of the simplified one-
dimensional stream filament theory, we first set out the basic kinematic concepts
for the mathematical description of flows.

The kinematics of a flow describe the motion of the fluid without taking the forces which
cause this motion into account. The aim of kinematics is to compute the position vector
~x(t) of a fluid element and thus the dependence of its motion on the time t with respect to
the chosen coordinate system ~x = (x, y, z) for a given velocity field ~v(u, v, w).

As in Figure 2.18, we follow the path of a fluid element or of a particle in the flow in time.
The initial position of the particle motion at time t = 0 is determined by the position vector
~x0 = (x0, y0, z0). At the time t1 > 0, the particle has moved along the path sketched to the
position ~x(t1) and at the time t2 > t1 to the position ~x(t2) etc. The instantaneous position

t=0

x 0 z

x

y

x 1(t )

)x (t 2

 t1
> 0

> t2 t 1

particle path

Fig. 2.18 : Particle path
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~x of the particle under consideration is therefore a function of the initial position ~x0 and
the time t. The particle path is therefore

~x =~f(~x0, t) .

The ordinary differential equation to compute the particle path for a given velocity field
~v(u, v, w) is therefore

d~x

dt
= ~v(~x, t) . (2.30)

This is none other than the well-known defining equation of velocity. The differential equa-
tions for the individual velocity components read

dx

dt
= u(x, y, z, t) ,

dy

dt
= v(x, y, z, t) ,

dz

dt
= w(x, y, z, t) . (2.31)

This is a system of first order ordinary differential equations. The particle path is computed
by integrating these differential equations with the initial conditions ~x0 = ~x(t = 0).

For a steady flow, the system of differential equations is not dependent on the time t and
is written as

d~x

dt
= ~v(~x) . (2.32)

Here it is to be noted that although ∂/∂t ≡ 0, the total differential d/dt 6= 0.

Another way of describing flows is by means of streamlines. These indicate the direction
field of the velocity vector ~v at a certain time tn (Figure 2.19). Since the tangents are parallel
to the velocity vector at every position and every time, the determining equation for the
streamline reads

~v × d~x = 0 . (2.33)

The velocity components are then




u
v
w



 ×





dx
dy
dz



 =





v · dz − w · dy
w · dx − u · dz
u · dy − v · dx



 =





0
0
0



 ⇒
v · dz = w · dy
w · dx = u · dz
u · dy = v · dx

.

z

y

x

t n streamline

v

u
w

Fig. 2.19 : Streamline
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This yields the system of first order differential equations for the streamline:

dz

dy
=

w(x, y, z, t)

v(x, y, z, t)
,

dz

dx
=

w(x, y, z, t)

u(x, y, z, t)
,

dy

dx
=

v(x, y, z, t)

u(x, y, z, t)
. (2.34)

The streamlines are again determined by integration, using the method of separation of
variables, and so are integral curves of the direction field of the given velocity vector ~v.

In experiment, or even in a computed flow field, the path lines can be made visible by
coloring a particle or a fluid element. By photographing the flow region using a long exposure
times the particle path is made visible. Similarly a picture of the streamlines is obtained by
marking many particles and photographing the flow field with a short exposure time. The
picture then shows many short dashes, whose directions indicate the tangent field of the
velocity vector at the time of the shot. The lines connecting the individual dashes are the
streamlines.

The third important way of describing flows is using streaklines. These are shown in Figure
2.20 and, for a given time tn, are the lines connecting the positions which the path lines of
all particles have reached which passed the fixed position ~x0 at any time t0 < tn. If color or
smoke is added to the flow field at the position ~x0, the snapshots of the colored filaments
or threads of smoke are streaklines.

The equation of the streakline at the time tn is

~x = ~x(~x0, t0, t) , (2.35)

where t0 is the curve parameter and ~x0 the family parameter. A parameterless representation
of the streakline is found by eliminating the curve parameter t0.

For example, the following equation is known from a computation of a particle path:

~x = ~x(~x0, t0, t) =

(
(x0 + t0 + 1) · e(t−t0) − t − 1
(y0 − t0 + 1) · e−(t−t0) + t − 1

)

=

(
x
y

)

.

z

y

x

nt streakline

x0

particle paths

Fig. 2.20 : Streaklines
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Let us consider the equation of that streakline in the (x, y) plane which passes through the
point (x0, y0) = (−1,−1) at the time t = 0. If we insert the above ansatz into equation
(2.35), we obtain

x = t0 · e−t0 − 1 , y = −t0 · et0 − 1 ⇒ x + 1 = t0 · e−t0 , y + 1 = −t0 · et0 ,

(x + 1) · (y + 1) = −t20 ⇒ t0 =
√

−(x + 1) · (y + 1) .

t0 inserted into x = t0 · e−t0 − 1 yields an implicit equation for the streakline in the (x, y)
plane

x =
√

−(x + 1) · (y + 1) · exp
(

−
√

(x − 1) · (y + 1)
)

− 1 .

In steady flows, the particle paths, streamlines and streaklines are the same. In
unsteady flows the curves are different.

Let us return to the examples of flows discussed in the introduction in Chapter 1.2. Both
the flow past a vertical plate and the flow past a wing and an automobile were presented as
steady flow problems. Now we can interpret the flow lines in Figures 1.13 and 1.18 as particle
paths and streamlines respectively. Small particles of aluminum are added to each flow in
the water channel and a snapshot of these with a long enough exposure time characterizes
the structure of the steady flow. In Figure 1.21, the wake flow of an automobile in a wind
tunnel was made visible with smoke allowed into the free stream at a fixed position ~x0. All
smoke particles have passed through the same position, so that it is the streaklines which
we see in this shot. Figure 2.21 supplements the sketches of particle paths, streamlines and
streaklines, which all lie on the same curve in these three examples of steady flows.

For unsteady flows, the particle paths are different from the streamlines and streaklines,
making the interpretation of unsteady flows difficult. We will illustrate this using a simple
flow example. In Figure 2.22 we move a sphere with constant velocity u∞ through a fluid
at rest. As the sphere is moved along, the particle path forms a loop, while the snapshot of
the streamlines indicates closed curves. This is the flow field which we see as an external
observer at rest. The streamline picture looks completely different if we move with the
sphere. We then see the constant free stream u∞ coming towards us and the flow becomes
time independent. Instead of the closed streamlines, steady streamlines form from left to
right, along the same curves as the pathlines and streaklines. Depending on our frame of
reference, the flow field looks completely different. Expressed physically, this means that
the streamlines and particles paths are not invariant when the inertial frame is changed
(position transformation with constant translation velocity).

Two further examples of shear flows serve to extend these ideas. Let us consider a plane
wave in a plate boundary layer flow. The u component of the velocity displacement is
written as

u(x, z, t) = û(z) · ei·(a·x−w·t) ,

with the amplitude function û(z), which is a function only of the vertical coordinate z, the
wave number a and the angular frequency ω. The phase velocity c of the wave is c = ω/a.
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The observer at rest sees circles for the particle paths and streamlines of the wave moving
past with the phase velocity c, as sketched in the snapshot in Figure 2.23. The observer
moving with the wave sees the plate moving with the phase velocity c and a streamline
picture which looks like cat’s eyes.

particle path
streamline
streakline

flow past a plate

flow past a wing

flow past a car

Fig. 2.21 : Particle paths, streamlines, streaklines of the steady flow past a horizontal plate,
a wing and an automobile



48 2. Fundamentals of Fluid Mechanics

The third example of shear layer flow is the wake flow of a cylinder, already met in Chapter
1.1 as the Kármán vortex street in connection with the collapse of the Tacoma bridge. The
humming of high voltage wires in the wind is also due to the periodic flow separation of the
Kármán vortex street at the cylindrical cross-section. Figure 2.24 shows first the streaklines,
particle paths and streamlines of a cylinder moving through a fluid at rest with constant
velocity u∞ for an observer at rest. The observer moving with the vortices periodically
swimming downstream with phase velocity c again sees the perturbed streamlines as cat’s

u

u

u

streamlines

particle path
observer at rest

observer at rest
streamlines

moving observer

Fig. 2.22 : Flow past a sphere, with ob-
server at rest and moving
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eyes. The historical photographs of PRANDTL 1929 and TIMME 1957 in the water channel
and the theoretically computed streamlines of VON KÁRMÁN 1912 are shown in Figure
2.25.

As we have already learned from the examples of unsteady flows, the description of the
kinematics of unsteady flows in particular is very difficult. Much practice and experience
is required to be able to interpret the experimental results in the wind tunnel or the flow
simulations on a computer correctly. However it is precisely the kinematic description of the
flow which yields important insights into the structure of a flow.

Now that we have seen that the flow picture is dependent on the frame of reference, there
are basically two different ways of treating a flow mathematically. In the Euler picture
we assume a fixed observer. This manner of description corresponds to using measuring
apparatus which is fixed in position to measure local flow quantities.

The Lagrange picture assumes a frame of reference moving with a particle or fluid element.
The mathematical relationship between the two picture is, for example for the acceleration
of the flow ~b = d~v/dt = d2~x/dt2, the total differential of the velocity vector ~v(u, v, w).
For the u component u(x, y, z, t) of the velocity vector we have

du =
∂u

∂t
· dt +

∂u

∂x
· dx +

∂u

∂y
· dy +

∂u

∂z
· dz .

So the total time derivative of u is

du

dt
=

∂u

∂t
+

∂u

∂x
· dx

dt
+

∂u

∂y
· dy

dt
+

∂u

∂z
· dz

dt
,

c

c

c
particle paths
observer at rest

observer at rest
streamline

observer moving 
streamline

with the wave

Fig. 2.23 : Wave in a boundary layer, observer at rest and moving
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with

dx

dt
= u ,

dy

dt
= v ,

dz

dt
= w

and we have

du

dt
︸︷︷︸

S

=
∂u

∂t
︸︷︷︸

L

+ u · ∂u

∂x
+ v · ∂u

∂y
+ w · ∂u

∂z
︸ ︷︷ ︸

C

. (2.36)

In this equation

S substantial rate of change, Lagrange picture,
L local rate of change at a fixed position, Euler picture,
C convective spatial changes due to convection from place to place, effect of the velocity

field ~v = (u, v, w).

u

u

c

u c

particle paths

streamlines
moving observer

streaklines

observer at rest
streamlines

Fig. 2.24 : Kármán vortex street, observer at rest and moving
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For the acceleration ~b of the flow field which we will need in the following chapters, we
obtain

~b =
d~v

dt
=

∂~v

∂t
+ u · ∂~v

∂x
+ v · ∂~v

∂y
+ w · ∂~v

∂z
=

∂~v

∂t
+ (~v · ∇)~v , (2.37)

with the nabla operator ∇ = (∂/∂x, ∂/∂y, ∂/∂z) and (~v · ∇) the scalar product of the
velocity vector ~v and the nabla operator ∇.

For Cartesian coordinates this yields

~b =





bx

by

bz



 =





du
dt
dv
dt
dw
dt



 =





∂u
∂t

+ u · ∂u
∂x

+ v · ∂u
∂y

+ w · ∂u
∂z

∂v
∂t

+ u · ∂v
∂x

+ v · ∂v
∂y

+ w · ∂v
∂z

∂w
∂t

+ u · ∂w
∂x

+ v · ∂w
∂y

+ w · ∂w
∂z



 ,

PRANDTL 1929

streaklines

particle paths

TIMME 1975

computed

von KARMAN 1912

streamlines

Fig. 2.25 : Streaklines, particle paths and streamlines of the Kármán vortex street
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and for (~v · ∇) · ~v

~v · ∇ =





u
v
w



 ·





∂
∂x
∂
∂y
∂
∂z



 = u · ∂

∂x
+ v · ∂

∂y
+ w · ∂

∂z
,

(~v · ∇) · ~v =

(

u · ∂

∂x
+ v · ∂

∂y
+ w · ∂

∂z

)

·





u
v
w



 =





u · ∂u
∂x

+ v · ∂u
∂y

+ w · ∂u
∂z

u · ∂v
∂x

+ v · ∂v
∂y

+ w · ∂v
∂z

u · ∂w
∂x

+ v · ∂w
∂y

+ w · ∂w
∂z



 .

In the case of a steady flow, all partial derivatives with respect to time vanish, so ∂/∂t = 0,
while the substantial derivative with respect to time d/dt can indeed be non-zero when
convective changes occur. In unsteady flows both ∂/∂t 6= 0 and d/dt 6= 0.

2.3.2 Incompressible Flows

The fundamental equations and methods of one-dimensional stream filament theory
are still used today in industry for the preliminary design of new products. It is for this
reason that one-dimensional stream filament theory is a good introduction to the theoretical
treatment of flows. The solution software of the algebraic system of equations to be treated
will be presented in Chapter 3.1.

We will denote the one-dimensional velocity component with c(s). This is a function of
s only, called the stream filament coordinate. In order to introduce this one-dimensional
coordinate s it is first of all useful to introduce the concept of the streamtube. If the
streamlines form a closed surface, this surrounding surface is called a streamtube (Figure
2.26).

2c
pA

s

A1

1c

1
p

p
c

A
p

2

stream tube

stream filament

Fig. 2.26 : Streamtube and stream fila-
ment
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Since the streamlines are by definition the tangents to the velocity vectors, no fluid mass will
pass through the walls of the streamtube. This means that channels with fixed walls form
streamtubes. If the changes in the flow quantities over the cross-section of the streamtube are
small compared to the change along the streamtube, the (approximately) one-dimensional
changes in the flow quantities along the hypothetical stream filament can be computed.
The coordinate along the stream filament is called the stream filament coordinate s. Along
a stream filament, for incompressible and steady flows, we have

c = c(s) , p = p(s) , A = A(s) .

All flow quantities as well as the cross-section A of the streamtube are functions of the stream
filament coordinate s only. For the problem of the flow past an automobile, for example,
stream surfaces can be determined, corresponding to the streamtubes of channel flows.
Figure 2.27 shows such a stream surface past an automobile. If the changes perpendicular
to the stream surface are small compared to the changes along the streamline, as is the case
along the mid-section of the vehicle flow, a stream filament can again be determined, along
which the variation in the flow quantities is approximately one-dimensional.

The fundamental equations for one-dimensional stream filament theory are as
follows:

Conservation of Mass:
The mass flux entering a streamtube ṁ1 is equal to the mass flux exiting the streamtube
ṁ2. Using the volume flux V̇1 and V̇2, we find

ṁ1 = ρ1 · V̇1 = ρ1 · c1 · A1 = ρ2 · c2 · A2 = ρ2 · V̇2 = ṁ2 ,

ṁ = ρ · c · A = const. . (2.38)

c1
1p

c
p

c2
p2

stream filament

stream surface Fig. 2.27 : Stream surface and stream fil-
ament
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Conservation of Momentum or Equation of Motion:
We first formulate the equation of motion for a stream filament placed in the inviscid outer
flow or the inviscid core flow of a channel. From the balance of forces along a selected stream
filament element dV (Figure 2.28), the variation in cross-section along the stream filament
can be neglected to first approximation. The equation of motion reads mass · acceleration
= sum of all external forces acting. Therefore for the volume element dV we have

dm · b =
∑

i

Fi . (2.39)

We have already considered the acceleration b in Chapter 2.3.1. For a one-dimensional stream
filament, equation (2.37) is written as

b =
dc

dt
=

∂c

∂t
+ c · ∂c

∂s
,

for this flow which is assumed to be steady c · (dc/ds). The mass of the volume element
dV considered in Figure 2.28 is dm = ρ · dA ds. The forces acting on the volume element
are the pressure forces and the gravitation, and their components along the stream filament
coordinate are in equilibrium. This yields

ρ · dA · ds · dc

dt
= ρ · dA · ds ·

(
∂c

∂t
+ c · ∂c

∂s

)

=

= p · dA −
(

p +
∂p

∂s
· ds

)

· dA − ρ · g · dA · ds · cos(ϕ) ,

cos(ϕ) = dz/ds and division by ρ · dA · ds delivers the Euler equation for the stream
filament

dc

dt
=

∂c

∂t
+ c · ∂c

∂s
= −1

ρ
· ∂p

∂s
− g · dz

ds
. (2.40)

For steady flows, all quantities are functions only of s and it follows that

c · dc

ds
=

d

ds

(
c2

2

)

= −1

ρ
· dp

ds
− g · dz

ds
⇒ d

(
c2

2

)

+
1

ρ
· dp + g · dz = 0 .

p dA dAg ds

(p + p
s

ds) dA

ds

dz

dz
ds

cos=

ds

Fig. 2.28 : Balance of forces at a stream
filament element dV
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Integration along the stream filament s from position 1 with c1, p1 and s1, z1 to position 2
with c2, p2 and s2, z2 yields

1

2

(
c2
2 − c2

1

)
+

∫ p2

p1

1

ρ
· dp + g · (z2 − z1) = 0 .

For the incompressible flow under consideration ρ = const., so that the factor 1/ρ can be
written in front of the integral and we obtain the Bernoulli equation for incompressible,
steady, inviscid flows. The dimensions are energy per unit mass:

c2
2

2
+

p2

ρ
+ g · z2 =

c2
1

2
+

p1

ρ
+ g · z1 = const. . (2.41)

Alternatively, the Bernoulli equation with the dimensions of energy per unit volume is
frequently used

p2 +
1

2
· ρ · c2

2 + ρ · g · z2 = p1 +
1

2
· ρ · c2

1 + ρ · g · z1 = const. . (2.42)

At some given position, the Bernoulli equation for steady flows reads

p +
1

2
· ρ · c2 + ρ · g · z = const. or

p

ρ
+

c2

2
+ g · z = const. (2.43)

Here the constant summarizes the three known terms at an initial state. It has the same
value for all points along s of a stream filament, but can vary from one stream filament to
the next. The Bernoulli equation is an algebraic equation and yields the relation between
velocity and pressure. For unsteady flows, the partial time derivative ∂c/∂t of the Euler
equation must also be integrated along the stream filament s. Here the integration is to
be carried out at a fixed time t from s1 to s2. The Bernoulli equation for unsteady one-
dimensional flows is found:

ρ ·
∫ s2

s1

∂c

∂t
· ds + p2 +

1

2
· ρ · c2

2 + ρ · g · z2 = const. ,

∫ s2

s1

∂c

∂t
· ds +

p2

ρ
+

c2
2

2
+ g · z2 = const. . (2.44)

Application of the Bernoulli Equation

There are many examples of application of the Bernoulli equation in the book of solved
problems accompanying this textbook. We will look at two examples which are applied in
practice. Using the Venturi pipe shown in Figure 2.29, the mass flux can be determined
by measuring the pressure at the narrowest cross-section and applying the Bernoulli equa-
tion (2.41). The narrowing of the cross-section causes an acceleration in the nozzle, and,
according to the Bernoulli equation, a pressure drop. A widening in the cross-section causes
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a deceleration of the flow with corresponding pressure recovery. If the pressure p is mea-
sured at the narrowest cross-section A, and for known values of c1 and p1, the velocity c is
determined using

c2

2
+

p

ρ
=

c2
1

2
+

p1

ρ
= const. .

Since in this example z1 = z2, the gravitation term is eliminated. For a known cross-sectional
area at the narrowest cross-section A, the mass flux is determined to be

ṁ = ρ · c · A .

The application of the Bernoulli equation (2.41) therefore makes it possible to determine the
flow velocity c from a measured pressure p. This is used in the case of aircraft, for example,
to determine the flight velocity using a Prandtl tube. Before we look at the way a Prandtl
tube works, we first have to introduce some pressure definitions. We consider the Bernoulli
equation (2.42)

p +
1

2
· ρ · c2 + ρ · g · z = const. .

Here we denote p = pstat as the static pressure and (1/2) · ρ · c2 = pdyn as the dynamic
pressure. The static pressure pstat is the pressure measured when one moves with the flow
velocity c in the fluid. Therefore the static pressure is that which is responsible for the
pressure force which acts on a body in a flow. The dynamic pressure pdyn can be considered
to be a measure of the kinetic energy per unit volume of a volume element of the fluid
moving with velocity c.

c c

p

nozzle
acceleration
pressure drop

diffusor
deceleration
pressure increase

stream filament

p,c
p

c

1

1

s

p

c

p
1

1

Fig. 2.29 : Venturi pipe
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In the case of shear flows, such as the boundary layer flow past a wing, z1 = z2 and the
gravitation term ρ · g · z is eliminated from the equation. The constant on the right-hand
side of the Bernoulli equation can vary from one streamline to the next. It is a property
of the streamline under consideration and is determined by suitable reference values. Such
reference values can be, for example, the known values of the undisturbed free stream, such
as p∞ and c∞. In the case of the flow past a wing, the constant on the so-called stagnation
streamline can be determined. This stagnation streamline leads from the free stream in
infinity, past a variable point 1 to the stagnation point 0 on the wing (Figure 2.30).

The Bernoulli equation on the stagnation streamline reads

p∞ +
1

2
· ρ · c2

∞ = p1 +
1

2
· ρ · c2

1 = p0 = const. .

In the stagnation point c = 0, and so there is no dynamic pressure at this point. The variable
p0 denotes the pressure in the stagnation point. This is also called the reservoir pressure or
the total pressure. Therefore we have

p0 = ptot = pres = pstat + pdyn . (2.45)

We have already used the dynamic pressure of the free stream (1/2)·ρ·c2
∞ in the introductory

chapters for the dimensionless pressure coefficient cp

cp =
p − p∞

1
2
· ρ · c2

∞

.

The different pressure definitions are summarized in Figure 2.31. The pressures can be
measured using classical hydrostatic methods.

Measurement of the static pressure pstat:

The most simple measurement principle to determine the static pressure pstat consists of
bore hole in a wall and the U-pipe pressure gauge introduced in Chapter 2.2.1. The static
pressure pstat of the outer flow is imprinted onto the boundary layer, i.e. it is constant within
the boundary layer in the direction normal to the wall. The static pressure of the outer flow
is measured as follows. The relations in Figure 2.32 between pressure difference ∆p and
height difference ∆h in the pressure gauge are valid, with ρa the density of the air, ρl the
density of the liquid, and pref the reference pressure.

Figure 2.33 shows the wind tunnel model of a wing. The pressure bore holes, from which the
pressure distribution in Figure 1.18 was taken, are so small that they cannot be seen in the

c
p

1 0

stagnation point

p pp dyn
stattot

Fig. 2.30 : Pressure definitions in the flow
past a wing
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static dynamic total
pressure pressure pressure

p
stat

p
dyn

p
tot

Fig. 2.31 : The different pressure defini-
tions: static pressure pstat, dynamic pres-
sure pdyn, total pressure ptot

figure. It is only the small pressure tubes inside the wing model which can be seen. These
measure the pressure, and these days are piezoquarz pressure sensors rather than classical
U-pipe pressure gauges.

The static pressure pstat can be measured with a probe held in the flow (Figure 2.34). It
works according to the same principle as the wall bore holes, but in this case the bore holes
are distributed around the probe to measure the static pressure. Here too a boundary layer
forms around the top of the probe and this is imprinted with the static pressure of the
outer flow. In order to minimize measurement errors, the bore holes must be at a large
enough distance from the top of the probe and the shaft of the probe. This is so that the
disturbances caused by the holes die away and are not measured too.

p
stat

ah

p
ref

h

g

c

l

z

p
stat

pstat + ρa · g · h = pref + ρl · g · ∆h
pstat − pref = ρl · g · ∆h − ρa · g · h
frequently: ρa · g · h ¿ ρl · g · ∆h
⇒ ∆p = pstat − pref = ρl · g · ∆h

Fig. 2.32 : Measurement of the static pres-
sure pstat
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Measurement of the total pressure ptot or reservoir pressure p0:

The measurement of the total pressure ptot or the reservoir pressure p0 is carried out using
a Pitot tube. By placing this into the parallel flow, the tube will be filled with air for a few
moments, until the air everywhere in the tube has come to rest, since it cannot expand any
further. This is also true for the entrance cross-section, where the stagnation point forms
with c = 0. It then follows that the same total pressure ptot is at hand everywhere in the
Pitot tube, and this again is measured by a U-pipe pressure gauge.

Measurement of the dynamic pressure pdyn:

In order to measure the dynamic pressure pdyn, a combination of a static probe and a Pitot
tube is used, called the Prandtl stagnation tube. This determines the dynamic pressure
as the difference between the total pressure and the static pressure, and from it the velocity
can be determined.

c =

√
2 · pdyn

ρL

=

√

2 · ρFl · g · ∆h

ρL

. (2.46)

An example of a Prandtl tube, as can be seen on any aircraft, is shown in Figure 2.35.

Fig. 2.33 : Static pressure bore holes in a
wing model
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ρa · g · h ¿ ρl · g · ∆h
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Fig. 2.34 : Measurement of the static pressure pstat, the total pressure ptot and the dynamic
pressure pdyn
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Fig. 2.35 : Prandtl stagnation tube

Balance of Forces Perpendicular to the Stream Filament

Up until now we have discussed examples of flows where the changes along the stream
filament have been large compared to the changes perpendicular to the stream filament by
definition. If the changes are larger than those along the stream filament, we carry out the
balance of forces on the volume element dV perpendicular to the stream filament along the
normal direction n. s now denotes the arc length of the stream filament, r is the local radius
of curvature. The equation of motion normal to the stream filament reads

dm · bn =
∑

i

Fi .

The mass element dm is found to be dm = ρ ·dV = ρ ·dA ·dn. If c denotes the velocity along
the stream filament coordinate s, the magnitude of the acceleration bn is determined from
the ratio of the magnitude of the centripetal force Fz and the mass element dm. Therefore
we have

Fz =
dm · c2

r
⇒ bn =

Fz

dm
=

c2

r
.

This acceleration bn keeps the mass element on the curved path, and so its direction indicates
the local center of curvature, opposite to the direction of n. The external forces are the
pressure forces and one component of gravity ρ · dA · dn · g (Figure 2.36). Therefore the
equation of motion becomes

dm · bn = ρ · dA · dn ·
(

−c2

r

)

= p · dA −
(

p +
∂p

∂n
· dn

)

· dA + ρ · dA · dn · g sin(ϕ) ,

and after division by (−ρ · dA · dn) and with sin(ϕ) = −dz/dn it follows that

c2

r
=

1

ρ
· ∂p

∂n
+ g · dz

dn
. (2.47)

For a plane shear flow at z = const., we find using dz = 0 that

c2

r
=

1

ρ
· ∂p

∂n
. (2.48)

The pressure increases in the direction of the external normal direction n, or in the case of
plane circular flows, in the radial direction r. The pressure force and centripetal force are
in equilibrium.

Vortex motions on concentric circular paths can be computed with the ordinary differential
equation (2.48). For example, the pressure and velocity distributions of a tornado (Figure
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Fig. 2.36 : Balance of forces at a volume el-
ement perpendicular to the stream filament

2.37) can be determined approximately using one-dimensional stream filament theory. The
streamlines are concentric circles. For a velocity magnitude of c, on circular paths we have
c(r) = cr/r with the circumferential velocity c(R0) = c0 at a given radius R0 and the
constant cr = c0 · R0 . With n = r, equation (2.48) is written

c2
r

r3
=

1

ρ
· dp

dr
. (2.49)

Integration of this first order ordinary differential equation with the boundary condition
p(R0) = p0 at a fixed radius R0 yields

p(r) = p0 +
ρ · c2

r

2
·
(

1

R2
0

− 1

r2

)

. (2.50)

This can be written in the following form

p(r) +
ρ

2
· c2(r) = p0 +

ρ

2
· c2

0 = const. . (2.51)

Fig. 2.37 : Circular flow in a tornado
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This is the Bernoulli equation for vortex flows on concentric circles, derived from the balance
of forces perpendicular to the stream filament. It can be shown that the flow on concentric
circles is irrotational, with ∇×~c = 0. Figure 2.38, for r ≥ R0 shows the pressure distribution
computed with equation (2.50) as well as the assumed velocity distribution c = cr/r.

According to the Bernoulli equation (2.51), pressure and velocity behave differently with
increasing r. For r > 0, the velocity for a potential vortex would increase indefinitely. Since
this is not what happens in reality, the differential equation for inviscid vortex flows (2.49)
is replaced by the differential equation for viscous flows for r > R0. This equation will
be treated at the end of this chapter. Here too the division of flow regimes introduced in
Chapter 1.2 is seen. In the core of the vortex the flow corresponds to a frictional rigid body
rotation with constant angular velocity ωr and linear velocity distribution c = ωr · r. The
pressure drops for r < R0 again, and in the case of a tornado, reaches values of between 20
and 200 mbar.

Conservation of Energy

The third fundamental equation needed for the complete mathematical description of flows
with heat transport, which is also needed if the work done by flow machinery is to be taken

p

p
0

r

c
0

c

R 0 r

r rc
r

rigid body
rotation

potential vortex

R 0

Fig. 2.38 : Pressure and velocity distribu-
tion in a potential vortex
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into account, is the conservation of energy. In order to derive the balance of energy, we add
to the sketches of the streamtube and the stream filament in Figure 2.26 an additional heat
flux q (Figure 2.39).

In general the conservation of energy of a steady inviscid flow states that the
change in energy flux in a given volume element dV is equal to the work done
by the forces acting and by the heat flux. The energy flux Ė written in Watts ({W} =
{J/s}) is

Ė =

(

e +
c2

2

)

· ṁ =

(

e +
c2

2

)

ρ · c · A ,

with the internal energy e referred to the mass element dm = ρ · dV and the mass specific
kinetic energy c2/2. For both cross-sections A1 and A2 of the streamtube considered, and
with the continuity equation ṁ = const., we have

Ė1 =

(

e1 +
c2
1

2

)

· ṁ =

(

e1 +
c2
1

2

)

· ρ1 · c1 · A1 ,

Ė2 =

(

e2 +
c2
2

2

)

· ṁ =

(

e2 +
c2
2

2

)

· ρ2 · c2 · A2 .

The work done by the forces acting (pressure forces and gravity), as well as the power of
the heat flux q · ṁ, lead (neglecting the friction) to a change in the energy flux from 1 to 2
according to the following balance equations

Ė2 − Ė1 = p1 · A1 · c1 − p2 · A2 · c2 + g · (z1 − z2) · ṁ + q · ṁ ,

(

e2 +
c2
2

2

)

· ṁ −
(

e1 +
c2
1

2

)

· ṁ = p1 · A1 · c1 − p2 · A2 · c2 + g · (z1 − z2) · ṁ + q · ṁ .

After division by ṁ = ρ1 · c1 · A1 = ρ2 · c2 · A2 it follows that

e2 +
p2

ρ2

+
1

2
· c2

2 + g · z2 = e1 +
p1

ρ1

+
1

2
· c2

1 + g · z1 + q .

1
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1 c

2
p

cA2

A
s

2

q
Fig. 2.39 : Streamtube and stream fila-
ment with heat flux q
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With the definition of the mass specific enthalpy h = e + p/ρ we find

h2 +
1

2
· c2

2 + g · z2 = h1 +
1

2
· c2

1 + g · z1 + q .

The three quantities h1, c1 and g · z1 at the cross-section A1, which are known quantities
according to h1 + (1/2) · c2

1 + g · z1 = const., can be brought together to one constant.
Considering the quantities at the cross-section A, we obtain

h +
1

2
· c2 + g · z − q = const. . (2.52)

If no heat is supplied or removed and so the internal energy does not change, the balance
of energy and the Bernoulli equation are identical. This is only valid for the incompressible
flow considered in this chapter.

For flows with mechanical supply of energy (pumps) or mechanical removal of energy
(turbines), such as are found in the night storage power station in Figure 2.40, the balance
of energy (2.52), or, if the heat losses in the pumps and turbines are neglected, the Bernoulli
equation (2.42), is extended by a term which describes the specific work done ∆1P by the
pump. The same holds for the turbine with specific work done ∆lT (units {J/m2}).
During the day, when the load is at its maximum, the water in the storage power station
flows from the reservoir at height z2 along the pressure pipe down to the collection basin
at height z1, and the flow drives the turbine. At night, when the network load is lower, the
water is pumped back up from z1 to z2 by the turbine which now acts as a pump. While
the water being pumped from positions 1 to 2, energy is being supplied to it. The energy
content per unit volume {J/m3} of the fluid is therefore larger at 2 than at 1

p2 +
1

2
· ρ · c2

2 + ρ · g · z2 > p1 +
1

2
· ρ · c2

1 + ρ · g · z1 .

z
UW

turbine

lock

pressure duct

z

pump

2

1

2

1

Fig. 2.40 : Storage power station
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Using the specific work of the pump ∆1P > 0, the Bernoulli equation (flow direction from
1 −→ 2) reads

p2 +
1

2
· ρ · c2

2 + ρ · g · z2 = p1 +
1

2
· ρ · c2

1 + ρ · g · z1 + ∆lP . (2.53)

If the fluid flows from 2 to 1, thereby driving the turbine, energy is removed from the fluid
on the way from 2 to 1, and so the energy content of the fluid is lower at 1 than at 2

p1 +
1

2
· ρ · c2

1 + ρ · g · z1 < p2 +
1

2
· ρ · c2

2 + ρ · g · z2 .

If we define the specific work transformed by a turbine into electrical energy to be positive
too, i.e. ∆lT > 0, the Bernoulli equation in this case (flow direction from 2 −→ 1) reads

p1 +
1

2
· ρ · c2

1 + ρ · g · z1 = p2 +
1

2
· ρ · c2

2 + ρ · g · z2 − ∆lT . (2.54)

Note that the flow direction is different when the pump is used compared to when the
turbine is used.

Using the specific work ∆l for the pump or the turbine, we can obtain their power in
{W} = {J/s} by multiplication with the volume flux V̇ = A · c as

L = ∆l · V̇ .

Summary of the Fundamental Inviscid Equations of Stream Filament Theory

The fundamental equations of one-dimensional stream filament theory for incompressible
and inviscid flows can be summarized as follows:

Conservation of mass ρ · c · A = const. (2.55)

Conservation of momentum
Integral of Euler equation ⇒
Bernoulli equation

∫ s ∂c

∂t
· ds +

p

ρ
+

1

2
· c2 + g · z = const. (2.56)

Conservation of energy h +
1

2
· c2 + g · z + q + ∆l = const. (2.57)

These are 3 algebraic equations to determine the flow variables c, p, h. They are supple-
mented by the thermodynamic relations

h = cp · T , q = −λ · ∂T

∂s
.

The work done by flow machinery ∆l in general has to be measured. The solution of the
algebraic equations (2.55) to (2.57) is found using either known algebraic methods, or,
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if possible, analytically. The numerical solution will be presented in Chapter 3.1 in the
form of the software package KAPPA (Karlsruhe Parallel Program for Aerodynamics)
Stromfaden (stream filament). Examples of analytic solutions are found in the book of
solved problems in Chapter 2.3.

Navier-Stokes Equation

Now at the end of this chapter on incompressible flows, we will consider two-dimensional
conservation of momentum, that is the equation of motion, of viscous flows at fixed walls.

Again we set out the stream surface and the stream filament as in Figure 2.27 in the
boundary layer flow regime or the viscous wake of the flow past an automobile. Once more
we select a cylindrical volume element along the stream filament and consider the streamtube
of Figure 2.41 for the viscous flow. Here a cylindrical ring element of length ds and base
area dA = 2 · π · r · dr is considered. The velocity c is no longer only a function of s and
possibly of t, but is now also dependent on the radial coordinate r. Since ∂c/∂r 6= 0 holds
for r 6= 0 there are shear stress contributions to the balance of forces. For the equation of
motion

dm · b =
∑

i

Fi

and mass dm = ρ ·dA ·ds = ρ ·2 ·π · r ·dr ·ds, acceleration b = ∂c/∂t+ c · (∂c/∂s) and forces
acting Fi: pressure forces, shear stresses and the component of gravity along s, we have

dm ·
(

∂c

∂t
+ c · ∂c

∂s

)

= ρ · 2 · π · r · dr · ds ·
(

∂c

∂t
+ c · ∂c

∂s

)

= p · 2 · π · r · dr−
(

p +
∂p

∂s
· ds

)

· 2π · r · dr − ρ · g · 2π · r · dr · ds · cos(ϕ) − τ · 2 · π · r · ds+
(

τ +
∂τ

∂r
· dr

)

· 2 · π(r + dr) · ds .

o
o

o
o

ds
dzr

ds( p +            )
p
s

 2   r drπ

π 2   r drg              dsρ

π 2   r ds
τ

π 2   r dr

πp 2   r dr

τ πdr
r

ds

ϕ ϕ

s

(τ +             ) 2   (r + dr) ds
gz

Fig. 2.41 : Balance of forces at a stream filament element dV for viscous flow
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With cos(ϕ) = dz/ds and dividing by (ρ · 2 · π · r · dr · ds), while neglecting terms of the
order (dr)2, the ansatz τ = µ · (∂c/∂r) with ν = µ/ρ yields the Navier-Stokes equation
in cylindrical coordinates

∂c

∂t
+ c · ∂c

∂s
= −1

ρ
· ∂p

∂s
+ ν ·

(
1

r
· ∂c

∂r
+

∂2c

∂r2

)

− g · dz

ds
. (2.58)

This is a second order partial differential equation. In contrast to the Euler equation (2.40),
the Navier-Stokes equation also takes the effect of friction into account, by means of changes
in the shear stresses which give rise to the second derivative of the velocities. The left-
hand side of the Navier-Stokes equation again characterizes the fundamental equation of
kinematics(2.36) for one-dimensional flows, but is now supplemented by the pressure, friction
and gravitation forces.

The Navier-Stokes equation in stream filament coordinates s and n reads

∂c

∂t
+ c · ∂c

∂s
= −1

ρ
· ∂p

∂s
+ ν · ∂2c

∂n2
− g · dz

ds
. (2.59)

The individual terms mean:

∂c

∂t
+ c · ∂c

∂s
inertial forces per unit mass,

1

ρ
· ∂p

∂s
pressure force per unit mass,

ν · ∂2c

∂n2
friction force per unit mass,

g · dz

ds
gravity per unit mass.

The Navier-Stokes equation can be made dimensionless with suitable characteristic quan-
tities. The dimensionless quantities are denoted by a star. All position coordinates appearing
s, n and z are referred to a characteristic length L and the velocity c to a characteristic
velocity c∞. The ratio L/c∞ represents a characteristic time, used to make the time t dimen-
sionless. The pressure p is made dimensionless with twice the value of the dynamic pressure,
i.e. with ρ · c2

∞.

s∗ =
s

L
, n∗ =

n

L
, z∗ =

z

L
, c∗ =

c

c∞
, t∗ =

t · c∞
L

, p∗ =
p

ρ · c2
∞

.

If we set these quantities into the dimensional Navier-Stokes equation (2.59), we obtain

c2
∞

L
· ∂c∗

∂t∗
+

c2
∞

L
· c∗ · ∂c∗

∂s∗
= −1

ρ
· ρ · c2

∞

L
· ∂p∗

∂s∗
+ ν · c∞

L2
· ∂2c∗

∂n∗2
− g · L

L
· dz∗

ds∗
.

Multiplication by the factor L
c2
∞

leads to

∂c∗

∂t∗
+ c∗ · ∂c∗

∂s∗
= −∂p∗

∂s∗
+

ν

c∞ · L · ∂2c∗

∂n∗2
− g · L

c2
∞

· dz∗

ds∗
.
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The combinations of characteristic quantities in front of each of the last two terms are the
Reynolds number ReL = (c∞ ·L)/ν and the Froude number FrL = c2

∞/(g ·L), each formed
with the characteristic length L, which we already used in the introductory chapters. The
dimensionless Navier-Stokes equation reads

∂c∗

∂t∗
+ c∗ · ∂c∗

∂s∗
= −∂p∗

∂s∗
+

1

ReL

· ∂2c∗

∂n∗2
− 1

FrL

· dz∗

ds∗
, (2.60)

with the dimensionless characteristic numbers

Froude number: FrL =
inertial force

gravity
=

c · ∂c
∂s

g · dz
ds

=
c2
∞

g · L ,

Reynolds number: ReL =
inertial force

viscous force
=

c · ∂c
∂s

ν · ∂2c
∂n2

=
c∞ · L

ν
.

For Fr À 1, the inertial force of the flow dominates and gravity may be neglected. For
Re À 1 the inertial force also dominates. The effect of viscosity is restricted to a thin
viscous layer close to the wall, which we recognize as the boundary layer. For the
boundary layer thickness δ referred to the length L and shown in Figure 2.42, we have the
relation

δ

L
∼ 1√

ReL

. (2.61)

The static pressure inside this boundary layer corresponds to the static pressure of the
inviscid outer flow, imprinted onto the boundary layer. For Re ¿ 1, the viscous force
dominates in the entire flow field. Flows in this regime are called creeping flows (Figure
2.42), and a division into an inviscid outer flow and a viscous flow layer close to the wall is
no longer possible.

c

c

c

L

(n)

c
L

ReL 1

1ReL

L
Fig. 2.42 : Plate boundary layer flow and
creeping flow past a cylinder
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The orders of magnitude of Reynolds numbers which occur for living organisms and in
technology are summarized in the following table.

Nature ReL motion

bacteria 10−6 friction dominates
motion ⇒ ciliary

amoeba (flagella) 10−3

tadpoles 102 inertial force dominates
jet propulsion

eel 105 wave-like motion

human 106 large ReL numbers
motion by means of vortex separation

blue whale 108 ⇒ tail fin

Technology

automobile 107 combustion engine
airplane

submarine 109 propeller

If we integrate the dimensionless Navier-Stokes equation (2.60) at a fixed time t along the
stream filament coordinate, we obtain

∫
∂c∗

∂t∗
· ds∗ +

∫
∂

∂s∗

(
c∗2

2

)

· ds∗ =

−
∫

∂p∗

∂s∗
· ds∗ − 1

FrL

·
∫

dz∗

ds∗
· ds∗ +

1

ReL

·
∫

∂2c∗

∂n∗2
· ds∗ + const. ,

∫
∂c∗

∂t∗
· ds∗ +

1

2
· c∗2 + p∗ +

1

FrL

· z∗ − 1

ReL

·
∫

∂2c∗

∂n∗2
· ds∗ = const. . (2.62)

In the KAPPA software, equation (2.62) supplements the Bernoulli equation (2.56) by the
viscous term (1/ReL) ·

∫
(∂2c∗/∂n∗2) · ds∗. In the software package KAPPA-Stromfaden
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(Chapter 3.1), this is taken into account to compute the viscous layers. We are then no longer
dealing with one-dimensional stream filament theory, rather with the general formulation of
the fluid mechanical fundamental equations for three-dimensional flows.

Analytical Solutions of the Navier-Stokes Equation

We consider three analytical solutions of the Navier-Stokes equation. In a pipe with
circular cross-section of radius R, a parabolic velocity profile c(r) is formed (Figure 2.43).
This is a steady (∂c/∂t = 0), fully formed (∂c/∂s = 0) pipe flow. The velocity profile does
not change along the coordinate s, so that (1/ρ) · ∂p/∂s = const. This is a horizontal shear
flow with dz = 0, and so the gravitational force g · (dz/ds) = 0 is eliminated. Under these
assumptions, the Navier-Stokes equation in cylindrical coordinates (2.58) reads

1

r
· dc

dr
+

d2c

dr2
= const. , (2.63)

where the constant viscosity ν has been added on to the constant pressure gradient (1/ρ) ·
∂p/∂s. Since the velocity c(r) is a function only of the radial coordinate r, we obtain a
second order differential equation. With the two boundary conditions

r = ±R ⇒ c(R) = 0

and the supplementary condition

dc

dr

∣
∣
∣
∣
r=0

= 0 ,

the differential equation (2.63) can be solved using a power law ansatz for c(r):

c(r) = − R2

4 · ν · ρ · dp

ds
·
(

1 − r2

R2

)

.

With the maximum velocity cmax = −(R2/(4 · ν · ρ)) · (dp/ds) it is found for the pipe flow
that

c(r) = cmax

(

1 − r2

R2

)

. (2.64)

A parabolic velocity profile c(n) is also found for the plane steady channel flow, called
the Poiseuille flow (Figure 2.44). The Navier-Stokes equation to be solved (2.59), with
∂p/∂s = const. and dz = 0 for the fully-formed channel flow ∂c/∂s = 0 can be written as

ν · ∂2c

∂n2
= const. . (2.65)

R
r

s
c

max

Fig. 2.43 : Hagen-Poiseuille pipe flow
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After integrating twice and using the boundary conditions

n = ±H ⇒ c(h) = 0

we find the parabolic velocity profile

c(n) = − h2

2 · ν · ρ · dp

ds
·
(

1 − n2

h2

)

= cmax ·
(

1 − n2

h2

)

. (2.66)

The shear stress of this viscous channel flow can be computed with (2.1)

τ(n) = µ · dc

dn
= −2 · µ · cmax

h2
· n .

The linear distribution of the magnitudes of the shear stresses shown in Figure 2.44 is
therefore found.

In the case of Couette flow, shown in Figure 2.45, in a channel with a lower wall at rest and
an upper wall moving with constant velocity U , and the additional assumption ∂p/∂s = 0
the Navier-Stokes equation (2.59) is

d2c

dn2
= 0 . (2.67)

After integrating twice and using the boundary conditions

n = ±h ⇒ c(−h) = 0, c(+h) = U

we obtain the linear velocity profile

c(n) =
U

2
·
(

1 +
n

h

)

. (2.68)

2mc = maxc1

2H (n)c

(n)

Fig. 2.44 : Poiseuille channel flow
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c2H (n)

U

Fig. 2.45 : Couette flow

Drag Coefficients

Now that we have looked at the basics of inviscid and viscous flow regimes, we can go back
to the introductory examples in Chapter 1.2 and treat the drag of bodies in a flow more
precisely.

The total drag coefficient cw (1.2)

cw =
W

1
2
· ρ∞ · c2

∞ · A ,

with drag W on the body, free stream velocity c∞ and a characteristic cross-sectional area
A, consists of terms corresponding to the inviscid and viscous regions in the flow field:

cw = cd + cf , (2.69)

the part due to the pressure distribution cp called pressure drag cd and the friction drag
cf . The drag coefficients are written as

cd =
P

1
2
· ρ∞ · c2

∞ · A , cf =
τw

1
2
· ρ∞ · c2

∞

,

with the shear stress τw at the wall. The pressure force P is computed from the pressure
coefficient cp (1.1)

cp =
p − p∞

1
2
· ρ∞ · c2

∞

by integration along the wall streamline s, and the magnitude of the total wall shear stress
τw by integration of the local value of τw on the surface of the body. This yields the total
drag W of a body of length L to be

W =

(∫ L

0

cp,u sin α · ds −
∫ L

0

cp,l sin α · ds

+

∫ L

0

cf,u cos α · ds +

∫ L

0

cf,l cos α · ds

)

· 1

2
· ρ∞ · c2

∞ · B , (2.70)
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B

cp =
p- p

2
c2

sWW

L

n

c

1

0

0

0 L/s

s / L

f =
c

2
2

c

1

W

1

ds

Fig. 2.46 : Pressure coefficient cp and drag
coefficient cf of symmetric flow past a foil

where u and l are the upper and lower sides of the body respectively, and B is a characteristic
depth, with A = L · B. The integration is carried out along the two surfaces. In splitting
the drag up into the pressure drag and the viscous drag, it was assumed that, although the
pressure drag depends on the shape of the body, the friction drag essentially only depends
of the size of the surface of the body and not on the shape of this surface.

Figure 2.46 shows the pressure drag coefficient cd and the friction drag coefficient cf for a
symmetric foil in a flow with c∞. Here we note that, in contrast to the example in Chapter
1, we now assume an incompressible flow with low Mach number, such as is found in the
case of gliders. Figure 2.47 summarizes the drag contributions of bodies in flows.

8c

cf

8c

c8
8c8c

100 %

100 %

90 %

10 %

0 %

90 %

0 %

10 %

body cd

Fig. 2.47 : Contributions due to the pres-
sure drag cd and the friction drag cf of a
body in a flow
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1 s /L

fc

Fig. 2.48 : Friction coefficient cf of the
plate boundary layer

The pressure is imprinted onto the boundary layer of a plate placed longitudinally in a flow.
Here the pressure drag cd is equal to zero and the total drag cw consists only of the friction
drag cf , whose local value along the plate is shown in Figure 2.48.

Because of its small cross-sectional area A, a slender foil only has a small pressure drag
(Figure 2.47), and it is the friction drag which dominates. In the case of a cylinder in a flow,
the relationship of the different drag terms is the opposite, and it is the pressure drag which
dominates. A plate placed transversely in a flow has essentially only pressure drag, and the
friction drag is vanishingly small.

Let us return to the question of the body with the smallest total drag cw. The racing car
build in 1938 and shown in Figure 1.3 with a cw value of 0.17 is an example of the ideal
geometry. It is streamline bodies, as shown in Figure 2.49, which have the smallest drag.
However, in Chapter 2.4.5 we will see that even these small drag coefficients can be decreased
even further by suitable influencing of the wall shear stress τw.

c 8

c 8

Fig. 2.49 : Streamlined bodies in a free
stream (Zeppelin) and close to the ground
(automobile)
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2.3.3 Compressible Flows

Compressible flow is characterized by a quantity called the compressibility K

K =
relative change in volume

change in pressure required
= −dV

V
· 1

dp
. (2.71)

Since the pressure change dp > 0 for a volume change dV < 0, the definition for K gets
an additional minus sign, so that K itself is positive. Its value for water, for example, is
KH2O = 5 · 10−5 1/bar. For gases at constant temperature, the Boyle-Mariotte law holds:

p = const. · m

V
, (2.72)

V = const. · m

p
⇒ dV

dp
= −const. · m

p 2
,

with (1/V ) = (p/(m · const.) it follows that K is

K = −dV

dp
· 1

V
= const. · m

p 2
· p

m · const
⇒ K =

1

p
.

The value for air at p = 1 bar is Kair = (1/p) = 1 (1/bar). A comparison between air and
water yields

Kair

KH2O

= 20000 .

Therefore air is about 20000 times more compressible than water. We have already used this
fact by treating water flows generally as incompressible flows, and gas flows at higher flow
speeds as compressible flows. As well as the characteristic numbers of the previous chapter,
we now also introduce the Mach number M

M =
c

a
=

flow velocity

speed of sound
(2.73)

as an additional dimensionless characteristic number. The speed of sound a corresponds
to the velocity of expansion of small disturbances in the variables of state (e.g. pressure
disturbances dp) in a compressible medium at rest (Figure 2.50). The velocity of sound is a
signal velocity with which disturbances in the flow field are transmitted. The gas through
which the sound wave has passed has a pressure perturbation dp, a density perturbation dρ
and a perturbation in the velocity dc.

For an observer moving with −a, the sound wave is at rest and behind the sound wave he
sees the velocity dc − a. If we restrict ourselves to inviscid outer flows, we can write down
the continuity equation for the sound wave at rest

ṁ = ρ · c · A = const. ⇒ (ρ + dρ) · (−a + dc) · A = −ρ · a · A ⇒ dρ

ρ
=

dc

a
,
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and the Bernoulli equation becomes

c2

2
+

∫ p

0

dp

ρ
= const. ⇒ (−a + dc)2

2
+

∫ p+dp

0

dp

ρ
=

(−a)2

2
+

∫ p

0

dp

ρ

⇒ a · dc =
dp

ρ
.

The speed of sound a is therefore coupled with pressure and density changes in the medium.
Small disturbances expand without losses, i.e. isentropically, and so for the square of the
speed of sound we can write

a2 =

(
∂p

∂ρ

)

s

.

This corresponds to the equation of definition (2.9). Using the equation of isentropic change
of state

p

p1

=

(
ρ

ρ1

)κ

(2.74)

it follows that

∂p

∂ρ
= p1 · κ ·

(
ρ

ρ1

)(κ−1)

· 1

ρ1

= κ · p1

ρ1

·

(
ρ
ρ1

)κ

(
ρ
ρ1

) = κ · p1

ρ
· p

p1

= κ · p

ρ
,

gas at rest

p + dp

dc

+ d
c = 0

ρ
p

p + dp

-a + dc

ρ
p

- a

+ d

sound wave

-a

a

slightly perturbed
quantity

slightly perturbed
quantity

unperturbed
quantity

sound wave at rest

ρ       ρ

ρ       ρ

(one-dimensional, steady)
propagation

reference frame moving with -a

Fig. 2.50 : Expansion of a sound wave in
a reference frame at rest and moving with
the sound wave
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and with the ideal gas equation (2.8)

a2 = κ · p

ρ
, a2 = κ · R · T , a2 = κ · R

M · T , (2.75)

with the general gas constant R = 8.314 J/(mol ·K) and the molar mass M { g
mol

}. We can
write down the following important relations for the speed of sound a

a ∼
√

T , a ∼
√

1

M . (2.76)

The numerical values for air are

κ = 1.4 , R = 287
J

kg · K , T = 293.15K ⇒ a = 343.20
m

s
= 1235.5

km

h
.

Sound waves are all around us in both natural and technical areas. One impressive example
is that of the crack of a whip. Figure 2.51 shows four snapshots of the end of a whip. In 1
the end of the whip is just about to snap around. In 2, the whip opens up and the crack
wave S is formed. This can no longer be considered to be a small disturbance. The sound

Fig. 2.51 : Crack of a whip
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wave is built up to a shock wave, which we hear as the loud crack. In the third and fourth
pictures the wave spreads out into the compressible surrounding air.

Consider the sound waves in Figure 2.52 which spread out from a source at rest or a moving
source (such as the crack of a whip). In the case of the source which is at rest, the sound
waves expand as concentric spherical waves. If the sound source is moving with a velocity
U∞ smaller than the speed of sound a∞(M∞ < 1), the spherical waves are denser upstream.
An external observer first hears a higher frequency (higher tone) and then, after the sound
source has moved past, a lower frequency (lower tone). If the sound source moves with a
velocity U∞ which is greater than the speed of sound a∞(M∞ > 1), the sound waves remain
inside a characteristic cone, known as the Mach cone, with a cone angle of sin(α) = a∞/U∞.
If the source of the sound is a supersonic airplane, this Mach cone is built up to a shock
wave (head shock wave), whose pressure distribution on the ground is sketched in Figure
2.53. The shock wave generates a pressure jump ∆p on the ground, which we hear as a
sonic boom. In order to be able to attain the unperturbed thermodynamic state of the air
p∞ behind the airplane again, a further shock is needed, the tail wave. This reverses the
pressure increase due to the head wave. This explains the double sonic boom heard on the
ground when a supersonic airplane flies past.

Mach Number Regimes

As well as characterizing viscous flows with the Reynolds number ReL; flows with heat
transport with the Prandtl number Pr∞; and the effect of gravity with the Froude number
FrL, the Mach number M∞ allows us to differentiate between regions of incompressible and
compressible flow. An incompressible subsonic flow with ∂ρ/∂s ¿ ∂c/∂s is present when

M∞ ¿ 1 subsonic flow, incompressible (flow past an automobile) ,

compressible subsonic flows are found in the regime

0.2 < M∞ < 1 compressible subsonic flow (ICE or TGV trains) ,

8

8

8 8

∆8u      t

8

a     t∆

8 8

∆8u      t

a     t∆

u  < a

moving
sound source

u  =0

sound source
moving

α

u  > a

sound source
at rest

Fig. 2.52 : Wave propagation from a source
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transonic flows with ∂ρ/∂s ≈ ∂c/∂s are found for

M∞
≤

≥1 transonic flow (civil airplane) ,

and supersonic flows with ∂ρ/∂s À ∂c/∂s for

M∞ > 1 supersonic flow (supersonic airplane Concorde) .

Hypersonic flows occur for

M∞ À 1 hypersonic flow (re-entry vehicle, Space Shuttle) .

tail shock wave

reflected
shock waves

M   > 18

p∆

p 8

p∆
p8

front shock wave

ground

Fig. 2.53 : Supersonic flight and pressure distribution at ground
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The thermodynamic equations of state for ideal gases are no longer valid in the hypersonic
flow regime. In this Mach number regime, the chemical reactions of hot air have to be taken
into account. These are treated in the textbook Aerothermodynamik, OERTEL 1994. For
example, for the Mach number M∞ = 10, the effect of compressibility dominates and

1

ρ

∂ρ

∂s
∼ 100

1

c

∂c

∂s

Stream Filament Theory of Compressible Flows

The derivation of one-dimensional stream filament theory for compressible flows is based on
the Euler equation (2.40). In what follows, we consider a steady shear flow, such as inviscid
outer flow or inviscid core flow of a nozzle. For the shear flow dz = 0, and the Euler equation
is written in the stream filament coordinate s as

c · dc

ds
= −1

ρ
· dp

ds
= −1

ρ
· dρ

dρ
· dp

ds
= −a2 1

ρ
· dρ

ds
| : c2 ,

1

c
· dc

ds
= − 1

M2
∞

· 1

ρ
· dρ

ds
,

1

ρ
· dρ

ds
= −M2

∞ · 1

c
· dc

ds
, (2.77)

with (1/ρ) · (dρ/ds) the relative change in density and (1/c) · (dc/ds) the relative change in
velocity.

In the subsonic regime M2
∞ ¿ 1, and so, as already mentioned, the relative change in density

in subsonic flows is much smaller than the relative change in velocity, and for small Mach
number can frequently be completely neglected.

In the supersonic region the opposite is true. Because M2
∞ À 1, the relative change in density

is very much larger than the relative change in velocity. If a supersonic flow is accelerated,
dc/ds > 0, then, because of the factor −M2

∞, this acceleration leads to a considerable
reduction in the density of the medium, dρ/ds < 0. Therefore supersonic flows need space.
Because of the continuity equation, the strong relative reduction in density in an accelerated
supersonic flow means that the cross-section A increases along s.

In transonic flows M2
∞ ≈ 1, and all changes, both density changes and relative velocity

changes, are of the same order of magnitude. Again the integral of the Euler equation leads
to the Bernoulli equation for compressible flow. If we consider the integral along the
stream filament s from the position 1 to the position 2, neglecting gravity with z1 = z2, we
obtain

1

2
· (c2

2 − c2
1) +

∫ p2

p1

dp

ρ
= 0 .

The equations of isentropic change of state (2.74) hold for the change in the variables of
state (but not for shock waves!),

p

p1

=

(
ρ

ρ1

)κ

⇒ 1

ρ
=

(
p1

p

) 1
κ

· 1

ρ1

=
p

1
κ

1

ρ1

· p− 1
κ ⇒



82 2. Fundamentals of Fluid Mechanics

∫ p2

p1

dp

ρ
=

p
1
κ

1

ρ1

·
∫ p2

p1

p−
1
κ · dp =

p
1
κ

1

ρ1

·
[

κ

κ − 1
· pκ−1

κ

]p2

p1

=
p

1
κ

1

ρ1

· κ

κ − 1
·
[

p
κ−1

κ

2 − p
κ−1

κ

1

]

⇒

∫ p2

p1

dp

ρ
=

κ

κ − 1
·
(

p2

ρ2

− p1

ρ1

)

.

So the Bernoulli equation for compressible flows reads

1

2
· c2

2 +
κ

κ − 1
· p2

ρ2

=
1

2
· c2

1 +
κ

κ − 1
· p1

ρ1

⇒ 1

2
· c2 +

κ

κ − 1
· p

ρ
= const. . (2.78)

With a2 = κ · (p/ρ) it follows that

1

2
· c2

2 +
a2

2

κ − 1
=

1

2
· c2

1 +
a2

1

κ − 1
⇒ 1

2
· c2 +

a2

κ − 1
= const. . (2.79)

Using the equation of state for the ideal gas (p/ρ) = R · T = (cp − cv) · T and the isentrop
exponent κ = (cp/cv) it follows that

κ

κ − 1
· p

ρ
=

cp

cv

· 1
cp

cv
− 1

· (cp − cv) · T = cp · T = h ,

cp · T2 +
1

2
· c2

2 = cp · T1 +
1

2
· c2

1 ⇒ cp · T +
1

2
· c2 = const. , (2.80)

h2 +
1

2
· c2

2 = h1 +
1

2
· c2

1 ⇒ h +
1

2
· c2 = const. . (2.81)

This corresponds to the energy equation (2.52), without taking the heat flux and gravity
into account.

Determining the constants of the Bernoulli equation is carried out using the reservoir
values, or the so-called critical values.

The reservoir values p0, ρ0, a0, T0 with c = 0 satisfy equation (2.79)

1

2
· c2 +

a2

κ − 1
=

a2
0

κ − 1
⇒ a2

(
1

2
· M2 +

1

κ − 1

)

=
a2

0

κ − 1

⇒ a2

a2
0

=
1

1 + κ−1
2

· M2
,

with a2 = κ · R · T and a2
0 = κ · R · T0 it follows that

T

T0

=
1

1 + κ−1
2

· M2
, (2.82)
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T is always smaller than T0, since M2
∞ > 0 holds at all times. The isentropic relation

ρ

ρ0

=

(
T

T0

) 1
κ−1

leads to an expression for the reservoir pressure ρ0

ρ

ρ0

=
1

(
1 + κ−1

2
· M2

) 1
κ−1

. (2.83)

Since M2
∞ > 0, ρ is smaller than ρ0. Using the isentropic relation

p

p0

=

(
T

T0

) κ
κ−1

it follows that the reservoir pressure p0 satisfies

p

p0

=
1

(
1 + κ−1

2
· M2

) κ
κ−1

. (2.84)

Equation (2.82) can also be used to determine the reservoir temperature T0 at the stagnation
point of a projectile. If we assume a flow temperature of T = 300 K, in the stagnation
point (c = 0), for a Mach number of M∞ = 2, we find the stagnation point temperature
T0 = 540 K. The stagnation point of the supersonic airplane Concorde therefore heats up
during the flights. For M∞ = 5, the stagnation point temperature is already T0 = 1, 800 K.
At such high temperatures, however, the assumption of isentropic change of state and the
ideal gas law are not longer guaranteed.

In order to determine the constants in the Bernoulli equation, the critical values can also be
used (index ∗). Critical values are those values found in a flow when the velocity of sound
M = 1 has just been reached:

p(M = 1) = p∗ , T (M = 1) = T ∗ , ρ(M = 1) = ρ∗ ,

a(M = 1) = a∗ , c(M = 1) = c∗ = a∗ .

Therefore

1

2
· c2 +

a2

κ − 1
=

1

2
· c∗2 +

a∗2

κ − 1
= a∗2 ·

(
1

2
+

1

κ − 1

)

= a∗2 · κ + 1

2 · (κ − 1)

or

1

2
· c2 + cp · T =

1

2
· a∗2 + cp · T ∗ ,

with

a∗2 = κ · R · T ∗ =
cp

cv

· (cp − cv) · T ∗ = cp · (κ − 1) · T ∗ ⇒



84 2. Fundamentals of Fluid Mechanics

1

2
· c2 + cp · T =

1

2
· cp · (κ − 1) · T ∗ + cp · T ∗ =

=
1

2
· cp · (κ − 1) · T ∗ +

2

2
· cp · T ∗ = cp ·

κ + 1

2
· T ∗ .

Therefore there is a relation between the reservoir values (index 0) and the critical values
(index ∗). To find this relation, we set the Mach number in equations (2.82) and (2.84) to
M = 1, give variable quantities the index ∗, and leave the reservoir values as they are. We
obtain

T ∗

T0

=
2

κ + 1
,

ρ∗

ρ0

=

(
2

κ + 1

) 1
κ−1

,
p∗

p0

=

(
2

κ + 1

) κ
κ−1

. (2.85)

In particular, for air with the value κ = 1.4 we find

T ∗

T0

= 0.833 ,
ρ∗

ρ0

= 0.634 ,
p∗

p0

= 0.528 .

Stream Filament Theory with Variable Cross-Section A(s)

For a variable cross-section A(s) the continuity equation reads

ṁ = ρ(s) · c(s) · A(s) = const. .

Taking the logarithm of the continuity equation we find

ln(ρ(s) · c(s) · A(s)) = ln(ρ(s)) + ln(c(s)) + ln(A(s)) = ln(const.) ,

and differentiation d/ds leads to

1

ρ
· dρ

ds
+

1

c
· dc

ds
+

1

A
· dA

ds
= 0 .

Using the Euler equation (2.77), the density term can be eliminated from the continuity
equation and we obtain

1

c
· dc

ds
· (−M2 + 1) +

1

A
· dA

ds
= 0 ,

1

c
· dc

ds
=

1

M2 − 1
· 1

A
· dA

ds
. (2.86)

Equation (2.86) allows one to determine how the cross-section A(s) of a nozzle must be
shaped to accelerate a gas continuously from subsonic Mach numbers M < 1 to supersonic
Mach numbers M > 1 (Figure 2.54). Continuous acceleration requires that dc/ds > 0. If the
Mach number is less than one, M < 1, a narrowing of the cross-section is needed: dA/ds < 0.
If the Mach number is greater than one M < 1, a widening of the cross-section is required:
dA/ds > 0, in order to accelerate the gas. For the Mach number M = 1, the differential
equation (2.86) has a singularity. In order to ensure that dc/ds > 0, dA/ds = 0 has to hold.
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If one wishes to accelerate a flow continuously from the subsonic region to the supersonic
region, the nozzle required must first have a narrowing in the cross-section, and then, down-
stream from the narrowest cross-section, a further widening of the cross section. Such a
nozzle is shown in Figure 2.54. It is called a Laval nozzle.

At the narrowest point in the cross-section, the critical values (index *) introduced in equa-
tion (2.85) are found at Mach number M = 1. The divergent part of the nozzle in the
supersonic region can be explained by considering that the relative decrease in density in
the supersonic region is much greater than the relative increase in velocity. For this reason,
conservation of the constant mass flux ṁ = ρ · c ·A = const. requires that the cross-section
A(s) increases along s.

In what follows we will derive the differential equation which relates the relative change in
cross-section, (1/A) · (dA/ds), to the relative change in Mach number (1/M) · (dM ·ds). The
logarithm of the defining equation for the Mach number c = M · a yields

ln(c) = ln(M) + ln(a) .

Differentiation d/ds leads to

1

c
· dc

ds
=

1

M
· dM

ds
+

1

a
· da

ds
. (2.87)

dc
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 > 0 , M < 1
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dc
ds
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dA = 0

M < 1 M = 1 M > 1
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< 0
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dA

 > 0 , M > 1

> 0

A
c  < 18

non singular, M = 1

Fig. 2.54 : Laval nozzle
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Taking the logarithm of a2 = κ · (p/ρ) yields 2 · ln(a) = ln(κ) + ln(p)− ln(ρ). Differentiation
d/ds leads to

2

a
· da

ds
=

1

p
· dp

ds
− 1

ρ
· dρ

ds
.

In the next step, the expression dp/ds has to be related to dρ/ds:

a2 =
dp

dρ
⇒ dp = a2 · dρ ⇒ dp

ds
= a2 · dρ

ds
= κ · p

ρ
· dρ

ds
⇒

1

p
· dp

ds
=

κ

ρ
· dρ

ds
.

We find that

2

a
· da

ds
= (κ − 1) · 1

ρ
· dρ

ds
,

and with the Euler equation it follows that

1

a
· da

ds
=

κ − 1

2
· −M2

c
· dc

ds
.

Inserting this equation into equation (2.87), taking equation (2.86) into account delivers

1

M2 − 1
· 1

A
· dA

ds
=

1

M
· dM

ds
+

(κ − 1)(−M2)

2
· 1

M2 − 1
· 1

A
· dA

ds
,

1

A
· dA

ds
·
(

1 + κ−1
2

· M2

M2 − 1

)

=
1

M
· dM

ds
. (2.88)

This is a first order ordinary differential equation to determine M(s) for a given cross-section
A(s). Using the boundary condition M = M∗ = 1 for A = Amin = A∗ with M∗ = 1 the
solution reads

A

A∗
=

1

M
·
(

1 +
κ − 1

κ + 1
· (M2 − 1)

) κ+1
2·(κ−1)

. (2.89)

Equation (2.89) gives the Mach number as an implicit function of a given cross-section A(s),
if the velocity is the velocity of sound at the narrowest point A∗. In this case, the mass flux
ṁ through the nozzle can be determined as a function of the critical values

ṁ = ρ · c · A = ρ∗ · c∗ · A∗ = ρ∗ · a∗ · A∗ = const. .

For the solution curve discussion of equation (2.89), we consider the direction field of the
ordinary differential equation (2.88). First of all we solve equation (2.88) for dM/ds

dM

ds
= M · 1

A
· dA

ds
·
(

1 + κ−1
2

· M2

M2 − 1

)

⇒ dM

ds
= M ′(s) = f(M,A, s) .
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The derivative of the Mach number M ′(s) is therefore a function f of the Mach number M(s),
of the given cross-section A(s) and of the coordinate s. The relation M ′(s) = f(M,A, s)
assigns a direction in the (s,M) plane to every point (s,M).

A direction element to be specially defined is found at the narrowest cross-section Amin of
Figure 2.55. For M 6= 1, with dA/ds = 0, we find

dM

ds
= 0 ,

i.e. horizontal tangents . For M = 1, as long as dA/ds 6= 0, vertical tangents are found, with

dM

ds
= ∞ .

The singular point at the narrowest cross-section Amin with dA/ds = 0 and with Mach
number 1 is a saddle point. The singular point has no uniquely defined direction assigned
to it. There are two possible directions of propagation. These three limiting cases can be
used to draw the mathematically possible solution curves to equation (2.89) in Figure 2.55.

Not all the solution curves are physically relevant for the (assumed) continuous acceleration
in the Laval nozzle. The region where backflow occurs, for example, is not physically relevant,
leaving those relevant solution curves as shown in Figure 2.56. The solution curve that
ultimately is found in the Laval nozzle depends on ratio of the pressure p at the end of
the nozzle to the reservoir pressure p0. Depending on the application of either high back
pressure pA or low back pressure pE, we obtain different flow forms, to be treated in what
follows.

dM
dx

= 8

Amin

M = 1

M M

SS

dM
dx

= 0

1 1

Fig. 2.55 : Direction field of the Laval nozzle differential equation
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For a high back pressure pA, we obtain pure subsonic flow M < 1 through the Laval nozzle.
In the region where the cross-section narrows, the flow is accelerated (nozzle). Where the
cross-section widens, the flow is then decelerated for M < 1. In this case the Laval nozzle
acts as a diffusor.

If the back pressure is pB, the Mach number 1 is just reached at the narrowest cross-section,
and the critical values are obtained (index *). In the region where the cross-section of the
Laval nozzle widens, a subsonic flow is again found, and the flow is decelerated.

If the back pressure exceeds this critical value pB, as for the value pD, acceleration occurs for
supersonic values M > 1, but continual flow through the Laval nozzle is no longer possible.
A shock occurs in the subsonic region, leading to a discontinuity in the flow quantities.
At the position s, the solution curve jumps from supersonic M > 1 to subsonic M < 1
behavior.

If the back pressure at the end of the nozzle is lowered to the value pD, the shock moves to
the end of the nozzle.

It is only for the back pressure pE that we can speak of an ideal Laval nozzle. The continuous
acceleration of the flow follows the upper solution curve in Figure 2.56 from the subsonic
regime M < 1 to the supersonic regime M > 1. At the end of the nozzle, as sketched in
Figure 2.57, a free jet without a shock is found, and the pressure is the surrounding pressure
p∞.

For back pressures between pD and pE, oblique shocks are found at the end of the nozzle,
followed by so-called expansion fans. This flow form of oblique shocks followed by expansion
fans is then to be found periodically in the free jet, so that a characteristic node-structure
appears. Such a supersonic free jet is used in a blowtorch to cut through metal.

0p
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0T

c = 0

M < 1 pAmin

p
p

F

E

pB

pA

Cp
pD

p

1

M

B

E

D

A

F

C

S

Fig. 2.56 : Dependence of Mach number
in the Laval nozzle on the back pressure p
at the outlet of the nozzle
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If the back pressure at the end of the nozzle is further reduced to pF , the oblique shocks
vanish, and pure expansion flow occurs at the end of the nozzle, seen as a free jet bell. This
can be seen at high altitudes after a rocket starts.

Figure 2.58 shows the mass flux density in the Laval nozzle. The mass flux density is the
ratio between the mass flux ṁ and the cross-sectional area of the flow A

ṁ

A
= ρ · c .

In the supersonic case, for the Laval nozzle with critical values at the narrowest cross-section
A∗ = Amin we have

ṁ = const. ⇒ ρ · c · A = ρ∗ · c∗ · A∗ ⇒ ρ · c
ρ∗ · c∗ =

A∗

A
.

Since the cross-section A in a Laval nozzle is larger than A∗ everywhere except at the
narrowest point, where Amin = A∗, we have

A∗

A
=

ρ · c
ρ∗ · c∗ ≤ 1 .

<D
p

E
p

C
p

p

8E=p

p
F

p
B

Fig. 2.57 : Dependence of the flow structures at the end of the Laval nozzle on the back
pressure p
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M = 1

1

s

1

c
*c*

ρ

M > 1M < 1
c 8

ρ

M (s)

s

Fig. 2.58 : Mach number and mass flux
density in a Laval nozzle

Therefore at the narrowest point in the Laval nozzle where Amin = A∗, the dimensionless
mass flux density (ρ · c)/(ρ∗ · c∗) has its maximum value (ρ · c)/(ρ∗ · c∗) = 1.

Shock Wave

A shock wave is quite generally a sharp change in the flow variables velocity ~v, pressure
p, density ρ and temperature T . These changes occur in an extremely thin layer of the gas
with a size of the order of magnitude of several mean free paths. The mean free path is the
mean distance which a molecule or atom moves between two collisions with other molecules.
For air, the mean free path λ in normal conditions is λ = 10−7 m. In regions of this order
of magnitude very large gradients of the variables of state occur, so that it is permitted
to model the shock wave by a discontinuous change within the framework of continuum
mechanics. A compression shock wave, which the expression shock wave generally refers to,
is a discontinuous increase in the density ρ in the shock region. As well as the density, the
temperature T and the pressure p also increase, while the magnitude of the velocity | ~v |
decreases.

A shock wave can in principle only occur in a supersonic flow region. In the special case of a
normal shock wave, where the free stream direction and the shock front form a right angle,
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the flow progresses from a supersonic region to a subsonic region. In the case of an oblique
shock wave, seen for example in the Mach cone of the flow past the supersonic airplane
Concorde, the free stream and the shock wave front form the Mach angle α, already met at
the start of this chapter. In this case the flow can also progress from supersonic to supersonic
flow, whereby the supersonic velocity after the shock wave must be smaller than that before
the shock wave.

The left-hand side of Figure 2.59 shows the velocity ratios on a schematic cross-section
through a wing. The supersonic regime on the wing is denoted by the Mach number M > 1.
This region ends downstream with the shock wave, and here the flow is subsonic, with
M < 1. This shock wave is slightly curved, and is almost perpendicular at the point where
it touches the boundary layer. We will now write down the shock wave equations for such a
shock wave. The same equations hold for the shock wave in the Laval nozzle.

We assume, quite generally, a steady, inviscid supersonic flow. This is characterized by the
values given for c1, ρ1, p1 and T1. Using the speed of sound (2.75), a1 =

√

κ · p1/ρ1, we
determine the Mach number of the free stream M1 = c1/a1. Here κ denotes the ratio of the
specific heats cp/cv. On passing through the shock wave these values undergo discontinuous
changes in the direction of the normal to the shock wave surface. We consider the flow
variables c2, ρ2, p2 and T2 downstream from the shock wave surface. The velocity c2 is then
smaller than the free stream velocity c1, while the other variables of state increase. On the
right-hand side of Figure 2.59 this is shown by a smaller vector for c2 after the shock wave.
The change of state through the normal shock wave can be described using the conservation
of mass, momentum and energy equations for a one-dimensional, steady, inviscid flow be-
fore and after the shock wave. We start with the equations from the one-dimensional theory:

Mass: ρ1 · c1 = ρ2 · c2 (2.90)

Momentum: p1 + ρ1 · c2
1 = p2 + ρ2 · c2

2 (2.91)

Energy: h1 +
1

2
· c2

1 = h2 +
1

2
· c2

2 . (2.92)

M > 1

sonic line

boundary layer

M < 1M < 1

shock

p
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ρ
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c 2

1T1
ρ

1
p

c 1

shock

Fig. 2.59 : Shock wave on a transonic foil and change of state through a normal shock wave
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For the enthalpy h we have the caloric equation of state:

h = cp · T = e +
p

ρ
= cv · T +

p

ρ
.

Solving the basic equations (2.90) - (2.92) for the four unknown quantities after the shock
wave c2, p2, ρ2 and T2, we obtain the shock wave equations.

Taking the thermal equation of state for ideal gases p/ρ = R · T into account, we can write
the dependence of the enthalpy on the following quantities:

h = cv ·
1

R
· p

ρ
+

p

ρ
=

(
cv

cp − cv

+ 1

)

· p

ρ
=

κ

κ − 1
· p

ρ
=

a2

κ − 1
.

Thus the balance of energy (2.92) reads:

κ

κ − 1
· p1

ρ1

+
1

2
· u2

1 =
κ

κ − 1
· p2

ρ2

+
1

2
· u2

2 .

Together with the conservation equations for mass (2.90) and momentum (2.91), we obtain
a system of three algebraic equations to determine the three desired quantities c2, p2 and ρ2

after the shock wave. The temperature T2 can then be computed with the thermal equation
of state using p2 and ρ2. Assuming the initial values c1, p1 and ρ1 are given, the system of
equations can then be solved for the desired variables. We obtain

c2

c1

=
ρ1

ρ2

=

{
1 ,

1 − 2
κ+1

·
(

1 − κ·p1

ρ1·c21

)
,

p2

p1

=

{
1 ,

1 + 2·κ
κ+1

·
(

c21·ρ1

κ·p1
− 1

)
.

For given initial values in front of the shock wave, the system of equations yields two
solutions. The upper solution with the value 1 is the identity solution, for the case where no
shock wave occurs. The lower solution is the desired shock wave solution. Using the velocity
of sound a1 =

√

κ · p1/ρ1 and the Mach number M1 = c1/a1 we can bring the shock wave
equations to a form where the only parameter on the right-hand side is the Mach number
M1 > 1

c2

c1

=
ρ1

ρ2

= 1 − 2

κ + 1
·
(

1 − 1

M2
1

)

=
1

M2
1

·
[

1 +
κ − 1

κ + 1
·
(
M2

1 − 1
)
]

, (2.93)

p2

p1

= 1 +
2 · κ
κ + 1

·
(
M2

1 − 1
)

, (2.94)

T2

T1

=
a2

2

a2
1

=

[

1 +
2 · κ
κ + 1

(
M2

1 − 1
)
]

·
[

1 − 2

κ + 1

(

1 − 1

M2
1

)]

, (2.95)

M2
2 =

1 + κ−1
κ+1

· (M2
1 − 1)

1 + 2·κ
κ+1

· (M2
1 − 1)

. (2.96)
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The shock wave equations (2.93) - (2.95) yield the dependence of the values after the normal
shock wave on the free stream Mach number. Whereas the pressure and the temperature
after the shock wave can increase arbitrarily with increasing free stream Mach number, the
density ratio ρ2/ρ1 for M1 → ∞ tends towards the ratio (κ+1)/(κ−1). For air with κ = 1.4,
the density after the shock wave can reach at most six times the free stream density. However
this estimate is reached with the assumption of an ideal gas.

We now determine a relationship between p2 and ρ2 after the shock wave and to do this
eliminate c2 from the equations (2.90) - (2.92). After several steps, we obtain a relation
which describes a symmetric hyperbola in the (ρ1/ρ2, p2/p1) plane. This can be used to
follow the thermodynamically possible changes in the variables of state p1 and ρ1 through
the shock wave. This hyperbola is called the Hugoniot curve and reads

p2

p1

=
κ − 1

κ + 1
·

κ+1
κ−1

− ρ1

ρ2

ρ1

ρ2
− κ−1

κ+1

. (2.97)

A further relation is obtained when we derive a relation for p2/p1 as a function of ρ1/ρ2

from only the conservation of mass and momentum equations (2.90) and (2.91), without
using the balance of energy. This then leads to the kinematically possible changes of state,
described by an equation for a straight line. This line is called the Rayleigh line and reads

p2

p1

− 1 = −κ · M2
1 ·

(
ρ1

ρ2

− 1

)

. (2.98)

The Rayleigh line has the slope −κ · M2
1 , and meets the Hugoniot curve at two points, at

the identity with p2 = p1 andρ2 = ρ1 and at the shock wave solution after the shock wave
(Figure 2.60).
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1

p
p

- 1

state after shock

κ

Hugoniot curve

ρ /1 2
ρ

C

D

A’

κ + 1

B’

B

Rayleigh line

Fig. 2.60 : Hugoniot diagram
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The areas in the Hugoniot diagram can be interpreted as energies. The area below the
Rayleigh line A′B′CD is the internal energy e of the shock wave

e2 − e1
p1

ρ1

=
1

2
·
(

p2

p1

− 1

)

·
(

1 − ρ1

ρ2

)

︸ ︷︷ ︸

ABCD

+ 1 ·
(

1 − ρ1

ρ2

)

︸ ︷︷ ︸

A′B′CD

.

The triangular area ACD above the Rayleigh line represents the kinetic energy c2
2/2

c22
2
p1

ρ1

=
1

2
·
(

p2

p1

− 1

)

·
(

1 − ρ1

ρ2

)

︸ ︷︷ ︸

ACD

,

so that the total area A′B′CD represents the increase of the total energy in the shock wave.

In front of a blunt body in a supersonic flow M1 > 1, a head shock wave as shown in Figure
2.61 occurs. Around the stagnation streamline, the head shock wave can be approximately

sTT  , M1 1

M1= 2.9

Fig. 2.61 : Leading shock wave of a sphere
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considered as a normal shock wave. The temperature in the stagnation point T2 can be
computed with the energy equation (2.92) and the caloric equation of state h = cp · T

cp · TS = cp · T1 +
c2
1

2
.

With M1 = c1/a1, a2
1 = κ ·R ·T , cp−cv = R and κ = cp/cv the stagnation point temperature

TS is

TS

T1

= 1 +
κ − 1

2
· M2

1 . (2.99)

We have already computed TS = 540 K for a supersonic flight with M1 = 2. For a hypersonic
flight with M1 = 10, a stagnation point temperature of TS = 6, 300 K occurs, meaning that
heat-shielding materials such as ceramic tiles are necessary for heat protection. Since the
heat transfer depends on the radius of curvature, and is relatively low for large radii, i.e.
for blunt bodies, re-entry vehicles, such as those used for the space shuttle, we designed to
be blunt. Figure 2.62 shows the space shuttle in a supersonic wind tunnel. The head shock
wave is an almost normal shock wave close to the stagnation streamline, which passes over
to the oblique shock wave of the head shock wave. We have already mentioned that the
downstream Mach number after the oblique shock wave can be M > 1. Therefore the wing
of the space shuttle may also be in a supersonic free stream, leading to a second head shock
wave in front of the wing.

Figure 2.63 summarizes the possible flow forms from subsonic to supersonic free stream past
a wing profile. In a subsonic free stream, with a Mach number smaller than M∞ = 0.75, the
acceleration does not reach supersonic Mach numbers M > 1 at any point on the profile,
and the flow is purely subsonic. In the case of the transonic Mach number M∞ = 0.81 we
obtain the supersonic region on the profile already discussed in Chapter 1.1 (Figure 1.18).
At the end of the profile here is an almost normal shock wave. For subsonic Mach numbers
larger than 0.85, a shock wave forms on the lower side of the profile, and for Mach numbers
close to 1, this, together with the upper shock wave, passes over to an oblique shock wave
of the tail wave. For supersonic Mach numbers M∞ > 1, a separated head shock wave first
appears in front of the profile. For the supersonic flight Mach number M∞ = 2, an attached
oblique shock wave appears as the head shock wave, which, together with the tail wave,
leads to the double sonic boom of the supersonic airplane discussed in Figure 2.53.

Fig. 2.62 : Head shock waves in front of
the re-entry vehicle Space Shuttle, M1 = 3
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M1
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2

M 8
M 8, M1

Fig. 2.63 : Flow forms past a wing profile
from subsonic to supersonic free stream

Oblique shock waves can be computed using the fundamental equations of the normal
shock wave (2.90) - (2.92) and (2.93) - (2.96), as long as these are applied to the normal
components of the velocities. Figure 2.64 shows the change of direction of the velocity
vector ~c = (cn, ct) through an oblique shock wave with normal component cn and tangential
component ct. With

cn,1 = c1 · sin(α) , ct,1 = c1 · cos(α) ,

cn,2 = c2 · sin(α − β) , ct,2 = c2 · cos(α − β) ,

the fundamental equations of the oblique shock wave (2.90) - (2.92) can be written

α

β

S

α
c

c

c

c

c
t1

n1

n2

21

c t2

Fig. 2.64 : Oblique shock wave
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Mass: ρ1 · cn,1 = ρ2 · cn,2 , (2.100)

Momentum: p1 + ρ1 · c2
n,1 = p2 + ρ2 · c2

n,2 , (2.101)

ρ1 · cn,1 · ct,1 = p2 + ρ2 · cn,2 · ct,2 ,

Energy: h1 +
1

2
· c2

1 = h2 +
1

2
· c2

2 . (2.102)

Equations (2.100) and (2.101) yield the tangential component

ct,1 = ct,2 . (2.103)

Equation (2.102), with c2 = c2
n + c2

t delivers

h1 +
1

2
· c2

n,1 = h2 +
1

2
· c2

n,2 . (2.104)

Therefore, the shock wave equations for the normal shock wave hold for the normal compo-
nents of the velocity in front of and behind the shock wave, with the additional condition
that the tangential components ct,1 and ct,2 must be the same. Figure 2.65 shows the possible
shock wave angles α for different free stream Mach numbers M1, and it is seen that beyond
a certain limiting value βG of the downstream flow angle β, an oblique shock wave is no
longer possible. For β > βG the separated head shock wave already discussed occurs.

Unsteady shock waves are generated by a shock tube. A shock tube consists of a high-
pressure section and an low-pressure section, separated by a membrane. If the high-pressure
section is filled with propellant gas at over-pressure until the membrane bursts, an unsteady
shock wave in the low-pressure section of the shock tube, filled with the test gas, moves

β

α

=50
0

0

90 front shock wave

Gβ

attached front shock wave separated

Fig. 2.65 : Shock wave angle α of oblique
shock waves
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rest

compression
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Fig. 2.66 : Shock tube, position-time diagram of a shock wave and an expansion wave

with constant velocity cs (see the diagram in Figure 2.66). In the high-pressure section the
corresponding expansion wave moves. If we move with constant shock wave velocity cs with
the shock wave, we can compute the change of state through the unsteady shock wave with
the fundamental equations (2.90) - (2.92) and (2.93) - (2.96) of the normal shock wave.

c1 = −cs , c2 = c2 − c1h2 +
1

2
· c2

n,2 .

2.4 Technical Flows

2.4.1 Turbulent Flows

Most flows which occur in nature and in technology are turbulent at high enough Reynolds
numbers. In contrast to the laminar flows which we have discussed until now, turbulent flows
are characterized by fluctuations in the flow variables, leading to an additional transverse
exchange of momentum and energy. This results in more full time-averaged velocity profiles
compared to the laminar profiles found in boundary layers, channels and pipes.

Figure 2.67 shows the laminar velocity profile already discussed compared with the profiles
of turbulent boundary layer and pipe flows which occur when a so-called critical Reynolds
number Rec is exceeded. If a colored filament is added to a steady laminar flow, as in Figure
2.68, a straight streakline will be seen, as already seen in Chapter 2.3.1. In the turbulent
flow the colored filament breaks up because of the fluctuations superimposed on the flow
and the consequent transverse exchange of momentum.
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δ l δt

u(x,y,z,t)

laminar turbulentL laminar turbulent

u(r) u(x,r,  ,t)ϕ
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u(z)

z

boundary layer flow pipe flow

Fig. 2.67 : Laminar and turbulent velocity profiles in boundary layer and pipe flow

Turbulent flows are fundamentally three-dimensional and time dependent. We now leave the
area of one-dimensional stream filament theory and return to denoting the flow variables as
~v(x, y, z, t), p(x, y, z, t), ρ(x, y, z, t).

The mathematical description of turbulent flows is derived from the experimental results
in Figure 2.68. Reynolds was able to conclude from his experiments that the flow variables,
such as the u component of the velocity, can be represented as a superposition of the time-
averaged velocities ū(x, y, z) and the additional fluctuations u′(x, y, z, t). The Reynolds
ansatz for turbulent flows is written (see Figure 2.69)

~v(x, y, z, t) = ~̄v(x, y, z) + ~v′(x, y, z, t) . (2.105)

laminar

turbulent

ρu(x,r,  ,t)

color

Fig. 2.68 : Reynolds experiment: laminar and turbulent pipe flow , REYNOLDS 1883
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The definition of the time-average at a fixed position for the example of the velocity com-
ponent u reads

ū =
1

T
·
∫ T

0

u(x, y, z, t) · dt . (2.106)

T is a time interval large enough that any increase in T does not lead to a further change
in the time-averaged value ū. From the definition of the time-average, we can see that the
time-average of the fluctuating quantities must vanish, i.e. the velocity fluctuations satisfy

ū′ = 0 , v̄′ = 0 , w̄′ = 0 .

The proof of this for the u component of the velocity reads:

ū =
1

T
·
∫ T

0

u(x, y, z, t) · dt =
1

T
·
∫ T

0

(ū + u′) · dt =
1

T
·
∫ T

0

ū · dt +
1

T
·
∫ T

0

u′ · dt

1

T
·
∫ T

0

ū · dt =
1

T
· ū ·

∫ T

0

dt = ū ,

⇒ ū = ū + ū′ ⇒ ū′ = 0 =
1

T
·
∫ T

0

u′ · dt .

The dimensionless turbulence intensity Tu is used to characterize turbulent flows. In the
numerator of this quantity is the square root of the time-averaged square of the fluctuating
variables, and in the denominator the time-averaged flow velocity at a certain position. The
turbulence intensity for the velocity component u in the main direction of flow x is

Tu =

√

(u′)2

ū
.

Since turbulent flows are three-dimensional, the three-dimensional generalization of the
turbulence intensity at a certain position in the flow field follows as

Tu =

√

1
3
·
(

(u′)2 + (v′)2 + (w′)2
)

| ~̄v |
=

√

1
3

(

(u′)2 + (v′)2 + (w′)2
)

√
ū2 + v̄2 + w̄2

. (2.107)

u

u

T u=u+u’

t

u’

Fig. 2.69 : Reynolds ansatz for the u com-
ponent of the velocity
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Because of the fluctuating motions u′, v′ and w′ in a turbulent flow, there is an additional
contribution to the flow drag. However, this additional contribution has nothing to do
with the molecular viscosity µ, but rather is due to the additional transverse and longitudinal
exchange processes which occur in a turbulent flow. In what follows we will look at the
mathematical treatment of these processes.

Our starting point is the Navier-Stokes equation (2.59). In passing from the stream filament
coordinate system, s and n, to a Cartesian coordinate system (x, y, z), the velocity c along
the stream filament is replaced by the variable u, s by x and n by z. We obtain

∂u

∂t
+ u · ∂u

∂x
= −1

ρ
· ∂p

∂x
+ ν · ∂2u

∂z2
− g · dz

dx
. (2.108)

This equation is also valid in principle for turbulent flows but has to be supplemented by
the second and third Navier-Stokes equations for the u and v components respectively. For
an incompressible flow with ρ = const., the turbulent flow quantities appearing in equation
(2.108) are the velocity component u and the pressure p. Using the Reynolds ansatz (2.105)
for u and p we find

∂(ū + u′)

∂t
+ (ū + u′) · ∂(ū + u′)

∂x
= −1

ρ
· ∂(p̄ + p′)

∂x
+ ν · ∂2(ū + u′)

∂z2
−−g · dz

dx
.

Taking the computation rules for the time-average into account, this leads to

(ū + u′) · ∂(ū + u′)

∂x
= −1

ρ
· ∂p̄

∂x
+ ν · ∂2ū

∂z2
− g · dz

dx
.

Note here that ∂(ū + u′)/∂t = 0 is only valid for flows whose time-average is steady. Such
flows are called quasi-steady turbulent flows. The time-average of the non-linear inertia
terms on the left-hand side of the equation is considered separately. We have

(ū + u′) · ∂(ū + u′)

∂x
= ū · ∂ū

∂x
+ ū · ∂u′

∂x
+ u′ · ∂ū

∂x
+ u′ · ∂u′

∂x
= ū · ∂ū

∂x
+ u′ · ∂u′

∂x
.

In particular for the term u′ · (∂u′/∂x):

u′ · ∂u′

∂x
=

1

T
·
∫ T

0

u′ · ∂u′

∂x
· dt =

1

T
·
∫ T

0

∂

∂x

(
(u′)2

2

)

· dt =
∂

∂x

(
1

T
·
∫ T

0

(u′)2

2
· dt

)

=
∂

∂x

(

(u′)2

2

)

.

Therefore the time-averaged Navier-Stokes equation reads

ū · ∂ū

∂x
+

∂

∂x

(

(u′)2

2

)

= −1

ρ
· ∂p̄

∂x
+ ν · ∂2ū

∂z2
− g · dz

dx
. (2.109)

If we multiply this equation with the constant density ρ and write the pressure and gravity
terms on the left-hand side, we find

ρ · ū · ∂ū

∂x
+

∂p̄

∂x
+ ρ · g · dz

dx
=

∂

∂z

(

µ · ∂ū

∂z

)

︸ ︷︷ ︸

τ̄zx

− ∂

∂x

(

ρ · (u′)2

2

)

︸ ︷︷ ︸
1
2
·τ ′

xx
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On the right-hand side of the equation are the terms responsible for the drag in the flow.
As well as the shear stress τ̄zx due to the viscosity, a turbulent flow also has an additional
drag term due to the velocity fluctuations, denoted here by the index ′ as τ ′

xx. In general,
the additionally appearing parts of the stress τ ′ in turbulent flows are called Reynolds
apparent normal and shear stresses, since they are caused by the turbulent longitudinal
and transverse exchange and not by the molecular viscosity µ.

The lower double indices in the stress variable τ follow the same conventions used in solid
state physics. The first index denotes the normal to cross-section and the second index
denotes the direction in which the force on this cross-section acts.

In the general three-dimensional case, τ ′ is a stress tensor with 9 components, consisting of
6 apparent shear stresses and 3 apparent normal stresses (trace of the shear stress tensor).

τ ′ =





τ ′
xx τ ′

xy τ ′
xz

τ ′
yx τ ′

yy τ ′
yz

τ ′
zx τ ′

zy τ ′
zz



 =





−ρ · u′ · u′ −ρ · v′ · u′ −ρ · w′ · u′

−ρ · u′ · v′ −ρ · v′ · v′ −ρ · w′ · v′

−ρ · u′ · w′ −ρ · v′ · w′ −ρ · w′ · w′



 . (2.110)

Because of the balance of moments, equivalent components of the stress tensor are equal,
i.e. we have τ ′

xy = τ ′
yx or −ρ · u′ · w′ = −ρ · w′ · u′ etc. The time-averaged products of the

fluctuation variables and thus the components of the stress tensor τ ′ are unknown and have
to be described using model equations.

Starting out from the Newtonian ansatz of laminar flows, Boussinesq made the assumption
that the unknown fluctuation terms can be reduced to the known time-averaged quantities
of the basic flow by introducing an unknown proportionality factor µt, called the turbulent
viscosity. Using the Boussinesq assumption the following relations are found

τ ′
xx = −ρ · u′ · u′ = µt ·

(
∂ū

∂x
+

∂ū

∂x

)

= µt · 2 · ∂ū

∂x
,

τ ′
zx = −ρ · u′ · w′ = µt ·

(
∂ū

∂z
+

∂w̄

∂x

)

. (2.111)

Here µt is a function which has to be determined, and is not, like the molecular viscosity µ,
a material constant.

One possible ansatz to determine µt is the Prandtl mixing length ansatz. Figure 2.70
shows a turbulent two-dimensional boundary layer flow in the (x, z) plane. The Reynolds
ansatz yields

u = ū(z) + u′

w = w′ .

If we move a fluid element with fluctuation velocity from the height z0 to the height z0 + l,
the change in ū with ū(z0 + l) > ū(z0) is found writing out the Taylor expansion:

ū(z0) − ū(z0 + l) = ū(z0) −
(

ū(z0) +
dū

dz

∣
∣
∣
∣
z0

· l +
d2ū

dz2

∣
∣
∣
∣
z0

· l2

2
+ · · ·

)

.
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Neglecting higher order terms it follows that

ū(z0) − ū(z0 + l) = −l · dū

dz

∣
∣
∣
∣
z0

.

This lower velocity −l · (dū/dz|z0) at the height z0 + l was considered by Prandtl to be the
velocity fluctuation

u′(z0 + l) = −l · dū

dz

∣
∣
∣
∣
z0

at z0 + l. For continuity reasons, it follows for w′ that:

w′ = l · dū

dz
.

The mixing length l is therefore the distance a fluid element will travel before it is completely
mixed with its surroundings and looses its identity. This allows us to consider the velocity
fluctuations u′ and w′ in terms of the mixing length l and the time-averaged velocity profile
ū(z). The apparent shear stress τ ′

zx = −ρ · u′ · w′ can then be computed as

τ ′
zx = −ρ · u′ · w′ = −ρ ·

(

−l · dū

dz

)

· l · dū

dz
= ρ · l2 ·

(
dū

dz

)2

.

Since we assumed a two-dimensional turbulent boundary layer flow with w̄ = 0, we also
have (∂w̄/∂x) = 0, and it follows for the Boussinesq assumption (2.111) that

τ ′
zx = µt ·

dū

dz
. (2.112)

This yields an equation to determine the desired quantity µt, since we have

τ ′
zx = −ρ · u′ · w′ = ρ · l2 ·

(
dū

dz

)2

= µt ·
dū

dz

u(z)

0z  -l

z0

0z  +l

z

flow element Fig. 2.70 : Prandtl mixing length ansatz
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and therefore

µt = ρ · l2 ·
(

dū

dz

)

. (2.113)

The mixing length l is still unknown. It has to be determined from experiments, leading to
empirical approximation formulae for the computation of l.

Following these fundamental considerations of turbulent flows, let us return to the turbulent
plate boundary layer flow in Figure 2.67. The order of magnitude of the turbulent apparent
viscosity µt permits the turbulent plate boundary layer to be divided up into regimes (Figure
2.71). Directly at the wall µt ¿ µ. This is the viscous sublayer and is of particular technical
importance in reducing drag with so-called riblets. These will be discussed at the end of this
chapter.

In the viscous sublayer the velocity fluctuations u′ and w′ are very small, and for the mixing
length we have l → 0. The total shear stress τ̄tot in the turbulent flow under consideration
reads

τ̄tot = µ · dū

dz
− ρ · u′ · w′ .

Because of u′ · w′ ≈ 0, it follows that the wall shear stress τ̄w in the viscous sublayer satisfies

τ̄w = µ ·
(

dū

dz

)

w

.

~~

z

u(z)

free turbulence :

wall turbulence :

viscous sublayer : µ  << µ

µ  >> µt

t

t

µ        µ

Fig. 2.71 : Division of the turbulent boundary layer flow
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Separation of variables leads to an ordinary differential equation for the desired velocity
profile

dū =
1

µ
· τ̄w · dz .

Integration yields

∫ ū

0

dū =
1

µ
·
∫ z

0

τ̄w · dz ,

that is, a linear velocity distribution ū(z) for a constant shear stress τ̄w

ū(z) =
τ̄w

µ
· z . (2.114)

Extending this expression with the constant density ρ delivers

ū(z) =
τ̄w

ρ
· ρ

µ
· z =

τ̄w

ρ
· z

ν
.

Defining the so-called wall shear stress velocity uτ as a new quantity, with uτ =
√

(τ̄w/ρ),
we obtain

ū(z)

uτ

=
uτ · z

ν
= z+ , (2.115)

with the new dimensionless coordinate z+ = (uτ · z)/ν.

In the region of wall turbulence, outside the viscous sublayer but still close to the wall, the
wall shear stress is still constant: τ̄w = const.. Prandtl assumed that the wall shear stress
can be written as follows, with the mixing length l = k · z as a linear function of z (k is a
constant)

τ̄w = ρ · l2 ·
(

dū

dz

)2

= ρ · k2 · z2 ·
(

dū

dz

)2

.

This leads to a differential equation to determine ū(z):

τ̄w

ρ
= u2

τ = k2 · z2 ·
(

dū

dz

)2

⇒ dū

dz
= uτ ·

1

k · z ⇒ dū =
uτ

k
· 1

z
· dz .

Indefinite integration yields

ū(z) =
uτ

k
· ln(z) + C1 ⇒

ū(z)

uτ

=
1

k
· ln

(
z+ · ν

uτ

)

+ C1 =
1

k
· ln(z+) +

1

k
· ln ·

(
ν

uτ

)

+ C1 .
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Summarizing the last two terms to a new constant of integration C, we obtain a logarithmic
velocity profile in the region of wall turbulence

ū(z)

uτ

=
1

k
· ln(z+) + C . (2.116)

The time-averaged velocity profiles (2.114) - (2.116) close to the wall are shown in Figure
2.72. The viscous sublayer exists in the region 0 < z+ < 5. After this comes the transition
region 5 < z+ < 30 and then the logarithmic region, with 30 < z+ < 350.

The laminar-turbulent transition for the plate boundary layer flow takes place at the critical
Reynolds number

Rec = 5 · 105 .

For a pipe flow, the critical Reynolds number is Rec = 2300.

The laminar-turbulent transition leads to an increase of the friction drag cf , shown in Figure
2.73 as dependent on the Reynolds number ReL, formed with the length of the plate L. The
local friction coefficient cf (x) at the position x = L is

cf (L) =
τw(L)

1
2
· ρ · u2

∞

=







0.664√
ReL

laminar boundary layer flow

0.0609

(ReL)
1
5

turbulent boundary layer flow

. (2.117)

The transition from the laminar to the turbulent boundary layer flow does not take place
suddenly, but rather over a transition region. The dimensionless integral friction drag coef-
ficient ζ can be calculated from the local drag coefficient cf (x). The integral friction drag

2
1 c

viscous sublayer

free turbulence

wall turbulence

z

m

u(z)

logarithmic law
of the wall

u
uτ

1 5 30 z +

sublayer
transitionviscous wall turbulence

Fig. 2.72 : Turbulent boundary layer profile
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coefficients are defined as the ratio of the wall friction force ~FR to the product of the dy-
namic pressure and the plate surface area A = L · b. Here b denotes the breadth of the plate
perpendicular to the plane sketched and L the length along the plate.

τw(x) = µ ·
(

∂u

∂z

)

w

, cf (x) =
τw(x)

1
2
· ρ · u2

∞

, FR = b

∫ L

0

τw(x) · dx ⇒

FR = b · 1

2
· ρ · u2

∞ ·
∫ L

0

cf (x) · dx ⇒ ζ =
FR

1
2
· ρ · u2

∞ · L · b =
1

L
·
∫ L

0

cf (x) · dx .

For the integral friction drag coefficient ζ at a distance L from the leading edge of the plate
we have

ζ =
FR

1
2
· ρ · u2

∞ · b · L =
1

L
·
∫ L

0

cf (x) · dx

=







1.328√
ReL

laminar boundary layer flow

0.074

(ReL)
1
5

turbulent boundary layer flow

.(2.118)

Therefore the friction drag of a plate in a laminar flow is smaller than the friction drag of
a plate in a completely turbulent flow under otherwise identical conditions. Therefore

ζt > ζl .

The different thickening behavior of the boundary layer thickness δ of laminar and turbulent
boundary layer flows can be seen in Figure 2.74. The starting point is the relation (2.61) for
a laminar boundary layer flow:

δ

l
∼ 1√

ReL

.

0.002

0.001

0.003

0.005

0.007

0.015

10 10 10 10 1010 4 5 6 7 8 10

turbulent

laminar

Re

c f

L

transition Fig. 2.73 : Friction drag cf of the laminar
and turbulent plate boundary layers
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In the case of the laminar Blasius boundary layer, the proportionality factor is 5:

δ

L
=

5√
ReL

.

Multiplication with
√

ReL yields

δ

L
·
√

ReL = 5 ⇒ δ

L
·
√

U∞ cot L

ν
= 5 ⇒ δ ·

√

U∞

ν · L = 5 .

For a turbulent boundary layer flow we have

δ

l
∼ 1

(ReL)
1
5

. (2.119)

Multiplication with
√

ReL delivers

δ

L
·
√

ReL ∼ (ReL)
1
2

(ReL)
1
5

⇒ δ ·
√

U∞

ν · L ∼ Re
1
2
− 1

5
L ⇒ δ ·

√

U∞

ν · L ∼ Re0.3
L .

By manipulating the turbulent wall shear stress τ ′
w, the friction coefficient cf of the turbulent

boundary layer flow can be reduced. The idea for this comes from nature. Fast-swimming
sharks (up to 45 km/h) have microscopically thin grooves on their scales in the direction
of flow. Figure 2.75 shows a close-up of the longitudinal and transverse grooves on a single
scale of a blue shark.

It can be assumed that less friction occurs on surfaces with longitudinal grooves than on
smooth surfaces. This knowledge is applied in technology in the production of foils with
longitudinal grooves, so-called riblets, with a height z+ = 500 and a separation of y+ = 100.
Such foils are applied to smooth surfaces to reduce their friction drag.

As a result, the fluctuations in the transverse flow v′ and therefore the transverse exchange
in the viscous sublayer of the boundary layer are prevented. The outcome is a reduction

5

5 . 105

laminar turbulent

Re

δ Lν

L

u 8

Fig. 2.74 : Boundary-layer thickness δ of
laminar and turbulent plate boundary lay-
ers
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100    mµ

u 8

Shark scales

Riblet foil
Fig. 2.75 : Shark scales and riblet foil

in the friction drag cf of 8 %. In the case of an airplane, the friction drag cf is more than
50 %. Since riblet foil cannot be applied to all parts of the aircraft, the real potential of
drag reduction is 3 %. It has been seen that a 1 % reduction in fuel used by an Airbus A340
is made when 30 % of its surface is covered with riblet foil. The drag reducing foil can also
be used in next-generation high-speed trains, as well as to reduce losses in pipe flows.

2.4.2 Balance of Momentum

The balance of momentum is carried out on a control volume V to determine directly the
integral forces for given flow variables at the edge of the control volume V . The momentum
d~I of a mass element dm = ρ · dV is defined as the product of the mass element and the
velocity vector ~v

d~I = dm · ~v = ρ · ~v · dV ⇒ d~I =





dIx

dIy

dIz



 = dm ·





u
v
w



 = ρ ·





u
v
w



 · dV .

Since the density ρ can be time dependent in compressible flows, ρ = ρ(t), conservation of
mass m = ρ(t) · V (t) = const. requires that the volume V must also be taken to be time
dependent, i.e. V = V (t). The momentum of the total mass m, or of the total volume under

consideration, is calculated by integrating the differential momentum d~I of the mass element
over the volume V (t):

~I =

∫

V (t)

ρ · ~v · dV ⇒ ~I =





Ix

Iy

Iz



 =

∫

V (t)

ρ ·





u
v
w



 · dV .

The balance of momentum states that the total time derivative d/dt of the
momentum is equal to the sum of all external forces. External forces may be mass
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forces ~FM and surface forces ~FA.

d~I

dt
=

d

dt

∫

V (t)

ρ · ~v · dV =
∑

~FM +
∑

~FA ,

⇒









dIx

dt

dIy

dt

dIz

dt









=
∑





FM,x

FM,y

FM,z



 +
∑





FA,x

FA,y

FA,z



 .

In what follows we will consider the time derivative of the integral more closely. Since both
the region of integration V and the integrand ρ ·~v depend on the time, the simplest manner
of procedure is to form the derivative d/dt as the limiting value of the difference quotients:

d

dt

∫

V (t)

ρ · ~v · dV =

lim
∆t→0

1

∆t

(
∫ V (t+∆t)

0

ρ(t + ∆t) · ~v(t + ∆t) · dV −
∫ V (t)

0

ρ(t) · ~v(t) · dV

)

.

The first term is dealt with using the additivity of the integral
∫ V (t+∆t)

0

ρ(t + ∆t) · ~v(t + ∆t) · dV =
∫ V (t)

0

ρ(t + ∆t) · ~v(t + ∆t) · dV +

∫ V (t+∆t)

V (t)

ρ(t + ∆t) · ~v(t + ∆t) · dV .

Taylor expanding the integrand up to the linear terms yields

ρ(t + ∆t) · ~v(t + ∆t) = ρ(t) · ~v(t) +
∂(ρ · ~v)

∂t
· ∆t + · · · .

We now insert the final two equations into the difference quotients, and find

d

dt

∫

V (t)

ρ · ~v · dV =

lim
∆t→0

1

∆t

(
∫ V (t)

0

∂(ρ · ~v)

∂t
· ∆t · dV +

∫ V (t+∆t)

V (t)

ρ(t + ∆t) · ~v(t + ∆t) · dV

)

.

In the next step we reduce the volume integral over the difference V (t + ∆t) − V (t) to an
integral over the surface A(t) of the volume V (t). Using one-dimensional stream filament
theory for the mass flux ṁ we obtain the relation

ṁ = ρ · c · A ⇒ ṁ

ρ
= V̇ = c · A .

Generalizing this to three-dimensional flows, we compute the volume flux V̇ as a surface
integral over the scalar product (~v · ~n) of the velocity vector ~v = (u, v, w) with the unit
vector normal to the external surface ~n = (nx, ny, nz)

V̇ =

∫

A

(~v · ~n) · dA .
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The volume flux satisfies

V̇ = lim
∆t→0

V (t + ∆t) − V (t)

∆t
= lim

∆t→0

1

∆t
·
∫ V (t+∆t)

V (t)

·dV =

∫

A(t)

(~v · ~n) · dA .

The total time derivative of the momentum yields

d

dt

∫

V (t)

ρ · ~v · dV =

lim
∆t→0

(
∆t

∆t
·
∫

V (t)

∂(ρ · ~v
∂t

· dV +

∫

A(t)

ρ(t + ∆t) · ~v(t + ∆t) · (~v · ~n) · dA

)

.

After taking the limit, we find the balance of momentum

d~I

dt
=

d

dt

∫

V

ρ · ~v · dV =

∫

V

∂(ρ · ~v)

∂t
· dV +

∫

A

ρ · ~v · (~v · ~n) · dA . (2.120)

The first term describes the local time change of the momentum inside the control volume
under consideration. In order to evaluate this integral, knowledge of the flow quantities inside
the control volume is necessary. For steady flows (∂/∂t) = 0. The second term describes the
convective momentum flux through the surface of the control volume. In order to compute
this integral, only flow data on the edge of the control volume are needed.

For steady flows, the balance of momentum reads

d~I

dt
=

d

dt

∫

V

ρ · ~v · dV =

∫

A

ρ · ~v · (~v · ~n) · dA =
∑

~FM +
∑

~FA . (2.121)

With

~FI = −
∫

A

ρ · ~v · (~v · ~n) · dA ⇒





FI,x

FI,y

FI,z



 = −
∫

A

ρ ·





u
v
w



 (~v · ~n) · dA

we find

~FI +
∑

~FM +
∑

~FA = 0 , (2.122)

⇒





FI,x

FI,y

FI,z



 +
∑





FM,x

FM,y

FM,z



 +
∑





FA,x

FA,y

FA,z



 =





0
0
0



 .

The momentum force vector ~FI is parallel to the velocity vector ~v, and the direction of ~FI

is always towards the inside of the control volume. The pressure force ~FD, which is one of
the surface forces ~FA, is defined as

~FD = −
∫

A

p · ~n · dA ⇒





FD,x

FD,y

FD,z



 = −
∫

A

p





nx

ny

nz



 · dA.
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Since the pressure p is a positive scalar quantity, and ~n is the external unit vector normal
to the surface, the direction of the pressure force ~FD, is, because of the minus sign, also
towards the inside of the control volume.

Let us now apply the balance of momentum (2.122) to laminar boundary layer flow. The
function f which connects the boundary layer thickness with the Reynolds number ReL

(2.61) can now be determined

δ

L
= f(ReL) .

The control volume used in Figure 2.76 is a rectangular block of length L, height δ(L) and
depth b in the y direction. The pressure p is imprinted onto the boundary layer from the
outer flow (∂p/∂z) = 0, and, in the case of the plate boundary layer, is constant in the outer
flow. Therefore it follows that the pressure must also be constant in the boundary layer,
and so all pressure forces appearing must cancel out each other. At position 3, for reasons of
simplicity, we assume a linear velocity profile u(z), since, compared to the Blasius boundary
layer profile, this can be integrated analytically. For u(z) we then have

u(z) =
u∞

δ(L)
· z .

At the left edge, at position 1, the flow passes through the cross-section A1 = b · δ(L) with
the constant velocity u∞. The momentum force FI,x1 therefore reads

FI,x1 = −
∫

A1

ρ · u∞ · (~v · ~n) · dA1

= −ρ · u∞





u∞

0
0



 ·





−1
0
0



 · A1 = ρ · u2
∞ · A1 = ρ · u2

∞ · b · δ(L) .

δ (L)

8

L
x

u u 8

z

I1F

1

2

3
FWx

FI3

u(z)

FI2

Fig. 2.76 : Forces on the control volume V for the laminar plate boundary layer
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For the momentum force FI,x3 , with dA3 = b · dz, it follows that

FI,x3 = −
∫

A3

ρ · u(z) · (~v · ~n) · dA3

= −
∫

A3

ρ · u(z) ·





uz
0
0



 ·





1
0
0



 · dA3 = −ρ · b ·
∫ δ(L)

0

u2(z) · dz .

Therefore the momentum force FI,x1 points in the +x direction and FI,x3 in the −x direction.
Computing the integral yields

FI,x3 = −ρ · b ·
∫ δ(L)

0

u2(z) · dz = −ρ · b ·
∫ δ(L)

0

u2
∞

δ2(L)
· z2 · dz

= −ρ · b · u2
∞

δ2(L)
·
[
1

3
· z3

]δ(L)

0

= −1

3
· ρ · b · u2

∞ · δ(L) .

Before we compute the momentum force vector ~FI2 , we will first use the conservation of
mass. The mass flux ṁ1 entering through the surface A1 = b · δ(L) is

ṁ1 = ρ · U∞ · A1 = ρ · U∞ · b · δ(L) .

The mass flux ṁ3 exiting through the surface A3 is

ṁ3 = ρ ·
∫ A3

0

u(z) · dA3 = ρ · b ·
∫ δ(L)

0

u(z) · dz = ρ · b · u∞

δ(L)
·
∫ δ(L)

0

z · dz

= ρ · b · u∞

δ(L)
·
[
1

2
· z2

]δ(L)

0

=
1

2
· ρ · u∞ · b · δ(L) .

Since ṁ3 < ṁ1 and the plate is impermeable to the flow, the difference in mass fluxes
ṁ2 = ṁ1 − ṁ3 must pass out through the surface A2 = b · L.

ṁ2 = ṁ1 − ṁ3 = ρ · u∞ · b · δ(L) − 1

2
· ρ · u∞ · b · δ(L) =

1

2
· ρ · u∞ · b · δ(L) .

Therefore the boundary layer has a displacement action, and the flow through the surface
A2 produces a momentum force ~FI2 . For the velocity component with which the mass flux
ṁ2 passes vertically out through the surface A2, we first assume an unknown component
w2(x) > 0 in the +z direction. Further, w2(x) must satisfy the supplementary condition
w2 ¿ u∞. The velocity of the fluid in the x direction along the surface A2 is of magnitude
u∞. By definition, the momentum force vector ~FI2 is first of all computed quite generally to

~FI2 = −
∫

A2

ρ · ~v · (~v · ~n) · dA2 = −
∫

A2

ρ ·





u∞

0
w2(x)













u∞

0
w2(x)



 ·





0
0
1







 · dA2 ,

~FI2 =





FI,x2

FI,y2

FI,z2



 = −
∫

A2

ρ ·





u∞

0
w2(x)



 · w2(x) · dA2 .
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For the x component FI,x2 of the momentum force vector ~FI2 we therefore obtain

FI,x2 = −u∞ ·
∫

A2

ρ · w2(x) · dA2 = −u∞ · ṁ2 = −1

2
· ρ · u2

∞ · b · δ(L) .

The z component FI,z2 has, because of w2(x) a very small magnitude, points in the z direction
and is of no importance for the following considerations.

The wall friction force FW,x is the force which decelerates the free stream velocity u∞ to the
value zero at the surface of the plate. Therefore it points in the negative x direction, and
because du/dz > 0, we have

FW,x = −b ·
∫ L

0

| τw | ·dx = −b ·
∫ L

0

µ · du

dz

∣
∣
∣
∣
z=0

· dx = −b · µ · u∞ ·
∫ L

0

1

δ(x)
· dx .

The balance of momentum in the x direction yields

| FI,x1 | − | FI,x2 | − | FI,x3 | − | FW,x |= 0 ,

ρ · u2
∞ · b · δ(L) − 1

2
· ρ · u2

∞ · b · δ(L) − 1

3
· ρ · u2

∞ · b · δ(L)

− µ · b · u∞ ·
∫ L

0

1

δ(x)
· dx = 0 ,

1

6
· ρ · u∞ · δ(L) = µ ·

∫ L

0

1

δ(x)
· dx ⇒ ρ · u∞

6 · µ · δ(L) =

∫ L

0

1

δ(x)
· dx .

If we differentiate the last equation on both sides by s and take the relation ν = µ/ρ into
account, we obtain

u∞

6 · ν · dδ(x)

dx
=

1

δ(x)
⇒ δ(x) · dδ =

6 · ν
u∞

· dx .

Integration yields

∫ δ(L)

0

δ · dδ =
6 · ν
u∞

·
∫ L

0

dx ⇒
[
1

2
· δ2

]δ(L)

0

=
6 · ν
u∞

· [x]L0 ,

⇒ δ2(L) =
12 · ν · L

u∞

⇒ δ2

L2
=

12 · ν
u∞ · L =

12
u∞·L

ν

=
12

ReL

.

The originally desired function δ/L = f(ReL) is thus found to be

δ

L
=

√
12

ReL

≈ 3.464√
ReL

.
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The factor 3.464 is a consequence of the simplifying assumption of a linear velocity profile
u(z). The exact value, found by using the real Blasius profile for the boundary layer, is 5,
so that

δ

L
=

5.0√
ReL

.

The lift A and the drag W of a wing can also be determined directly with the balance
of momentum (2.122) if the time-averaged wake profile ū(z), p̄(z) is known. The time-
averaged velocity and pressure distributions are measured on a fixed control volume V in
a wind tunnel and numerical integration is used to determine the momentum and pressure
forces. The balance of momentum in the x direction is written, using the notation of Figure
2.77, as follows

FI∞ − FI,N − FI,x + FD∞
− FD,N + FD,x − W = 0 . (2.123)

Here the index N denotes the time-averaged profiles in the wake, ∞ the unperturbed free
stream, and FI , FD the momentum and pressure forces due to the displacement action of the
wing. The minus sign in front of the drag force is because the drag enters into the balance
law as a reaction force. The balance of momentum in the z direction yields

FI,z + FD,z − A = 0 . (2.124)

Application of equations (2.123) and (2.124) is one of the usual methods to determine the
drag and lift forces of bodies in a flow from the measured velocity and pressure profiles,
without solving the fundamental fluid mechanical equations directly. The weight G has to
be taken into account in a separate balance of the mass forces.

G

A

W

u(z)U 8

FD FI

FI

n
FD

8
8

n

FI

FD

n
N

NG

A

W

n

)8( (N) Fig. 2.77 : Forces on the control vol-
ume V for the flow past a foil
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2.4.3 Balance of Angular Momentum

For many applications, particularly in the area of flow machinery, a statement analogous to
the balance of momentum is important for the moments. The balance of angular momen-
tum can be used to determine the points of action of the momentum forces, or the work
done or energy gained in the flow through a rotor.

The angular momentum ~L is a vector lying in the plane spanned by a displacement vector
~r and the momentum vector ~I = m · ~v. The angular momentum is

~L = ~r ×~I = (~r × ~v) · m ,





Lx

Ly

Lz



 =









rx

ry

rz



 ×





u
v
w







 · m =





ry · w − rz · v
rz · u − rx · w
rx · v − ry · u



 · m .

The differential angular momentum d~L of a mass element dm = ρ · dV yields

d~L = (~r × ~v) · dm = ρ · (~r × ~v) · dV .

Therefore the angular momentum of a volume V (t) is

~L =

∫ V (t)

0

ρ · (~r × ~v) · dV .

The balance of angular momentum states that the total rate of change d/dt of the

angular momentum ~L is equal to the sum of all the external moments acting
∑ ~Ma .

These external moments
∑ ~Ma are due to the mass and surface forces

∑ ~FM +
∑ ~FA,

already discussed in connection with the balance of momentum. Here they act on a lever ~r
and we have

∑
~Ma =

∑

(~r × ~FM) +
∑

(~r × ~FA) .

The balance of angular momentum reads

d~L

dt
=

d

dt

∫ V (t)

0

ρ · (~r × ~v) · dV =
∑

~Ma . (2.125)

The formation of the total time derivative is carried out completely analogously to the
process described in connection with the balance of momentum. We obtain

d~L

dt
=

d

dt

∫

V

ρ · (~r × ~v) · dV

=

∫

V

∂(ρ · (~r × ~v))

∂t
· dV +

∫

A

ρ · (~r × ~v) · (~v · ~n) · dA =
∑

~Ma .



2.4 Technical Flows 117

Just as in the case of the balance of momentum, for steady flows (∂/∂t) = 0 the volume
integral drops away and we only require the surface integral and the flow data on the edge
of the control region

∫

A

ρ · (~r × ~v) · (~v · ~n) · dA =
∑

~Ma .

A control volume at rest in a steady flow will of course satisfy the steady flow condition as
long as the coordinate system is at rest too.

Now a flow machine with a rotor in a coordinate system at rest generates an unsteady flow.
Here we first carry out a transformation of reference frame to a coordinate system rotating
with the rotor, in order to generate a steady flow. If we define the moment of momentum
~MI, in analogy to the definition of the momentum force, as an inertial moment:

~MI = −
∫

A

ρ · (~r × ~v) · (~v · ~n) · dA ,

we obtain the balance of angular momentum

~MI +
∑

~Ma = 0 ⇒





MI,x

MI,y

MI,z



 +
∑





Ma,x

Ma,y

Ma,z



 =





0
0
0



 . (2.126)

The moment of momentum vector ~MI is locally parallel to the vector product (~r × ~v),
because the scalar product (~v · ~n) only makes a contribution to the sign and the magnitude
of the moment of momentum, and not to its direction.

In order to illustrate the balance of angular momentum we will now consider an example
of its application. Figure 2.78 shows an elbow bend, flanged onto a pipe. The elbow bend
steers the flow from the vertical flow direction to the horizontal flow direction. The flow
exits into free surroundings at the right end of the elbow bend.

We want to consider how large is the moment ~Mk which the elbow bend causes to act on
the flange junction. Here we assume that the dimension l (Figure 2.78), the flow velocity c,
the density ρ of the fluid and the cross-sectional area A1 are known.

Evaluating the integral

~MI = −
∫

A

ρ · (~r × ~v) · (~v · ~n) · dA (2.127)

for the control surface shown in Figure 2.78, we obtain the scalar magnitude of the vector
~MI as

| ~MI |= ρ · l · c2 · A1 . (2.128)

In evaluating equation (2.127), the following points should be noted. At position 1, the fluid
flows over the edge of the control space. The expression beneath the integral in equation
(2.127) is equal to the zero vector for this section of the control surface, since ~r × ~v = ~0.
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Fig. 2.78 : Elbow bend

At position 2, on the other hand, the cross product delivers a vector in the negative axial
direction. It points into the plane of the sketch, and therefore its magnitude acquires a
minus sign. The scalar product ~v · ~n is positive at the position 2 and evaluates as c · A1.
Taking these details into account, the scalar value for ~MI as formulated in equation (2.128)
is obtained .

Other than this, no other resulting forces which produce a moment act on the control surface.
The elbow bend induces the moment − ~Mk on the fluid. The direction of rotation of ~Mk is
initially assumed to be positive. The actual rotation direction is then calculated using the
equation

~MI +
∑

~Ma = 0 .

The following equation for − ~Mk =
∑ ~Ma is obtained

ρ · l · c2 · A1− | ~Mk |= 0 ⇒ | ~Mk |= ρ · l · c2 · A1 .

Therefore the fluid imposes a moment on the elbow bend which acts in the positive direction.

2.4.4 Pipe Hydraulics

The objective in this section is to determine the velocity distribution u(r) and, as a supple-
ment to Chapter 2.3.2, the pressure loss ∆p and friction loss cf for laminar and turbulent
flows through circular pipes.

We start out from the steady laminar Hagen-Poiseuille pipe flow in Figure 2.43. The
flow is fully formed, i.e. the velocity profile u(r) depends only on the radial coordinate r
and does not vary with x,(∂u/∂x) = 0. The flow is driven by a constant pressure difference
in the flow direction x, i.e. (dp/dx) = const. < 0.

We have already met the parabolic velocity profile u(r) (2.63) which is the analytic solution
of the Navier-Stokes equation (2.62). Our first step in this chapter on pipe dynamics will be
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to determine the same result again with the force balance on a cylindrical volume element
dV = π·r2·dx as sketched in Figure 2.79. In a fully formed pipe flow, no resulting momentum
forces act, so that the only forces are pressure forces.

The pressure force at position 1 (p1 > p2) reads

| ~FD,1 |= p1 · π · r2 = p · π · r2 .

The pressure force at position 2 is

| ~FD,2 |= p2 · π · r2 =

(

p +
dp

dx
· dx

)

· π · r2 .

The friction is

| ~FR | =| τ | ·2 · π · r · dx .

Since the velocity distribution u(r) decreases from a maximum value in the center of the
pipe umax to the value zero at the wall of the pipe, for r 6= 0 we have (du/dr) < 0. Therefore
the magnitude of the shear stress is

| τ |= −µ · du

dr
.

The balance of forces follows as

| ~FD,1 | − | ~FD,2 | − | ~FR |= 0 ,

⇒ p · π · r2 −
(

p +
dp

dx
· dx

)

· π · r2− | τ | ·2 · π · r · dx = 0 ,

−dp

dx
· π · r2 =| τ | ·2 · π · r ⇒ | τ(r) |= −dp

dx
· r

2
⇒ du

dr
=

1

µ
· dp

dx
· r

2
.

This equation corresponds to the first order ordinary differential equation (2.62) to deter-
mine the desired velocity distribution u(r). After separating the variables and integrating
indefinitely, we first of all obtain

u(r) =
1

4 · µ · dp

dx
· r2 + C .

τ

τ

r

u(r)

R
r

dx

p p
1 2

D

x

Fig. 2.79 : Balance of forces for Hagen-Poiseuille pipe flow
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The constant of integration C is determined using the boundary condition u(r = R) = 0 as

C = − 1

4 · µ · dp

dx
· R2 .

The velocity profile u(r) is therefore

u(r) =
1

4 · µ · dp

dx
· r2 − 1

4 · µ · dp

dx
· R2 = − 1

4 · µ · dp

dx
· (−r2 + R2) ,

u(r) = − 1

4 · µ · dp

dx
· R2 ·

(

1 − r2

R2

)

. (2.129)

We therefore obtain a parabolic velocity distribution for u(r) with the maximum velocity

umax = − 1

4 · µ · dp

dx
· R2 .

The volume flux in the pipe V̇ is then

V̇ =

∫

A

u(r) · dA =

∫ R

0

u(r) · 2 · π · r · dr =

∫ R

0

umax ·
(

1 − r2

R2

)

· 2 · π · r · dr

= 2 · π · umax ·
∫ R

0

(

r − r3

R2

)

· dr

V̇ = 2 · π · umax

[
1

2
· r2 − 1

4
· r4

R2

]R

0

= 2 · π · umax ·
1

4
· R2

=
umax

2
· π · R2 =

umax

2
· A = um · A .

The volumetric average of the pipe velocity um follows as

um =
1

2
· umax = − 1

8 · µ · dp

dx
· R2 .

The volume flux can then be determined as follows:

V̇ = um · A =
1

2
· umax · A = − π

8 · µ · dp

dx
· R4 . (2.130)

Therefore, for laminar Hagen-Poiseuille pipe flow we obtain the following proportionality
relation at the position x = L:

V̇ ∼ ∆p = L · dp

dx
, V̇ ∼ R4 .

Equation (2.130) clarifies the characteristic form of the volume flux. It is proportional to
the pressure loss ∆p = p1 − p2 and to the fourth power of the radius R.
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We now consider the size of the pressure loss ∆p for a given volume flux. This pressure loss
is a consequence of the effect of friction. From (2.130)

V̇ =
π

8 · µ · ∆p

L
· R4 , ∆p = p1 − p2

it follows that

∆p = V̇ · 8 · µ · L
π · R4

= um · π · R2 · 8 · µ · L
π · R4

= um · 8 · µ · L
R2

=
um · 8 · ρ · ν · L

R2
.

In what follows we expand the term on the right-hand side of ∆p so that characteristic
quantities of the flow can be summarized:

∆p =
1

2
· ρ · u2

m · 16 · ν · L
um · R2

=
1

2
· ρ · u2

m · 16 · ν · L
um ·

(
D
2

)2 =
1

2
· ρ · u2

m · L

D
· 64

um·D
ν

.

Defining the Reynolds number formed with the diameter of the pipe D as ReD = (um ·D)/ν
and writing the factor 64/ReD as a loss coefficient λlam, we obtain the following equations
to determine the pressure loss

∆p =
1

2
· ρ · u2

m · L

D
· λlam , λlam =

64

ReD

. (2.131)

These equations hold for laminar pipe flows, i.e. for Reynolds numbers smaller than the
critical Reynolds number Rec

ReD =
um · D

ν
< Rec = 2300 .

For fully formed turbulent pipe flow the time-averaged velocity satisfies (∂ū/∂x) = 0, so
that again momentum forces occur in the time average. In Figure 2.80 we apply the balance
of momentum to a control volume V = π · R2 · L with pipe radius R, and determine the
pressure force at position 1 (p̄1 > p̄2) as

| ~FD,1 |= p̄1 · π · R2 .

τw

τw

R
V

L

r
p p

u(r)

1 2D
x

Fig. 2.80 : Balance of forces on a control volume V for turbulent pipe flow
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The pressure force at position 2 is

| ~FD,2 |= p̄2 · π · R2 .

The wall friction force is

| ~FR,w |=| τ̄w | ·2 · π · R · L ,

and the balance of forces follows as

| ~FD,1 | − | ~FD,2 | − | ~FR,w |= 0 ,

p̄1 · π · R2 − p̄2 · π · R2− | τ̄w | ·2 · π · R · L = 0 ,

(p̄1 − p̄2) · π · R2 = ∆p̄ · π · R2 =| τ̄w | ·2 · π · R · L ⇒ ∆p̄ =| τ̄w | ·2 · L
R

.

There is no theoretical ansatz for the wall shear stress | τ̄w |, and so we use an empirical
ansatz, which determines the pressure loss equation ∆p̄ in analogy to the laminar case:

| τ̄w |= 1

2
· ρ · ū2

m · λt

4
⇒ ∆p̄ =

1

2
· ρ · ū2

m · λt

4
· 2 · L

R
=

1

2
· ρ · ū2

m · L

2 · R · λt ,

∆p̄ =
1

2
· ρ · ū2

m · L

D
· λt , λt = λt(ReD) from experiment, ReD =

ūm · D
ν

.(2.132)

From experimental results, we obtain the pressure loss coefficient λt in the form of the
Blasius law

λt =
0.3164

(ReD)
1
4

, valid for 3 · 103 ≤ ReD ≤ 105 , (2.133)

and the implicit Prandtl representation

1√
λt

= 2 · log10

(

ReD ·
√

λt

)

− 0.8 , valid for ReD ≤ 106 . (2.134)

If the pipe is rough, values of λt can be read off from the Nikuradse diagram in Figure
2.81. The roughness Ks here is the spatial average of the surface roughness of the pipe walls.
Some values for different materials are listed in Figure 2.82.

The extension to the implicit equation (2.134) for rough pipes, determined from experiment,
yields

1√
λt

= 2 · log10

(
2.51

ReD ·
√

λt

+
Ks

3.71 · D

)

. (2.135)

For Reynolds numbers ReD > 106 the loss coefficient λt becomes independent of the
Reynolds number, since then the viscous sublayer of the turbulent pipe boundary layer
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Fig. 2.81 : Nikuradse diagram

covers the roughness of the pipe. Figure 2.83 shows λt for different pipe cross-sections.

In order to compute the time-averaged turbulent velocity profile ū(r) we start out from the
ansatz for the wall shear stress τ̄w

| τ̄w |= 1

2
· ρ · ū2

m · λt

4

Using the Blasius equation (2.133)

λt =
0.3164

(ReD)
1
4

=
0.3164

(
ūm·D

ν

) 1
4
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Fig. 2.82 : Roughness of different materials
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and taking the proportionality R ∼ D and ūm ∼ ūmax into account, we obtain the relation

| τ̄w |∼ ρ · ū2
max · (ūmax)

− 1
4 · R− 1

4 · ν 1
4 = ρ · (ūmax)

7
4 · R− 1

4 · ν 1
4 .

Initially we restrict ourselves to determining ū(r) close to the wall for r → R and introduce
the substitution z = R− r. A power ansatz with unknown exponent m can then be written
down for the velocity profile ū(r) close to the wall as follows:

ū(r) = ūmax ·
( z

R

)m

,

⇒ ūmax = ū(r) · Rm

zm
⇒ (ūmax)

7
4 = ū

7
4 (z) · R 7·m

4 · z− 7·m
4 .

Therefore the wall shear stress follows as

| τ̄w |∼ ρ · ū 7·m
4 (z) · R 7·m

4
− 1

4 · z− 7·m
4 · ν 1

4 .

Prandtl and von Kármán introduced the hypothesis that | τ̄w | should be independent of
the pipe radius R for a turbulent pipe flow, i.e. the exponent of R should vanish

⇒ 7 · m
4

− 1

4
= 0 ⇒ m =

1

7
.

Substituting r back into the expression for the time-averaged velocity profile, we obtain the
(1/7) power law for turbulent pipe flow

ū(r) = ūmax ·
(

1 − r

R

) 1
7

. (2.136)

For m = (1/7) the average velocity ūm is

ūm = 0.816 · ūmax .

The region of validity of this law is the same as that for the Blasius equation (2.133),
ReD ≤ 105.
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Fig. 2.83 : Pressure loss λt at different pipe
cross-sections
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Let us mention two unphysical disadvantages of this profile. At the pipe wall we obtain an
infinitely steep increase in the velocity

dū

dr

∣
∣
∣
∣
r=R

−→ ∞ .

However this is unimportant, since the law is not valid in the viscous sublayer.

At the center of the pipe there is a bend in the velocity profile and (dū/dr)(r = 0) is not
defined.

The parabolic velocity profile of laminar pipe flows (2.129), as well as the time-averaged
velocity profile of turbulent pipe flows (2.136) are compared in Figure 2.84 for equal volume
fluxes V̇ .

All that remains to do is determine the thickness of the viscous sublayer ∆. Using the ansatz

| τ̄w |= 1

2
· ρ · ū2

m · λt

4
= µ ·

(
dū

dz

)

w

we obtain a linear increase in the velocity from the value zero at the wall to the value 0.5 · ūm

at z = ∆, therefore
(

dū

dz

)

w

=
1
2
· ūm

∆
⇒ µ ·

(
dū

dz

)

w

= ν · ρ ·
1
2
· ūm

∆
=

1

2
· ρ · ū2

m · λt

4
.

The thickness ∆ of the viscous sublayer therefore follows as

∆ =
4 · ν

ūm · λt

⇒ ∆

D
=

4

λt

· ν

ūm · D =
4

ReD · λt

.

Taking the Blasius law (2.133) into account

λt =
0.3164

(ReD)
1
4

it follows that

∆

D
=

12.64

(ReD)
3
4

. (2.137)

turbulentu m

u m laminar

Fig. 2.84 : Velocity profiles for laminar and
turbulent pipe flows
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2.4.5 Flows Past Bodies

In problems involving flows past bodies, one of the most important phenomena is that of
flow separation, which we met several times in previous sections. Depending on the size
of the Reynolds number, flow separation can take place in a steady or unsteady manner.

Let us consider the flow past a sphere. The left-hand picture in Figure 2.85 shows laminar,
steady flow separation at low Reynolds numbers. The separation of the boundary layer
on a sphere leads to a region of backflow. Because of the acceleration downstream of the
stagnation point, the pressure p on the surface of the sphere decreases greatly and takes
on a constant value in the backflow region. Separation of a turbulent boundary layer takes
place at larger Reynolds numbers much further downstream on the surface of the sphere.
Because of the flow deceleration, the pressure p first increases again beyond the widest point
of the sphere, to then take on a constant value in the turbulent backflow region.

The flow separation on a sphere can be made plausible with the following considerations. The
separation of a flow from a wall occurs when the no-slip condition close to the wall causes
the boundary layer fluid to decelerate and to be transported into the main flow region. If the
pressure in the outer flow increases downstream, the slower fluid within the boundary layer

0° 90° 180°ϕ

8

p

p

8

p

p

0° 90° 180°ϕ

r

ϕ

laminar turbulent

Fig. 2.85 : Separation and pressure distribution in the flow past a sphere
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is no longer able, because of its lower kinetic energy, to flow downstream into the higher
pressure region. Because the turbulent boundary layer flow has an additional longitudinal
and transverse momentum exchange and so a higher kinetic energy, the turbulent boundary
layer can remain attached to the surface of the sphere further downstream. The backflow
region tapers off, as does the wake flow, so that the total drag cw is considerably reduced.

In order to achieve a mathematical description of the separation criterion, we look at a
two-dimensional laminar or turbulent boundary layer on, for example, a cylinder. Because
of the no-slip condition at the wall u = 0 and w = 0 for r = R, with the radius of the
cylinder R or z = 0, it follows from the Navier-Stokes equation in Cartesian coordinates
(2.65) that

1

ρ
· dp

dx
= ν · ∂2u

∂z2

∣
∣
∣
∣
z=0

. (2.138)

Equation (2.138) and Figure 2.86 can be used to discuss the development of the boundary
layer flow with the pressure gradient. If the pressure in the x direction decreases, i.e. if
∂p/∂x is negative, the flow outside the boundary layer is decelerated downstream. In this
case (∂2u/∂z2) < 0 too, and the curvature of the velocity profile u(z) at the wall is negative.
Because of the acceleration of the flow, the velocity at the edge of the boundary layer
increases, with the result that ∂u/∂z increases with increasing x downstream. Because of
τw = µ · (∂u/∂z)z = 0, the wall shear stress τw then also increases with increasing x, so that
(∂τw/∂x) > 0.

If (∂p/∂x) = 0, equation (2.138) implies that ∂2u/∂z2 will also be zero at the wall, i.e.
the velocity profile u(z) has a turning point at the wall. The velocity at the edge of the
boundary layer remains constant because there is no pressure gradient present. Inside the
boundary layer however, the flow is decelerated by the friction forces present. This means
that close to wall, the velocity gradient ∂u/∂z decreases with increasing x. This leads to a
reduction of the wall shear stress τw in the x direction, with (∂τw/∂x) < 0.

The flow separation from the contour of the body begins at the position where the upstream
positive wall shear stress τw sinks so low that it assumes the value zero for the first time.
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Fig. 2.86 : Boundary-layer separation
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This is the criterion for the start of separation.

separation criterion : τw = 0 . (2.139)

Figure 2.86 shows the boundary layer separation for the case of a positive pressure gradient
(∂p/∂x) > 0. A positive pressure gradient leads first of all to the flow outside the boundary
layer being decelerated in the x direction. In the figure this is indicated in the way the
velocity arrows at the edge of the boundary layer become ever shorter with increasing x.

Because (∂p/∂x) > 0, equation (2.138) implies that the curvature of the velocity profile
at the wall must satisfy (∂2u/∂z2) > 0. At greater distances from the wall, the curvature
of the velocity profile u(z) is always negative. Therefore, if the curvature at the wall is
positive, with (∂2u/∂z2) > 0, there must be at least one point inside the boundary layer
where (∂2u/∂z2) = 0. This point is a turning point of the velocity profile u(z).

In contrast to the start of separation where the turning point is at the wall, the turning
point moves inside the boundary layer downstream of the start of separation. Figure 2.85
demonstrates the consequences of a positive pressure gradient (∂p/∂x) > 0. In this case the
boundary layer flow is not only decelerated by friction forces, but also by pressure forces,
and the curvature at the wall is always positive. The wall shear stress τw decreases in the x
direction, at separation begins at τw = 0.

In the two-dimensional case this is equivalent to (∂u/∂z) = 0. Further downstream, the
wall shear stress becomes negative. This implies a reversal of the flow direction close to the
wall with (∂u/∂z) < 0 and hence backflow. The backflow leads to a recirculation region
downstream of the separation point.

Now that we have worked out the separation criterion for two-dimensional boundary layer
flow, let us return to the case of the flow past a sphere and discuss the Reynolds number
dependence of the drag coefficient cw = cw(ReD), where D is the diameter of the sphere.

We start our discussion of the dependence of cw on the Reynolds number for the case of
Reynolds numbers ReD ≤ 1. In this case the friction forces are much greater than the inertial
forces, and we speak of creeping flows, which can be described analytically. For the case of a
sphere in a steady flow with ReD ≤ 1, the analytic solution of the Navier-Stokes equation
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Fig. 2.87 : Dependence of the drag coeffi-
cient cw of the sphere on the Reynolds num-
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leads to a drag force W of

W = 6 · π · µ · D

2
· u∞ . (2.140)

One third of this drag force W is due to the pressure gradient, and two thirds to the friction
forces. We also note that for creeping flows, the drag force W is proportional to the first
power of the velocity u∞. Taking the definition of the cw value into account, we can used
equation (2.38) to write down a relation for cw = cw(ReD):

cw =
W

1
2
· ρ · u2

∞ · π
4
· D2

=
24 · µ

ρ · u∞ · D =
24

ReD

. (2.141)

The relation cw = (24/ReD) is also known as Stokes drag law and is valid in the Reynolds
number region ReD ≤ 1. If the Reynolds number is increased to a value of ReD ≈ 300,
steady separation takes places downstream. The fluid particles directly at the wall lose so
much kinetic energy through the strong friction forces that they are unable to compensate
the pressure increase in the rear half of the sphere. This leads to flow separation close to
the equator of the sphere. A steady backflow region is found in the wake directly behind
the sphere. In computing the steady wake flow the inertial terms can no longer be ignored,
and the Navier-Stokes equations have to be solved.
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Fig. 2.88 : Drag coefficient cw and recip-
rocal values of the dimensionless separation
frequency 1/Str for the flow past a cylinder
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A further increase in the Reynolds number to a value of ReD = 2000 initially leads to the
formation of unsteady vortex separation of the laminar boundary layer on the surface of the
sphere with a laminar wake.

Above ReD = 2000, to about ReD = 3 · 105, the transition to a turbulent wake flow takes
place. In the Reynolds number region 3 · 105 ≤ ReD ≤ 4 · 105, the boundary layer flow on
the sphere becomes turbulent. The separation region moves downstream on the surface of
the sphere and the wake flow tapers off. This leads to a drastic reduction in the cw value,
as shown in Figure 2.87. The friction drag is larger in a turbulent boundary layer, i.e. the
drop in the cw value is due to a reduction in the pressure drag.

In the region 4 · 105 ≤ ReD ≤ 106 the laminar-turbulent transition region moves forwards
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Fig. 2.89 : Steady flow past a cylinder and
laminar Kármán vortex street
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on the surface of the sphere, increasing the friction drag, while the pressure drag essentially
remains constant. Again the cw value increases. In the Reynolds number region ReD >
106, the boundary layer on the surface of the sphere is turbulent downstream of the front
stagnation point, fixing the separation point. This does not change for any further increase
in ReD, and so the cw value of the sphere also becomes independent of ReD.
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In the case of the flow past a cylinder the dependence of the drag coefficient cw on the
Reynolds number ReD is equivalent. Figure 2.88 shows all known experimental values cw

with the measured reciprocal values of the dimensionless separation frequency 1/Str. These
are the values for the Kármán vortex street already described in Chapter 1.1. Figure 2.89
shows the flow past a cylinder for the steady flow separation region where 3 ≤ ReD < 40
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Fig. 2.92 : Shock induced separation on
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and for the laminar Kármán vortex street region where 40 ≤ ReD ≤ 200.

The periodic vortex separation of the Kármán vortex street starts at the Reynolds number
ReD = 40. With increasing Reynolds number, 1/Str decreases greatly, taking on an almost
constant value of Str = 0.21 for Reynolds numbers between 103 and 104. After the transition
to turbulent boundary layer flows on the cylinder, 1/Str drops greatly, corresponding to the
drop in the drag coefficient cw. For Reynolds numbers greater that 107 a constant separation
frequency is found in the turbulent wake flow with constant cw value.

The drag coefficient cw in the Reynolds number region from 104 to 105 are shown in Figure
2.90 for different three-dimensional and two-dimensional body shapes, with the Reynolds
number dependence for different axisymmetric bodies also shown.

Flow separation also takes place in the flow past a wing upstream of the trailing edge
of the wing and in the shock wave region. Let us return to Figure 1.18 of the introductory
Chapter 1.2 and discuss the effect of the angle of attack α of the wing. The left-hand side
of Figure 2.91 shows a subsonic wing profile at four different angles of attack α for a free
stream with Mach number M∞. The regions where the friction effect is large are shaded grey.
Case (a) shows the wing profile with α = 0◦. The diagram on the right is the lift coefficient
ca as a function of the angle of attack α. It can be seen that for α = 0◦ the lift coefficient
satisfies ca > 0. As we have already discussed, this is a consequence of the profiling of the
wing, which causes the fluid on the upper side of the wing to flow faster than on the lower
side and thus generates a pressure difference. The friction effect mainly dominates in the
boundary layer and in the wake of the wing. Directly behind the trailing edge of the wing a
shear layer of the boundary layer forms above and below the wing, passing over to the wake
flow downstream.

A slight increase in the angle of attack α, as in case (b), leads to a considerable increase
in the lift coefficient ca, without there being much effect on the wake, compared to case
(a). In case (c), a further increase in the angle of attack leads to a maximum lift coefficient
ca for a certain angle α. However, here separation already occurs on the upper side of the
profile, shown here as an extended shaded friction-dominated region downstream. A further
increase of the angle of attack α leads to an expansion of the separation region downstream
on the upper side of the wing, and thus to an increase of the lift coefficient. In the limiting
case, separation will take place at the leading edge of the wing, and there is no lift at all.

In the case of the transonic wing, the supersonic region on the wing, as already seen in
Figure 1.18 and Figure 2.58, is ended by a shock wave. This shock wave causes a pressure
jump in the wing boundary layer, which again can lead to flow separation if the boundary
layer fluid cannot overcome the pressure increase.

The conditions under which shock-boundary-layer interaction will lead to flow separation are
shown in Figure 2.92. Velocity profiles in the boundary layer ū(x, z), the sonic line M = 1,
the pressure distribution p and the wall shear stress τ̄w are shown. In the supersonic region
in front of the shock wave, a supersonic flow already occurs inside the turbulent boundary
layer. Below the dashed sonic line is a region where perturbations may spread out upstream.
It is also shown how the shock wave fans out into different weaker compression regions due
to the effect of the boundary layer. Behind the shock, the pressure in the turbulent boundary
layer becomes so large that the wall shear stress τ̄w tends to zero. At this point separation
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on the wing profile begins.

Further downstream both the wall shear stress and and velocity take on negative values.
Close to the wall backflow occurs, as shown in the middle velocity profile of the three shown
in Figure 2.92. In the separation and backflow regions, the pressure is considerably greater
than that without separation. This has an effect on the lift and the drag. Whereas the drag
increases, the lift decreases. Because of the further acceleration of the flow on the profile and
the dying away of the pressure increase in the turbulent boundary layer due to the shock
wave, the flow reattaches again after as certain distance. At this point the wall shear stress
again becomes zero, and takes on positive values further downstream. Therefore a bounded
separation region forms on the wing. Again the expansion of the separation region is of
interest, since this affects the global flow field, i.e. the outer flow. Similarity considerations
for the length l of the separation region in the flow direction lead to the result that larger
Reynolds numbers lower the length l, while higher Mach numbers increase l.

Having now looked at the flow separation on a wing, we now return to the same phenomenon
in the incompressible flow past an automobile. Whereas flow separation on the wing must
be avoided in order to retain the lift, it is an essential component in the reduction of drag
in the flow past an automobile. We have already got a first impression of the separation
regimes in the flow past a vehicle in the introductory Chapter 1.2 in Figure 1.20.

For the case of an automobile with notchback, let us compute the flow separation on the rear
window and on the edge of the trunk cover. We are now immediately able to understand the
flow behavior with one look at Figure 1.21. This shows the qualitative pressure distribution
on the contour of a notchback vehicle. Positive pressure differences are seen in the regions in
danger of separation mentioned above. Those regions, denoted with an ⊕ sign, are simply
the regions where a positive pressure gradient ∂p/∂x is present, which, as we now know,
leads to flow separation and backflow.

The separated boundary layer on the back of the automobile in Figure 1.22 generates a
part of the wake flow of the vehicle as a free shear layer after passing the edge of the trunk
cover. In these region there is a point of departure to influence the flow deliberately in
order to reduce the drag. The aim is to remove the shear layer behind the spoiler resulting
from separation, and so to restrict the formation of a certain region of the wake flow which
contributes greatly to the drag on the vehicle.

Flow separation can also occur in pipes and diffusors. Starting out with the previous Chapter
2.4.4, we consider the flow separation in the supply pipes. The flow separation here also
causes additional losses. We consider the elbow bend in Figure 2.93, which steers a vertical
flow to a horizontal flow. We assume a steady fully-formed pipe flow in the straight vertical
piece of the pipe, in which a driving pressure gradient is present in the flow direction, and
constant pressure in the radial direction transverse to the flow.

The Bernoulli equation for curved stream filaments leads us to the statement that the
pressure increases in the radial direction in order to keep the centrifugal force in equilibrium.
A pressure gradient is formed transverse to the flow direction, leading to a pressure increase
at the outer wall and a pressure decrease at the inner wall of the elbow bend. This works
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against the pressure drop along the streamline coordinate s of the outer wall and boosts it
at the inner wall. The streamline coordinate s denotes the arc length of a stream filament
and is read positive downstream.

In the previous examples we have already seen many times that a pressure increase in the
flow direction leads to flow separation. Therefore separation will first occur at the outer
wall at position A. At the exit from the elbow bend, the pressure again levels out transverse
to the flow direction. The pressure at the inner wall increases and that at the outer wall
drops again. This leads to reattachment of the flow Aw at the outer wall, and to the start
of flow separation at the point B at the inner wall. At the inner wall, the flow will again
reattach with increasing arc length s some distance after passing the elbow bend in the
straight horizontal pipe section Bw. Again a negative pressure gradient ∂p/∂s is present
here, keeping the friction forces in equilibrium. The pressure transverse to the flow direction
is again constant in this straight section of the pipe.

It can be seen in Figure 2.93 that, downstream of the separation points A and B at both
the outer and inner walls, recirculation regions form, which cause additional energy losses in
the flow. The lower picture in Figure 2.93 shows the pressure in the pipe for two streamlines
in the outer and inner wall regions along the streamline coordinate s. The inclined straight
line shows the linear pressure drop in a straight pipe section. Even if there is no separation,
the energy losses in the flow due to the friction yield a pressure loss in the flow direction.

Above the straight line, the thick curve shows the pressure of a streamline at the outer wall
which would be found without separation. Below the straight line is the corresponding curve
for a streamline at the inner wall. The separation at both point A and point B takes place
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Fig. 2.93 : Flow separation in an elbow
bend
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in a region of increasing pressure. The additional flow loss caused by separation is seen in
the way that the dashed pressure curves at the outer and inner walls of the elbow bend lie
below the curves without separation.

As well as the flow separation, a secondary flow also occurs in the elbow bend. This is
superimposed onto the main flow in the direction of the streamline coordinate s and causes
considerable velocity components perpendicular to the main flow. The origin of this sec-
ondary flow is the curvature of the pipe, as well as the deceleration of the flow from friction
forces at the wall. The velocity at the inner side of the elbow bend is greater than that at
the outer side. The fluid close to the wall has, because of the friction, a lower velocity than
that in the center of the bend. The centrifugal forces which are larger in the center of the
bend than at the side walls cause an outward motion. However, for reasons of continuity,
this is only possible if a motion in the opposite direction takes place at the walls of the bend.
Therefore a double vortex forms and is superimposed onto the main flow. The secondary
vortices also lead to flow losses, so that we can divide the losses in an elbow bend into the
following three components: friction losses and separation losses due to the curvature,
and losses due to secondary flows.
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3 Software and Applications

It is not only in fluid mechanics that the field of activity of engineers has seen considerable
changes due to the increased use of computers and networks. As well as having the analytic
abilities needed to solve fluid mechanical problems, the engineer is increasingly required to
be able to handle fluid mechanical software in practical applications in industry. In order
to promote this development, we have supplied tutorial software in conjunction with this
textbook, to ease the introduction to the use of commercial fluid mechanical software. It is
essential for future engineers to be able to work with fluid mechanical software comfortably
and independently.

Fluid mechanical software accompanying the lectures is available on the internet, via the
homepage of the Institute for Fluid Mechanics at the University of Karlsruhe. Interaction
between students and teaching assistants is encouraged via email and by means of internet
consultation.

http://www-isl.mach.uni-karlsruhe.de

3.1 Fluid Mechanical Software

The software accompanying the textbook concerning the fundamentals of fluid mechan-
ics discussed in Chapter 2 is available in the software module

KAPPA-Stromfaden
http://www-isl.mach.uni-karlsruhe.de/stromfaden.html

Here the algebraic equations of the one-dimensional stream filament theory presented in
Chapters 2.3.2 and 2.3.3, as well as the two-dimensional Navier-Stokes equation for viscous
flow, are solved iteratively for given examples. Examples of application are the flow past an
automobile and a wing, as well as the unsteady flow out of a container (incompressible) and
the flow through a nozzle (compressible).

After calling up the page http://www-isl.mach.uni-karlsruhe.de/stromfaden.html or
else clicking on KAPPA-Stromfaden, the menu shown on the next page appears:
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incompressible

inviscid

steady

automobile:

unsteady

compressible

viscous

wing:

nozzle:

exhaust:

upper side lower side

upper side

nozzle flow

lower side

free stream velocity in km/h (automobile),

back pressure / reservoir pressure ratio (nozzle):

KAPPA-Stream-Filament

By clicking on the options offered, the steady, compressible, inviscid flow through a Laval
nozzle, for example, can be computed. The results are obtained in the form of pressure
and Mach number distributions, p(x) and M(x), along the axis of the nozzle for a selected
pressure ratio of the pressure pA at the exit of the nozzle, to the reservoir pressure p0 in
the container to which the nozzle is connected. Therefore KAPPA-Stromfaden permits us
to study the effect of the pressure ratio on the characteristic flow form in the nozzle.

For example, it is seen that for a pressure ratio of (pA/p0) = 0.98 a pure supersonic flow
exists everywhere in the nozzle, with a maximum Mach number at the narrowest cross-
section of Mmax ≈ 0.37. If the pressure ratio is reduced to (pA/p0) = 0.9, for example,
a normal shock wave occurs downstream of the narrowest cross-section. This is seen in a
discontinuous drop in the Mach number from M > 1 to M < 1. For a small pressure ratio of,
for example, (pA/p0) = 0.1, a continuously accelerated flow in the Laval nozzle is ultimately
obtained. In this case the Mach number along the axis of the nozzle increases by a factor of
10 from an initial value of M ≈ 0.22 to about M ≈ 2.2.

The KAPPA-Stromfaden software can be used to carry out the preliminary design in
product development, as introduced in Chapter 1.3. Supplementary fluid mechanical soft-
ware is available for the calculation of the preliminary design, whereby the mathematical
basics necessary for this are not treated in this textbook. To this end we recommend the
more extensive texts: H.OERTEL, M.BÖHLE, Strömungsmechanik, 1999 and H.OERTEL,
E.LAURIEN, Numerische Strömungsmechanik, 2002. The university-developed software
package KAPPA (Karlsruhe Parallel Program for Aerodynamics) and the commercial
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software STAR-CD can be used for calculation, and both are available through the Insti-
tute of Fluid Mechanics. Within the framework of product development, these packages can
be used to compute laminar and turbulent, incompressible and compressible, steady and
unsteady, three-dimensional flows for given product geometries.

After calling up http://www-isl.mach.uni-karlsruhe.de/skappa.html, and download-
ing, the following menu appears:

In order to use the software package, more than just the textbook is needed. The internet
instructions given by the teaching assistants can also be studied independently with the
training course in the following chapter.

Downloading the page http://www-isl.mach.uni-karlsruhe.de/star-cd.html causes
the following menu from the commercial software package STAR-CD to appear. A license is
needed to use this software, and this license also includes training in the use of the software
package.
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The fluid mechanical software packages mentioned above can be used to compute the flow
examples described in Chapters 3.2 and 3.3.
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3.2 Training Course

Now that we have already got to know some examples of stream filament theory software, we
continue with the introduction to the software for the solution of fluid mechanical problems
in industrial projects. Accompanying the introductory course, taught at the University of
Karlsruhe (TH) as a practical training course in numerical fluid mechanics, we recommend
our more extensive textbook H.OERTEL, E.LAURIEN 2002. The introductory course is
structured so that it can also be studied via the internet. At the end of the introductory
course, the student will be able to use the KAPPA software package independently to
compute the flow past a transonic wing.

The introductory course is to be found at the address

http://www-isl.mach.uni-karlsruhe.de/seinfuehrung.html

Now that the first numerical computation with the software package KAPPA has been
successfully carried out under the guidance of the teaching assistants, the training course
for higher-semester students follows. This is an introduction to the application to industrial
projects. In the practical application of fluid mechanical software, the first thing learned
is that the computational grid and the model used (e.g. turbulence model), as well as the
boundary conditions for each class of geometries, have to be set up from scratch, or else
newly adapted. This first phase of the adaptation of the software is called the verification.

laminar plate boundary layer

turbulent plate boundary layer

(turbulence models)

transonic foil (RAE 2822)

transonic wing (ONERA M6)

unsteady flows past bodies

Rayleigh-Stokes problem

laminar Kármán vortex street

turbulent Kármán vortex street

(turbulence models)

steady flows through channels

laminar pipe flow

turbulent pipe flow

(turbulence models)

backward-facing step

(turbulence models)

unsteady flows through channels

shock tube

flows past bodies flows through channels

steady flows past bodies

Fig. 3.1 : Test verification cases for steady and unsteady flows
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It requires highly developed engineering skills and is generally only possible under expert
guidance. In what follows we present some helpful points in the training course, which is to
be found at the address

http://www-isl.mach.uni-karlsruhe.de/sverifikation.html

and can be used independently, as long as software licenses are available on the computer
used.

Before we start computing an actual industrial project, let us run the software package
through the test cases in Figure 3.1. Here it first has to be determined whether the problem
concerns a flow past a body or a flow through channels. There are then further subdivisions
into steady and unsteady test cases.

Steady Flows Past Bodies

Laminar Plate Boundary Layer
The laminar plate boundary layer is a frequently used test case for spatial discretization in
fluid mechanical software. In this case, a plate of length L at room temperature T∞ = 293K
is placed in a flow with Reynolds number ReL = 1105.

We compare the numerical results with the analytical Blasius solution:

cf (x) =
0.664

√

Re(x)
.

Re(x) = ρ · u∞ · x/µ is the local Reynolds number formed with the length x. Figure 3.2
shows the dimensionless wall shear stress

cf =
τw

1
2
ρu∞

.

For all discretization schemes tested, the numerical results agree very well with the analyt-
ical Blasius boundary layer solution.

fc

0.025

0.015

0.005

0 0.2 0.4 0.6 x/L

analytical solution
numerical solution

Fig. 3.2 : Local friction coefficient of the
laminar plate boundary layer, ReL = 1105
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Fig. 3.3 : Turbulent plate boundary layer, ReL = 2 · 106

Turbulent Plate Boundary Layer
The two-dimensional, turbulent plate boundary layer without pressure gradient is an impor-
tant example of adapting turbulence models. A fine enough computational grid can be used
to keep the effect of the discretization error on the numerical solution very small. To com-
pute the numerical results an experiment is used. Here the Reynolds number is ReL = 2·106.
The plate with the length L is in a flow with Mach number M∞ = 0.1 and the temperature
of the free flow is T∞ = 293K. The intensity of turbulence in the free stream is given as
Tu∞ = 0.5%. The transition is fixed with a Reynolds number formed with the momentum
thickness of Reδ = 770. The mean velocity profile at the position x/L and the total friction
coefficient along the plate are compared with experimental data for these parameters.

Figure 3.3 shows the computed and measured time-averaged velocity profile friction coeffi-
cients. It can be seen that the given turbulence model computes the boundary layer to be
too full. The effect of the friction coefficients however is small, and there is good agreement
of the computed total friction coefficients with the experimentally determined values.

Transonic Foil
The transonic foil RAE2822 is a test case for a compressible flow past a body. The foil is in
a flow with Mach number M∞ = 0.73, Reynolds number ReL = 6.5 · 106 and at an angle of
attack α = 3.19◦, and a temperature of T∞ = 300K. The transition is fixed at x/L = 0.05.
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Fig. 3.4 : Pressure coefficient of flow past
a foil (RAE 2822), ReL = 6.5 · 106, M∞ =
0.73
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The intensity of turbulence in the free stream is Tu∞ = 0.3%. The turbulence length scale
is estimated via the molecular viscosity and the Prandtl mixing length ansatz as

lturb ∼
µ

ρ
√

k∞

with k∞ = Tu∞ · u∞ .

The distribution of the pressure coefficient cp over the length x/L, as found in the numerical
computation, is compared to the experimental data in Figure 3.4. The pressure distribu-
tion and the computed shock wave position agree. The lift coefficient is also found to be in
agreement with experiment with ca = 0.795, and the drag coefficient is cw = 1.7 · 10−2.

Transonic Wing
The steady, three-dimensional transonic flow past a wing can be used to check the quality
of the software package to compute compressible, three-dimensional flows past bodies with
shock waves. The test wing used is the ONERA M6 wing.
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Fig. 3.5 : Pressure coefficient, flow past a wing (ONERA M6), ReL = 1.17 ·107,M∞ = 0.84



3.2 Training Course 145

A double shock wave occurs on the suction side when the wing is placed in a flow with
M∞ = 0.84. This moves towards the point of the wing and forms one shock wave. This shock
wave branching makes this wing a particularly critical test case. The Reynolds number of the
unperturbed free stream is ReL = 1.17 · 107 and the temperature of the flow is T∞ = 300K.
The wing is placed at an angle α = 3.06◦ to the flow. The flow is assumed to be adiabatic and
turbulent for the computation, i.e. the transition is fixed in the free stream. The turbulent
kinetic energy is given by Tu∞ = 0.3%. The numerical solution is evaluated by comparison
with experimental data in various cross-sections of the wing along its span.

Figure 3.5 shows the double shock on the wave as the closely-spaced isobars on the surface.
These two shock waves join together towards the point of the wing. The computed pres-
sure distributions along the span s of the wing agree well with the experimental data. The
positions of the shock waves on the wing and the branching of the shock, as well as the
suction peak along the leading edge, are all in agreement with measurements, in as much as
a shock-adapted fine grid can be chosen in the shock wave regime. The computed lift and
drag coefficients are ca = 0.138 and cw = 7.98 · 10−3 respectively.

Rayleigh-Stokes Problem
In order to verify the time precision of unsteady laminar flows, we will use the example
of the first Stokes problem for a flat plate. Consider a flat plate at rest in the (x, y)
plane, above which, in the z direction normal to the wall, is a viscous fluid at rest. At the
time t = 0 the plate is set instantaneously into motion at the constant velocity U∞. The
effect of friction causes the fluid above the plate to be set into motion, and this fluid forms
an unsteady boundary layer. The flow is now computed for the Mach number M∞ = 0.1.
The velocity profiles are similar at different times. Figure 3.6 shows the computed velocity
profiles drawn against the dimensionless coordinate η. This is the same as the results of
the analytical solution for the Rayleigh-Stokes problem, and so is a proof of both the time
precision of the numerical solution and the spatial discretization.

Laminar Kármán Vortex Street

A further indication of the time precision of the software is the example of the Kármán
vortex street found at the plane flow past a cylinder at super-critical Reynolds numbers.
The laminar Kármán vortex street is computed at the Reynolds number ReD = 500. The
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Fig. 3.6 : Velocity profile of the unsteady
plate boundary layer
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test quantity chosen is the dimensionless frequency of separation, the Strouhal number
Str = fD/u∞. The computed Strouhal number is Str = 0.209, compared to that found
by experiment Str = 0.21. There is also proof of the time precision of the software in this
unsteady test case. Figure 3.7 shows the (computed) snapshot of the pressure distribution
in the wake of the plane cylinder.

Turbulent Kármán Vortex Street
Another test case is that of the turbulent Kármán vortex street, with which the turbulence
model for unsteady flow can be chosen. The numerical calculation is carried out using a
Reynolds number of ReD = 1.4 · 104 (Fig. 3.8). The computed Strouhal number of Str =
0.206 is slightly above the experimental value of Str = 0.2. Here again it is seen that the

Fig. 3.7 : Snapshot of the velocity distribution of the laminar Kármán vortex street, ReD =
500

Fig. 3.8 : Snapshot of the velocity distribution of the turbulent Kármán vortex street,
ReD = 1.4 · 104
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turbulence models available in the software are adequate.

Flows Through Channels

Laminar Pipe Flow
Here we consider the laminar flow in a pipe with length L/D = 50 and diameter D as a test
case. The pipe is hydraulically smooth. For the Reynolds number, formed with the mean
velocity and the diameter of the pipe, we choose a value of ReD = 660, while the temperature
is T∞ = 293 K. The numerical solution is compared with the analytical solution for Hagen-
Poiseuille flow. The computed velocity profile shown in Fig. 3.9 fits the parabolic profile of
the analytical solution.

Turbulent Pipe Flow
Turbulent pipe flow can again be used to select the turbulence model for flows through
channels. As in the case of laminar flow, the hydraulically smooth pipe with a length L/D =
50 is computed. The Reynolds number is ReD = 1 · 105 and the temperature T∞ = 293 K,
with an intensity of turbulence of Tu∞ = 0.01 used. Figure 3.10 shows a comparison of the
numerical solutions with Prandtl’s logarithmic wall law. The variation from the analytical
solution is minimal, indicating that turbulence models which use a logarithmic wall law are
adequate for pipe flow.
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Fig. 3.10 : Velocity profile of turbulent
pipe flow ReD = 1 · 105

Fig. 3.9 : Velocity profile of laminar pipe
flow ReD = 660
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Backward-Facing Step
A critical test case is that of the reattachment of separated turbulent flow in a negative
pressure gradient. The backward-facing step is a simple geometry which permits investiga-
tion of reattachment of a flow. Again the numerical results are compared with experimental
data. The Reynolds number formed with the height of the step H is ReH = 3.7 · 104, at a
temperature of T∞ = 293 K. The computed time-averaged velocity profile in the backflow
region matches the experimentally determined profile well. However it is seen that the reat-
tachment point varies between x/H = 5.4 and 6.1, depending on the turbulence model used.
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Fig. 3.11 : Turbulent flow separation behind a backward-facing step
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In particular, the variations in the turbulent kinetic energy indicate that the isentropy of
turbulent viscosity, as assumed in the turbulence model, is not satisfied for separated flows.

Shock Tube
In order to verify the computation of time-dependent, compressible flows through channels,
we consider the unsteady shock tube flow. In a shock tube, the high pressure region (driving
tube) and the low pressure region (running tube) are separated by a membrane. At the time
t = 0, the membrane is burst and a flow process takes place. A shock wave moves into the
running tube, and a steady expansion fan moves through the driving tube. The aim in this
test case is to determine the shock velocity and the analytical Hugoniot values across the
shock wave. In addition, it is to be shown that the shock computation is independent of
the grid size used. The simulation results are compared to the one-dimensional analytical
solution.

Figure 3.12 shows a snapshot of the density, pressure, temperature and velocity behind the
shock wave, at the boundary between the driving gas and the gas in the running tube, and
in the expansion fan in the driving tube. At the time t = 0 the membrane is at the position
x/L = 0.5. It can be seen that the changes of state from the shock wave (right), to the
boundary between the media (center), and on to the expansion fan (left) are represented
very well. However the discontinuities across the shock wave and the boundary between the
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Fig. 3.12 : Shock tube flow



150 3. Software and Applications

media are no longer sharp.

3.3 Industrial Applications

Now that we have successfully tested the software package in the introductory training
course, we look at how to approach an industrial project. This second part of the training
course is to be found at the address

http://www-isl.mach.uni-karlsruhe.de/sindustrieprojekt.html
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Fig. 3.13 : Transonic wing with contour variation (bump)
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Transonic Wing

As we have already seen in the introductory Chapter 1.2, the development of the wing of
an airplane aims to deliver a drag coefficient cw which is a small as possible for a given
lift coefficient ca. The first step would be to increase the stretch for which the boundary
layer on the wing is laminar. This leads to transonic laminar wings with a maximum sweep
angle of about Φ = 20◦ (see Figure 1.26). However for realistic sweep angles of civil aircraft
the laminizing effect is nullified, because of the appearance of so-called transverse flow
instabilities in the three-dimensional boundary layer. For this reason other measures are
needed to reduce the drag. One possibility is the so-called adaptive wing which adapts itself
optimally to the current state of flight. Another possibility is the bump, a change in the
contour on the surface of the wing in the shock regime which influences the shock-boundary-
layer interaction on the wing to such a degree that a drag reduction of up to 9% becomes
possible.

Figure 3.13 shows the effect of such a variation in contour on the wing. First of all the
computational grid on an Airbus A320 model wing is shown. The free stream Mach number
is M∞ = 0.78, the Reynolds number is ReL = 26.6 · 106, the angle of attack α = 2◦ and
the sweep angle Φ = 20◦. With the variation in contour, the section of the solution in the
shock-boundary-layer interaction region shows that the shock wave fans out and a wake
expansion region (shaded in gray) is formed. The change in contour in the shock region and
the consequent expansion reduces the tendency towards separation. The boundary layer
thickness is reduced and the fanning out of the shock simultaneously leads to a reduction
in the drag. These effects both lead towards the desired drag reduction.

Flow Past an Automobile with Mirrors

The structure of the wake flow of an automobile has already been introduced in Chapter
1.2. Of particular interest is the effect of the outer mirrors on the aero-acoustics of the
automobile. The noise effects due to the flow past the mirrors are locally concentrated on
the side windows and are carried on the one hand, into the far field and, on the other hand,
through the side windows and the sealing around the doors into the passenger area. Figure
3.14 shows the CAD geometry of the automobile as well as a sketch of the wake flow of the
mirror. Close to the surface of the automobile, the no-slip condition at the wall causes a
horseshoe vortex to form. Above the horseshoe vortex shear layers are formed at the edge
of the mirror and these pass over into the backflow behind the mirror and into the wake
flow downstream from the saddle point. A high level of noise is formed in the shear layers
of the horseshoe vortex and the wake flow, and this disturbance is heard in the passenger
area. The numerical calculation of the flow past the mirrors is carried out with a free stream
velocity of 140 km/h and the Reynolds number ReD = 5 · 105 of the outer mirror. If we
recall the discussion of the flow past a cylinder in Chapter 2.4.5, no dominant separation
frequency of the Kármán vortex street, which could cause an additional sound level at the
Kármán frequency, occurs at the Reynolds number 5 · 105. The numerical computation and
the experiments confirm this fact for the semi-cylindrical shape of the mirror. Figure 3.14
shows the local noise level, computed from the numerical calculation, in two planes vertical
and horizontal compared to the mirror. These are compared to experimental results. The
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Fig. 3.14 : Aero-acoustics of an automobile mirror

measurement of the local sound sources here is carried out using aero-acoustic holography.
It can easily be seen that high noise levels occur in the shear layers already discussed and
as sources of the change of shape of the mean flow. These can be seen particularly close to
the saddle point of the wake flow.
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Coriolis Revolution Sensor

In order to be able to control the stability of a vehicle, the Coriolis force is measured using
micro-motion sensors in EPS systems. The sensor consists of a closed container of height
240 µm, in which fingers with micrometer dimensions oscillate against each other with
frequency f . This gives rise to an unsteady gap flow whose flow losses are kept as small as
possible, and so the surrounding pressure of the periodically oscillating fingers is lowered to
the gas kinetic region. The Reynolds number ReH formed with the height of the gap H is
so small that the no-slip condition does not hold at the finger wall.

As the motion sensor is used, gas leakage causes the pressure in the enclosed sensor container
to increase continually, and the damping characteristics of the motion sensor deteriorates.

Figure 3.15 shows a snapshot of the geometry and the moving finite-volume computational
grid for a section of the motion sensor. The gap height H between the oscillating fingers and
those at rest is 2.7 µm. At an oscillation frequency of f = 1450 Hz, the Reynolds number of
the gap flow is ReH = 0.01 at a pressure of p = 0.01 bar. Figure 3.15 shows isotachic lines in
different sections of the area of computation. Horizontal close-ups around the leading and
trailing edges of the central of the three moving fingers are shown at different heights. The
different sections are at the lower edge of the finger (z/H = 0.1), in the middle (z/H = 0.5),
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0u =u 0.4

D

0

p=0.01bar

t/T1

wall friction

ω

damping D

geometry and computational grid
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Fig. 3.15 : Gap flow of an oscillating Coriolis revolution sensor
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and at the upper edge (z/H = 0.9). The three-dimensional flow past the leading edge can
be seen. The gap flow met in Chapter 2.4.4 is found in the gaps between the fingers at rest
and those moving.

The damping D is made up of the parts due to the pressure and friction forces, shown for
one period T .
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Fig. 3.16 : Gap flow in a rotary valve pump
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Rotary Valve Pump

The mode of operation of a rotary valve pump is based on the fact that the position of a
sliding piston is changed during rotation, so that the chambers filled with fluid continually
increase their volume from 0◦ to 180◦ as they coat the inlet slit, and then, after passing
through the inlet slit, continually decrease their volume until the compressed medium exits
through the outlet slit. As the fluid passes through the compression gap, its pressure and
temperature rise.

Figure 3.16 shows the simplified geometry of a rotary valve pump as well as the computa-
tional grid of the gap flow. It consists of an inlet ring over the entire angular range, and
the matching outlet element with corresponding angles. The first segment has the starting
position as shown, whereby the cells are initially switched off at the inlet collar, and then
successively switched on during rotation. In this type of calculation, the interaction effects
between neighboring cells in the suction and expulsion phases are not taken into account.
The grid motion is initially fixed, with one row of cells at the inlet, at one degree per time
step. In the first steps, the cell layers are successively activated until the entire segment is
in contact with the inlet. The segment then moves clockwise until one row of cells reaches
the outlet edge. At this point, the cell layers are successively deactivated. Figure 3.16 shows
the temperature distributions at six different angular positions of the sliding piston. The
inlet temperature of the fluid is 293 K and the wall temperature of the pump 333 K. In the
inlet region, vortex formation takes place in the flow past the piston. In the outlet region a
jet-like expansion flow is formed in the chamber. The temperature of the compressed flow
in the gas increases to values of up to 600 K and then drops again greatly in the expansion
area of the outlet chamber.

Flow Through an Engine Cylinder

Another example of application in automobile technology is the flow through an engine
cylinder. We have already seen the cycle of the moving piston in an Otto engine in Figure
1.7. Therefore in order to compute the flow through an engine, it is necessary to model the
following processes physically correctly: the mixing of the air-fuel mixture in the suction
phase; the production of the highly turbulent kinetic energy in the compression phase; the
combustion after ignition; the expansion phase; and finally the expulsion of the combustion
products. The problem in doing this is the turbulence models employed in the software
packages.

The suction phase of a 4-valve Otto engine will first be modeled. Here we consider to what
degree the turbulence models implemented in the commercial software correctly represent
the mixing of the air-fuel mixture. Ultimately this is a requirement for the computation of
the compression and combustion in the Otto engine. Figure 3.17 shows a picture of the com-
putational grid at a certain instant of the piston motion in the suction phase of the motor.
Here the motor is taken to be mechanically driven with open valves. The computational grid
is continuously extended as the piston motion causes the volume of the cylinder to increase.
We assume that the engine is symmetric through the middle plane, so that two inlet valves
are taken into account. The numerical results show the coherent vortex structures typical to
suction pipe injection, such as rotating and tumble flows during the suction phase and well
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into the compression phase. The turbulent mixture of the inlet flows of both valves shown in
Figure 3.17 (shown dark and light) is, however, not in agreement with experimental results.
The drive for the turbulent momentum exchange through the mean velocity gradients of

mixing front

computational grid with variable mesh points

turbulent mixing

Fig. 3.17 : Turbulent mixing in the suction phases of a four-valve Otto engine
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the shear layers is not computed precisely enough. The distribution of the turbulent kinetic
energy through turbulent diffusion due to velocity and concentration gradients on the one
hand, and of the vortex strength concentration in the main vortices on the other hand, was
predicted to be too small. The numerical simulation does not yield much mixing between
the fresh gas and the exhaust gas until well into the compression phase. These are effects of
the isentropy assumed in the turbulence model, which is not present in the rotational inlet
and compression phases. The development of new turbulence models is necessary in order
to compute the turbulent mixing more precisely.

Valve Flow

The fluid mechanical elements of an ABS system include hydraulic pipes, and the pumps
and control valves which cause the periodic stuttering brake force of an automobile. In
what follows we consider the steady three-dimensional flow in a valve in a given state. The
numerical computation of the force on the valve head is of interest to predict the size of the
reaction force needed.

The geometry and the computational grid of the hydraulic valve are shown in Figure 3.18.
The hydraulic fluid flows from the left past a throttle position and through a ring gap which
is formed by the moving part of the valve (diaphragm) and the rigid base of the valve. Up
until this point, the configuration is rotationally symmetric with respect to the axis of the
free stream bore hole. Because the bore hole for the downstream flow is directed upwards,
the flow is turned in this direction, so that a three-dimensional separated flow is formed in
the valve space.

The computed streamlines show the three-dimensional structure of the valve flow. A vortex
forms around the valve head leading into the downstream flow pipe. In the front end of the

computational grid, 4  10   grid points5. streamlines, KAPPA software

Fig. 3.18 : Structure of the flow in a hydraulic valve
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valve space a secondary vortex is formed, and in the rear end, an additional vortex which is
connected with a diagonal separation line on the diaphragm. If we begin the computation
with a rough grid, a reversal of the orientation of this vortex point takes place as we move
to the next finest computational grid. Therefore a system involving a total of three vortex
points, with the corresponding saddle points at the fixed edge, forms along the sides of the
pipe. The point of separation is in the form of a focus. This can also be represented on the
roughest grid, and moves downstream with better resolution of the grid. A system of saddle
points and nodes forms above the diagonal separation line in the finest grid shown. This is
clearly bounded towards the front and includes the rear part of the diaphragm.

At first we can see that the computed structure of the flow depends on the computational
grid chosen. Even for the same grid, different turbulence models lead to different structures of
this three-dimensional separated flow. Turbulence models assume isentropy in the turbulent
flow, and this is not true in this flow example.

This application example was chosen for this textbook for precisely this reason. Even if the
fluid mechanical software is used physically correctly, we see that the skills and experience
of an engineer are also required, and these are difficult to teach in a textbook.

Volume Flux Sensor

The separation frequency of the Kármán vortex street behind a blunt body can be used
to measure the volume flux of liquids, gases and steam in a pipe flow. The volume flux
measurement is based on the proportionality between the flow velocity and the separation

high vortex strength values

geometry

normal component of vortex strength

Fig. 3.19 : Kármán vortex street behind a cylinder in a pipe flow
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frequency of the Kármán vortex street behind a blunt body, shaped as a cylinder and set
into the pipe. The cylinder with diameter d in the pipe of diameter D is shown in Figure
3.19. The diameter ratio D/d is 4. The Reynolds number of the numerical computation
is related to the time-averaged free stream of the turbulent pipe flow and has the value
Red = 5300.

Figure 3.19 shows vertical and horizontal cross-sections of the normal components of the
vortex strength vector. In the upper picture we see a snapshot of the Kármán vortex street
in the pipe. Large vortex strengths are found in both the periodically separating vortices
and the turbulent boundary layer at the edge of the wall. The large vortex strength of the
approaching wall boundary layer can also be seen in the horizontal cross-section. Because
of the no-slip condition at the wall, this boundary layer becomes a steady horseshoe vortex
around the cylinder. The effect of the wall integration into the pipe in the wake of the
cylinder is seen in a characteristic expansion region of large vortex strength, downstream
from which the turbulent boundary layer forms again, and the Kármán vortex street expands
undisturbed. The computed Strouhal number of 0.3 agrees with the experimental values.

Smoke Detector in a Pipe System

For safety reasons, smoke detectors are installed into the pipe system of an air-conditioning
system of an airplane. On the one hand they are intended to warn the crew of smoke in
the airplane, and on the other hand, they activate an automatic valve which ensures that
the smoke is sucked away, particularly in the cockpit and cabin. In order to be able to
determine the correct position for such smoke detectors, a steady-state computation of the
air-conditioning system was carried out. The aim was to compute the degree of saturation
of the air with smoke particles at each detector position which would be necessary to cause
the smoke detector to go off.

t=0.2

t=0.4

computational grid, 200000 grid points

t=0.6

Fig. 3.20 : Concentration fronts in a smoke detector
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In order to construct the system safely, two redundant detectors are also integrated into the
system. Figure 3.20 shows the positions of installation and the surface network. The pipe
system was widened at the detector positions, in order that no obstruction be caused by
smoke sensor jutting into the cabin or cockpit. The surface network shows how the detectors
are linked together. As well as the detector region, a suction pipe was also included into the
computational region.

The flow is turbulent at a Reynolds number ReD = 1.9 · 105. The given intensity of turbu-
lence for the medium at the entrance to the simulation region was Tu∞ = 5%, and the pipe
flow was matched to the cabin air at an altitude of 11.2 km. The volume flux was given
as V̇ = 118 l/s. Starting out from the steady numerical solution, the smoke distribution is
computed with a passive scalar, i.e. the transport of the inert massless smoke is represented
based on a steady solution. The particle paths for the massless, frictionless smoke particles
are integrated along the steady streamlines. Figure 3.20 shows a snapshot of the smoke dis-
persion at three different points in time in the smoke detector region. The rate of dispersion
of the smoke shows that the smoke sensors will go off within 1 second.

Clean Air Conditioning in an Operating Theater

Pure air covers, such as those used in clean rooms, are used in operating theaters. A laminar
vertical flow ensures that germ-free air is constantly blown in from above and dirt removed
from the operating table. Cooled clean air is introduced to the operating area and is sucked
away below and to the sides. The colder air sinks downwards with a small flow velocity. On
the one hand this leads to the formation of a shear layer between the normal air in the room
and the germ-free clean air, and on the other hand to the dirt introduced in the operating
area being wiped away. The essential quantity considered to determine the effectiveness is
the concentration of the clean air on the operating table.

Because the flow is strongly asymmetric, due to the position of the hot operating lights and
supports and the air suction, a three-dimensional computational grid is generated to cover
the entire operating theater, including operating table, lights and supports.

hohe Konzentration niedrige Konzentration

Reinluftkonzentration LängsschnittRechennetz 750.000 Gitterpunktecomputational grid, 750.000 grid points front elevation
clean air concentration,

low concentrationhigh concentration

Fig. 3.21 : Clean air conditioning in an operating theater
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The clean air is supplied with a Reynolds number of ReD = 6100, where D is the diameter
of the operating lights, and at a temperature of 291 K. The temperature of the room is
293 K.

The warm surfaces of the lights are modeled as isothermal walls whose temperature dis-
tribution has been determined experimentally. The temperature expansion is computed as
convective heat transport.

After the steady numerical solution is computed, a transient expansion calculation is car-
ried out for the concentration of the germ-free air. This corresponds to the particle path
integration in the smoke detector example. Figure 3.21 shows a longitudinal cross-section
of the clean air concentration in the operating theater, after germ-free air of concentration
1 has been allowed to enter through the inlet. Regions where the clean air concentration is
higher are light, and those there the air is dirtier are dark. The result of the computation
shows that, although the surface of the operating table is supplied with clean air, the effect
on the flow of the operating lights may not be neglected.
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ideal gas law, 83
incompressible, 12, 16, 66
incompressible flow, 52, 74
inertial force, 68, 70
inertial frame, 46

injection, 7
interaction force, 11, 12, 28, 32, 33
interface tension, 33
internal combustion engine, 5, 7
internal energy, 30, 65
inviscid equation, 15
inviscid flow, 11, 15, 16, 54, 64, 66
inviscid fundamental equation, 66
inviscid outer flow, 66
ionosphere, 40
isentrop exponent, 82
isentropic relation, 83

Kármán vortex street, 5, 48, 51
KAPPA-Stromfaden, 67, 137
kinetic energy, 56, 64

Lagrange picture, 49, 50
Laval nozzle, 85
Lewis number, 30
lift, 18
lift coefficient, 21
lift force, 21
liquid flow, 19, 20
liquid phase, 32
liquid-steam separator, 18

Mach number, 13, 21, 76, 79, 81, 85
mass concentration, 30
mass conservation, 10, 53, 66
mass diffusion, 30
mass element, 61
mass flux, 53, 56
mass transport, 11, 30
material production, 8
mean free path, 90
mesosphere, 39
minimal area, 34
mixing length, 103
molar mass, 78
momentum conservation, 10, 54, 66
momentum transport, 25, 29
multi-phase flow, 32

Navier-Stokes equation, 67, 129
Newtonian fluid, 26, 27
Nikuradse diagram, 122, 123
no-slip condition, 10, 25
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non-Newtonian fluid, 27
normal stress, 102

Otto engine, 7
outer flow, 11

partial density, 30
particle path, 43, 45–48, 51
phase velocity, 46
pipe flow, 20, 71
pipe hydraulics, 118
Pitot tube, 59
plate boundary layer, 75, 112
plate boundary layer flow, 69
potential vortex, 63
power, 66
Prandtl mixing length ansatz, 102
Prandtl number, 29, 79
Prandtl tube, 56, 59, 61
preliminary design, 21, 22
pressure, 19, 28, 30, 35, 39, 40, 42, 56, 62,

76
dynamic, 56
static, 56, 69

pressure coefficient, 14, 15, 73, 74
pressure drag, 73, 75
pressure force, 17, 18, 36, 38, 61, 62, 67,

68, 73
pressure loss, 20
pressure side, 14, 15
product development, 20, 21
production plant, 8, 9

chemical, 8, 9, 18
pseudo-elastic fluid, 27
pump, 20, 65, 66

ratio of specific heats, 31
Rayleigh line, 93
real gas, 33
recirculation, 128
reservoir pressure, 57, 59, 83
reservoir temperature, 83
reservoir value, 82, 84
Reynolds ansatz, 99
Reynolds number, 13, 69, 79
roughness, 17

saddle point, 18, 87

Schmidt number, 30
separation, 16, 126
separation criterion, 127, 128
separation losses, 136
shear flow, 62, 71
shear force, 34
shear stress, 25, 28, 34, 35, 67, 72

apparent, 102
shock tube, 97
shock wave, 15, 30, 79, 90

normal, 93
oblique, 96
unsteady, 97

shock wave equations, 92
shock-boundary-layer interaction, 133
signal velocity, 76
sound wave, 76, 77, 79
specific heat

ratio, 31
speed of sound, 76–78
stagnation point, 10, 57, 83
stagnation streamline, 57
static pressure, 56, 58–60
steady flow, 44, 46, 52, 54, 64
steam flow, 18, 19
steam phase, 32
steam pressure, 20, 32
Stokes drag law, 129
storage power station, 65
stratosphere, 39, 41, 42
streakline, 45–48, 51
stream filament, 52–55, 61, 64, 67

element, 67
stream filament theory, 43, 53, 66, 71, 84

compressible, 81
stream surface, 53, 67
streamline, 44, 46–48, 51
streamline body, 75
streamtube, 52, 64
subsonic flow, 79, 81, 85
suction side, 14
supersonic flow, 80, 81, 85
surface force, 33
surface tension, 33–35
sweep angle, 21

temperature, 10, 28, 30, 35, 39, 40, 76
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critical, 32
thermal diffusivity, 29
thermal expansion coefficient, 31
thermodynamic equilibrium, 30
thermodynamic properties, 30
thermodynamics

first law of, 30
throttle valve, 19
tornado, 62, 63
total drag coefficient, 73
total energy, 30
total pressure, 57–60
train, 2, 3
transonic flow, 80, 81
transport property, 11, 25
troposphere, 39, 41
turbine, 65, 66
turbulence intensity, 100
turbulent flow, 9, 98
turbulent pipe flow, 121
two phase flows, 9
two-phase flow, 20
two-phase regime, 19

U-pipe pressure gauge, 57, 58
unsteady flow, 46, 52, 55
upthrust, 37, 38
US standard atmosphere, 40, 42

validation, 22, 23
Van der Waals equation, 32
velocity, 20, 25, 44, 56, 63, 68, 71
velocity vector, 10, 12, 44, 45, 49
Venturi pipe, 56
verification, 22, 23
viscosity, 11, 27, 28

dynamic, 26, 29
kinematic, 13, 29

viscous flow, 11, 15, 63, 67
viscous sublayer, 104
viscous wake flow, 15
volume, 31

specific, 32
volume element, 64
volume flux, 53, 66
vortex flow, 63

wake flow, 15, 18

wall shear stress, 73, 75, 124
wall streamline, 73
wave

plane, 46
wave number, 46
wind tunnel, 3–6, 23

experiment, 22
wing, 21

pressure side, 14
wing design, 22
work, 30, 63, 65, 66

specific, 65, 66

Young’s equation, 34
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