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H. Oertel ∗

Institute for Fluid Mechanics, University of Karlsruhe, D-76128 Karlsruhe,

Germany

Abstract

We present a virtual heart model simulating the flow in the left human ventricle
and in the aorta. Because of the lack of in vivo structure data of the human ventricle,
the active ventricle movement is given by a time-dependent ventricle model that is
derived from in vivo image data of a nuclear spin MRT tomograph of a healthy
human heart. The passive part of the virtual heart model consists of a model aorta
and vena cava, and of heart valves. As the movement is due to the flow in the inactive
region of the heart, a coupling of flow and structure is necessary in the model to
take into account the deviation of the aorta and the closing and opening of the
heart valves. The flow calculation is performed with a finite volume method, while
the structure of the aorta is calculated using the finite element method. The flow
resistance of the time simulation in the body is taken into account with a circulation
model. In the outlook of the article, we show how the virtual heart model can be
used to predict flow losses due to pathological ventricle contraction defects in an
unhealthy human heart.

1 Introduction

To calculate the flow in the human heart, we need to model the time-dependent
geometry of the ventricle and of the heart valves during one cardiac cycle.
In the literature many approaches that model the electro-mechanical pump
behavior of the heart are found. The structure of the muscle fibers of the
human heart was published by Robb and Robb already in 1942. Hunter et
al. (1996a), (1996b), (1998) developed the finite elasticity theory and a finite
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element method for analyzing ventricular electro-mechanics during the filling
phase of the cardiac cycle, when cardiac muscle cells are not actively con-
tracting. The orthotropic properties of the passive tissue are described by a
constitutive law, whose parameters are derived from a model of collagen fibers
and in vitro stress measurements on animal hearts. A model of the active tissue
properties, based on isolated animal muscle experiments, is also introduced in
order to predict transmutal distributions of principal strain at the end of the
contraction phase of the cardiac cycle.

The calculation of the flow-structure coupling of the heart was introduced by
Peskin and McQueen (1997), (2001). It approximates the muscle fibers of the
heart as well as the cardiac valves in the Lagrangian description with discrete
elastic fiber filaments embedded in the flow. The discretization of the fiber
filaments is chosen to be so fine that they have no volume or mass, but can still
be used for a continuum mechanical description of the material. The filaments
are oriented along the flow and have local flow velocities. At each point of
the filament-flow combination, a unique fiber direction is given. The degree of
detail of the model structure is very high, and in particular the structure of
the heart valves is modelled very precisely. The method was further developed
by Lemmon and Yoganathan (2000), and applied with a simplified model to
the left cardiac ventricle for the filling phase of the cardiac cycle.

Watanabe et al. (2002) chooses another approach of the flow-structure cou-
pling of the heart, based on a simplified electro-physical and muscle contrac-
tion model. The coupling of the flow with the mechanical structure model of
the cardiac muscle takes place via the pressure.

Common to all work is that the structure model of the heart is based on in

vitro measurements on animal hearts, which cannot be carried over to the
living human heart. This is the point where our virtual heart model for the
flow simulation in the heart ventricles comes into play, Oertel (2004), Oertel et
al. (2004). The model does without the structure calculation of the ventricle
myocardium and derives the time-dependent geometry model of the ventricle
that is necessary for the flow calculation from nuclear spin tomography image
data of the healthy human heart. This also has the advantage that the virtual
heart model can also be used for the flow calculation of pathological ventricle
defects of unhealthy human hearts. The calculation of the passive part of the
heart model with the aorta and vena cava is carried out using a simplified
linear model of the flow-structure coupling, Schenkel et al. (2003a).
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1.1 Human Heart

Every minute the human heart pumps about 5 l of blood into the circulation.
If the body is under duress, the pump efficiency can increase to 20 to 30 l per
minute. The human heart consists of two separate pump chambers, the left
and right ventricles and atria which are made out of cardiac muscle (Fig. 1).
The right atrium contains blood which is weak in oxygen following systemic
circulation. The right ventricle subsequently fills with blood from the right
atrium, and then empties again into the pulmonary circulation on contrac-
tion. The reoxygenated blood from the pulmonary circulation reaches the left
atrium and is passed along from the left ventricle into the systemic circula-
tion. The atria and ventricles are separated by atrioventricular valves which
regulate the filling of the heart ventricles. The right valve has three flaps and
is therefore called the tricuspid valve. The left bicuspid valve has two flaps
and is known as the mitral valve. The flaps ensure that the atria can fill with
blood between the heart beats and prevent backflow of the blood when the
ventricles contract. While the ventricles relax, the pulmonary valve prevents
backflow of blood out of the aorta into the left ventricle.

During one cardiac cycle (Fig. 2), the ventricles carry out a periodic con-
traction and relaxation. This pump cycle is associated with changes in the
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Fig. 1. Human heart
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ventricle and artery pressures. Figure 3 shows the pressure in the left and
right chamber of the heart. The entire cycle can be split into four phases
(Fig. 4). The isovolumetric ventricle contraction is called the filling phase (1)
and contraction phase (2), and the isovolumetric ventricle relaxation is called
the expulsion phase (3) and relaxation phase (4). Phases (2) and (3) of the
ventricle contraction are called systole and phases (4) and (1) of the ventri-
cle relaxation are called diastole. The ventricle is filled during phase (4). The
pressure at this point is only slightly higher in the left atrium than in the left
ventricle. The mitral valve is therefore open and the blood flows out of the
pulmonary veins into the atrium and on into the left ventricle. As the filling
volume increases and the ventricle expands, the ventricle pressure increases.
The pressure in the aorta is considerably larger, so the aortal valve remains
closed. The arterial pressure sinks continuously during the subsequent diastole,
corresponding with the blood flow into the arterial vascular system. With the
start of the ventricle contraction, the ventricle pressure increases above that
of the atrium, so that the bicuspid valve closes. When the valve is closed, the
ventricle contracts to retain a constant blood volume. While this increases the
ventricle pressure to 166 mbar, the pressure decrease in the arteries continues.
The aortal valve is opened when the ventricle pressure exceeds that in the

ventricle contraction

ventricle relaxation

atrium contraction

outward flow

Fig. 2. Four phases of the cardiac cycle
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aorta. Now a constant quantity of blood is forced out into the aorta. While
the constant blood volume in the aorta is forced, the aortal pressure increases
from its minimum value of 107 mbar to its maximum value of 160 mbar. After
ventricle relaxation has begun, the ventricle pressure drops below that of the
arteries, and the aortal and pulmonary valves close. The phase of isovolumetric
relaxation now follows. The first phase of the diastole goes on as long as the
ventricle pressure is below the atrium pressure. Then the mitral valve opens
and the cardiac cycle starts the next filling phase.

t / T0

t / T0

aortal pressure

ventricle pressure

atrium pressure

0

0

1.00.5

0.5

left ventricle

right ventricle
1.0

Fig. 3. Echocardiogram (ECG) and pressure in the left and right ventricle, T0 = 0.8 s
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The pressure-volume diagram in Figure 4 shows the filling of the left ventricle
(1) along the rest expansion curve, the isovolumetric contraction (2), as well
as the expulsion of 80 ml blood during each cycle (3) and the isovolumetric
relaxation (4). The enclosed surface is the systolic work done by the left heart
ventricle. When the body is under duress, the work diagram shifts along the
rest expansion curve to large ventricle volumes and higher pressure. Increasing
the heart filling leads to an increase in the cardiac work. When the aortal
pressure is increased, the aortal valve opens later, so that the isovolumetric
contraction phase reaches higher pressures.

The mechanical contraction of the cardiac muscle is controlled by periodic

electrical impulses . It starts with the excitation of the sinoatrial node, which
carries out cyclical electrical depolarization and polarization, and therefore
has the function of the primary pace maker. During the depolarization phase,
the discharge extends across the conduction paths with a velocity of 1 m/s
into the surrounding muscles of the atria, which then contract. The electrical
impulse of the sinoatrial node is delayed in the ventricular node. This delay
permits optimal filling of the ventricles during contraction of the atria. The
impulse passes along the His nerve fibers and the sides of the chamber with a
velocity of 1–4 m/s and reaches the ventricle muscles after about 110 ms. In
the direction of the ventricle, the bundle of His divides into the left and right

Fig. 4. Pressure-Volume diagram during one cardiac cycle, T0 = 0.8 s
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sides of the chamber.

As the ventricles begin to contract, the contraction in the atria is finished,
thanks to the delay of the conduction in the ventricular nodes. At this point all
nerve cells in the impulse conduction system, apart from the impulse-forming
cells in the sinoatrial nodes and ventricular nodes, can be spontaneously de-
polarized. The ventricular depolarization in the electrocardiogram in Figure 3
takes less than 0.1 s.

The cycle of depolarization and polarization generates a small electrical po-
tential which can be measured on the surface of the body. The depolarization
of the atria causes a small deflection, called the P-wave. After a pause of about
0.2 s, this is followed by a strong deflection due to the depolarization of both
ventricles (QRS). The T-wave then follows, caused by renewed polarization of
the ventricles. The association of the electrical potentials with the mechanical
processes and pressure changes in the left ventricle of the heart is also shown
in Figure 3.

As the mitral valve closes, the pressure in the left ventricle rises. This is
associated with a sound wave which is detected as the first heart beat. This
induces the systole, the contraction of the ventricle. At the second heart beat
the diastole, the phase of ventricle relaxation, begins.

The overall flow in the left ventricle during one ventricle cycle is shown in
Figure 5. When the mitral valve opens, a jet intake flow forms in the ventricle
at the beginning of the filling process of the left ventricle. After one quarter of
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Fig. 5. Cardiac flow in the left ventricle

7



the cardiac cycle this is accompanied by a ring vortex which moves through
the blood at rest in the relaxed ventricle and is slowed down by it. There
is no flow through the top of the ventricle at this time. In the rest of the
diastole the intake vortex increases in size and is deformed due to the moving
edges of the ventricle. After about 0.25 of the cardiac cycle the ring vortex
branches, and the blood begins to flow through the top of the ventricle. The
branching takes place as shown in Figure 5 such that the direction of the exit
flow process through the aortic valve is already determined. The velocity of the
three-dimensional branched flow now decreases until the intake flow process
is completed and the mitral valve closes. Further deformation of the vortex
structure is determined by the inertia of the flow.

When the aortic valve opens after 0.38 of the cardiac cycle, the exit flow
process into the aorta begins. A jet flow forms in the aorta. This initially
washes away the main flow 1 and then the flow in the top of the ventricle
2. At the end of the systole the vortex structure has completely separated in
the left ventricle. In the healthy heart 65% of the ventricle volume is expelled
during one cardiac cycle. Total expulsion of the oxygen-rich blood into the
aorta takes place over two cardiac cycles.

1.2 Blood Circulation

The systemic circulation can be split into three main parts, the blood distri-
bution system, consisting of the aorta, large and small arteries and arterioles.
These further divide into the capillaries , where gas and material exchange
takes place in the micro-circulation by diffusion. The blood flows back to the
heart via the venules, small and large veins and the vena cava.

The mean blood pressure on leaving the left ventricle is about 133 mbar. This
drops to 13 mbar when the blood returns to the right ventricle. Figure 6 shows
the mean pressure and pressure variations in the different artery regimes.
Because of the elastic properties of the aorta, the pressure pulses between
120 mbar and 160 mbar around the mean value. In the large arteries, the
amplitude of the pulsation initially increases, because of the wave reflection.
It then sinks drastically to a mean value of 40 mbar in the arteriole region
over a distance of a few millimeters. In the capillaries and venules, the pressure
drop continues less sharply. Eventually there is a pressure of 13 mbar to push
the blood back to the right ventricle. In the large veins and the vena cava,
there is no pulse and no considerable pressure drop. Simultaneously pressure
waves occur which are due to the pulsation of the right ventricle and move
in the opposite direction to the flow of blood. The systolic pressure in the
pulmonary arteries is quite small, about 20 mbar. A pressure drop of only 13
to 7 mbar is needed in order to overcome the flow drag in the lung volume,
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and so 13 to 7 mbar filling pressure remain for the left ventricle.

Because of their elasticity, the aorta and the large arteries act as a so-called
volume reservoir . The acceleration part of the blood pulse is reduced and a
higher pressure level is retained during the diastole and systole. This means
that the flow in the arterial branches is smoother.

Between each pressure pulse, the arteries contract by about 5% and so main-
tain the blood transport. The pressure pulse in the arteries is positive, even
during the systole of the heart. In contrast, a backflow occurs in the large
arteries for a short time. The flow velocity is zero as the aortic valve is closed.
The amplitude of the flow pulse decreases with increasing arterial branches
and the pulse width increases while a smaller backflow occurs. The forward
motion of the pressure pulse through the arterial branches is initially asso-
ciated with an increase in the pressure amplitude, which is caused by the
arterial branches and also by the decrease in elasticity of the artery wall. The
flow profile in the branched arteries becomes more uniform.

The Reynolds numbers formed with the mean velocity are 3400 for the aorta,
500 for the large arteries, 0.7 for the arterioles, 2·10−3 in the capillaries, 0.01 in
the venules, 140 in the large veins and 3300 in the vena cava. The beating of the
heart causes a periodic laminar flow in the smaller arteries and a transitional
flow in the larger arteries and the aorta. The transition to turbulent flow takes
place over a short time in the turning points of the velocity profile, close to
the walls of the arteries. However, because of the shortness of the flow pulse
the local transition to turbulence in the wall boundary layer cannot take place
completely.

In the curved arteries and in particular in the aorta, the centrifugal force
causes secondary flows . These have a velocity component perpendicular to
the streamlines and cause a circulation flow in the direction of the outer wall.

Fig. 6. Pressure in the arterial circulation
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Figure 7 shows a snapshot of the velocity distribution in the bend of the aorta
taking into account the centrifugal force, the streamline branching in the head,
leg and collarbone arteries, and the flow structure of the secondary flow in the
descending aorta. At the beginning of the systole, the flow first reaches a
maximum at the inner side of the ascending aorta. After passing through the
curved and branching region, the velocity maximum moves to the outer side
of the aorta curve. Because of the centrifugal force, two secondary vortices
arise which remain well into the diastole. Half-way through the cardiac cycle
a radial evasive motion of the aorta can be observed. The point of maximum
deceleration of the flow is passed through. The velocity profile then flattens
and a first backflow is seen in the ascending aorta. Towards the end of the
cardiac cycle the aorta has almost fully returned to its original state.

A model of the circulation flow is necessary for the flow simulation in the
heart. This should formulate the boundary conditions at the artery exits and
the vein entrances of the heart model. The circulation model of Naujokat
and Kiencke (2000) takes into account the flow from the left heart ventricle
into the aorta and into the attached arterial system of the body circulation,
to the venous system, the right heart ventricle, the lung and back to the left
ventricle. The circulatory system is divided into i elastic pipe segments. Within
the framework of the electrodynamic analogy, whose basis was described by
Guyton et al. (1972), the solution of the Navier-Stokes equation for the elastic
pipe flow in each segment of the circulation model is found by associating the
electric resistance, inductivity and capacity with the physical properties of
the arterial and venous branching and the rheological properties of the blood.
The flow velocity v and the pressure p correspond to the electrical current

Fig. 7. Secondary flow in the aorta
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strength and voltage respectively. In analogy to the solution of the Navier-
Stokes equations, for each elastic pipe segment we have the following ordinary
differential equations:

pi−1 − pi =
9 · ρ · L

4π2
· dvi

dt
+

8 · µeff · L
πr4

· vi (1)

= I · dvi

dt
+ R · vi ,

vi − vi+1 =
3 · π · r3 · L

2 · E · d
· dpi

dt
= C · dpi

dt
, (2)

with the electric resistance R, the inductivity I and the capacity C. L is the
pipe length, r the pipe radius, d the wall thickness of the pipe segment, ρ is
the density of the blood and µeff is the blood viscosity. E is Young’s elastic
modulus of the pipe segment.

Figure 8 shows the 128 branching and pipe segments of the arterial circu-
lation model. The modelling of the vein and lung circulation is carried out
analogously, however with a lesser degree of detail.

Fig. 8. Circulation model
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1.3 Blood Rheology

The blood is a suspension consisting of blood plasma and 40 to 50 percent
of volume of deformable blood corpuscles . The red blood corpuscles are de-
formable disk-like bodies with a length of 8 micrometers. Whereas the blood
plasma consists of 90% water and therefore has Newtonian properties, the
blood suspension has non-Newtonian properties. To first approximation, the
viscous properties of the blood can be described with an effective viscosity µeff .
This increases with decreasing shear rate, due to the increasing accumulation
of red blood corpuscles.

The non-Newtonian properties of the blood as it flows through the vessels lead
to a reduction of the erythrocytes close to the vessel walls and therefore to a
reduction in the viscosity. This alters the velocity profile close to the wall and
so also the drag of the blood. Segregation close to the wall leads to a plasma
zone which is almost cell-free, and which can be computed with the plasma
viscosity µp.

Figure 9 shows the dependence of the viscosity µ of the blood on the shear
rate γ̇. For the flow in the vessels, the shear rate is γ̇ = ∂u/∂r. In vascular
branches, and in the aorta and ventricles, the dominant component of the
shear rate tensor has to be chosen for γ̇. In a wide range of varying velocity
gradients, a drop in the viscosity of up to two orders of magnitude is noted.
The region of velocity gradient in a healthy circulation varies between 8000 s−1

(arterioles) and 100 s−1 (vena cava). Therefore in the asymptotic region the
viscosity is almost constant. In the region of very high velocity gradients and
therefore very large shear stresses, there is a deformation of the erythrocytes,
which itself affects the viscosity of the blood suspension. At shear stresses over
50 n/m2, the erythrocytes begin to pull apart in a spindle-like manner.

At shear rates of less than 1, such as those which occur in the backflow regions
of an unhealthy circulation, aggregation of the erythrocytes occurs. The cells

erythrocytes

Fig. 9. Blood viscosity
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pile up onto one another and form connected cell stacks which are linked
together. However, in a healthy circulation system no aggregation can take
place in the largest arteries. This is because the aggregation time is about
10 s while the pulse is a factor 10 shorter.

The dependence of the shear stress of the blood τ on the shear rate γ̇ can be
described to good approximation with the Casson equation

√
τ =

√

µeff · γ̇ = K ·
√

γ̇ +
√

C . (3)

Here K is the Casson viscosity and C the deformation stress of the blood.
Fitting this equation to experimental results leads to the equation

√

τ

µp

= 1.53 ·
√

γ̇ + 2 , (4)

with the plasma viscosity µp = 0.012 p. For shear rates larger than 100 the
blood behaves as a Newtonian medium.

For the numerical calculation of the pulsing blood flow the modified Cross

model of Perktold et al. (1991) is used:

µeff = µ∞ +
µ0 − µ∞

(1 + (t0 · γ̇)b)a . (5)

The constants µ∞ = 0.03 p, µ0 = 0.1315 p, t0 = 0.55 s, a = 0.3 and b = 1.7 are
adapted to the experiments of Liepsch et al. (1991). Here µ∞ is the limiting
viscosity for large shear rates γ̇ and µ0 is the limiting viscosity for small shear
rates.

1.4 KAHMO Heart Model

The flow simulation in the left human ventricle and in the aorta are carried
out using the virtual KAHMO heart model (Karlsruhe Heart Model). The
heart model is divided into the active part consisting of the cardiac ventricles
and the atria and the passive part with the aorta and cardiac valves. The
human circulation is taken into account with a circulation model.

As there are no in vivo structure data of the human ventricle myocardium
available, the model does without an active flow-structure calculation in the
ventricle and replaces these by in vivo measurements of the human ventricle
motion with image data from nuclear spin MRT tomography. Figure 10 shows
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horizontal sections of the MRT tomograph of a healthy human heart at a given
point in time and the geometry model derived from it.

The periodic geometry model of the human heart is represented at each point
in time by 26 horizontal and vertical sections. A cardiac cycle consists of
18 time steps with a time resolution of 50 ms of the MRT tomograph. The
geometry data of the periodic ventricle motion is recorded over 17 cardiac
cycles and converted into a CAD geometry model. The trigger for recording
the image takes place via the ECG shown.

The passive part of the KAHMO heart model consists of a model aorta and
vena cava, as well as the heart valves. In the inactive part of the heart, in
contrast to the ventricles, the movement is caused by the flow. To calculate the
pulsing deviation of the aorta and the cardiac valve motion, a flow-structure
coupling is therefore necessary. The stress-extension distributions of the aorta
and the heart valve flaps necessary for this are taken from the literature.

Supplementary image data and velocity measurements with ultrasonic Doppler
echocardiography form the basis to develop a simplified model of the heart
valves. Instead of all three-dimensional details of the valve motion, only their
projection onto the valve plane is modelled, in such a way that the volume
fluxes are correctly represented by the human valves. The three-flap aortic
and pulmonary valves are simulated with a variable-aperture cross-section
and variable flow resistance, while the two-flap sail valve is simulated with a
slit aperture.
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Fig. 10. KAHMO heart model
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Figure 11 shows a result of the flow simulation of the following chapter with
the KAHMO heart model. The result is for the left ventricle and the model
aorta of a healthy human heart at four points in the cardiac cycle. In each
case a snapshot is shown of a streamline in the left ventricle projected onto a
longitudinal section, as well as the three-dimensional streamline in the aorta.
The intake flow into the left ventricle as the mitral valve is opened can be seen,
along with the intake vortex that accompanies it. This branches according to
Figure 5 into two parts, so that the flow also washes through the top of the
ventricle. As the aortic valve is opened, the first part is initially expelled into
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Fig. 11. Flow simulation with the KAHMO heart model, ReDsystolic = 2739,
ReDdiastolic = 1079, Wo = 25.2, t0 = 0.77 s
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the aorta. The streamlines branch in the aorta into each artery and, because
of the centrifugal force in the aorta curve, the secondary flow described above
forms. The aorta is shown displaced to one side in order to make the flow
visible.

2 Ventricle Model

2.1 Geometrical Model

The starting point of the dynamic geometry model of the moving inner wall
of the left ventricle (Fig. 12) is two sets of MRT image data of the healthy
human heart, taken at the University Hospitals of Bonn (Schiller (2002)) and
Freiburg (Jung (2003)).

MRT Image Data

Eighteen horizontal sections are taken from the top of the heart, through
the mitral valve, as well as 5 vertical sections through the middle of the left
ventricle. The sections are rotated about different angles so that the ventricles
are seen as fully as possible. In addition, three sections are taken perpendicular
to the aortic valve plane. In fitting the boundary conditions of the simulation
calculations and the validations of the simulation results, the blood flow in the
heart is determined by means of the MRT phase contrast flow measurements.
This must be carried out at the same number of cardiac cycles as the earlier

Fig. 12. Geometrical model of the left human ventricle
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image data. The blood flow is measured perpendicular to the aortic valve and
the mitral valve plane, as well as in the so-called three-chamber view of the
left ventricle exit tract.

The problem in producing pictures of the heart is that the movement of the
heart and the fast flow of blood make obtaining meaningful images difficult.
The breathing of the patient is a further problem, as the motion of the di-
aphragm causes displacement of the heart in the chest. Therefore short expo-
sure times and high resolution are necessary for taking images of the heart.
Employing an electrocardiogram (ECG) and corresponding triggering of the
image capture, new MRT data acquisition protocols make it possible to obtain
time-resolved cine-records of the heart in a phase of only 15–20 seconds where
the breath is held.

The time resolution of the image acquisition is 50 ms and is chosen depending
on the frequency of the heart so that 17 cardiac cycles are recorded. The
spatial resolution and thus the density of the individual layers is 6 mm.

The demands on the image acquisition and the MRT phase contrast flow
measurements, as well as the optimization of the segmentation of the images
is documented in the report by Schwarz (2003).

Segmentation of Images

In order to determine the dynamic geometry model of the left cardiac ventricle,
the contours of the left myocardial wall in a cine-heart-MRT image of a healthy
human heart are segmented, in all sections and in all cardiac cycles. The semi-
automatic segmentation is carried out using the live-wire method of Mortensen
and Barrett (1998). The segmentation method is based on the algorithm of
Dijkstra (1959) to optimize the path search in a weighted graph.

Reconstruction of the Geometrical Model

Scatterplots are made from the segmented contour data for each time step,
as shown in Figure 13. These are overlayed with a triangulation method in
surface elements. Using a smoothing algorithm, the surfaces are interpolated
and closed. The surface smoothing is controlled so that the ventricle volume
is retained. The geometry model results from this, as shown in Figure 14 for
a certain point in time. The entire view of the ventricle model is shown in
Figure 11.

17



2.2 Valve Models

The opening and closing of the mitral and aortic flaps is pressure controlled.
Figure 15 shows the systolic opening and closing process of the aortic valve
with an image frequency of 50 Hz. The individual images are taken with the
three-dimensional echocardiograph of Handke et al. (2003) and reconstructed
three dimensionally, whereby the systole is covered with 50 images. The flap
opening already reaches its maximum early in the systole. After this, closure
begins, first taking place slowly and finally quickly. The systolic change of
the shape of the opening surface is modelled in the projection onto the valve

instantaneous ventricle
contour data

generated surfaces

interpolated surfaces splines on which
geometrical model is based

Fig. 13. Reconstruction of the geometrical model
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Fig. 14. MRT Image sections and geometrical model of the left human ventricle

plane.

Figure 16 shows the resulting two-dimensional model of the aortic and mi-
tral valves. The volume fluxes determined with the MRT phase contrast flow
measurement are modelled with the opening and closing projection surfaces
of variable resistance. The mitral valve has two flaps which are mapped onto
the projection plane with a variable slit diaphragm. The three crescent-shaped

Fig. 15. Systolic opening and closure of the aortic valve, Handke et al. (2003)
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no resistance
medium resistance
large resistance

closed opening open

mitral valve model

closed opening open

aortic valve model

Fig. 16. Mitral and aortic valve model

connective tissue sacks of the aortic valve are simulated with a pin diaphragm
of variable cross-section and resistance.

2.3 Numerical Model

The basis of the numerical model is the geometrical model of Figure 12. The
flow in the left ventricle is determined by the motion of the geometrical model.
The wake pressure pN, forward pressure pV and the circulation resistance K are
shown in the circulation model in Figure 9. The pressure boundary conditions
are formulated at sufficient distance from the cardiac valve model in Figure 16
to minimize the influence of the boundary conditions on the flow simulation in
the ventricle. The numerical model of Figure 17 is expanded around a generic
atrium and a generic aortic root, whose size is adapted to the mitral or aortic
valve.

Computational Grid

The splines of the geometrical model of Figure 13 form the basis of the grid
generation. The surface and the fluid space of the ventricle are covered with
hexagonal cells, on top of which is placed an O-grid for the ventricle entry
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generic atriumgeneric aortic root

model of mitral valve

Fig. 17. Numerical model

and exit. The topology of the computational grid is shown in Figure 18. At
every point in time at which MRT images exist, a separate grid is created. The
resulting surface grid of Figure 19 is smoothed so that the ventricle volume
is kept constant. The grids at each of the 18 points in time are generated so
that they are topologically equivalent. The number of nodes and thus of cells
is the same in all grids. The position of the nodes in the grid as well as their
identity number also remains constant at each point in time. From the position
of the node i at time tn and at time tn+1, intermediate grids are determined.
Nonlinear interpolation is performed between the individual grids, so that it
is ensured that the position vectors xn−1 and xn+1 pass continuously into each
other.

The motion of the ventricle is different in different regions. The motion of the
cardiac valve plane is little compared to the motion of the top of the heart.
Therefore some sections of the grid, those that can be recognized clearly in

O−Grid:

Fig. 18. Topology of the computational grid
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the MRT images, are fixed. The remaining grid planes are distributed linearly
between these. The global motion of the ventricle is therefore divided into
regions of differently sized motion.

The flow structure in the ventricle to be calculated is dependent on the number
of cells in the computational grid (see Oertel and Laurien (2003), Oertel et
al. (2004)). Therefore first the grid dependence of the numerical solution in
the ventricle described in the following section has to be analyzed. Figure 20
shows the projected streamlines in the central section of the ventricle during
the systole and diastole for three different computational grids. The global
flow structure has already been discussed in Figure 5. The intake vortex and
its branching into the ventricle points during the diastole and the exit jet
during the systole can be seen. The global flow structure is correctly given
by all the computational grids shown, but there is some displacement of the
foci in the central section of the ventricle. This is independent of the number
of cells for a computational grid of more than 105 cells. With the selected
time step size of ∆t = 9.5 · 10−3, we obtain a Courant number of Co = 8.
This is taken as a basis for the flow simulations in the following sections. For
computational grids with more than 3 · 105 cells, there is deterioration in the
rate of convergence, as both of the given grid topologies surround the cells at
the entrance of the aorta too strongly.

Fig. 19. Surface computational grid of the left ventricle
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Fig. 20. Grid dependence of the flow structure in the left ventricle
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2.4 Flow Simulation

For the calculation of the incompressible pulsating flow in the human left
ventricle, the continuity and Navier-Stokes equations are made dimensionless
with the characteristic diameter of the aorta D and the mean velocity U :

x∗ =
x

D
, v∗ =

v

U
, t∗ = t · ω , p∗ =

p

ρ · U2
.

Using the dimensionless characteristic Reynolds number ReD = U · D/νeff ,

with νeff = µeff/ρ from equation (5) and Womersley number Wo = D ·
√

ω/νeff

( ω = 2 · π · f), we obtain the dimensionless equations:

∇ · v = 0 , (6)

Wo2

ReD

·
(

∂v

∂t
+ (v · ∇)v

)

=−∇p +
1

ReD

· ∆v . (7)

The force tensor which acts on the flow from the inner walls of the heart is
replaced by the movement of the geometrical model.

The numerical solution of equations (5) and (6) is carried out using the finite
volume method and the numerical model of the previous section. The flow
calculation is performed using the Star CD software package, Computational
Dynamics Limited (2003). This software package has been verified for numer-
ous applications in fluid mechanics, Oertel and Laurien (2003), Oertel (2004).
The time discretization is performed with an implicit Euler method and the
monotonic advection and reconstruction scheme. This second order method
is carried out in two steps. First of all a field of monotonic gradients is de-
fined, that together with the finite volume discretization guarantees a spatial
second order discretization. In the second step the fluxes through the volume
cell surface for all advectively transported quantities is reconstructed from the
quantities calculated in the first step by means of a monotonic and bounded
advection scheme. In order to calculate the incompressible blood flow, the
PISO algorithm is applied. This introduces a further equation to calculate
the pressure field. This PISO algorithm is a predictor-corrector method that
calculates the temporally implicitly discretized unsteady flow. The details of
the temporal and spatial discretization may be found in Oertel and Laurien
(2003).

The results of the flow simulation are shown in Figures 22. The streamlines
projected onto the plane of projection of Figure 21 are shown, together with
the three-dimensional streamlines and velocity magnitudes of the left human
ventricle. The anatomical and physiological parameters of the two healthy test
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patients F1 and B1 are summarized in Table 1. For both patients, the same
flow structure is found in the left ventricle as is denoted by the characteristics
points of the flow field foci F and saddles S.

At the time t = 0.76 the mitral valve opens. At t = 0.85 the intake flow process
in the ventricle is fully developed. At t = 0.95 the intake vortex forms in the
empty part of the ventricle. This expands and branches up to t = 0.25. At
t = 0.25 the intake flow process is complete, and the flow vortex is orientated
to prepare for the exit flow through the aortic valve. At t = 0.38 the aortic
valve opens and the exit flow into the aorta begins. At t = 0.43 the exit flow
process is in full flow.

Shortly after the mitral valve opens, the streamlines in the upper part of the
ventricle are arranged almost parallel and are directed towards the top of the
ventricle. The fluid in the lower part of the ventricle has not yet been reached
by the intake flow movement.

aortal valve

mitral valve

side view rear view top view

mitral valvemitral valveaortal valve aortal valve

plane 1 plane 2 plane 3

Fig. 21. Ventricle geometry and projection planes of the streamlines

25



The velocity maximum during the intake flow reaches the mitral valve surface
(Fig. 23). After this, the intake process gives the streamlines their orientation
in the whole ventricle. The fluid passes through the entire surface of the mitral
valve with its maximum velocity. The blood flowing into the ventricle is slowed
down by the blood at rest in the ventricle, and a ring vortex is formed in the
upper part of the ventricle. The ring vortex has the shape of a torus and the
fluid passes the surface of this torus along the shortest path. The direction of
motion of the fluid can most easily be seen in sections through the torus. The
reason for the formation of a ring vortex is that the velocity of the incoming
blood in the upper part of the ventricle is larger than that in the lower part.
The blood that is at rest in the ventricle is accelerated by the intake jet, but
is unable to pass into the lower part of the ventricle. The ring vortex arises
to balance this motion. As the diastole continues, the ring vortex increases in
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Fig. 22. Projected and three-dimensional streamlines in the left ventricle
ReD,diastolic = 1079, ReD,systolic = 2739, Wo = 25.2, T0 = 0.77 s

size. Its expansion in the axial direction is uniform, however the expansion in
the radial direction is considerably greater on the right-hand side than on the
left. The cause of this is the motion of the ventricle. During the diastole, the
ventricle stretches more to the right than the the left, where it is connected to
the right ventricle. Likewise, when viewed from behind, the expansion of the
ring vortex is greater towards the left side than to the right, as the extension
of the ventricle is greater in this direction. At the time t = 0.03 an additional
small ring vortex can be seen. This arises because the fluid in the lower part
of the ventricle gets an impulse from the upper larger ring vortex and thus is
moved with it. Hence the smaller ring vortex rotating in the opposite direction
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forms. However its velocity is very small. It has hardly any kinetic energy and
is later dampened and dispersed. Throughout the rest of the diastole a further
expansion of the ring vortex on the right-hand side can be seen, until finally
there is only a small change in the volume of the ventricle. The intake process
is then complete. The deformation of the vortex structure at this point in time
is determined by the inertia of the vortex. The right part of the ring vortex
moves towards the middle of the ventricle. Finally a branching of the ring
vortex takes place and a new focus (F1) and a saddle point (S) are formed. If
there were two foci until now, one on the left (F1) and one on the right side
(F2), the strong deformation causes the left part of the ring vortex to divide
into two foci, one upper (F1) and one lower (F3). The focus F1 moves off in
the direction of the aortic valve.

Parameters Data F1 Data B1

beat volume: 8.51 · 10−5 m3 7.51 · 10−5 m3

end diastolic volume VD: 14.01 · 10−5 m3 15.1 · 10−5 m3

end systolic volume VS: 5.48 · 10−5 m3 7.51 · 10−5 m3

pulse: 78 bpm 60 bpm

total cycle time T0: 0.77 s 1 s

systolic time tS: 0.3 s 0.39 s

diastolic time tD: 0.47 s 0.61 s

mitral valve surface AM: 5.82 · 10−4 m2 5.28 · 10−4 m2

aortic valve surface AA: 3.71 · 10−4 m2 2.85 · 10−4 m2

forward pressure PV: 500 Pa 500 Pa

blood pressure PB: 1.57 · 104 Pa 1.60 · 104 Pa

mean velocity (diastole) vdia: 0.31 m/s 0.23 m/s

mean velocity (systole) vsys: 0.76 m/s 0.68 m/s

mean viscosity µeff : 0.0061 kg/ms 0.0082 kg/ms

density ρ: 1008 kg/m3 1008 kg/m3

ReD (systolic): 2739 1579

ReD (diastolic): 1079 739

Wo (systolic): 31.4 13.7

Wo (diastolic): 25.2 10.9

Table 1. Anatomical and physiological parameters of the flow simulation in the
ventricle
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Fig. 23. Velocity magnitudes in the left ventricle ReD,diastolic = 1079,
ReD,systolic = 2739, Wo = 25.2, T0 = 0.77 s

At the beginning of the systole, the fluid begins to pass out of the ventricle as
the aortic valve begins its opening phase. The ring vortex thus keeps moving
in the same direction. The focus F1 of the left part of the vortex is already
washed out at the time t = 0.43 and it pulls the right focus F2 after it. The left
focus F3 has increased in size. The velocity maximum of the exit flow process
is reached in the central region of the aortic valve surface and a jet flow forms
in the aorta. At t = 0.63 the exit flow is fully developed. The vortex structure
is still partially in place and will only completely dissipate at the end of the
systole. The blood now flows through the entire aortic valve surface with its
maximum velocity.

2.5 Validation

The validation of the flow simulation in the left human ventricle is carried out
with MRT phase contrast flux measurement (Schiller (2002)).
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In validating the flow structure, the results of the MRT phase contrast flux
measurement are compared with the results for the the flow simulation. The
measurement of the flux data is carried out in the same plane as the MRT
data images that are the basis for the geometrical model of the flow simulation.
Thus segmented contours of the ventricle from the MRT images can be carried
over to the images of the flow (Fig. 24). Comparison between the isotachic lines
evaluated from the flux measurements and those from the flow simulation is
shown in Figure 25. The regions of equivalent directions of the velocity are
in agreement, both in their position and in their size. Thus the global flow
structure in the left ventricle of Figure 5 is validated.

2.6 Model Prediction

The evaluation of the results of the flow simulation in the left human ventricle
leads to the sketched flow structure in Figure 26. The summarizing figure of
the flow development in the ventricle throughout one cardiac cycle is shown
in Figure 5. The stroke volume of a healthy human ventricle compared to the
average measurements over many hearts is shown in Figure 27 (Fung (1997)).
The mean value of the stroke volume is in agreement. However the filling of
the ventricle top begins at different times. The measured and calculated mean
maximal pressure in the ventricle is 1.6 · 104 Pa, corresponding to the value
160 bar in Figure 3.

From the simulation results, the p–V diagram of the ventricle is evaluated for
the data of F1 in Table 1. Figure 28 shows the result. The stroke work of the
healthy human heart is calculated to be 0.78 J.

With the flow simulations in the healthy human ventricle, the foundations
have been laid to analyze pathological cases of ventricle defects and to make
predictions on the flow losses in unhealthy human hearts using the KAHMO
heart model. We will return to this in the final chapter.

MRT image MRT flux measurement simulation

Fig. 24. Rendering of the MRT flux measurement onto the simulation results
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Fig. 26. Flow structure in the left ventricle ReD,diastolic = 1079, ReD,systolic = 2739,
Wo = 25.2, T0 = 0.77 s
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Fig. 27. Stroke volume of the left ventricle VD = 1.4 · 10−4 m3, T0 = 0.77 s

Fig. 28. p–V diagram of the left ventricle ReD,diastolic = 1079, ReD,systolic = 2739,
pS = 1.5 · 104 Pa, VD = 1.4 · 10−4 m3, Wo = 25.2, T0 = 0.77 s

33



3 Aorta Model

In order to calculate the model aorta that forms the inactive part of the
left KAHMO heart model, a flow-structure coupling is necessary. The pulsing
blood flow of the left ventricle causes a deviation of the aorta that is accompa-
nied by an increase in volume. Therefore the motion cannot be predicted for
the flow calculation, but rather must be determined via a structure calculation.
The model aorta is to approximate the natural aorta as closely as possible with
respect to its elastic properties. The assumption of a model aorta is justified,
as in general no MRT images of the aorta are taken in clinical investigation
of the human heart.

The model aorta was generated by discharge of an aorta specimen by Liep-
sch et al. (1992). The aorta is that of a young woman without pathological
conditions. In order to attain good fine structure accuracy, the discharge was
carried out post mortem. Different levels of molding led to a build-up of silicon
in the aorta specimen, corresponding to the elastic properties of the human
aorta.

3.1 Geometrical Model

The geometrical model of the silicon specimen of the model aorta is shown in
Figure 29. It consists of the ascending and descending aorta as well as the exits

Exp

Fig. 29. Geometrical model of the aorta and its connection to the left ventricle
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to the collar bone and neck arteries in the bend in the aorta. The connection to
the left ventricle is via a flexible generic aortic root that models the transition
upstream of the aortic valve.

3.2 Flow-Structure Coupling

To calculate the structure of the aorta, a first linear approach is made using
the software package Permas (INTES (2000)). The software package is based
on the finite element method. The spatial discretization is carried out using
form functions that are weighted with the functional values in the elementary
nodes. The stress-tension properties of the aorta are taken from the literature.
The flow-structure coupling is partitioned. The flow and structure fields of the
aorta are calculated separately and suitable load quantities such as the pres-
sure and the shear stress components are compared after every time step. The
transfer of the shear stress tensor of the flow calculation onto the nodes of the
structure program is performed using the coupling library MpCCI, Fraunhofer
Institute for Algorithms and Scientific Computing (2000). An important con-
dition for successful coupling of the different computational grids of the flow
and structure calculation (Fig. 30) is an efficient algorithm to automatically
search for neighborhoods in the computational grids. To this end a Bucket
algorithm is employed.

The disadvantage of the weakly partitioned coupling of the flow calculation
with the linear structure calculation is the fact that no equilibrium position
can be calculated. As it is only the calculation of the volume reservoir of
the aorta integrated into the circulation model and the flow drag that are
of interest within the framework of the KAHMO heart model, the selected
coupling model is sufficient. However, if we are interested in the details of
the coupling mechanism, a more strongly nonlinear and iterative coupling

Fluid

Struktur

Strömung

Strukturstructure

fluid

Fig. 30. Exchange of flow and structure quantities with the coupling library MpCCI,
Fraunhofer Institute for Algorithms and Scientific Computing (2000)
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algorithm must be selected.

3.3 Numerical Model

The numerical model to calculate the flow in the model aorta is shown in
Figure 31. At the intake edge of the ascending aorta, the velocity distribution
of the ventricle calculation is given. At the exit edge of the branching and
descending aorta, each of the pressures and circulation resistances calculated
with the circulation model are given. Using the pressure given by the boundary
conditions, the stress-free exit geometry of the model aorta is prescribed.

Generation of the computational grids and the demonstration of the grid inde-
pendence of the simulation results is carried out in the same way as in Section
2.3.

3.4 Validation

Validation of the flow-structure coupling model is carried out using the sili-
con aorta specimen (Liepsch et al. (1992)). The silicon has isotropic material
properties with E–modulus E = 1.9·106 N/m2, transverse contraction number
r = 0.49, density ρs = 970 kg/m3 and refractive index n = 1.413, correspond-
ing to the transparent model fluid. It is known from expansion measurements
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Fig. 31. Numerical model and surface grid
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that the aorta specimen can be approximated with a linear constitutive rela-
tion.

The measurement of the local velocities in selected sections of the model aorta
is carried out using laser-Doppler anemometry (LDA). The pulsing flow in the
aorta specimen is given by the model ventricle of Section 2.5 with the cardiac
cycle T0 = 0.77 s and Wormersley number Wo = 25.2. The diameter of the
ascending aorta is D = 2.2 · 10−2 m. With the viscosity of the model fluid
µ = 3.18 · 10−3 p and the volume flux V̇ = 226 l/h, the Reynolds number is
therefore ReD = 1350.

The same parameters are chosen for the numerical flow simulation of the elastic
aortic bend as in the experiment.

The wall strength distribution of the aortic model is matched to the wall
strength of the aortic specimen in experiment (Fig. 32). In the experiment the
aortic specimen is attached at it entrances and exits with plexiglas tubes. For
the structure-mechanical calculation this means that the freedom of motion
at these edges is restricted. Therefore, just as with the structure calculation
at the edges, all degrees of freedom are suppressed.

Comparison of the flow calculation with the model aorta and the experiment
in the aorta specimen shows good agreement during the systole. Differences
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4
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9.711.3
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14.7 14.3

radius − wall thickness conditions 

Fig. 32. Segments of the aortic specimen and the wall strength distribution
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Parameters Section 1 Section 2 Section 3 Section 4

r/h 36 34 25 23

E–modulus N/m2 · 106 1.2 1.19 1.16 1.26

Table 2. Wall thickness and material properties of the aorta sections

between the measurement and the simulation calculation appear at the start
of the diastole as the flow slows down in the ascending and descending aorta.
In the experiment there is a uniformly small backflow in the ascending aorta.
At the same point in time, the velocity in the simulation calculation sinks
to a minimum, although it is still positive. This may be due to the different
formulation of the circulation and boundary conditions. The deviation and
the volume change of the model aorta is correctly given by the simulation
results with the simplified linear flow structure coupling, so that the aim of the
validation is attained, namely the calculation of the flow losses and pressure
boundary conditions of the aorta in the circulation model.

3.5 Model Predictions

With the validated flow-structure coupling of the inactive part of the KAHMO
heart model, simulation calculations with the left ventricle and the flow pa-
rameters F1 of Table 1 as well as with the model aorta of Figure 29 are carried
out. In contrast to the aortic specimen of the validation experiment, now the
stress-tension model and the wall strength distributions of the human aorta
are used. To do this the sectional division of Figure 32 is used.

Figure 34 shows the calculated three-dimensional streamlines, the streamlines
projected onto the longitudinal section and the velocity contributions during
the systole on the basis of the ventricle velocity profile of Figure 33. At the
beginning of the systole the flow in the model aorta quickly reaches its maxi-
mum and already exhibits a considerable deformation at t = 0.43. As expected
from Figure 7, the flow profiles have a maximum at the inner side of the aortic
bend. After passing through the entire curved region, the maximum shifts to
the outer side of the aortic bend. The streamlines at the time t = 0.43 already
indicate the secondary flow in the aortic bend. At time t = 0.63, the point of
maximum deceleration of the flow occurs. The velocity profiles flatten and the
streamlines indicate a first backflow in the ascending branch of the aorta. At
time t = 0.85, the aorta has almost completely returned to its initial position.

In the ascending model aorta, a strong deviation due to the pressure pulse is
observed. It is to be noted that the bulging deformation of the aorta in this
region is caused by the close structure boundary condition at the aortic root.
During the systole, because of the centrifugal force, the secondary flow forms
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two vortices with two half-saddles. This structure is retained into the diastole.
In spite of the deceleration of the flow that has already begun, the compliance
of the aorta clearly contributes to a stabilization of the flow structure. At time
t = 0.85 the structure finally breaks up. The main flow velocities are close to
zero and the deformation of the aorta is again the same as its initial condition.

At the start of the systole there is still no evident secondary flow, and it is
only at t = 0.43 that the first structures of the secondary flow can be seen.
At time t = 0.63 the radial deviation motion of the aorta as already described
can be observed. For a short time a triple-vortex configuration appears, only
to decay again to the stable double vortex at t = 0.67. This double vortex
structure of Figure 7 remains for the rest of the cardiac cycle.

In order to evaluate damage to the aorta wall caused by disease, a discussion
of the wall shear stress is necessary, as shown in Figure 35 during the systole.
At each of the opposite artery walls of the aortic branching, a maximum of the
wall shear stress occurs during the systole. The velocity maximum at the inner
side of the aortic bend at the start of the systole also leads to a maximum
of the wall shear stress. If the wall shear stress is zero, temporary flow losses

Fig. 33. Velocity distributions at the entrance to the model aorta, ReD,diastolic

= 1079, ReD,systolic = 2739, Wo = 25.2, T0 = 0.77 s
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Fig. 34. Flow quantities in the human left ventricle and the model aorta
ReD,diastolic = 1079, ReD,systolic = 2739, Wo = 25.2, T0 = 0.77 s
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Fig. 35. Aortic wall shear stress ReD,diastolic = 1079, ReD,systolic = 2739, Wo = 25.2,
T0 = 0.77 s

occur.

4 Discussion

4.1 Model Conclusions

With the validated KAHMO heart model, the flow quantities and flow struc-
ture in the healthy human heart based on MRT image data can be calculated.
This forms a basis for the analysis of pathological cases of ventricle defects
in human hearts (Schenkel et al. (2004)). In the case of akinesia of the left
ventricle, the contraction amplitude is no longer present. Dyskinesia denotes
a systolic outward motion of a myocardial area ,while an aneurism describes
a large dyskinetic area with paradoxical pulsation or large akinetic outward
sagging which is considerably larger than the normal wall contour even in
the diastole. Figure 36 shows the fluid space of a healthy human ventricle,
as well as two pathological cases. As the dyskinesia and the akinesia repre-
sent characteristic pathological cases and can be modelled with an alteration
in the volume flux of the KAHMO heart model, they have been selected for
numerical flow simulation.

Just as in the case of a healthy human heart, during the systole in the presence
of a dyskinesia of the left ventricle the intake vortex forms. However, the
projected streamlines in the central section of the ventricle in Figure 37 show
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that the vortex does not attain the same dominance on the left side of ventricle
as in a healthy human ventricle. The bulging changes the configuration so that
it forms a natural obstacle for the vortex. As a consequence of the smaller
left-side formation, the right vortex increases in size and forms an obstacle in
front of the aortic valve. This behavior explains why the flow at the end of
the intake flow process is not yet oriented in the direction of the aortic valve.
Furthermore, the bulging region forms a volume reservoir where the blood
collects and remains in the ventricle, even after several cardiac cycles.

At the beginning of the systole the flow does not have the geometric config-
uration of the healthy ventricle, leading to a deviating movement of the flow.
The natural timing of the flow is lost. The flow then forms the same config-
uration as described for the healthy ventricle. However, the difference lies in
the collecting function of the bulge that causes the blood to remain in the
ventricle.

For an aneurism too, at the start of the intake process a ring vortex flows,
whereby the left-side deviation of the myocardium prevents the dominance of
the left-hand vortex over that on the right. In the entire lower region of the
ventricle blood can collect and again remain for several cycles. At the start
of the exit flow process it can be seen that a vortex remains against the wall
on the right-hand side of the ventricle, keeping the blood in the lower part of
the ventricle. The timing of the flow is sensitively disturbed, and numerical
simulations show that the large quantity of remaining blood means that an
aneurism is the worst pathological ventricle defect.

With respect to the flow structure, the modelled pathological ventricle defects
show differences to the healthy ventricle such that complete functionality of
the ventricle for a cardiac insufficiency is not longer present. The global flow
structure in the ventricle is determined by the onset, expansion, branching
and movement of the ring vortex.

The flow structure in a healthy ventricle is characterized by a ring vortex. The
fluid flows along this ring vortex during the diastole. When the left vortex part
splits off, the flow branches. The ventricle is emptied by contraction. As the

healthy akinesia dyskinesia

Fig. 36. Pathological ventricle defects of an akinesia and a dyskinesia
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akinesiahealthy dyskinesia

Fig. 37. Flow simulation of pathological ventricle defects ReD,diastolic = 1079,
ReD,systolic = 2739, Wo = 25.2, T0 = 0.77 s
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healthy akinesia dyskinesia

Fig. 38. Cardiac flow in the healthy and pathological left ventricle

flow already has the correct direction before it is expelled, the fluid can flow
out without changing its direction. In this manner, the fluid passes through the
ventricle smoothly, without having to overcome deceleration and acceleration
phases as its direction changes. Figure 38 shows the main path of the blood
flow. The greater part of the fluid moves on one of these paths during one
cycle. The blood is caught by one of these vortices and transported via the
aortic valve into the circulatory system. If the blood reaches the right-hand
path, it generally remains in the right half of the ventricle and is led from there
to the exit. However, if the fluid particle is found in the left-hand part of the
vortex, as the vortex splits it passes either to the lower part of the ventricle
or to the aortic exit.

The main flow direction of dyskinesia is also prescribed by a ring vortex. The
right-hand path of the blood flow is not so well defined as for the healthy
ventricle. Therefore no flow reaches and passes through the dilatated region.
A further flow path goes through the lower part of the heart. The vortex
passing into the middle orientates itself in the direction of the aortic exit and
the fluid can pass out unhindered. The flow in an aneurism, just as in the
other two flows, is defined by a ring vortex. However, the flow divides itself
into the right-hand and left-hand part of the ventricle. In addition, the ring
vortex remains horizontal in the ventricle, i.e. it does not moves to the top
of the ventricle. The consequence of this is an insufficient rinsing out of the
top of the ventricle. The orientation of the increasing right-hand vortex in the
ventricle does not immediately find the direction to the aortic exit during the
diastole. At the start of the systole, the right-hand part of the ring vortex has
found its direction and flows out.

4.2 Further Model Developments

As the KAHMO heart model is further developed, it will retain the advantage
that pathological hearts with ventricle defects can be treated based on MRT
data images without knowing the myocardial structure of the human heart.
It is only for the relaxation phase of the cardiac cycle in the diastole that
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the flow-structure coupling with the myocardium of the ventricle is taken
into account. Instead of the partition in the coupling of the aorta motion in
Chapter 3, a direct flow-structure coupling will be developed. The structure
data of the myocardium during the filling phase of the heart necessary to do
this will be taken from the myocardium model of Nash and Hunter (2000),
based on stress-extension measurements on animal hearts.

The direct flow-structure coupling was initially performed for an ellipsoidal
heart geometry and a time-varying modulus of elasticity of the myocardium
material. The nonlinear and anisotropic material properties and the large de-
formation of the flexible myocardium during the filling phase of the heart are
now taken into account. The flow-structure simulation of the model ventricle
takes place in four steps.

The main idea of the approach is to get the spatial and temporal distributions
of pressure and velocity within the ventricle by means of fitting the real human
ventricular pressure-volume loop, where the key point is to obtain a fictitious
time-varying Young’s modulus of the ventricular wall, namely the Young’s
modulus time curve. In the second step, based on the obtained p–V curves
of different Young’s moduli, interpolation is performed to get the fictitious
Young’s modulus time curve that fits the prescribed p–V curve of the filling
phase. In the third step, the fluid-structure coupled simulation is performed
by introducing the fictitious Young’s modulus time curve into the heart model
and imposing the transmitral velocity history is on the mitral orifice position.
In the final fourth step, based on the results of coupled simulations, the relation
curve of average intraventricular pressure and ventricular volume is obtained
and compared with the target p–V curve. The Young’s modulus time curve
is then improved until the simulated p–V curve matches the target curve.
Figure 39 shows the flow-structure simulation of the ellipsoidal model ventricle.
The same flow structure is seen during the diastolic filling phase as has been
described in Chapter 2.

Fig. 39. Pressure-volume relation of an ellipsoidal model ventricle
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