

Entwicklung einer miniaturisierten bruchmechanischen Probe für Nachbestrahlungsuntersuchungen

H.-C. Schneider Institut für Materialforschung

September 2005

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 7066

Entwicklung einer miniaturisierten bruchmechanischen Probe für Nachbestrahlungsuntersuchungen

H.-C. Schneider

Institut für Materialforschung

von der Fakultät für Maschinenbau der Universität Karlsruhe (TH) genehmigte Dissertation

Forschungszentrum Karlsruhe GmbH, Karlsruhe 2005

Impressum der Print-Ausgabe:

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF)

ISSN 0947-8620

urn:nbn:de:0005-070662

Entwicklung einer miniaturisierten bruchmechanischen Probe für Nachbestrahlungsuntersuchungen

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Maschinenbau der Universität Karlsruhe (TH)

genehmigte

Dissertation

von Dipl.-Ing. Hans-Christian Schneider aus Darmstadt

Tag der mündlichen Prüfung: Hauptreferent: Korreferent: 15.07.2005 Prof. Dr. rer. nat. Dietrich Munz Prof. Dr. rer. nat. Oliver Kraft

Zusammenfassung

Der vorliegende Bericht stellt eine miniaturisierte Probe zur Ermittlung bruchmechanischer Kennwerte an ferritisch-martensitischen Stählen vor. Aufgrund ihrer kleinen Abmessungen und der gewählten Geometrie ist die Dreipunkt-Biegeprobe geeignet, in räumlich beschränkten Bestrahlungsprogrammen eingesetzt zu werden. Den bei kleinen Proben zu befürchtenden Nichtkonservativitäten wird durch geometrische Modifikation der Bruchzone und durch die Entwicklung geeigneter Prüf- und Auswertetechnik begegnet. Eine experimentelle und rechnerische Validierung anhand von normgerechten Proben unter Verwendung verschiedener Materialien zeigt die Gültigkeit der mit solchen Proben gewonnenen bruchmechanischen Kennwerte.

Eine auf Finite-Elemente-Berechnungen basierende Analyse des Spannungsfeldes vor der Rißspitze legt künstliche Dehnungsbehinderungen durch seitliche Kerben nahe. Eine solche Kerbung ergibt für Proben unterschiedlicher Größe stark vergleichmäßigte Verläufe von Spannungen und J-Integral unter Modus-I-Belastung, wie sie für die Ermittlung bruchmechanischer Kennwerte sinnvoll sind. Isotherme Experimente werden an den drei grundsätzlichen Materialzuständen spröde, duktil und spröd-duktil unter Verwendung verschiedener Probengrößen und -geometrien vorgenommen. In temperierten Experimenten wird die Verschiebung des spröd-duktilen Übergangs der Rißzähigkeit gegenüber Proben herkömmlicher Größe untersucht. Es wird gezeigt, daß unter Beachtung der in diesem Bericht gegebenen Empfehlungen zur Auswertung nichtkonservative Ergebnisse ausgeschlossen werden können.

Die praktische Verwendbarkeit der vorgestellten Probenform wird mit der Prüfung von bestrahlten Proben nachgewiesen. Die Auswertung ergibt, daß sie auch unter den Bedingungen abgeschlossener Versuchszellen und fernbedienter Handhabung für bruchmechanische Untersuchungen einsetzbar ist und reproduzierbare Werte für J_{ID} und K_{ID} liefert.

Development of a miniaturized fracture-toughness specimen for post-irradiation experiments

Abstract

The present report introduces a miniaturized sample for the determination of fracture mechanics characteristics of ferritic-martensitic steels. Due to its small dimensions and the geometry selected, the three-point bending specimen is suitable for use in irradiation programs with limited space. The non-conservative results which are feared to be obtained when using small specimens are prevented by a geometrical modification of the fracture zone and by the development of a suitable test and evaluation technique. An experimental and computational validation on the basis of standard samples using different materials reveals the validity of the fracture mechanics characteristics obtained with such samples.

An analysis of the stress state in front of the crack tip, based on finite-element calculations, suggests artificial constraints by lateral notches. Such notches give rise to stronger uniformly distributed stress states and *J*-integral values under mode-I loading for samples of different sizes, which are useful for the determination of fracture mechanics characteristics. Isothermal experiments are performed under the three fundamental material conditions of ductile, brittle, and ductile-to-brittle-transition using different specimen sizes and geometries. The shift of the fracture toughness' ductile to brittle transition - in comparison to full-scale specimens - is examined in tempered experiments. It is shown that considering the recommendations for evaluation given in this report, non-conservative results can be excluded.

Practical suitability of the specimen type presented is demonstrated by examining irradiated samples. Evaluation shows that the specimen is - also under the conditions of hot cells and remote handling - usable for fracture mechanics investigations and that it supplies reproducible values for J_{ID} and K_{ID} .

Summarium

Haec relatio specimen minutum describit, ut signa cognoscantur, quibus viribus adhibitis chalybes ferro duriores frangantur. Propter dimensiones parvas et geometriam adhibitam methodus flectendi in tribus punctis aptus est, qui in angustis programmatibus irradiandi adhibeatur. Eventus exspectatione meliores, qui in speciminibus parvis timendi sunt, mutatione geometrica finium fragendi et usu technicae idoneae perscrutandi ac rationis calculatoriae aptae prohibentur. Probatio experimentis et computationibus peracta et usu speciminum normae convernientum et materiarum varium demonstravit signa frangendi his speciminibus parta rata esse.

Analysis, quae in rationibus finitimorum elementorum posita est, finium contentionis ante incisionem de impedimentis artificiis extensionis incisuris lateralibus monet. Tales incisurae efficiunt speciminibus magnitudinis variabilis aequabilissimos processus contentionum et *J*-integralis in modo-I-onore, ita ut ad cognitionem signorum frangendi ingeniosi sunt. Experimenta aequae temperiei in tribus principalibus statibus materiae peraguntur, id est in statu fragili, plastico et fragili-plastico et usu speciminum dimensionum variarum et geometricae. Experimentis tepidis variatio transitus fragilis et plastici tenacitatis rumpendi prae speciminibus magnitudinis usitatae exploratur. Demonstratur observatione praeceptorum computationis omnium punctorum in hac relatione datorum eventus exspectatione meliores prohiberi posse.

Probatione speciminum irradiatorum demonstratur descriptam formam speciminis ad usum habilem aptam esse. Ex computatione sequitur, ut etiam condicionibus cellarum experimentalium clausarum ac telemoderationis experimentorum ad cognitionem signorum frangendi apta sit et signa iterabilia pro J_{ID} et K_{ID} praebat.

Inhalt

1 Ei	Einführung und Aufgabenstellung1			
2 St	and d	er Erkenntnis	4	
2.1	Erm	ittlung der Rißzähigkeit	4	
2.1.	.1	Spannungsintensitätsfaktor K	4	
2.1.	2	J_{lc} -Ermittlung	5	
2.1.	.3	Größenbedingungen	7	
2.2	Schv	wierigkeiten kleiner bruchmechanischer Proben	7	
2.3	Spai	nnungszustand und Dehnungsbehinderung	9	
2.3.	.1	Quantifizierung der Dehnungsbehinderung	9	
2.4	Mec	hanismen der Rißausbreitung	10	
2.5	Einfl	uß der Probengröße auf Kennwerte	11	
2.5.	.1	Größenabhängigkeit der Kerbschlagarbeit	11	
2.5.	2	Übergangstemperatur beim Kerbschlagversuch	12	
2.5.	.3	Bruchmechanische Kennwerte	12	
2.5.	.4	Bruchmechanische Übergangstemperaturen	13	
2.5.	.5	Einfluß von Seitenkerben	14	
2.6	Korr	elation von Kerbschlagarbeit und Rißzähigkeit	14	
2.7	Bisla	ang realisierte Geometriestudien	16	
2.7.	.1	Versuche ohne direkten Vergleich mit Normproben	16	
2.7.	.2	Variation der Probenform	16	
2.7.	.3	Variation der Probenbreite	17	
2.7.	.4	Einfluß der relativen Rißlänge	17	
2.7.	.5	Weitere Aktivitäten	18	
2.8	Norr	nierungsbestrebungen	19	
2.9	Mate	erialien	19	
2.9.	.1	MANET-I	19	
2.9.	2	MANET-II	20	
2.9.	.3	EUROFER 97	21	
2.10	Schl	ußfolgerung	22	
3 Ei	genes	s Vorgehen zur Realisierung einer geeigneten Probe	23	
4 Fi	nite-E	lemente-Berechnungen	26	
4.1	Mate	erialien	26	
4.1.	.1	Modellierung der Materialien	26	
4.2	Spai	nnungen und Verformungen	28	
4.2.	.1	Verwendete Koordinatensysteme	28	
4.2.	2	Das Spannungsfeld vor der Rißspitze	28	
4.2.	.3	Rißfortschritt	30	

4.3 Mo	dellierung von Proben und geometrischen Variationen	31
4.3.1	Prinzipielle Geometrie	31
4.3.2	Ausgeführte Proben	31
4.3.3	Normproben: Dreipunkt-Biegeprobe gemäß ASTM-Norm E 399	32
4.3.4	Maßstäbliche Verkleinerung: Mini-3PB-Probe	32
4.3.5	Verringerung der erforderlichen Probengröße durch Seitenkerben	33
4.3.6	Geometrisch nicht ähnliche Probe	33
4.3.7	Vernetzung und Randbedingungen	35
4.4 Bet	rachtete unmittelbare Resultate	36
4.4.1	Reaktionskräfte und Energien	36
4.4.2	Spannungen und Verformungen dreidimensionaler Berechnungen	36
4.5 <i>J</i> -In	tegral	40
4.5.1	Ergebnisse zweidimensionaler Berechnungen	41
4.5.2	Ergebnisse dreidimensionaler Berechnungen	41
5 Experi	mente an unbestrahlten Proben zur Qualifizierung der Geometrie	
5.1 Vor	suchstochnik	/18
5.1 Vei	Drahonverhereitung: Dißeinbringung und Dißüberwachung	40
512	Probenvorbereitung. Kilseinbringung und Kilsuberwachung	40
513	Instrumentierung der Versuchsenlagen	
511	Auswertung der Versuche	
515	Kerbschlagarbeit und Bißzähigkeit	
5.2 Fra	ehnisse unbestrahlter, isothermer Versuche	
5.2 Lig	Parameterstudie zur Variation der Geometrie	
522	Quasistatische Prüfung von Normproben: ASTM-Dreinunkt-Biegeprobe	
523	Maßstäbliche Verkleinerung: Mini-3PB-Probe	74
524	Geometrisch nicht ähnliche Proben: KI ST-BM-Probe	
5.3 Ter	nperierte, dynamische Versuche und Übergangsverhalten	
531	Vergleich der Übergangstemperaturen der Schlagenergie	
532	Bruchmechanische Kennwerte	
6 Prüfun	g von bestrahlten Proben	89
6.1 Stra	ahlenschädigung von metallischen Materialien	89
6.1.1	Auswirkungen auf mechanische Kennwerte	89
6.1.2	Parameter der Bestrahlung	89
6.2 Me	chanische Prüfung	89
6.2.1	KLST-Proben	90
6.2.2	KLST-Bruchmechanik-Proben	90
6.2.3	Proben mit erodiertem Einschnitt	91
6.3 Bru	chmechanische Auswertung	91
6.3.1	Änderung des dynamischen J-Integrals	91
6.3.2	Direkte K-Ermittlung	93
6.3.3	Korrelation zwischen KLST- und KLST-BM-Proben	94

7	Zus	sammenführung von Experiment und Berechnung	96	
7.′	1	Ermittlung lokaler Werte für J-Integral und Rißverlängerung	96	
7	7.1.1	Rißverlängerung	96	
7	7.1.2	2 Lokales J-Integral	96	
7.2	2	Lokale <i>J-R</i> -Kurve		
7.3	3	Anwendung auf weitere Versuchsergebnisse	99	
7	7.3.1	KLST-BM-Proben aus MANET-II mit 700°C Anlaßwärmebehandlung	99	
7	7.3.2	EUROFER-Proben aus den Abschnitten 5.2.2.1 und 5.2.3.1	100	
7	7.3.3	B Einfluß der Probenmindestbreite	102	
8	Pro	bbenvorschlag und Versuchsdurchführung	103	
8.′	1	Geometrie	103	
8.2	2	Auswertemethode	103	
8.3	3	Konservativität	103	
9	Zus	sammenfassung und Ausblick	105	
10	Dai	nksagung	109	
11 Formelzeichen, Symbole und Abkürzungen 110				
12	Lite	eraturverzeichnis	112	
Anh	Anhang 119			

Abbildungen und Tabellen des Anhangs ist in der Numerierung ein "A" vorangestellt.

1 Einführung und Aufgabenstellung

Mit der Kernfusion verbindet sich die Hoffnung auf eine sichere, umweltverträgliche und dauerhafte Energiequelle zur Deckung des stetig steigenden Bedarfs an elektrischer Energie. Die hierfür notwendige Technik wird in weltweiter Kooperation seit rund 50 Jahren entwickelt. Aktuell steht mit dem Forschungsreaktor ITER erstmals eine Fusionsmaschine mit positiver Energiebilanz vor der Realisierung [1].

Im Plasma eines Fusionsreaktors werden die Wasserstoff-Isotope Deuterium und Tritium unter großer Energiefreisetzung verschmolzen. Der größte Teil dieser Energie ist an bei der Fusion freigesetzte Neutronen gebunden, die in der Ummantelung der Plasmakammer und der sie tragenden Struktur abgebremst werden. Diese hochenergetischen Neutronen bestimmen unter anderem durch die dabei eingebrachte Wärme die Materialbeanspruchung im Kraftwerk. Die eingesetzten sogenannten Strukturmaterialen sind neben ihrer Aktivierung Veränderungen wie Versprödung, Verfestigung, Schwellen und Kriechen unterworfen. Ziel der Materialentwicklung des Forschungszentrums Karlsruhe sind Werkstoffe, die bei ausreichenden mechanischen Eigenschaften zugleich hitzebeständig, wärmeleitfähig, widerstandsfähig gegen Korrosion und niedrig aktivierbar sind, und die diese Eigenschaften auch nach Neutronenbestrahlung wahren.

Bruchmechanische Charakterisierung von Strukturmaterialien für Fusionsreaktoren

Die Sicherheit technischer Anlagen und Komponenten wird durch das Zusammenwirken von Betriebsund Bauteileigenschaften bestimmt. Zu den Bauteileigenschaften zählen neben der Geometrie auch die Werkstoffeigenschaften, deren Veränderung nach Neutronenbelastung in Bestrahlungsexperimenten untersucht wird. Hierzu werden Werkstoffproben in einen Spaltungsreaktor eingeschlossen und nach einer definierten Strahlenbelastung in abgeschirmten Prüfzellen untersucht. In den letzten Jahren hat dabei die bruchmechanische Bewertung von Strukturmaterialen zunehmend an Bedeutung gewonnen.

Die Bruchmechanik geht von der Existenz von Fehlern im Werkstoff aus und ermittelt Kriterien für ein Versagen durch Werkstofftrennung. Neben der Abschätzung der Lebensdauer rißbehafteter Bauteile widmet sich die Bruchmechanik der experimentellen Ermittlung von Kennwerten, die in diese Berechnungen einfließen. Ein solcher bruchmechanischer Kennwert ist der kritische Spannungsintensitätsfaktor K_{IC} , welcher die zur Auslösung eines instabilen Bruchs führende Intensität der mechanischen Beanspruchung in Rißnähe bei ebenem Dehnungszustand angibt. K_{IC} ist ein Werkstoffkennwert, der mit Hilfe von Proben bestimmt werden kann, die über einen definierten Anriß verfügen.

Bedarf an miniaturisierter bruchmechanischer Probenform

Bruchmechanische Proben müssen bestimmten, in Normen festgelegten Kriterien genügen [2][3]. Dazu zählt eine Mindestgröße, da die ermittelten Kennwerte größenabhängig sind, sobald ein weitgehend ebener Verformungszustand vor der Rißspitze nicht mehr sichergestellt ist. In aller Regel verhalten sich kleinere Proben rißzäher als große Proben, was zu nichtkonservativen Ergebnissen führt [4].

Die Mindestgrößen normgerechter Proben sind jedoch nicht mit den räumlichen Gegebenheiten und der Motivation von Bestrahlungsexperimenten vereinbar. Dort ist es vordringlich, über ein geringes Probenvolumen eine möglichst große Anzahl von Proben im Bestrahlungsraum unterzubringen, um ihn bestmöglich für eine große Zahl von Ergebnissen auszunutzen. Des weiteren sind kleine Proben wegen ihrer geringeren Selbstaufheizung und ihrer niedrigeren aktiven Masse während der Bestrahlung und den nachfolgenden Untersuchungen vorteilhaft.

Aus der Literatur sind Experimente an nicht normgerechten Proben bekannt, ebenso gibt es zahlreiche theoretische Arbeiten zum Größeneinfluß auf den Spannungszustand und auf bruchmechanische Untersuchungen. Es existiert bislang jedoch keine miniaturisierte Bruchmechanik-Probe, die experimentell anhand von normentsprechenden Proben und rechnerisch durch begleitende Analysen des Spannungszustandes für verschiedene Materialien validiert wurde.

Vorgehen zur Entwicklung einer miniaturisierten bruchmechanischen Probe

Die vorliegende Arbeit soll einen Beitrag zur Gewinnung bruchmechanischer Kennwerte aus Bestrahlungsexperimenten leisten. Es wird eine Probe mit ihrer zugehörigen Auswertetechnik entwickelt, die trotz kleiner Abmessungen eine konservative Abschätzung der Rißzähigkeit erlaubt.

Der erste Teil der Arbeit gibt einen Überblick über den derzeitigen Stand der Erkenntnis. Hierbei werden die prinzipiellen Schwierigkeiten kleiner Proben, der Spannungszustand vor der Rißspitze und seine Beeinflussung durch Dehnungsbehinderungen, die Mechanismen der Rißausbreitung, der Einfluß der Probengröße auf bruchmechanische Kennwerte, bislang realisierte Geometriestudien und aktuelle Normierungsbestrebungen betrachtet. Daraus wird im anschließenden Kapitel der in dieser Arbeit beschrittene Weg zur Realisierung einer geeigneten Probe abgeleitet.

Die Geometrie der kleinen bruchmechanischen Probe wird im dritten Teil entwickelt. Verschiedene Strukturmaterialien werden charakterisiert und als Materialmodelle in Finite-Elemente-Berechnungen eingebunden. Dreidimensionale Simulationen von Experimenten an Dreipunkt-Biegeproben mit Mittenanriß liefern Aufschluß über den Spannungszustand vor der Rißspitze, die umgesetzten Verformungsenergien und das zu Riß und Belastung gehörige Rice'sche *J*-Integral [5]. Eine normgerechte normalgroße Probe, eine geometrisch ähnliche, auf bestrahlungskompatible Größe verkleinerte Probe und eine Probe ähnlicher Verkleinerung, aber veränderter Geometrie, werden untersucht. Für alle drei Grundformen wird durch geometrische Modifikation die Eignung künstlicher Dehnungsbehinderungen zum Erreichen eines weitgehend ebenen Verformungszustandes vor der Rißspitze untersucht. Die Gleichförmigkeit der Verteilung des *J*-Integrals entlang der Rißfront wird über einen neu eingeführten Parameter quantifiziert.

Im experimentellen Teil dieser Arbeit werden die technischen Voraussetzungen zur Vorbereitung, Prüfung und Auswertung von miniaturisierten Biegeproben geschaffen. Neben einer neuen Methode zur kontrollierten Anrißerzeugung wird die mechanische und regelungstechnische Ausrüstung einer vorhandenen Prüfmaschine für quasistatische Biegeversuche an großen und kleinen Proben vorgestellt. Für dynamische, temperierte Versuche an kleinen Proben wird ein automatisiertes Schlagpendel nutzbar gemacht, eine Erweiterung desselben für quasistatische Prüfung wird entworfen.

Im Rahmen der experimentellen Validierung kleiner Proben wird zunächst im Vergleich geometrisch ähnlicher Proben der Einfluß von Größe und geometrischer Modifikation auf die Raumtemperatur-Rißzähigkeit verschiedener Materialien untersucht. Davon ausgehend erfolgt ein Vergleich dieser geometrisch ähnlichen kleinen Proben mit solchen, deren charakteristische Hauptmaße von denen normgerechter Proben abweichen. Anhand dieser veränderten kleinen Proben wird die statische Prüfung in einer herkömmlichen Prüfanlage dem Test in einem Pendelschlagwerk gegenübergestellt.

Auf die so gewonnenen Erkenntnisse aufbauend werden mit modifizierten kleinen Proben temperierte dynamische Versuche durchgeführt, um neben dem Einfluß der Probengeometrie auf die Rißzähigkeit den spröd-duktilen Übergang zu untersuchen und eine mögliche Verschiebung der Übergangstemperatur einzuordnen. Hierzu wird neben der Referenztemperatur des Master-Curve-Ansatzes eine eigene Definition einer bruchmechanischen Übergangstemperatur vorgestellt und diese mit der Schlagarbeit-Übergangstemperatur von bruchmechanischen und Kerbschlagproben verschiedener Größen verglichen.

Die Anwendung der bis hierher entwickelten Methoden auf bestrahlte Proben wird im fünften Teil der Arbeit vorgestellt. Anhand von kleinen angerissenen Proben wird der Einfluß von Bestrahlung und Bestrahlungstemperatur auf die Rißzähigkeit und ihr Übergangsverhalten ermittelt, mögliche Korrelationen mit Kennwerten aus vereinfachten Proben und Auswertungen werden untersucht.

Im sechsten Teil wird unter Verwendung von Ergebnissen der Finite-Elemente-Berechnungen die Berechnung einer lokalen Rißwiderstandskurve eingeführt. Sie gestattet die Bestimmung der Bruchzähigkeit entsprechend den Empfehlungen der aktuellen Normen auch an zäh brechenden Kleinproben durch eine Auswertung des *J*-Integrals am Ort der maximalen Rißverlängerung der Probe. Eine Umrechnung des aus der äußeren Arbeit des Versuchs gewonnenen *J*-Wertes für die gesamte Probe in ein *J* für die an der Bruchfläche zu bestimmende maximale Rißverlängerung wird anhand einer aus den Simulationsrechnungen abgeleiteten Korrekturfunktion ermöglicht.

Im letzten Teil dieser Arbeit werden in kurzer Form eine geeignete Probe zur Bestimmung der Rißzähigkeit aus Bestrahlungsexperimenten vorgeschlagen und Hinweise zur geeigneten Auswertung gegeben. Eine Betrachtung zur Konservativität der gewonnenen Ergebnisse schließt diese Arbeit ab.

2 Stand der Erkenntnis

In diesem Abschnitt werden die Grundbegriffe zur Rißzähigkeit und zu ihrer experimentellen Ermittlung dargestellt. Die Notwendigkeit zur Miniaturisierung von Proben wird aufgezeigt und auf die damit verbundenen prinzipiellen Schwierigkeiten verwiesen. Der gegenwärtige Stand der Erkenntnis wird anhand von theoretischen und experimentellen Arbeiten zu den Aspekten Spannungszustand, Rißausbreitungsmechanismen, Größen- und Geometrieeinfluß und zu Versuchen der Korrelation von Kerbschlagversuchen mit bruchmechanichen Kennwerten wiedergegeben. Die Vorstellung der im Rahmen dieser Arbeit untersuchten Materialien schließt dieses Kapitel ab.

2.1 Ermittlung der Rißzähigkeit

Die Bruch- oder Rißzähigkeit eines Werkstoffes ist ein Werkstoffcharakteristikum, das über den Spannungsintensitätsfaktor *K* quantifiziert wird. Der Spannungsintensitätsfaktor *K* beschreibt allgemein die Intensität der mechanischen Beanspruchung in Rißnähe. Als kritischer Spannungsintensitätsfaktor kann er u.a. aus dem Biegeversuch gewonnen werden, wenn an einer mit einem Anriß versehenen Probe instabile Rißverlängerung einsetzt. Eine weitere zentrale Größe dieser Arbeit ist das von Rice formulierte *J*-Integral [5], ein Linienintegral zur Charakterisierung des Beanspruchungszustandes an der Rißspitze, siehe dazu Abschnitt 4.5 (Seite 40). Es kann, wenn eine direkte *K*-Bestimmung nicht möglich ist, als Energieausdruck aus der Arbeit eines Versuchs gewonnen und zur indirekten Bestimmung von *K* herangezogen werden.

2.1.1 Spannungsintensitätsfaktor K

Der Spannungsintensitätsfaktor *K* ist unabhängig von lokalen Koordinaten, da *K* keine Verteilung der Spannungen, sondern nur ihre Intensität beschreibt. Der hier näher betrachtete Faktor K_I ist der Spannungsintensitätsfaktor unter Modus-I-Belastung, der für eine unendlich ausgedehnte Scheibe mit Mittenanriß mit σ als nomineller Spannung wie folgt beschrieben werden kann:

$$K_I = \sigma \cdot \sqrt{\pi \cdot a} \qquad (1).$$

Unter Modus-I-Belastung wird die technisch wichtigste Art der Rißöffnung durch Auseinanderziehen der Rißufer verstanden. Bei Beanspruchung unter allen drei Moden kann die Spannungsintensität für ebenen Spannungs- (ESZ) oder ebenen Dehnungszustand (EDZ) kombiniert werden:

$$K = \sqrt{\left(K_{I}^{2} + K_{II}^{2}\right) + (1 + \nu)K_{III}^{2}}$$
(ESZ) (2 a)
$$K = \sqrt{\left(1 - \nu\right)^{2}\left(K_{I}^{2} + K_{II}^{2}\right) + (1 + \nu)K_{III}^{2}}$$
(EDZ) (2 b)

Beschreibungen für K_{II} und K_{III} können der Literatur entnommen werden.

Für die Spannung vor der Rißspitze in einer realen Probe kann in Erweiterung von (1)

$$K_{I} = \sigma \cdot \sqrt{\pi \cdot a} \cdot f * \quad (3)$$

geschrieben werden. Die Funktion f^* ist eine geometrieabhängige Korrekturfunktion für endliche Probenabmessungen der allgemeingültigen obigen Herleitung. Für viele Probenformen - wie z.B. für die normgerechte Dreipunkt-Biegeprobe - ist sie bestimmt und kann für die bessere Handhabbarkeit über *f* angegeben werden:

$$f^* = \frac{2(1 - a/W)^2}{3\sqrt{\pi \cdot a/W}} \cdot f \quad (4) \quad \text{somit}$$
$$K_I = \frac{F \cdot L}{B\sqrt{W^3}} \cdot f \quad (5)$$

$$f(a/W) = \frac{3(a/W)^{\frac{1}{2}} \cdot \left[1.99 - (a/W)(1 - a/W)(2.15 - 3.93a/W + 2.7a^2/W^2)\right]}{2(1 + 2a/W)(1 - a/W)^{\frac{3}{2}}}$$
(6)

2.1.1.1 Kritischer Spannungsintensitätsfaktor KIC

Die Rißzähigkeit K_{IC} ist zunächst definiert als der kritische Wert des Spannungsintensitätsfaktors K_I beim Einsetzen instabiler Rißverlängerung, unter Modus-I-Belastung und bei Vorliegen eines ebenen Dehnungszustandes. Bei Werkstoffen mit ansteigender Rißwiderstandskurve wird entsprechend der ASTM-Norm [2] ein Wert bei etwa 2% Rißverlängerung bestimmt.

2.1.1.2 Direkte experimentelle Ermittlung von K_{IC}

Experimentell wird bei der K_{IC} -Bestimmung eine Rißausbreitung um 2% der Ursprungslänge oder ein davor eintretendes Versagen der Probe ermittelt. Das Vorgehen dazu ist detailliert genormt [2]. Die Probe wird bis zu ihrer Maximallast beansprucht. Der dabei aufgezeichnete Meßschrieb dient zur Ermittlung einer Kraft F_Q , welche – bei erfüllten Gültigkeitskriterien – zur Errechnung von K_{IC} genutzt werden kann, siehe dazu Abbildung 1. Eine Sekante mit 95% der Steigung des linearen Belastungspfades wird in die Kraft-Verschiebungs-Kurve eingezeichnet. Je nachdem, welcher Fall zuerst eintritt, bestimmt sich F_Q aus dem Schnittpunkt dieser Sekante mit der Kurve, aus dem erstmaligen Einbrechen der Last oder aus dem Überschreiten des Kraftmaximums.

Abbildung 1: Ermittlung von K_{IC} aus der Kraft-Verschiebungs-Kurve [6]

Ein vorläufiger K-Wert K_Q wird mit Hilfe der geometrischen Korrekturfunktion berechnet:

$$K_{Q} = \frac{F_{Q} \cdot L}{B\sqrt{W^{3}}} \cdot f(a/W) \quad (7)$$

Werden alle Gültigkeitskriterien erfüllt, was sich erst nach dem Versuch feststellen läßt, darf K_Q als K_{IC} angenommen werden. Die wichtigsten Kriterien sind neben den Größenkriterien:

- gerade Rißfront, selbige unter 80 bis 100° zur Modus-I-Richtung
- Belastungsgeschwindigkeit 0,55 $\leq \dot{K} \leq 2,75 \text{ MNm}^{-3/2} \text{s}^{-1}$

$$-F_{max} \leq 1, 1 \cdot F_Q$$

2.1.2 J_{IC}-Ermittlung

Für Fälle, in denen die relativ strengen Kriterien für *K*-Versuche nicht erfüllt werden können, bietet sich die Möglichkeit einer indirekten Bestimmung von *K* über *J*, wobei hierbei sämtliche Proben zur *K*-Bestimmung und Modifikationen von diesen zulässig sind. Das *J*-Integral kann nach Rice mit der von Munz [7] diskutierten Beziehung aus der Arbeit des Biegeversuchs gewonnen werden. Der Versuch hierzu ist von der ASTM genormt [8], ebenso existiert ein DVM-Merkblatt mit entsprechenden Durchführungsbestimmungen [9]. Es gilt mit der Verformungsarbeit *U* zum Versuch:

$$J = \frac{2U}{B(W - a_0)} \quad (8)$$

Das kritische J-Integral bezeichnet im folgenden den Wert von J, bei dem Rißausbreitung einsetzt. Um eine *R*-Kurve, die die J-Werte über den verschiedenen zugehörigen Rißlängen darstellt, zu erhalten, kann man Mehr- oder Einprobenversuche durchführen. Beim Mehrprobenversuch werden mehrere Proben zu verschiedenen Rißverlängerungen hin belastet, was den Vorteil bietet, daß Anfang und Ende der Rißverlängerung meist eindeutig bestimmbar sind. Beim Einprobenversuch wird eine Probe während des Versuchs mehrfach entlastet, und ihre aktuelle Rißlänge kann aus der Nachgiebigkeit bestimmt werden. Dem Vorteil des geringen Probenbedarfs steht klar der Nachteil gegenüber, daß keine direkte Rißvermessung möglich ist. Zur Auswertung ist man auf einen zuvor für jede Paarung von Materialeigenschaften und Probengeometrie ermittelten Zusammenhang zwischen Rißlänge und Nachgiebigkeit angewiesen.

Zur Bestimmung von J_{IC} wird die *R*-Kurve (Abbildung 3) zusammen mit einer Geraden, welche die Aufwölbung der Rißspitze darstellt ("Blunting-Line"), gezeichnet. Zwei dazu um 0,15 und 1,50 mm parallel verschobene Geraden grenzen den Bereich derjenigen Meßpunkte ein, die zur Auswertung herangezogen werden.

Die ursprüngliche Ermittlung von J_{IC} sah die Bestimmung eines J_i -Wertes zum Zeitpunkt der Rißinitierung vor. Dieser wird als Schnittpunkt einer Ausgleichsgeraden aller gültigen Werte mit der Wölbungsgeraden gebildet und stellt den sogenannten "wahren" kritischen *J*-Wert dar.

In den neueren Fassungen der Normen [8][9] wird die Bestimmung eines $J_{0,2}$ -Wertes bei 0,2 mm Rißverlängerung vorgeschrieben. Dieser Wert ergibt sich aus der Potenzfunktion

$$J(\Delta a) = C \cdot \Delta a^{p} \quad (9)$$

die alle gültigen Werte nachbildet, und ihrem Schnittpunkt mit der um 0,2 mm verschobenen Wölbungsgeraden. Dieser Wert führt zu einem sicherer bestimmbaren "technischen" J_{IC} –Wert nach 0,2 mm stabiler Rißverlängerung, er liegt in aller Regel etwas höher als J_i .

 J_i bzw. $J_{0,2}$ bilden einen vorläufigen Wert J_Q , der bei Erfüllung aller Gültigkeitskriterien als J_{IC} übernommen werden kann. Bei der experimentellen Auswertung werden beide Methoden angewandt, wobei in diesem Kapitel hauptsächlich auf die J_i -Auswertung eingegangen wird. Die gewonnenen $J_{0,2}$ -Werte werden im Zusammenhang mit der Ermittlung der lokalen *J*-*R*-Kurve in Kapitel 7 ausführlicher behandelt.

2.1.2.1 Indirekte K-Ermittlung über J

Wenn J_{IC} im linear-elastischen und im plastischen Bereich gleiche Werte annimmt, lassen sich aus *J*-Werten, die an kleinen Proben im plastischen Bereich gewonnen wurden, gültige *K*-Werte ermitteln. Der Zusammenhang zwischen beiden Werten ist:

$$K_{IC} = \sqrt{\frac{J_{IC} \cdot E}{1 - v^2}}$$
 (10)

2.1.3 Größenbedingungen

Zur Ermittlung von *K*- und *J*-Werten müssen gemäß der ASTM-Vorgaben die Proben werkstoffabhängige Mindestgrößen aufweisen. Nach [2] gilt für den *K*-Versuch:

B, *W*-*a*, *a* > 2,5
$$\cdot \left(\frac{K_{IC}}{R_{eS}}\right)^2$$
 (11)

Für die J-Ermittlung gilt nach [8] das weniger eng gefaßte Kriterium:

B, W-a, >
$$25 \cdot \frac{J_{IC}}{\sigma_F}$$
 bzw. $25 \cdot \frac{K_{IC}^2 (1 - v^2)}{E \cdot \sigma_F}$ (12)

Von Munz und Keller wird auf experimentelle Arbeiten verwiesen, die gezeigt haben, daß insbesondere die Anforderungen an *K*-Versuche weniger eng gefaßt werden können [4]. Differenziert man die Anforderungen für die Probenbreite und die Restligamenthöhe, ergibt sich für duktile Risse unter den Maßgaben einer im Vergleich zur Ligamenthöhe kleinen plastischen Zone und einer ausreichend breiten Zone ebenen Dehnungszustandes in der Probenmitte:

$$W - a \ge \beta \cdot \left(\frac{K_{IC}}{\sigma_F}\right)^2 \quad \text{mit} \quad \beta = 0,4 \quad (13)$$
$$B \ge \alpha \cdot \frac{K_{IC}^2 \cdot (1 - \nu^2)}{E \cdot \sigma_F} \quad \text{mit} \quad 25 < \alpha < 50 \quad (14)$$

2.2 Schwierigkeiten kleiner bruchmechanischer Proben

Unterschiedliche Gründe zwingen zur Miniaturisierung von Proben. Zum einen sind die verfügbaren Volumina von Laborchargen zur Materialentwicklung knapp, und die Zahl der daraus herstellbaren Proben ist begrenzt. Bereits eine Halbierung der Probengröße kann durch die Volumenreduzierung zu einer Verachtfachung des Erkenntnisgewinns führen - vorausgesetzt, mit jeder der kleineren Proben kann die gleiche Anzahl gültiger Datenpunkte gewonnen werden. Abbildung 4 veranschaulicht dies durch Gegenüberstellung des gleichen Probenvolumens, gebildet aus einer Dreipunkt-Biegeprobe mit 9x18 mm² Querschnitt und 27 geometrisch ähnlichen Proben mit 3x6 mm² Querschnitt.

Zum anderen können kleinere Proben aus für große Proben nicht verwendbaren Halbzeugen, z.B. dünn gewalzten Blechen, hergestellt werden. Darüber hinaus können sie aus Hälften bereits geprüfter Proben gewonnen oder aus im Betrieb gelaufenen Komponenten entnommen werden.

Besonders für Bestrahlungsuntersuchungen sind kleine Proben von Vorteil, da sie weniger Volumen im sehr teuren Bestrahlungsraum beanspruchen. So liegen z.B. die Bestrahlungskosten für eine 3x4x27 mm³ große Kerbschlagprobe für eine Schädigung von ca. 15 dpa in einem Hochflußreaktor bei derzeit etwa 10.000 € Außerdem ist der Bestrahlungsraum insbesondere in neueren oder zukünftigen Strahlenquellen wie z.B. IFMIF

Abbildung 4: Biegeproben verschiedener Größe (B = 3 / 9 mm)

stark beschränkt, so daß herkömmliche Probengeometrien von vornherein inkompatibel sind.

Zusätzlich besteht das Problem der Aufheizung der Proben durch Neutronen und γ -Strahlen im Bestrahlungsraum. Hierbei erhitzen sich metallische Gegenstände über ihr ganzes Volumen, können aber nur an der Oberfläche über das flüssige oder gasförmige Kühlmedium gekühlt werden. Die hieraus resultierende Temperaturinhomogenität tritt mit zunehmender Probengröße immer stärker hervor und verbietet es in vielen Fällen, von einer gleichmäßigen Temperaturverteilung z.B. über die

Bruchzone auszugehen. Da aber gerade die Bestrahlungstemperatur einen ähnlich starken Einfluß auf die Materialschädigung hat wie die Dosis selbst, ist aus inhomogen temperierten Proben kein gültiger Kennwert zu ermitteln.

Neben diesen Vorteilen weisen kleinere Proben ebenso unbestreitbare Nachteile auf. Sie genügen nicht den gängigen Normen bzw. den in entsprechenden Normen genannten Größenbedingungen. Entsprechend sind ihre Kennwerte nicht direkt mit denen von Normproben vergleichbar. Zum Beispiel liegt die Schlagenergie von kleinen Kerbschlagproben (sogenannten KLST-Proben, 3x4x27 mm³) naturgemäß in völlig anderen Regionen als die von herkömmlichen Kerbschlagproben (ISO-V-Proben, 10x10x55 mm³) und ist nicht direkt in diese umrechenbar. Ebenso verhält sich die spröd-duktile Übergangstemperatur für diese Proben unterschiedlich, wie von Kaspar und Faul [10] und im experimentellen Teil dieser Arbeit für die hier untersuchten Legierungen gezeigt wird.

Prinzipielle Schwierigkeiten treten dort auf, wo durch die Verwendung von untergrößigen Proben nichtkonservative Ergebnisse zu erwarten sind. So existieren in der Bruchmechanik Größenbedingungen, zum Beispiel für die Ermittlung der Modus-I-Bruchzähigkeitswerte K_{IC} und J_{IC} .

Die Größenbedingungen für K_{IC} und J_{IC} tragen der Tatsache Rechnung, daß am Rand der Probe kein reiner ebener Dehnungszustand vorliegt, wie er für eine korrekte Ermittlung dieser Kennwerte notwendig ist, sondern ein dreiachsiger Dehnungszustand mit Versagen entlang der Hauptschubspannungs-Richtung. Dieser Bereich ist als Scherbruchbereich deutlich in der Probe zu erkennen und trägt zu einer Überschätzung der Werkstoffzähigkeit bei, weil die kritische Kraft zu K_{IC} bzw. die Energie zur Rißverlängerung (J_{IC}) experimentell höher ermittelt wird, als es dem reinen Modus-I Fall entsprechen würde. Je schmaler die Probe ist, desto größer wird der Anteil des Scherbruchs an der Gesamtbruchfläche und somit an der ermittelten Kraft bzw. Arbeit.

Weitere Schwierigkeiten liegen z.B. in der Meßgenauigkeit herabgesetzten durch verminderte Kräfte, die nur einen geringeren Teil des Meßbereichs vorhandener Prüfanlagen z.B. in radioaktiven Prüfzellen ausnutzen. Die bei kleinen Proben zunehmende Bedeutung von mechanischen Verlusten und Meßungenauigkeiten führen beim Kerbschlagversuch z.B. nach Lont in aller Regel zu einer Überschätzung der Schlagenergie [11]. Die Positioniergenauigkeit nimmt ab, was besonders bei Dreipunkt-Biegeproben ein Problem darstellt, da bei diesen die Krafteinleitung genau aegenüber der

Abbildung 5: Zunahme des Scherbruchanteils und Auswirkung auf den *K*-Wert [6]

Rißspitze erfolgen muß. Die Handhabbarkeit kleinerer Proben wird besonders beim Gebrauch von Manipulatoren in abgeschlossenen Prüfeinheiten deutlich schlechter, wobei dazu ihre Empfindlichkeit gegen mechanische Beschädigung zunimmt. Eine weitestmögliche Benutzung automatisierter Transport- und Positioniersysteme ist hier angeraten. Die Vermessung der Bruchfläche muß ebenfalls mit genauerer Auflösung erfolgen, um eine gleich gute Beurteilung der Anfangsrißlänge wie bei der größeren Probe zu gewährleisten.

Von Vorteil sind kleine Probenabmessungen eindeutig bei der Lagerhaltung aktivierter Proben, da sie eine wesentlich geringere aktive Masse darstellen. Ebenso können sie aufgrund der geringeren erforderlichen Abschirmung leichter zu fraktographischen Untersuchungen verbracht werden – wo sie oft als Ganzes in das Mikroskop eingebracht werden können und nicht zuvor zerlegt werden müssen.

Zahlreiche Arbeiten theoretischer und experimenteller Natur befassen sich mit dem Einfluß der Miniaturisierung von Proben. Da die Problematik nicht übertragbarer Kennwerte sowohl für bruchmechanische Versuche mit angerissenen Biegeproben als auch für Kerbschlagversuche viele gemeinsame Fragen aufwirft, werden im folgenden Beiträge zu beiden Gebieten behandelt. Die Übergangstemperaturen für bruchmechanische Kennwerte und für die Kerbschlagarbeit unterscheiden sich zwar in ihrer absoluten Lage auf der Temperaturskala, aber ihr Verhalten ist dennoch ähnlich, wie in dieser Arbeit gezeigt wird. Die Schlagenergie kann beim Kerbschlagversuch an angerissenen Proben zur Ermittlung einer dynamischen Rißzähigkeit verwendet werden.

2.3 Spannungszustand und Dehnungsbehinderung

Wird ein Bauteil mit Riß im Modus-I - den Riß öffnend - belastet, so bedingt die Spannungskonzentration an der Rißspitze dort einen mehrachsigen Spannungszustand. Dieser ist am Rand der Probe naturgemäß zweiachsig (bei dreiachsiger Dehnung) und im Inneren der Probe dreiachsig, wobei die dort zusätzlich auftretende Spannung in *z*-Richtung eine dreiachsige Verformung behindert und zu einem ebenen Dehnungszustand führt. Diese örtliche Dehnungsbehinderung, auch in der deutschsprachigen Literatur als "Constraint" bezeichnet, behindert plastische Verformungen und begünstigt Spaltbrüche. Diese Dehnungsbehinderungen führen u. a. dazu, daß Spannungskomponenten an der Rißspitze die Streckgrenze übersteigen können. Gegenüber einem nichtebenen Dehnungszustand wie er bei Bruchformen, wie sie in der linken Hälfte von Abbildung 5 dargestellt sind, vorherrscht werden der kritische Spannungsintensitätsfaktor K_c und auch das zu einem Spaltbruch notwendige *J*-Integral herabgesetzt.

2.3.1 Quantifizierung der Dehnungsbehinderung

Es gibt verschiedene Parameter zur Quantifizierung der Dehnungsbehinderung, zum Beispiel den von Shih et al. vorgeschlagenen Parameter Q für den elastisch-plastischen Bereich [12] oder die von Hancock et al. vorgestellten *T*-Spannungen für das elastische Feld [13]. Q ist ein Maß für die Dreiachsigkeit des Spannungszustandes in der Nähe der Rißspitze, bezogen auf einen Referenzzustand, und wird über die Differenz der Umfangsspannung um die Zone der plastischen Deformation und der der Hutchinson-Rice-Rosengren-Singularität (siehe dazu Anhang Seite 120) geschuldeten Spannungskomponente berechnet. Diese Berechnungen bedürfen stets einer detaillierten, nichtlinearen dreidimensionalen Spannungsanalyse.

$$Q = \frac{\sigma_{gg} - (\sigma_{gg})_{HRR}}{\sigma_0} \quad \text{(in Polarkoordinaten)} \quad (15)$$

Die *T*-Spannungen sind Teil des elastischen Spannungsfeldes an der Rißspitze und ergänzen K in der Beschreibung des Rißspitzenfeldes, wobei sie einer Spannung parallel zu den Rißflanken entsprechen. Die Schwierigkeit des Parameters T liegt darin, daß er sich nicht ohne weiteres in die linear-elastische Bruchmechanik übertragen läßt.

$$\sigma_{ij} = \frac{K}{\sqrt{2\pi r}} f_{ij}(\mathcal{G}) + T_{ij}\delta_{i1}\delta_{1j} \quad (16)$$

Schindler stellt ein Konzept vor, das unter Verwendung eines Parameters γ_{mT} die Dehnungsbehinderungen an der Rißspitze einordnet [14]. Dabei ist dieser Parameter einfacher zu bestimmen als Q und liefert einen direkt anwendbaren Zusammenhang zwischen den Dehnungsbehinderungen und bruchmechanischen Kennwerten. γ_{mT} stellt eine von T [13] und dem Parameter m abhängige Variante des Faktors $\gamma = \sigma_{y \max} / R_m$ dar, siehe Abbildung 6 (γ beschreibt die Überhöhung der y-Spannung über die Zugfestigkeit).

$$J_{Ri\beta initiariung} = const. \cdot m \cdot \left(exp \left[\frac{Z}{\gamma_{mT} \cdot (1-Z)} \right] - 1 \right) \quad (17)$$

Der von Rice [15] gegebene Zusammenhang von Rißspitzenöffnung δ und *J*-Integral

$$J = m \cdot R_{eS} \cdot \delta \quad (18)$$

bestimmt *m*. Schindler zeigt, angewandt auf verschiedene Proben, eine befriedigende Übereinstimmung seiner Berechnungen mit aus der Literatur entnommenen Experimenten.

Abbildung 6: Rißspitze und Spannung, nach Schindler [14]

2.4 Mechanismen der Rißausbreitung

Für Betrachtungen zur Übertragbarkeit bruchmechanischer Kennwerte von kleinen auf große Proben ist es wichtig, sich über die Mechanismen, die zur Ausbreitung eines Risses führen, klarzuwerden. Im spröden Bereich bildet sich dort ein Spaltbruch durch Werkstofftrennung aus, wo die Spannung an bzw. vor der Rißspitze die deutlich über der Zugfestigkeit liegende Spaltbruchspannung übersteigt, s. Abbildung 6. Je größer die Differenz von Spaltbruchspannung und Zugfestigkeit ist, desto größer wird die ermittelte Rißzähigkeit sein. Im duktilen Materialzustand erfolgt die Materialtrennung zuerst an Einschlüssen oder Ausscheidungen, die umgebenden Materialbereiche werden zunächst gedehnt. Erst wenn ihre kritische Dehnung überschritten ist, findet ein Rißwachstum von der Rißspitze zu diesen Fehlstellen statt. Die ermittelte Rißzähigkeit ist um so höher, je weniger Fehlstellen es gibt, je kleiner sie sind, und je gleichmäßiger ihre Verteilung ist.

Für diese beiden Versagensarten sind unterschiedliche Eigenschaften der Mikrostruktur des Werkstoffes verantwortlich, es tritt stets das Versagen ein, dessen Versagensspannung im aktuellen Fall kleiner ist. Durch unterschiedliche Randbedingungen und insbesondere Dehnungsbehinderungen kann derselbe Werkstoff unter gleichen Temperaturbedingungen in einer Probenform durch Spaltbruch und in einer anderen Probenform durch duktilen Bruch versagen. Außerdem müssen zwei Werkstoffe mit unterschiedlichen bruchmechanischen Kennwerten im duktilen Bereich nicht zwangsläufig im spröden Bereich Kennwerte in derselben Reihenfolge aufweisen. Im spröd-duktilen Übergang ist für größere Proben Versagen mit wenig oder ganz ohne stabile Rißverlängerung zu finden, wo kleinere Proben ausschließlich duktiles Rißwachstum zeigen.

Abbildung 7: K_{max} und K_{0,1} nach [4]

Munz und Keller [4] berichten über Versuche im

spröd-duktilen Übergangsbereich an glatten Kompaktzugproben (sog. CT-Proben) mit W = 50 mm, einer relativen Rißlänge von 0,6 und Breiten von 3 bis 25 mm. Es zeigt sich, daß beim Unterschreiten einer kritischen Probenbreite die Rißausbreitung von spontanem Spaltbruch zum vorgelagerten duktilen Bruch wechselt. In Abbildung 7 werden zwei mögliche, konkurrierende kritische

Spannungsintensitätsfaktoren aufgeführt: K_{max} als maximaler *K*-Wert bei Spaltbruch im Kraftmaximum (plötzliches Einbrechen der Last) und ferner für die Ausbildung eines zähen Grübchenbruchs vor dem Spaltbruch der zu 0,1 mm Rißverlängerung gehörige $K_{0,1}$ -Wert. Bei tieferen Temperaturen (T_1) versagen Proben oberhalb einer bestimmten Größe $B_1 = B_{min}$ nach K_{max} . Unterhalb von B_{min} nimmt K_{max} aufgrund des veränderten Spannungszustandes mit verringerter Dreiachsigkeit so lange größere Werte an, bis der $K_{0,1}$ -Wert zuerst erreicht wird. Die stabile Rißausbreitung ist weniger abhängig von solchen (Quer-) Dehnungsbehinderungen als die instabile Rißausbreitung und steigt erst bei wesentlich kleineren Breiten $B_2 < B_1$ an. Bei höheren Temperaturen (T_2) liegt der K_{max} -Wert über dem $K_{0,1}$ -Wert, so daß letzterer immer zuerst erreicht wird und stabile Rißausbreitung einsetzt.

Neale [16] wertet bruchmechanische Versuche an CT-Proben aus ferritischem Stahl (Euro fracture toughness dataset) aus und kommt zu dem Schluß, daß die J- Δa -Kurve (und damit der daraus abgeleitete *K*-Wert) unabhängig von der Probengröße ist. Ebenso variieren die Übergangstemperaturen T_{100} und T_{200} , die durch J = 100 N/mm bzw. 200 N/mm bestimmt werden, um maximal 12° C für Probenbreiten von 25 bis 200 mm. Es ist anzunehmen, daß eine Ergänzung der Versuche um schmalere Proben dennoch zu einem deutlichen Größeneffekt führen wird, da die kritische Breite für einen Wechsel des Bruchmechanismus von den ausgewerteten Proben nicht unterschritten wird. Die Mindestbreite für bruchmechanische Proben des entsprechenden Werkstoffes entspräche nach der ASTM-Empfehlung [8] ca. 10 mm.

2.5 Einfluß der Probengröße auf Kennwerte

2.5.1 Größenabhängigkeit der Kerbschlagarbeit

Kaspar und Faul stellen Kerbschlagexperimente mit KLST-Kleinproben im Vergleich mit ISO-V-Proben an verschiedenen Materialien vor, anhand derer sie verschiedene Korrelationen für Hochlageenergie *USE* und Übergangstemperatur *DBTT* überprüfen [10]. Nach ihren Auswertungen kann die Hochlageenergie mit Hilfe eines von Corwin et al. vorgeschlagenen Normierungsfaktors *NF* am besten umgerechnet werden. Dieser Normierungsfaktor kann als Rißvolumen unter der Kerbe angesehen werden, ist unabhängig von der Kerbschärfe und bestimmt sich nach Corwin et al. [17] zu

$$NF = (B \cdot (W - a))^{\frac{3}{2}}$$
. (19)

Die auf ein Volumen bezogene Energie wird dann mit

$$USE_n = USE/NF$$
 USE_n in J/cm³ (20)

unabhängig von der Probengröße, wobei die Form der Kerbe und der Widerlagerabstand hierbei unberücksichtigt bleiben. Weitere Normierungsfaktoren, die auch einen modifizierten, dimensionslosen plastischen Spannungsintensitätsfaktor K_t an der Kerbe und den Widerlagerabstand berücksichtigen, werden u. a. von Louden et al. [18] und von Schubert et al. [19] angegeben, können aber nicht so gute Ergebnisse wie die reine Berücksichtigung des Rißvolumens liefern:

$$NF' = B \cdot (W - a)^2 / (K'_t \cdot L)$$
 mit $USE_n = USE/NF'$ und USE_n in J/cm² (21)

Die von Corwin herangezogenen miniaturisierten Proben besitzen die Abmessungen 5x5x25,4 mm³ mit 0,76 mm Kerbtiefe und sind damit geringfügig größer als die KLST-Probe. Sowohl die Versuche von Kaspar als auch die von Corwin liefern gute Resultate für die Umrechnung der *USE*. Während Corwin sechs ähnliche 12% Cr-Legierungen für Fusionsanwendungen untersucht hat, hat Kaspar unterschiedliche Materialien mit einer breiten Variation von Hochlageenergie und Übergangstemperatur verwendet. Die Schwierigkeit dieser Vergleiche liegt in der Beschränktheit der Anzahl der untersuchten Probengrößen und in der Tatsache, daß stets mehrere Parameter gleichzeitig verändert werden; eine systematische Untersuchung der Variation von Probenbreite und Probenhöhe bei ansonsten gleichen Bedingungen fehlt.

2.5.2 Übergangstemperatur beim Kerbschlagversuch

Die im folgenden angegebenen Übergangstemperaturen beziehen sich sämtlich auf die Testtemperatur, die die Hälfte der Hochlageenergie liefert. Andere Definitionen, die sich auf feste Energiewerte berufen, sind für einen Größenvergleich nicht praktikabel. Allgemein verringern sich Übergangstemperaturen mit sinkender Probengröße, da mit abnehmender Probenbreite die Bereiche des Probenquerschnitts, in denen ebene Spannungszustände vorherrschen (welche duktile Brüche begünstigen), zunehmen, während in größeren Proben der ebene Dehnungszustand dominiert. Von Corwin et al. [17] werden diesbezüglich um etwa 20°C niedrigere Temperaturen für den Wechsel von 10x10 mm²-Proben zu 5x5 mm² angegeben, eine Korrelation zur Rückrechnung auf Normproben wird nicht angegeben. Kayano et al. [20] geben eine Beziehung an, mit der die Übergangstemperatur von kleinen Proben in diejenige von ISO-V-Proben umgerechnet werden kann. Hierbei ist Q ein von Schubert et al. [19] vorgestellter Faktor, der die plastischen Randbedingungen über den Kerbwinkel ϑ (siehe Abbildung 16, Seite 28) der Probe definiert, und K_t ist der elastische Spannungsintensitätsfaktor der jeweiligen Probengeometrie:

 $\left[DBTT/(K_{t}Q)^{\frac{1}{2}}\right]_{ISO-V} = \left[DBTT/(K_{t}Q)^{\frac{1}{2}}\right]_{klein} \quad DBTT \text{ in } \mathsf{K} \quad Q = 1 + 0.5 \cdot (\pi - 9) \quad \mathcal{G} \text{ in rad} \quad (22)$

Eine Anwendung dieser Beziehung auf eigene experimentelle Daten durch Kaspar und Faul [10] lieferte eine um ca. 30°C zu niedrig geschätzte *DBTT* für entsprechende Normproben. Sie schlagen deshalb eine lineare Korrelation in Form einer aus experimentellen Daten abgeleiteten Geradengleichung vor. Diese dürfte aber nur für die beiden betrachteten Probengrößen Bestand haben , während die Darstellung von Kayano et al. [20] zunächst allgemeingültig ist:

 $DBTT_{ISO-V} = 1,169 \cdot DBTT_{klein} + 61,35^{\circ}C \quad DBTT \text{ in }^{\circ}C \quad (23)$

2.5.3 Bruchmechanische Kennwerte

Bruchmechanische Versuche können z.B. mit Dreipunkt-Biegeproben unter vergleichbaren Bedingungen durchgeführt werden wie Kerbschlagversuche. Der instrumentierte Kerbschlagversuch kann als Brücke zwischen dem klassischen Kerbschlagversuch und dem Bruchmechanik-Versuch angesehen werden - wobei er letzteren ergänzt, aber nicht ersetzt, da die Verbindung zwischen beiden immer noch auf empirisch basierten Annahmen fußt, wie Östberg schreibt [21].

Keller setzt sich mit der an Kleinproben ermittelten Rißzähigkeit bei spröd-duktilem Werkstoffverhalten auseinander [22]. Dazu wurden an den Stählen 42CrMo4 und StE 460 bei verschiedenen Temperaturen Experimente an **CT-Proben** unterschiedlicher Breite von 5 bis 70 mm durchgeführt. Es zeigte sich eine deutliche Abhängigkeit des Rißmechanismus und bruchmechanischer Kennwerte von der Probengeometrie. Tendenziell zeigen kleinere Proben eine Neigung zum stabilen Rißfortschritt und zu höheren J-Werten als große Proben, die eher mit Spaltbruch versagen (offene Symbole in Abbildung 8). Eine Vorhersage der Versagensbedingungen für breitere Proben ist nur dann möglich, wenn auch bei

Abbildung 8: Kritischer *J*-Wert und Probenbreite nach [22]; Spaltbruch durch offene, duktiler Bruch durch gefüllte Symbole bezeichnet

ihnen vor dem Spaltbruch eine stabile Rißverlängerung von ca. 100 μ m auftritt. Eine konservative Abschätzung der Versagenslast von größeren Proben gelingt Keller bei 20°C unter Verwendung kleiner Proben mit der Bestimmung des Kennwertes für die einsetzende Rißverlängerung J_i gemäß DVM [9]. Bei tieferen Temperaturen ist allerdings immer noch mit einem Versagen von größeren Proben unterhalb des Kennwertes J_i zu rechnen.

Statistische Vorstellungen wie z.B. das von Landes und Schaffer vorgestellte Weakest-Link-Modell sprechen für eine Nichtkonservativität kleinerer Proben [23]. Dabei wird davon ausgegangen, daß die Rißzähigkeit entlang der Rißfront inhomogen ist und eine Rißentstehung an der schwächsten Stelle ("Weakest Link") stattfindet. Mit zunehmender Probengröße nimmt die Wahrscheinlichkeit eines Versagens zu und läßt sich über eine Verteilungsfunktion beschreiben. Ehl hat in seiner Arbeit [24] das Weakest-Link-Modell auf verschiedene Probengrößen an CT-Proben angewandt und dort eine experimentelle Bestätigung der vorhergesagten Sprödbruchwahrscheinlichkeiten gefunden, wo die Proben das Größenkriterium nach ASTM [8] erfüllten. Wo sie diesem Größenkriterium nicht genügen, kann das Weakest-Link-Modell allerdings nur eine qualitativ richtige Aussage treffen und den ebenen Spannungszustand am Probenrand nicht ausreichend berücksichtigen.

Umfangreiche Arbeiten zu den Größen- und Streuungseffekten bei der Verwendung kleiner Proben für bruchmechanische Fragestellungen stammen von Wallin. Er vertritt nach Auswertung zahlreicher Ergebnisse verschiedener Experimentatoren die Auffassung, daß die meisten beobachteten Größeneffekte auf ungültige Versuche zurückzuführen sind [25]. Für zähe Bruchformen treten Größeneffekte durch Verringerung der Dehnungsbehinderung erst dann auf, wenn die Größenbedingung

Abbildung 9: Experimentelle Abhängigkeit von K aus J von bezogener Probenbreite $B \cdot R_{eS} / J_{IC}$ [25]

$$B > \alpha \cdot (J_{IC}/R_{eS})$$
 mit in aller Regel $\alpha > 25$ (24)

nicht mehr erfüllt ist (Abbildung 9). Bei Spaltbrüchen sind die Dickeneffekte hauptsächlich durch die Weakest-Link-Theorie zu erklären. Der Vergleich verschiedener Breitenkorrekturen von Irwin [26], Hagiwara [27] und einer von Wallin selbst abgeleiteten Formel zeigt, daß für verschiedene Datensätze - auch für diejenigen, anhand derer die Korrekturen entwickelt wurden - der vergleichsweise einfache Ansatz von Wallin die besten Ergebnisse zeigt.

Irwin:

Hagiwara:

$$K_{IC} = K_{IC\infty} \sqrt{1 + \frac{1.4}{B^2} \left(\frac{K_{IC\infty}}{\sigma_F}\right)^4} \quad (25)$$
$$K_{IC\infty} = K_{IC} \sqrt{1 + \frac{2.3}{\sqrt{B}} \left(\frac{K_{IC}}{\sigma_F}\right)} \quad (26)$$

Wallin

 $K_{IC\infty}$:

:	$K_{IC1} = K_{IC2} \cdot \left(\frac{B_2}{B_1}\right)^{\frac{1}{4}}$	(27)
	Rißzähigkeit bei unendl	icher Breite

Rißzähigkeit bei Breite B1,2 K_{IC12} :

 K_{IC}

Der Einfluß der Probenbreite auf die K_{IC}-Übergangstemperatur kann ebenfalls unter Zuhilfenahme der Wallinschen Korrektur und eines exponentiellen Temperaturansatzes abgeschätzt werden, allerdings ist hierfür die Bestimmung dreier Materialparameter notwendig.

2.5.4 Bruchmechanische Übergangstemperaturen

Wallin hat zahlreiche theoretische und experimentelle Arbeiten veröffentlicht, die sich mit der Korrelation von Kerbschlagversuch und J-Integral-Auswertung befassen. Von Valo et al. [28] werden instrumentierte Experimente an bestrahlten Proben vorgestellt. Die verwendeten Probenformen sind ISO-V-Charpy-Proben (10x10x55 mm³) und ebensogroße Dreipunkt-Biegeproben, die mit je 10% Seitenkerbung eine Nettobreite von 8 mm aufweisen und statisch geprüft wurden. Wallin findet für diese Proben bei einer Definition der Übergangstemperaturen, die an einen fixen Wert gekoppelt ist (28 J bzw. 100 MPa·m^{-0,5}), eine Unterschätzung des Temperaturanstiegs für die bruchmechanische Übergangstemperatur aus Kerbschlagversuchen.

2.5.5 Einfluß von Seitenkerben

Wochinz und Schneeweiß [29] untersuchen den Einfluß der Kerbgestaltung auf die Übergangstemperatur im Kerbschlagversuch. Es wurden 10x10x55 mm³-Proben mit unterschiedlichen Hauptkerben und sowohl mit als auch ohne Seitenkerben geprüft. Die Hauptkerben besaßen dabei Radien von 0 (Anriß) bis 30 mm, die Seitenkerben einen Radius von 0,25 mm und eine Tiefe von 12,5% der Breite *B*. Dabei zeigte sich, daß Seitenkerben generell die Kerbschlagarbeit verringern, und zwar um so stärker, je größer der Hauptkerbradius ist. Bei den großen Kerbradien liegt der Bruchursprung unter dem Kerbgrund der Seitenkerben und scheint mit zunehmendem Kerbradius der Hauptkerbe mehr und

Abbildung 10: Einfluß der Seitenkerbung nach [29] für ISO-V-Proben mit unterschiedlichem Radius der Hauptkerbe

mehr das Bruchgeschehen zu bestimmen. Allgemein verschiebt eine Seitenkerbung die Übergangstemperatur zu höheren Temperaturen, und zwar um so stärker, je größer der Radius der Hauptkerbe ist. Die Verschiebung von Übergangstemperatur und Hochlageenergie gegenüber der glatten Probe ist in Abbildung 10 dargestellt.

2.6 Korrelation von Kerbschlagarbeit und Rißzähigkeit

Zur Korrelation von Kerbschlag- und *J*- oder *K*-Versuch für Bewertungsvorschriften existieren verschiedene Ansätze, über die Zerbst und Langenberg einen Überblick geben [30]. Ein Beispiel ist die Umrechnung der Übergangstemperaturen ("Sanz-Korrelation"), wie sie im EUROCODE für den Stahlbau verwendet wird [31]. Hierbei wird ein linearer Zusammenhang zwischen der Temperatur mit einem Schlagenergiewert von 27 J (T_{27}) und der charakteristischen Temperatur der Master-Curve für die Rißzähigkeit¹ (T_0) [32] hergestellt.

Schindler hat über viele Jahre hinweg ausführliche theoretische und praktische Arbeiten zur Rißzähigkeitsermittlung an untergrößigen Biegeproben durchgeführt. So stellt er ein Verfahren zur Abschätzung der Rißzähigkeit aus der Kerbschlagarbeit vor [33][34]. Hierfür werden neben den Zusammenhängen zwischen der Brucharbeit einer angerissenen Probe und der Rißzähigkeit die entsprechenden Korrekturen für die Verwendung kurzer, ausgerundeter Kerben und standardisierter Kerbschlagproben vorgestellt. In der Hochlage läßt sich eine *J-R*-Kurve aus der Schlagenergie konstruieren, indem für den Zusammenhang

$$J(\Delta a) = C \cdot \Delta a^{p} \quad (9),$$

die Parameter C und p aus material- und geometriebestimmten Größen errechnet werden. Die dafür aus dem Versuch benötigten Parameter sind neben der genauen Geometrie der Probe und der Anrißlänge:

E_m Energie bis zum Kraftmaximum

Gesamtenergie des Versuches

B_n Probennettobreite

Hieraus berechnen sich die Faktoren C und p

 E_t

¹ Bei T_0 beträgt der K_1 -Wert einer 25 mm breiten CT-Probe gerade 100 MPam^{1/2}

$$C = \left(\frac{2}{p}\right)^{p} \cdot \frac{\eta}{B_{n} \cdot (W - a_{o})^{1+p}} \cdot E_{t}^{p} \cdot E_{m}^{1-p} \quad (28) \quad \text{und} \quad p = \left(1 + \frac{E_{m}}{2E_{t}}\right)^{-1} \quad (29)$$

Aus der Probengeometrie gewinnt man den von Nevalainen und Wallin vorgestellten Faktor η , der je nach relativer Rißtiefe durch zwei verschiedene Formeln beschrieben wird und für tiefe Risse sich dem Wert 2 annähert [35].

$$\eta = 13,81 \cdot \frac{a}{W} - 25,12 \cdot \left(\frac{a}{W}\right)^2 \qquad (30 \text{ a}) \quad \text{für } 0 < a/W < 0,275$$
$$\eta = 1,859 + \frac{0,03}{1 - a/W} \qquad (30 \text{ b}) \quad \text{für } a/W \ge 0,275$$

Der Ansatz wird weiterführend von Schindler mit einigen Annahmen so weit vereinfacht [36], daß die Kerbschlagarbeit des uninstrumentierten Versuchs eine ausreichende Information darstellt, um zusammen mit den Faktoren η und κ (einer Korrekturfunktion für das Spannungsfeld an kurzen Rissen [36]) p und C berechnen zu können:

$$C = \left(\frac{2}{p}\right)^{p} \cdot \frac{\eta(a_{0})}{\kappa(a_{0}/W) \cdot B \cdot (W - a_{0})^{1+p}} \cdot E_{t} \cdot A_{g}^{1-p} \quad (31) \quad \text{und} \quad p = \frac{3}{4} \cdot \left(1 + A_{g}\right)^{-1} \quad (32)$$

A_g Gleichmaßdehnung des Werkstoffs

$$\kappa(a_0/W) = 1 + 9 \cdot \left(0, 5 - \frac{a_0}{W}\right)^2$$
 (33 a) für $a_0 < 0, 5W$

$$\kappa(a_0/W) = 1$$
 (33 b) für $a_0 > 0, 5W$

Bei instrumentierten Versuchen erleichtert jedoch die Kenntnis von charakteristischen Punkten auf der Kraft-Verformungs-Kurve die Berechnung der *J*-*R*-Kurve und führt zu einer geringeren Konservativität der Parameter p und C.

Der Nichtkonservativität kleinerer Proben durch das steilere Ansteigen der *J*-*R*-Kurve kann begegnet werden, indem anstatt des charakteristischen Wertes $J_{0,2Bl}$, der den Schnittpunkt mit der um 0,2 mm verschobenen Blunting-Line beschreibt, der Wert $J_{0,2t}$ verwendet wird. Dieser ist konservativer und läßt sich gemäß Abbildung 11 mit 0,2 mm Rißwachstum ab dem Schneiden der *J*-*R*-Kurve durch die Blunting-Line definieren.

Für den spröd-duktilen Bereich wird In Abwandlung von (9) ein kritisches *J* bestimmt, bei dem ein instabiler Bruch nach vorheriger stabiler Rißverlängerung eintritt:

$$J = C \cdot \Delta a_s^p \qquad (34)$$

Abbildung 11: Definition von $J_{0,2t}$ nach [36]

p und C sind aus einer angrenzenden Hochlage bestimmt und Δa_s ist die stabile Rißverlängerung. Vergleiche mit eigenen und der Literatur entnommenen Experimenten an ISO-V-ähnlichen Proben zeigen gute Übereinstimmung bis stark konservative Unterschätzung (um den Faktor 2 bis 3) der Rißzähigkeit. Für ISO-V-Kerbschlagproben wird aufbauend auf eigenen Untersuchungen von Schindler und Veidt [37] eine Korrekturfunktion vorgeschlagen, die die mangelnde Kerbschärfe der Kerbe gegenüber dem Anriß kompensiert. Die durch den endlichen Radius ρ scheinbar erhöhte Rißzähigkeit ΔJ_{ρ} ist hierbei:

$$\Delta J_{\rho} = 0.7 \cdot U_f \cdot \rho \quad \text{mit} \quad U_f = \frac{\sigma_F \cdot Z}{1 - Z} \quad (35)$$

- ρ Kerbradius in mm
- σ_F Ersatzfließgrenze = $\frac{1}{2}(R_{eS}+R_m)$ (36)

Z Brucheinschnürung als Dezimalzahl

Hübner und Pusch zeigen für verschiedene hochfeste Baustähle, daß eine einfache Korrelation zwischen Hochlageenergie des ISO-V-Kerbschlagversuchs und bruchmechanischen Kennwerten J_i und $J_{0,2}$ möglich ist [38]:

 J_i [kJ/m²] = 1,72 USE [J] - 27,83 (37 a) sowie $J_{0.2}$ [kJ/m²] = 1,90 USE [J] + 3,6 (37 b)

2.7 Bislang realisierte Geometriestudien

2.7.1 Versuche ohne direkten Vergleich mit Normproben

Odette et al. berichten über bruchmechanische Versuche an Fusionsmaterialien, die mit stark verkleinerten Biegeproben durchgeführt wurden [39]. Die DFMB (deformation and fracture mini-beam) genannte Probe besitzt Abmessungen von 1,65x1,65x9 mm³ und eine relative Rißlänge von 0,35 bis 0,45. Die Herstellung der Proben erfolgt aus einem größeren, angerissenen Materialstück, aus dem die Proben passend zur Position der Rißspitze herausgeschnitten werden. Diese Probe liefert, wie in den Überlegungen von Odette und He zur Master-Curve-Methode [40] gezeigt, aufgrund ihrer sehr stark verminderten Dehnungsbehinderung keine direkt mit Normproben vergleichbaren Kennwerte und besitzt einen sehr scharfen spröd-duktilen Übergang. Zur Identifizierung von Bestrahlungsschäden und für Studien mit nur einem veränderlichen Parameter ist sie aber sehrwohl verwendbar.

Donahue et al. berichten über Versuche an 3,3x3,3x17 mm³ großen Proben, die mit a/W = 0,5-Anrissen versehen wurden und über jeweils 10% Seitenkerbung verfügen [41]. Diese Proben wurden vor Prüfung bei verschiedenen Temperaturen und niedriger Dosis bestrahlt. Eine Auswertung mit Dehnungsbehinderungs-Korrektur (durchgeführt anhand der Ergebnisse für unbestrahlte miniaturisierte und normalgroße Proben und unter Verwendung von FE-Simulationen) liefert bei kleineren Proben einen Bestrahlungseinfluß auf Rißzähigkeit und Übergangstemperatur, wie er bei Normproben erwartet wird.

Tähtinen et al. berichten über bestrahlte (0,3 dpa) und unbestrahlte Versuche an HIP-geschweißten Dreipunkt-Biegeproben der Größe 3x4x27 mm³ [42]. Allerdings werden diese Versuche nur untereinander verglichen, um den Bestrahlungseinfluß und die Schweißparameter zu bewerten, ein Vergleich mit aus Normproben gewonnenen Kennwerten erfolgt nicht. Bei verschiedenen Temperaturen bestrahlte und unbestrahlte Titanlegierungen offenbaren bei der Ermittlung von Rißwiderstandskurven für 20% seitengekerbte Proben von 3x4x27 und von 10x10x55 mm³ keine signifikanten Unterschiede [43][44].

2.7.2 Variation der Probenform

Wallin et al. zeigen den Vergleich von Dreipunkt-Biegeversuchen verschiedener Geometrien mit den Ergebnissen von CT-Proben für einen ferritisch-martensitischen Stahl [45]. Die Biegeproben besitzen die Abmessungen 3x4x27, 5x5x27, 5x10x55 und 10x10x55 mm³, während die CT-Proben 25 mm breit sind. Hierbei zeigt sich, daß die Biegeproben untereinander für die Master-Curve-Temperatur T_0 keinen nennenswerten Unterschied und somit keinen Größeneinfluß aufweisen, wohl aber zur CT-Probe verschieden sind. Experimente und Berechnungen ergeben nur eine sehr geringe Größenabhängigkeit für die Rißwiderstandskurve, die für Ein- und Mehrprobenversuche dasselbe Ergebnis liefert.

Zhang et al. zeigen, daß die aus Ø26x10 mm² Rund-CT-Proben mit unterschiedlicher Kerbung gewonnenen *J*-Werte leicht höher sind als die aus 10x10x55 mm³ Biegeproben [46]. Der kritische Wert der Seitenkerbung, bei dem der ermittelte *J*-Wert einem gültigen kritischen *J*-Wert entspricht, liegt je nach Material bei 10 bis 17% (je Seite). Er liegt über dem einer vergleichbaren Biegeprobe, was auf die stärkere Dehnungsbehinderung in einer Dreipunkt-Biegeprobe gleicher Seitenkerbung zurückzuführen ist. Die gegenteilige Schlußfolgerung [46] scheint ein Irrtum in der Drucklegung zu

sein, da alle verwendeten Betrachtungen auf eine Annahme der höheren Dehnungsbehinderung in der Biegeprobe durch die Autoren schließen lassen.

2.7.3 Variation der Probenbreite

Salzmann et al. zeigen bruchmechanische Ergebnisse eines Druckbehälterstahls, die an 50 mm breiten CT-Proben und an 10 mm breiten Dreipunkt-Biegeproben ermittelt wurden [47]. Erstaunlicherweise ist die direkt ermittelte Rißzähigkeit an den größeren Proben etwa doppelt so hoch. Für die *J*-Werte und die daraus ermittelten *K*-Werte (beide Probenformen erfüllen die Größenkriterien) liefern die breiteren Proben leicht bis deutlich höhere Werte; mit zunehmender Temperatur verstärkt sich dieser Effekt. Die Unterschiede sind in jedem Fall deutlich größer als die in den Untersuchungen von Rech [48] gezeigten Unterschiede von CT- und Biegeproben (*B* = 25 bzw. 9 mm, jeweils 10% Seitenkerbung) aus MANET-II. Hier wurden ähnliche Ergebnisse für beide Probenformen nachgewiesen, maximal waren die aus *J* ermittelten *K*-Werte der Biegeproben 10% niedriger.

2.7.4 Einfluß der relativen Rißlänge

Tosal et al. stellen *J-R*-Kurven-Ermittlungen an Dreipunkt-Biegeproben verschiedener Querschnitte und Anrißlängen vor [49]. Proben von (BxW) 10x10, 10x30, 30x10 und 30x30 mm² wurden bei verschiedenen Temperaturen untersucht, alle mit einer relativen Anrißlänge von a/W = 0,6, die 30x30 mm²-Proben zusätzlich mit a/W = 0,1. Sämtliche Proben besaßen eine Seitenkerbung von jeweils 10%. Die Rißlängen im Versuch wurden mit der Nachgiebigkeits-Methode ermittelt, die an einigen Proben normiert werden mußte. Im untersuchten Rahmen erbrachten Höhen- und Breitenänderungen keinen deutlichen Einfluß auf die Form und Lage der *J-R*-Kurve, obwohl stabile und instabile Rißausbreitung je nach Probenform und Prüftemperatur auftraten. Lediglich die verminderte Anrißlänge verschob die *J-R*-Kurve zu deutlich höheren *J*-Werten, was die Autoren auf andere Bedingungen für den Spannungszustand vor der Rißspitze zurückführen, siehe Abbildung 12.

Hier bildet sich eine größere plastische Zone mit einer verringerten Dreiachsigkeit des Spannungszustandes aus, die zu stärkeren Deformationen und höheren *J*-Werten für einen entsprechenden Rißfortschritt führt, wie Betegon et al. zeigen [50]. Underwood zeigt Versuche an glatten Biegeproben ($BxWxL = 10x12x26 \text{ mm}^3$), die mit a/W-Verhältnissen von 0,5, 0,6 und 0,7 versehen sind [51]. Hier zeigt *J* eine Abhängigkeit, für a/W = 0,5ist *J* nach dem Kraftmaximum etwa 1,4 mal so groß wie für a/W = 0,7.

Anderson et al. haben ähnliche Ergebnisse von Sorem et al. [52] ausgewertet, die für Spaltbruch

Abbildung 12: J-R-Kurve bei Variation von a/W [49]

mit einer geeigneten Korrektur versehen auch für kurze Anrisse konservative Ergebnisse liefern [53]. Hierbei wird der ermittelte Wert von *J* über den Constraintfaktor ϕ auf einen Wert von *J*_{ssy} für das Kleinbereichsfließen ("small scale yielding") zurückgeführt:

$$\frac{J}{J_{ssy}} = \sqrt{\frac{1}{\phi}} \quad (38)$$

 ϕ sinkt dabei mit abnehmender relativer Rißlänge im Vergleich zu a/W = 0.5. Für duktiles Reißen ergeben sich nach den Berechnungen von Anderson keine so deutlichen Abhängigkeiten (hier steigt ϕ sogar mit abnehmendem a/W), was allerdings der allgemeinen experimentellen Erfahrung widerspricht.

Abbildung 13: Temperatur- und a/W-Abhängigkeit des Abbildung 14: Zusammenhang zwischen J_{SENB} und J_{SSY} [54]

Ausführlich setzten sich Dodds et al. [54] mit der *a/W*-Abhängigkeit des *J*-Integrals auseinander. Durch die unterschiedliche Ausbildung der plastischen Zone vor der Spitze eines tiefen ($a/W \ge 0.5$) oder kurzen Risses ($a/W \le 0.2$) kommt es bei sonst gleichen Bedingungen zu unterschiedlicher Ausformung des Bruchs (Abbildung 13) und des zugehörigen kritischen *J*-Wertes. Bei kurzen Rissen trifft die plastische Zone vor der Rißspitze auf die Biegezugspannungen an der Oberfläche (gegenüber der Krafteinleitung) der Probe. Der damit einhergehende Verlust an Dreiachsigkeit ist weit stärker als der, der bei tiefen Rissen durch das Zusammenwachsen der plastischen Zonen von Rißspitze und Krafteinleitung eintritt. Dadurch besitzen Proben mit kurzen Anrissen in aller Regel einen tieferen spröd-duktilen Übergang als solche mit langen Anrissen. Anhand von Finite-Elemente-Berechnungen werden u. a. Korrelationen für an Dreipunkt-Biegeproben experimentell ermittelte J_{SENB} und den entsprechenden *J*-Werten für Kleinbereichsfließen, J_{SSY} , gegeben, siehe Abbildung 14. Mit zunehmender Deformation, abnehmender Probenbreite und abnehmender Rißlänge entfernt sich J_{SENB} immer weiter von J_{SSY} . Die Bezugspannung σ_{flow} berechnet sich für ein dem Ramberg-Osgood Modell entsprechendes Material mit $N = n^{-1}$ nach

$$\sigma_{flow} = \frac{R_{eS}}{2} \left[1 + \frac{(N/\varepsilon_{eS})^N}{e^N} \right] \quad (39)$$

 ε_{eS} Dehnung beim Erreichen von R_{eS}

n Verfestigungsexponent

Je nach Verfestigungsexponent ist J_{SENB} für a/W = 0.5 innerhalb der nach ASTM [8] zugelassenen Probengrößen immer noch zwei- bis vierfach so groß wie J_{SSY} , weshalb deutlich größere Proben bei stärkerer Verformung empfohlen werden.

De Castro et al. stellen temperierte Versuche an glatten, quadratischen Dreipunkt-Biegeproben vor (B = W = 18 mm, L = 72 mm), die mit verschiedenen Anrißlängen versehen sind, so daß *a/W* zwischen 0,2 und 0,8 variiert [55]. Eine Abhängigkeit der kritischen Rißöffnungsverschiebung δ_c (die sich nach Rice [15] mit $J = m \cdot \sigma_y \cdot \delta$ (18) umrechnen läßt) von der relativen Rißlänge kann nur für die Versuche im Bereich des spröd-duktilen Übergangs oder darüber gefunden werden. Für a/W = 0,2 ist δ_c etwa doppelt so hoch wie für a/W = 0,8. Im spröden Bereich ist δ_c unempfindlich gegenüber a/W-Änderungen und de Castro findet m = 1,85.

2.7.5 Weitere Aktivitäten

Eine weitergehende Miniaturisierung von Proben zur Überwachung von Anlagenkomponenten kann z.B. durch die Verwendung kleiner, ausgestanzter Materialscheiben erfolgen, an denen eine Kraft-Durchbiegungskurve mittels Durchdrücktest ermittelt wird. Xu et al. [56] berichten von erfolgreichen Versuchen an bestrahlten Proben von 3 mm Durchmesser und 0,25 mm Dicke, aus deren Kraft-Durchbiegungskurven Fließgrenze, Zugfestigkeit und Gleichmaßdehnung in guter Übereinstimmung mit Normzugproben abgeleitet werden konnten. Allerdings scheitert die direkte Bestimmung bruchmechanischer Kennwerte an der Verwendung solcher Proben mit gänzlich anderer Gestalt, da dafür Korrekturen von wesentlich größerem Umfang als zur Ermittlung von Zugeigenschaften durchgeführt werden müssen.

Einen Überblick über weitere miniaturisierte Probenformen und Testtechniken, die zur Überwachung von nuklearen Kraftwerkskomponenten genutzt werden und nicht den Standardtesttechniken entsprechen, gibt Lucon [57]. Neben der Miniaturisierung ist hierbei für den Kerbschlagtest die erneute Verwendung von Proben ein Weg, indem z.B. geprüfte Probenhälften mit beidseitig angeschweißten Enden versehen werden und so als Zentrum für eine neue Probe dienen. Für bruchmechanische Untersuchungen wird eine zylindrische Probe mit umlaufender Kerbe und Anriß gezeigt, die im Zugversuch getestet wird. In eigenen Versuchen kommt Lucon zu dem Schluß, daß kleine Biegeproben nur im spröden Bereich (weit unter der Referenztemperatur T_0 des Master-Curve-Ansatzes) konservative, von größeren CT-Proben bestätigte Ergebnisse liefern. Als Mindestgröße für ein günstiges Verhältnis von Materialbedarf zu notwendigen Tests zur sicheren Ermittlung von T_0 empfiehlt er 5x5 mm² Querschnitt. Die Ø4 mm Rundzugproben können zwar bei höheren Temperatur ren als die Miniatur-Biegeproben geprüft werden, ihre Einsatzgrenze liegt aber immer noch unterhalb von T_0 . Eine ergänzende Übersicht über miniaturisierte Prüfverfahren geben Lucas et al. [58].

2.8 Normierungsbestrebungen

Einen Überblick über die Bestrebungen zur Normung von Versuchen mit nichtebener Dehnung in der Probe geben Schwalbe und Zerbst [59]. Die bei ASTM und ISO in der Diskussion stehenden Normen für die Ermittlung solcher bruchmechanischer Kennwerte sehen die Verwendung von CT-Proben bzw. angerissenen Zugproben (MT-Proben) vor. Dabei sollen der Rißspitzenwinkel *CTOA* oder eine *R*-Kurve ermittelt werden, letztere als Rißuferverschiebung δ_5 am Ort der ursprünglichen Anrißspitze über der Rißverlängerung Δa .

Über die seinerzeit noch in der Diskussion befindliche Schweizer Richtlinie zur Überwachung der Druckwasserreaktoren berichten Schindler et al. [60]. Hierin werden Tests an angerissenen kleinen Biegeproben vorgesehen, um bei Prüfung in einem instrumentierten Pendel aus einem Schlagbiegeversuch eine angenäherte *J-R*-Kurve zu erhalten. Obwohl die entsprechende Prüfprozedur für das Materialverhalten in der Hochlage entwickelt wurde, können nach Schindlers Auswertung damit auch in der Tieflage und im Übergangsbereich bruchmechanische Werte ermittelt werden, die, sollten sie nicht realistisch sein, in jedem Fall konservativ sind.

2.9 Materialien

Alle drei im Rahmen dieser Arbeit zu untersuchenden Materialien sind martensitische Stähle mit 9 bis 11% Cr-Gehalt, die als Strukturwerkstoffe für Anwendungen in der Fusionstechnik entwickelt wurden. Je nach aufgebrachtem Wärmebehandlungszustand erlauben sie bei Raumtemperatur Versuche bei sprödem, duktilem oder spröd-duktilem Verhalten.

2.9.1 MANET-I

MANET-I ist ein martensitischer 11% Cr-Stahl vom Typ 1.4914, der ab Ende der 80er-Jahre des vergangenen Jahrhunderts im Rahmen des Fusionstechnologieprogramms der Europäischen Gemeinschaft hinsichtlich seiner Eignung als Strukturmaterial spezifiziert und untersucht wurde. Im Gegensatz zu den hochwarmfesten austenitischen Stählen, die beim Bau von Spaltungsreaktoren Verwendung finden, besitzen vergütbare 12% Cr-Stähle eine geringere Tendenz zur neutroneninduzierten Heliumversprödung und zum Schwellen, was sie für die zu erwartenden hohen Neutronenbelastungen empfiehlt. Die mechanischen Eigenschaften von MANET-I sind von Schirra et al. grundlegend untersucht [61].

Kerbschlagergebnisse für ISO-V-Proben sind in Abbildung A 26, für KLST-Proben in Abbildung A 27 dargestellt. MANET-I wurde in verschiedenen Bestrahlungsprogrammen mit Dosen bis zu 15 dpa bestrahlt, unter anderem wurden bei einer 0,8 dpa-Bestrahlung neben KLST-Kerbschlagproben auch miniaturisierte Dreipunkt-Biegeproben ("KLST-BM") in den Hochflußreaktor in Petten eingesetzt. Die Prüfung und Auswertung dieser Proben erfolgte im Rahmen dieser Arbeit. Auch wenn inzwischen die MANET-Stähle nicht mehr als Strukturmaterialien in Betracht gezogen werden, da die neueren OPTIFER-/

Normalisierung	980°C (2h)		
Austenitisierung	1075°C (0,5h)		
Anlaß-WB	750°C (2h)	700°C (2h)	
R_m (RT)	856 N/mm²	923 N/mm ²	
$R_{p0,2}$ (RT)	728 N/mm ²	812 N/mm ²	
A_g / Z	6,2 / 67,2 %	5,5 / 66,1 %	
USE (ISO-V)	143 J	-	
USE (KLST)	6,5 J	5,6 J	
DBTT (ISO-V)	+23°C	-	
DBTT (KLST)	-35°C	-12°C	

Tabelle 1: Mechanische Eigenschaften und Übergangstemperaturen für MANET-I

EUROFER-Legierungen ihnen in der Summe der Eigenschaften überlegen sind, liefert die Untersuchung bestrahlter miniaturisierter MANET-Proben dennoch wichtige Erkenntnisse zu Schädigungsmechanismen, Prüfmethoden und Auswerteverfahren, die auf neuere Werkstoffe übertragen werden können.

2.9.2 MANET-II

Der martensitische 10% Cr-Stahl MANET-II (Typ 1.4914) wurde seinerzeit ebenfalls als ein potentieller Strukturwerkstoff entwickelt. Er zeichnet sich durch hohe Festigkeit und günstige Zähigkeit aus und kommt im Rahmen dieser Arbeit in verschiedenen Wärmebehandlungszuständen für bruchmechanische Untersuchungen in unterschiedlichen Probengrößen zum Einsatz. Eine ausführliche mechanische Charakterisierung findet sich bei Schirra et al. [62]. Das Bestrahlungsverhalten dieses Werkstoffs ist ebenfalls dokumentiert [63].

MANET-II eignet sich unter anderem deshalb gut für bruchmechanische Untersuchungen, weil er bei geeigneter Wärmebehandlung bei Raumtemperatur im spröden Bereich untersucht werden kann. Die Kerbschlagversuche an ISO-V-Proben ([62], 10x10x55 mm³, siehe Abbildung A 28) liefern höhere Übergangstemperaturen als die im Rahmen dieser Arbeit durchgeführten Versuche an KLST-Proben (3x4x27 mm³, siehe Abbildung A 29), wie aus Tabelle 2 ersichtlich ist. Dieser Einfluß der Probengröße auf die Übergangstemperatur ist bekannt [10] und einer der Gründe, bei kleinen Proben Nichtkonservativität in Betracht zu ziehen.

Normalisierung		960°C (2h)	
Austenitisierung		1075°C (0,5h)	
Anlaß-WB	600°C (2h)	700°C (2h)	750°C (2h)
R_m (RT)	973 N/mm ²	839 N/mm ²	756 N/mm ²
$R_{p0,2}$ (RT)	869 N/mm ²	736 N/mm ²	658 N/mm ²
A_g / Z	4,21 / 66,3 %	4,83 / 65,2 %	5,02 / 71,8 %
USE (ISO-V)	137 J	148 J	156 J
USE (KLST)	6,1 J	6,1 J	7,3 J
DBTT (ISO-V)	+45°C	+10°C	-5°C
DBTT (KLST)	-4°C	-34°C	-46°C

Tabelle 2: Mechanische Eigenschaften und Übergangstemperaturen verschiedener Wärmebehandlungszustände für MANET-II

Wie Tabelle 2 zu entnehmen ist, besteht für alle drei Wärmebehandlungen eine Differenz von ca. 50°C für die Übergangstemperaturen von beiden Probengrößen. Formal verhalten sich bei Raumtemperatur ISO-V und KLST für 750°C Anlaßwärmebehandlung duktil, während für 600°C eine ISO-V-Probe spröde bricht und eine KLST-Probe sich noch duktil verhält. Diese Unterschiede relativieren sich, wenn man den weiten Übergangsbereich von ca. 100°C in Abbildung A 28 und Abbildung A 29 berücksichtigt – er ist doppelt so groß wie die Differenz der Übergangstemperaturen.

2.9.3 EUROFER 97

Der Stahl EUROFER 97 ist ein neuerer, ebenfalls für Fusionsanwendungen konzipierter martensitischer 9% Cr-Stahl, dessen Legierungselemente eine deutlich verminderte Aktivierung nach Neutronenbestrahlung erwarten lassen. Insbesondere die Eliminierung der Elemente mit starker Langzeitaktivierung wie Ni, Mo und Nb und ihre Substitution durch W und Ta spielt hierbei eine Rolle. EUROFER 97 entstand aus den im Institut für Materialforschung des Forschungszentrums Karlsruhe entwickelten OPTIFER-Stählen, deren gründliche Charakterisierung in unbestrahltem und bestrahltem Zustand für EUROFER 97 gute Ergebnisse hinsichtlich seiner mechanischen Eigenschaften und seines Bestrahlungsverhaltens erwarten lassen [64][65][66]. Die mechanische Charakterisierung in Form von Zug- und Kerbschlagexperimenten erfolgte durch Schäfer und Kempe [67] sowie durch Rieth et al. [68], erste Ergebnisse von bis 15 dpa bestrahlten Proben werden Mitte 2005 vorliegen [69].

Die noch nicht erfolgte bruchmechanische Untersuchung dieses Werkstoffs soll im Rahmen dieser Arbeit geschehen, wobei eine Konzentration auf den Anlieferungszustand der Charge E83697 erfolgt (980°C/0,5h + 760°C/1,5h). Davon abweichende Wärmebehandlungen werden lediglich mit KLST-Kerbschlag-Versuchen untersucht. Tabelle 3 zeigt die Eigenschaften für EUROFER 97, Abbildung A 30 und Abbildung A 31 die entsprechenden Schlagarbeit-Temperatur-Diagramme.

Alle KLST-Proben entstammen demselben Materialstück (25 mm Blech) und wurden in der Orientierung L-T² entnommen. Die nachträglich aufgebrachte Wärmebehandlung verbessert die Kerbschlageigenschaften der industriell gefertigten Charge (mit nominell gleicher WB) erheblich, siehe Abbildung A 31. Es ist zu vermuten, daß hierbei Inhomogenitäten des industriell wärmebehandelten Materials eine Rolle spielen. Die nachträglich im Vakuumofen aufgebrachte Wärmebehandlung mit 980°C Austenitisierungstemperatur liefert eine niedrigere Übergangstemperatur als der Wärmebehandlungshandlungszustand mit 1040°C Austenitisierungstemperatur. Zum Vergleich des Wärmebehandlungseinflusses kann demnach die industrielle WB nicht herangezogen werden.

Austenitisierung	980°C (0,5h) ³	1040°C (0,5h) ⁴	980°C (0,5h) ³
Anlaß-WB		760°C (1,5h)	
R_m (RT)	652 N/mm²	630 N/mm ²	624 N/mm²
$R_{p0,2}$ (RT)	537 N/mm ²	519 N/mm ²	495 N/mm²
A_g / Z	4,97 / 79,9 %	5,0 / 79,8 %	6,1 / 81,7 %
USE (ISO-V)		270 J	267 J
USE (KLST)	9,8 J	9,8 J	9,8 J
DBTT (ISO-V)		-72°C	-81°C
DBTT (KLST)	-86°C	-96°C	-105°C

Tabelle 3: Mechanische Eigenschaften und Übergangstemperaturen verschiedener Wärmebehandlungszustände für EUROFER 97

Gleichwohl geben die Ergebnisse des Anlieferzustandes einen Aufschluß über die in industriellem Standard erreichbare Güte des Materialzustandes, die nicht an eine Laborcharge heranreichen kann. Dies muß u. a. bei der Auswertung der Bestrahlungsprogramme ARBOR [70] und SPICE [69] berücksichtigt werden, da dort EUROFER 97 im Anlieferzustand eingesetzt wurde.

In allen untersuchten Wärmebehandlungszuständen ist der Übergangsbereich von EUROFER 97 viel enger (ca. 20°C) und vor allem viel tiefer angesiedelt als der von MANET - bei Raumtemperatur wird man bei EUROFER 97 in jedem Fall vollkommen duktiles Verhalten vorfinden, erst unterhalb von etwa -80°C (KLST) bzw. -40°C (ISO-V) setzt überhaupt eine Versprödung ein.

² Probenorientierung längs zur Walzrichtung, demnach Kerbwirkung senkrecht zur Walzrichtung

³ Vom Hersteller aufgebrachte Wärmebehandlung

⁴ Im IMF nachträglich aufgebrachte Wärmebehandlung

2.10 Schlußfolgerung

Bislang existiert keine hinreichend validierte kleine bruchmechanische Probe, die für Bestrahlungsexperimente und Nachbestrahlungsuntersuchungen geeignet ist. Ein einfacher Ansatz zur Quantifizierung des Dehnungszustandes in kleinen Proben ist nicht bekannt. Experimente zum Vergleich kleiner und großer Proben sind zahlreich publiziert. Systematische Untersuchungen zum Einfluß einzelner Parameter wie Probenhöhe, Anrißlänge und Probenbreite fehlen jedoch bislang genauso wie die Untersuchung geometrisch ähnlicher Proben in unterschiedlichen (u. a. auch den Größenbedingungen genügenden) Abmessungen. Die meisten publizierten Ergebnisse weisen auf ein Ansteigen der ermittelten Kennwerte und ein Absinken der Übergangstemperaturen bei kleineren Probengrößen - mithin auf ein nichtkonservatives Verhalten kleiner Proben - hin. Zur Korrelation von Übergangstemperaturen und Bruchzähigkeitswerten aus Biegeversuchen sowohl an Kerbschlag- als auch an Bruchmechanik-Proben existieren empirische Modelle. Diese bedürfen einer weitergehenden Überprüfung, inwiefern sie die Ermittlung bruchmechanischer Kennwerte zulässig vereinfachen können. Im sich anschließenden Kapitel 3 wird der aus den dargestellten Erkenntnissen abgeleitete, in dieser Arbeit eingeschlagene Weg zum Entwurf und zur Validierung einer geeigneten Probe beschrieben.

3 Eigenes Vorgehen zur Realisierung einer geeigneten Probe

Die letztendlich zu realisierende Probe muß mehrere Grundforderungen erfüllen. Zentrale Forderung ist, daß sie trotz ihrer geringen Größe zur Ermittlung bruchmechanischer Kennwerte taugt, die keinesfalls nichtkonservativ sein dürfen. Dies muß für alle metallischen Werkstoffe gewährleistet sein, die im Rahmen des Materialentwicklungsprogramms für die Kernfusion untersucht werden. Des weiteren muß die Probe mit angemessenem Aufwand bei sparsamem Verbrauch von Versuchsmaterial herstellbar sein und in vorhandenen Prüfanlagen, gegebenenfalls nach Anpassung dieser, untersucht werden können. Da das Anwendungsziel die Qualifizierung von bestrahlten Materialien ist, muß die Geometrie einer geeigneten Probe mit anderen zu bestrahlenden Proben und mit den Bestrahlungseinrichtungen kompatibel sein. Schlußendlich muß eine solche Probe sicher fernbedient handhabbar sein und weiteren Besonderheiten bei der Prüfung kontaminierter Proben Rechnung tragen.

Im folgenden wird der in dieser Arbeit beschrittene Weg zur Realisierung einer geeigneten Probe skizziert. Hierbei werden zunächst Versuche an verschiedenen Probentypen und ihren geometrischen Variationen in Finite-Elemente-Berechnungen simuliert; ausgehend von diesen Ergebnissen werden Norm- und miniaturisierte Proben verschiedener Werkstoffe geprüft und hinsichtlich ihrer bruchmechanischen Ergebnisse verglichen. Die Anwendbarkeit kleiner bruchmechanischer Proben wird schließlich mit der Untersuchung und Auswertung miniaturisierter, bestrahlter Proben gezeigt.

Zuerst müssen die theoretisch und praktisch zu untersuchenden Materialien festgelegt und charakterisiert werden. Die Auswahl fiel auf den niedrigaktivierenden Stahl EUROFER 97, der ein zähes Verhalten bei Raumtemperatur aufweist, sowie auf die Legierungen MANET-I und MANET-II, die in verschiedenen Wärmebehandlungszuständen bei Raumtemperatur sowohl sprödes als auch duktiles Verhalten zeigen können. Ihre Charakterisierung erfolgt in eigenen Versuchen oder dort, wo sie verfügbar sind, aus veröffentlichten Experimenten. Zur Erstellung der Materialmodelle für die Berechnungen werden Zugversuche ausgewertet, anschließend werden die Materialmodelle über die Simulation von Zug- und Biegeexperimenten im Vergleich zum realen Versuch validiert. Kerbschlagversuche dienen der Ermittlung des spröd-duktilen Übergangsverhaltens der Werkstoffe und werden zur Planung temperierter Experimente hinzugezogen.

Sowohl für *K*-Versuche als auch für die *J*-Integral-Ermittlung ist es wesentlich, die Spannungsverteilung in der Dreipunkt-Biegeprobe zu kennen. Nur ihre Kenntnis erlaubt es zu beurteilen, ob über den Probenquerschnitt hinweg ein in ausreichendem Maße ebener Dehnungszustand vorliegt, der eine gültige Kennwert-Ermittlung gestattet. In den nachfolgenden Berechnungen werden unter Verwendung der erstellten Materialmodelle die Spannungs- und Dehnungsverteilungen sowie die Reaktionskräfte und das *J*-Integral für verschiedene Dreipunkt-Biegeproben ermittelt und im experimentellen Teil mit den realen Versuchen verglichen.

Für die Finite-Elemente-Untersuchungen werden alle real zu untersuchenden Probengeometrien sowie die dazugehörigen Versuchseinrichtungen modelliert. Dies umfaßt normgerechte und miniaturisierte Biegeproben, geometrische Varianten mit dreidimensionaler Gestaltung, Proben mit abgewandelter Geometrie sowie verschiedene Widerlager und instrumentierte Finnen.

Für die Berechnung der Kraft-Durchbiegungs-Verläufe von normgerechten und maßstäblich verkleinerten Proben zum Vergleich mit realen Versuchen ist eine zweidimensionale Modellierung zunächst ausreichend. Dreidimensionale Berechnungen liefern den Nachweis, in welchen Fällen zweidimensionale Berechnungen hinreichend und aufgrund ihrer geringeren Komplexität zu bevorzugen sind. Zur Beurteilung der Spannungsverteilungen entlang der Rißfront und vor allem für die Berechnung geometrisch modifizierter Proben – durch das Einbringen von Seitenkerben - sind dreidimensionale Berechnungen unumgänglich. Die Ermittlung des Spannungszustandes mit der Methode der Finiten Elemente erlaubt es, eine direkte Berechnung des Rice'schen *J*-Integrals [5] vorzunehmen. Zunächst erfolgt eine grundsätzliche Untersuchung der Unterschiede solcher zwei- und dreidimensionaler Berechnungen an einem idealisierten Modell einer ebenen Platte mit Riß. Die hierbei gewonnenen Erkenntnisse werden auf entsprechende Berechnungen verschiedener Dreipunkt-Biegeproben angewandt und deren Ergebnisse mit den indirekt aus der Verformungsarbeit gewonnenen *J*-Integralwerten verglichen.

Die aus der Berechnung gewonnenen *J*-Integral-Werte und ihre Verteilung über die Probenbreite dienen im Zusammenspiel mit den Dehnungsverteilungen dazu, die unterschiedlichen Proben hinsichtlich ihrer Konservativität einzuordnen. Nur eine Probe mit ausreichend großem Anteil ebener Dehnung wird eine nicht überschätzte Rißzähigkeit liefern. Die Gleichmäßigkeit des *J*-Integrals über die Probenbreite ist ein weiteres Indiz dafür. Hierzu werden im Vergleich sowohl normalgroße und geometrisch ähnlich verkleinerte, als auch glatte und seitengekerbte verkleinerte Proben gegenübergestellt.

Im experimentellen Teil dieser Arbeit werden die Erkenntnisse der Berechnungen durch reale Versuche überprüft. Zum einen geht es hierbei um eine Validierung der Berechnungen, welche teilweise parallel zu den Berechnungen durchgeführt wurde. Zum anderen gilt es, den Nachweis der angemessenen Durchführbarkeit solcher Versuche zu führen.

In der Beschreibung der Versuchstechnik wird auf die im Rahmen dieser Arbeit entwickelten Vorrichtungen und Techniken zur Präparation, Prüfung und Auswertung von Proben eingegangen. Als Versuchsergebnis steht neben dem aufgezeichneten Verlauf von Durchbiegung und Reaktionskraft die Bruchfläche zur Verfügung. Sie dokumentiert den realen Rißfortschritt und erlaubt Rückschlüsse auf Verformung und Spannung zum Zeitpunkt der maximalen Belastung.

Basis der Versuchsmatrix bildet die Prüfung von Normproben, mit denen die bruchmechanischen Kennwerte J_{IC} und K_{IC} bei Raumtemperatur bestimmt werden. Der Einfluß geometrischer Modifikation durch seitliche Kerbung in der Bruchzone wird durch entsprechend abgewandelte Proben untersucht.

Eine Parameterstudie hilft klären, welchen Einfluß die Variation der Größen Probenbreite und Anrißlänge auf den Biegeversuch hat. Ausgehend von diesen Erkenntnissen werden maßstäbliche Verkleinerungen der normgerechten Proben getestet und ausgewertet, wobei hier der Größeneinfluß und der Vergleich des Einflusses der geometrischen Modifikation bei beiden Größen interessieren.

Des weiteren wird eine geometrisch nicht ähnliche Verkleinerung der Normprobe geprüft, die dafür vorgesehen ist, in instrumentierten Schlagpendeln automatisiert geprüft zu werden. Neben ihrer statischen Validierung wird die Probe – wiederum mit und ohne Seitenkerben - dynamisch bei variablen Temperaturen geprüft. Außer der Bestimmung der dynamischen Kennwerte J_{ID} und K_{ID} steht hierbei das Temperatur-Übergangsverhalten bruchmechanischer Kennwerte im Mittelpunkt des Interesses und wird mit größeren Bruchmechanik- sowie Kerbschlagproben beider Größen verglichen. Somit steht eine vollständige Einordnung der bruchmechanischen Kennwerte und ihrer Übergangstemperaturen kleiner, geometrisch den Normproben nicht ähnlicher Proben zur Verfügung.

Die Prüfung bestrahlter Kleinproben stellt den Abschluß des rein experimentellen Teils dieser Arbeit dar. Sie liefert den Nachweis der Anwendbarkeit der entwickelten Versuchs- und Auswertetechnik unter den erschwerten Bedingungen der Prüfung in abgeschlossenen, fernbedienten Prüfzellen. Ergebnis ist hierbei die Charakterisierung des Einflusses von Bestrahlung und Bestrahlungstemperatur auf J_{ID} und dessen Vergleich mit den Ergebnissen von Kerbschlagexperimenten der gleichen Bestrahlungsparameter.

Die Ergebnisse der Finite-Elemente-Berechnungen werden schließlich dazu verwandt, eine Umrechnung des für die gesamte Probe ermittelten *J*-Integrals in ein *J*-Integral am Ort des maximalen Rißwachstums herzuleiten. Zusammen mit der bei der experimentellen Auswertung gemessenen dortigen Rißverlängerung wird so eine lokale Rißwiderstandskurve konstruiert, die auch die ungleichen Verteilungen von Spannungen und Rißfortschritt über weite Teile des Querschnitts von kleinen Proben berücksichtigt.
Neben dem Vorschlag geeigneter Proben für bruchmechanische Untersuchungen an bestrahlten Werkstoffen wird eine Empfehlung zur Prüfung dieser Proben und zur Einordnung der Ergebnisse ausgesprochen. Außerdem wird eine Erweiterung instrumentierter Pendel vorgestellt, um auf diesen Anlagen, unter den erschwerten Bedingungen der Prüfung kontaminierter Proben, unter Ausnutzung ihrer automatischen Temperier- und Zuführeinheiten quasistatische Versuche durchführen zu können.

4 Finite-Elemente-Berechnungen

In diesem Teil der Arbeit werden die Spannungsverteilungen im Rißbereich der Probe und ihre Auswirkungen auf bruchmechanische Kennwerte untersucht. Dazu werden die zu untersuchenden Materialien mechanisch charakterisiert und für die Finite-Elemente-Berechnungen in Materialmodelle umgesetzt. Die real zu untersuchenden Probengeometrien werden zusammen mit den in Kontakt zu ihnen stehenden Elementen der Prüfanlagen zwei- und dreidimensional modelliert. In verformungsgesteuerten Simulationen werden diese Proben deformiert. Als Ergebnis liegen Spannungsverteilungen vor, die in *J*-Integral-Auswertungen einbezogen werden können.

Für die Berechnungen wird das Programmpaket ABAQUS (Anbieter: ABAQUS Inc., Rhode Island, USA) in den Versionen 6.2 und 6.3 benutzt. Hierbei stellt ABAQUS/Standard einen allgemeinen Gleichungslöser für lineare und nichtlineare Probleme dar, der über vordefinierte Bibliotheken mit Materialmodellen und Funktionen wie z.B. Kontakt und Reibung verfügt. Die zur Nutzung von ABAQUS/Standard notwendigen Modelle und Eingabedateien können weitgehend mit dem interaktiven Pre- und Postprocessor ABAQUS/CAE erstellt werden, müssen aber z.B. für die Anforderung von *J*-Integral-Berechnungen noch nachträglich ergänzt werden. Der erste Schritt für die Berechnungen ist die Erstellung des Materialmodells für die zu untersuchenden Werkstoffe.

4.1 Materialien

Die Materialien werden anhand von Zugversuchen an Rundproben bei Raumtemperatur charakterisiert. Die Temperaturabhängigkeit des Materialverhaltens wird zunächst über die spröd-duktile Übergangstemperatur des Kerbschlagversuchs beschrieben. In Tabelle 6 (Seite 32) sind die Hauptabmessungen der verwendeten Bruchmechanik-Proben gegenübergestellt; die ISO-V-Probe kann den Größenverhältnissen entsprechend zur Abschätzung der Übergangstemperatur für die verwendete große - den ASTM-Normen 399 [2] und 813 [8] genügende – Probe ("ASTM") herangezogen werden, während die KLST-Probe zur Abschätzung des Versprödungsverhaltens bei den miniaturisierten Proben dient. Entsprechende Werte sind für alle drei untersuchten Stähle und ihre Wärmebehandlungszustände in Abschnitt 2.9 (Tabelle 1 ff.) aufgeführt. Die chemische Zusammensetzung aller untersuchten Werkstoffe ist in Tabelle A 6 gegeben.

4.1.1 Modellierung der Materialien

Die Parameter für die in ABAQUS zu verwendenden Materialmodelle werden aus Zugversuchen gewonnen. Für EUROFER 97 stehen instrumentierte Versuche (Dehnungsaufnehmer im zylindrischen Teil der Probe appliziert) zur Verfügung, während für MANET-II auf die von Schirra et al. [62] berichteten Kennwerte R_m , $R_{p0,2}$, A_g und E zurückgegriffen wird. ABAQUS verarbeitet für große Deformationen logarithmische Dehnungen und wahre Spannungen, die auch so in die Materialmodelle implementiert werden müssen. Für den elastischen Bereich werden der E-Modul und die Querkontraktionszahl mit E = 210000 MPa und v = 0,3 angegeben. Im Bereich plastischer Deformation muß abschnittsweise der plastische wahre Dehnungsanteil $\varepsilon_{w,plast}$ mit der zugehörigen wahren Spannung σ_w angegeben werden, um das Fließen des Materials zu approximieren.

Mit

$$\sigma_{w} = \sigma \cdot (1 + \varepsilon) , \quad \varepsilon_{w} = \ln(1 + \varepsilon) \text{ sowie } \varepsilon = \varepsilon_{el} + \varepsilon_{pl} \text{ und } \varepsilon = \frac{\sigma}{E} + \varepsilon_{pl}$$
gilt für $R_{p0,2}$: $\varepsilon_{plast} = 0,002$, somit $\sigma_{w} = R_{p0,2} \cdot (1 + 0,002 + \frac{R_{p0,2}}{E})$ (40 a)
 R_{m} : $\varepsilon_{plast} = A_{g}$, somit $\sigma_{w} = R_{m} \cdot (1 + A_{g} + \frac{R_{m}}{E})$ (40 b)

Der zugehörige wahre plastische Dehnungsanteil errechnet sich dementsprechend zu

$$\varepsilon_{w,pl} = \varepsilon_w - \varepsilon_{w,el} = \ln(1+\varepsilon) - \frac{\sigma_w}{E}$$
 (41)

Der Vergleich mit instrumentierten Zugversuchen ähnlicher Materialien begründet die Annahme, daß für die MANET-Legierungen der rein elastische Bereich bis etwa $0.9 \cdot R_{p0,2}$ reicht, wodurch drei Punkte für ein Materialmodell festliegen. Weitere Punkte in der Kurve werden eingefügt, um ihr eine plausible Form zu geben.

Abbildung 15: Experimente und gewonnene Materialmodelle

Abbildung 15 zeigt die vier Materialmodelle und die ihnen zugrundeliegenden experimentellen Daten. Auf die Definition eines zyklischen Verfestigungsverhaltens kann für die anstehenden Rechnungen verzichtet werden, da nur streng monoton wachsende Belastungen aufgebracht werden.

In den unten aufgeführten Materialmodellen wird für Berechnungen von Biegeexperimenten die dehnungsbedingte Spannungszunahme mit den Werten des an R_m heranreichenden Abschnitts bis auf 100% wahre Dehnung fortgeführt, um übermäßiger Deformation einzelner Elemente vorzubeugen.

σ in MPa	σ_{w} in MPa	ε	\mathcal{E}_{pl}	$\mathcal{E}_{w,pl}$	
0,0	0,0	0,00%	0,00%	0,00%	
679,1	681,3	0,32%	0,00%	0,00%	
<i>R</i> _{<i>p0,2</i>} : 763,0 767,		0,57%	0,20%	0,20%	
793,6	800,0	0,80%	0,43%	0,42%	
828,2	845,0	2,02%	1,63%	1,60%	
839,5	865,0	3,04%	2,64%	2,58%	
<i>R</i> _m : 857,6	906,4	5,69%	5,28%	5,10%	
872,9	2400,0	174,95%	174,54%	100,00%	

4.1.1.1 Verwendete Parameter für elastische und plastische Deformation

Tabelle 4: Materialmodell für MANET-II, 1075°C, 0,5h + 700°C, 2h

Tabelle A 1 bis Tabelle A 4 listen im Anhang die verwendeten Parameter sowie die Erweiterung der Spannungszunahme bei starker Deformation für alle 4 modellierten Materialien bzw. Materialzustände auf. Tabelle 4 zeigt das Beispiel für den Stahl MANET-II mit 700°C Anlaßtemperatur, wie er mit allen im Rahmen dieser Arbeit untersuchten Probenformen geprüft wird.

4.1.1.2 Verifikation

Die Verifikation der Materialmodelle erfolgt durch das Nachbilden der Zugversuche in ABAQUS. Hierfür werden zylindrische Proben samt zugehöriger Probenschultern und Krafteinleitungen modelliert und verformungsgesteuert belastet. Entsprechend den realen Experimenten betragen die Abmessungen für MANET-II 5x25 mm² (d_0xl_0) und für EUROFER 97 3x18 mm². Abbildung A 1 (Seite 122 im Anhang) zeigt die Ergebnisse aus dem zylindrischen Bereich der Probe in der Darstellung wahrer Spannung und wahrer Dehnung. Der Vergleich mit den zugrundeliegenden experimentellen Daten und die realistische Ausrundung der Kurven im Bereich des plastischen Übergangs sprechen für die gewählten Parameter. Das Einbrechen der berechneten Spannungen nach dem Erreichen von R_m ist auf die Bildung einer Einschnürung (ausgelöst durch die Probenschultern) und das dortige Einsetzen starken Fließens zurückzuführen, weshalb die nicht von der Einschnürung betroffenen Elemente entlastet werden. Des weiteren werden in Abschnitt 4.4.1 Reaktionskräfte und Verformungsenergien von realen und modellierten Versuchen verglichen, um die Anwendbarkeit der Materialmodelle zu zeigen.

4.2 Spannungen und Verformungen

Abbildung 16: Koordinatensystem und Rißmoden, ebener Spannungszustand

Abbildung 17: Koordinatensystem der FE-Berechnungen

Die gebräuchliche Notation bei der Betrachtung eines Modus-I-Risses ist in Abbildung 16 gegeben. Hier verlaufen die *x*-Achse in Richtung des Rißfortschritts und die *z*-Achse entlang der Rißfront. Abbildung 17 zeigt das in ABAQUS verwendete Koordinatensystem, das von der gebräuchlichen Notation abweicht. Tabelle 5 listet die Koordinaten mit ihren Entsprechungen in beiden Koordinatensystemen sowie die Notation der Ausgabe von ABAQUS auf.

Achsen		Spannung	en	Dehnungen			
1	у	σ ₁₁ [S11] σ _y		ε ₁₁ [E11]	Ey		
2 - <i>x</i>		σ ₂₂ [S22]	$\sigma_{\rm X}$	ε ₂₂ [E22]	€ _X		
3 z		σ_{33} [S33]	$\sigma_{\!Z}$	_{E33} [E33]	ε _z		
		σ ₁₂ [S12]	$ au_{xy}$	ε ₁₂ [E12]	ε_{xy} (¹ / ₂ γ_{12})		
		σ ₁₃ [S13]	$ au_{yz}$	ε ₁₃ [E13]	ε _{yz} (½γ ₂₃)		
		σ ₂₃ [S23]	$ au_{xz}$	_{£23} [E23]	ε _{xz} (½γ ₁₃)		

Tabelle 5: in ABAQUS verwendete Koordinaten und ihre Entsprechungen in Abbildung 16, in eckigen Klammern die Notation der graphischen Ausgabe

4.2.2 Das Spannungsfeld vor der Rißspitze

Von primärem Interesse sind die um die Rißfront auftretenden Verformungen und Spannungen. Die Forderung nach einem zweiachsigen Verformungszustand in der Rißzone zur gültigen Ermittlung von Modus-I-Kennwerten bedingt dort einen dreiachsigen Spannungszustand. Im rein elastischen Bereich folgt (mit Rißverlauf in *x*-Richtung und Probenlänge in *y*-Richtung) die Beschreibung des ebenen Spannungszustandes (ESZ) am scharfen Modus-I-Riß, wie er z.B. am Rand der Probe auftritt. Dementsprechend gilt für den ebenen Dehnungszustand (EDZ) die Formulierung der dritten Spannungskomponente über die Querkontraktionszahl:

$\sigma_z = v \left(\sigma_x + \sigma_y \right) \quad (42)$

Einen Überblick über die rund um eine Modus-I-belastete Kerbe auftretenden Spannungen gibt Boyd [71]. Abbildung 18 zeigt unter Verwendung experimenteller Daten von Dixon [72] die Spannungen in den drei Koordinatenrichtungen, wie sie sich im Ligament entlang einer Kerbe und in Kerbrichtung verändern; eine Verformungsabhängigkeit des Verlaufs der Spannungen qualitativen wird nicht angegeben. Die Spannung σ_v , parallel zur Last, hat ihr Maximum nahe der Kerbe, wobei in unmittelbarer Nähe der Betrag durch das Fließen des Materials verringert ist. Entfernt von der Kerbe nimmt sie den Betrag der Nennspannung an, zur Probenoberfläche hin nimmt sie ab. σ_x , rechtwinklig zur Kerbe und damit in Rißrichtung, hat ihr Maximum ebenfalls in Kerbnähe, wobei sie direkt an der Kerbe den Wert 0 annimmt und weiter entfernt sich σ_v annähert und in z-Richtung in der Probenmitte ihr Maximum hat.

Abbildung 18: Spannungsverteilung nach Boyd [71]

 σ_z , in Dickenrichtung, ist an der Oberfläche naturgemäß 0 und wächst rasch auf ihr Maximum zur Probenmitte hin an, wobei dieses Maximum bei schmalen Proben deutlich verringert ist. Den über die Querkontraktion bei EDZ angegebenen Wert erreicht die Spannung in *z*-Richtung nur im Inneren ausreichend breiter Proben. Eine Korrektur gibt z.B. Boyd unter der Annahme, daß die Verringerung von σ_z umgekehrt proportional zum Abstand von der Oberfläche ist, an [71]:

$$\sigma_z = v \left(\sigma_x + \sigma_y \left(1 - \frac{CB}{CB + (B/2)^2 - z^2} \right) \quad \text{für} \quad -\frac{B}{2} \le z \le \frac{B}{2}, \quad z \text{ von Proben mitte gezählt} \quad (43)$$

C Materialkonstante (in mm)⁵

Der Maximalwert in der Probenmitte beträgt demnach

Abbildung 19: Abhängigkeiten der Spannung in z-Richtung nach Boyd

Abbildung 20: Abhängigkeiten der Spannung in *z*-Richtung nach Kawano et al. [73]

Abbildung 19 zeigt den Verlauf der auf den Nennwert bezogenen Spannung in *z*-Richtung gemäß der von Boyd angegebenen Korrektur (43). Es ist augenscheinlich, daß bei den im Rahmen dieser Arbeit verwendeten Probentypen bereits bei der Probe mit B = 9 mm eine erhebliche Reduzierung von σ_z über weite Teile der Probenbreite und von $\sigma_{z,max}$ zu erwarten ist. Für die miniaturisierten Probenformen, die mit B = 3 mm deutlich kleiner ausfallen, ist mit noch stärkeren Reduzierungen zu rechnen.

Z

⁵ Boyd vermutet, daß *C* aus der Spannungs-Dehnungs-Kurve bestimmbar ist, geht darauf jedoch nicht näher ein.

Der Einfachheit halber wurde für die in Abbildung 19 wiedergegebenen Berechnungen wie von Schwalbe [6] C zunächst willkürlich mit 2 mm angenommen, für B = 20 mm wurden für C auch Werte von 1 bzw. 4 mm verwendet.

Einen weiteren Ansatz stellen Kawano et al. vor [73]. Er geht von einer konstanten Breite $\lambda/2$ des nichtebenen Dehnungszustandes am Rand der Probe aus, während im Inneren der Probe auf einer Breite von $B \cdot \lambda$ ein zweiachsiger Verformungszustand mit konstanter Spannung in *z*-Richtung vorherrscht. Diese konstante Spannung wird nur bei ausreichender Probendicke $B \ge \lambda$ erreicht und ist dann nicht von *B* abhängig. Je größer $B \cdot \lambda$ ist, desto größer ist der Anteil der Bruchfläche, in dem Sprödbrüche durch den entstehenden dreiachsigen Spannungszustand begünstigt werden.

4.2.3 Rißfortschritt

ABAQUS selbst erlaubt die Berechnung eines Rißfortschritts entlang eines vordefinierten Pfades, wobei das Rißwachstum von unterschiedlichen Kriterien wie kritischer Spannung, Rißöffnung oder einer Zeitfunktion bestimmt wird. Hierbei bestehen Restriktionen bezüglich der Geometrie (nur ebener Rißfortschritt möglich), und es ist nicht in allen Fällen möglich, Risse in Symmetrieebenen zu betrachten, da u. U. beide Rißufer modelliert werden müssen [74]. Für fortgeschrittene Betrachtungen muß man sich der Implementierung eines Schädigungsmodells des betrachteten Materials bedienen, wie es z.B. von Reusch [75] in Form einer nicht-lokalen Erweiterung des Gurson-Modells [76] zur Simulation duktiler Schädigung vorgeschlagen wird. Hierbei wird die Entwicklung von Hohlräumen als bestimmende Größe des duktilen Rißfortschritts betrachtet. Ebenfalls möglich ist die Implementierung eines Kohäsivzonenmodells, wie es Scheider [77] beschreibt: es wird durch ein benutzerdefiniertes ABAQUS-Element realisiert, das Schädigung und Rißfortschritt durch die Trennung von Grenzflächenelementen beschreibt - dort, wo eine bestimmte Belastung überschritten wird, findet somit eine Trennung des Kontinuums an vordefinierter Stelle ohne ein Schädigungsmodell für das eigentliche Kontinuum statt. Eine weitere, einfache Möglichkeit besteht darin, in mehrstufigen Berechnungen den Rißfortschritt durch das schrittweise Öffnen von Knoten zu simulieren, welches z.B. durch das Freigeben von Symmetriebedingungen geschehen kann. Diese Methode ist allerdings nur bedingt einsetzbar und eignet sich vorzugsweise für Berechnungen, zu denen Vergleichsexperimente mit bekanntem Rißverlauf existieren. Hier kann das Experiment gut nachgebildet werden, wie der Vergleich von Reaktionskräften und plastischen Verformungen zeigt.

Schmitt et al. [78] berichten über die Modellierung von Dreipunkt-Biegeversuchen mit Rißfortschritt (modifiziertes Gurson-Modell), für die ein dreigeteiltes Netz aufgebaut wird. Unmittelbar um die Rißspitze wird ebene Dehnung modelliert, im Umfeld ein ebener Spannungszustand, und die weiter entfernten Regionen der Probe werden zweidimensional modelliert. Die seitlich jeweils 10% gekerbten Dreipunkt-Biegeproben werden dabei als glattes Modell der Nettobreite dargestellt, die Dehnungsbehinderung,

Abbildung 21: Netz nach Schmitt et al. [78]

die durch die Kerben erfolgen soll, wird direkt definiert. Die Ergebnisse seiner Berechnungen zeigen allerdings, daß dieses Modell bei der Nachbildung des Rißwachstums an seine Grenzen stößt. Ab etwa 1 mm Rißfortschritt⁶ entfernt sich - durch die Ausbildung von Scherlippen im Experiment - die berechnete Kraft-Durchbiegungskurve deutlich von der experimentell ermittelten. Andererseits wird gezeigt, daß mit zweidimensionalen Modellen hinreichend genaue Parameterstudien betrieben werden können, wenn diese Modelle an dreidimensionalen Berechnungen, wie sie oben beschrieben sind, ausgerichtet werden können.

⁶ bei 4 mm Probenhöhe und 1 mm Anrißlänge

Möchte man die Mehrachsigkeit des Spannungs- und Verformungszustandes beurteilen und nicht den kompletten Versuch nachbilden, kann es ausreichend sein, eine Deformation der Probe ohne Riß-fortschritt zu betrachten. Da für den *K*-Versuch die kritische Last vor dem Einsetzen der Rißverlängerung bestimmt wird und für die *J*-Ermittlung die Belastung beim Abweichen von der Aufwölbungsgerade – letztere wird durch die Verformung am Riß noch richtig dargestellt - gesucht wird, sind die nachfolgenden Berechnungen ohne eine Implementierung des Rißfortschritts durchgeführt worden.

4.3 Modellierung von Proben und geometrischen Variationen

4.3.1 Prinzipielle Geometrie

Unter den durch ASTM für K_{IC} [2] und J_{IC} [8] genormten Probenformen kommen zwei für diese Arbeit in die engere Wahl: die Dreipunkt-Biegeprobe (3PB) und die Kompakt-Zugprobe (Compact Tension = CT). Beide sind in Abbildung 22 und Abbildung 23 unter Modus-I-Belastung dargestellt, sie weisen jeweils typische Vor- und Nachteile auf.

Die Dreipunkt-Biegeprobe besitzt eine Geometrie, die eher zu den bislang in Bestrahlungsprogrammen eingesetzten Geometrien (Zugproben, Kerbschlagproben) kompatibel ist. Weil sie zur Prüfung keine feste mechanische Verbindung mit der Lasteinbringung benötigt, ist die dynamische Prüfung einfacher, da die Finne mit definierter

Abbildung 22: Dreipunkt-Biegeprobe nach [2]

Abbildung 23: Kompakt-Zugprobe nach [2]

Geschwindigkeit auf die Probe treffen kann. Die Biegeprobe ist auch in instrumentierten Kerbschlaganlagen einsetzbar. Bei der CT-Probe ist durch die formschlüssige Krafteinleitung die Anrißerzeugung einfacher. Ebenso ist der Einbau der CT-Probe in die Versuchsanlage - insbesondere fernbedient sicherer. Letztlich überwiegen aber die Vorteile der Biegeprobe, weshalb diese als Grundtyp für die miniaturisierte Probe gewählt wird.

4.3.2 Ausgeführte Proben

Unterschiedliche Proben werden bruchmechanisch untersucht. Neben den Proben, die voraussichtlich den Größenbedingungen genügen und der entsprechenden Norm entsprechen ("ASTM-3PB"), werden geometrisch ähnliche Verkleinerungen ("Mini-3PB") und abgewandelte Kerbschlagproben ("KLST-BM") untersucht. Die Abmessungen der Proben sind in Tabelle 6 gegeben. Es sind:

a Riß	länge
-------	-------

В	Breite

- *B_n* Nettobreite
- *L* Auflagerabstand

- L_g Probenlänge
- W Probenhöhe
- W-a Restligamenthöhe

Bezeichnung	Zeichnung	L_{g}	L	В	W	W - a	Seitenkerbe	B_n
ASTM							-	9,00
ASTM-K	Abbildung A 32	92	72	q	18	9	Abbildung A 33	7,00
ASTM		98	12	Ŭ			-	9,00
ASTM-K		00					Abbildung A 33	7,00
ISO-V-BM	Abbildung A 39	55	40	10	10	8	-	10,00
Mini-3PB Abbildung A 34		20	24		6		-	3,00
Mini-3PB-K	, abbildurig , to t	30	24		Ŭ		Abbildung A 35	2,33
KLST-BM	Abbildung A 36			2		3	-	3,00
KLST-BM-K	Г-ВМ-К		00/047	3	1	0	Abbildung A 37	2,33
KLST	Abbildung A 38	21	22/24				-	3,00
KLST-K	, 100 Hading / 100						Abbildung A 37	2.33

Tabelle 6: Abmessungen der verwendeten Proben, alle Maße in mm

4.3.3 Normproben: Dreipunkt-Biegeprobe gemäß ASTM-Norm E 399

Die gewählte Geometrie der Dreipunkt-Biegeprobe in Abbildung 24 entspricht der ASTM-Norm E 399 [2] für den K_{IC} -Versuch und erfüllt damit auch die weiter gefaßten Bedingungen des J_{IC} -Versuchs nach Norm E 813 [8].

Insbesondere gilt für den *K*-Versuch: $L = 4 \cdot W$, $B = 0.5 \cdot W$, $0.45 \cdot W < a < 0.55 \cdot W$

Abbildung 24: Dreipunkt-Biegeprobe nach ASTM-Norm E 399, a = B = 9 mm, L = 72 mm

Die Probe besitzt ein charakteristisches Maß von W = 18 mm. Die Anrißlänge *a* setzt sich hierbei aus der maschinell gefertigten Startkerbe und dem vor dem eigentlichen Versuch in die Probe einzubringenden Ermüdungsriß zusammen. Die Gesamtlänge der Probe beträgt ohne Auswirkung auf das Versuchsergebnis 92 oder 98 mm.

4.3.4 Maßstäbliche Verkleinerung: Mini-3PB-Probe

Die Miniatur-Biegeprobe nach Abbildung 25 stellt eine maßstäbliche Verkleinerung der Probe in Abbildung 24 dar. Lediglich die Befestigungskanten für den Rißöffnungsaufnehmer (Abbildung 62 auf Seite 58) können systembedingt nicht verkleinert werden. Da alle bruchmechanisch relevanten Hauptabmessungen im gleichen Maßstab von 1:3 verkleinert werden, wird die Probe als geometrisch ähnlich bezeichnet.

Die Probe entspricht zwar formal den Geometriebedingungen aus den beiden oben zitierten Normen, kann diesen aber bei einer charakteristischen Größe von W = 6 mm aufgrund der für die meisten Stähle nicht erreichten absoluten Probenmindestgröße (siehe Abschnitt 2.1.3) nicht genügen.

Trotz Abmessungen in der Größenordnung der KLST-Charpy-Probe bietet die Mini-3PB-Probe ausreichende Greifflächen für die Handhabung über Manipulatoren in abgeschlossenen Prüfräumen. Es kann weiterhin dieselbe Prüfmaschine wie für die Standardproben verwendet werden, ebenso eine identische Meßkette. Um die Größenverhältnisse zu verdeutlichen, zeigt Abbildung 26 beide

⁷ 22 mm bei Prüfung in Kerbschlaganlage, 24 mm bei Prüfung in Dreipunkt-Biegeanlage

Dreipunkt-Biegeproben, wobei die Mini-3PB-Probe alle in Abschnitt 2.2 aufgeführten prinzipiellen Vorteile kleinerer Proben aufweist.

Abbildung 25: Miniatur-Dreipunkt-Biegeprobe, a = B = 3 mm, L = 24 mm

Abbildung 26: ASTM-Probe und miniaturisierte 3PB-Probe

4.3.5 Verringerung der erforderlichen Probengröße durch Seitenkerben

Die für einen ausreichend ausgeprägten ebenen Verformungszustand vor der Rißspitze notwendige Probenbreite kann verringert werden, indem Seitenkerben in Rißrichtung in die Probe eingebracht werden. Sie bewirken eine Veränderung des Spannungszustandes hin zu stärkerer Dreiachsigkeit. Je nach Ausformung der Kerben bildet sich hierbei der Abfall der Spannung in *z*-Richtung (Koordinatensystem in Abbildung 16) weniger stark aus oder wird ganz unterdrückt.

Probe	ASTM	Mini-3PB		
B in mm	9,00	3,00		
Kerbtiefe in mm	1,00	0,33		
Kerbradius in mm	0,25	0,10		
B_n in mm	7,00	2,33		
<i>B</i> ./ <i>B</i>	78%	78%		

Abbildung 27: Mini-3PB-Probe mit Seitenkerben

Tabelle 7: Abmessungen der Seitenkerben

Von den normalgroßen und verkleinerten Dreipunkt-Biegeproben werden nach der Anrißerzeugung seitengekerbte Varianten hergestellt. Wie die Hauptmaße der Proben sind hierbei auch die Kerbtiefen und Kerbradien maßstäblich verkleinert (Abbildung A 33 und Abbildung A 35). Abbildung 27 zeigt als Beispiel eine seitengekerbte Miniaturprobe. Seitlich gekerbte Proben sind in der Norm für den K_{IC} -Versuch nicht vorgesehen und entsprechen daher nur den Vorschriften für den J_{IC} -Versuch.

4.3.6 Geometrisch nicht ähnliche Probe

Eine bruchmechanische Dreipunkt-Biegeprobe von den Außenabmessungen der KLST-Charpy-Probe stellt eine geometrisch nicht ähnliche Variante einer Kleinprobe dar. Sie besitzt den Vorteil, in den Prüfeinrichtungen für die oben beschriebenen Proben und in Kerbschlaganlagen prüfbar zu sein.Diese Probe wird als KLST-BM bezeichnet und ist in Abbildung 28 dargestellt. Sie besitzt eine zur Mini-3PB-Probe identische Restligamenthöhe von 3 mm bei einer Anrißlänge von nur 1 mm

Abbildung 28: KLST-BM-Probe (seitlich gekerbt)

(jeweils 0,5 mm Startkerbe und Rißfortschritt). Die Probenhöhe von W = 4 mm kann die Geometriebedingungen nicht mehr erfüllen, aber das Verhältnis der Größen *a*, *B*, *L* und *W*-*a* zueinander wird gewahrt. Auch von dieser Probe existiert eine mit den gleichen Parametern wie die Mini-3PB-Probe seitlich gekerbte Variante (Abbildung A 37).

4.3.6.1 Variation des Auflagerabstandes

Die Variation des Auflagerabstandes führt zu veränderten Durchbiegungswinkeln und somit zu unterschiedlichen Verformungen der Probe bei gegebener Verschiebung des Lastangriffspunktes. Da sich bei der Miniaturisierung der Probe gem. Abschnitt 4.3.4 alle relevanten Größen (inklusive Auflagerabstand und Auflagerradius) im gleichen Maßstab ändern, bleiben bei skalierter Verschiebung der Rißöffnungswinkel und die Verformung gleich. Die Korrekturfunktion für die *K*-Auswertung (Abschnitt 2.1.1) bleibt demnach von der Miniaturisierung unberührt.

Für den unterschiedlichen Auflagerabstand bei Prüfung von KLST-BM-Proben in der normgerechten Aufnahme (24 mm) und im Pendelschlagwerk (22 mm) wird eine entsprechend angepaßte Korrekturfunktion verwendet (Abschnitt 4.3.6.3). Für die Ermittlung des *J*-Integrals spielt eine Variation des Auflagerabstandes formal keine Rolle, da die im Versuch umgesetzte Energie nur auf den Probenquerschnitt bezogen wird.

4.3.6.2 Bewegungsschema der Biegeprobe bei Variation der Probenhöhe

Dreipunkt-Biegeproben, die mit gleicher Restligamenthöhe *W*-*a* und Probenbreite in identischen Versuchsanordnungen eingesetzt werden, erfahren unterschiedliche Durchbiegungs-Verformungs-Verläufe, sobald die Probenhöhe *W* variiert. Als Maß für die Verformung soll der halbe Durchbiegungs-oder Rißöffnungswinkel α gelten; die Verschiebung des Lastangriffspunktes $\stackrel{\uparrow}{\rightarrow}$ wird mit *s* bezeichnet. Es sind:

Abbildung 29: Kinematik bei Deformation der Dreipunkt-Biegeprobe

Abbildung 30: Abhängigkeit von α von *W* (Mini-3PB- und KLST-BM-Probe)

Differenz Rißöffnungsw

0.8

0.0

In Abbildung 29 sind die undeformierte Probe grau und die deformierte Probe schwarz dargestellt. Der Momentanpol der Biegung wird bei der halben Restligamenthöhe *b* angenommen. Es folgen die geometrischen Zusammenhänge

$$c = W + d$$
; $s = c + g - e - f$; $b = e \cdot \cos \alpha$; $f = (a + b + d)$
 $\cos \alpha h = (a + b + d) \cdot \sin \alpha$; $i = L/2 - h$; $g = i \cdot \tan \alpha$

Daraus folgt die Abhängigkeit der Verschiebung des Lastangriffspunktes von α und a zu:

$$s(\alpha, a) = c + g - e - f =$$

$$= 2b + d - \frac{b}{\cos \alpha} - (b + d) \cdot (\cos \alpha + \sin \alpha \cdot \tan \alpha) + L/2 \cdot \tan \alpha + a \cdot [1 - \cos \alpha - \sin \alpha \cdot \tan \alpha]$$
(44)

Abbildung 30 zeigt die Ergebnisse dieses analytischen Ausdrucks für Proben mit konstanter Restligamenthöhe von 3 mm und Höhen von 4 bzw. 6 mm. Die Differenz zwischen den Rißöffnungswinkeln nimmt mit zunehmender Verformung überproportional zu; die Probe mit geringerer Höhe benötigt eine vergleichsweise stärkere Durchbiegung, um den gleichen Grad an Verformung zu

erreichen. Ein Vergleich mit Finite-Elemente-Berechnungen ist in Abbildung A 2 (Anhang Seite 122) dargestellt.

4.3.6.3 Berechnung des Korrekturterms für verschiedene Probengeometrien

Bei der KLST-BM-Probe ist der Auflagerabstand *L* verschieden von 4·*W*, und das Verhältnis a/W = 0,25 erfüllt auch nicht die Forderungen nach ASTM, um für den Korrekturterm *f* (6) zur *K*_{*IC*}-Ermittlung eine Genauigkeit von ±0,5% sicherzustellen. Für entsprechende *K*_{*IC*}-Auswertungen im experimentellen Teil dieser Arbeit ist daher eine aufwendigere Korrekturfunktion *f*[#] notwendig, wie sie z.B. durch eine mehrparametrige Koeffizientengleichung gegeben werden kann. Fett und Munz [79] stellen eine aus Finite-Elemente-Berechnungen abgeleitete 5x5-Matrix von Koeffizienten vor, die von Rißlänge *a*, Auflagerabstand *L* und Probenhöhe *W* abhängig sind. Besonders bei verringerter Probenhöhe führt die Verwendung der nur über *a/W* definierten Korrekturfunktion zu zu geringen *K*-Werten, während bei *W* = 6 mm kaum Differenzen bestehen.

4.3.7 Vernetzung und Randbedingungen

In der zwei- und dreidimensionalen Umsetzung wird die Probe kontinuierlich modelliert und mit einem einheitlichen Materialmodell und Elementen nur einer Klasse ausgestattet. Die Probe wird für eine angepaßte Vernetzung in Segmente unterteilt, wie sie in Abbildung 31 zu erkennen sind. In Bereichen Deformation (Symmetriefläche hoher um die Rißspitze) oder hoher Kräfte (Finne und Auflager) sind kleine Elementgrößen notwendig, einerseits, um ein realistisches Verzerrungsbild zu erhalten, andererseits. Hinterschneiden um ein der Kontaktpartner Finne und Auflager bei zu weitem Knotenabstand zu verhindern.

Der Vorteil der kontinuierlichen Modellierung der

Abbildung 31: dreidimensionale Modellierung des Dreipunkt-Biegeversuchs

Probe gegenüber der segmentiellen, an die verschiedenen Arten der auftretenden Deformationen angepaßten (wie von Schmitt et al. vorgestellt [78], s. Seite 30), liegt darin, daß ein- und dasselbe Modell einer Probe für unterschiedliche Materialmodelle verwendet werden kann. Auch sehr duktile Werkstoffzustände, die eine relativ starke Deformation der Probe bei geringem Rißwachstum aufweisen, können dargestellt werden, ohne daß vor der Simulation eine Kenntnis über die angemessenen Regionen von ebenem Spannungs- und Dehnungszustand vorliegt.

Abbildung 32: EUROFER 97, Mini-3PB-Probe, 0,14 mm Durchbiegung

Widerlager und Finne sind als starre analytische Körper definiert, da ihre Deformation vernachlässigbar ist. Die Bewegung der Finne ist wie im verformungsgesteuerten Experiment der die Simulation bestimmende Parameter. Abbildung 32 zeigt eine zweidimensionale Modellierung einer Mini-3PB-Probe, in den links dargestellten kreisförmigen Vergrößerungsausschnitten ist die Spannungsverteilung für σ_{11} bzw. σ_y vor der Rißspitze und die dortige Aufwölbung zu sehen.

4.4 Betrachtete unmittelbare Resultate

4.4.1 Reaktionskräfte und Energien

Abbildung 33 stellt reale Meßergebnisse den Ergebnissen einer Simulation für die Deformation einer Mini-3PB-Probe gegenüber. Aufgetragen sind die halbe Kraft an der Finne und die Reaktionskraft einer halben zweidimensional modellierten Probe. Es ist ersichtlich, daß das aus dem Zugversuch in Abschnitt 4.1.1 abgeleitete Materialmodell den realen Werkstoff (hier EUROFER 97) auch für den Dreipunkt-Biegeversuch gut nachbildet.

Da zwei- und dreidimensionale Berechnungen sehr gut vergleichbare Reaktionskräfte für jeweils gleiche Materialien und Proben ergeben, ist davon auszugehen, daß auch in der dreidimensionalen Anwendung die Materialmodelle korrekt sind. Des weiteren ergeben sich trotz der gröberen Vernetzung des dreidimensionalen Modells keine bedeutenden Unterschiede zu den

Abbildung 33: Vergleich von Versuch EA18 und Berechnung für EUROFER 97, Mini-3PB-Probe

Resultaten der zweidimensionalen Berechnung an einem Modell mit um die Rißspitze stark verfeinertem Netz.

4.4.2 Spannungen und Verformungen dreidimensionaler Berechnungen

Alle nachfolgend betrachteten Resultate sind Spannungen und Dehnungen in der Nähe der Rißspitze, und zwar in der durch die Koordinaten 2 und 3 aufgespannten Symmetrieebene der Probe – in Abbildung 31 im linken Bildrand zu sehen. Sie entstammen dreidimensionalen Berechnungen beim Einsetzen der plastischen Verformung sowie nach stärkerer Deformation. Gezeigt werden Ergebnisse für große und kleine Dreipunkt-Biegeproben mit und ohne Seitenkerben. Die Materialmodelle für EUROFER 97 und für MANET-II, letzterer in beiden Wärmebehandlungszuständen, finden Anwendung.

Sämtliche Abbildungen zeigen links die Symmetrieebene der Probe, rechts sind die freie Oberfläche der glatten Probe oder der Kerbgrund der Seitenkerbe dargestellt. Bei den Falschfarbendarstellungen der Spannungen befindet sich der Riß in der oberen Bildhälfte. Wegen unterschiedlicher Probenbreiten sind in allen Diagrammen die Entfernungen zur Probenmitte relativ zur halben Probenbreite angegeben.

4.4.2.1 Spannungen und Dehnungen beim Einsetzen der plastischen Verformung

In Abbildung 34 sind die Spannungen dargestellt, die in einer ASTM-Biegeprobe aus MANET-II ($T_{anl} = 700^{\circ}$ C) nach 0,13 mm Verschiebung des Lastangriffspunktes induziert werden (Skala in N/mm²). Nicht nur σ_{33} nimmt zur freien Oberfläche hin ab, auch die anderen beiden Spannungen erfahren erhebliche, bis weit in die Probe hineinreichende Reduzierungen. $R_{p0,2}$ wird nur in einem kleinen Bereich von ca. 0,15 mm an der Rißspitze von σ_{11} erreicht oder überschritten.

Abbildung 34: Spannungsverteilung in glatter Probe nach 0,13 mm Durchbiegung, rechts die freie Oberfläche

Abbildung 35 dokumentiert entsprechende Ergebnisse für eine identische Probe mit 1 mm tiefer seitlicher Kerbung (ASTM-K). σ_{22} und σ_{33} zeigen bis auf ca. 0,3 mm unterhalb der Kerbe einen sehr gleichmäßigen Verlauf über die Ligamentbreite, während σ_{11} im Kerbgrund erwartungsgemäß eine deutliche Überhöhung erfährt. $R_{p0,2}$ wird von σ_{11} auf einer Tiefe von 0,3 mm entlang der Rißspitze überschritten.

Abbildung 35: Spannungsverteilung in seitengekerbter Probe nach 0,13 mm Durchbiegung, rechts die Kerbe

In Abbildung A 3 sind zum Vergleich die Dehnungen in Modus-I-Richtung dargestellt, die glatte Probe verfügt über ein gleichmäßiges ε_{11} -Feld mit leichten Reduzierungen an der freien Oberfläche, während die seitlich gekerbte Probe in der Probenmitte die gleiche Dehnung aufweist und zur Kerbe hin wesentlich stärker gedehnt wird.

4.4.2.2 Spannungen und Dehnungen nach großer plastischer Verformung

Die oben aufgeführten Spannungen und Dehnungen für deutlich stärkere Deformation sind im Anhang in Abbildung A 4 bis Abbildung A 6 dargestellt. Prinzipiell bleibt das Ergebnis erhalten, mit dem Unterschied, daß die Linien gleicher Spannung bei der glatten Probe stärker gekrümmt sind und die plastische Deformation nun wesentlich größere Teile der Probe erfaßt. σ_{11} überschreitet $R_{p0,2}$ bis weit über den Bildausschnitt (2 mm). Das ε_{11} -Feld ist für die glatte Probe nicht mehr gleichmäßig, sondern zum Probenrand hin verflacht. Die Einschnürung der Proben an der Rißspitze ist deutlich erkennbar. Die Spannung σ_{22} besitzt in Rißausbreitungsrichtung betrachtet ihr Maximum unterhalb der Rißspitze im Ligament. Dieses Maximum verschiebt sich mit fortschreitender Deformation in negative 22-Richtung, weshalb lokal σ_{22} mit zunehmender Verformung abnehmen kann.

Entsprechende Darstellungen von Spannungen und Dehnungen für miniaturisierte Proben sind im Anhang in Abbildung A 4 bis Abbildung A 9 dokumentiert. Diese Abbildungen werden hier nicht gesondert diskutiert, da sie keinen wesentlichen Unterschied zu den ASTM-3PB-Proben zeigen.

4.4.2.3 Spannungsverteilungen, glatte ASTM-Probe

Alle nachfolgend aufgeführten Ergebnisse beruhen auf Berechnungen, die mit dem Materialmodell für MANET-II mit 700°C Anlaßtemperatur ausgeführt werden. Abbildung 36 stellt die Ergebnisse aus Abbildung 34 dar. Bis zum Einsetzen der plastischen Verformung sind 0,3 mm von der Rißspitze entfernt σ_{11} und σ_{22} etwa gleich groß und fallen erst unmittelbar vor der Probenoberfläche ab. σ_{33} variiert wesentlich stärker und läßt sich über den Ansatz von Boyd ("S33 Boyd") erheblich realistischer darstellen als über die Querkontraktion des EDZ berechnen ("S33 ber."). Für letztere Berechnung wird unter der Annahme des EDZ die dritte Dehnungskomponente zu 0 gesetzt und für den Bereich der elastischen Dehnung eine Querkontraktionszahl von $\nu = 0,3$ angenommen.

$$\varepsilon_{33} = \frac{1}{E} \cdot \left[\sigma_{33} - \nu (\sigma_{11} + \sigma_{22}) \right] \quad \Rightarrow \quad \sigma_{33ber.} = \nu (\sigma_{11} + \sigma_{22}) \quad (42)$$

Dieser Wert ist nur für den mit einer Volumenvergrößerung verbundenen Bereich der elastischen Deformation gültig. Bei der sich anschließenden plastischen Verformung nimmt ν aufgrund der vorherrschenden Volumenkonstanz den Wert 0,5 an. Demnach wird eine mit $\nu = 0,3$ errechnete Komponente $\sigma_{33ber.}$ unter dem aus den FE-Rechnungen entnommenen Wert liegen. Ein Vergleich der aus den Spannungen errechneten Querkontraktionszahlen mit einer Betrachtung der Dehnungszustände ist in Tabelle A 5 im Anhang (Seite 130) gegeben.

Nach weitergehender Durchbiegung bis 2,50 mm (Abbildung A 13, Anhang Seite 126) zeigen auch σ_{11} und σ_{22} eine starke Reduktion in Oberflächennähe, σ_{11} und σ_{33} nehmen lokal Werte an, die weitaus größer als die aus der Zugfestigkeit errechneten wahren Spannungen sind. Mit keiner der beiden Abschätzungen gelingt es, einen annähernd realistischen Wert für σ_{33} zu gewinnen.

Im Anhang sind in Abbildung A 14 ff. weitere Darstellungen der Spannungsverteilungen in 0,9 mm Entfernung von der Rißspitze gegeben. Dort ist ersichtlich, daß zwar beim Einsetzen der plastischen Verformung sämtliche Spannungen etwa um 50% niedriger sind als 0,3 mm vor dem Riß. Aber nach deutlicher plastischer Deformation nehmen die drei Spannungen Werte an, die in der Größenordnung der Spannungen in 0,3 mm Entfernung von der Rißspitze liegen, sich aber nicht mehr so stark unterscheiden. σ_{33} zeigt für alle betrachteten Probengeometrien in weiterer Entfernung von der Rißspitze ein deutlicheres Abfallen zum Probenrand hin als in unmittelbarer Rißnähe.

Abbildung 36: ASTM-3PB-Probe, glatt, 0,13 mm Durchbiegung, x = 0,30 mm

4.4.2.4 Spannungsverteilungen, seitlich gekerbte ASTM-Probe

Durch eine Seitenkerbung gemäß Abschnitt 4.3.5 kann ein gleichmäßiger Verlauf aller drei Spannungen bewirkt werden (Abbildung 37). σ_{33} nimmt Werte an, die mit denen der Berechnung für ebene Dehnung gut übereinstimmen. Weiter entfernt von der Rißspitze steigt σ_{11} bedingt durch die Kerbschärfe zum Rand hin an, wohingegen der Verlauf der anderen beiden Spannungen weitgehend unbeeinflußt bleibt (Abbildung A 16). Nach großer Deformation (Abbildung A 17) sind σ_{11} und σ_{22} über

die Probenbreite weitgehend konstant, σ_{33} fällt zum Rand hin stark ab und läßt sich nicht aus σ_{11} und σ_{22} abschätzen.

Abbildung 37: ASTM-3PB-Probe, seitengekerbt, 0,13 mm Durchbiegung, x = 0,23 mm

4.4.2.5 Spannungsverteilungen, Mini-3PB-Probe

Die glatte Miniaturprobe zeigt ein zur ASTM-3PB-Probe vergleichbares Ergebnis. Hierbei entsprechen 0,043 mm Durchbiegung (Abbildung A 18) dem Einsetzen der plastischen Verformung und 0,900 mm Durchbiegung der großen Deformation der ASTM-3PB-Probe (Abbildung A 20). Die Spannungen werden mit x = 0,061 bzw. 0,237 mm in entsprechend verkleinerter Entfernung von der Rißspitze betrachtet.

Eine relativ gleichmäßige Verteilung der drei Spannungen kann auch bei der miniaturisierten Probe durch eine entsprechende Seitenkerbung erreicht werden. Abbildung 38 zeigt einen Verlauf von σ_{33} , der über die Bedingungen des EDZ aus σ_{11} und σ_{22} zwar qualitativ richtig, aber zu hoch vorhergesagt wird. Nach großer Deformation (Abbildung A 22) bleiben σ_{11} und σ_{22} weitgehend unabhängig von ihrer *z*-Koordinate, und σ_{33} nimmt zum Rand hin ab.

Abbildung 38: Mini-3PB-Probe, seitengekerbt, 0,043 mm Durchbiegung, x = 0,061 mm

Die Berechnung der Spannungsverläufe über die Probenbreite zeigt, daß zumindest bis zum Einsetzen großräumiger plastischer Verformungen durch eine geeignete Seitenkerbung der Proben ein Dehnungszustand herbeigeführt werden kann, der die Bedingungen der vorwiegend ebenen Dehnung erfüllt.

Damit erscheinen die seitlich gekerbten Varianten der Dreipunkt-Biegeproben geeignet, bruchmechanische Kennwerte zu ermitteln. Im folgenden Abschnitt 4.5 werden durch simulierte

Biegeversuche die Proben anhand der Veränderlichkeit des *J*-Integrals entlang ihres Querschnittes unter Modus-I-Belastung untersucht.

4.5 J-Integral

Zur Berechnung des *J*-Integrals bedient sich ABAQUS selbstgewählter Pfade entlang der Elementgrenzen, im folgenden Kontur-Integrale genannt, die in Abbildung 39 dargestellt sind. Von einer in der Eingabedatei zu definierenden Startkontur ausgehend, werden immer weiter nach außen greifende Elementringe ausgewertet. Die Berechnung der Kontur-Integrale erfolgt hierbei nicht nach der von Rice gegebenen Definition

$$J = \int_{S} \left(W dy - T_{i} \frac{du}{dx} ds \right) \quad (45)$$
$$W = \int_{0}^{\varepsilon} \sigma_{ij} d\varepsilon_{ij} \quad (46)$$
$$T_{i} = \sigma_{ij} \cdot n_{i} \quad (47) \quad \text{mit } u = \text{Verschiebungsvektor.}$$

Die Verwendung dieser Definition stieße auf das Problem, daß Verschiebungen an Knotenpunkten in den Elementecken berechnet werden, während Spannungen an den Gauß'schen Integrationspunkten innerhalb der Elemente vorliegen. Zur Integration müßten daher an Elementübergängen häufig unstetige Spannungsverläufe extrapoliert werden. Statt dessen wendet ABAQUS eine zuerst von Parks [80] vorgestellte Methode der virtuellen Rißverlängerung an, bei der Bereichsintegrale über eine beschränkte Fläche (im zweidimensionalen Fall) oder ein beschränktes Volumen (im dreidimensionalen Fall) um die Rißspitze ausgewertet werden, was auch bei relativ groben Netzen gute Ergebnisse liefert. Hierbei wird das *J*-Integral über die Energiefreisetzungsrate *G* bei einer gedachten Verschiebung der Rißfront Δa berechnet [80][74]. Brocks [81] stellt die Modellierung bruchmechanischer Fragestellungen mit für diese Methode geeigneter Vernetzung anhand verschiedener Beispiele vor und zeigt die Grenzen der Wegunabhängigkeit des *J*-Integrals an der sich aufwölbenden Rißspitze auf.

Zur Integration des *J*-Integrals werden die jeweils außerhalb einer Kontur liegenden Elemente mit ihren Spannungen und Dehnungen herangezogen, deshalb ist es ausreichend, einen Knoten als Startkontur zu definieren, welche dann bereits 4 (bei Ausnutzung der Symmetrie 2) Elemente umfaßt. Besonders für die dreidimensionale Berechnung ist dies eine große Erleichterung, da über die Probenbreite sämtliche Konturen in der Eingabedatei angefordert werden müssen – und es so genügt, die Knotennummern an der Rißspitze anzugeben.

Ausführliche Betrachtungen zum berechneten *J*-Integral in Finite-Elemente-Modellen und zu seiner Abhängigkeit vom gewählten Integrationspfad – im Gegensatz zur theoretischen Wegunabhängigkeit – haben Brocks und Scheider dargestellt [82]. Für Berechnungen in ABAQUS werden dort konkrete Beispiele vorgestellt und automatisch generierte Integrationspfade analysiert. Hierbei entsteht ein Zielkonflikt bezüglich der Vernetzung des Modells:

Abbildung 39: Kontur-Integrale in ABAQUS

Zur reinen Berechnung des Spannungs- und Verformungszustandes ist es zweckmäßig, das Netz an der Rißspitze und im Ligament fein zu gestalten, während an den beiden Rißufern eine gröbere Gestaltung des Netzes vollkommen ausreichend und zur Reduzierung der Komplexität der Rechnung geboten ist. Werden nun um die Rißspitze automatisch Konturen gelegt, entfernen diese sich wegen der größeren Elementlängen an den Rißufern rascher von der Rißspitze als im Ligament. Im

Extremfall erreichen die Konturen auf der einen Seite die Begrenzung der Probe, während sie sich im feineren Netz immer noch innerhalb des vollplastisch verformten Bereichs befinden, was zu fehlerhaften Ergebnissen führen kann. Diese sind durch mit in die Integration einbezogene Singularitäten beim Übergang in einen anderen Modellbereich zu erklären. Ebenso treten fehlerhafte Werte bei Erreichen der Modellgrenzen (Oberflächen) auf. Eine vorzeitig vorgetäuschte Konvergenz des *J*-Integrals durch Wiederholung des Integrationspfades kann in den Berechnungen nicht beobachtet werden, da nach Erreichen der Modellgrenzen die Rechnung abbricht. Um eine möglichst große Anzahl an Konturen sinnvoll integrieren zu können, wurde deshalb das Netz an den unbelasteten Rißufern ähnlich fein wie im Ligament gestaltet.

4.5.1 Ergebnisse zweidimensionaler Berechnungen

Der erste Schritt ist ein Vergleich von Ergebnissen zweidimensionaler Berechnungen - wie sie nur für glatte Proben sinnvoll durchführbar sind - mit dem realen Versuch. Die Auswertungen der Kontur-Integrale zeigen, daß erst ab einer gewissen Anzahl von zur Berechnung umschlossenen Elementen konvergierende Ergebnisse erzielt werden. Für die zweidimensionale Berechnung sind ca. 10 Konturen vonnöten wie aus Abbildung 40 ersichtlich wird. In Abbildung 41 sind reale Versuchsdaten für die Mini-3PB-Probe EA18 eingebunden. Die Energie nach 0,5 mm Durchbiegung ist im Experiment geringfügig höher als in der Simulation, da der Anriß mit 2,832 mm etwas kürzer ist als in der Berechnung zugrundegelegt (siehe auch dazu die Parameterstudie in Abschnitt 5.2.1.2). Das aus der im Verusch eingebrachten Energie abgeleitete *J*-Integral ist, da es die Energie auf die Restligamenthöhe bezieht, etwa gleich groß wie berechnet:

Abbildung 40: Konvergenz der Kontur-Integrale (Mini-3PB-Probe, EUROFER 97)

Abbildung 41: Vergleich zwischen Experiment und Berechnung für EA 18

4.5.2 Ergebnisse dreidimensionaler Berechnungen

Wie im zweidimensionalen Bereich ist auch bei den dreidimensionalen Berechnungen eine gewisse Anzahl von Konturen notwendig. Die Konvergenzneigung ist für Probenmitte und Randbereiche vergleichbar, und nach ca. 10 bis 15 Konturen tritt keine wesentliche Änderung mehr ein. Abbildung A 23 zeigt Berechnungen für eine ASTM-3PB-Probe aus MANET-II (600°C Anlaßtemperatur) mit 14 Konturen, wobei die Konturen 11 bis 14 so dicht liegen, daß sie nicht einzeln dargestellt sind. Auffällig im Vergleich zur zweidimensionalen Berechnung mit ihrer feinen Rißspitzenvernetzung ist, daß das *J*-Integral bei gröberer Vernetzung der Rißspitze zunächst unter- statt überschätzt wird. Bereits die dritte Kontur liefert Ergebnisse, die so nahe am Konvergenzwert liegen, wie erst die achte Kontur in der zweidimensionalen Berechnung.

Entsprechend der inhomogenen Spannungsverteilung über die Probentiefe ist für die glatten Proben auch das in der Probenmitte ermittelte *J*-Integral deutlich höher als dasjenige in der Nähe zur freien Oberfläche (siehe Abbildung 43 ff.). Um die verschiedenen Berechnungen vergleichbar zu machen, wird ein Mittelwert \overline{J} für das *J*-Integral über die Probenbreite eingeführt. \overline{J} errechnet sich für *n* Elemente mit *n*+1 Knoten entlang einer Rißfront in *z*-Richtung zu:

$$\overline{J} = \frac{1}{z_n - z_0} \left[J_0 \frac{z_1 - z_0}{2} + J_n \frac{z_n - z_{n-1}}{2} + \sum_{i=1}^{n-1} J_i \frac{z_{i+1} - z_{i-1}}{2} \right]$$
(48)
Abbildung 42: Vernetzung entlang der Rißfront => z_1

Hierbei wird jeder *J*-Wert mit dem von ihm repräsentierten Breitensegment gewichtet, die Ergebnisse der ersten und letzten Konturen dementsprechend nur mit halber Elementbreite. Der zweidimensional berechnete *J*-Wert liegt zwischen den dreidimensional erhaltenen Werten für Symmetrieebene und freie Oberfläche und stimmt sehr gut mit dem Mittelwert \overline{J} überein.

4.5.2.1 Glatte ASTM-3PB-Proben

Abbildung 43: *J*-Integral über die Probenbreite für verschiedene Durchbiegungen der glatten ASTM-3PB-Probe, MANET-II, $T_{anl.}$ = 700°C

Die folgenden Ergebnisse stammen aus Berechnungen für das Materialmodell für MANET-II mit 700°C Anlaßwärmebehandlung. Die zugehörigen Spannungsverteilungen sind in Abbildung 34 sowie Abbildung 36 und Abbildung A 13 nach 0,13 bzw. 2,50 mm Durchbiegung angegeben. Ergebnisse für glatte Proben mit 600°C Anlaßwärmebehandlung und für EUROFER 97 sind in den Darstellungen der Ergebnisse für die entsprechenden seitengekerbten Proben in Abschnitt 4.5.2.2 enthalten. Die angegebene Entfernung von der Probenmitte bezieht sich auf die *z*-Koordinaten der Knoten der undeformierten Probe. Bei Deformation treten Verschiebungen der Knoten zum Probeninneren hin auf, die um so stärker sind, je näher die Knoten zum Probenrand liegen. In der gewählten Darstellung in Abbildung 43 ff. finden zwecks besserer Vergleichbarkeit der verschiedenen Deformationsstufen diese Verschiebungen keine Berücksichtigung.

Abbildung 43 zeigt eine Darstellung des *J*-Integrals über die Breite der glatten Probe. Zum Probenrand hin nimmt das *J*-Integral für alle Stadien der Verformung relativ stark ab und erreicht dort etwa nur die Hälfte des Wertes in der Probenmitte.

Um die Differenz von J_0 in der Probenmitte und \overline{J} darzustellen, sind in Abbildung 44 beide Werte über der Verschiebung des Lastangriffspunktes als "J Zentrum" und "J" aufgetragen. Zur Quantifizierung des Abfalls des *J*-Integralwertes zum Probenrand hin bietet sich die Definition einer relativen Breite β

an, wie sie in der gleichen Abbildung aufgetragen ist. β beschreibt als Grenzwert, bis zu welcher relativen halben Probenbreite (*z* von der Symmetrieachse aus gezählt) das ermittelte *J*-Integral einen bestimmten Prozentsatz von *J* in der Probenmitte erreicht.

Abbildung 44: *J*-Integral und $\beta_{0,8}$ und $\beta_{0,9}$ über Lastangriffspunktverschiebung für glatte ASTM-3PB-Probe, MANET-II, $T_{anl.} = 700^{\circ}$ C

Mit Hilfe dieser Parameterdarstellung läßt sich z. B. aus Abbildung 44 ablesen, daß bei einer Lastangriffspunktverschiebung von 1 mm nur auf 48% der Probenbreite mindestens 90% von J_0 erreicht werden, auf 64% der Breite sind es noch 80% von J_0 . Umgekehrt kann auch von einer geforderten Gleichförmigkeit der *J*-Integral-Verteilung ausgegangen werden: auf 75% der Probenbreite sollen noch 90% bzw. 80% von J_0 erreicht werden, was 0,25 bzw. 0,50 mm Durchbiegung gestattet.

4.5.2.2 Seitlich gekerbte ASTM-3PB-Proben

Abbildung 45: *J*-Integral über die Probenbreite für glatte und seitengekerbte ASTM-3PB-Probe, MANET-II, $T_{anl.} = 700^{\circ}$ C

In Abbildung 45 sind die *J*-Integral-Verläufe für seitengekerbte Proben denen für glatte aus Abbildung 43 gegenübergestellt. Auch hier nimmt der Wert von *J* zum Probenrand hin ab. Allerdings ist die Reduktion deutlich geringer als bei der glatten Probe und der Verlauf von *J* ist über weite Teile der Probe weniger stark gekrümmt, um zum Rand hin stärker abzufallen. Für alle Bereiche liegen *J* und

damit auch J_0 und \overline{J} über den Werten der glatten Probe. Bei Versuchen mit realem Rißwachstum liegt dagegen \overline{J} für seitlich gekerbte Proben unterhalb des Wertes für glatte Proben (s. Auswertungen in Abschnitt 5.2 ab Seite 72).

Daß durch die hohen Werte im Kerbgrund der Seitenkerbe (z = 3,5 mm) der niedrigste Wert für J bei größeren Verformungen in geringem Abstand von der Seitenkerbe gefunden wird, ist nicht auf die Dehnungsbehinderung und Spannungsüberhöhung im Kerbgrund zurückzuführen, es handelt sich vielmehr um die auf Seite 41 angesprochenen fehlerhaften Werte beim Erreichen der Oberfläche. Ein Vergleich mit den zugehörigen Spannungsverläufen in Abbildung 37 und Abbildung A 17 zeigt, daß die Verläufe von σ_{11} und σ_{22} den Anstieg von $J_{z=3.5mm}$ bei größeren Verformungen nicht rechtfertigen.

Abbildung 46 vergleicht den Anstieg von J_0 und \overline{J} und den Verlauf von $\beta_{0,8}$ und $\beta_{0,9}$ für beide Probenformen. Durch die Seitenkerbung steigen (bei einer Lastangriffspunktverschiebung von 1 mm) die Parameter $\beta_{0,8}$ von 64% auf 98% und $\beta_{0,9}$ von 48% auf immerhin 88%. Auf mindestens 75% der Probenbreite werden nun bei 1,80 mm Durchbiegung noch 90% von J_0 erreicht, 80% für die gesamte Simulation (glatt: 0,25 bzw. 0,50 mm).

Abbildung 46: *J*-Integral und $\beta_{0,8}$ und $\beta_{0,9}$ über Lastangriffspunktverschiebung für glatte und seitengekerbte ASTM-3PB-Probe, MANET-II, $T_{anl.} = 700^{\circ}$ C

Das Verhalten für eine auf 600°C abgesenkte Anlaßtemperatur ist sehr ähnlich zu den hier gezeigten Diagrammen für 700°C, die entsprechenden Diagramme sind im Anhang in Abbildung A 24 und Abbildung A 25 gegeben. Zwar sind die absoluten *J*-Werte – den höheren charakteristischen Spannungen des Materialmodells geschuldet – höher, die Krümmung ihres Verlaufes über die Probenbreite ist aber identisch. Die Kurven für $\beta_{0,8}$ und $\beta_{0,9}$ liegen für den spröderen Materialzustand (600°C) etwas weiter zu größeren Deformationen verschoben. Tabelle 8 faßt die Ergebnisse am Ende dieses Abschnitts zusammen.

Berechnungen für EUROFER 97 zeigen prinzipiell ähnliche Ergebnisse mit geringfügigen Abweichungen. *J* liegt nicht nur deutlich niedriger, die J_0 -Werte für seitlich gekerbte und glatte Proben unterscheiden sich auch signifikant weniger als bei den beiden anderen Materialmodellen (Abbildung 47).

Abbildung 47: J-Integral über die Probenbreite für glatte und seitengekerbte ASTM-3PB-Probe, EUROFER 97

Die β -Kurven in Abbildung 48 zeigen dagegen eine größere Sensibilität für den Werkstoff. Sie liegen für seitengekerbte und glatte Proben aus EUROFER 97 relativ weit auseinander, für glatte Proben liegen sie tiefer, für seitlich gekerbte Proben höher als bei MANET (vgl. Tabelle 8).

Abbildung 48: *J*-Integral und $\beta_{0,9}$ und $\beta_{0,9}$ über Lastangriffspunktverschiebung für glatte und seitengekerbte ASTM-3PB-Probe, EUROFER 97

Der modellierte zähere Werkstoffzustand von EUROFER 97 führt demnach dazu, daß zwar die ermittelten *J*-Werte keinen so deutlichen Unterschied zeigen, wie dies für sprödere Werkstoffe der Fall ist, daß aber die - durch die Parameter $\beta_{0,8}$ und $\beta_{0,9}$ quantifizierte - Ungleichförmigkeit des Verlaufes von *J* über der Probenbreite wesentlich stärker durch die Kerbung reduziert wird. Für glatte Proben sind im Vergleich der Materialmodelle die Bereiche für 80% und 90% von J_0 für EUROFER 97 am kleinsten, während sie bei seitlicher Kerbung für dasselbe Materialmodell am größten sind.

		MAN	ET-II	MAN	MANET-II		EUROFER 97		MANET-II	
		(700	J ⁻ C)	ASTN	л-зрв			Mini-3PB		
Kriterium	Größe	glatt	seitlich gekerbt	glatt	seitlich gekerbt	glatt	seitlich gekerbt	glatt	seitlich gekerbt	
$\Delta s = 1,00 /$	$\beta_{0,8}$	64%	98%	63%	97%	60%	100%	73%	100%	
0,33 mm ⁸	$\beta_{0,9}$	48%	88%	52%	89%	46%	88%	58%	100%	
$\beta_{0,8} = 75\%$	Δs_{max}	0,50	> 3,50	0,60	> 3,50	0,40	>3,50	0,31	>2,00	
$\beta_{0,9} = 75\%$	in mm	0,25	1,80	0,30	1,80	0,20	1,75	0,12	>2,00	
$\beta_{0,8_{min}}$		54%	84%	52%	80%	53%	89%	53%	100%	
$\beta_{0,9_{min}}$		38%	63%	39%	65%	38%	72%	38%	94%	

Tabelle 8: Aus J-Integral-Berechnungen abgeleitete Kennwerte

Die Kennwerte $\beta_{0,8min}$ und $\beta_{0,9min}$ bezeichnen den minimalen Anteil des Probenquerschnitts, der bis zur maximal untersuchten Deformation 80% bzw. 90% von J_0 liefert.

4.5.2.3 Mini-3PB-Proben

In den Spannungsverteilungen der Rißebene in Abschnitt 4.4.2.5 (Seite 39 ff.) ist kein deutlicher Unterschied zur Normprobe erkennbar, wohl aber im Verlauf des *J*-Intergrals über die Probenbreite in Abbildung 49. Die Reduktion zum Rand der glatten Probe hin ist noch deutlicher als bei der normalgroßen Probe (etwa 30% von J_0), die Linien der Parameter $\beta_{0,8}$ und $\beta_{0,9}$ verlaufen sogar bei - auf die Probengröße bezogen - etwas größeren Verschiebungen wie bei der großen Probe (Abbildung 50).

Abbildung 49: *J*-Integral über die Probenbreite für glatte und seitengekerbte Mini-3PB-Probe, MANET-II, $T_{anl.} = 700^{\circ}$ C

Die Seitenkerben zeigen ein Resultat mit deutlichen Unterschieden zu den Normproben. J_0 ist für seitlich gekerbte Proben nicht größer als für glatte Proben, sondern etwas kleiner. Zum Rand hin erhöht sich zunächst J, verbleibt auf einem hohen Niveau und verringert sich erst in der Nähe des Kerbgrundes deutlich. Dies führt in Abbildung 50 dazu, daß J_0 und \overline{J} für seitengekerbte Proben von J_0 und \overline{J} für glatte Proben eingeschlossen werden. Der Verlauf von $\beta_{0,8}$ und $\beta_{0,9}$ wird dadurch so weit nach oben verschoben, daß bei 0,33 mm Verformung stets 90% von J_0 über die gesamte Probenbreite gegeben sind.

⁸ 1,00 mm für ASTM-3PB-Probe, 0,33 mm für Mini-3PB-Probe

Abbildung 50: *J*-Integral und $\beta_{0.8}$ und $\beta_{0.9}$ über Lastangriffspunktverschiebung für glatte und seitengekerbte Mini-3PB-Probe, MANET-II, $T_{anl.} = 700^{\circ}$ C

Die Betrachtung des *J*-Integrals für verschiedene Werkstoffe zeigt, daß bei glatten Biegeproben die Werte von *J* unter Modus-I-Belastung zum Probenrand hin stark abnehmen. Die Bereiche, in denen ein bestimmter Prozentsatz des Wertes in der Symmetrieebene der Probe (J_0) erreicht wird, werden mit zunehmender Duktilität der Probe schmaler.

Durch die von Seitenkerben hervorgerufenen Dehnungsbehinderungen wird der Verlauf von J vergleichmäßigt und die Beziehung kehrt sich um: je duktiler der Werkstoff ist, desto breiter sind die Bereiche, in denen J eine auf J_0 bezogene feste Größe erreicht.

Die hier vorgestellten Parameter $\beta_{0,8}$ und $\beta_{0,9}$, ihre Verläufe über die Probenbreite und ihre Minimalwerte $\beta_{0,8min}$ und $\beta_{0,9min}$ sind geeignet, die Ungleichförmigkeit des *J*-Integrals über die Probenbreite zu quantifizieren.

Der Vergleich mit den Spannungsverläufen in Rißnähe zeigt, daß *J* bei glatten Proben ebenso zum Rand hin abnimmt wie die Spannungen. Sowohl bei der großen als auch bei der kleinen Probe gelingt es, durch die vorgeschlagene Seitenkerbung Verläufe von *J* zu erhalten, die über den Querschnitt weitaus gleichmäßiger sind, als es die Betrachtung der Spannungskomponenten in Rißnähe vermuten läßt. Es ist demnach nicht zulässig, vom Spannungsverlauf auf den Verlauf von *J* zu schließen. Die sich in Kapitel 5 anschließende experimentelle Untersuchung wird den praktischen Nachweis der Verwendbarkeit der hier vorgestellten Probentypen erbringen.

5 Experimente an unbestrahlten Proben zur Qualifizierung der Geometrie

In diesem Kapitel werden Proben aus den in Abschnitt 2.9 beschriebenen Werkstoffen untersucht. Zum einen geht es dabei um die Ermittlung bruchmechanischer Kennwerte. Das Hauptziel dieser Arbeit ist aber, die Unterschiede in den Resultaten verschiedener, im Rahmen dieser Arbeit definierter Probengeometrien festzustellen. Insbesondere für eine geeignete Probe mit verkleinerten Abmessungen ist die Konservativität ihrer Ergebnisse nachzuweisen.

5.1 Versuchstechnik

5.1.1 Probenvorbereitung: Rißeinbringung und Rißüberwachung

Vor dem eigentlichen Versuch müssen die Proben mit einem scharfen Anriß versehen werden, der als Ermüdungsriß in die Probe eingebracht wird. Seitenkerben können in Biegeproben sinnvoll erst nach der Anrißerzeugung eingebracht werden. Dies bietet den Vorteil, daß die Randzone des nacheilenden Risses durch die Seitenkerbe weitestgehend entfernt wird, während beim Anschwingen einer bereits seitlich gekerbten Probe der Riß am Rand erheblich zu stark voreilt.

5.1.1.1 Frequenzkontrolle in Resonanzmaschine

Abbildung 51: Resonanz-Prüfmaschine

Abbildung 52: Probeneinspannung (Pfeil)

Wird eine gewisse Anzahl gleichartiger Proben geprüft, bietet sich die Anrißerzeugung in einer sogenannten Resonanz-Prüfmaschine an. Verwendet wird hierfür eine Maschine vom Typ Rumul Cracktronic (Russenberger Prüfmaschinen AG, CH-8212 Neuhausen am Rheinfall), dargestellt in Abbildung 51. Eine solche Maschine stellt einen zwangserregten Biegefeder-Trägheits-Schwinger dar, wobei die Probe Teil der Biegefeder ist. Aufgrund der kinematischen Verhältnisse wird die Probe mit einem reinen Biegemoment zwischen den Einspannstellen belastet (Abbildung 52), wobei die Zone des Rißfortschritts im Momentanpol der Drehbewegung liegt.

Ein elektromagnetisch angetriebener Resonator, der als Drehschwinger ausgebildet ist, erzeugt das zur Belastung notwendige dynamische Biegemoment. Über einen Torsionsstab wird zusätzlich ein statisches Biegemoment auf die Probe aufgebracht, so daß weitgehend beliebige Lastverhältnisse und ein Maximalmoment von 70 Nm erreicht werden können. Eine typische Arbeitsfrequenz für eine 3 mm breite Stahlprobe mit einer Restligamenthöhe von 3 mm liegt bei ca. 114 Hz und damit deutlich über den normalerweise von servohydraulischen Maschinen erreichbaren Frequenzen. Das Rißwachstum in der Probe ändert die Steifigkeit der Probe und damit die Eigenfrequenz des Systems, welche als Ausgangssignal für die Momentenregelung dient.

Zahlreiche Versuche, Anrisse in Miniaturproben unter Verwendung der serienmäßigen Probeneinspannungen zu erzeugen, lieferten nur unbefriedigende Ergebnisse, da die Risse oft unsymmetrisch wuchsen und zudem nicht im rechten Winkel zur Längsachse. Offensichtlich sorgt ein Verkanten der Einspannung für ein Torsionsmoment entlang der Längsachse, welches einen unerwünschten unsymmetrischen Spannungszustand in der Probe hervorruft. Ebenso kann eine nicht genaue Zentrierung der Probe zu einem Verlaufen des Risses aus der Senkrechten führen.

Um die Bedingungen für die Anrißerzeugung in miniaturisierten Proben leichter reproduzierbar zu gestalten, wird eine modifizierte Einspannung realisiert (Abbildung A 50 f.), die die Probe steifer führt und an ihrer Oberseite über halbrunde Klemmungen verfügt. Diese können ein Verkanten sicher verhindern, da die Probenaufnahmen nur noch auf der Unterseite flächig aufliegen und an der Oberseite über eine Linienpressung gehalten werden. Eine eigens entwickelte Hilfsvorrichtung dient dazu, einen über die Rißstarter-

Abbildung 53: Anrisse in ISO-V-BM-Proben, links mit herkömmlicher, rechts mit verbesserter Einspannung erzeugt

kerbe zwangszentrierten Einbau der Probe und eine genaue Positionierung der Rißzone im Momentanpol der Biegebewegung zu erleichtern. Mit diesen beiden Hilfsmitteln gelingt es, symmetrische Anrisse zu erzeugen, die den Anforderungen nach [2] und [8] genügen. Abbildung 53 zeigt einen solchen Anriß verglichen mit einer Probe, die unter gleichen Bedingungen mit den herkömmlichen Vorrichtungen gespannt wurde.

Abbildung 54: Momentenabhängigkeit der Biegefrequenz für verschiedene Rißlängen in Normproben (W = 18 mm; B = 9 mm)

Da die Probe Teil der Biegefeder des Schwingungssystems ist, sinkt die Eigenfrequenz der Anlage mit fortschreitender Rißlänge. Auf der anderen Seite steigt die Eigenfrequenz leicht mit sinkendem Moment, woraus ein zweiparametriges Feld entsteht (Abbildung 54). Es ist zu vermuten, daß die Federrate des Torsionsstabes, der in der Maschine zur Erzeugung des statischen Momentes benutzt wird, nicht ideal konstant ist und dieser dadurch die Eigenfrequenz der Maschine bei Be- und Entlastung ebenfalls verstimmt. Dieses Feld muß für jede Probenform und jeden Werkstoff bestimmt werden, weshalb das Verfahren für kleine Serien ungeeignet ist. Ist der Zusammenhang aus Rißlänge, Moment und Frequenz ermittelt, lassen sich rationell und mit sehr guter Rißlängenvorhersage (ca. 0,1 mm) automatisiert Anrisse erzeugen.

Ein typisches Steuerprogramm für das Anreißen von miniaturisierten Dreipunkt-Biegeproben aus EUROFER 97 ist in Tabelle A 78 gezeigt. Hierbei wird bei Erreichen der Zielfrequenz einer Stufe die Last für die nächste Stufe erniedrigt, wobei sich die Eigenfrequenz des Systems geringfügig erhöht und die Startfrequenz für die folgende Stufe über der letzten Zielfrequenz liegt. Die kursiv wiedergegebenen Werte für Startfrequenz und Anzahl der Lastwechsel in einer Laststufe sind abhängig vom Verhalten der eingebauten Probe und dienen nur als Anhaltspunkt. Die für diese Bedingungen ermittelte Abhängigkeit zwischen Frequenz und Rißlänge ist in Abbildung 55 dargestellt. Bei allen

Proben lag das Biegemoment der letzten Stufe bei 1,70 Nm, die Proben besitzen bei einer Restligamenthöhe von 3 mm eine Rißlänge *a* von 1 mm (KLST-BM) bzw. 3 mm (Mini-3PB).

Abbildung 55: Ermittelter Zusammenhang zwischen Zielfrequenz und Rißlänge

Für die Anrißerzeugung gelten Momentengrenzen, die von der genauen Probengeometrie, der gewünschten Anrißlänge und dem Werkstoff abhängen. Bei der Rißeinbringung ist darauf zu achten, daß die Probe nicht bereits einer zu großen Belastung ausgesetzt wird und sich um die Rißspitze herum eine unzulässig große plastische Zone ausbildet. Da mit einem automatisierten Verfahren mit relativ hohen Frequenzen gearbeitet wird, ist es - anders als beim manuell überwachten Versuch - nicht notwendig, bis an die obere Grenze der zulässigen Beanspruchung während der Anrißerzeugung zu gehen.

Die zulässige maximale Belastung für das Ende des Anschwingvorgangs (mind. 2,5% der gesamten Rißlänge *a*) richtet sich nach der zugehörigen maximalen Spannungsintensität. Dieser K_{max} -Wert kann in Abwandlung des von Schwalbe [6] für Kräfte gegebenen Zusammenhangs abgeschätzt werden:

$$\frac{K_{\max}}{E} \le 3,2 \cdot 10^{-4} \sqrt{\text{m}} \quad \text{mit} \quad K_{\max} \le 0,6K_{Q} \quad (50) \text{ bzw.}$$

$$M_{\max} = R_{eS} \cdot W_{\text{Re}\,s} \quad \text{mit} \quad W_{\text{Re}\,s} = \frac{I_{y}}{z_{\max}} \quad , \quad I_{y} = \frac{B(W-a)^{3}}{12} \quad , \quad z_{\max} = \frac{W-a}{2}$$

$$M_{\max} = R_{eS} \cdot \frac{B \cdot (W-a)^{2}}{6} \quad (51) \quad \text{mit}$$

$$M_{\max} \quad \text{zulässiges Biegemoment} \quad R_{eS} \quad \text{Streckgrenze}$$

$$I_{y} \quad \text{Flächenträgheitsmoment} \quad W_{\text{Re}\,s} \quad W_{\text{Re}\,s} \quad W_{\text{Re}\,s} \quad W_{\text{Re}\,s}$$

Besitzt der Werkstoff, wie dies bei EUROFER 97 im untersuchten Zustand bei Raumtemperatur der Fall ist, keine ausgeprägte Streckgrenze R_{eS} , kann man ersatzweise die 0,2%-Dehngrenze $R_{p0,2}$ heranziehen. Tabelle A 77 (Anhang Seite 161) zeigt die so für EUROFER 97 ermittelten maximal zulässigen Momente bei der Anrißerzeugung.

5.1.1.2 Automatische Anrißerzeugung in servohydraulischer Maschine

In diesem Abschnitt wird eine im Rahmen dieser Arbeit entwickelte Methode zur sicheren und reproduzierbaren Anrißerzeugung in Dreipunkt-Biegeproben unter Verwendung einer servohydraulischen Prüfmaschine vorgestellt. Die dabei maximal zulässige Belastung kann aus *K* ermittelt oder aus der Streckgrenze abgeschätzt werden, solange noch kein *K*-Wert bestimmt ist:

$$F_{\max} \le \frac{1}{3} \frac{B(W-a)^2}{L} R_{eS}$$
 (52)

für Dreipunkt-Biegeproben mit dem Lastverhältnis $R = F_u/F_o < 0,1$ und den Bezeichnungen

$$F_{o} = F_{max}, \quad F_{m} = 0.5 \cdot (F_{u} + F_{o}) \quad \text{und} \quad F_{a} = 0.5 \cdot (F_{o} - F_{u})$$

$$F_{u} \quad \text{Unterkraft} \quad F_{o} \quad \text{Oberkraft} \quad F_{m} \quad \text{statische Last}$$

Erfolgt die Anrißerzeugung in der für die eigentlichen Versuche vorgesehenen servohydraulischen Prüfmaschine, ist eine Rißfortschritts-Überwachung über die Eigenfrequenz der Probe technisch nicht möglich. Die herkömmlichen Kontrollmöglichkeiten beschränken sich auf eine leicht frequenzverschieden betriebene Stroboskoplampe zur Sichtbarmachung der Rißöffnung sowie auf zuvor auf der Probe aufgebrachten Markierungen. Die sich einstellende niederfrequente optische Schwebung läßt die Rißöffnung und das Schließen in Zeitlupe erscheinen. Da mit zunehmender Rißlänge die Wachstumsgeschwindigkeit stark zunimmt, ist ein fortwährendes Beobachten der Probe unerläßlich. Gerade für Proben aus EUROFER 97 ist dieses Vorgehen aufgrund des zähen Materialzustandes sehr zeitraubend. Tabelle A 79 (Anhang Seite 161) gibt einen Überblick über die für die Rißeinbringung zulässige Belastung verschiedener Proben aus EUROFER 97 ist in Abbildung A 52 dargestellt. Je nach Rißwachstumsgeschwindigkeit und Rißstopverhalten an den Krafterniedrigungspunkten erfordert eine Probe bei 30 Hz Belastungsfrequenz (1800 Lastwechsel in der Minute) zwischen 40 und 200 Minuten Beobachtung.

Bestehende Technik der Fortschrittsüberwachung

Mit der Methode der Schallemission gelingt es, einen Rißstart zu detektieren. Für die Beobachtung kontinuierlichen Rißwachstums unter zyklischer Belastung ist diese Methode ungeeignet, da sie Ereignisse und Änderungen in Zuständen aufzeigt, aber keine Größenabschätzung leisten kann.

Über die Potentialmethode wird eine Aussage über das Verhältnis der Rißfläche zum Restquerschnitt getroffen. Um Erkenntnisse über die aktuelle Rißlänge zu gewinnen, muß zumindest eine Eichkurve für eine Probe des zu untersuchenden Materials existieren.

Eine weitere Möglichkeit der Anrißeinbringung in Biegeproben stellt die in Abschnitt 5.1.1.1 beschriebene Verwendung einer Resonanzmaschine dar. Eine detaillierte Gegenüberstellung der verschiedenen Methoden, gemeinsam appliziert auf eine Probe, kann u. a. bei Balzer und Müller [83] oder in allgemeinerer Darstellung bei Bär und Volpp [84] nachgelesen werden.

Ist das Material noch nicht hinreichend untersucht und stehen nur wenige Proben zur Verfügung, kann keine Eichkurve erstellt werden. Eine einfache Möglichkeit der Rißfortschritts-Kontrolle an der Materialoberfläche besteht in der Benutzung sogenannter Rißfortpflanzungs-Sensoren (RFS). Diese bestehen aus parallel geschalteten Leiterbahnen, die auf das mit einem Riß zu versehende Grundmaterial aufgebracht werden. Dort, wo das Grundmaterial reißt, werden die Leiterbahnen durchtrennt, was zu einer Änderung des Gesamtwiderstandes des RFS führt. Der sich ändernde Widerstand kann als Spannungssignal abgegriffen werden. Solche Sensoren werden u. a. von der Firma Measurement Group Messtechnik GmbH / Vishay (D-74078 Heilbronn) vertrieben [85].

Automatisierung

Mit den diskreten Spannungswerten eines RFS für bestimmte Rißfortschritte steht ein Signal zur Verfügung, das nicht nur zur Detektion und Vermessung von Anrissen, sondern auch aktiv zur Steuerung der Belastung beim Einbringen derselben verwendet werden kann. Zentrale Anforderungen an den Belastungsverlauf sind:

- Zunächst muß die Belastung hoch genug sein, um einen Rißstart zu ermöglichen.
- Danach muß sie mit fortschreitendem Riß stetig erniedrigt werden, um eine unzulässige Beanspruchung der Probe zu verhindern.
- Nach Erreichen der gewünschten Rißlänge soll die Probe Lastwechsel im Bereich unterhalb des Rißwachstums erfahren, um das Ende der Rißfront sicher zu markieren.

Verwendet wird der Rißfortpflanzungs-Sensor TK-09-CPB02-005/DP der Firma Measurement Group Messtechnik GmbH. Eine genaue Beschreibung des Sensors und der verwendeten Schaltungen ist im Anhang ab Seite 162 gegeben.

Korrelation zwischen Spannungsabfall, Rißlänge und zulässiger Belastung zur Rißeinbringung

Das Spannungssignal am RFS wird über einen Meß- und Steuerrechner in einen Sollwert der servohydraulischen Prüfmaschine umgewandelt. Aus dem Spannungssignal wird hierbei auf die Rißlänge zurückgerechnet, die wiederum den maximal zulässigen Wert der Probenbelastung vorgibt. Eine anschauliche Darstellung erreicht man, indem der maximal zulässige Betrag der Kraft über dem Kehrwert des Spannungsabfalls aufgezeichnet wird (Abbildung A 55). Das aufeinanderfolgende Durchtrennen der Leiterbahnen durch den fortschreitenden Riß ergibt eine Abfolge von diskreten, aber nie exakt reproduzierten Signalen. Daher empfiehlt es sich, als Änderungskriterium für den Sollwert einen idealen Rißfortschritts-Kraft-Verlauf vorzugeben, der durch ein Polynom approximiert wird. Dieses Vorgehen hat entscheidende Vorteile:

- kontinuierliche Erniedrigung des Kraftverlaufes mit zunehmendem Spannungsabfall
- akzeptable Regelabweichung
- stabiles Regelverhalten bei zu geringem Startwert des Spannungsabfalls
- Ausregelung des Sollwertes vor Durchtrennen der letzten Leiterbahn

Die letztgenannte Funktion dient dazu, den Endpunkt des Schwingungsanrisses sicher zu markieren. Die Kraft wird dabei auf einen Wert unterhalb der Schwelle zum Rißfortschritt geregelt.

Signalverarbeitung, Sollwertvorgabe

Die zugehörige Signalverarbeitung ist im Anhang auf Seite 163 beschrieben. Das RFS-Signal dient als Argument des oben erwähnten Polynoms, das den maximal zulässigen Kraftwert ausgibt. Dieser Wert wird aufgeteilt und zu 55% als Konstantwert beibehalten, zu 45% als Modulationseingang für einen 30-Hz-Sinusgenerator verwendet. Nach Zusammenführen beider Signale entsteht ein Sollwert mit einem *R*-Verhältnis von 10, der in seiner dimensionsrichtigen Größe ablesbar ist und für die Maschinensteuerung umgerechnet wird.

Anwendung

Die RF-Sensoren werden mit einem heißaushärtenden Klebstoff (M-Bond 610) auf die 3PB-Proben appliziert und zeigen ein sehr gutes Anhaften an der Probe. Der mit einer Stroboskoplampe beobachtete Riß im RFS zeigt im Mikroskop einen nicht von dem in der Probenoberfläche abweichenden Fortschritt.

Durch die zahlreichen Stützpunkte zur Lasterniedrigung wird ein möglichst schnelles Rißwachstum erreicht, gleichzeitig aber ein feiner Anriß, der keine Rastmarken durch Anhalten des Risses nach starker Lasterniedrigung aufweist. Der Rißstop durch Lasterniedrigung ist sehr zuverlässig, selbst 10⁶ weitere Lastwechsel führten zu keinem erkennbaren Rißfortschritt.

Mit der beschriebenen Methode gelingt es, sicher und reproduzierbar Anrisse gewünschter Länge in Dreipunkt-Biegeproben zu erzeugen, ohne daß das mechanische Verhalten der Probe bekannt sein muß. Der entscheidende Vorteil des hier beschriebenen Vorgehens liegt darin, daß die relativ langwierige Rißeinbringung ohne Überwachung vonstatten gehen kann. Der Zeitaufwand für die Probenvorbereitung (RFS-Klebung und Löten der Anschlüsse) ist erheblich geringer als die Überwachungsdauer eines konventionell eingebrachten Anrisses. Etwa 30 Minuten Aufwand (einschließlich Rißinitiierung) stehen 40 bis 200 Minuten nach der konventionellen Methode gegenüber. Die Kosten für den RFS sind verschwindend gering im Vergleich zu nur einer zerstörten Probe aufgrund eines fehlerhaft eingebrachten Anrisses.

5.1.2 Prüfung von Dreipunkt-Biegeproben, Prüfeinrichtungen

Im Rahmen dieser Arbeit wurden zwei Prüfeinrichtungen für die Untersuchung von Dreipunkt-Biegeproben aufgebaut beziehungsweise ertüchtigt. Die servohydraulische Anlage zur Prüfung aller Probenformen wurde bis auf die Grundfunktionen der Maschine (Hydraulik, S-56-Steuerung als Kern des internen Regelkreises) neu aufgebaut und mit selbst entwickelten Meß- und Steuereinrichtungen versehen. Das Kerbschlagpendel zur Prüfung von KLST-BM-Proben konnte weitestgehend unverändert bleiben, hier bestanden die Schwierigkeiten eher in der Durchführung und Auswertung der Versuche.

5.1.2.1 Quasistatische Prüfung von Normproben

Die quasistatische Prüfung von Normproben erfolgt mit einer servohydraulischen Maschine vom Typ Hydropuls[®]-VHS[®]-50 der Firma Schenck (jetzt Instron Deutschland GmbH, 64293 Darmstadt). Sie verfügt über 50 Maximalkraft kΝ und eine Verstellgeschwinmaximale digkeit von 20 m/s. Die hohe Verstellgeschwindigkeit ist zwar quasistatische für Versuche unerheblich, kann aber zum dynamischen Einbringen von Rissen in Biegeproben genutzt werden. Am Querhaupt ist eine Probenaufnahme massive befestigt, die von unten die Einbringung Biegelast der erlaubt.

Abbildung 56: Versuchsanlage, Probenaufnahme für Standardproben

Die Versuche werden mit Geschwindigkeiten von etwa 0,05 (kleine Proben) bis 0,30 mm/s (Normproben) gefahren, wobei die Versuchsgeschwindigkeit von der gewünschten Durchbiegung der Probe abhängt, da die Versuchszeit für Belastung und Entlastung konstant ist und nur die Amplitude variiert.

5.1.2.2 Quasistatische Prüfung von Miniaturproben

Für die Prüfung von Kleinlastproben wurde eine spezielle Finne entworfen, die in ihrer Konstruktion an die geringeren zu messenden Kräfte angepaßt ist. Diese Finne ist stellvertretend für alle vorhandenen Finnen in Abbildung A 45 bis Abbildung A 47 sowie in Abbildung 61 dargestellt. Das Prinzip der Finne und ihre Hauptmaße sind gleich mit denen der massiveren Finnen für ASTM-3PB-Proben, weshalb

unabhängig von der Probengröße ein identischer Meßaufbau verwendet werden kann. Für Miniaturproben wird lediglich eine spezielle Aufnahme in die große Probenaufnahme eingesetzt, siehe dazu Abbildung 57 und Abbildung A 48 f. (Seite 159).

5.1.2.3 Dynamische Prüfung von Proben in Schlagpendeln

Zur dynamischen Prüfung stehen Kerbschlaganlagen für temperierte Versuche zur Verfügung, in denen die Grundcharakterisierung der Werkstoffe anhand von KLST-Proben durchgeführt wird, und die Prüfung von angerissenen KLST-BM-Proben erfolgen kann. Auf die Anlage zur Prüfung von ISO-V-Proben, auf der auch angerissene ISO-V-BM-Proben (10x10x55 mm³) geprüft werden, wird hier nicht näher eingegangen.

Genormter Kerbschlagbiegeversuch

Für die Ermittlung der in dieser Arbeit erwähnten Kerbschlageigenschaften werden Schlagarbeit-Temperatur-Kurven herangezogen, für die je nach Streuung und Übergangsverhalten des Werkstoffs 5 bis 15 Versuche notwendig sind, siehe dazu Abbildung 58. Die für diese Versuche verwendeten Maschinen sind instrumentierte, vollautomatische Kerbschlagbiegeanlagen, die am Institut für Materialforschung II des Forschungszentrums Karlsruhe entwickelt wurden.

Die Versuchsgeschwindigkeit beträgt 3,85 m/s, die Pendel sind in der Hammerfinne mittels Dehnmeßstreifen, deren Signale von 1 MHz-

Abbildung 58: Schlagarbeit-Prüftemperatur-Kurve, Ermittlung von USE und DBTT

Transientenrecordern weiterverarbeitet werden, instrumentiert. Zu jedem Versuch wird ein Kraft-Durchbiegungs-Verlauf aufgezeichnet. Die Schlagenergiewerte werden durch Integration daraus ermittelt, wodurch die Reibungsverluste im Pendel – im Gegensatz zur Ermittlung der Schlagenergie aus dem Steigwinkel des Hammers – das Ergebnis nicht beeinflussen.

Aus der Schlagarbeit-Temperatur-Kurve werden zwei Kennwerte abgelesen: die Schlagarbeit in der Hochlage (Upper Shelf Energy, *USE*) als Maximalwert der Schlagarbeit bei vollständig duktilem Materialverhalten, und die Sprödbruchübergangstemperatur (Ductile-to-Brittle Transition Temperature, *DBTT*). Die *DBTT*-Werte werden dort abgelesen, wo die Schlagarbeit genau die Hälfte des Hochlagewertes beträgt.

Prüfung von Dreipunkt-Biegeproben im Pendelschlagwerk

Eine dynamische Prüfung von Dreipunkt-Biegeproben kann, soweit diese eine geeignete äußere Form besitzen, in einem Pendelschlagwerk erfolgen. Die unbestrahlten Versuche wurden auf einem 25-Joule-Pendel der Firma HKE (Basis: Roell-Amsler/Zwick) in der Abteilung Werkstoffmechanik II des IMF-II durchgeführt, während die bestrahlten Proben im Fusionsmateriallabor (IMF-II/FML, vormals HVT/Heiße Zellen) an einem 15-Joule-Pendel (ebenfalls HKE, Basis Wolpert) geprüft wurden. Die 15J-Anlage ist in Abbildung 59 dargestellt.

Abbildung 59: Kerbschlagbiegeanlage in der Prüfzelle bei IMF-II/FML

Da diese Maschinen über eine automatisierte

zu prüfen. Der in 1°-Schritten variable Ausklinkwinkel des Pendelhammers der 25-J-Anlage ermöglicht hierbei des weiteren verschiedene Schlaggeschwindigkeiten und einen limitierten Energieeintrag in die Probe, siehe Tabelle A 82. Detaillierte Angaben zu technischen Daten der Anlagen finden sich in [86] und bei Klubberg und Klopfer [87].

5.1.2.4 Erweiterung eines Kerbschlagpendels

Um die Temperiereinrichtung des Pendels auch für quasistatische Versuche nutzen zu können, wird ein Konzept zum Anbau eines Linearvorschubs entwickelt. Systempartner bei der Realisierung und Lieferant ist die Fa. HKE GmbH, D-75045 Walzbachtal.

Die Erweiterung ist für geringe Verfahrgeschwindigkeiten zur quasistatischen Prüfung von 0,0001 bis 2 mm/s ausgelegt, die Temperierung der Kerbschlaganlage von -180°C bis +600°C bleibt nutzbar. Allerdings muß die Temperatur in der Bruchzone aus Referenzmessungen und der genauen Bestimmung des Zeitpunktes des Rißfortschritts zurückgerechnet werden. Ein großer Vorteil liegt darin, daß die Probenpositionierung der Maschine z. B. in Heißen Zellen nutzbar bleibt und die Proben mit dem Manipulator lediglich in das Probenmagazin eingelegt werden müssen.

Der Vorschub (Abbildung 60) wird bei Bedarf an das Pendelschlagwerk in Schlagrichtung des Hammers angekoppelt. Statt des nun fixierten, instrumentierten Hammers biegt eine Finne (3) die Probe, das Kraftsignal wird dabei über einen Quarzkristall-Aufnehmer aufgezeichnet. Da nur vergleichsweise langsame Prüfungen durchgeführt werden sollen, ist eine Kraftmessung in der Nähe des Lasteinleitungspunktes nicht zwingend erforderlich. Vielmehr ermöglicht die gewählte Konstellation, eine Finne aus schlecht wärmeleitendem Material zu verwenden, um während der Prüfung eine temperierte Probe möglichst wenig durch Wärmeaustausch zu beeinflussen.

Abbildung 60: Erweiterung des Pendels um einen Linearvorschub

Des weiteren zeigt Abbildung 60 den Verfahrrahmen (5) mit seiner Schlittenführung (2) und den Servoantrieb (4). Alle Abmessungen sind so ausgelegt, daß die Erweiterung dauerhaft als Ergänzung für die neue Prüfanlage im Fusionsmateriallabor installiert werden kann. Eine Pilotanlage für die Prüfanlage im nicht aktiven Prüflabor ist im März 2005 geliefert worden. Die technischen Anforderungen, die Ermittlung der notwendigen und zulässigen Verfahrgschwindigkeiten und die gewählte Ausführung der Anlage sind im Anhang auf Seite 167 dokumentiert.

5.1.3 Instrumentierung der Versuchsanlagen

5.1.3.1 Kraftmessung

Die Kraftmessung erfolgt bei der servohydraulischen Prüfmaschine über die serienmäßige Kraftmeßdose (63 kN) und über spezielle instrumentierte Finnen, beim Schlagpendel wird die herstellerseitige Instrumentierung des Pendelhammers verwendet.

Kraftmeßdose

Eine übliche Kraftmeßdose ist nur bei statischen Versuchen einsetzbar, weil ihre Grenzfrequenz deutlich niedriger als die anderer Meßsysteme liegt. Neben dynamischen Schwierigkeiten besteht bei hohen Kräften die Gefahr einer Beschädigung der Kraftmeßeinrichtung. Für die im Rahmen dieser Arbeit durchgeführten statischen Versuche wurde die Kraftmeßdose zwischen Probenaufnahme und Querhaupt der Maschine eingesetzt und dient u. a. als Referenz zur Eichung der instrumentierten Finnen. Da sie für erheblich größere Kräfte, als sie bei der Prüfung von Miniaturproben auftreten, konzipiert ist, ist ihre Signalauflösung deutlich schlechter als die der den Versuchsbedingungen angepaßten Finnen.

Instrumentierte Finne

Die Verwendung instrumentierter Finnen bietet den Vorteil, daß man sie individuell den zu messenden Kräften anpassen kann. Die Querschnitte und somit die Steifigkeiten der mit Dehnmeßstreifen beklebten Bereiche wurden für die hier besprochenen Versuche in zwei verschiedenen Dimensionen gewählt, so daß im elastischen Verformungsbereich der Finnen Kräfte bis 3 bzw. 25 kN gemessen werden können. Von beiden Finnentypen (s. Abbildung 61 und Abbildung A 45 ff. im Anhang) wurden jeweils zwei Exemplare hergestellt. Das Signal der instrumentierten Finne wird über einen schnellen Gleichstromverstärker (Typ Rohrer DMS37D-S704) extern umgeformt und über den Meßbuchsenanschluß ME 314 (M3) als Größe X an den Analog-Digital-Wandler der S56-Erlektronik eingegeben.

Ein weiterer großer Vorteil der instrumentierten Finne ist die Tatsache, daß das Kraftsignal direkt am Krafteinleitungsort abgenommen wird. Eine Verfälschung des Meßsignals durch Trägheitskräfte, die unweigerlich bei der Verwendung von weiter entfernten Meßeinrichtungen auftreten, kann so weitestgehend ausgeschlossen werden. Bei quasistatischen Versuchen kann auch eine über der Probenaufnahme

Abbildung 61: Instrumentierte Finnen verschiedener Nachgiebigkeit

eingebaute Kraftmeßdose oder ein unter der Finne befestigter Kristallaufnehmer hinreichend genaue Ergebnisse liefern, bei dynamischen Versuchen oder beim Einbringen von Anrissen hingegen kommt es zu erheblichen Störungen des Signals, wie von Müller et al. gezeigt wird [88].

5.1.3.2 Verformungskontrolle

Die Verformung einer Dreipunkt-Biegeprobe wird bei den im Rahmen dieser Arbeit durchgeführten Versuchen über die Durchbiegung s des Lastangriffspunktes der Probe beschrieben. Die Kenntnis von s(t) ist außer für die Regelung verformungsgesteuerter Versuche für die Berechnung der Nachgiebigkeit C und der geleisteten Verformungsarbeit U (jeweils mit dem Kraftsignal F(t)) notwendig.

Aus Gründen der Regelgeschwindigkeit, Systemstabilität und Anlagensicherheit wird für die Steuerung aller verformungskontrollierten Versuche an der servohydraulischen Prüfmaschine das Signal des integrierten induktiven Wegaufnehmers verwendet. Trotz der im folgenden Absatz angesprochenen Schwächen in der Genauigkeit war die Versuchsführung ausreichend gut und in zahlreichen Vorversuchen durch die Verwendung eines anderen Wegsignals als Steuergröße nicht wesentlich zu verbessern. So ist es möglich, zum einen eine ausfallsichere und robuste Meßgröße für die Versuchsdurchführung zu verwenden und zum anderen die Auswertung des Versuchs anhand eines

zusätzlichen, höher auflösenden Wegsignals vorzunehmen, das so nicht über die ganze Versuchsdauer zur Verfügung stehen muß.

Verformungsinformation aus servohydraulischer Maschine und Pendelschlagwerk

Die Verformung der Dreipunkt-Biegeprobe wird bei der servohydraulischen Maschine über die Verschiebung der Lasteinleitung erfaßt. Da Maschine und Finne im Vergleich zu den verwendeten Proben relativ steif sind, ist hierbei eine Erfassung der Verschiebung des Kolbens zumindest bei kleinen Proben ausreichend. Die Spitze der Finne ist gehärtet, weshalb durch den Kontakt zur Probe keine Verflachung des Spitzenradius zu erwarten ist. Dennoch ist eine Verformungsaufnahme über den serienmäßigen induktiven Wegaufnehmer der Prüfmaschine für *K*-Versuche nicht optimal. Bedingt durch den großen Verfahrweg des Kolbens von 300 mm ist die Auflösung im interessierenden Verformungsbereich eines *K*-Versuchs an kleinen Proben (ca. 0,1 mm) relativ grob. *J*-Versuche erstrecken sich meist über größere Verformungswege und stellen etwas geringere Anforderungen an die Wegaufnahme. Neben dem systembedingten Drift des analogen Ausgangssignals des induktiven Sensors bestehen Grenzen in der Auflösung bei der digitalen Erfassung. Selbst bei Ausnutzung der vollen Datenauflösung von 16 Bit ergibt sich aufgrund der großen Werte, die das Wegsignal bei einem Versuchsbeginn außerhalb des Nullpunktes des Wegaufnehmers annehmen kann, eine kleinste Schrittweite von ca. 1 μ m. Diese führt u. U. zu weniger als 100 Wegmeßpunkten bis zum Erreichen der kritischen Last F_Q , was die Anwendung der Tangentenmethode erschwert.

Die zur dynamischen Prüfung von angerissenen $3x4x27 \text{ mm}^3$ -Proben verwendeten Kerbschlaganlagen verfügen jeweils über einen Drehwinkelgeber für das Pendel, dennoch wird die Durchbiegung der Probe indirekt nur aus dem zeitlichen Kraftverlauf bestimmt. Hierzu bedient man sich einer doppelten Integration, die aus der Abbremsung des Hammers (Masse m_H) die Momentangeschwindigkeit und daraus die Position bestimmt. Mit

$$F(t) = m_H \cdot a(t) \quad ; \quad v(t) = v_0 - \int_{t_0}^t a(t)dt \quad \text{folgt:} \quad s(t) = \int_{t_0}^t v(t)dt = \int_{t_0}^t \left| v_0 - \frac{1}{m_H} \int_{t_0}^t F(t)dt \right| dt \quad (53)$$

Allerdings ist der so berechnete Wert mit gewissen Unsicherheiten behaftet, da die Elastizitäten der Prüfanlage und die Eindrucktiefe der Finne in die Probe unberücksichtigt bleiben. Zumindest der Einfluß der Elastizität der Maschine kann, wie bei den unbestrahlten Versuchen geschehen, durch die Verwendung eines Hammers mit größer dimensionierter Masse verringert werden, da dieser die Auflösung des Ergebnisses beim instrumentierten Versuch ohne Auswertung des Drehwinkels nicht weiter beeinflußt. Tronskar et al. stellen eine fortgeschrittene Methode zur direkten Messung der Lastangriffspunktverschiebung beim Kerbschlagbiegeversuch vor, die diese Ungenauigkeiten umgeht [89]. Dabei wird auf die Kerbseite der Probe ein diffus reflektierendes Band aufgebracht, das über einen Laserstrahl und ein Interferometer die Weginformation liefert. Seine Auswertungen zeigen, daß insbesondere während der Phase der plastischen Deformation ohne Rißfortpflanzung die über das Interferometer gemessene Lastangriffspunktverschiebung hinter der berechneten zurückbleibt. Dieses deutlich genauere Verfahren kommt dennoch nicht an den im Rahmen dieser Arbeit verwendeten Kerbschlaganlagen zum Einsatz. Die automatischen Transport- und Positioniervorrichtungen reagieren empfindlich auf an den Proben befestigte zusätzliche Volumina, und die Unsicherheiten in der Positionierung werden für gravierender als die Unsicherheit in der Lastangriffspunktverschiebung gehalten.

Verformungskontrolle über Rißöffnungs-Aufnehmer

In den Normen bruchmechanischer Versuche wird die Verwendung von sogenannten Rißöffnungs- oder Clip-Aufnehmern empfohlen, die hohe Signalauflösungen bei sicherer Befestigung bieten. Sie werden an scharfen Kanten an der Probe befestigt und erfassen die Aufbiegung der Probe durch die Relativbewegung dieser beiden Bezugspunkte. Diese Bezugspunkte können als Hinterschneidungen in die Probenform integriert sein (wie in den in dieser Arbeit verwendeten Bruchmechanik-Proben), oder sie werden durch

Abbildung 62: Rißöffnungs-Aufnehmer an Miniaturprobe

das Aufschrauben von Befestigungsschneiden hergestellt. Allerdings liefert der Aufnehmer erst ein Wegsignal, wenn bereits Kraftschluß besteht, und er kann bei starken Deformationen von der Probe rutschen. Da der Aufnehmer gegenüber dem Krafteinleitungspunkt befestigt wird, muß in der Versuchseinrichtung genügend Bewegungsraum für ihn vorhanden sein. Bei der Konstruktion des Hilfsrahmens für kleine Proben tritt das Problem auf, daß der Aufnehmer breiter ist als der Widerlagerabstand der Proben. Daher muß der Aufnehmer, wenn er an der Probe befestigt ist, in Lastrichtung axial um 90° verdreht durch eine Montageöffnung geführt werden, während die Probe vor dieser Öffnung verbleibt, siehe dazu Abbildung 57 und Abbildung A 48. Das Spannungssignal des Clipaufnehmers wird über einen handelsüblichen Meßverstärker und den Datenerfassungsrechner weiterverarbeitet. Bei der Versuchsauswertung wird, um aus dem Clip-Signal auf die Verschiebung des Lastangriffspunktes zurückrechnen zu können, für 10 mm Clipaufweitung der zugehörige Kolbenweg ermittelt. Die ermittelten Wertepaare werden wegen der leicht nichtlinearen Charakteristik des Aufnehmers durch ein Polynom dritten Grades dargestellt, die Koeffizienten des Polynoms werden über ein Origin[®]-Skript aus sämtlichen Meßwerten des Versuches unter Angabe des Fehlers errechnet. Die starke Verbesserung des Meßsignals gegenüber dem induktiven Aufnehmer wird in Abbildung A 56 verdeutlicht.

Korrektur beim Einprobenversuch

Für die vollständige Durchführung von Einprobenversuchen mit mehrfachen Entlastungen werden u. U. Aufweitungen des Clipaufnehmers bis hin zu 10 mm benötigt, was einer Verschiebung des Lastangriffspunktes von ca. 6 mm entspricht. In diesem Bereich ist zwar für die einzelne Entlastung die Änderung der Clipaufweitung mit der Änderung der Kraft als ebenso linear zu betrachten wie die des Lastangriffspunktes. Das Verhältnis von Lastangriffspunktverschiebung zu Clipaufweitung ist aber nicht mehr dasselbe wie im Anfangsbereich des Versuches und darf deshalb bei der Rückrechnung nicht als konstant angenommen werden. Eine entsprechende Korrektur wird im Anhang auf Seite 164 gegeben.

Abbildung 63 zeigt für eine Mini-3PB-Probe einen Versuch mit Zwischenentlastungen bis hin zur maximal möglichen Durchbiegung⁹. Die Entlastungen wurden hierbei größer als die im DVM-Merkblatt [9] empfohlenen 10% gewählt, um zu einer größeren Datenbasis zu gelangen. Das Verhältnis zwischen der Nachgiebigkeit aus Probenaufweitung und Nachgiebigkeit aus berechnetem Kolbenweg $n_C=C_{S'}C_U$ ist in Abbildung 64 gegeben und zeigt die Notwendigkeit der oben aufgeführten Korrektur, da die Nachgiebigkeit aus dem Signal des Clip-Aufnehmers überschätzt wird.

⁹ Probe verkeilt an den Rändern der Aufnahme

Abbildung 63: Versuch an Miniatur-Dreipunkt-Biegeprobe mit Entlastungen

Abbildung 64: Nachgiebigkeit aus Kolbenweg und Aufweitung, Nachgiebigkeitsverhältnis n_c

Verformungskontrolle über Laser-Wegmessung

Möglichkeit Eine weitere der Verformungskontrolle besteht in der Nutzung eines Laser-Triangulationssensors zur berührungslosen Positionsmessung. Dieses Wegmeßsystem besitzt neben hoher Genauigkeit bei schneller Meßfrequenz und guter Signalstabilität den Vorteil, daß es, im Gegensatz zu einem Clip-Aufnehmer, bei bewegungsparalleler Anordnung nicht kalibriert werden Ein muß. Laserstrahl wird auf eine Referenzoberfläche - hier eine

Abbildung 65: Laser-Triangulations-Wegmessung

Abbildung 66: Kraftfluß in servohydraulischer Prüfmaschine

steife Aluminiumkonstruktion (2 in Abbildung 65) an der Finne (3) - gerichtet und über eine Abbildungsoptik auf einen Lineardetektor projiziert. Das hier verwendete System (OPTO NCDT 2000 der Firma Micro-Epsilon Messtechnik, 94483 Ortenburg) verfügt über einen relativ kurzen nutzbaren Meßweg von 5 mm, weshalb die Strahl- und Abbildungsoptik (1) höhenvariabel befestigt werden muß und nicht zur Regelung der Maschine verwendet werden kann. Ebenso können bei ASTM-Proben nur kleine Verformungen gemessen werden, während aufgrund fehlender Befestigungsmöglichkeiten für einen Clip-Aufnehmer die Laser-Wegmessung bei KLST-BM-Proben unverzichtbar ist. Um eine Beschädigung des Sensors durch bewegte Maschinenteile, insbesondere nach Versuchsende oder bei Ausfall der Hydraulik, auszuschließen, mußten für verschiedene Versuchsanordnungen angepaßte Schutzvorrichtungen (4) entwickelt werden.

Nachgiebigkeit der servohydraulischen Maschine

Die weiter oben angesprochene Nachgiebigkeit aller in den Kraftfluß der servohydraulischen Prüfmaschine einbezogenen Komponenten (siehe Abbildung 66) wird für alle Versuchskonfigurationen bestimmt.

Hierbei ergibt sich für die Maschine eine zu großen Teilen von der Kraftmeßdose verursachte Nachgiebigkeit, die im Datenerfassungsprogramm berücksichtigt wird. Abhängig von der anliegenden Versuchskraft wird hierbei der

	C in mm/N
Maschine ohne Probe	9,3 ·10 ⁻⁶
Mini-3PB-Probe, KLST-BM-Probe	1,5 ·10 ⁻⁴
ASTM-BM-Probe	4,2 ·10 ⁻⁵

Tabelle 9: Nachgiebigkeiten von Maschine und Proben

Kolbenweg automatisch um den Betrag korrigiert, der auf die Nachgiebigkeit der Maschine zurückzuführen ist und nicht auf die Annäherung von Lasteinbringungspunkt und Widerlager der Probe. Tabelle 12 (Seite 75) zeigt die Nachgiebigkeiten verschiedener Proben (glatt, a/W = 0.5, MANET-II mit 600°C Anlaßtemperatur) im Vergleich zur Gesamtanlage. Bei großen Proben ist demnach die Korrektur des Verformungsweges unerläßlich, um zuverlässige Aussagen über die Nachgiebigkeit der geprüften Probe zu erhalten.

5.1.3.3 Schwingungskompensation am Pendelschlagwerk

Das dynamische Auftreffen des Pendelhammers auf die Probe verursacht störende Schwingungen im Kraft-Durchbiegungs-Verlauf von der Größenordnung des eigentlichen Kraftsignals. Der Kraft-Durchbiegungs-Verlauf kann einem auf einer Fourier-Analyse basierenden Störgrößenkompensationsverfahren unterzogen werden, wobei die durch die Dynamik bedingten Oszillationen extrahiert werden. Die gewonnenen schwingungsfreien Kraftkurven ermöglichen eine Bestimmung weiterer Kenngrößen wie z.B. der dynamischen Fließkraft F_{gy} und somit der dynamischen Fließgrenze des Werkstoffs. Die Phasen von Anrißbildung, stabiler und instabiler Rißausbreitung können identifiziert und die Bruchformen damit klassifiziert werden. Das Störgrößenkompensationsverfahren wird detailliert von Wassilew et al. [90] beschrieben und kann für mit Anrissen versehene Dreipunkt-Biegeproben übernommen werden, um eine direkte Auswertung dynamischer *K*-Versuche vorzunehmen.

5.1.3.4 Fließkraft

Die Fließkraft F_{gy} charakterisiert den Übergang vom rein elastischen zum elastisch-plastischen Bereich im Kraft-Durchbiegungs-Verlauf.

Die nach DIN [91] genormte Methode zur Ermittlung der Fließkraft besitzt nur eine beschränkte Genauigkeit und Reproduzierbarkeit, nach Böhme und Klemm [92] beträgt die Standardabweichung bei der Ermittlung der Fließkraft aus ISO-V-Proben 5 % und dürfte für miniaturisierte Proben eher noch höher liegen. Die mit dem Störgrößenkompensationsverfahren erhaltenen schwingungsbereinigten Kraftkurven

Abbildung 67: Ermittlung der Fließkraft Fgy [93]

erlauben dagegen eine reproduzierbare Bestimmung der Fließkräfte mittels einer Tangentenmethode (Abbildung 67). Hierbei werden an den elastischen Teil der Kurve und an den flachen Teil der Verformungskurve bis zum Kraftmaximum Tangenten angelegt. Aus ihrem Schnittpunkt ergibt sich eine Durchbiegung, zu der der entsprechende Wert der Fließkraft aus der Kraftkurve abgelesen wird. Der Vergleich von durch Rieth et al. so ermittelten Streckgrenzen [93] mit solchen aus konventionellen Zugversuchen von Schäfer et al. [94] zeigt eine gute Übereinstimmung.

5.1.3.5 Temperaturkontrolle und -korrektur

Eine der größten Unsicherheiten beim Kerbschlagbiegeversuch ist die genaue Temperatur im Kerbgrund der Probe während des Schlages, da die Probe nicht am Prüfort temperiert werden kann. Durch Automatisierung der Anlagen wird die Transport- und Ruhezeit deutlich verkürzt und reproduzierbar. Die Zeit zwischen Austritt der Probe aus der Temperierkammer und Durchführung des Versuches ist mit ca. 2 Sekunden wegen des in dieser Zeit auftretenden Wärmeübergangs jedoch nicht zu vernachlässigen.
Zur Abschätzung des Wärmeübergangs dient eine spezielle Kerbschlagprobe, die in einer Längsbohrung ein Pt100-Thermoelement besitzt. Dieses erfaßt im bruchmechanisch relevanten Bereich die Probentemperatur. In zwei Meßreihen für weite Temperaturbereiche wird jeweils die durch Konvektion und Kontaktleitung abgegebene Wärme der Probe betrachtet. Aus diesen Messungen wird eine Temperaturkorrektur abgeleitet, deren genaue Beschreibung im Anhang ab Seite 165 erfolgt.

Der gefundene Zusammenhang wird in ein *MS-Excel*®-Formblatt verarbeitet. Hier genügen die Eingabe der eingestellten Temperatur und eine Anpassung der Versuchszeiten, um eine hinreichend genaue Aussage über die Temperatur der Probe im Kerbgrund während des Versuchs zu treffen, oder um – wie in Abbildung A 58 – die notwendige Temperatur in der Temperierkammer für eine bestimmte Prüftemperatur zu ermitteln. Da die ermittelten Koeffizienten nur von der Probengeometrie abhängen und die Auflagefläche des Widerlagers für alle Pendelschlagwerke normiert ist, sind die Ergebnisse auf andere Maschinen übertragbar, sofern sie einen ähnlichen Transportmechanismus vorweisen.

5.1.3.6 Regelungstechnik der servohydraulischen Anlage

Zur Regelung der servohydraulischen Anlage wird der in die S-56-Elektronik integrierte PID-Regler mit für die jeweilige Probengeometrie optimierten Parametern verwendet. Regelgröße für alle Biegeversuche ist der induktiv gemessene Kolbenweg *s*, da alle anderen Methoden der Messung der Lastangriffspunktverschiebung kein über den gesamten Versuch verwendbares Signal liefern. Trotz des relativ grob gestuften Signals können bei geeigneter Reglereinstellung die Servoventile eine gleichmäßige Verfahrgeschwindigkeit sicherstellen. Zur Erniedrigung der Last bei Einprobenversuchen ist daher eine genaue Kenntnis der Nachgiebigkeit der Probe erforderlich, um eine normgerechte Entlastung um ca. 10 % durchzuführen.

Der Sollwert für den Kolbenweg wird aus dem Steuer- und Meßrechner (DAP 4000a/112 mit *DasyLab*® V5.61.10) mit 1 kHz Stufenfrequenz analog ausgegeben und als abschwächbarer dynamischer Sollwertanteil an den Meßbuchsenanschluß ME 314 (M3) der S-56-Elektronik weitergereicht. Damit bleibt das Gesamtsystem bei Ausfall oder Abtrennung des externen Steuerrechners stabil und fährt in die Ruhelage zurückt. Die vom entsprechenden Prüfprogramm in *DasyLab* vorgegebene Rampenfunktion ist für alle Einstufen-Versuche gleich und wird an der S-56-Steuerung auf den entsprechenden gewünschten Maximalwert abgeschwächt.

Für Mehrstufen-Versuche sind entsprechende Programme mit Entlastungen geschrieben worden, die vor einer zum Rißfortschritt führenden Belastung der Probe die Probe im elastischen Bereich mehrmals belasten, um die zur Anfangsrißlänge gehörige Nachgiebigkeit bestimmen zu können. Ein solcher Weg-Zeit-Verlauf ist in Abbildung A 61 dargestellt.

5.1.3.7 Datenerfassung in der servohydraulischen Anlage

Die für diese Arbeit geschriebenen Prüfprogramme (in *DasyLab* "Schaltbilder" genannt) bieten eine interaktive grafische Benutzeroberfläche, in der die aktuellen Kalibrierwerte sämtlicher Teile der Meßeinrichtung eingegeben werden können. Zur Datenerfassung werden die über die DAP-Karte mit 1 kHz erfaßten Daten reduziert, bei der Datenaufzeichnung wird entsprechend der Nachgiebigkeit der Maschine direkt ein korrigierter Kolbenweg errechnet. Alle erfaßten Spannungssignale werden vor Aufzeichnung in entsprechende SI-Einheiten umgerechnet. Der Dateikopf enthält Informationen wie Datum, Uhrzeit, Proben- und Schaltbildname. Je nach Instrumentierung des Versuches werden aufgezeichnet:

- Meßzeit
- Kraftsignal der Kraftmeßdose
- Kraftsignal der Finne
- Wegsignal über induktiven Wegaufnehmer
- Korrigiertes Wegsignal über induktiven Wegaufnehmer
- Wegsignal über Clip-Aufnehmer (nicht bei KLST-BM-Proben)

- Wegsignal über Laser-Triangulationssensor (nicht bei stark verformten ASTM-Proben)
- Sollwertausgabe

5.1.4 Auswertung der Versuche

5.1.4.1 K-Versuche

Die während des Versuchs aufgezeichnete ASCII-Datei wird in eine spezielle *Excel*-Vorlage eingelesen, welche vorgegebene Eingabe- und automatische Berechnungsfelder besitzt und automatisch die eingelesenen und weiterverarbeiteten Daten in standardisierten Grafiken ausgibt. Kolbenweg und Clipspannung werden durch einen Polynom-Fit dritten Grades korreliert, das besser auflösende Clip-Signal in eine Verschiebung des Lastangriffspunktes umgerechnet und automatisch in das Datenblatt eingetragen.

Die Kraft-Durchbiegungskurve (Abbildung 68) wird zur Auswertung des Versuchs erstellt. Dabei werden nach Abgrenzung des linearen Bereiches automatisch zur Ermittlung von K_Q die Anfangsgerade und die um 5% erniedrigte Gerade gezeichnet. Der in Abbildung 68 zu

sehende sehr starke Lastabfall ist durch das spontane Versagen der Probe mit instabilem Rißwachstum, welches erst im rechten Teil des Diagramms aufgefangen wird, zu erklären. Die Bestimmung des vorläufigen und endgültigen Spannungsintensitätsfaktors erfolgt im in Abbildung A 62 gezeigten Ergebnisblatt. Hier werden alle notwendigen Geometriedaten abgefragt, und neben K wird auch die dem Größenkriterium entsprechende theoretische Mindestbreite B der Probe ausgegeben.

5.1.4.2 J-Versuche

Ähnlich wie für den *K*-Versuch werden zur Auswertung für die Probenformen speziell erstellte *Excel*-Vorlagen verwendet. Neben der Neuberechnung der Lastangriffspunktverschiebung wird die in die Probe eingeleitete Energie numerisch integriert und dargestellt (Abbildung 69). Die Energie wird wie die oben beschriebenen Koeffizienten in das zusammenfassende Ergebnisblatt aufgenommen, die Kraft-Durchbiegungskurve (Abbildung 70) wird zur Charakterisierung des Versuchs gezeichnet.

Abbildung 70: Kraft-Durchbiegungs-Diagramm

Die Nachgiebigkeiten der Probe werden ermittelt, um für spätere Einproben-Versuche eine zuverlässige Korrelation von Rißlänge und Nachgiebigkeit zu erhalten. Vor dem eigentlichen Versuch kann getrennt die Nachgiebigkeit der mit einem Ermüdungsanriß versehenen Probe ermittelt werden. Dazu wird die Probe lastgesteuert im elastischen Bereich mehrmals belastetet und entlastet.

Erwartungsgemäß zeigen sich keine wesentlichen Unterschiede bei den direkt aus dem Kolbenweg ermittelten Werten der Nachgiebigkeit und solchen, die über den Umweg des Clip-Signals gefunden worden sind, sofern im sensiblen Bereich der Be- und Entlastung Kolbenweg und Clip über einen separaten Fit angepaßt werden. Da das Clip-Signal ruhiger ist als das des induktiven Wegaufnehmers, fällt die Beurteilung etwas leichter, was den Mehraufwand rechtfertigt. Andere Ergebnisse erhält man bei einer Auswertung des parallel mitlaufenden XY-Schreibers: durch die dem Schreiber eigene Trägheit bei starken Änderungs-Geschwindigkeiten erfolgt die Aufzeichnung der elastischen Geraden ab einer bestimmten Laständerungs-Geschwindigkeit nicht mehr genau genug. Dies führt dazu, daß die aus dem Schrieb abzulesende Steifigkeit der Probe um bis zu 35% zu niedrig ist – die Nachgiebigkeit also bis zu 25% zu hoch angenommen wird. Abbildung A 63 zeigt das Ergebnisblatt für die *J*-Auswertung mit den verschiedenen Nachgiebigkeiten und der im Versuch ermittelten Energie.

5.1.4.3 Dynamische Versuche

Abbildung 71: Direkte *K*-Ermittlung aus schwingungskompensiertem Versuch

Abbildung 72: Direkte *K*-Ermittlung aus nicht kompensiertem Versuch

Für dynamische Versuche kann die Meß- und Auswertesoftware der instrumentierten Pendel genutzt werden. Dazu werden die Versuchsdaten in eine weitere *Excel*-Vorlage eingelesen. Die schwingungskompensierte Kraft-Durchbiegungs-Kurve kann bei ausreichend sprödem Verhalten zur direkten *K*-Ermittlung herangezogen werden (Abbildung 71). Ist die Kraft-Durchbiegungskurve nicht sinnvoll zu kompensieren, so können die elastische Gerade und F_Q immer noch aus den originalen Meßdaten im Vergleich mit anderen Versuchen ausreichend genau abgeschätzt werden (Abbildung 72).

Für die Ermittlung des dynamischen *J*-Integrals nach Schindler [33] oder nach Zhang und Shi [95] können die benötigten charakteristischen Werte E_m , E_b , F_m und t_{gy} direkt aus dem erweiterten Protokoll instrumentierter Versuche entnommen werden.

5.1.4.4 Vermessung von Proben

Zur Auswertung der Versuche ist es unerläßlich, den genauen Verlauf der Rißfront vor dem Versuch, für die J_{IC} -Ermittlung auch nach dem Versuch, zu kennen. Dafür muß zunächst die Probe vollständig durchtrennt werden. Verschiedene Verfahren, den Riß zuvor zu markieren, werden angewandt.

Sämtliche untersuchten Legierungen eignen sich sehr gut für das sogenannte Heat-Tinting, wobei die mit der Atmosphäre im Kontakt stehende Oberfläche des Risses sich unter Hitzeeinwirkung verfärbt. Da die Bruchflächen für Dauerschwingrisse sich in ihrer Struktur deutlich von denen für stabiles oder instabiles Rißwachstum unterscheiden, nimmt der Rißfortschritt eine andere Farbe an als der Dauerschwinganriß und die Aufwölbung an der Rißspitze. Solche Proben können nach dem

Aufbrechen direkt unter einem Lichtmikroskop vermessen werden. Abbildung 73 zeigt eine Probe mit vier klar erkennbaren Trennlinien: (1) der Beginn des Anrisses, (2) die Rißaufwölbung, die am Anfang des Versuches vor dem eigentlichen Rißfortschritt (3) auftritt. Die Abgrenzung zum gewaltsamen Aufbrechen der Probe (4) ist durch die Verfärbung so deutlich, daß selbst voll duktile Proben bei Raumtemperatur geöffnet werden können. Die hierbei in Kauf genommene Deformation der Rißspitze ist gering und kann umgangen werden, wenn man die Proben nach dem Heat-Tinting nochmals einer Dauerschwingbelastung aussetzt. Abbildung 74 zeigt eine solche Probe, bei der die genaue Einschnürung am Rand von Interesse ist, mit deutlich sichtbarer Trennlinie (5) zwischen Dauer- und Gewaltbruch.

Abbildung 73: Probe EA25 (EUROFER 97, 3x6 mm²) nach Heat-Tinting. Bereiche: Rißstartkerbe (A), Dauerschwinganriß (B), Rißaufwölbung (C), Rißfortschritt (D), Restgewaltbruch (E)

Abbildung 74: Probe FA14 (EUROFER 97, 9x18 mm²) nach Wiederanschwingen (F) und Aufbrechen (E)

Die Vermessung kann auch im Rasterelektronenmikroskop (REM) erfolgen. Da dies deutlich aufwendiger ist, werden solche Vermessungen nur zur Verifikation der Ergebnisse am Lichtmikroskop durchgeführt. Insbesondere die Überprüfung der richtigen Einordnung der Rißaufwölbung ist hierbei wichtig für die Auswertung der J_{IC} -Versuche. Abbildung 75 zeigt die Probe EM21, im Lichtmikroskop aufgenommen und in einer REM-Aufnahme. In beiden Verfahren sind die unterschiedlichen Bruchflächen deutlich zu identifizieren.

Abbildung 75: Probe EM21 (MANET-II, Tanl = 700°C, 3x6 mm²) nach Heat-Tinting

Die eigentliche Vermessung erfolgt entsprechend den Empfehlungen der zugehörigen Normen. Hierbei werden für eine J_{IC} -Auswertung über die Probenbreite je 9 äquidistante Punkte bei Rißstart und Rißende vermessen, für die K_{IC} -Auswertung 5 Punkte am Rißstart, wobei bei der J_{IC} -Auswertung die äußeren 2% der Probenlänge unberücksichtigt bleiben und bei der K_{IC} -Auswertung die Anrißlänge nur aus den mittleren 3 Meßwerten gemittelt wird.

Abbildung 76: Probe EM21, rasterlelektronenmikroskopische Aufnahme der Aufwölbung

5.1.4.5 Korrektur der Aufwölbung

Bei der *J*-Integral-Bestimmung muß bei der Auswertung der *J*- Δa -Kurve die Aufwölbung δ_{tx} an der Rißspitze berücksichtigt werden. Dieser Stretchzone genannte Bereich wird im allgemeinen durch eine Aufwölbungsgerade, die sog. Blunting-Line, korrigiert, welche abhängig von der Rißverlängerung dargestellt wird:

$$J = 2\sigma_F \cdot \Delta a$$
 (54) mit $\sigma_F = \frac{1}{2} \cdot (R_{eS} + R_m)$ (36)

Diese Wölbungsgerade liefert in nicht allen Fällen befriedigende Ergebnisse. Speziell, wenn sie die Aufwölbung überschätzt, kann die J- Δa -Kurve sich erst für deutlich zu hohe J-Werte von ihr lösen, weshalb der kritische J-Wert dementsprechend überschätzt wird. Es gibt daher weitere Ansätze wie z.B. den empirischen Ansatz von Kobayashi et al., der die Wölbungsgerade aus dem J-Wert und dem E-Modul abschätzt [96]:

Abbildung 77: Aufwölbung δ_{tx} an der Rißspitze, abgeschätzt und gemessen, Material: EUROFER 97

Abbildung 78: Netto-Rißverlängerungen Δa_n , berechnet über verschiedene Korrekturen von δ_{tx}

Als die zuverlässigste Methode für die Anwendung bei kleinen Proben erwies sich die direkte Bestimmung der Aufwölbung, die nach erfolgtem Heat-Tinting am Lichtmikroskop erfolgen kann. Abbildung 77 zeigt die Ergebnisse der direkten Bestimmung der Aufwölbung im Vergleich mit der Wölbungsgeraden und dem Ansatz von Kobayashi. Bereits bei etwa 0,1 mm Rißfortschritt nimmt die Aufwölbung kaum mehr zu und wird stark überschätzt. In den Auswertungen dieser Arbeit werden daher - wenn nicht anders darauf hingewiesen ist - sämtliche J- Δa -Kurven auf die reine Rißverlängerung

$$\Delta a_n = \Delta a - \delta_{tx} \quad (56),$$

ohne die direkt bestimmte Aufwölbung, bezogen. Abbildung 78 zeigt die verschiedenen Korrekturen im Vergleich, zu einer Probe gehörende Werte sind jeweils durch Linien verbunden. Die Geradengleichungen führen zu einem zu gering angenommenen Rißfortschritt, die Wölbung einer *J-R*-Kurve wird nach links verschoben. Daraus folgt eine deutliche Überschätzung von J_{IC} , bei bis zu J = 1000 N/mm scheint noch kein deutlicher Rißfortschritt stattzufinden. Diese mögliche Nichtkonservativität ist als eindeutiger Schwachpunkt der Verwendung einer Wölbungsgeraden, wie sie in den entsprechenden Regelwerken [8][9] vorgeschlagen wird, anzusehen.

Eine Überprüfung einiger am Lichtmikroskop gefundener Werte am REM zeigt die Tauglichkeit dieser einfachen Bestimmung. Die gefundenen Ergebnisse stimmen gut mit denen überein, die Ehl für die Weite der Plastischen Zone an seinen bruchmechanischen Versuchen an einem Reaktorbaustahl gefunden hat [24]; dort wurde im Mittel $\delta_{tx} = 0,095$ mm für alle Proben mit $\Delta a \ge 0,1$ mm gefunden.

5.1.4.6 Protokoll zur Rißvermessung

Die Meßergebnisse für Ende des Ermüdungsanrisses und Ende des Rißfortschritts werden in ein automatisiertes *Excel*-Formblatt eingetragen. Die Berechnung des Rißfortschritts für die einzelnen Meßpunkte und die Mittelung erfolgen automatisch. Zur optischen Kontrolle werden für beide Probenhälften die Rißfronten in einer gemeinsamen Grafik dargestellt. Die Anordnung der Meßstellen ist auf dem Formblatt eindeutig gekennzeichnet. Für verschiedene Versuche, Probenformen, -größen und -kerbungen existieren jeweils angepaßte Formulare wie z. B. in Abbildung A 60 für eine seitengekerbte 9 mm-Biegeprobe im *J*-Versuch dargestellt.

5.1.5 Kerbschlagarbeit und Rißzähigkeit

Es existieren diverse empirische Ansätze und theoretische Modelle, die einen Zusammenhang zwischen der Kerbschlagarbeit und der Rißzähigkeit herstellen. Ausführliche Arbeiten existieren u. a. von Schindler et al., wobei hier auf allgemeingültige Herleitungen aufgebaut wird, die anschließend anhand von verschiedenen Experimenten verifiziert werden [36][37][97]. Im Gegensatz zu experimentell gewonnenen Zusammenhängen weist dieses Vorgehen den Vorteil der Unabhängigkeit vom Werkstoff auf.

5.1.5.1 Ermittlung der J-R-Kurve aus dem Kerbschlagbiegeversuch

Schindler stellt eine Methode vor, um aus dem instrumentierten Kerbschlagbiegeversuch an angerissenen Proben das zugehörige *J*-Integral zu bestimmen (vgl. Seite 15). Die zur Ermittlung der Faktoren C und p notwendigen Versuchsdaten sind:

- E_m Energie bis zum Kraftmaximum B_n Probennettobreite
- *E_t* Gesamtenergie des Versuches

$$C = \left(\frac{2}{p}\right)^{p} \cdot \frac{\eta}{B_{n} \cdot (W - a_{o})^{1 + p}} \cdot E_{t}^{p} \cdot E_{m}^{1 - p} \quad (28) \quad \text{und} \quad p = \frac{2}{3} \cdot \left(1 + \frac{E_{m}}{2E_{t}}\right)^{-1} \quad (57)$$

$$\eta = 13.81 \cdot \frac{a}{W} - 25.12 \cdot \left(\frac{a}{W}\right)^{2} \quad (30 \text{ a}) \quad \text{für } 0 < a/W < 0.275$$

$$\eta = 1.859 + \frac{0.03}{1 - a/W} \quad (30 \text{ b}) \quad \text{für } a/W \ge 0.275$$

(57) ist ein von Schindler und Tipping [97] vorgestellter modifizierter Ansatz für p, der im Vergleich zur ursprünglichen Definition (29) bei der Auswertung in Abschnitt 5.3.2 wesentlich verbesserte Ergebnisse liefert und im Rahmen dieser Arbeit ausschließlich verwendet wird. Somit läßt sich die *J*-*R*-Kurve für einen kontinuierlichen Biegeversuch beschreiben:

$$J(\Delta a) = C \cdot \Delta a^{p} \quad (9)$$

Bei der Anwendung dieser Gleichungen ist zu beachten, daß sie aufgrund der Potenzfunktionen nicht dimensionskonstant sind. Nur eine Eingabe der Längen in mm und der Energien in mJ ergibt richtige Ergebnisse, wie sich bei den Untersuchungen in Abschnitt 5.3.2.1 zeigt.

5.1.5.2 Berechnung des dynamischen J-Integrals aus dem Kerbschlagbiegeversuch

Zhang und Shi stellen ein Methode vor, um aus dem instrumentierten Kerbschlagbiegeversuch einen dynamischen *J*-Wert zu gewinnen [95]. Hierbei wird von

$$J = \frac{2}{B(W - a_0)} \cdot U \quad (8)$$

ausgegangen und eine modifizierte Energie zum Zeitpunkt des Kraftmaximums $(E_m)_r$ verwandt, die eine charakteristische Energie beim Einsetzen des Rißwachstums darstellt.

$$J_{ID} = \frac{2(E_m)_r}{B_n(W - a_0)} \quad (58)$$

$$(E_m)_r = E_m - \left(\frac{F_m^2}{2}\right) \left[\frac{v_0 \cdot t_{gy}}{F_{gy}} - \frac{v_0^2 \cdot t_{gy}^2}{8E_0} - \frac{C}{B_n \cdot E}\right] \quad (59)$$

v₀ Geschwindigkeit des Pendels

 F_{gy} Fließkraft

t Zeit bei Fließbeginn

- *C* Nachgiebigkeit
- E E-Modul

 E_0 Energie des Pendels

E_m Energie am Kraftmaximum

F_m Kraftmaximum

Alle benötigten Größen lassen sich leicht aus den Anlagendaten sowie aus der Auswertung der kompensierten Kraft-Durchbiegungskurve des instrumentierten Kerbschlagversuches gewinnen; die Fließkraft F_{gy} wird näher in Abschnitt 5.1.3.4 (Seite 60) beschrieben. Lediglich die Nachgiebigkeit *C* wirft Fragen auf, da sie mit der angegebenen empirischen Beziehung nicht in der für die verwendeten Proben erwarteten Größenordnung liegt.

Es werden Experimente mit ISO-V-ähnlichen Proben (10x10x55 mm³) beschrieben, so daß zu vermuten ist, *C* beschreibe eine normierte Nachgiebigkeit, die auf eine Nachgiebigkeit einer ISO-V-Probe bezogen ist - zumal der Auflagerabstand keine Berücksichtigung in der Formulierung von *C* findet [95]. Leider konnten diese Fragen im Kontakt mit den Autoren nicht geklärt werden, und die zur Formulierung angegebene Quelle [98] konnte nicht zugänglich gemacht werden. Die Formulierung von *C* ist im Anhang (Seite 120) gegeben und ähnelt der in der Norm zum J_{IC} -Versuch angegebenen Formulierung der Nachgiebigkeit des Lastangriffspunktes [8].

Für die Auswertung eigener Versuche wird deshalb auf eine Nachgiebigkeit C^* zurückgegriffen, die nicht über eine empirische Formel, sondern direkt aus der Anfangssteigung der Kraft-Verformungs-Kurve der jeweiligen Probe gewonnen wird. Da die Geometrie- und Materialparameter B_n und E in dieser Messung bereits enthalten sind, ergibt sich

$$(E_m)_r = E_m - \left(\frac{F_m^2}{2}\right) \left[\frac{v_0 \cdot t_{gy}}{F_{gy}} - \frac{v_0^2 \cdot t_{gy}^2}{8E_0} - C^*\right] \quad (59 \text{ a})$$

C* direkt gemessene Nachgiebigkeit

Hierbei nimmt C^* zu den anderen Termen dimensionsrichtige Werte an, und eine Plausibiltätsprüfung am Biegeversuch mit einer angerissenen ISO-V-Probe ergibt für $(E_m)_r$ Abweichungen im Bereich von 1% für die Verwendung beider Nachgiebigkeits-Formulierungen.

5.2 Ergebnisse unbestrahlter, isothermer Versuche

5.2.1 Parameterstudie zur Variation der Geometrie

Um den grundsätzlichen Einfluß einer Änderung der Geometrie der Probe zu studieren, wird eine experimentelle Parameterstudie betrieben. Hierbei wird von der genormten KLST-Probe ausgegangen, anstatt mit einer V-Kerbe wird sie mit einem Dauerschwing-Anriß von 1 mm Länge oder einem erodierten Einschnitt gleicher Länge versehen.

5.2.1.1 Validierung von erodierten Proben

Die Spannungskonzentration am Einschnitt der erodierten Probe ist stärker als bei der KLST-Probe, weshalb ein ähnliches Verhalten wie bei der angerissenen Probe unterstellt wird. Die Proben sind in Tabelle A 25 bis Tabelle A 27 dokumentiert.

Die Hochlageenergie aller drei Probentypen ist vergleichbar und nimmt mit zunehmender Kerbschärfe in der Reihenfolge "KLST", "erodiert" und "angerissen" geringfügig ab (Abbildung 79). Die Übergangstemperaturen der Proben unterscheiden sich deutlicher, wobei hier die DBTT erwartungsgemäß mit der Kerbschärfe zunimmt und die der KLST-Probe mit Abstand am tiefsten liegt.

Es erstaunt, daß die angerissenen und die

erodierten Proben hierbei ein sehr ähnliches Verhalten zeigen, obwohl bei letzteren vor der Rißbildung der erodierte Radius überwunden werden muß. Das Temperaturfeld für den Übergang ist mit ca. 100°C für alle drei Probenformen gleich weit.

Abbildung 80 zeigt den Vergleich dreier unbestrahlter Proben, die bei -30°C geprüft wurden. Selbst im unteren Bereich der Schlagenergie weisen sie noch deutliche, hier durch Trennlinien bzw. Schattenwurf gekennzeichnete Scherbruch-Bereiche auf. Tabelle 10 zeigt die Werte für DBTT und USE der verschiedenen Proben. Die geringen Abweichungen für die erodierte Probe rechtfertigen die Verwendung solcher komplett maschinell herstellbarer und damit relativ preiswerter Proben für eine Parameterstudie.

	DBTT	USE
angerissen	4°C	5,79 J
erodiert	-4°C	6,05 J
KLST	-35°C	6,45 J

Tabelle 10: USE und DBTT für Proben-Varianten von MANET-I

Abbildung 80: Bruchflächen von KLST-, angerissener und erodierter Probe, $T = -30^{\circ}C$ =>

5.2.1.2 Abweichung der Restligamenthöhe

Zur Untersuchung des Einflusses der Rißlänge und somit der Restligamenthöhe auf die Hochlageenergie werden Proben verschiedener Einschnittiefe geprüft. Der erodierte Einschnitt ist 0,2 mm breit und verfügt am Grund über einen Radius von 0,1 mm. Die Rißtiefe der untersuchten Proben beträgt

Abbildung 79: Temperatur-Energie-Diagramm für Proben-Varianten von MANET-I, T_{Anl.} = 750°C

zwischen 0,2 und 2,8 mm in Schrittweiten von 0,2 oder 0,3 mm. Die Ergebnisse sind in Abbildung 81 dargestellt, die Proben sind in Tabelle A 8 bis Tabelle A 20 dokumentiert.

Die Prüfung bei 100°C soll ein sicheres Auffinden der Hochlage gewährleisten. Abbildung 82 zeigt Bruchflächenbilder verschiedener Proben, die alle duktil getrennt wurden. Die Scherbruchbereiche sind für verschiedene Restligamenthöhen etwa gleich, nur bei Proben mit W- $a \ge 3,5$ mm treten große plastische Verformungen auf, die das überproportional starke Ansteigen der Energie begründen.

Eine polynomische Anpassung mit 5 Koeffizienten bildet die experimentellen Werte nach. Rechnet man über diese polynomische Vorschrift aus der Energie der Proben mit nicht normgerechneter Ligamenthöhe auf die entsprechende Schlagenergie einer Probe mit 3 mm Ligamenthöhe ("Normenergie") zurück, erhält man erwartungsgemäß nur geringe Abweichungen. Das Trägheitsmoment Iv der

Abbildung 81: Abschätzung der Energie bei Variation der Restligamenthöhe, erodierter Einschnitt, $T = 100^{\circ}$ C

Probe für elastische Biegung läßt zwar keine direkte quantitative Vorhersage für den Einfluß der Kerbtiefe auf die Hochlageenergie zu, begründet aber die Annahme, daß die Restligamenthöhe mit einer höheren Potenz als 1 eingeht. In der Literatur angegebene Umrechnungen für die *USE* verschiedener Probengrößen beziehen sich stets auf Variation von Probenhöhe und -breite und schließen die Änderungen weiterer geometrischer Parameter (z. B. des Widerlagerabstandes) mit ein. In Abwandlung der von Wallin [99] in finnischer Sprache abgeleiteten und von Planman [100] in englischer Sprache vorgestellten Beziehung für Veränderungen der ISO-V-Probe (alle Maße in mm) läßt sich für die Veränderung einer KLST-dimensionierten Probe schreiben:

$$E_{W-a=3,0} = E_{B(W-a)} \frac{B_0}{B} \left(\frac{(W-a)_0}{W-a}\right)^{1+m} \quad (60) \quad \text{mit}$$

 $E_{W-a=3,0}$:Energie der Standard-Probem:Materialparameter $E_{B\cdot(W-a)}$:Energie der veränderten ProbeW-a:Restligamenthöhe $(W-a)_0$:Standard-Restligamenthöhe USE_{W-a} :USE bei variablem W-a B_0 :Standardbreite $USE_{W-a=3,0}$:USE bei Standard-Probe

Angewandt auf obige Variation mit B = 3 mm:

$$USE_{W-a=3,0} = USE_{W-a} \left(\frac{(W-a)_0}{W-a}\right)^{1+m}$$
 (61 a)

Eine Anpassung des Materialparameters ergibt m = 0,59016. Eine Erweiterung des Ansatzes um den materialabhängigen Skalierungsfaktor k liefert

$$USE_{W-a=3,0} = USE_{W-a} \cdot k \cdot \left(\frac{(W-a)_0}{W-a}\right)^{1+m}$$
 (61 b)

Eine Anpassung der Parameter zu m = 0,83139 und k = 0,77874 liefert die in Abbildung 81 dargestellten Ergebnisse (schwarze Symbole). Hierbei wurden die Parameter daraufhin optimiert, eine möglichst genaue Berechnung der Energie von Proben mit 3 mm Restligamenthöhe aus Versuchen an Proben abweichender Geometrie zu erlauben. Die Ergebnisse dieser Berechnungen sind mit offenen Symbolen dargestellt und mit "Normenergie" bezeichnet. Das starke Ansteigen der Energie bei Proben mit W- $a \ge 3$ mm führt zu einer leichten Überschätzung der zurückgerechneten Energie einer Probe mit W-a = 3 mm.

Abbildung 82: Bruchflächen von Proben verschiedener W-a bei 100°C, B = 3,0 mm

5.2.1.3 Verringerung der Probenbreite

Der Einfluß der Verringerung der Probenbreite wurde mit KLST-ähnlichen Proben, die auf den mittleren 23 mm verjüngt sind, untersucht. Sie verfügen einheitlich über einen 0,2 mm breiten, 1 mm tiefen erodierten Anriß mit einem Endradius von 0,1 mm. Die Breiten in der Bruchzone betragen in Stufen von 0,5 mm zwischen 1 und 3 mm (Tabelle A 13 sowie Tabelle A 21 bis Tabelle A 24).

Erwartungsgemäß steigt die Schlagenergie mit der Probenbreite an, wenn auch nicht vollkommen proportional zur Probenbreite – selbst dann nicht, wenn das recht hohe Ergebnis für B = 2,5 mm keine Berücksichtigung findet (Abbildung 83 f.). Neben den bei 100°C geprüften Proben, die alle eine ähnliche, duktile Bruchflächencharakteristik aufweisen, wurden Vergleichsproben bei 0°C untersucht. Hier zeigt sich deutlich, daß bei Probenbreiten über 2 mm die Hochlage verlassen wird, genauso für ebenfalls geprüfte angerissene Proben und KLST-Proben. Eine Betrachtung der in Abbildung 85 wiedergegebenen Bruchflächen zeigt für die Proben von 3 und 2,5 mm Breite einen starken bzw. ansatzweisen Mischbruch, während die 2 mm breite Probe bei beiden Temperaturen gleiche Bruchflächencharakteristik und Energie liefert.

Abbildung 83: Einfluß der Probenbreite auf die Hochlageenergie, erodierter Einschnitt

Der Ansatz von Wallin (60) läßt sich mit

 $E_{B=3,0}$: Energie der Standard-Probe USE_B : USE bei variablem B

anwenden auf Proben für W-a = 3 mm:

$$USE_{B=3,0} = USE_{B} \cdot \frac{B_{0}}{B}$$
 (62 a)

und liefert die in Abbildung 84 dargestellten Ergebnisse.

Abbildung 84: Abschätzung der Energie bei Variation der Probenbreite, erodierter Einschnitt, $T = 100^{\circ}$ C

$USE_{B=3,0}$: USE bei Standard-Probe

Eine deutlich bessere Abschätzung der Hochlageenergie von Proben mit verringerter Breite liefert die Einführung des Materialparameters *j*, der es erlaubt, einem nichtlinearen Zusammenhang zwischen Probenbreite und *USE* zu folgen.

$$USE_{B=3,0} = USE_B \cdot \left(\frac{B_0}{B}\right)^j$$
 (62 b)

Abbildung 84 zeigt die Abschätzung der *USE* für beide Ansätze, *j* in diesem Fall zu 1,23193 bestimmt. Auch ohne den Materialparameter *j* werden die Energien der schmaleren Proben bereits über die lineare Breitenbeziehung gut abgeschätzt. Da sie (bis auf den Wert bei 2,5 mm) zu hoch liegen, wird die zurückgerechnete Normenergie konservativ eingeschätzt. Die Anpassung von *j* liefert hierbei allerdings deutlich bessere Ergebnisse. Mit beiden bzw. drei Parametern stellt sich die optimierte Breiten- und Restligamentkorrektur folgendermaßen dar:

$$USE_{B,(W-a)=3,0} = USE_{B,(W-a)} \cdot \left(\frac{B_0}{B}\right)^j \cdot \left(\frac{(W-a)_0}{W-a}\right)^{1+m} \qquad j = 1,23193 \qquad (63 a)$$

$$USE_{B,(W-a)=3,0} = USE_{B,(W-a)} \cdot k \cdot \left(\frac{B_0}{B}\right)^j \cdot \left(\frac{(W-a)_0}{W-a}\right)^{1+m} \qquad j = 1,52021 \\ k = 0,79021 \\ m = 0.81624$$
(63 b)

5.2.2 Quasistatische Prüfung von Normproben: ASTM-Dreipunkt-Biegeprobe

Die für diese Prüfung verwendeten glatten Proben weisen eine Breite von 9 mm und eine Höhe von 18 mm auf, die Längen betragen 92 bzw. 98 mm (Abbildung A 32). Die Proben sind in der servohydraulischen Prüfanlage mit Anrissen versehen worden, die angestrebte Rißlänge a_0 vor Versuch liegt bei 9 mm, die reale Rißlänge liegt zwischen 8,9 und 10,1 mm. Die Auswertung und die Berechnung der Probenmindestbreite erfolgen über J_i , Werte für $J_{0,2}$ werden in Klammern angegeben und in Kapitel 7 näher behandelt.

5.2.2.1 EUROFER 97

An EUROFER 97 im Anlieferzustand ist bei Raumtemperatur keine direkte K_{IC} -Bestimmung möglich. Das Größenkriterium (12) von Seite 7 wird nach Schwalbe [6]¹⁰ in Ermangelung einer ausgeprägten Streckgrenze R_{eS} über $R_{p0,2}$ abgeschätzt. Bei einer charakteristischen Mindestgröße der Probe von größer als 75 mm kann es nicht annähernd erfüllt werden. Außerdem läßt sich im Versuch kein instabiler Spaltbruch hervorrufen. Mit $F_{max}/F_Q >> 1,10$ kann die Forderung für das Kräfteverhältnis ebenfalls meist nicht erfüllt werden. Da ein Ausweichen auf größere Probenformen aus verschiedenen Gründen – allein die Probenlänge läge bei mindestens 600 mm - nicht in Betracht kommt, muß K_{IC} über den Umweg von J_{IC} bestimmt werden.

Glatte Proben

Abbildung 86 zeigt die *J-R*-Kurve für ASTM-Dreipunkt-Biegeproben. An glatten Proben wurden Einprobenversuche (Tabelle A 66) und Mehrprobenversuche (Tabelle A 64) durchgeführt, die sehr gut übereinstimmende Ergebnisse liefern. Mit einer Ausgleichsgeraden (ausgezogene Linie) für alle Meßwerte bei Rißverlängerung zwischen 0,15 und 1,50 mm ergibt sich aus J_i abgelesen bzw. nach Umrechnung:

B = 9 mm, glatt: J_{IC} = 288 N/mm K_{IC} = 8152 N·mm^{-1,5} = 258 MPa·m^{0,5} ($J_{0,2}$ = 575 N/mm) Das Größenkriterium (12) - siehe Seite 7 - wird mit $\sigma_F = 0.5 \cdot (R_m + R_{p0,2})$ knapp verfehlt:

Abbildung 86: Bestimmung von J_{IC} an Proben mit B = 9 mm, Material: EUROFER 97

Seitlich gekerbte Proben

Proben mit einer Seitenkerbung von jeweils 1 mm (45°) und einem Kerbradius von 0,25 mm sind in Abbildung A 33 dargestellt. Sie erreichen in Abbildung 86 erwartungsgemäß geringere *J*-Werte, aber einen nur geringfügig niedrigeren Wert für J_i (Tabelle A 67)¹¹:

 $B_n = 7 \text{ mm}$, seitengekerbt: $J_{IC} = 283 \text{ N/mm}$ $K_{IC} = 8083 \text{ N·mm}^{-1,5} = 256 \text{ MPa·m}^{0,5}$ $(J_{0,2} = 397 \text{ N/mm})$

¹⁰ S. 729, Tabelle 19, empfohlene Mindestwerte abhängig von R_{eS}

¹¹ Ergebnisse aus dem Einprobenversuch sind - angesichts einer ausreichenden Anzahl von Mehrprobenversuchen - nicht in Abbildung 86 dargestellt, aber in Tabelle A 69 dokumentiert.

Hierbei findet der Versuchswert bei $\Delta a_u = 1,75 \text{ mm}$ / J = 1165 N/mm ebenfalls Eingang in die Auswertung, obwohl er außerhalb der 1,5 mm-Grenze liegt. Er wird durch einen Faktor f_g untergewichtet, der sich aus der Entfernung des nächstgelegenen gültigen Punktes mit $\Delta a_g = 0,99 \text{ mm}$ zur 1,5 mm-Grenze, bezogen auf die Entfernung der beiden Punkte zueinander, berechnet:

$$f_g = \frac{1,5mm - \Delta a_g}{\Delta a_u - \Delta a_g} \quad \text{hier:} f = 0,67 \quad (64)$$

Das Größenkriterium (12) wird mit B_{min} (W-a)_{min} > 11,91 mm ebenfalls knapp verfehlt.

Das Einbringen von Seitenkerben beeinflußt demnach die Form der *J-R*-Kurve, nicht aber das Ergebnis bei der Ableitung der kritischen Rißzähigkeit aus derselben. Zusammen mit Ergebnissen für miniaturisierte Proben wird dies in Abbildung 89 dargestellt.

5.2.2.2 MANET-II im spröden Zustand (600°C Anlaßtemperatur)

Die Wärmebehandlung mit 600°C Anlaßtemperatur sichert einen ausreichend spröden Materialzustand, um bei Raumtemperatur eine direkte *K*-Ermittlung durchführen zu können. Zwei Versuche an glatten Standardproben liefern die in Tabelle A 46 dokumentierten Ergebnisse, sie sind gemeinsam mit denen für verkleinerte Proben in Abbildung 92 dargestellt:

B = 9 mm, glatt: $K_{IC} = 2279 \text{ N} \cdot \text{mm}^{-1,5} = 72 \text{ MPa} \cdot \text{m}^{0,5}$

Das strenge Größenkriterium (11) nach ASTM [2] wird mit R_{eS} = 869 N/mm² und σ_F = 921 N/mm² für den *K*-Versuch nicht eingehalten (berücksichtigt wird der Mittelwert):

$$B_{min}$$
 (W-a)_{min}, $a_{min} > 2.5 \cdot \left(\frac{K_{IC}}{R_{eS}}\right)^2 = 17,19 \text{ mm}$

Die von Munz und Keller [4] aufgezeigten Größenkriterien liefern jedoch mit β = 0,4 und α = 50:

$$(W-a)_{min} \ge \beta \cdot \left(\frac{K_{IC}}{\sigma_F}\right)^2 = 2,45 \text{ mm} (13) \text{ und } B_{min} \ge \alpha \cdot \frac{K_{IC}^2 \cdot (1-v^2)}{E \cdot \sigma_F} = 1,22 \text{ mm} (14)$$

Damit sind die Gültigkeitskriterien erfüllt. Eine Betrachtung der Bruchfläche in Abbildung 87 läßt ebenfalls auf einen ausreichend ebenen Dehnungszustand vor der Rißspitze schließen. Durch den verformungsgesteuerten Versuch kann die Rißausbreitung nach ca. 3,5 mm aufgefangen werden. Der instabile Spaltbruch (stärker dunkel gefärbter Bereich rechts der Bildmitte) findet sich zwar nur innerhalb der Probe, aber er

Abbildung 87: Probe AM02

reicht fast bis zum Rand. Dieser zeigt keine erkennbare plastische Deformation durch die Belastung bis zur Bruchausbildung; die rechts der Probenmitte erkennbare Einschnürung ist auf das Aufbrechen der Probe nach erfolgtem Heat-Tinting zurückzuführen.

5.2.2.3 MANET-II im Übergangsbereich (700°C Anlaßtemperatur)

Mit einer Anlaßwärmebehandlung von 700°C wird MANET-II in einen Zustand versetzt, der bei Raumtemperatur noch duktile Ergebnisse für Prüfungen an ISO-V- und KLST-Proben liefert, siehe dazu Abbildung 98 und Tabelle 17. Eine Prüfung an zwei glatten Proben (Tabelle 11 und Tabelle A 47) mit B = 9 mm erbrachte bei der Probe AM07 keine Rißverlängerung bis zur Entlastung und bei AM08 ein Versagen durch Spaltbruch. Da beide Kraft-Verschiebungs-Kurven plastische Deformation zeigen, ist eine Auswertung über K_Q nicht sinnvoll. Die Bruchzähigkeit liegt höher als über die 95%-Sekante bestimmt, und die Ermittlung von J bis zum Einsetzen des Bruchs (bzw. bis zur Entlastung ohne Rißverlängerung) kann Hinweise auf die Bruchzähigkeit liefern.

	F_{O}	K _O	J	J_{IC}	K_{IC} aus J
Probe	Ν	MPa m ^{-0,5}	N∙mm ^{-1,5}	N/mm	MPa m ^{-0,5}
AM07	9206	80	55,9	> 55,9	> 114
AM08	7741	27	149,8	149,8	186

Tabelle 11: *K*-Versuche an MANET-II, *T*_{anl}=700°C, glatte Standardprobe

Das Größenkriterium (12) für die *J*-Ermittlung kann für das Ergebnis von AM08 mit R_{eS} = 736 N/mm² und σ_F = 788 N/mm² erfüllt werden:

 B_{min} , (W-a)_{min} > 4,75 mm

Insgesamt lassen diese Ergebnisse vermuten, daß der Werkstoff bei Raumtemperatur und unter Verwendung der Standardprobe bruchmechanische Ergebnisse aus dem unteren Bereich des sprödduktilen Übergangs liefert. Die Größenkriterien für den *K*-Versuch können bereits nicht mehr erfüllt werden:

 B_{min} , $(W-a)_{min}$, $a_{min} = 159,7$ mm (11) bzw. $(W-a)_{min} = 22,29$ mm (13) und $B_{min} = 10,45$ mm (14).

5.2.3 Maßstäbliche Verkleinerung: Mini-3PB-Probe

Diese Proben sind eine in allen entscheidenden Maßen geometrisch ähnliche Verkleinerung der Dreipunkt-Biegeproben. Die glatten Proben besitzen eine Breite von 3 mm und eine Höhe von 6 mm, die Länge beträgt bei einem genutzten Auflagerabstand von 24 mm 30 mm (Abbildung A 34). Die Proben sind in einer Resonanzmaschine mit Anrissen versehen worden, die angestrebte Rißlänge a_0 vor Versuch liegt bei 3 mm, die reale Rißlänge lag zwischen 2,8 und 3,6 mm.

5.2.3.1 EUROFER 97

Abbildung 88 zeigt die *J-R*-Kurve für miniaturisierte Dreipunkt-Biegeproben, an denen ausschließlich Mehrprobenversuche durchgeführt wurden (Tabelle A 70). Die ausgezogene Ausgleichsgerade für glatte Proben mit Rißverlängerungen zwischen 0,15 und 1,50 mm führt zu:

B = 3 mm, glatt: $J_{IC} = 316 \text{ N/mm}$ $K_{IC} = 8540 \text{ N} \cdot \text{mm}^{-1,5} = 270 \text{ MPa} \cdot \text{m}^{0,5}$ $(J_{0,2} = 497 \text{ N/mm})$ Das Größenkriterium (12) ist mit B_{min} $(W-a)_{min} > 13,29 \text{ mm}$ bei weitem nicht erfüllt.

Abbildung 88: J-R-Kurve für EUROFER 97 (Miniaturproben)

Auswirkung von Seitenkerben

Eine mit Seitenkerben von jeweils 0,33 mm (45°) und einem ebenfalls skalierten Kerbradius von 0,10 mm versehene Variante der miniaturisierten Dreipunkt-Biegeprobe ist in Abbildung A 35

dokumentiert (Tabelle A 72). Solche Proben erreichen, wie in Abbildung 88 dargestellt, geringere *J*-Werte und ein deutlich niedrigeres J_i :

 B_n = 2,33 mm, seitengekerbt: J_{IC} = 277 N/mm K_{IC} = 8000 N·mm^{-1,5} = 253 MPa·m^{0,5} ($J_{0,2}$ = 330 N/mm)

Das Größenkriterium (12) wird mit B_{min} (W-a)_{min} > 11,65 mm ebenfalls erwartungsgemäß nicht erfüllt.

Vergleich mit Normprobe

Im Unterschied zur Normprobe beeinflußt die Seitenkerbung bei der Miniaturprobe nicht nur die Form der *J-R*-Kurve, sondern auch deutlicher die Lage von J_{IC} . Durch die Kerbung der Miniaturprobe gelingt es, die vorhandene Nichtkonservativität bei der Prüfung eines zähen Materials so weit zu reduzieren, daß der bei seitlich gekerbten und glatten Normproben gleich große kritische *K*-Wert ebenfalls erreicht wird. Tabelle 12 faßt die Ergebnisse der *K*-Ermittlung für EUROFER 97 zusammen.

B_n in mm	9,00	7,00	3,00	2,33
	glatt	s. gekerbt	glatt	s. gekerbt
$J_{IC}(J_i)$ in N/mm	288	283	316	277
K_{IC} in N·mm ^{-1,5}	8152	8083	8540	8000
K _{IC} in MPa⋅m ^{0,5}	258	256	270	253
K_{IC} in %	100%	99%	105%	96%
B_{min} in mm	12,12	11,91	13,29	11,65

Tabelle 12: Ergebnis bruchmechanischer Versuche an EUROFER 97

In Abbildung 89 sind die Auswirkungen der geometrischen Modifikationen auf die *J-R*-Kurve dargestellt. Eine Seitenkerbung senkt die Kurve für beide Probengrößen etwa um den gleichen Wert (Wechsel von durchgezogener zu punktierter Linie). Die Vergrößerung der Probenabmessungen hebt für glatte und seitengekerbte Proben die Kurve etwa um den gleichen Wert (Wechsel von grauer zu schwarzer Linie).

Abbildung 89: Einfluß geometrischer Parameter auf die J-R-Kurve

Abbildung 90 stellt die Bruchflächen von vier Proben gegenüber, die alle eine vergleichbare - auf die Probenabmessung bezogene – Rißverlängerung (zentraler dunkler Bereich im Bild) von 1,0 bzw. ca. 0,3 mm erfahren haben. Sowohl für die glatten als auch für die seitlich gekerbten Proben weisen beide Probengrößen vergleichbare Bruchflächen auf.

Glatte Proben zeigen ein starkes Zurückbleiben des Risses in den Randbereichen der Probe, der Riß ist sichelförmig ausgebildet, und es gibt Bereiche starker Deformation am Rand. Die Probe ist an ihrer Rißfront deutlich eingeschnürt. Bereits der Anriß eilt in der Mitte vor und begünstigt die Ausbildung

einer solchen Rißfront. Seitengekerbte Proben besitzen einen deutlich geraderen Rißfrontverlauf, da die Spannungsüberhöhung im Kerbgrund ein gewisses Voreilen des Risses verursacht. Der effektive Anriß erscheint gerade, da seine am stärksten zurückgebliebenen Randbereiche mit dem Einbringen der Kerbe aus der Probe entfernt wurden.

Abbildung 90: Vergleich verschiedener Proben mit gleicher relativer Rißverlängerung

Nachgiebigkeit der Miniaturprobe

Zwar sind an Miniaturproben im Rahmen dieser Arbeit keine Einprobenversuche durchgeführt worden, aber aus den Meßschrieben kann für etliche Versuche an EUROFER 97 vor und nach Rißverlängerung die Nachgiebigkeit ermittelt werden. Abbildung 91 zeigt die im für die J-Ermittlung gültigen Bereich $0,50 \le a/W \le 0,75$ - gemessene Nachgiebigkeit für seitlich gekerbte und glatte Proben im Vergleich zur Abschätzung aus [8] (im Anhang ausgeführt, siehe auch Tabelle A 74). Die seitlich gekerbten und die glatten Proben besitzen beide eine höhere Nachgiebigkeit als nach der Abschätzung anzunehmen ist, weshalb die Rißlänge um etwa 0,2 mm überschätzt wird. Die Fehleinschätzung der Rißlänge ist allerdings nicht kritisch, da zur Ermittlung der J-R-Kurve die

Rißverlängerung hinzugezogen wird, und diese aufgrund der ähnlichen Steigungen von Meßwerten und Abschätzung für die Nachgiebigkeit deutlich präziser veranschlagt werden dürfte.

5.2.3.2 MANET-II im spröden Zustand (600°C Anlaßtemperatur)

Die direkte *K*-Ermittlung an glatten Miniaturproben führt bei MANET-II mit einer Anlaßtemperatur von 600°C zu Ergebnissen, die mit denen von Standardproben vergleichbar sind, siehe Abbildung 92 und Tabelle A 50. Die Werte sind im Ergebnis sogar etwas geringer als für Standardproben, wobei die Streuung der Ergebnisse bei der Betrachtung dieser Differenz berücksichtigt werden muß.

B = 3 mm, glatt: $K_{IC} = 1971 \text{ N·mm}^{-1,5} = 62 \text{ MPa·m}^{0,5}$

Die Größenkriterien (11) werden mit im Mittel $B_{min} = 12,86$ mm nicht erfüllt, nach (13) und (14) aber sind die Versuche gültig:

 $(W-a)_{min} = 1,83 \text{ mm}$ und $B_{min} = 0,91 \text{ mm}.$

Eine prinzipielle Abhängigkeit des *K*-Wertes von der relativen Anrißlänge kann im untersuchten Bereich aufgrund der Darstellung in Abbildung 92 nicht festgestellt werden.

Auswirkung von Seitenkerben

Die mit Seitenkerben versehene Variante der miniaturisierten Dreipunkt-Biegeprobe liefert *K*-Werte im Streubandbereich der Werte der jeweils glatten großen und kleinen Probe (Abbildung 92 und Tabelle A 51):

 $B_n = 2,33$ mm, seitengekerbt: $K_{IC} = 2151 \text{ N} \cdot \text{mm}^{-1,5} = 68 \text{ MPa} \cdot \text{m}^{0,5}$

Die Bedingungen (11) werden mit B_{min} = 15,32 mm verfehlt, (13) und (14) aber werden erfüllt:

 $(W-a)_{min} = 2,18 \text{ mm} \text{ und } B_{min} = 1,09 \text{ mm}.$

Abbildung 93 stellt stellvertretend für die ausgeführten Untersuchungen Bruchflächen von drei Proben verschiedener Geometrie einander gegenüber, die alle drei einen sehr ähnlichen K_{IC} -Wert liefern. Im Gegensatz zu der Gegenüberstellung für zähes Material in Abbildung 90 weisen die Bruchflächen der drei spröden Proben keine nennenswerten Unterschiede auf. Wie schon in der Diskussion von Abbildung 87 für AM02 ausgeführt, läßt der markierte instabile Rißfortschritt bei allen untersuchten Proben auf einen ausreichend ebenen Dehnungszustand vor

Abbildung 93: Bruchflächen bei verschiedenen Probennettobreiten

der Rißspitze schließen. Der instabile Spaltbruch innerhalb der Probe reicht fast bis zum Rand, bei der seitlich gekerbten Probe wird der Rand auf einer Länge von über der Hälfte des Rißfortschritts erreicht. Alle Proben zeigen keine erkennbare plastische Deformation bis zum Erreichen der kritischen Last.

Vergleich mit Normprobe

In der Gegenüberstellung in Tabelle 13 (Seite 80) zeigt sich, daß kleine Proben bei sprödem Materialzustand keine nichtkonservativen Werte für K_{IC} liefern. Die weiter als in der ASTM-Norm gefaßten Größenbedingungen [4] können für die untersuchte Probenform als anwendbar angenommen werden, da bei ihrer Anwendung gültige Werte ermittelt werden. Es zeigt sich, daß die minimale Restligamenthöhe *W-a* für den untersuchten spröden Werkstoffzustand tatsächlich in etwa bei derjenigen der kleinen Probe liegt, während die Probenbreite weiter verringert werden könnte. Bei

einer weiteren Verringerung der Probengröße muß demnach bei Beibehaltung von *W-a* die Rißlänge *a* stärker reduziert werden, was zu nicht mehr normgerechten *a/W*-Verhältnissen führt.

Die Streuung der direkt ermittelten *K*-Werte von MANET-II ist deutlich höher als die der über *J* bestimmten für EUROFER 97. Dies kann nach Häcker und Wossidlo zum einen teilweise dadurch erklärt werden, daß ein im Mehrprobenversuch gewonnener J_{IC} -Wert ein gemittelter Wert, repräsentativ für den Werkstoffzustand im Bereich der Probenentnahme, ist, während ein direkt ermittelter K_{IC} -Wert ähnlich dem aus dem Einprobenversuch gewonnenen J_{IC} -Wert ein lokales Werkstoffverhalten genau einer Probe darstellt [101]. Zum anderen ist nach Wallin der Spaltbruch in metallischen Werkstoffen ein Mechanismus statistischer Natur, und die aus ihm abgeleitete Größe K_{IC} kann nur ein ähnliches Verhalten aufweisen [102]. Neben der werkstoffbedingten Streuung der Versuchsergebnisse ist die allgemeine Fehlergröße des K_{IC} -Versuchs zu beachten, die für Dreipunkt-Biegeversuche unter Respektierung der ASTM-Vorschriften [2] bei etwa 2,5% liegt. Allgemein liegt der Fehler von Dreipunkt-Biegeproben etwas oberhalb des Fehlers von Kompakt-Zugproben; der Fehler nimmt nach Orange mit abnehmender Probengröße zu, aber andererseits mit abnehmendem a/W-Verhältnis ab [103].

5.2.3.3 MANET-II im Übergangsbereich (700°C Anlaßtemperatur)

Abbildung 95 (Seite 80) zeigt die *J*-*R*-Kurve für kleine Dreipunkt-Biegeproben (Tabelle A 52). Obwohl nicht genügend Versuche für eine normgerechte Ermittlung von J_{IC} über J_i und somit eine Bestimmung von K_{IC} vorliegen, geben die ermittelten Punkte Hinweise auf die Verschiebung der Übergangstemperatur. Im Rahmen der temperierten Versuche ist zu klären, ob die Miniaturprobe bei Raumtemperatur bereits ein Bruchverhalten aus dem oberen Bereich des Übergangs zeigt. Mit einer Ausgleichsgeraden (ausgezogene Linie) ergibt sich:

B = 3 mm, glatt: $J_{IC} = 249 \text{ N/mm}$ $K_{IC} = 7580 \text{ N} \cdot \text{mm}^{-1.5} = 240 \text{ MPa} \cdot \text{m}^{0.5}$ $(J_{0,2} = 327 \text{ N/mm})$ Der ermittelte K-Wert liegt damit deutlich höher als der höchste aus Standardproben ermittelte. Das Größenkriterium (12) wird mit $B_{min} = 7,96 \text{ mm}$ um 63% unterschritten.

5.2.4 Geometrisch nicht ähnliche Proben: KLST-BM-Probe

Bei geometrisch nicht ähnlichen Proben ist die relative Rißlänge a/W auf 0,25 reduziert, während dabei Breite, Auflagerabstand und Restligamenthöhe gegenüber der Miniaturprobe unverändert bleiben. Ein Clip-Aufnehmer zur Erfassung der Lastangriffspunktverschiebung kann nicht mehr montiert werden, wohingegen die resultierende Höhe von 4 mm alternativ die Verwendung eines KLST-Schlagpendels zur Prüfung gestattet. Die Probe besitzt eine Rißstarterkerbe von 0,5 mm Tiefe (dargestellt in Abbildung A 36) und wird vor dem Versuch mit Hilfe der Resonanzmaschine mit einer Gesamtrißlänge von ca. 1,0 mm versehen. Wegen der nicht mehr erfüllten Größenverhältnisse für den *K*-Versuch muß für die KLST-BM-Proben anstatt der Annäherung f(a/W) aus [2] eine entsprechend angepaßte Korrekturfunktion verwendet werden (vgl. Abschnitt 4.3.6.3).

5.2.4.1 MANET-II im spröden Zustand (600°C Anlaßtemperatur)

Die direkte *K*-Ermittlung an glatten KLST-BM-Proben führt bei MANET-II mit einer Anlaßtemperatur von 600°C dort, wo es zu Spaltbruchbildung kommt (Tabelle A 54), zu ähnlichen Ergebnissen wie die Prüfung von seitengekerbten Miniatur-Biegeproben (vgl. Abbildung 94). Wie bei den Betrachtungen zu Abbildung 29 erläutert, müssen durch die kinematischen Bedingungen die KLST-BM-Proben während der Prüfung weiter verformt werden als die Mini-3PB-Proben, damit ein Bruch einsetzt. Proben mit Rißfortschritt sind zum Vergleich in Abbildung 104 (Seite 86) eingefügt.

$$B = 3$$
 mm, glatt:
 $K_{IC} = 2161 \text{ N} \cdot \text{mm}^{-1,5} = 68 \text{ MPa} \cdot \text{m}^{0,5}$

Die Größenkriterien (11) werden wie bei den Mini-3PB-Proben mit im Mittel $B_{min} = 15,46$ mm nicht erfüllt, wohl aber jene nach (13) und (14):

$$(W-a)_{min} = 2,20 \text{ mm}$$
 und $B_{min} = 1,10 \text{ mm}$.

Abbildung 94: K-Versuche an Miniaturproben, MANET-II, $T_{anl.} = 600^{\circ}$ C

Seitenkerbung

Das Einbringen von Seitenkerben von 0,33 mm Tiefe reduziert die Rißzähigkeit geringfügig, ebenso nimmt der notwendige Verformungsweg zum Auslösen des Bruchs etwas ab (Tabelle A 55).

$$B = 2,33 \text{ mm}$$
, seitengekerbt: $K_{IC} = 1904 \text{ N} \cdot \text{mm}^{-1,5} = 60 \text{ MPa} \cdot \text{m}^{0,5}$
 B_{min} gem. (11) = 12,00 mm, (W-a)_{min} = 1,71 mm (13) und $B_{min} = 0,85 \text{ mm}$ (14).

Dynamische Versuche

Identische Proben werden im Schlagpendel bei Raumtemperatur getestet. Eine Auswertung des vom Transientenrekorder aufgezeichneten Kraft-Durchbiegungsverlaufs liefert die in Tabelle A 56 dargestellten Ergebnisse, siehe Abbildung 94. Die verwendete Korrekturfunktion $f^{\#}$ nach Fett und Munz ([79], Seite 35) wird durch die Verringerung des Auflagerabstandes *L* von 24 auf 22 mm kaum beeinflußt:

$$f^{\#}(a=1, W=4, L=24) = 0,911 \iff f^{\#}(a=1, W=4, L=22) = 0,907$$
 (Längen in mm)

Allgemein können nach Schwalbe dynamische Versuche zu einer Verringerung der ermittelten Rißzähigkeit führen, da bei ansteigender Belastungsgeschwindigkeit der spröd-duktile Übergang sich hin zu höheren Temperaturen verschiebt. Diese Verschiebung ist um so größer, je niedriger die Streckgrenze des geprüften Werkstoffes ist [6].

Die dynamischen K_{IC} -Werte werden als K_{ID} bezeichnet. Die bei der Auswertung gefundenen Werte weisen keinen nennenswerten Unterschied zu denjenigen (unter ansonsten gleichen Bedingungen) aus statischen Versuchen ermittelten auf. Dies kann darauf zurückzuführen sein, daß sich der Werkstoff in einem sehr spröden Zustand befindet, der auch ohne den Einfluß einer erhöhten Belastungsgeschwindigkeit einen ausreichend ebenen Dehnungszustand vor der Rißspitze sicherstellt. Der gefundene *K*-Wert liegt demnach in beiden Fällen im flachen linken Teil der Temperatur-Zähigkeits-Kurve.

B = 2,33 mm, seitengekerbt, $v_0 = 3,85$ m/s: $K_{ID} = 1983$ N·mm^{-1,5} = 63 MPa·m^{0,5} B_{min} gem. (11) = 13,01 mm, (W-a)_{min} = 1,85 mm (13) und $B_{min} = 0,93$ mm (14).

Vergleich mit Normprobe

Der Vergleich mit Normproben zeigt, daß über die KLST-ähnliche Bruchmechanik-Probe bei sprödem Materialverhalten gültige Kennwerte ermittelt werden können. Tabelle 13 stellt alle ermittelten Werte gegenüber. Die Beibehaltung der Restligamenthöhe und die Verringerung der Anrißlänge mit der Probenhöhe führen zu einer Geometrie, die die Größenbedingungen gemäß [4] erfüllt. Mit der veränderten Geometrie ist es möglich, dynamische Versuche in einem automatisierten Schlagpendel durchzuführen.

B_n in mm	9,00	3,00	2,33	3,00	2,33	2,33
	glatt	glatt	s. gekerbt	glatt	s. gekerbt	s. gekerbt12
	Normpr.	Mini	-3PB		KLST-BM	
K_{IC} in N·mm ^{-1,5}	2279	1971	2151	2161	1904	1983
K_{IC} in MPa·m ^{0,5}	72	62	68	68	60	63
<i>K_{IC}</i> in %	100%	86%	94%	95%	83%	86%
B _{min} in mm	1,22	0,91	1,09	1,10	0,85	0,93

Tabelle 13: Ergebnis bruchmechanischer Versuche an MANET-II, Tanl. = 600°C

5.2.4.2 MANET-II im Übergangsbereich (700°C Anlaßtemperatur)

Wie in Abbildung 95 ersichtlich, liegt die *J*-*R*-Kurve für glatte KLST-BM-Proben ähnlich wie die für miniaturisierte Dreipunkt-Biegeproben, an denen ausschließlich Mehrprobenversuche durchgeführt wurden (Tabelle A 58). Die gestrichelte Ausgleichsgerade zur J_i -Bestimmung für alle Rißverlängerungen von KLST-BM-Proben zwischen 0,15 und 1,50 mm führt zu:

B = 3 mm, glatt: $J_{IC} = 264 \text{ N/mm}$ $K_{IC} = 7805 \text{ N} \cdot \text{mm}^{-1.5} = 247 \text{ MPa} \cdot \text{m}^{0.5}$ $(J_{0,2} = 319 \text{ N/mm})$ Das Größenkriterium (12) mit $B_{min} = 8,34 \text{ mm}$ wird nicht erfüllt.

Die durch die Verringerung der relativen Rißlänge hervorgerufene leicht höhere Lage für die Ausgleichsgerade und J_{IC} bestätigt die in Abschnitt 2.7.4 hervorgehobenen Ergebnisse von Tosal et al. [49] und Betegon et al. [50]. Der Vergleich mit den Ergebnissen der Normprobe in Tabelle 14 zeigt, daß die miniaturisierten Proben untereinander gut übereinstimmende Ergebnisse liefern, die Normprobe aber offensichtlich nicht nach denselben Mechanismen bricht. Während die KLST-BM-Probe einen leicht höheren J_i -Wert als die Miniaturprobe liefert, ist ihr J_{02} -Wert geringfügig kleiner.

Abbildung 95: Bestimmung von J_{IC} an Miniatur- (ausgezogene Linie) und KLST-BM-Proben (gestrichelte Linie) mit B = 3 mm, Material: MANET-II, $T_{anl.} = 700$ °C

¹² dynamische Prüfung auf Schlagpendel mit v_0 = 3,85 m/s und L = 22 mm

B_n in mm	9,00	3,00	3,00
		Mini-3PB	KLST-BM
J_{IC} (J_i) in N/mm	150	249	264
K_{IC} in N·mm ^{-1,5}	5882	7580	7805
<i>K_{IC}</i> in MPa⋅m ^{0,5}	186	240	247
<i>K_{IC}</i> in %	76%	100%	103%
J ₀₂ in N/mm		327	319
B_{min} in mm	4,75	7,96	8,34

Tabelle 14: Ergebnis bruchmechanischer Versuche an MANET-II, Tanl. = 700°C

5.3 Temperierte, dynamische Versuche und Übergangsverhalten

Im Rahmen der temperierten Versuche werden zunächst die Schlagenergien der verschiedenen Probenformen betrachtet, anschließend wird der spröd-duktile Übergang bruchmechanischer Proben anhand des bruchmechanischen Kennwertes J_{ID} beschrieben.

5.3.1 Vergleich der Übergangstemperaturen der Schlagenergie

Die Prüfung im KLST-Pendel bietet die Möglichkeit, die Proben für den Versuch in einen genau definierten Temperaturzustand zu bringen. Zunächst bietet sich ein Vergleich des spröd-duktilen Übergangs anhand der Schlagenergie an. Hierzu werden neben den KLST-BM-Proben herkömmliche KLST-Kerbschlagproben geprüft.

Generell wird bei den nachfolgenden Untersuchungen die Übergangstemperatur (*DBTT*) nicht bei einem fixen Energiewert, sondern bei 50% des gefundenen Hochlagewerts (*USE*) des jeweiligen Materialzustands bestimmt. Nur so kann sichergestellt sein, daß auch bei einem flachen Verlauf des Übergangs dieser unabhängig vom Betrag der Hochlageenergie in seiner Mitte durch die Übergangstemperatur definiert wird.

5.3.1.1 MANET-I

Etliche Proben mit Anlaßwärmebehandlungen von 750°C sind im Rahmen der Parameterstudie zur Variation der Geometrie in Abbildung 79 (Seite 68) gegenübergestellt und werden dort diskutiert. Tabelle 15 beinhaltet diese Ergebnisse und die der mit 700°C angelassenen Proben. Erwartungsgemäß sind die Hochlagen etwas geringer und die Übergangstemperaturen höher. Lediglich die Probe mit erodiertem Anriß ("KLST-er") verfügt über eine erstaunlich niedrige Übergangstemperatur. Dies kann mit der geringeren Kerbschärfe durch den breiteren Einschnitt von 0,2 mm (0,07 mm bei $T_{ant.} = 750°$ C) erklärt werden, da die Probe damit

Normalisierung	980°C		
Austenitisierung	107	5°C	
Anlaß-WB	750°C	700°C	
USE (ISO-V)	143 J	-	
USE (KLST)	6,5 J	5,6 J	
USE (KLST-BM)	5,8 J	5,4 J	
USE (KLST-er ¹³)	6,1 J	5,4 J	
DBTT (ISO-V)	+23°C	-	
DBTT (KLST)	-35°C	- 12°C	
DBTT (KLST-BM)	+ 4°C	+ 21°C	
DBTT (KLST-er)	- 4°C	- 10°C	

Tabelle 15: Hochlageenergie und Übergangstemperaturen für MANET-I

über den 0,1 mm-Kerbradius die KLST-Probe verfügt. Darstellungen der Energie über der Prüftemperatur finden sich bei der Auswertung bestrahlter Proben (Abbildung 110 und folgende, Seite 90).

Verschiebung der Übergangskurve durch Verringerung der Probenbreite

Wie in Abbildung 85 (Seite 71) gezeigt, ist der spröd-duktile Übergang offensichtlich abhängig von der Breite der Probe. Dies legt eine Untersuchung durch Schlagarbeits-Temperaturkurven nahe, die in

¹³ erodierter Einschnitt

Abbildung 96 dargestellt sind. Hierin sind für eine bessere Vergleichbarkeit alle Schlagenergien auf die Hochlageenergie der jeweiligen Probe bezogen. Mit abnehmender Breite der Probe sinkt die Übergangstemperatur, was mit einer zunehmenden Bedeutung der Scherbruchbereiche am Rand der Probe in Abbildung 85 korreliert werden kann. Abbildung 97 zeigt die mit zunehmender Probenbreite ansteigende Hochlage und Übergangstemperatur. Links unten befinden sich die Proben mit 1,0 mm, rechts oben diejenigen mit 3,0 mm Breite

Abbildung 96: Einfluß der Probenbreite auf die Übergangskurve, siehe auch Tabelle 16

Abbildung 97: Hochlage und Übergangstemperatur bei Variation von B und W-a

Einfluß der Restligamenthöhe auf die Übergangskurve

Die Restligamenthöhe hat einen wesentlich geringeren Einfluß auf die Übergangstemperatur als die Probenbreite. Lediglich die Proben mit sehr geringen Einschnittiefen besitzen eine stark abgesenkte *DBTT*, da sie aufgrund mangelnder Kerbschärfe nur noch sehr schwer durch einen Bruch unterhalb der Kerbe getrennt werden. Dieses Ergebnis findet sich in Übereinstimmung mit den Abhängigkeiten, die Dodds et al. vorstellen ([54], Seite 18). Bei Restligamenthöhen unter 3 mm nehmen offensichtlich die Unsicherheiten in der Bestimmung der Übergangstemperatur zu. Tabelle 16 faßt die Ergebnisse der temperierten Versuche der Parameterstudie zusammen:

Probe	DBTT	USE	W-a	В
	°C	J	mm	mm
30-38-20	-100	14,97	3,80	3,00
30-35-20	-35	8,96	3,50	3,00
30-33-20	-16	6,84	3,30	3,00
30-27-20	0	4,88	2,70	3,00
30-25-20	-13	4,51	2,50	3,00
30-22-20	-11	3,46	2,20	3,00
30-20-20	-23	2,97	2,00	3,00
30-18-20	-10	2,66	1,80	3,00
30-15-20	-20	2,07	1,50	3,00
30-12-20	-29	1,53	1,20	3,00

Probe	DBTT	USE	W-a	В
	°C	J	mm	mm
10-30-20	-100	1,40	3,00	1,00
15-30-20	-65	2,32	3,00	1,50
20-30-20	-50	3,52	3,00	2,00
25-30-20	-49	5,03	3,00	2,50
30-30-20	-10	5,44	3,00	3,00
30-30-R	20	5,84	1 mm Anı	riß
30-30-V	-11	5,64	KLST	

Tabelle 16: Übergangstemperaturen und Hochlageenergien von Proben mit veränderter Breite und Restligamenthöhe

5.3.1.2 MANET-II

Von MANET-II stehen in den beiden bereits beschriebenen Wärmebehandlungszuständen KLST-Proben und KLST-BM-Proben zur Verfügung. Zum Vergleich werden außerdem die Resultate von ISO-V-Charpy-Proben aus [62], dargestellt in Abbildung A 28, herangezogen.

MANET-II, Chg. 50806, 1075°C (0,5h) + div. Anlaß-WB

Abbildung 98: Temperatur-Energie-Diagramm für MANET-II

Zusätzlich wird zur Untersuchung der Größenabhängigkeit der Übergangstemperatur eine in Abbildung A 39 dargestellte Variante der ISO-V-Probe geprüft, die statt einer Kerbe einen 2 mm tiefen Anriß besitzt und fortan mit ISO-V-BM bezeichnet wird. Da diese Probe aufgrund ihrer Abmessungen nur auf einem nicht instrumentierten Pendel zu prüfen ist, wird lediglich die Schlagenergie ausgewertet. Somit ist es hier möglich, in zwei verschiedenen Wärmebehandlungszuständen jeweils Proben von 3x3 und 10x8 mm² Restligamentquerschnitt, jeweils mit genormter Kerbe und mit einem scharfen Anriß gleicher Tiefe, zu vergleichen. In Abbildung 99 ist für die verschiedenen Probenformen der Effekt der unterschiedlichen Anlaßwärmebehandlung dargestellt. Für alle 4 Probenformen gilt in etwa gleichem Maße, daß eine niedrige Anlaßtemperatur die Hochlage senkt und die Übergangstemperatur erhöht.

Normalisierung	960°C		
Austenitisierung	107	′5°C	
Anlaß-WB	600°C	700°C	
USE (ISO-V)	137 J	148 J	
USE (ISO-V-BM)	141 J	165 J	
USE (KLST)	6,1 J	6,1 J	
USE (KLST-BM)	5,3 J	6,2 J	
DBTT (ISO-V)	+45°C	+10°C	
<i>DBTT</i> (ISO-V- BM)	+93°C	+65°C	
DBTT (KLST)	-4°C	-34°C	
<i>DBTT</i> (KLST- BM)	+46°C	+25°C	
Tabelle 17: H	lochlageene	ergie und	

Übergangstemperaturen für MANET-II

Die in Abbildung 98 dargestellten Ergebnisse sind gut mit den von Tronskar et al. berichteten vergleichbar [89]. Dort wurde ein konventioneller Schiffsbaustahl (Klassifizierung NVE36) verwendet, der ein vergleichbares Übergangsverhalten und die gleiche Hochlageenergie besitzt. Im Unterschied zu der vorliegenden Arbeit wird von Tronskar et al. allerdings die Übergangstemperatur nicht bei der halben Hochlage, sondern bei 27 J definiert, was dort zu leichten Temperaturabweichungen führt. Tabelle 17 faßt die aus Abbildung 98 abgeleiteten Kennwerte zusammen. Der durch die Wärmebehandlung verursachte Abstand der Übergangstemperaturen liegt für alle untersuchten Probenformen in der gleichen Größenordnung. Vor allem aber ist der Unterschied von gekerbten zu angerissenen

Proben für beide Materialzustände und bemerkenswerterweise auch für beide Probengrößen mit ca. 50°C annähernd konstant.

Weiterhin läßt sich ablesen, daß bei Raumtemperatur die KLST-BM-Proben mit einer Anlaßtemperatur von 700°C gerade im Steilabfall des spröd-duktilen Übergangs liegen, während die in Tabelle 11 (Seite 74) aufgelisteten *K*-Versuche an 9 mm breiten Standard-Proben im untersten Teil des Übergangs bzw. im spröden Bereich liegen dürften. Dies erklärt auch das unterschiedliche Bruchverhalten der beiden geometrisch ähnlichen Proben.

5.3.1.3 EUROFER 97

EUROFER 97 wird bruchmechanisch in nur einem Wärmebehandlungszustand untersucht (Abbildung 100, andere Wärmebehandlungen siehe Tabelle 3, Seite 21, und Abbildung A 31). Wie bei MANET-II liegt der Unterschied von KLST- zu angerissenen Proben bei etwa 50°C. Wird die KLST-BM-Probe mit einer Seitenkerbung versehen, reduziert sich nicht nur die Hochlage um ca. 40% erheblich, auch die Übergangstemperatur wird um weitere 30°C angehoben (Tabelle 18). Der nicht so deutliche Unterschied in der DBTT zwischen ISO-V- und KLST-Probe durch kann die nachträglich aufgebrachte Wärmebehandlung der ISO-V-Proben hervorgerufen sein, da sie ein homogeneres Materialgefüge als die KLST-Proben besitzen.

Abbildung 100: Vergleich der Übergangstemperaturen für EUROFER 97

Austenitisierung	980°C	Anlaß-WB	760°C
USE (ISO-V) ¹⁴	267 J	DBTT (ISO-V)	-81°C
USE (KLST)	9,8 J	DBTT (KLST)	-86°C
USE (KLST-BM)	9,9 J	DBTT (KLST-BM)	-42°C
USE (KLST-BM-K) ¹⁵	5,8 J	DBTT (KLST-BM-K)	-12°C

Tabelle 18: USE und DBTT für EUROFER 97

5.3.2 Bruchmechanische Kennwerte

5.3.2.1 MANET-I

Die im Rahmen der Parameterstudie auf Seite 68 bezüglich ihrer Schlagenergie und Übergangstemperatur untersuchten angerissenen KLST-BM-Proben können anhand der aufgezeichneten Versuchsdaten bruchmechanisch ausgewertet werden (Tabelle A 26). Zur Anwendung kommen der von Schindler vorgestellte Ansatz zur Ermittlung von J_{ID} aus dem Schlagbiegeversuch (Abschnitt 5.1.5.1) und die Auswertemethode von Zhang and Shi (Abschnitt 5.1.5.2).

Die Auswertung nach Schindler erlaubt die Konstruktion einer vollständigen *J-R*-Kurve aus jedem einzelnen Versuch einer KLST-BM-Probe, wie in Abbildung 101 gezeigt wird. Aus diesen Kurven kann der dynamische kritische *J*-Wert J_{ID} abgeleitet werden.

¹⁴ mit im IMF nachträglich aufgebrachter Wärmebehandlung mit günstigeren Eigenschaften

¹⁵ mit Seitenkerbung

Abbildung 102 stellt Schlagenergie und den gemäß Abschnitt 5.1.5.2 errechneten J_{ID} -Wert der Proben gegenüber. Für die KLST-BM-Proben (Dreiecke) erkennt man deutlich den nochmals um etwa 10°C zu höheren Temperaturen verschobenen Übergang zwischen Schlagenergie (grau) und J_{ID} (schwarz). Dem Master-Curve-Ansatz folgend können die als gültig anzunehmenden Werte in eine Fehlerquadratbestimmung zur Ermittlung von T_0 eingehen. Da hierbei nicht der *K*-Wert in MPa·m^{0,5}, sondern das *J*-Integral in N/mm betrachtet wird, ändert sich die Bestimmungsgleichung für J_{IC} allgemein entsprechend. $J_0 = 43,3$ N/mm entspricht hierbei $K_0 = 100$ MPa·m^{0,5}:

$$J_{IC} = 10^5 \cdot \frac{1 - v^2}{E} \cdot \left\{ 3 + 7 \cdot e^{[0.019(T - T_0)]} \right\}^2 \quad (65)$$

Abbildung 101: *J-R*-Kurven für KLST-BM-Proben, diverse Prüftemperaturen in °C

 J_{IC} in N/mm

Die Hochlage der dynamischen Rißzähigkeit liegt bei (grau eingezeichnet) 253 MPa·m^{0,5}, die Ergebnisse sind in Tabelle 19 zusammengefaßt:

MANET-I, 980°C (2h) + 1075°C (0,5h) + 750°C (2h)					
KLST-BM	J _{ID} 277 N/mm				
dynamische,	Hochlage	K_{ID}	253 MPa⋅m ^{0,5}		
temperierte Versuche	<i>B_{min}</i> (12) 7,9 mm				
$B_{min, J=100 \text{ N/mm}}$ (12)	2,9 mm	T_0	-4°C		
<i>K_{ID T= 23 - 38°C}</i>	73 MPa⋅m ^{0,5}	DBTT (50% J _{ID})	39°C		

Tabelle 19: Bruchmechanische Ergebnisse für dynamische Versuche an MANET-I

Vergleicht man hiermit die aus Abbildung 101 gewonnenen Werte (Sterne in Abbildung 102), so wird ersichtlich, daß bis etwa 150 N/mm *J* überschätzt wird, darüber deutlich unterschätzt. Die aus solcherart abgeleiteten Werten errechnete Master-Curve besäße einen etwas zu niedrigen und damit nichtkonservativen Parameter T_0 .

Des weiteren ist aus Abbildung 103 ersichtlich, daß eine analoge Auswertung der KLST-Proben (Kreise) aufgrund ihrer geringen Kerbschärfe keine verwertbaren Ergebnisse liefert: während die Schlagenergie mit sinkender Prüftemperatur zurückgeht, bleibt das aus dem Versuchsprotokoll

bestimmte *J*-Integral weiterhin im Bereich der Hochlage. Eine Auswertung der Proben mit erodiertem Einschnitt (Quadrate) liefert eine J_{ID} -Kurve, die ihren Übergang etwa im Bereich der zugehörigen *T*-*E*-Kurve hat. Sie besitzt damit nicht den Abstand der beiden Übergangskurven einer bruchmechanischen Probe mit Anriß. Diese Probenform erscheint daher nur bedingt geeignet, bruchmechanische Kennwerte zu bestimmen, weitere Betrachtungen dazu werden in Abschnitt 6.3.3 ausgeführt.

5.3.2.2 MANET-II

Abbildung 104: Dynamische *J*-*R*-Kurven für div. *T* in °C und statische Versuche (RT) an MANET-II, $T_{anl} = 600$ °C

Abbildung 105: Dynamische *J*-*R*-Kurven für div. *T* in °C und statische Versuche (RT) an MANET-II, $T_{anl} = 700$ °C

Abbildung 104 zeigt die aus den einzelnen Versuchen gewonnenen *J-R*-Kurven für MANET-II mit niedriger Austenitisierungstemperatur. Sie liegen - auch in der Hochlage - deutlich niedriger als die des zäheren Wärmebehandlungszustandes in Abbildung 105. Dort läßt sich eine gute Übereinstimmung der konstruierten *J-R*-Kurven mit den quasistatischen Experimenten finden, die von den Kurven für 30 und 35°C eingehüllt werden. Da sich dynamische Versuche wie statische Versuche bei verringerter Temperatur verhalten, kann von einer sehr guten Übereinstimmung ausgegangen werden.

Abbildung 106 faßt über verschiedene Methoden gewonnene K_{ID} -Werte für beide Wärmebehandlungszustände zusammen, die Hochlagen sind als graue Balken eingezeichnet.

Für 700°C Anlaßtemperatur liefern der über J_{ID} gewonnene, der aus dem kritischen J_{ID} obiger Kurven abgeleitete und der direkt bestimmte K_{ID} -Wert ab etwa 50% des Hochlagewertes von 231 MPa·m^{0,5} vergleichbare Ergebnisse (Tabelle 20). Darunter sind die aus dem dynamischen *J*-Integral ermittelten *K*-Werte deutlich geringer. Die Master-Curve läßt sich angeben zu

$$K_{IC} = 30 + 70 \cdot e^{[0,019(T-T_0)]}$$
 (66)

hier mit $T_0 = -1^{\circ}$ C und K_{IC} in MPa·m^{0,5}.

Für 600°C Anlaßwärmebehandlung streuen die Ergebnisse stärker. Es wird offensichtlich, daß

die direkte K-Auswertung des instrumentierten Schlagbiegeversuchs ab einer gewissen Rißzähigkeit zu niedrige K-Werte liefert und die Hochlage von 228 MPa·m^{0,5} verfehlt. Dies stellt insofern kein

ernsthaftes Problem dar, da die beiden anderen Auswertemethoden zur Plausibilitätsprüfung zur Verfügung stehen und die Verletzung des Größenkriteriums (11) für den *K*-Versuch mit $B_{min, K=125 \text{ MPa}\cdot\text{m0}, 5} = 52 \text{ mm}$ offensichtlich ist und auch (14) nicht erfüllt werden kann.

Sowohl die bruchmechanische Übergangstemperatur als auch T_0 liegen für beide Materialzustände jeweils etwa 20°C auseinander. Für beide Zustände gilt ebenfalls, daß T_0 etwa gleich groß ist wie die *DBTT* der KLST-Kerbschlagprobe und daß - im Gegensatz zu den Untersuchungen an MANET-I in Abschnitt 5.3.2.1 - praktisch kein Temperaturunterschied zwischen der energetischen und der bruchmechanischen Übergangstemperatur der KLST-BM-Probe existiert.

MANET-II, 960°C (2h) + 1075°C (0,5h) + 600°C (2h)					
KLST-BM		J_{ID}	225 N/mm		
dynamische,	Hochlage	K _{ID}	228 MPa⋅m ^{0,5}		
temperierte Versuche		<i>B_{min}</i> (12)	6,2 mm		
$B_{min, J=100 \text{ N/mm}}$ (12)	2,7 mm	T_0	+23°C		
<i>K_{ID T}</i> = 23 – 38°С	115 MPa⋅m ^{0,5}	DBTT (50% K _{ID})	+40°C		
Stat. Versuche bei 23 - 38°C		K _{IC}	60 - 72 MPa⋅m ^{0,5}		
MA	NET-II, 960°C (2h) + 107	5°C (0,5h) + 700°C (2h)			
KLST-BM		J_{ID}	232 N/mm		
dynamische,	Hochlage	K _{ID}	231 MPa⋅m ^{0,5}		
temperierte Versuche		<i>B_{min}</i> (12)	7,4 mm		
$B_{min, J=100 \text{ N/mm}}$ (12)	3,2 mm	T_0	-1°C		
<i>K_{ID T= 23 – 38°C}</i>	150 MPa⋅m ^{0,5}	DBTT (50% K _{ID})	+23°C		
Stat Versuche bei 23 - 3	8°C	K _{IC}	80 - 247 MPa·m ^{0,5}		

Tabelle 20: Bruchmechanische Ergebnisse für dynamische Versuche an MANET-II

5.3.2.3 EUROFER 97

Von EUROFER 97 werden glatte und seitlich gekerbte KLST-BM-Proben geprüft. Der sehr steile Übergang von duktilem zu sprödem Verhalten, der bei der Schlagenergie beobachtet werden kann, ist hier ebenso für die Rißzähigkeit erkennbar (Abbildung 107). Aus diesem Grund fällt es schwer, die Master-Curve geeignet anzupassen, da ihre Krümmung den steilen Übergang nur unzureichend nachbilden kann und daher zu einer Überschätzung der K_{ID} -Werte im unteren Bereich führt.

Odette et al. berichten über bruchmechanische Versuche an 5 und 10 mm breiten CT-Proben aus EUROFER 97 [104], die daraus abgeleitete Master-Curve-Darstellung befindet sich in guter Übereinstimmung mit den hier gezeigten Daten für

Abbildung 107: Dynamische K-Werte für EURO-FER 97

glatte Proben. Lucon [105] ermittelt die Master-Curve gemäß ASTM [32] anhand von 10 mm breiten, glatten, angerissenen Charpy-Proben. Diese erreicht mit $T_0 = -121^{\circ}$ C und $K_0 = 119,8$ MPa·m^{0.5} bei etwa -60°C den im Rahmen dieser Arbeit experimentell ermittelten Hochlagewert. Der Vergleich zeigt für Lucons Ergebnisse eine ca. 20°C niedrigere T_0 , was mit der Übergangstemperaturverschiebung dynamischer Versuche erklärt werden kann.

Seitlich gekerbte Proben besitzen im Vergleich zu glatten eine etwa 30°C höhere bruchmechanische *DBTT* und eine um den gleichen Betrag verschobene T_0 (Tabelle 21). Die energetischen und bruchmechanischen Übergangstemperaturen beider Probenformen unterscheiden sich jeweils nicht, und T_0 für glatte Proben liegt im Bereich der *DBTT* für KLST-Charpy-Proben.

Die Hochlagen, die für beide Probenformen gefunden werden, sind etwas höher als die für die statischen Versuche, wobei wie bei den Miniatur-Dreipunkt-Biegeproben die seitengekerbten Proben etwas geringere Werte erzielen als die glatten (s. dazu auch Tabelle 12 auf Seite 75). Die im Vergleich zu den statischen Versuchen höheren K_{ID} -Werte können auf der niedrigeren und damit näher am Übergang gelegenen Prüftemperatur der dynamischen Versuche beruhen. Bei vielen Werkstoffen steigen mit abnehmender Temperatur die Schlagenergie und die Rißzähigkeit vor dem Eintritt in den Steilabfall nochmals an.

Der Vergleich der dynamischen *J-R*-Kurven in Abbildung 108 und Abbildung 109 zeigt flachere Kurven für seitlich gekerbte Proben (vergleiche Abbildung 89, Seite 75). Deutlich zu sehen ist in beiden Abbildungen der übergangslose Steilabfall, der zwischen den Kurven des oberen Plateaus und denen des spröden Bereichs weiten Raum läßt. Die dynamischen und statischen Rißwiderstandskurven glatter Proben zeigen gute Übereinstimmung, während bei den seitengekerbten Proben die statisch ermittelten *J*-Werte etwas niedriger liegen. Die dynamisch ermittelten J_{IC} -Werte seitengekerbter Proben unterscheiden sich von den quasistatisch ermittelten aber nur insoweit, wie dies auch bei glatten Proben der Fall ist.

EUROFER 97, 980°C (0,5h) + 760°C (1,5h)					
KLST-BM	BM J _{ID}		365 (319) N/mm		
dynamische,	Hochlage	K _{ID}	290 (271) MPa⋅m ^{0,5}		
temperierte Versuche		<i>B_{min}</i> (12)	15,4 (10,2) mm		
$B_{min, J=100 \text{ N/mm}}$ (12)	4,2 mm	T_0	-97 (-68)°C		
<i>K_{ID T= 23 – 38°}</i> C	- MPa⋅m ^{0,5}	DBTT (50% K _{ID})	-44 (-11)C		
Stat. Versuche bei 23 - 38°C		K_{IC}	253 – 270 MPa⋅m ^{0,5}		

Tabelle 21: Bruchmechanische Ergebnisse für dynamische Versuche an EUROFER 97, Werte in Klammern für seitengekerbte Proben

Abbildung 108: Dynamische *J-R*-Kurven für div. *T* in °C und statische Versuche (RT) an EUROFER 97, glatte Proben

Die in diesem Kapitel vorgestellten Untersuchungen zeigen anhand von vier verschiedenen Werkstoffen oder Werkstoffzuständen, daß die vorgeschlagenen kleinen Proben für bruchmechanische Untersuchungen anwendbar sind. Die Übertragbarkeit sowohl der Ergebnisse von Proben verschiedener Größe und ähnlicher Geometrie, als auch von Proben nichtähnlicher Geometrie ist mit den entsprechenden Korrekturfunktionen gegeben. Die dynamische Prüfung in einem instrumentierten Schlagpendel zeigt die Vergleichbarkeit von statischen und dynamischen Prüfergebnissen der vorgeschlagenen KLST-BM-Probe. In einem nächsten Schritt werden in Kapitel 6 die hierbei gewonnenen Erkenntnisse auf bestrahlte Proben angewandt.

6 Prüfung von bestrahlten Proben

Im Rahmen des Niederdosis-Bestrahlungsexperiments MANITU sind Proben aus MANET-I im europäischen Hochfluß-Forschungsreaktor, Petten, bestrahlt worden [86]. Ihre Geometrie entspricht weitgehend der hier vorgestellten KLST-BM-Probe, so daß diese Proben im Rahmen dieser Arbeit mit den an unbestrahlten Proben entwickelten Methoden geprüft und ausgewertet werden können.

6.1 Strahlenschädigung von metallischen Materialien

Metallische Werkstoffe erfahren unter Neutronenbestrahlung in aller Regel eine Schädigung, wobei das Ausmaß der Schädigung stark von den Legierungsbestandteilen des untersuchten Materials abhängt. Generell nimmt nach Bestrahlung die Duktilität des Werkstoffs ab, während die Festigkeit zunimmt. Unter anderem kann dies auf Verspannungen im Kristallgitter des Werkstoffs zurückgeführt werden, da Gitteratome aus ihrem angespannten Platz verschoben werden. Eine weitere Ursache ist nach Materna-Morris et al. die Umwandlung des ¹⁰B-Isotops in Helium, welches in Form von Gasbläschen an der Bruchfläche nachgewiesen werden kann [106]. Außerdem reagieren metallische Werkstoffe in aller Regel empfindlicher auf niedrige Bestrahlungstemperaturen, da bei höheren Temperaturen Verspannungen durch Platzwechsel einzelner Atome im Gefüge leichter wieder abgebaut werden können.

6.1.1 Auswirkungen auf mechanische Kennwerte

Im Zugversuch nehmen mit zunehmender Dosis und sinkender Bestrahlungstemperatur Streckgrenze und Zugfestigkeit zu, während erreichbare Dehnung und Brucheinschnürung zurückgehen. Im Kerbschlagversuch sinkt unter gleichen Vorgaben die Hochlageenergie, und die aus dem Kerbschlagversuch ermittelte dynamische Streckgrenze steigt an. Der spröd-duktile Übergang verschiebt sich zu höheren Temperaturen hin, so daß die Neigung zum Sprödbruch zunimmt. Gleichzeitig verflacht sich der Übergang so, daß über einen weiten Temperaturbereich Mischbrüche auftreten. Bestrahlungsinduzierte Versprödung und Verfestigung müssen nicht zwangsweise im gleichen Maße auftreten, was sowohl günstige als auch ungünstige Auswirkungen auf die Materialeigenschaften haben kann. Über diese allgemeine Beschreibung hinausgehende Darstellungen des Bestrahlungsverhaltens verschiedener metallischer Werkstoffe finden sich u. a. in [63] und [86].

6.1.2 Parameter der Bestrahlung

Die Parameter der Bestrahlung sind detailliert in [107] beschrieben. Die Proben wurden in Serien von je 8 Stück bei Temperaturen von 250, 300, 350, 400 und 450°C bestrahlt. Die angestrebte Zieldosis hierbei ist 0,8 dpa in Stahl (displacements per atom), was statistischen 0,8 bestrahlungsinduzierten Verschiebungen pro Gitteratom entspricht. Die verwendeten Geometrien sind Biegeproben mit Anriß oder erodierter Kerbe, wie sie in Abbildung 79 (Seite 68) verglichen werden. Insgesamt sind 80 Proben bestrahlt worden.

6.2 Mechanische Prüfung

Alle bestrahlten Proben werden im Fusionsmateriallabor des Instituts für Materialforschung auf einem instrumentierten, automatisierten Pendel mit Temperiereinrichtung geprüft (Abbildung 59, Seite 54). Zum Vergleich dienen KLST-Proben des gleichen Materialzustandes, die in einem früheren Abschnitt desselben Bestrahlungsprogramms mit den gleichen Parametern bestrahlt und deren Ergebnisse von Rieth et al. publiziert wurden [93].

6.2.1 KLST-Proben

In Abbildung 110 zeigt lediglich die Bestrahlung bei 450°C keinen starken Einfluß auf Hochlageenergie und Übergangstemperatur, bereits bei 400°C ist die *USE* um 15% reduziert. Bei Temperaturen von 350°C und darunter ist die Hochlage um bis zu 44% verringert, während der spröd-duktile Übergang sich um bis zu 175°C verschiebt. Bei Bestrahlung hin zu höheren Dosen verstärkt sich dieser Effekt noch, nach 2,4 dpa ist bereits mit einem Verlust von bis zu 60% der *USE* bei einer Verschiebung der Übergangstemperatur von bis zu 220°C zu rechnen [63]. Der spröd-duktile Übergang erstreckt sich nach Bestrahlung über ein mit sinkender Bestrahlungstemperatur zunehmendes Temperaturband, das bis zu 300°C breit ist - gegenüber unbestrahlt ca. 100°C (Tabelle A 28 - Tabelle A 32).

T _{irr} in °C	<i>USE</i> in J	<i>DBTT</i> in ℃	∆ <i>USE</i> in J	<i>∆DBTT</i> in °C
250	3,7	145	-2,9	175
300	4,0	100	-2,6	130
350	4,4	60	-2,2	90
400	5,6	-10	-1,0	20
450	6,1	-25	-0,5	5
unbestrahlt	6,6	-30		

Tabelle 22: Bestrahlte KLST-Proben

Abbildung 110: KLST-Proben nach Bestrahlung =>

6.2.2 KLST-Bruchmechanik-Proben

Die bruchmechanischen Proben (Tabelle A 33 - Tabelle A 37) weisen auch im bestrahlten Zustand ein den KLST-Proben vergleichbares Temperaturverhalten der Schlagenergie auf - wiederum mit einer durchgängigen Reduzierung, die der größeren Kerbschärfe geschuldet ist, siehe Abbildung 111. Lediglich die bei 350°C bestrahlten Proben zeigen keine so starke Schädigung wie die entsprechenden KLST-Proben. Diese Proben liegen etwa in der Mitte zwischen den Probengruppen der hohen und der niedrigen Bestrahlungstemperaturen. Die mit 300°C bestrahlten Proben verhalten sich ähnlicher zu den bei 250°C bestrahlten. Allgemein liegt nach Bestrahlung die Übergangstemperatur etwas höher als bei den KLST-Proben, doch nicht mehr durchgängig in dem Maße, wie es im unbestrahlten Zustand der Fall ist (dort 34°C).

6.2.3 Proben mit erodiertem Einschnitt

Die mit einem erodierten Einschnitt ausgestatteten und in Abbildung 112 dokumentierten Proben verhalten sich - bis auf die etwas höhere Übergangstemperatur und Hochlageenergie der bei 350°C bestrahlten Proben - nicht anders als die angerissenen Proben (Tabelle A 38 - Tabelle A 42). Dieses Ergebnis ist insofern relevant, als sich damit bei einer etwaigen Korrelation zwischen der bruchmechanischen Übergangstemperatur und der Schlagenergie-Übergangstemperatur die Möglichkeit einer preiswerten, stark vereinfacht zu fertigenden Probe auftut. Diese Probe könnte aus geprüften, bestrahlten ISO-V-Charpy-Proben gewonnen werden, ohne daß für die Anrißerzeugung zunächst eine Eichkurve für den rißlängenabhängigen Frequenzverlauf ermittelt werden muß.

T _{irr} in °C	<i>USE</i> in J	<i>DBTT</i> in °C	∆ <i>USE</i> in J	∆ <i>DBTT</i> in °C
250	3,5	148	-2,6	152
300	3,5	146	-2,6	150
350	4,2	89	-1,9	93
400	5,1	14	-1,0	18
450	5,7	-9	-0,4	-5
unbestrahlt	6,1	-4		

Es ist bemerkenswert, daß die KLST-Proben im mittleren Bestrahlungstemperaturbereich eine erheblich höhere niedrigste Temperatur in der Hochlage¹⁶ besitzen als die erodierten oder angerissenen Proben, obwohl die erodierten Proben eine ungünstigere *DBTT* haben als die entsprechenden angerissenen Proben und KLST-Proben.

6.3 Bruchmechanische Auswertung

Abbildung 112: Erodierte Proben

Zur Quantifizierzung des Bestrahlungseinflusses auf die Rißzähigkeit werden die Kraft-Durchbiegungskurven der modifizierten Auswertemethode nach Zhang and Shi unterworfen, wie sie in Abschnitt 5.1.5.2 beschrieben ist.

6.3.1 Änderung des dynamischen J-Integrals

Ermittelt wird das dynamische *J*-Integral J_{ID} , die Resultate sind in Tabelle 25 dargestellt. Prinzipiell verhält sich das dynamische *J*-Integral wie die zugehörige Schlagenergie, und die Abhängigkeiten von Prüf- und Bestrahlungstemperatur sind ähnlich. Lediglich der spröd-duktile Übergang findet - auch bei den niedrigen Bestrahlungstemperaturen - in einem wesentlich engeren Temperaturfenster von ca. 50°C statt, wie die Linien in Abbildung 113 zeigen.

Die Übergangstemperaturen werden analog zu denen der Schlagenergie aus demjenigen Punkt der Kurve bestimmt, an dem 50% des gefundenen Hochlagewertes vorliegen. Eine andere Definition des Übergangs ist für die Vergleichbarkeit von Ergebnissen vor und nach Bestrahlung nicht sinnvoll, da nach bereits 0,8 dpa die Hochlage von J_{ID} um ca. 60% reduziert ist. Dies könnte dazu führen, daß ein den Übergang definierender Absolutwert für J von bestrahlten Proben selbst in der Hochlage nicht mehr erreicht wird, während er bei unbestrahlten Proben den unteren Teil des Übergangsbereiches

¹⁶ Dieser Kennwert ist insofern von Bedeutung, als er genau die Einsatzgrenze des Werkstoffs für duktiles Verhalten angibt - im Gegensatz zur *DBTT*, bei deren Erreichen bereits ein großer Teil der Zähigkeit eingebüßt ist.

bezeichnet. Nach der 50%-Definition ermittelte Übergangstemperaturen liegen zwar leicht über den Übergangstemperaturen für die Schlagenergie, lassen sich aber - wie von Petrequin und Soulat vorgeschlagen [108] - mit diesen linear korrelieren (Abbildung 114). Die Steigung von nahezu 1 verdeutlicht den konstanten Abstand und die gleichmäßige Verschiebung beider Kennwerte durch Bestrahlungsversprödung.

T _{irr} in °C	J _{ID} in N/mm	DBTT in °C ¹⁷	ΔJ_{ID} in N/mm	∆ <i>DBTT</i> in °C
250	107	178	-170	139
300	109	153	-168	114
350	185	77	-92	38
400	252	16	-25	-23
450	264	8	-13	-31
unbestrahlt	277	39		

Tabelle 25: J-Auswertung

Das Verhältnis von *USE* und J_{ID} der Hochlage für alle angerissenen Proben ist ebenfalls über eine Gerade darstellbar. Weil diese den Ursprung nicht schneidet, ist sie für kleine Rißzähigkeiten und Schlagenergien offensichtlich physikalisch nicht sinnvoll, da in diesem Bereich das *J*-Integral schneller zurückgeht als die Schlagenergie. Die angegebene Korrelation ist nur aus den Hochlagewerten bestimmt, gibt aber sämtliche Versuche gut wieder (Abbildung 115).

 J_{ID} [N/mm] = 73,1·*USE* [J] – 135,9 Abbildung 115: Korrelationen für *J*- und Energiewerte der KLST-BM-Probe

Abbildung 116 zeigt zusammenfassend die Hochlageenergie bzw. die Hochlage des *J*-Integrals für die verschiedenen Probengeometrien und die unterschiedlichen Bestrahlungsparameter. In Abbildung 117 sind die Übergangstemperaturen für 50% der Hochlageenergie und für 50% des Hochlage-*J*-

¹⁷ ermittelt bei J_{ID} in Höhe von 50 % des Hochlagewertes

Wertes dargestellt. Aus beiden Diagrammen sind deutlich die Zunahme der Strahlenschädigung mit sinkender Bestrahlungstemperatur und die größere Anfälligkeit des *J*-Integrals zu ersehen.

Abbildung 116: USE bzw. J-Integral für verschiedene Geometrien und Bestrahlungsparameter

Abbildung 117: *DBTT* für verschiedene Geometrien und Bestrahlungsparameter

6.3.2 Direkte K-Ermittlung

Bei ausreichend spröde versagenden Proben ist eine direkte Bestimmung des dynamischen K_{IC} -Wertes K_{ID} möglich. Die direkt ermittelten Werte bestätigen die aus den *J*-Auswertungen gewonnenen sehr gut bzw. ergänzen sie dort, wo wegen zu spröden Verhaltens keine Bestimmung von J_{ID} möglich ist. In Abbildung 118 sind direkt (grau hinterlegt) und indirekt bestimmte K_{ID} für unbestrahlte Proben und für bei drei Temperaturen bestrahlte Proben gegenübergestellt. Im spröden Bereich und im Übergangsbereich passen K_{ID} - und J_{ID} -Werte sehr gut zusammen. Im duktilen Bereich sind die direkt ermittelten K_{ID} -Werte zu niedrig (Beispiel: $T_{irr} = 350$ °C, Pfeil), aber aufgrund des sehr stark verletzten Größenkriteriums offensichtlich ungültig.

Abbildung 119: Master-Curve-Ansatz für bestrahlte Proben

Abbildung 119 zeigt die aus den ermittelten Werten abgeleiteten Master-Curve-Darstellungen, sowie (grau hinterlegt) jeweils den Bereich der duktilen Hochlage. Bei den sehr steilen Übergängen der beiden hohen Bestrahlungstemperaturen kann der Master-Curve-Ansatz den unteren Übergangsbereich in seiner Schärfe nicht nachbilden und kann so zu überschätzten Rißzähigkeitswerten führen.

T _{irr}	J_{ID}	T_0	K _{ID}	K _{ID}	B _{min} für J	B _{min} für K	B _{min} für K
°C	N/mm	°C	N⋅mm ^{-1,5}	MPa⋅m ^{0,5}	mm (12)	mm (11)	mm (14)
unbestr.	277	-4	7995	253	7,9 ()	242,4 ()	33,9 ()
250	107	174	4969	157	3,1 (2,7)	93,6 (61,7)	13,1 (5,4)
300	109	165	5015	159	3,1 (2,7)	95,4 (62,9)	13,3 (5,5)
350	185	+56	6534	207	5,3 (4,6)	161,9 (106,7)	22,7 (9,3)
400	252	-1	7626	241	7,3 (6,3)	220,5 (145,4)	30,9 (12,6)
450	264	-19	7805	247	7,6 (6,6)	231,0 (152,3)	32,3 (13,2)

Tabelle 26: Ergebnisse bruchmechanischer Versuche an bestrahltem MANET-I (Hochlage)

Die Ergebnisse für die Auswertung der bis 0,8 dpa bestrahlten Proben sind in Tabelle 26 zusammengefaßt. Die Mindestgrößen wurden mit den unbestrahlten Raumtemperatur-Kennwerten $\sigma_F = 792 \text{ N/mm}^2$ und $R_{eS} = 728 \text{ N/mm}^2$ berechnet. Es stehen zwar zur exakten Bestimmung von σ_F und R_{eS} keine Zugversuche an bestrahlten Proben im relevanten Temperaturbereich zur Verfügung, aber aus den von Materna-Morris at al. publizierten Ergebnissen [109] kann darauf geschlossen werden, daß nach Bestrahlung σ_F und R_{eS} Werte von 1000 N/mm² und größer annehmen, was die Größenkriterien weiter entschärft (Klammerwerte in Tabelle 26).

6.3.3 Korrelation zwischen KLST- und KLST-BM-Proben

In Abschnitt 2.6 wurden verschiedene Ansätze zur Umrechnung experimentell gewonnener Kerbschlagwerte in bruchmechanische Kennwerte vorgestellt. Bezieht man das dynamische *J*-Integral der untersuchten Proben auf die Schlagenergie entsprechender KLST-Proben, ergibt sich kein linearer Zusammenhang mehr, und es kann keine Analogie zu der von Hübners und Pusch dargestellten Korrelation für ISO-V-Proben ([38], Seite 16) gebildet werden. Vielmehr würde der Ansatz über eine Gerade besonders im Bereich niedriger Rißzähigkeit eine Überschätzung derselben aus der Schlagarbeit der KLST-Probe liefern, wie die Krümmung der Trendlinie in Abbildung 121 zeigt.

7,0

 $DBTT_{JID}$ [°C] = 0,95· $DBTT_{USE}$ [°C] + 40,44

Abbildung 120: Korrelationen für Übergangstemperaturen der KLST-BM-Probe Abbildung 121: Vergleich von *J*- und Energiewerten der KLST-BM- und der KLST-Probe

Für die bruchmechanische Übergangstemperatur hingegen sind Schlußfolgerungen aus dem KLST-Kerbschlagversuch möglich (Abbildung 120). Die Übergangstemperatur für J_{ID} ist etwas weniger anfällig gegen Neutronenversprödung, als dies die Übergangstemperatur für die Schlagenergie der KLST-Probe ist. Die in Abschnitt 2.5.4 zitierte Unterschätzung des Anstiegs der bruchmechanischen Übergangstemperatur [28] kann hier nicht belegt werden.

Des weiteren sind zum Vergleich beide Kennwerte auf die entsprechenden Kennwerte von Proben mit erodiertem Anriß bezogen worden (Sternsymbol in Abbildung 120 und Abbildung 121). Weder für die Rißzähigkeit noch für die Übergangstemperatur läßt sich eine einfache Beziehung zwischen beiden Probenformen ablesen, weshalb eine Weiterverfolgung der mit maschinell gefertigtem Anriß versehenen Dreipunkt-Biegeprobe für Bestrahlungszwecke nicht sinnvoll erscheint.

Die Auswertung der bestrahlten Proben ergibt, daß die KLST-BM-Probe für bruchmechanische Untersuchungen eingesetzt werden kann. Die Prüfung in einem automatisierten Schlagwerk erfolgt zuverlässig und reproduzierbar. Das Prüfprotokoll ist bruchmechanisch verwertbar und liefert Werte für J_{ID} und K_{ID} . Darüber hinaus ist gezeigt worden, daß weder mit Kerbschlagproben alleine, noch mit Proben mit vereinfacht herstellbarer Geometrie bruchmechanische Kennwerte ermittelt werden können. Diesbezügliche in der Literatur angegebene Korrelationen können nicht bestätigt werden; lediglich eine Vorhersage der bestrahlungsinduzierten Verschiebung der Übergangstemperatur aus KLST-Prüfungen ist möglich.

7 Zusammenführung von Experiment und Berechnung

In diesem Abschnitt werden die Versuchsergebnisse in Bezug zu den aus den Finite-Elemente-Berechnungen gewonnenen Erkenntnissen gesetzt. Bei der Auswertung der *J*-Versuche nach der $J_{0,2}$ -Methode zeigen sich wesentlich stärkere Unterschiede zwischen den verschiedenen Probentypen als bei der Auswertung nach J_i . Eine geeignete Korrektur sowohl der *J*-Integral-Werte als auch der zugehörigen Rißverlängerungen kann Abhilfe schaffen. Hierzu werden lokal die Werte für *J* und die Rißverlängerung betrachtet.

7.1 Ermittlung lokaler Werte für J-Integral und Rißverlängerung

Die experimentell ermittelten *J*-Werte beruhen auf der äußeren Arbeit, die an der Probe geleistet wird. Die zugehörige Rißverlängerung wird über die gesamte Probenbreite gemittelt. Beide Werte sind jedoch, wie sowohl die Finite-Elemente-Berechnungen ab Seite 41 als auch die Rißauswertung der Experimente (siehe Probenbilder ab Seite 64 sowie Beispiel im Anhang auf Seite 168) zeigen, in Probendickenrichtung nicht homogen. Zur Ermittlung einer *J*-*R*-Kurve, die zur $J_{0,2}$ -Auswertung herangezogen wird, ist es sinnvoll, sich auf lokale reale Werte zu beziehen, da eine $J_{0,2}$ -Auswertung sich auf ein reales Rißwachstum und nicht auf die reine Rißinitiierung wie bei der J_i -Auswertung bezieht.

7.1.1 Rißverlängerung

Unter der Annahme, daß das Material keine starken Inhomogenitäten aufweist, kann davon ausgegangen werden, daß in Proben-Dickenrichtung die größte Rißverlängerung Δa_{max} an der Stelle des höchsten *J*-Integrals auftritt. Diese wird dem Vermessungsprotokoll (Seite 168) entnommen und um die Aufweitung δ_{tx} reduziert. Maximalwerte im Kerbgrund von seitengekerbten Proben finden hierbei keine Berücksichtigung. Es ergibt sich die korrigierte Netto-Rißverlängerung Δa_n^* zu

 $\Delta a_n^* = \Delta a_{max} - \delta_{tx}.$ (67)

Die Überhöhung der Rißverlängerung gegenüber der gemäß der Regelwerke [8][9] gemittelten Rißverlängerung kann durch den Faktor f_R ausgedrückt werden:

$$f_R = \frac{\Delta a_{\max} - \delta_{tx}}{\Delta a - \delta_{tx}} \quad (68)$$

 f_R kann abhängig von Material, Lastfall und Probengeometrie Werte zwischen 1,0 und 3,0 annehmen, wobei bei den meisten untersuchten Proben Werte zwischen 1,1 und 1,5 erreicht wurden.

7.1.2 Lokales J-Integral

Die Berechnungen von Proben mit glatter Außenseite zeigen für alle Belastungen eine starke Überhöhung des maximalen *J*-Integrals J_{max} zur Probenmitte hin und einen deutlichen Abfall zum Rand, siehe dazu Abbildung 43 ff. ab Seite 42. Bei seitengekerbten Proben tritt durch die Spannungsüberhöhung im Grund der Seitenkerbe der Fall ein, daß das Maximum des *J*-Integrals sich nicht in der Symmetrieebene befindet; es bilden sich vielmehr lokale Maxima in Randnähe, die mit zunehmender Deformation weiter in Richtung Probenmitte wandern.

7.1.2.1 Überhöhung des maximalen J-Integrals

Abbildung 122 zeigt den Verlauf der maximalen Überhöhung des lokalen *J*-Integrals anhand eines neu einzuführenden Parameters f_J

 $f_J = J_{\rm max} / \overline{J} \quad (69)$

Dieser wird über einer logarithmischen J_{max} -Skala aufgetragen, um eine belastungsabhängige Darstellung zu erhalten, die für verschiedene Probengrößen vergleichbar ist. Die glatten Proben
(offene Symbole) zeigen bei geringer Belastung ein f_J von 1,05. Ab ca. 5 N/mm steigt f_J an, um für *J*-Integralwerte von 200 bis 600 N/mm ein Maximum von etwa 1,27 zu erreichen. Zum frühesten Zeitpunkt findet dieser Anstieg bei der Miniaturprobe statt und bei den Normproben zeigt sich zusätzlich noch eine Abhängigkeit vom Werkstoffzustand: je zäher das Material ist, desto früher setzt eine Überhöhung von J_{max} ein.

Die Proben mit seitlicher Kerbung weisen, bedingt durch die Spannungsüberhöhung im Kerbgrund der Seitenkerben, auch bei geringen Belastungen deutliche lokale *J*-Maxima auf, die sich aber mit zunehmender Belastung auf Werte von ca. 1,05 reduzieren. Bereits bei 50 N/mm ist f_J im ungünstigsten Fall auf 1,10 abgefallen, so daß die Überhöhung für die *J*-Ermittlung keine praktische Bedeutung hat.

Abbildung 122: Maximale Überhöhung von J_{max} für verschiedene Materialien und Probenformen

7.1.2.2 Abweichung berechneter J-Integral-Werte

Wie bereits in Abbildung 41 auf Seite 41 dargestellt, stimmen direkt integriertes *J*-Integral und aus der äußeren Arbeit der Simulationsrechnung bestimmtes *J*-Integral nicht vollkommen überein. Abbildung 123 zeigt am Beispiel einer ASTM-Probe aus MANET-II die Differenzen für den aus der äußeren Arbeit gewonnen Wert J_U (graue Linie), J_{max} (schwarze Linie) und \overline{J} (gestrichelte Linie).

Demnach sind hier bei *J*-Werten bis ca. 100 N/mm in der Probe J_{max} und \overline{J} geringer als über J_U abgeschätzt, mithin wird *J* nichtkonservativ ermittelt.

Diese Abweichung läßt sich durch den Faktor f_U erfassen:

$$f_U = \overline{J} / J_U . \quad (70)$$

Abbildung 123: Vergleich verschiedener *J*-Werte, ASTM-Probe, glatt, MANET-II, 700°C

Mit beiden Faktoren läßt sich ein Korrekturfaktor

angeben, der die gesamte Abweichung des lokalen J-Maximums vom aus der äußeren Arbeit ermittelten J-Wert beschreibt.

7.1.2.3 Korrekturfaktor für aus äußerer Arbeit bestimmtes J_{max}

Der Gesamtüberhöhungsfaktor f_G beschreibt die Überhöhung von J_{max} gegenüber J_U :

 $f_G = f_J \cdot f_U \quad (71)$

Abbildung 124 stellt f_G für glatte und seitengekerbte ASTM-Dreipunkt-Biegeproben dar, Abbildung 125 für die verkleinerte Biegeprobe. In beiden Darstellungen sind die Bereiche, in denen f_G Werte kleiner als 1 annimmt und in denen demnach *J* überschätzt wird, durch graue Winkel abgegrenzt. Die ergänzende Darstellung von f_J zeigt, daß eine Korrektur alleine über f_J nicht ausreichend ist.

Abbildung 124: Korrekturfunktion f_G für ASTM-3PB-Probe, MANET-II, 700°C

Abbildung 125: Korrekturfunktion f_G für Mini-3PB-Probe, MANET-II, 700°C

Das korrigierte maximale J-Integral ergibt sich zu

 $J^* = f_G \cdot J_U \quad (72)$

und kann somit die experimentell ermittelten *J*-Werte in einer *J*-*R*-Kurve für Orte der maximalen Beanspruchung und Rißverlängerung, die im folgenden "lokale *J*-*R*-Kurve" genannt wird, ersetzen. Zur Umrechnung von aus realen Experimenten gewonnen *J*-Werten lautet die Formel dementsprechend

 $J^* = f_G \cdot J$. (72 a)

7.2 Lokale *J-R*-Kurve

Die lokale *J-R*-Kurve ist, da die genaue örtliche Rißverlängerung benötigt wird, nur aus dem Mehrprobenversuch bei nicht vollständiger Durchtrennung der Probe bestimmbar.

Abbildung 126 zeigt exemplarisch die Auswirkungen einer solchen lokale *J-R*-Kurve für die glatten miniaturisierten Dreipunkt-Biegeproben aus Abbildung 95 (Seite 80) – auch wenn die zu geringe Anzahl an Versuche keinen nach Norm gültigen Kennwert liefert. Die angepaßte Kurve zur Bestimmung von $J_{0,2}$ erhält einen flacheren Verlauf und entsprechend sinkt der Schnittpunkt mit der 0,2-mm-Linie.

$$J = 665 \cdot \Delta a_n^{0,4396} \text{ in N/mm } (9)$$

$$J^* = 628 \cdot \Delta a_n^{*0,4745} \text{ in N/mm}$$

$$J_{0,2} = 327 \text{ N/mm}$$

$$J_{0,2}^* = 292 \text{ N/mm}$$

Abbildung 126: lokaler *J-R*-Kurve, Mini-3PB-Probe, glatt, MANET-II, 700°C

Im Vergleich mit dem in Abschnitt 5.2.3.3 ermittelten J_i -Wert ergeben sich für $J_{0,2}$ * Abweichungen von der Größenordnung, wie auch Keller sie für J_i - und $J_{0,2}$ bei größeren Proben (*B* bis 50 mm)gefunden hat [22]. Es ist davon auszugehen, daß die Betrachtung der lokalen *J*-*R*-Kurve somit auch bei kleinen Proben zu einer korrekten Ermittlung eines $J_{0,2}$ -Wertes führt. Die korrigierten Werte einer lokalen *J*-*R*-Kurve können ebenso zur Ermittlung eines korrigierten J_i -Wertes J_i * herangezogen werden. Dies geschieht bei den nachfolgenden Betrachtungen von Versuchsreihen, die über mehr Meßpunkte verfügen als die ungekerbte Miniaturprobe aus MANET-II und so belastbarere Ergebnisse liefern.

Auswertung	J_i	J _{0,2}	J _{0,2} *
J _{IC} in N/mm	249	327	292
K_{IC} in N·mm ^{-1,5}	7580	8686	8208
<i>K_{IC}</i> in MPa⋅m ^{0,5}	240	275	260
<i>K_{IC}</i> in %	100%	114%	108%
B_{min} in mm (12)	7,96	9,07	8,62

Tabelle 27: Verschiedene J-Auswertungen, Mini-3PB, glatt, MANET-II, Tanl. = 700°C

7.3 Anwendung auf weitere Versuchsergebnisse

Die Methode der lokalen *J*-*R*-Kurve findet Anwendung auf die Versuchsergebnisse für KLST-BM-Proben aus MANET-II mit 700°C Anlaßwärmebehandlung (Abschnitt 5.2.4.2, Seite 80) und für diverse EUROFER-Proben aus den Abschnitten 5.2.2.1 und 5.2.3.1 (Seite 72 ff.). Auch hier zeigt sich eine Verschiebung der lokalen *J*-*R*-Kurve. Die Ergebnisse aus Einprobenversuchen (B = 9 mm) oder dynamischen Versuchen (B = 3 mm) können keinen Eingang in die Auswertung finden.

7.3.1 KLST-BM-Proben aus MANET-II mit 700°C Anlaßwärmebehandlung

Abbildung 127: Bestimmung von J_{0,2} an Mini-3PB-Proben mit B = 3 mm, Material: MANET-II, T_{anl.} = 700°C

Die *J*-*R*-Kurve verflacht sich, hauptsächlich bedingt durch eine starke Verschiebung der Punkte hin zu größeren Rißverlängerungen. Dies führt zu einem deutlich niedrigeren $J_{0,2}^*$, welches allerdings hauptsächlich durch das Fehlen von Meßwerten mit $\Delta a_n^* \leq 0,5$ mm verursacht ist. Bedingt durch die Anpassungsmethode einer Potenzfunktion mit Minimierung der Fehlerquadrate wird dieser Teil der Kurve nicht richtig dargestellt. J_i und J_i^* zeigen sich in recht guter Übereinstimmung und die Tatsache, daß hier J_i^* größer als $J_{0,2}^*$ ist, spricht dafür, daß $J_{0,2}^*$ mit den vorhandenen Meßpunkten zu niedrig ermittelt wird.

Auswertung	J_i	J_i^*	J _{0,2}	$J_{0,2}^{*}$
J _{IC} in N/mm	264	246	319	224
K_{IC} in N·mm ^{-1,5}	7801	7535	8584	7184
<i>K_{IC}</i> in MPa⋅m ^{0,5}	247	238	271	227
<i>K_{IC}</i> in %	100%	97%	110%	92%
<i>B_{min}</i> in mm (12)	8,37	7,80	10,13	7,09

Tabelle 28: Verschiedene J-Auswertungen, Mini-3PB, glatt, MANET-II, Tanl. = 700°C

7.3.2 EUROFER-Proben aus den Abschnitten 5.2.2.1 und 5.2.3.1

Bei der Auswertung der 9 mm breiten Proben (Abbildung 128) zeigt sich, daß der ursprünglich sehr hohe $J_{0,2}$ -Wert der glatten Proben nach Anwendung der lokalen *J-R*-Kurve reduziert wird. Hierbei behält – im Gegensatz zum vorhergehenden Abschnitt - die lokale *J-R*-Kurve etwa Krümmung und Form der ursprünglichen *J-R*-Kurve bei. Der $J_{0,2}$ *-Wert der seitlich gekerbten Proben liegt nun minimal höher als der der glatten Proben. Vergleichbar der J_i -Auswertung sind die bruchmechanischen Kennwerte für seitlich gekerbte und glatte Proben etwa gleich groß, siehe dazu die Zusammenstellung in Tabelle 29.

Abbildung 128: Bestimmung von $J_{0,2}$ an Proben mit B = 9 mm, Material: EUROFER 97

Eine J_i^* -Auswertung für glatte Proben ist nicht sicher möglich, da die Ergebnisse aus dem Einprobenversuch nicht verwendet werden können und somit nicht genug Punkte zur Bestimmung einer Ausgleichsgeraden zur Verfügung stehen. Es kann aber aus den vorhandenen Punkten abgeschätzt werden, daß durch die Verschiebung der lokalen Meßwerte zu größeren Rißverlängerungen die Ausgleichsgerade weiter rechts im Diagramm zu liegen kommt und die Ordinate bei einem entsprechend niedrigeren Wert von etwa $J_i^* = 240$ N/mm schneiden wird. Dieser nicht als gültig anzusehende Wert ist in Tabelle 29 in Klammern angegeben.

Abbildung 129 zeigt die *J*-*R*-Kurven für miniaturisierte Biegeproben. Auch hier wird der sehr hohe $J_{0,2}$ -Wert der glatten Proben in vergleichbarem Maß zu dem der großen Proben reduziert, während die Kurve für seitengekerbte Proben nicht verändert wird. Sowohl bei der Auswertung der unveränderten Meßpunkte ($J_{0,2}$) als auch bei der korrigierten Auswertung ($J_{0,2}$ *) liefern die kleinen Proben niedrigere bruchmechanische Kennwerte als die großen Proben, was zumindest nichtkonservative Ergebnisse bei dieser Auswertemethode ausschließt.

Die größeren Rißverlängerungen der lokalen *J-R*-Kurve führen auch bei der miniaturisierten Probe dazu, daß der J_i^* -Wert der glatten Proben deutlich niedriger ist als J_i . Ebenso liegt er niedriger als J_i^* der gekerbten kleinen Proben (Tabelle 29). Eine mögliche Erklärung ist die stärker ausgebildete Ungleichförmigkeit des Rißfortschritts bei zähem Materialzustand. Dadurch verschiebt sich die Ausgleichsgerade zur J_i^* -Bestimmung deutlicher in Abszissenrichtung und der Ordinatenschnittpunkt

sinkt stärker als dies bei Materialen mit weniger zähem Verhalten oder bei seitlich gekerbten Proben der Fall ist (vgl. Ergebnisse aus Abschnitt 7.3.1).

Abbildung 129: Bestimmung von $J_{0,2}$ an Proben mit B = 3 mm, Material: EUROFER 97

Für einen sehr zähen Materialzustand scheint es daher angeraten, J_{IC} entweder über J_i unter Verwendung der global ermittelten *J*-Werte und der gemittelten Rißverlängerung oder über $J_{0,2}^*$ unter Verwendung der lokalen *J*-*R*-Kurve zu ermitteln; $J_{0,2}$ wird zu hoch liegen, J_i^* zu niedrig. Bei einem Materialzustand nahe des spröd-duktilen Übergangs liefern dagegen J_i^* und J_i vergleichbare Ergebnisse.

B_n in mm	mm 9,00 7,00 3		3,00	2,33	
	glatt s. gekerbt glatt		glatt	s. gekerbt	
J _i in N/mm	288	283	316	277	
K_{IC} in N·mm ^{-1,5}	8152	8083	8540	8000	
K_{IC} in MPa·m ^{0,5}	258	256	270	253	
<i>B_{min}</i> in mm (12)	12,1	11,9	13,3	11,7	
J_i^* aus lokaler J-R-k	Kurve				
J_i^* in N/mm	(240)	301	229	260	
K_{IC} in N·mm ^{-1,5}	(7442)	8334	7270	7746	
K_{IC} in MPa·m ^{0,5}	(235)	264	230	245	
<i>B_{min}</i> in mm (12)	(10,09)	12,66	9,63	10,93	
J-R-Kurve					
C (9)	1179	896	747	1026	
p (9)	0,4461	0,5060	0,5075	0,4500	
J _{0,2} in N/mm	575	397	497	330	
K_{IC} in N·mm ^{-1,5}	11520	9570	10713	8727	
<i>K_{IC}</i> in MPa⋅m ^{0,5}	364	303	339	276	
<i>B_{min}</i> in mm (12)	24,2	16,7	20,9	13,9	
Lokale J-R-Kurve					
С	1075	1008	1008	804	
р	0,5238	0,5320	0,6369	0,5553	
J _{0,2} * in N/mm	463	428	362	329	
K_{IC} in N·mm ^{-1,5}	10333	9940	9135	8713	
K_{IC} in MPa·m ^{0,5}	327	314	289	276	
B_{min} in mm (12)	19,5	18,0	15,2	13,8	

Tabelle 29: Verschiedene J-Auswertungen und Probenformen, EUROFER 97, $J = C \cdot \Delta a^p$ in N/mm

7.3.3 Einfluß der Probenmindestbreite

Abschließend zeigt Abbildung 130 eine Zusammenstellung verschiedener K_{IC} -Werte, die im Rahmen dieser Arbeit an EUROFER 97 und an MANET-II in beiden Wärmebehandlungszuständen ermittelt wurden. Direkt ermittelte K_{IC} -Werte sind nicht gesondert gekennzeichnet, solche, die über eine *J*-Ermittlung errechnet wurden, sind mit dem entsprechenden Auswerteverfahren bezeichnet. Die Werte sind aufgetragen über dem Verhältnis von Probenmindestbreite zu Probenbreite B_{min}/B , die tatsächliche Probenbreite B_n im Kerbgrund ist aus der Legende ersichtlich. B_{min} entspricht für direkt ermittelte K_{IC} -Werte dem jeweils größeren Wert gemäß (13) oder (14), ansonsten wurde B_{min} nach (12) ermittelt.

Abbildung 130: Bestimmung von K_{IC} an Proben verschiedener Breiten (EUROFER 97 und an MANET-II in beiden Wärmebehandlungszuständen), Werte aufgetragen über B_{min}/B

Die direkt ermittelten K_{IC} -Werte zeigen erwartungsgemäß im Bereich von $B_{min}/B < 1$ keine Abhängigkeit von der Probenbreite. Aber auch die über J_{IC} gewonnenen K_{IC} -Werte von EUROFER 97 sind offensichtlich im Bereich formal zu geringer Probenbreiten stärker von der Art der J_{IC} -Auswertung als von der Probenbreite abhängig. So liefert die Bestimmung von J_i grundsätzlich die niedrigsten Werte, während bei den seitlich gekerbten Proben $J_{0,2}$ und $J^*_{0,2}$ etwa gleichauf liegen und bei glatten Proben $J_{0,2}$ nochmals deutlich höhere Werte als $J^*_{0,2}$ liefert. Der Vergleich der Ergebnisse von kleinen und großen Proben, die jeweils nach J_i , $J_{0,2}$ oder $J^*_{0,2}$ ausgewertet wurden, zeigt keine deutliche Größenabhängigkeit. Der Einfluß der Seitenkerbung ist bei beiden Probengrößen bei der $J_{0,2}$ -Auswertung am stärksten.

8 Probenvorschlag und Versuchsdurchführung

8.1 Geometrie

Zur Verwendung in Bestrahlungsexperimenten wird die KLST-BM-Probe nach Abbildung A 36 empfohlen. Sie ist von den Außenabmessungen kompatibel zu den international verwendeten KLST-Charpy-Proben und kann mit vorhandenen Transport- und Manipulationsvorrichtungen gehandhabt werden. Ihre Prüfung erfolgt entweder unter Verwendung einer entsprechenden Einspannvorrichtung mit einer Universalprüfmaschine oder dynamisch mit einem automatisierten, instrumentierten KLST-Pendel, das in der Lage ist, einen detaillierten Kraft-Durchbiegungsverlauf der Verformung aufzunehmen. Zur quasistatischen Prüfung kann auch die in Abschnitt 5.1.2.4 vorgestellte Erweiterung eines Kerbschlagpendels genutzt werden. Die Proben müssen vor der Bestrahlung mit entsprechenden Anrissen versehen werden.

8.2 Auswertemethode

Eine Referenzcharakterisierung an unbestrahlten Proben geht der Untersuchung von bestrahlten Proben voraus. Vor der eigentlichen Prüfung muß die Rißfront der Probe durch Hitzeeinwirkung markiert werden. Nach der Prüfung werden die Proben entweder an einem konventionellen Mikroskop digital fotografiert und ausgemessen oder unter einem Elektronenmikroskop anhand ihrer Bruchflächengestalt vermessen. Dabei ist bei der *J*-Integral-Bestimmung eine individuelle Bestimmung der Rißaufwölbung nach Abschnitt 5.1.4.5 unverzichtbar.

Bei - mit der unbestrahlten Hochlage verglichen - ausreichend sprödem Materialzustand (max. 30% der Rißzähigkeit) kann nach dynamischer oder quasistatischer Prüfung eine direkte *K*-Auswertung nach 5.1.4.1 und 5.1.4.3 durchgeführt werden. Die Übergangstemperatur kann dabei nach 6.3.3 aus bekannten Kerbschlagergebnissen abgeschätzt werden.

Im oberen Teil des Übergangs und in der Hochlage können statische *J*-Versuche als Ein- oder Mehrprobenversuche durchgeführt werden. Besitzt der Werkstoff unbestrahlt einen sehr zähen Grundzustand, so müssen seitlich gekerbte Proben verwendet werden. Wird nach $J_{0,2}$ ausgewertet, so muß die Methode der lokalen *J*-*R*-Kurven nach Kapitel 7 auf Mehrprobenversuche angewandt werden, wozu eventuell weitere Finite-Elemente-Berechnungen zur Gewinnung der Faktoren f_J und f_U notwendig sind. Eine J_i -Auswertung darf bei sehr zähen Proben nicht anhand der lokalen *J*-*R*-Kurve durchgeführt werden, sondern muß mit den Originaldaten erfolgen. Dynamische Versuche können nach Abschnitt 5.1.5.1 als *J*-*R*-Kurven und nach 5.1.5.2 als J_{ID} ausgewertet werden, wobei unter den gleichen Voraussetzungen wie für die *K*-Bestimmung evtl. seitlich gekerbte Proben zum Einsatz kommen müssen.

8.3 Konservativität

Kleine Proben von 3 mm Restligamenthöhe und Probenbreite zeigen nur bei sehr zähem Wärmebehandlungszustand des Werkstoffs Nichtkonservativitäten bei den ermittelten statischen und dynamischen *J*-Werten. Diese werden kompensiert, wenn die Proben mit einer Seitenkerbung gemäß Abbildung A 37 versehen werden. Ist nicht klar, ob der Werkstoff eine Seitenkerbung bedingt, sind grundsätzlich Kerben anzubringen, da sie K_{IC} , J_{IC} und J_{ID} von spröderen Proben nicht beeinträchtigen. Die zu erwartenden Unterschiede von J_i und $J_{0,2}$ entsprechen den in der Literatur angegebenen [22]. Bei einer Auswertung nach J_i liefern kleine Proben richtige Ergebnisse, bei einer Auswertung nach $J_{0,2}$ können diese bis zu 20% zu gering ausfallen, sind aber in jedem Fall konservativ.

Die direkt ermittelten *K*-Werte sind im spröden Bereich und im Übergangsbereich richtig. Dort, wo sie aus dynamischen Versuchen bei zu großer Zähigkeit des Materials (> 50% des Hochlagewertes) abgelesen werden, sind sie zu niedrig und somit konservativ.

Die Übergangstemperatur wird durch glatte KLST-BM-Proben etwa 40°C tiefer bestimmt als durch normalbreite Proben und kann deshalb nicht als konservativ betrachtet werden. Diese Temperaturdifferenz ist identisch zu der bei Übergangstemperaturen von KLST- und ISO-V-Charpy-Proben bestehenden und bei der Angabe des spröd-duktilen Übergangs in jedem Fall zu erwähnen. Durch Seitenkerben kann die Temperaturabweichung bis auf immerhin 10 bis 20°C abgebaut werden.

9 Zusammenfassung und Ausblick

Die vorliegende Arbeit stellt eine miniaturisierte Probe zur Ermittlung bruchmechanischer Kennwerte an ferritisch-martensitischen Stählen vor, wie sie als Strukturmaterialien für Fusionsanwendungen vorgesehen sind. Aufgrund ihrer kleinen Abmessungen und der gewählten Geometrie ist die Probe geeignet, in Bestrahlungsprogrammen eingesetzt und anschließend mit abgeschirmten Prüfanlagen zur Nachbestrahlungsuntersuchung getestet zu werden.

Da solche kleinen Proben nicht mehr die in den Normen zur Ermittlung von K_{IC} und J_{IC} festgelegten Mindestgrößen erfüllen, war zu befürchten, daß unter dem Einfluß der Randzone vor der Rißspitze kein ausreichend ebener Verformungszustand mehr vorliegt. Dies hätte nach allgemeinem Kenntnisstand zur Folge, daß die ermittelten bruchmechanischen Kennwerte zu hoch wären und so zu einer nichtkonservativen Einschätzung der Rißzähigkeit der untersuchten Materialien führten.

Bislang existierende Arbeiten auf dem Gebiet der nicht normgerechten Proben befassen sich, so sie die Konservativität der Ergebnisse betrachten, entweder theoretisch mit dem Größeneinfluß auf bruchmechanische Kennwerte, oder sie untersuchen experimentell oder mit Hilfe von Berechnungen das Verhalten von Proben mit veränderten einzelnen Geometrieparametern. Es fehlen Arbeiten, welche die beiden Einflußfaktoren maßstäbliche Verkleinerung und nichtähnliche Geometrieänderung der Proben getrennt behandeln.

Vorliegende Arbeit beinhaltet daher einen Weg zur Realisierung und Validierung einer kleinen Probe, der in die beiden Abschnitte Miniaturisierung und geometrische Modifikation unterteilt ist.

Eine normgerechte Probe wird auf ein bestrahlungskompatibles Maß von 30% der Ursprungsgröße verkleinert. Die für mehrere Werkstoffe durchgeführte rechnerische und experimentelle Untersuchung beider Proben dient der Feststellung des absoluten Größeneinflusses.

Von dieser kleinen Probe ausgehend wurde eine Probe gleicher Breite und Restligamenthöhe entworfen, die in Anrißlänge, Höhe und Länge von ihr abweicht. Im Vergleich der kleinen Proben wurden die Auswirkungen solcher Geometrieänderungen untersucht.

Für die Finite-Elemente-Berechnungen wurden diverse Materialien in Materialmodelle für dreidimensionale Simulationen von Biegeversuchen umgesetzt. Für diese Modelle konnte in Zug- und Biegeversuchen eine sehr gute Übereinstimmung zwischen Berechnung und Experiment gefunden werden. Eine Analyse des Spannungsfeldes vor der Rißspitze ergab für normgerechte und für kleine Proben ein deutliches Abfallen der Spannungswerte am Probenrand. Bis zum Einsetzen der plastischen Verformung sind in Rißnähe die Spannungen in Modus-I-Richtung und in Rißrichtung vergleichbar groß, und der Verlauf der Spannung in Richtung der Rißfront ist mit der Abschätzung von Boyd gut vorhersagbar. Nach größerer plastischer Verformung nehmen die Spannungen lokal Werte an, die zum Teil deutlich über den global ertragbaren Spannungen liegen, der Verlauf der Spannungen ist über die gesamte Probenbreite von einem Abfall zum Rand hin gekennzeichnet. Mit dem Modellieren von Dehnungsbehinderungen durch seitliche Kerben wurden die Verläufe der Spannungen deutlich vergleichmäßigt. Bis zum Einsetzen der plastischen Verformung erreicht die Spannung in Probenquerrichtung genau die nach den Bedingungen des ebenen Dehnungszustandes errechneten Werte. Erst bei größeren Verformungen nimmt sie zum Rand hin kleinere Werte an.

Ausgehend von diesen Simulationen wurde entlang der Rißspitze mit der in ABAQUS implementierten Methode der virtuellen Rißverlängerung für diverse Verformungen das *J*-Integral berechnet. Für alle Werkstoffe und Probengrößen zeigte sich, daß bei glatten Biegeproben die Werte von *J* unter Modus-I-Belastung zum Probenrand hin stark zurückgehen. Um die Gleichmäßigkeit des Verlaufs von *J* zu quantifizieren, wurden zwei neue Parameter eingeführt: $\beta_{0,8}$ und $\beta_{0,9}$ beschreiben als relative Probenbreite den Anteil der Probe, in dem vom lokalen *J*-Wert noch mindestens 80% bzw. 90% des Maximalwertes J_0 in der Mitte der Probe erreicht werden. Diese Bereiche werden, wie die Berechnungen für glatte Proben zeigten, mit zunehmender Duktilität der Probe schmaler. Sowohl bei der großen als auch bei der kleinen Probe gelang es, durch seitliche Kerben Verläufe von *J* zu erhalten,

die über den Querschnitt betrachtet gleichmäßiger sind, als es die Betrachtung der Spannungen in Rißnähe vermuten ließ. Demnach ist es nicht zulässig, direkt vom Spannungsverlauf an der Rißspitze auf den Verlauf von *J* zu schließen. Hier zeigte sich außerdem im Gegensatz zu den glatten Proben, daß mit einer zunehmenden Duktilität des Werkstoffs auch die Größen $\beta_{0,8}$ und $\beta_{0,9}$ zunehmen. Folglich ist die an der Gleichförmigkeit von *J* bestimmte Sensibilität eines duktilen Werkstoffs für Dehnungsbehinderungen größer als diejenige eines spröden Werkstoffs.

Die im Rahmen dieser Arbeit entwickelten Einrichtungen und Verfahren zur Prüfung von Dreipunkt-Biegeproben werden vorgestellt.

Zur Anrißerzeugung wurde eine Resonanzbiegemaschine modifiziert. Mit der Ermittlung des Zusammenhangs zwischen Probengeometrie, Rißlänge, Last und Eigenfrequenz des Systems gelang es, gerade Anrisse mit einer Genauigkeit von 0,1 mm zu erzeugen. Zur Anrißerzeugung in großen Proben wurde ein automatisiertes Verfahren entwickelt, das eine fortwährende Beobachtung der Probe bei der Anrißerzeugung entbehrlich macht und auch bei noch nicht charakterisierten Materialien zu feinstrukturierten Rissen mit definierten Längen führt.

Die zur quasistatischen Prüfung verwendete servohydraulische Prüfanlage wurde mit Aufnahmen für große und kleine Proben ausgestattet, die für beide Probenformen die Verwendung einer identischen Meßkette gestatten. Die Anlage wurde mit einem neuen Meß- und Regelsystem versehen, das es erlaubt, über im Rahmen dieser Arbeit geschriebene Programme den Versuchsablauf zu steuern und die Daten aufzuzeichnen. Die Anlage wurde mit einem Triangulations-Lasersystem zur Wegmessung und mit an die Probenform angepaßten instrumentierten Finnen zur Krafterfassung ergänzt.

Für dynamische, temperierte Versuche an modifizierten kleinen Proben wurde außerdem ein automatisiertes Schlagpendel verwendet, für das eine allgemeingültige Temperaturkorrektur zur Bestimmung der Probentemperatur zum Zeitpunkt der Rißverlängerung ermittelt wurde. Eine Erweiterung dieser Anlage um eine quasistatische Biegeeinrichtung wurde entworfen und ist hergestellt und geliefert worden; sie soll nach einer Testphase für Versuche in abgeschirmten Prüfzellen verwendet werden. Die trotz geometrischer Unterschiede gegebene grundsätzliche Vergleichbarkeit von Versuchen auf dieser Anlage mit denen auf der servohydraulischen Anlage wurde im Rahmen dieser Arbeit nachgewiesen.

Zur Weiterverarbeitung der Versuchsdaten wurden standardisierte Datenblattvorlagen eines Tabellenkalkulationsprogramms erstellt, die eine automatisierte und ausreichend dokumentierte Auswertung von *K*- und *J*-Versuchen und eine normgerechte Rißvermessung gestatten. Bei der Vermessung kleiner Proben zeigte sich, daß eine optische Vermessung der Rißaufwölbung für die Auswertung von *J*-Versuchen unumgänglich ist. Die Abschätzungen über den Ansatz der Blunting-Line oder andere Ansätze überschätzen die Aufwölbung deutlich und führen so zu nicht konservativen Werten für das kritische *J*-Integral J_{IC} .

Die an verschiedenen Materialien durchgeführten experimentellen Untersuchungen erbrachten den praktischen Nachweis der Verwendbarkeit der kleinen Probentypen. Bei Raumtemperatur wurden Prüfungen an den drei grundsätzlichen Materialzuständen - spröde, duktil und spröd-duktil - vorgenommen, wobei alle Proben auch mit seitlichen Kerbungen untersucht wurden.

Der Vergleich von sehr spröden normgerechten Biegeproben mit geometrisch ähnlich verkleinerten zeigte bei der direkten *K*-Ermittlung keine nichtkonservativen Ergebnisse für seitlich gekerbte und glatte kleine Proben. Modifizierte kleine Proben lieferten ebenfalls gültige Kennwerte. Des weiteren wurden mit der modifizieren Probe dynamische Versuche bei leicht verändertem Auflagerabstand durchgeführt, die die Resultate der quasistatischen Versuche bestätigen.

Proben eines Materialzustandes, dessen Übergangsbereich seinen Steilabfall genau bei Prüftemperatur besitzt, brachen als große Proben spröde und als kleine Proben beiderlei Gestalt zäh mit identischem J_{IC} . Hier war eine Verschiebung der Übergangstemperatur durch Verringerung der Probenbreite zu beobachten.

An ausgesprochen zähem Material über J_i ermittelte J_{IC} -Werte sind für seitengekerbte und glatte große Proben gleich. Für glatte Kleinproben wurden sie zu hoch bestimmt, aber durch eine Seitenkerbung konnten gültige Werte ermittelt werden.

In temperierten Experimenten wurde die Verschiebung des spröd-duktilen Übergangs der Rißzähigkeit gegenüber Proben herkömmlicher Größe und gegenüber den Übergangstemperaturen im Kerbschlagversuch untersucht. Eine Parameterstudie ergab, daß die Übergangstemperatur der Schlagarbeit einer Biegeprobe sehr viel stärker von ihrer Breite als von ihrer Höhe abhängig ist. Der Vergleich der Übergangstemperaturen von Kerbschlag- und Bruchmechanikproben verschiedener Breiten zeigte, daß sowohl angerissene als auch gekerbte Proben bei 3 mm Probenbreite eine etwa 40°C niedrigere aus der Energie bestimmte Übergangstemperatur aufweisen als dreimal so breite Proben. Gleichzeitig liegt die Übergangstemperatur einer angerissenen Probe etwa 50°C über der einer genormten Kerbschlagprobe mit runder Kerbe. Durch die Seitenkerbung der kleinen angerissenen Proben gelang es, die nichtkonservative Unterschätzung der Übergangstemperatur auf etwa 10°C zu reduzieren.

Die bruchmechanische Auswertung der dynamischen Versuche erfolgte über J_{ID} und im spröden Bereich zusätzlich direkt über K_{ID} . Die Anwendbarkeit von zwei Methoden zur Bestimmung von J_{ID} wurde einmal mit der Ableitung einer vollständigen *J*-*R*-Kurve aus Teilenergien des Versuchs und zum zweiten durch die direkte Bestimmung von J_{ID} aus charakteristischen Punkten der Kraft-Verformungs-Kurve gezeigt. Beide Methoden lieferten Werte in guter Übereinstimmung mit den quasistatischen Ergebnissen und mit Resultaten aus der Literatur. Für die temperierten Versuche wurde jeweils die Referenztemperatur des Master-Curve-Ansatzes angegeben sowie eine eigene Definition einer bruchmechanischen Übergangstemperatur. Diese Übergangstemperatur bezieht sich nicht auf einen festen *K*-Wert, sondern auf die Hochlage der Rißzähigkeit des jeweiligen Werkstoffzustandes. Es wurde gezeigt, daß unter Beachtung der Empfehlungen zur Auswertung nichtkonservative Ergebnisse ausgeschlossen werden können.

Die entwickelten Methoden wurden bei Prüfung von bestrahlten Proben angewandt. Die Auswertung der bei unterschiedlichen Temperaturen bestrahlten kleinen Proben ergab, daß sie auch unter den Bedingungen abgeschlossener Versuchszellen und fernbedienter Handhabung für bruchmechanische Untersuchungen einsetztbar sind und reproduzierbare Werte für J_{ID} und K_{ID} . liefern. Es zeigte sich eine nach Bestrahlung auf bis zu 40% des ursprünglichen Wertes abnehmende Rißzähigkeit, die mit einer Anhebung der Übergangstemperatur um bis zu 220°C einhergeht. Die Versprödung hängt stark von der Bestrahlungstemperatur ab und ist bei niedrigen Temperaturen am stärksten.

Die in der Literatur angegebenen Korrelationen zwischen Kerbschlagproben und bruchmechanischen Kennwerten konnten bis auf einen linearen Zusammenhang für die Übergangstemperaturen nicht bestätigt werden, was die Notwendigkeit bruchmechanischer Versuche auch bei Nachbestrahlungsuntersuchungen bestätigt.

In der Zusammenführung von Experiment und Berechnung wurde die Möglichkeit der Bestimmung einer lokalen *J-R*-Kurve bei quasistatischen Mehrprobenversuchen gezeigt. Aus dem Experiment wurde neben der äußeren Arbeit zur Bestimmung von *J* das lokale Maximum der Rißverlängerung gewonnen. Begleitende Finite-Elemente-Berechnungen lieferten individuell für Probenform und Werkstoff die entsprechenden Korrekturfunktionen, um einen dem Maximum der Rißverlängerung entsprechenden lokalen maximalen *J*-Wert zu erhalten. Die aus diesen lokalen Werten für *J* und Δa gebildete *J-R*-Kurve erlaubt eine J_{IC} -Bestimmung über $J_{0,2}$, welche vergleichbare Werte zur Ermittlung aus J_i liefert und welche eine ungleichförmige Verteilung von Spannungen und Rißwachstum über weite Teile des Probenquerschnitts berücksichtigt. Somit wurde auch eine den aktuellen Normempfehlungen folgende Auswertung von Kleinproben entwickelt, die auch unter ungünstigen Größenbedingungen realistische Ergebnisse liefert. Die wesentlichen Ergebnisse dieser Arbeit lassen sich wie folgt zusammenfassen:

- Eine experimentelle und rechnerische Validierung anhand von normgerechten Proben unter Verwendung verschiedener Materialien zeigte die Gültigkeit der mit den kleinen Proben gewonnenen bruchmechanischen Kennwerte.
- Nichtebene Verformungszustände duktil brechender kleiner Proben werden durch Seitenkerbung kompensiert, ohne daß diese Kerben das Ergebnis spröd brechender Proben verfälschen. Unter Beachtung der gegebenen Empfehlungen können nichtkonservative Ergebnisse für diese miniaturisierten Proben ausgeschlossen werden.
- Die Ergebnisse der dreidimensionalen Finite-Elemente-Berechnungen erlauben die Bestimmung einer lokalen *J-R*-Kurve am Ort der maximalen Rißverlängerung und des maximalen *J*-Integrals. Somit wird auch bei kleinen Proben eine *J_{IC}*-Bestimmung über *J*_{0,2} möglich.
- Bruchmechanische Versuche an bestrahlten Proben können nicht durch Kerbschlagexperimente und empirische Korrelationen substituiert werden, sondern bleiben weiterhin für die Materialentwicklung notwendig.

Diese Arbeit findet ihre unmittelbare Fortsetzung im Aufbau und in der Inbetriebnahme der Erweiterung des Kerbschlagpendels. Damit können in künftigen Bestrahlungsprogrammen neben Kerbschlag-, Zug- und Ermüdungsproben auch Bruchmechanikproben eingesetzt und zuverlässig geprüft werden. Für zukünftige Arbeiten ist es denkbar, diese Einrichtung auch zur Durchführung von materialsparenden Einprobenversuchen für die J_{IC} -Ermittlung an kleinen Proben zu verwenden. Des weiteren können die Versuchseinrichtungen für bruchmechanische Untersuchungen wesentlich spröderer Werkstoffe des Fusionsmaterialprogramms, wie z. B. Keramiken oder Wolframlegierungen, angepaßt werden.

10 Danksagung

Die vorliegende Arbeit entstand am Institut für Materialforschung II des Forschungszentrums Karlsruhe und wurde im Rahmen des Programms Kernfusion unterstützt. Herrn Professor Dr. D. Munz und Herrn Professor Dr. O. Kraft danke ich, daß sie diese Arbeit an ihrem Institut ermöglicht haben.

Herrn Professor Dr. D. Munz danke ich für die interessante Themenstellung, die Übernahme des Referates, die anregenden Diskussionen und die interessierte fachliche Begleitung, die er über das Ende seiner Dienstzeit hinaus aufrechterhielt.

Herrn Professor Dr. O. Kraft danke ich für das Interesse an dieser Arbeit, die Übernahme des Korreferates, die gewährte Unterstützung und seine anregenden und motivierenden Hinweise.

Herrn Dr. J. Aktaa gilt mein Dank für seine Betreuung, seine Unterstützung und seine ständige Bereitschaft zur konstruktiven Diskussion, die er mir auch nach meinem Weggang aus der Abteilung Werkstoffmechanik II gewährte.

Herzlich bedanke ich mich bei allen Kollegen der Abteilung Werkstoffmechanik II, die zum Gelingen dieser Arbeit beigetragen haben. Insbesondere danke ich Herrn G. Thun für seine technische und moralische Unterstützung bei Aufbau und Inbetriebnahme der komplexen Versuchseinrichtungen und Herrn B. Dafferner für die Durchführung der dynamischen Experimente.

Schließlich danke ich besonders meinen Eltern und meiner Freundin für das Verständnis, das sie meiner Arbeit und mir in den vergangenen Jahren entgegengebracht haben, für ihre jederzeitige Unterstützung und nicht zuletzt für die Mühen des unermüdlichen Lektorates.

11 Formelzeichen, Symbole und Abkürzungen

а	Rißlänge
а	Beschleunigung
a_0	Anrißlänge
a _{end}	Rißlänge bei Versuchsende
a/W	rel. Rißlänge
A_g	Gleichmaßdehnung
Δa	Rißverlängerung
Δa_n	Nettorißverl.: <i>da</i> ohne Aufwölbung
Δa_n^*	korrigierte Nettorißverlängerung
Δa_S	stabile Rißverlängerung
В	Probenbreite
B_n	Nettobreite der Probe
С	Faktor (J-R-Kurve)
С	Materialkonstante
С	Nachgiebigkeit
C^*	Nachgiebigkeit aus Versuch
C_U	Nachgiebigkeit aus Clip
C_S	Nachgiebigkeit aus s
CTOA	Rißspitzenöffnungswinkel
DBTT	Übergangstemperatur
DBTT E	Übergangstemperatur Elastizitätsmodul
DBTT E E	Übergangstemperatur Elastizitätsmodul Energiel
DBTT E E E ₀	Übergangstemperatur Elastizitätsmodul Energiel Energie des Pendels
$DBTT$ E E E_0 E_m	Übergangstemperatur Elastizitätsmodul Energiel Energie des Pendels Energie bis Kraftmaximum
$DBTT$ E E E_{0} E_{m} E_{t}	Übergangstemperatur Elastizitätsmodul Energiel Energie des Pendels Energie bis Kraftmaximum Gesamtenergie des Versuches
$DBTT$ E E_0 E_m E_t f	Übergangstemperatur Elastizitätsmodul Energiel Energie des Pendels Energie bis Kraftmaximum Gesamtenergie des Versuches Korrekturfunktion
$DBTT$ E E_{0} E_{m} E_{t} f f^{*}	Übergangstemperatur Elastizitätsmodul Energiel Energie des Pendels Energie bis Kraftmaximum Gesamtenergie des Versuches Korrekturfunktion Korrekturfunktion
$DBTT$ E E_0 E_m E_t f f^* $f^{\#}$	Übergangstemperatur Elastizitätsmodul Energiel Energie des Pendels Energie bis Kraftmaximum Gesamtenergie des Versuches Korrekturfunktion Korrekturfunktion
$DBTT$ E E E_{0} E_{m} f_{t} f^{*} $f_{g}^{\#}$	Übergangstemperatur Elastizitätsmodul Energiel Energie des Pendels Energie bis Kraftmaximum Gesamtenergie des Versuches Korrekturfunktion Korrekturfunktion Korrekturfunktion Gewichtungsfaktor
$DBTT$ E E_{0} E_{m} E_{t} f f^{*} $f_{g}^{\#}$ f_{G}	Übergangstemperatur Elastizitätsmodul Energiel Energie des Pendels Energie bis Kraftmaximum Gesamtenergie des Versuches Korrekturfunktion Korrekturfunktion Korrekturfunktion Gewichtungsfaktor Gesamtüberhöhungsfaktor (<i>J</i>)
$DBTT$ E E_0 E_m E_t f f^* f_g f_G f_J	Übergangstemperatur Elastizitätsmodul Energiel Energie des Pendels Energie bis Kraftmaximum Gesamtenergie des Versuches Korrekturfunktion Korrekturfunktion Korrekturfunktion Gewichtungsfaktor Gesamtüberhöhungsfaktor (J) Überhöhungsfaktor (J_{max}/\overline{J})
$DBTT$ E E_{0} E_{m} E_{t} f f^{*} f_{g} f_{G} f_{J} f_{R}	Übergangstemperatur Elastizitätsmodul Energiel Energie des Pendels Energie bis Kraftmaximum Gesamtenergie des Versuches Korrekturfunktion Korrekturfunktion Korrekturfunktion Gewichtungsfaktor Gesamtüberhöhungsfaktor (J) Überhöhungsfaktor (Ja)
$DBTT$ E E E_0 E_m f_t f^{*} f_g f_G f_J f_R f_U	Übergangstemperatur Elastizitätsmodul Energiel Energie des Pendels Energie bis Kraftmaximum Gesamtenergie des Versuches Korrekturfunktion Korrekturfunktion Korrekturfunktion Gewichtungsfaktor Gesamtüberhöhungsfaktor (J) Überhöhungsfaktor (J_{max} / \overline{J}) Überhöhungsfaktor (Δa)
$DBTT$ E E E_{0} E_{m} E_{t} f f^{*} f_{g}	Übergangstemperatur Elastizitätsmodul Energiel Energie des Pendels Energie bis Kraftmaximum Gesamtenergie des Versuches Korrekturfunktion Korrekturfunktion Korrekturfunktion Gewichtungsfaktor Gesamtüberhöhungsfaktor (J) Überhöhungsfaktor (J_{max} / \overline{J}) Überhöhungsfaktor (\overline{J} / J_U) Korrekturfunktion
$DBTT$ E E_{0} E_{m} E_{t} f f^{*} f_{g} f_{G} f_{J} f_{R} f_{U} f F	ÜbergangstemperaturElastizitätsmodulEnergielEnergie des PendelsEnergie bis KraftmaximumGesamtenergie des VersuchesKorrekturfunktionKorrekturfunktionGewichtungsfaktorGesamtüberhöhungsfaktor (J) Überhöhungsfaktor (Δa) Überhöhungsfaktor (\overline{J}/J_U) Korrekturfunktion
$DBTT$ E E_{0} E_{m} E_{t} f f^{*} f_{g}	Übergangstemperatur Elastizitätsmodul Energiel Energie des Pendels Energie bis Kraftmaximum Gesamtenergie des Versuches Korrekturfunktion Korrekturfunktion Korrekturfunktion Gewichtungsfaktor Gesamtüberhöhungsfaktor (J) Überhöhungsfaktor (J) Überhöhungsfaktor (Δa) Überhöhungsfaktor (\overline{J}/J_U) Korrekturfunktion Prüfkraft
$DBTT$ E E E_{0} E_{m} f_{t} f^{*} f^{g} f_{g}	ÜbergangstemperaturElastizitätsmodulEnergielEnergie des PendelsEnergie bis KraftmaximumGesamtenergie des VersuchesKorrekturfunktionKorrekturfunktionGesamtüberhöhungsfaktorGesamtüberhöhungsfaktor (J)Überhöhungsfaktor (Δa)Überhöhungsfaktor (\overline{J}/J_U)KorrekturfunktionKorrekturfunktionGesamtüberhöhungsfaktor (\overline{J} Gesamtüberhöhungsfaktor (Δa)Überhöhungsfaktor (Δa)Überhöhungsfaktor (\overline{J}/J_U)KorrekturfunktionPrüfkraftKraftamplitudeFließkraft

H	UNU	izungen
	F_m	Kraftmaximum
	F_o	Oberkraft
	F_Q	Kraft zu K_Q
	F_u	Unterkraft
	G	Elektrische Leitfähigkeit
	G_i	G der intakten Leiterbahn i
	I_y	Flächenträgheitsmoment
	j	Materialparameter
	J	J-Integralwert
	J^*	lokales J
	J_0	J bei $z = 0$
	$J_{0,2}$	<i>J</i> bei ∆a = 0,2 mm
	J_i	J bei einsetzender Rißverl.
	J_I	J Modus I
	J_{IC}	kirtisches J_I
	J_{ID}	dynamisches J _{IC}
	J_{max}	maximales J im Bruchquerschnitt
	J_Q	vorläufiges J
	J_{ssy}	J für Kleinbereichsfließen
	J_U	J aus U (Berechnung)
	\overline{J}	J gemittelt
	$J_ ho$	scheinbare Erhöhung von J
	k	Materialparameter
	Κ	Spannungsintensitätsfaktor
	<i>K</i> _{0,1}	<i>K</i> bei Δa = 0,1 mm ermittelt
	K_I	K Modus I
	K_{IC}	kirtischer K _I
	K _{ID}	dynamischer K _{IC}
	K_{max}	max. zulässiger K
	K_{max}	K bei max. Last ermittelt
	K_Q	vorläufiger K-Wert
	K_t	Spannungsintensitätsfaktor
	L	Auflagerabstand
	L_g	Probenlänge
	т	Parameter
	т	Materialparameter
	m_H	Masse des Pendelhammers
	М	Biegemoment

- n Verfestigungskoeffizient
- *n_c* Nachgiebigkeitskoeffizient
- *n_i* Normalenvektor
- *N* reziproker Verfestigungskoeff.
- NF Normierungsfaktor
- *p* Exponent (*J*-*R*-Kurve)
- Q Faktor
- Q Constraintfaktor
- r Abstand zur Rißspitze
- R Lastverhältnis
- *R* Elektrischer Widerstand
- *R_{es}* Streckgrenze
- *R_m* Zugfestigkeit
- $R_{p0,2}$ 0,2%-Dehngrenze
- R_{RFS} Widerstand des RFS
- R_{RFS+Rp} Parallelw. von RFS und R_p
- s Durchbiegung
- t Zeit
- t_{ov} Zeit bis zum Fließen
- T Temperatur
- T Constraintfaktor
- *T*₀ Referenztemperatur MC
- T_A Regeltemperatur
- *T_{irr}* Bestrahlungstemperatur
- *T_K* Temperatur im Kerbgrund
- *∆T* Temperaturdifferenz
- *u* Verschiebungsvektor
- U Elektrische Spannung
- U Verformungsarbeit
- U_{max} Versorgungsspannung
- U_{RFS} Spannungsabfall am RFS
- U_{Rp} Spannungsabfall an R_p
- U_{Rr} Spannungsabfall an R_r
- USE Hochlageenergie
- v Geschwindigkeit
- v₀ Startgeschwindigkeit
- W Probenhöhe
- W Widerstandsmoment Biegung
- W-a Restligamenthöhe

- x Koordinate
- y Koordinate
- Y Korrekturfunktion
- z Koordinate
- Z Brucheinschnürung
- *α* halber Rißöffnungswinkel
- α Materialparameter
- α Faktor (Größenkriterium)
- β relative Probenbreite 2*z*/*B*
- β Faktor (Größenkriterium)
- $\beta_{0,8}$ β bei $J = 0,8 \cdot J_0$
- $\beta_{0,9}$ β bei $J = 0,9 \cdot J_0$
- γ Constraintfaktor
- γ_{mT} Constraintfaktor
- δ Rißöffnung
- δ_{tx} Aufwölbung der Rißspitze
- ε Dehnung
- ε_{el} elastischer Dehnungsanteil
- ε_{eS} ε bei R_{eS}
- ε_{pl} plastischer Dehnungsanteil
- \mathcal{E}_{w} wahre Dehnung
- η Faktor
- \mathcal{G} Koordinatenwinkel
- 9 Kerbwinkel
- *κ* Korrekturfunktion
- λ Weite des nicht EVZ
- v Querkontraktionszahl
- v_{EDZ} unter Bed. des EDZ berechetes v
- ρ Kerbradius
- σ Spannung
- σ_w wahre Spannung
- σ_F Ersatzfließgrenze = $\frac{1}{2}(R_{eS}+R_m)$
- ϕ Constraintfaktor

12 Literaturverzeichnis

- [1] Aymar, R.: ITER R&D: Executive summary: design overview, *Fusion Eng. and Design*, 55, 2-3, 107-118, 2001.
- [2] Norm zum *K*_{*IC*}-Versuch: ASTM E 399 90 Standard test method for plane-strain fracture toughness of metallic materials, *Annual Book of the ASTM Standards*, Section 3, 407 ff, ASTM, West Conshohocken, U.S.A., 1996.
- [3] Norm zur Rißzähigkeitsermittlung: BS7448: Method for determination of K_{IC} , critical *CTOD* and critical *J* values of metallic material, *Fracture Mechanics Toughness Tests*, British Standards Institute, London, 1991.
- [4] Munz, D., H. P. Keller: Effect of specimen size on fracture toughness in the ductile brittle transition region of steel, *Fracture and Fatigue*, ECF 3, London, 8.-10. Sept. 1980, *EMAS*, London, 105 117, 1980.
- [5] Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks, *J. Appl. Mech.*, 7, 379-386, 1968.
- [6] Schwalbe, K.-H., Bruchmechanik metallischer Werkstoffe, *Hanser Verlag*, München-Wien, 1980.
- [7] Munz, D.: Das J-Integral ein neues Bruchkriterium, Z. f. Werkstofftechnik, 7, 111-120, 1976.
- [8] Norm zum J_{IC} -Versuch: ASTM E 813 89 Standard Test Method for J_{IC} , A Measure of Fracture Toughness, *Annual Book of the ASTM Standards*, Section 3, 633 ff, ASTM, West Conshohocken, U.S.A., 1996.
- [9] DVM-Merkblatt DVM 002: Ermittlung von Rißinitiierungswerten und Rißwiderstandskurven bei Anwendung des *J*-Integrals, *Deutscher Verband für Materialprüfung*, Berlin, 1987.
- [10] Kaspar, R., H. Faul: Charpy-V subsize specimens, measurements of steel impact properties, *Materialprüfung*, 43, 1-2, 18-21, 2001.
- [11] Lont, M.A.: The determination of uncertainties in charpy impact test energy, *TNO Institute Technology*, Appeldoorn (NL), 1999.
- [12] Shih, C.F., N.P. O'Dowell, M.T. Kirk: A framework for quantifying crack tip constraint, *Constraint Effects in Fracture, ASTM STP 1171*, 2-20, 1993.
- [13] Hancock, J.W., W.G. Reuter, D.M. Parks: Constraint and toughness parameterized by T, *Constraint Effects in Fracture, ASTM STP 1171*, 21-40, 1993.
- [14] Schindler, H.J.: Berücksichtigung der Constrainteffekte in der technischen Bruchmechanik, ein anwendungsorientiertes Konzept, *Materialprüfung*, 44, 11-12, 448-453, 2001.
- [15] Rossmanith, H.-P.: Grundlagen der Bruchmechanik, *Springer-Verlag*, Wien-New York, 1992.
- [16] Neale, B.K.: An assessment of fracture toughness in the ductile to brittle transition regime using the Euro fracture toughness dataset, *Eng. Fract. Mech.*, 69, 497-509, 2002.
- [17] Corwin, W.R., R.L. Klueh, J.M. Vitek: Effect on specimen size and nickel content on the impact properties of 12 Cr-1 MoWV ferritic steel, *J. Nucl. Mat.*, 123, 343-348, 1984.
- [18] Louden, B.S., A.S. Kumar, F.A. Garner, M.L. Hamilton, J. Hu: The influence of specimen size on charpy impact testing of unirradiated HT-9, *J. Nucl. Mat.*, 157, 662-667, 1988.
- [19] Schubert, L. E., A. S. Kumar, S. T. Rosinski, M. L. Hamilton: Effect of specimen size on the impact properties of neutron irradiated A533B steel, *J. Nucl. Mat.*, 225, 231-237, 1995.
- [20] Kayano, H., H. Kurishita, A. Kimura, M. Narui, M. Yamazaki, Y. Suzuki: Charpy impact testing using miniature specimens and its application to the study of irradiation behavior of low-activation ferritic steels, *J. Nucl. Mat.*, 179, 425-428, 1991.
- [21] Östberg, G.: The impact test in the perspective of the concept of thought style, *Materialprüfung*, 43, 7-8, 309-313, 2001.

Keller, H.P., Vereinigung der Technischen Überwachungs-Vereine: Ermittlung der [22] Rißzähigkeit an Kleinproben bei spröd/duktilem Werkstoffverhalten, Forschungsbericht TÜV Rheinland, 1990. [23] Landes, J.D., D.H. Schaffer: Statistical characterization of fracture in the transition region, Fracture Mechanics, ASTM STP 700, 368-382, 1980. [24] Ehl, W.: Bruchmechanische, statistische und fraktographische Untersuchungen am Stahl Mn Mo Ni 55 im spröd-duktilen Übergangsbereich, Dissertation Universität Karlsruhe (TH), 1987. Wallin, K.: The size effect in K_{IC} Results, Eng. Fract. Mech., 22, 1, 149-163, 1985. [25] Irwin, G.R.: Fracture mode transition for a crack traversing a plate, J. Basic Eng. ASME. [26] 82, 417-425, 1960. Hagiwara, Y.: Evaluation of thickness effect of specimen size on fracture toughness in [27] heavy sectioned steels. The 2nd Japanese-German Joint Seminar on Nondestructive Evaluation and Structural Strength on Nuclear Power Plants, Tokyo (J), Feb. 1983.¹⁸ Valo, M., K. Wallin, K. Törrönen: Comparison of charpy-V and J-integral transition [28] temperature shifts in CrMoV pressure vessel steels, Int. J. Pres. Ves. & Piping, 55, 81-88, 1993. Wochinz, R., G. Schneeweiß: Der Einfluß der Haupt- und Seitenkerbung auf die [29] Temperaturabhängigkeit der Kerbschlagarbeit, Mat.-wiss. u. Werkstofftech., 30, 385-391, 1999. [30] Zerbst, U., G. Langenberg: Bruchmechanische Konzepte, Materialprüfung, 43, 9, 331-351, 2001. DIN ENV 1993-1-1: EUROCODE 3, Teil 2, Anhang C: Design against brittle fracture, [31] 1993. [32] Norm zur Master-Curve: ASTM E 1921-97 Standard test method for determination of reference temperature for ferritic steels in the transition range, Annual Book of the ASTM Standards, ASTM, West Conshohocken, U.S.A., 1997. Schindler, H.J.: Estimation of the dynamic J-R-curve from a single impact bending test, [33] Proc. 11th European Conf. on Fracture. Poitiers. 3.-6. Sept. 1996. EMAS. London. 2007-2012. 1996. Schindler, H.J.: The use of instrumented impact testing in engineering integrity [34] assessment, Evaluating Material Properties by Dynamic Testing, ESIS 20, Mech. Eng. Publ., London, 45 - 58, 1996. Navalainen, M., K. Wallin: The effect of crack depth and absolute thickness on fracture [35] toughness of 3PB specimens, Proc. 10th European Conf. on Fracture, Berlin, 20.-23. Sept. 1994, EMAS, London, 997 - 1006, 1994. [36] Schindler, H.J.: Abschätzung von Bruchzähigkeitskennwerten aus der Bruch- oder Kerbschlagarbeit, Matw. u. Werkstofftechnik, 32, 6, 544-551, 2001. Schindler, H.J, M. Veidt: Fracture toughness evaluation from instrumented sub-size [37] charpy-type tests, Small Specimen Test Techniques, ASTM STP 1329, 48-62, 1998. Hübner, P., G. Pusch: Sprödbruchsicherheit bruchmechanisch bewerten, Korrelationen [38] zwischen Kerbschlagzähigkeit und Bruchzähigkeit, Materialprüfung, 42, 1-2, 22-25, 2000. [39] Odette, G.R., M.Y. He, D. Gragg, D. Klingensmith, G.E. Lucas: Some recent innovations in small specimen testing, J. Nucl. Mat., 307-311, 2, 1643-1648, 2002. [40] Odette, G.R., M.Y. He: Micromechanical modelling of master curve temperature shifts due to constraint loss, J. Nucl. Mat., 307-311, 2, 1624-1628, 2002. Donahue, E.G., G.R. Odette, G.E. Lucas: On the mechanics of fracture toughness of a V-[41] 4Cr-4Ti alloy, J. Nucl. Mat., 283-287, 518-522, 2000. Tähtinen, S., A. Laukkanen, B.N. Singh, P. Toft: Properties of copper-stainless steel HIP [42] joints before and after neutron irradiation, J. Nucl. Mat., 307-311, 1547-1553, 2002.

¹⁸ Quelle nicht zugänglich zu machen, Formel mit Erläuterungen jedoch zitiert von Wallin [25]

- [43] S. Tähtinen, P. Moilanen, B.N. Singh, D.J. Edwards: Tensile and fracture toughness properties of unirradiated and neutron irradiated titanium alloys, *J. Nucl. Mat.*, 307-311, 416-420, 2002.
- [44] Tähtinen, S.: mündliche Mitteilungen im Rahmen des EFDA-Meetings "Irradiation and PIE capabilities in EU", Karlsruhe, 26.09.2001.
- [45] Wallin, K., A. Laukkanen, S. Tähtinen: Examination on fracture resistance of F82H steel and performance of small specimens in transition and ductile regime, *Small Specimen Test Techniques, ASTM STP 1418*, 2002.
- [46] Zhang , X.P., Y. Shi, N. Hu: The studies on fracture toughness of nuclear pressure vessel steels by using a small round compact tension specimen and a comparison with a Charpy-size specimen, *Int. J. Pres. Ves. & Piping*, 69, 2, 97-206, 1996.
- [47] Salzmann, F., F. Loibnegger, M. Wolf, H. Teichmann, T. Varga: Anwendung von Kleinproben zur Ermittlung bruchmechanischer Kennwerte, *VGB Kraftwerkstechnik* 67, 6, 608-611, 1987.
- [48] M. Rech: Untersuchungen zur bruchmechanischen Auswertung von Kerbschlagbiegeversuchen, Diplomarbeit am Institut für Zuverlässigkeit und Schadenskunde im Maschinenbau, Universität Karlsruhe (TH), 1996.
- [49] Tosal, L., G. Rodriguez, F.J. Belzunce, C. Betegón Biempica: The influence of specimen size on the fracture behavior of a structural steel at different temperatures, *J. Test. Eval.*, 28, 4, 276-281, 2000.
- [50] Betegon, C., C. Rodriguez, F.J. Belzunce: Analysis and modellisation of short crack growth by ductile fracture micromechanisms, *Fatigue Fract. Eng. Mater. Struct.,* 20, 633-644, 1997.
- [51] Underwood, J.H.: *J_{IC}*-results and methods with bend specimens, *Fracture Mechanics, ASTM STP 677*, 463-473, 1979.
- [52] Sorem, W.A., R.H. Dodds, S.T. Rolfe: Effects of crack depth on elastic-plastic fracture toughness, *Int. J. Fract.*, 47, 105-126, 1991.
- [53] Anderson, T.L., N.M.R. Vanaparthy, R.H. Dodds: Predictions of specimen size dependence on fracture toughness for cleavage and ductile tearing, *Constraint Effects in Fracture, ASTM STP 1171*, 473-491, 1993.
- [54] Dodds, R.H. Jr., T.L. Anderson, M.T. Kirk: A framework to correlate *a/W* ratio effects on elastic-plastic fracture toughness (*J_C*), *Int. J. Fract.*, 48, 1-22, 1991.
- [55] De Castro, P.M.S.T., J. Spurrier, P. Hancock: An experimental study of the crack length/specimen width (*a/W*) ratio dependence of the crack opening displacement (COD) test using small-scale specimens, *Fracture Mechanics, ASTM STP 677*, 486-497, 1979.
- [56] Xu, Y., G. Ning, C. Zhang, Q. Yu, Y. Xu: Application of the miniature specimen technique to material irradiation tests and surveillance for reactor components, *Int. J. Pres. Ves. & Piping* 77, 715-721, 2000.
- [57] Lucon, E.: Material damage evaluation of primary power plant components using sub-size specimens, *Adv. Eng. Mat.*, 3, 5, 291-302, 2001.
- [58] Lucas, G.E., G.R. Odette, M. Sokolov, P. Spätig, T. Yamamoto, P. Jung: Recent progress in small specimen test technology, *J. Nucl. Mat.*, 307-311, 2, 1600-1608, 2002.
- [59] Schwalbe, K.-H., U. Zerbst: Bruchmechanische Kennwerte bei geringer Dehnungsbehinderung, Normungsaktivitäten bei ASTM und ISO, *Materialprüfung*, 44, 7-8, 307-312, 2002.
- [60] Schindler, H.J., T. Varga, F. Loibnegger, J. Nöggerath: Ageing and irradiation surveillance by means of impact testing of precracked charpy specimens, *Proc. of Int. Symp. on Materials Ageing and Life Management*, Kalpakkam, (Indien) 3.-6. Okt. 2000, *Allied Publishers Ltd.*, Chennai, 837- 845, 2000.
- [61] Schirra, M., S. Heger, H. Meinzer, B. Ritter, W. Schweiger: Untersuchungen zum Vergütungsverhalten, Umwandlungsverhalten und der mechanischen Eigenschaften am martensitischen Stahl 1.4914 (Net-Charge MANET-I), *Kernforschungszentrum Karlsruhe, KfK-Bericht 4561*, Juni 1989.

- [62] Schirra, M., P. Graf, S. Heger, H. Meinzer, W. Schweiger, H. Zimmermann, MANET-II, Untersuchungsergebnisse zum Umwandlungs- und Vergütungsverhalten und Prüfung mechanischer Eigenschaften, *Kernforschungszentrum Karlsruhe, KfK-Bericht 5177*, Mai 1993.
- [63] Schneider, H.-C., B. Dafferner, H. Ries, O. Romer: Bestrahlungsprogramm MANITU, Ergebnisse der Kerbschlagbiegeversuche mit den bis 2,4 dpa bestrahlten Werkstoffen, *Forschungszentrum Karlsruhe, FZKA 6605*, Mai 2001.
- [64] Schneider, H.-C., B. Dafferner, J. Aktaa: Embrittlement behaviour of low-activation alloys with reduced boron content after neutron irradiation. *J. Nucl. Mat.*, 32, 135-140, 2003.
- [65] Schneider, H.-C., J. Aktaa, B. Dafferner: Post-irradiation examinations of ferriticmartensitic steels for structural applications in fusion reactors. Technological studies and fracture toughness evaluation, *Jahrestagung Kerntechnik 2004*, Düsseldorf, 25.-27. Mai 2004, *Tagungsband (CD-Rom: INFORUM GmbH)*, 405-08, 2004.
- [66] Materna-Morris, E., H.-C. Schneider, B. Dafferner, R. Rolli, O. Romer, A. Möslang, Mechanical properties and structural analysis of martensitic low-activation alloys after neutron irradiation. 20th IEEE/NPSS Symp. on Fusion Engineering (SOFE), San Diego, Calif., October 14- 17, 2003.
- [67] Schäfer, L., H. Kempe, Mechanische Eigenschaften von Diffusionsschweißverbindungen martensitischer Chromstähle, *Forschungszentrum Karlsruhe, FZKA 6459*, November 2000.
- [68] Rieth, M., M. Schirra, A. Falkenstein, P. Graf, S. Heger, H. Kempe, R. Lindau, H. Zimmermann: EUROFER 97. Tensile, charpy, creep and structural tests, *Forschungszentrum Karlsruhe, FZKA 6911*, 2003.
- [69] Schneider, H.-C.: *unveröffentlichter Bericht, Forschungszentrum Karlsruhe*, Juli 2003.
- [70] Petersen, C., V. Shamardin, A. Fedoseev, G. Shimansky, V. Efimov, J. Rensmann, The ARBOR irradiation project. *J. Nucl. Mat.*, 307-311, 1655-1659, 2002.
- [71] Boyd, G.M.: From Griffith to COD and beyond, *Eng. Fract. Mech.*, 4, 459-482, 1972.
- [72] Dixon, J.R., Effects of crack-front geometry and plate thickness on the stress distribution in cracked plates, *Inst. Phys. Phys. Soc. Conf. Ser. No.* 1, 1966.
- [73] Kawano, S., M. Tada, H. Yajima, K. Nagai: Thickness effect on brittle fracture toughness of weld material of high tensile strength steel, *IIW-Doc. No. X-1121-86, International Institute of Welding*, Paris, 1986.
- [74] AQBAQUS/Standard User's Manual Version 6.2, *Hibbitt, Karlsson & Sorensen, Inc.*, Pawtucket, USA, 2001.
- [75] Reusch, F.: Entwicklung und Anwendung eines nicht-lokalen Materialmodells zur Simulation duktiler Schädigung in metallischen Werkstoffen, von der Fakultät Maschinenbau der Universität Dortmund genehmigte Dissertation, Wirtschaftsverlag NW, 2003.
- [76] Gurson, A. L.: Continuum theory of ductile rupture by void nucleation and growth, *J. Eng. Mat. Tech.*, 99, 2 15, 1977.
- [77] Scheider, I.: Cohesive model for crack propagation analyses of structures with elasticplastic material behavior, foundations and implementation, *Bericht GKSS Geesthacht, Abt. WMS*, 2001.
- [78] Schmitt, W., H. Talja, W. Böhme, S. Oser, H. Stöckl: Characterization of ductile fracture toughness based on subsized charpy and tensile test results, *Small Specimen Test Techniques, ASTM STP 1329*, 63-81, 1998.
- [79] Fett, T., D. Munz: Stress intensity factors and weight functions, *Southampton Computational Mechanics Publ. (Advances in fracture series)*, 1997.
- [80] Parks, D.M.: The virtual crack extension method for nonlinear material behavior, *Comp. Meth. Appl. Mech. Eng.*, 12, 353-364, 1977.
- [81] Brocks, W.: FEM-Analysen von Rißproblemen bei nichtlinearem Materialverhalten, Scriptum zum DVM-Weiterbildungsseminar "Anwendung numerischer Methoden in der Bruchmechanik", Freiberg, 18.02.02, *Institut für Werkstofforschung, GKSS Geesthacht*, 2002.

- [82] Brocks, W., I. Scheider: Reliable *J*-values, numerical aspects of the path-dependence of the *J*-integral in incremental plasticity, *Materialprüfung*, 45, 6, 264-275, 2003.
- [83] Balzer, G., S. Müller: *unveröffentlichter Bericht, Kernforschungszentrum Karlsruhe, KfK*, 1989.
- [84] Bär, J., T. Volpp, Vollautomatische Experimente zur Ermüdungsrißausbreitung, *Materialprüfung*, 43, 6, 242-247, 2001.
- [85] *Measurement Group Messtechnik GmbH*, Produktkatalog 500: Micro Measurement Division, München, 2000.
- [86] Schneider, H.-C., B. Dafferner, H. Ries, S. Lautensack, O. Romer: Bestrahlungsprogramm HFR Phase Ib, Ergebnisse der Kerbschlagbiegeversuche mit den bis 2,4 dpa bestrahlten Werkstoffen, *Forschungszentrum Karlsruhe, FZKA* 6976, April 2004.
- [87] Klubberg, F., I. Klopfer: Amsler Symposium 2002, Roell Amsler Dynamic Testing, 10.-14. 06 2002, S. 267 u. 271, *Verlag Mainz*, Aachen, 2002.
- [88] Müller, S., G. Balzer, G. Thun, E. Wiens: *unveröffentlichter Bericht, Kernforschungs*zentrum Karlsruhe, KfK, 1991.
- [89] Tronskar, J.P., M.A. Mannan, M.O. Lai: Direct measurement of displacement in instrumented charpy impact testing for structural integrity assessment, *J. Test. Eval.*, 29, 246-257, 2001.
- [90] Wassilew, C., M. Rieth, B. Dafferner: Verfahren zur Störgrößenkompensation bei instrumentierten Kerbschlagbiegeversuchen, *Kernforschungszentrum Karlsruhe, KfK-Bericht* 4796, Oktober 1990.
- [91] DIN EN 14556, Kerbschlagbiegeversuch nach Charpy (V-Kerb), instrumentiertes Prüfverfahren, 2000.
- [92] Böhme, W., W. Klemm, Ergebnisse des Ringtests "Kerbform" der DVM-Arbeitsgruppe "Instrumentierter Kerbschlagbiegeversuch", *Fraunhofer-Institut für Werkstoffmechanik IWM, IWM-Bericht W 7/93*, November 1993.
- [93] Rieth, M., B. Dafferner, H. Ries, O. Romer: Bestrahlungsprogramm MANITU, Ergebnisse der Kerbschlagbiegeversuche mit den bis 0,8 dpa bestrahlten Werkstoffen der ersten Bestrahlungsphase, *Forschungszentrum Karlsruhe, FZKA 5619*, September 1995.
- [94] Schäfer, L., H. Kempe, W. Meyer: Zug- und Kerbschlageigenschaften des martensitischen Stahles MANET-II und deren Optimierung, *Institut für Materialforschung, Kernforschungszentrum Karlsruhe, KfK-Bericht 5245*, 1993.
- [95] Zhang, X.P., Y.W. Shi: How to obtain a complete dependence curve of impact toughness or fracture toughness vs. temperature on nuclear pressure vessel steels by using only one Charpy-size specimen. Int. J. Pres. Ves. & Piping, 65, 187-192, 1996.
- [96] Kobayashi, H., H. Nakamura, H. Nakazawa: The *J*-Integral evaluation of stretched zone width and its application to elastic-plastic fracture toughness test, *Recent Researches on Mechanical behaviour of Solids, University of Tokyo Press*, 1978.
- [97] Schindler, H.J., P. Tipping: Instrumented impact testing of pre-cracked charpy-type specimens to obtain fracture toughness data for use in master curve methodology, *IAEA-Specialists Meeting on Master Curve Testing and Application*, Prague, 17.-19.09.2001.
- [98] Zhang, X.P., Y.W. Shi: Fracture toughness evaluation on nuclear pressure vessel steels and welded joints with mechanical heterogeneity, *Research report, No.* 75-10-0409, *Department of Mechanical Engineering, Xi'an Jiaotong University*, 1-20, 1990.
- [99] Wallin, K.: Mini- ja normaalikokoisten Charpy-V-koesauvojen tulosten välinen korrelaatio. Espoo, Finnland, *Report VTT-MET B-209*, 1992.
- [100] Planman, T., M. Valo, K. Wallin: Comparison of transition temperature criteria applied for KLST and ISO-V type charpy specimens, *VTT Symposium 190.* RATU2. VTT. Espoo, 77–90, 1998.
- [101] Häcker, R., P. Wossidlo: Meßunsicherheiten bestimmen am Beispiel der Ermittlung von Rißwiderstandskurven, *Materialprüfung 40*, 9, 361-365, 1998.
- [102] Wallin, K.: The scatter in *K*_{IC} results, *Eng. Fract. Mech.*, 19, 6, 1085-1093, 1984.

- [103] Orange, T.W.: Some effects of experimental error in fracture festing, *Fracture Analysis, ASTM STP 560*, 122-133, 1974.
- [104] Odette, G.R., H.J. Rathbun, J.W. Rensman, F.P. van den Broek: On the transition toughness of two RA martensitic steels in the irradiation hardening regime: a mechanism-based evaluation, *J. Nucl. Mat.*, 307-311, 2, 1011-1015, 2002.
- [105] Lucon, E.: Mechanical properties of the european reference RAFM steel (EUROFER 97) before and after irradiation at 300°C (0.3 2 dpa), Scientific Report, SCK·CEN-BLG-962, Studiecentrum voor Kernenergie Centre d'Étude de l'Énergie Nucléaire, Boertang 200, B-2400 Mol (Belgien), November 2003.
- [106] Materna-Morris, E., R. Rolli, O. Romer, A. Möslang: Tensile properties and structural analysis of martensitic low-activation alloys after neutron irradiation. *Jahrestagung Kerntechnik 2004*, Düsseldorf, 25.-27.Mai 2004, *Tagungsband (CD-Rom: INFORUM GmbH)*, 401-04.
- [107] Schneider, H.-C., B. Dafferner, H. Ries, O. Romer: Bestrahlungsprogramm MANITU, Ergebnisse der Kerbschlagbiegeversuche mit den bis 0,8 dpa bestrahlten Werkstoffen der zweiten Bestrahlungsphase, *Forschungszentrum Karlsruhe, FZKA 6519*, September 2000.
- [108] Petrequin, P., P. Soulat: Possibility of using small size specimens for toughness evaluation of pressure vessel steels in surveillance programs, *IWG-RRPC 79/3, IAEA*, 119-130, Wien, 1979.
- [109] Materna-Morris, E., M. Rieth, K. Ehrlich: Mechanical properties and microstructure of HFR-irradiated ferritic/martensitic low-activation alloys, *Effects of Radiation on Materials*, 19th Int. Symposium, ASTM STP 1366, 1999.
- [110] Rice, J.R., G.F. Rosengren: Plane strain deformation near a crack tip in a power-law hardening material, *J. Mech. Phys. Solids*, 16, 1-12, 1968.
- [111] Hutchinson, J.W.: Singular behaviour at the end of a tensile crack in a hardening material, *J. Mech. Phys. Solids*, 16, 13-31, 1968.
- [112] Rieth, M., B. Dafferner, H. Ries, O. Romer: Bestrahlungsprogramm MANITU, Ergebnisse der Voruntersuchungen und der Kerbschlagbiegeversuche mit den unbestrahlten Werkstoffen, *Forschungszentrum Karlsruhe, FZKA 5550*, 1995.

Ohne explizites Zitat verwendete Werke:

- H. Beer, Vorlesung Thermodynamik I-III, *Skriptum zur Vorlesung 1990/92, Technische Hochschule Darmstadt*.
- W. Beitz, K.-H. Küttner: Dubbel, Taschenbuch für den Maschinenbau, *Springer-Verlag* Wien, New York, 1995.
- H. Blumenauer: Technische Bruchmechanik, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1981.
- I.N. Bronstein: Taschenbuch der Mathematik, *Teubner Verlagsgesellschaft*, Leipzig, 1989.
- D. Groß, W. Hauger, W. Schnell: Technische Mechanik 1-3, *Springer-Verlag* Wien, New York, 1992.
- K. Heckel: Einführung in die technische Anwendung der Bruchmechanik, *Hanser Verlag* München, Wien, 1983.
- E. Macherauch: Praktikum in Werkstoffkunde, *Vieweg & Sohn Verlagsgesellschaft mbH*, Braunschweig, 1985.
- D. Munz: Versagensverhalten von Konstruktionswerkstoffen, Stichworte und Formeln der Vorlesung WS 1994/95, Universität Karlsruhe (TH).

Anhang

Inhalt

Nicht im Haupttext aufgeführte Beziehungen	120
Finite-Elemente-Berechnungen	121
Materialmodelle	121
Verifikation der Materialmodelle	122
Bewegung der Biegeprobe bei Variation der Probenhöhe	122
Spannungen und Dehnungen	123
Spannungsverteilungen	126
J-Integral-Verteilungen	131
Chemische Zusammensetzung der verwendeten Werkstoffe	134
MANET-I, Versuchsergebnisse	135
MANET-II, Versuchsergebnisse	142
EUROFER 97, Versuchsergebnisse	146
Probenzeichnungen	151
Schnittpläne	155
Prüfeinrichtungen	157
Resonanzmaschine	160
Automatisierte Anrißerzeugung mit Rißfortschritts-Sensoren	161
Verformungsmessung über Rißöffnungs-Aufnehmer	164
Temperaturkontrolle und -korrektur	165
Rißvermessung	168
Einprobenversuch	169
Ergebnisblätter für K- und J-Auswertungen	169

Nicht im Haupttext aufgeführte Beziehungen

Formulierung des Risspitzenfeldes von Hutchinson, Rice und Rosengren:

Sowohl Hutchinson [110] als auch Rice und Rosengren [111] haben eine Formulierung für das Rißspitzenfeld (oft als "Hutchinson-Rice-Rosengren-Singularität" oder "HRR-Feld" bezeichnet) angegeben, die Spannung und Dehnung unter Modus-I-Belastung mit einer 1/r-Singularität beschreibt:

Spannungsfeld:
$$\frac{\sigma_{ij}}{\sigma_0} = \left(\frac{J \cdot E}{\alpha \cdot I_n \cdot \sigma_0^2 \cdot r} \right)^{\frac{1}{n+1}} \cdot \tilde{\sigma}_{ij}(g) \quad (73)$$
Dehnungsfeld: $\frac{\varepsilon_{ij}}{\varepsilon_0} = \frac{\alpha \cdot \sigma_0}{E} \left(\frac{J \cdot E}{\alpha \cdot I_n \cdot \sigma_0^2 \cdot r} \right)^{\frac{1}{n+1}} \cdot \tilde{\varepsilon}_{ij}(g) \quad (74)$ $\tilde{\sigma}_{ij}, \tilde{\varepsilon}_{ij}$ Winkelabhängigkeit von Spannung und Dehnung an der Rißspitze σ_0 Nominalspannung
 ε_0 Nominaldehnung

 σ_0 Nominalspannung

- Abstand zur Rißspitze Verfestigungskoeffizient r п
- Faktor abhängig von n Metarialparameter Ι α
 - 9 Koordinatenwinkel

Formulierung der Nachgiebigkeit von Zhang und Shi [95]:

$$C = 72[g(a / w)] + 2 \quad (75)$$

$$g(a / w) = 1,86 \cdot (a / w)^{2} - 3,95 \cdot (a / w)^{3} + 16,38 \cdot (a / w)^{4} - 37,23 \cdot (a / w)^{5}$$

$$+ 77,55 \cdot (a / w)^{6} - 126,87 \cdot (a / w)^{7} + 172,53 \cdot (a / w)^{8} - 143,9 \cdot (a / w)^{9}$$
(76)

Abschätzung der Nachgiebigkeit einer Dreipunkt-Biegeprobe nach ASTM [8]:

$$C = \frac{1}{EB_e} \cdot \left(\frac{L}{W-a}\right)^2 \cdot \left[1,193 - 1,980 \cdot (a/W) + 4,478 \cdot (a/W)^2 - 4,443 \cdot (a/W)^3 + 1,739 \cdot (a/W)^4\right]$$
(77)
mit $B_e = B - \frac{(B-B_n)^2}{B}$ (77a)

Umrechnung von Einheiten von K-Faktoren:

 $1 \text{ MNm}^{-3/2} = 1 \text{ MPa} \cdot \text{m}^{1/2} = 10 \text{ MPa} \cdot (10 \text{ mm})^{1/2} = 31,623 \text{ N} \cdot \text{mm}^{-3/2}$

Finite-Elemente-Berechnungen

Materialmodelle

σ in MPa	$\sigma_{\!\scriptscriptstyle W}$ in MPa	ε	\mathcal{E}_{pl}	$\mathcal{E}_{w,pl}$
0,0	0,0	0,00%	0,00%	0,00%
655,1	657,2	0,31%	0,00%	0,00%
<i>R</i> _{<i>p</i>0,2} : 728,0	732,0	0,55%	0,20%	0,20%
778,2	785,0	0,88%	0,51%	0,50%
815,2	835,0	2,43%	2,04%	2,00%
<i>R</i> _m : 855,5	912,0	6,60%	6,20%	5,96%
872.9	2300.0	174.95%	174.54%	100.00%

Tabelle A 1: Materialmodell für MANET-I, 1075°C, 0,5h + 750°C, 2h

σ in MPa	$\sigma_{\!\scriptscriptstyle W}$ in MPa	ε	\mathcal{E}_{pl}	$\mathcal{E}_{w,pl}$	
0,0	0,0	0,00%	0,00%	0,00%	
778,7	781,6	0,37%	0,00%	0,00%	
<i>R</i> _{p0,2} : 875,0	880,4	0,62%	0,20%	0,20%	
940,5	950,0	1,01%	0,56%	0,55%	
960,8	990,0	3,04%	2,59%	2,53%	
<i>R</i> _m : 981,6	1029,6	4,89%	4,42%	4,28%	
872,9	2400,0	174,95%	174,54%	100,00%	

Tabelle A 2: Materialmodell für MANET-II, 1075°C, 0,5h + 600°C, 2h

σ in MPa	$\sigma_{\!\scriptscriptstyle w}$ in MPa	ε	\mathcal{E}_{pl}	$\mathcal{E}_{w,pl}$	
0,0	0,0	0,00%	0,00%	0,00%	
679,1	681,3	0,32%	0,00%	0,00%	
<i>R</i> _{p0,2} : 763,0	767,3	0,57%	0,20%	0,20%	
793,6	800,0	0,80%	0,43%	0,42%	
828,2	845,0	2,02%	1,63%	1,60%	
839,5	865,0	3,04%	2,64%	2,58%	
<i>R_m</i> : 857,6	906,4	5,69%	5,28%	5,10%	
872,9	2400,0	174,95%	174,54%	100,00%	

Tabelle A 3: Materialmodell für MANET-II, 1075°C, 0,5h + 700°C, 2h

σ in MPa	$\sigma_{\!\scriptscriptstyle W}$ in MPa	ε	\mathcal{E} \mathcal{E}_{pl}	
0,0	0,0	0,00%	0,00%	0,00%
495,7	496,9	0,24%	0,00%	0,00%
585,4	589,6	0,73%	0,45%	0,45%
634,4	647,3	2,03%	1,73%	1,71%
<i>R</i> _m : 664,3	700,0	5,37%	5,05%	4,90%
828,8	2252,8	171,83%	171,43%	98,93%

Tabelle A 4: Materialmodell für EUROFER 97, 1075°C, 0,5h + 700°C, 2h

Verifikation der Materialmodelle

Abbildung A 1: Vergleich berechneter Zugversuche mit experimentellen Ausgangsdaten, Mitte des zylindrischen Teils einer modellierten Zugprobe. Abmessungen für MANET-II $5x25 \text{ mm}^2$ (d_0xl_0) und für EUROFER 97 $3x18 \text{ mm}^2$.

Abbildung A 1 zeigt Verifikationsergebnisse aus dem zylindrischen Bereich von mitsamt Schultern modellierten Zugroben (Abschnitt 4.1.1.2). Der Vergleich wahrer Spannung und wahrer Dehnung mit den zugrundeliegenden experimentellen Ergebnissen zeigt die Güte der verwendeten Parameter. Das Einbrechen der berechneten Spannungen nach dem Erreichen von *R_m* entspricht dem realen Experiment und ist auf die Bildung einer Einschnürung und das dortige Einsetzen starken Fließens zurückzuführen. Die Einschnürung wird durch die Probenschultern hervorgerufen, die - im Gegensatz zur Modellierung eines reinen Zugstabes - im zylindrischen Teil der Probe einen nicht von der Längskoordinate unabhängigen Spannungs- und Dehnungszustand bedingen.

Bewegung der Biegeprobe bei Variation der Probenhöhe

Abbildung A 2 zeigt die Ergebnisse des analytischen Ausdrucks im Vergleich mit Finite-Elemente-Berechnungen für die Durchbiegung der Probe in Abhängigkeit von der Lastangriffspunktverschiebung (Abschnitt 4.3.6.2). Es werden Proben mit konstanter Restligamenthöhe von 3 mm und Höhen von 4 bzw. 6 mm untersucht. Obwohl der analytische Ausdruck nur für kleine Deformationen Gültigkeit besitzen sollte, liefert er auch Durchbiegungen bei starken sehr ähnliche Ergebnisse wie die für große Deformation angelegte FE-Rechnung. Beiden Ergebnissen gemein ist eine vergleichbare Differenz zwischen den Rißöffnungswinkeln, die mit zunehmender Verformung überproportional zunimmt.

Abbildung A 2: Abhängigkeit von α von W (Mini-3PB- und KLST-BM-Probe)

Spannungen und Dehnungen

Dehnung beim Einsetzen der plastischen Verformung (ASTM-Biegeprobe, MANET-II, 700°C)

Abbildung A 3: Dehnung in 1-Richtung in glatter und seitengekerbter Probe nach 0,13 mm Durchbiegung

Spannungen und Dehnung nach großer plastischer Verformung (ASTM-Biegeprobe, MANET-II, 700°C)

Abbildung A 4: Spannungsverteilung in glatter Probe nach 2,50 mm Durchbiegung

Abbildung A 5: Spannungsverteilung in seitengekerbter Probe nach 2,50 mm Durchbiegung

Abbildung A 6: Dehnung in 1-Richtung in glatter und seitengekerbter Probe nach 2,50 mm Durchbiegung

Spannungen und Dehnung beim Einsetzen der plastischen Verformung (Mini-3PB-Probe, MANET-II, 700°C)

Abbildung A 7: Spannungsverteilung in glatter Miniaturprobe nach 0,043 mm Durchbiegung

ļ

Abbildung A 8: Spannungsverteilung in seitengekerbter Miniaturprobe nach 0,043 mm Durchbiegung

Abbildung A 9: Dehnung in 1-Richtung in glatter und seitengekerbter Miniaturprobe nach 0,043 mm Durchbiegung

Spannungen und Dehnung nach großer plastischer Verformung (Mini-3PB-Probe, MANET-II, 700°C)

Abbildung A 10: Spannungsverteilung in glatter Miniaturprobe nach 0,900 mm Durchbiegung, rechts die freie Oberfläche

Abbildung A 11: Spannungsverteilung in seitengekerbter Miniaturprobe nach 0,900 mm Durchbiegung

Abbildung A 12: Dehnung in 1-Richtung in glatter und seitengekerbter Miniaturprobe nach 0,900 mm Durchbiegung

Spannungsverteilungen

ASTM-Probe

Abbildung A 13: ASTM-3PB-Probe, glatt, 2,50 mm Durchbiegung, x = 0,30 mm

Abbildung A 14: ASTM-3PB-Probe, glatt, 0,13 mm Durchbiegung, *x* = 0,30 und 0,90 mm

Abbildung A 15: ASTM-3PB-Probe, glatt, 2,50 mm Durchbiegung, x = 0,30 und 0,90 mm

Abbildung A 16: ASTM-3PB-Probe, seitengekerbt, 0,13 mm Durchbiegung, x = 0,23 und 0,69 mm

Abbildung A 17: ASTM-3PB-Probe, seitengekerbt, 2,50 mm Durchbiegung, x = 0,23 und 0,69 mm

Mini-3PB-Probe

Abbildung A 18: Mini-3PB-Probe, glatt, 0,043 mm Durchbiegung, x = 0,061 mm

ungekerbte Probe, 0,043mm Durchbiegung

Abbildung A 19: Mini-3PB-Probe, glatt, 0,043 mm Durchbiegung, x = 0,061 und 0,237 mm

Abbildung A 20: Mini-3PB-Probe, glatt, 0,900 mm Durchbiegung, x = 0,061 und 0,237 mm

gekerbte Probe, 0,043mm Durchbiegung

Abbildung A 21: Mini-3PB-Probe, seitengekerbt, 0,043 mm Durchbiegung, x = 0,061 und 0,237 mm

Abbildung A 22: Mini-3PB-Probe, seitengekerbt, 0,900 mm Durchbiegung, x = 0,061 und 0,237 mm

Dehnungszustand und Querkontraktionszahl

Die Abmessungen aller berechneten Proben erlauben formal in der Berechnung keinen absolut ebenen Dehnungszustand in der Probenmitte. Dazu müßte bei vollständig dreidimensionalen Berechnungen entweder die Probenbreite unendlich groß gegenüber den anderen Abmessungen sein, oder die der Symmetrieebene gegenüberliegende freie Oberfläche muß durch eine künstliche Randbedingung in 33-Richtung fixiert werden, um Querdehnung zu verhindern. Beides ist nicht sinnvoll, und es stellt sich die Frage, wie groß der Anteil der dritten Dehnungskomponente im Vergleich zu den beiden anderen Dehnungen bei vollständig dreidimensionaler Berechnung ist.

Viele Berechnungen, wie z.B. die von Schmitt et al. [78] durchgeführten, umgehen diese Problematik durch eine bereichsweise Modellierung eines dreigeteilten, nicht durchgängig dreidimensionalen Netzes. Die Elemente und Randbedingungen sind so definiert, daß sie unmittelbar um die Rißspitze ebene Dehnung und im weiteren Umfeld einen ebenen Spannungszustand darstellen (weiter entfernte Regionen der Probe sind zweidimensional). Dehnungsbehinderungen durch Seitenkerben u. ä. können nur direkt als explizite Dehnungsbehinderung, nicht aber in Form der Geometrie definiert werden. Dies macht solche Modelle für die Untersuchung der Auswirkung von Geometriemodifikationen, wie sie im Rahmen dieser Arbeit erfolgen, ungeeignet.

Vergleicht man die Komponenten der Dehnung aus den Finite-Elemente-Berechnungen, so zeigt sich, daß die ε_{33} -Komponente verschieden zu 0 ist. Bei seitlich nicht gekerbten Proben herrscht auch in der Probenmitte in 33-Richtung eine Kontraktion vor, die aber um etwa eine Größenordnung kleiner ist, als die beiden anderen Komponenten ε_{11} und ε_{22} .

Eine Kontrolle des Dehnungszustandes in der Probenmitte kann erfolgen, indem die dritte Spannungskomponente über die Bedingung $\varepsilon_{33} = 0$ errechnet und mit dem Ergebnis der Finite-Elemente-Berechnungen verglichen wird.

$$\varepsilon_{33} = \frac{1}{E} \cdot \left[\sigma_{33} - \nu (\sigma_{11} + \sigma_{22}) \right] \quad \Rightarrow \quad \sigma_{33ber.} = \nu (\sigma_{11} + \sigma_{22}) \quad (42)$$

Tabelle A 5 zeigt ergänzend zu den Bemerkungen in Abschnitt 4.4.2.3 (Seite 38) für die 4 untersuchten Probenformen jeweils in der Probenmitte die Spannungen in den drei Koordinatenrichtungen. σ_{33} wird direkt aus den Berechnungen entnommen und über die Bedingungen eines ideal ebenen Dehnungszustandes für elastische bzw. plastische Deformation mit v = 0,3 (elastisch) bzw. v = 0,5 (plastisch) berechnet. In der letzten Spalte ist eine aus den Spannungen in Koordinatenrichtung errechnete Querkontraktionszahl für ideal ebene Dehnung v_{EDZ} gegeben:

$$v_{EDZ} = \frac{\sigma_{33}}{\sigma_{11} + \sigma_{22}}$$
 (78)

Eine errechnete Querkontraktionszahl von kleiner als 0,3 läßt auf eine Verletzung der Bedingung $\varepsilon_{33} = 0$ schließen. Tatsächlich ist auch die Dehnung in Probenquerrichtung besonders an den Knotenpunkten der glatten Proben kleiner als 0. Auch eine Betrachtung der Spannungs- und Dehnungskomponenten an den Integrationspunkten einzelner Elemente leicht abseits der Symmetrieebene liefert vergleichbare Ergebnisse sowohl für elastisch-plastische als auch für rein elastische Berechnungen.

Wird zur Kontrolle der Berechnungen die Dehnung \mathcal{E}_{33} ebenfalls aus den Finite-Elemente-Berechnungen entnommen, so errechnet sich die Querkontraktionszahl unter Annahme eines beliebigen Dehnungszustandes bis zum Einsetzen sehr großer Verformungen allerdings zu exakt v = 0,30.

$E = O_{11} + O_{22}$							
	<i>P</i> in mm	-		<i>O</i> 33			
	\boldsymbol{D}_n III IIIII	<i>O</i> 11	σ_{22}	Abaqus	v = 0,3	v = 0,5	V _{EDZ}
beim Einsetzen der	9,00 (ASTM glatt)	812	786	346	479	566	0,22
plastischen Verformung,	7,00 (ASTM seitengek.)	1320	747	594	620	671	0,29
0,13 / 0,043 mm	3,00 (Mini glatt)	778	623	261	420	442	0,19
unterhalb der Rißspitze	2,33 (Mini seitengek.)	1340	597	443	581	520	0,23
beim Einsetzen der	9,00	395	442	147	251	294	0,18
plastischen Verformung,	7,00	721	483	308	361	395	0,26
0,90 / 0,237 mm	3,00	349	373	136	216	254	0,19
unterhalb der Rißspitze	2,33	662	526	245	356	385	0,21
nach großer plastischer	9,00	2420	1136	1714	1067	1425	0,48
Verformung,	7,00	3276	974	2069	1275	1521	0,49
0,13 / 0,043 mm	3,00	2457	1029	1693	1046	1361	0,49
unterhalb der Rißspitze	2,33	2505	954	1608	1038	1281	0,46
nach großer plastischer Verformung,	9,00	2235	1493	1244	1118	1369	0,33
	7,00	3107	1782	2361	1467	2072	0,48
0,90 / 0,237 mm	3,00	2327	1434	1387	1128	1410	0,37
unterhalb der Rißspitze	2,33	2393	1370	1480	1129	1425	0,39

$$\varepsilon_{33} = \frac{1}{E} \cdot [\sigma_{33} - \nu(\sigma_{11} + \sigma_{22})] \Rightarrow \nu = \frac{\sigma_{33} - E \cdot \varepsilon_{33}}{\sigma_{11} + \sigma_{22}}$$
 (79)

Tabelle A 5: Spannungen (in N/mm²) und Querkontraktionszahlen, aus den FE-Berechnungen gewonnen

J-Integral-Verteilungen

Abbildung A 23: MANET-II, 600°C Anlaßtemperatur, ASTM-3PB-Probe, *J*-Integral über Lastangriffspunktverschiebung für div. Konturen

Abbildung A 24: *J*-Integral über die Probenbreite für glatte und seitengekerbte ASTM-3PB-Probe, MANET-II, $T_{anl.} = 600^{\circ}$ C

Abbildung A 25: *J*-Integral und $\beta_{0,8}$ und $\beta_{0,9}$ über Lastangriffspunktverschiebung für glatte und seitengekerbte ASTM-3PB-Probe, MANET-II, $T_{anl.} = 600^{\circ}$ C

Liste der Ein- und Ausgabedateien

ASTM-Probe, ungekerbt, MANET-II, 700°C Anlaßtemperatur

Eingabedatei: MMneu700J.inp Verwende Strukturen: Model: MANET 700 ASTM Finne: F0305-01 Auflager: Auflager 0305-02 Bruchzone: ASTMvorne Rest der Probe: ASTMhinten Ausgabedatei: Manet700J.odb

ASTM-Probe, seitengekerbt, MANET-II, 700°C Anlaßtemperatur

Eingabedatei: MMneu700KJ.inp Verwende Strukturen: Model: Manet 700 ASTM-K fN Finne: F0305-01 Auflager: Auflager 0305-02 Bruchzone: ASTM-Kvorne Rest der Probe: ASTM-Khinten Ausgabedatei: Mane700ASTM-KJ.ODB

ASTM-Probe, ungekerbt, MANET-II, 600°C Anlaßtemperatur

Eingabedatei: Manet600Jneu.inp Verwende Strukturen: Model: MANET600 ASTM Finne: F0305-01 Auflager: Auflager 0305-02 Bruchzone: ASTMvorne Rest der Probe: ASTMhinten Ausgabedatei: Manet600J.ODB

ASTM-Probe, seitengekerbt, MANET-II, 600°C Anlaßtemperatur

Eingabedatei: Manet600ASTM-KJ.inp Verwende Strukturen: Model: Manet600 ASTM-K Finne: F0305-01 Auflager: Auflager 0305-02 Bruchzone: ASTM-Kganz Rest der Probe: Part-3 Ausgabedatei: Manet600ASTM-KJ.ODB

ASTM-Probe, ungekerbt, EUROFER 97

Verwende Strukturen: Finne: F0305-01 Auflager: Auflager 0305-02 Bruchzone: ASTMvorne Rest der Probe: ASTMhinten Ausgabedatei: Eurofer2J.ODB
ASTM-Probe, seitengekerbt, EUROFER 97

Eingabedatei: Eurofer1J.inp Verwende Strukturen: Model: Manet600 ASTM-K fN Finne: F0305-01 Auflager: Auflager 0305-02 Bruchzone: ASTM-Kvorne Rest der Probe: ASTM-Khinten Ausgabedatei: Eurofer1J.ODB

Mini-Probe, ungekerbt, MANET-II, 700°C Anlaßtemperatur

Eingabedatei: M3PBJ.inp Verwende Strukturen: Model: M3PB 3a Finne: F0305-01 Auflager: Auflager 0008-06 Bruchzone: M3PB 4mm Rest der Probe: M3PB 11mm Ausgabedatei: M3PBJ.ODB

Mini-Probe, seitengekerbt, MANET-II, 700°C Anlaßtemperatur

Eingabedatei: M3PB-KJ.inp Verwende Strukturen: Model: M3PB-K 3c Finne: F0305-01 Auflager: Auflager 0008-06 Bruchzone: M3PB-K 4mm Rest der Probe: M3PB-K 11mm Ausgabedatei: M3PB-KJ.ODB

Chemische Zusammensetzung der verwendeten Werkstoffe

	MANET I	MANET II	EUROFER 97
Charge	53645	50805	83697
Analyse	FZK/IMF	FZK/IMF	Hersteller
Cr	10,8	9,94	8,91
W			1,08
Ν	0,02	0,023	0,02
С	0,14	0,1	0,12
Mn	0,76	0,79	0,48
Та			0,14
Р	0,005	<0,006	0,005
S	0,004	<0,007	0,004
V	0,2	0,22	0,2
В	0,0085	0,007	0,001
Si	0,37	0,14	0,04
Ni	0,92	0,66	0,02
Мо	0,77	0,59	<0,001
AI	0,054	<0,02	0,009
Co	0,01	<0,02	0,006
Cu	0,015	<0,01	0,0015
Nb	0,16	0,14	0,0017
Zr	0,059	0,034	<0,005
Ti			0,006
Fe	Rest	Rest	Rest

Tabelle A 6: Chemische Zusammensetzung der verwendeten Werkstoffe in Gewichts-Prozent.

MANET-I, Versuchsergebnisse

RNO-D (1.4914) Chg. 53645 (NET-MANET-1)

- .

Abbildung A 26: Kerbschlagzähigkeits-Diagramm für MANET-I (ISO-V-Proben) [61]

Abbildung A 27: Kerbschlagzähigkeits-Diagramm für MANET-I (KLST-Proben) [63]

KLST

Probe	T in °C	E in J
G01	80	6,45
G02	26	6,31
G03	-10	4,75
G04	-30	3,39
G05	-50	2,27
G06	10	5,52

Tabelle A 7: Versuche an MANET-I (KLST-Proben), 1075°C (0,5h) + 750°C (2h) [112]

Geometrie-Variationen: MANET-I, 980°C, 2h + 1075°C, 0.5h + 700°C

Probe	а	W	W-a	B_n	Т	Ε
30-30-V			mm	°C	J	
GGA01					100	5,64
GGA02					0	3,28
GGA03	1	4	2	2 00	0	3,31
GGA04		4	3	3,00	-10	2,93
GGA05					45	5,25
GGA06					-40	1,16

WW-aProbe а B_n Т Ε °C 30-33-20 J mm 0,7 4 3,3 3,00 GGM01 100 6,84 GGM02 0 4,21 GGM03 -20 3,21 GGM04 -40 2,16 25 GGM05 6,16

Tabelle A 8: Dynamische Versuche, KLST-Probe

Probe	а	W	W-a	B_n	Т	Ε
30-30-R			mm		°C	J
GGB01					100	5,84
GGB02					0	1,93
GGB03	10	1	3.0	2 00	19	2,82
GGB04	1,0	4	5,0	3,00	74	4,86
GGB05					-20	1,81
GGB06					50	5,18

Tabelle A 9: Dynamische Versuche, Probe mit Anriß

Probe	а	W	W-a	B_n	Т	Ε
30-38-20			mm	°C	J	
GGK01					100	14,97
GGK02					50	14,05
GGK03	0.2	4	20	2 00	0	13,65
GGK04	0,2	4	3,0	3,00	-50	10,74
GGK05					-75	11,18
GGK06					-100	9,84

Tabelle A 10: Dynamische Versuche, Probe mit 0,2 mm-Einschnitt

Probe	а	W	W-a	B_n	Т	Ε
30-35-20			mm		°C	J
GGL01					100	8,96
GGL02	0,5	4	3,5	3,00	0	7,67
GGL03					-40	4,03

Tabelle A 11: Dynamische Versuche, Probe mit 0,2 mm-Einschnitt

Tabelle A 12: Dynamische Versuche, Probe mit 0,2 mm-Einschnitt

Probe	а	W	W-a	B_n	Т	Ε
30-30-20			mm		°C	J
GGE01					100	5,44
GGE02					0	2,66
GGE03	1,0	4	3,0	3,00	55	5,25
GGE04					30	5,11
GGE05					-20	2,94

Tabelle A 13: Dynamische Versuch, Probe mit 0,2 mm-Einschnitt

Probe	а	W	W-a	B_n	Т	E
30-27-20			mm	°C	J	
GGN01					100	4,88
GGN02					0	2,35
GGN03					25	5,00
GGN04					25	5,00
GGN05	1,3	4	2,7	3,00	10	3,27
GGN06					-15	1,79
GGN07					-30	2,74
GGN08					-50	1,53
GGN09					-20	1.4

Tabelle A 14: Dynamische Versuche, Probe mit 0,2 mm-Einschnitt

136

Probe	а	W	W-a	B_n	Т	Ε
30-25-20			mm	°C	J	
GGO01					100	4,50
GGO02					0	3,55
GGO03	15	1	25	3.00	-30	2,01
GGO04	1,5	-	2,5	3,00	-45	1,38
GGO05					20	4,28
GGO06					-20	1,58

Tabelle A 15: Dynamische Versuche, Probe mit 0,2 mm-Einschnitt

Probe	а	W	W-a	B_n	Т	Ε
30-22-20			mm		°C	J
GGP01					100	3,46
GGP02					0	1,92
GGP03					-20	1,03
GGP04	1,8	4	2,2	3,00	20	3,61
GGP05					-35	0,81
GGP06					10	2,43
GGP07					-7	2,91

Tabelle A 16: Dynamische Versuche, Probe mit 0,2 mm-Einschnitt

Probe	а	W	W-a	B_n	Т	Ε
30-20-20			mm	°C	J	
GGQ01					100	2,97
GGQ02					50	2,83
GGQ03					0	2,45
GGQ04	2,0	4	2,0	3,00	-40	0,64
GGQ05					-20	1,81
GGQ06					-27	0,95
GGQ07					30	2.49

Tabelle A 17: Dynamische Versuche, Probe mit 0,2 mm-Einschnitt

Probe	а	W	W-a	B_n	Т	Ε
30-18-20			mm		°C	J
GGR01					100	2,66
GGR02					0	1,72
GGR03					-20	0,97
GGR04	2,2	4	1,8	3,00	-10	1,21
GGR05					23	1,99
GGR06					40	2,67
GGR07					-5	1,98

Tabelle A 18: Dynamische Versuche, Probe mit 0,2 mm-Einschnitt

Probe	а	W	W-a	B_n	Т	Ε
30-15-20			mm		°C	J
GGS01	2,5	4	1,5	3,00	100	2,06
GGS02					0	1,38
GGS03					-20	0,92
GGS04					-35	1,3
GGS05					-50	0,46
GGS06					-30	1,4

Tabelle A 19: Dynamische Versuche, Probe mit 0,2 mm-Einschnitt

Probe	а	W	W-a	B_n	Т	Ε
30-12-20			mm		°C	J
GT01					100	1,53
GT02					50	1,27
GT03					0	1,39
GT04	2,8	4	1,2	3,00	-50	0,43
GT05					-25	0,83
GT06					-10	1,27
GT07					-30	1,04

Tabelle A 20: Dynamische Versuche, Probe mit 0,2 mm-Einschnitt

Probe	а	W	W-a	B_n	Т	Ε
10-30-20			mm		°C	J
GGU01					100	1,40
GGU02					0	1,41
GGU03					-70	1,09
GGU04	1,0	4	3,0	1,00	-90	0,94
GGU05					-60	1,15
GGU06					-120	0,30
GGU07					-100	0.99

Tabelle A 21: Dynamische Versuche, Probe mit 0,2 mm-Einschnitt

Probe	а	W	W-a	B_n	Т	Ε
15-30-20			mm		°C	J
GGW01					100	2,22
GGW02					0	2,22
GGW03					-40	2,32
GGW04	1,0	4	3,0	1,50	-90	0,71
GGW05					-75	0,46
GGW06					-55	1,89
GGW07					-65	1,66

Tabelle A 22: Dynamische Versuche, Probe mit 0,2 mm-Einschnitt

Probe	а	W	W-a	B_n	Т	Ε
20-30-20			mm		°C	J
GGX01					100	3,29
GGX02					0	3,52
GGX03					-50	2,36
GGX04	1,0	4	3,0	2,0	-80	0,15
GGX05					-25	2,51
GGX06					-60	1,02
GGX07					-25	2,69

Probe	а	W	W-a	B_n	Т	Ε
25-30-20			mm		°C	J
GGY01	1,0	4	3,0	2,5	100	5,03
GGY02					0	4,54
GGY03					-44	2,77
GGY04					-70	0,51
GGY05					-20	2,45
GGY06					-33	3,19
GGY07					-20	3,27

Tabelle A 23: Dynamische Versuche, Probe mit 0,2 mm-Einschnitt

Tabelle A 24: Dynamische Versuche, Probe mit 0,2 mm-Einschnitt

Bestrahlte Versuche an MANET-I, 980°C, 2h + 1075°C, 0.5h + 750°C

Unbestrahlte Referenzversuche

Probe	а	W	W-a	B_n	Т	Ε	J_{ID}	K _{ID}	K _{ID}
			mm		°C	J	N/mm	N∙mm ^{-1,5}	MPa m⁻ ^{₀,₅}
G01					80,0	6,45	425	9865	312
G02					26,0	6,31			
G03					-10,0	4,75	355	8993	284
G04					-30,0	3,39	430	9900	313
G05	1	4	3	3,00	-50,0	2,27	339	8739	276
G06					10,0	5,52	402	9571	303
G11					23,6	6,08	315	8468	268
G12					-30,0	3,66	383	9338	295
G13					-10,0	4,91	359	9054	286
Taballa A 25.	Duna	micch	o Vore	ucho m	it Bruchn	aachar	ik Augwort	UDA KIST	Droho

Tabelle A 25: Dynamische Versuche mit Bruchmechanik-Auswertung, KLST-Probe

Probe	а	В	Т	Ε	J_{ID}	F_{O}	K _{ID}	K _{ID}	K _{ID} ¹⁹	С	р	J _{ID, cP}	$K_{ID, cP}$
	mm	า	°C	J	N/mm	Ν	N⋅mm ^{-1,5}	MPa	a m ^{-0,5}	-	-	N/mm	MPa m ^{-0,5}
GA01			80,0	5,79	281	1215	7802	247	47	806	0,594	234	58
GA02			26,0	4,62	98		4562	144		620	0,626	163	25
GA03			-10,0	1,93	15		1507	48		260	0,623	69	11
GA04			-30,0	1,33	12	1657	1275	40	64	180	0,621	48	8
GA05	1	3	-50,0	0,61		1189			46	84	0,606	23	5
GA06			10,0	3,28	216		6832	216		476	0,570	148	45
GA07			23,7	4,46	110		4848	153		598	0,624	158	25
GA08			-30,0	1,72	28		2371	75		231	0,621	62	10
GA09]		-10,0	2,86	33		2528	80		383	0,632	99	13

Tabelle A 26: Dynamische Versuche, Probe mit Anriß

¹⁹ direkt bestimmt

Probe	а	W	W-a	B_n	Т	Ε	J_{ID}	K _{ID}	K _{ID}
			mm		°C	J	N/mm	N∙mm ^{-1,5}	MPa m ^{-0,5}
GE01					80,0	6,05	336	8543	270
GE02					26,0	5,46	282	7821	247
GE03					-10,0	2,24	121	5062	160
GE04					-30,0	1,33	59	3437	109
GE05	1	4	3	3,00	-50,0	0,75			
GE06					10,0	4,62	317	8290	262
GE07					23,5	5,31	242	7238	229
GE08					-30,0	1,48	85	4229	134
GE09					-10,0	2,91	232	7073	224

Tabelle A 27: Dynamische Versuche, Probe mit 0,07 mm-Einschnitt

KLST-Proben, MANET-I Tanl. = 750°C

Probe	Т	Ε	
	°C	J	
A33	50	0,33	
A35	100	0,80	
A31	150	2,03	
A32	200	3,34	
A34	250	3,65	

Tabelle A 28: Dynamische Versuche [63], 250°C / 0,8 dpa

Probe	Т	Ε
	°C	J
A41	50	1,17
A38	100	1,92
A39	150	2,89
A37	200	3,57
A40	300	3,96

Tabelle A 29: Dynamische Versuche [63], 300°C / 0,8 dpa

Probe	Т	E
	°C	J
A46	-20	0,47
A44	26	1,50
A43	100	3,09
A45	200	4,20
A47	350	4,41

Tabelle A 30: Dynamische Versuche [63], 350°C / 0,8 dpa

Probe	Т	Ε
	°C	J
A52	-30	2,01
A51	0	3,26
A49	30	4,90
A50	100	5,66
A53	300	5,69

Tabelle A 31: Dynamische Versuche [63], 400°C / 0,8 dpa

Т	Ε
°C	J
0	4,81
-30	2,59
26	5,76
80	6,07
-50	1,81
	T °C 0 -30 26 80 -50

Tabelle A 32: Dynamische Versuche [63], 450°C / 0,8 dpa

KLST-Bruchmechanik-Proben MANET-I, Tanl. = 750°C

Bestrahlungsparameter: 250°C / 0,8 dpa

Probe	а	W	W-a	B_n	Т	Ε	J_{ID}	K _{ID}	K _{ID}	K direkt
			mm		°C	J	N/mm	N∙mm ^{-1,5}	MPa	a m ^{-0,5}
Z01					171	2,26	44	2906	92	
Z02					47	0,27				9
Z03				3,00	248	3,29	103	4662	147	
Z04	1	4			0	0,09				
Z05	1	4	3		101	0,84				52
Z06					151	1,58	22	1857	59	
Z07					207	3,14	114	4864	154	
Z08					300	3,31				

Tabelle A 33: Dynamische Versuche, Probe mit Anriß

Bestrahlungsparameter: 300°C / 0,8 dpa

Probe	а	W	W-a	B_n	Т	Ε	J_{ID}	K _{ID}	K _{ID}	K direkt
			mm		°C	J	N/mm	N∙mm ^{-1,5}	MPa	a m ^{-0,5}
Z09					79	0,66	31	2458	78	46
Z10					20	0,27				9
Z11				2.00	142	1,85	29	2217	70	
Z12	1	4			247	3,49	114	4894	155	
Z13	I	4	3	3,00	-20	0,12				
Z14					201	3,35	106	4704	149	
Z15					-20	0,09				
Z16					168	3,00	97	4492	142	

Tabelle A 34: Dynamische Versuche, Probe mit Anriß

Bestrahlungsparameter: 350°C / 0,8 dpa

Probe	а	W	W-a	B_n	Т	Ε	J_{ID}	K _{ID}	K _{ID}	K direkt
			mm		°C	J	N/mm	N∙mm ^{-1,5}	MPa	a m ^{-0,5}
Z17					91	3,23	115	4944	156	53
Z18					-2	0,97	18	1856	59	
Z19				2.00	141	4,33	181	6243	197	
Z20	1	4	2		-63	0,15				
Z21	1	4	3	3,00	47	2,07	49	3128	99	
Z22					168	4,16	189	6382	202	
Z23					349	4,58	198	6545	207	
Z24					-50	0,20				

Tabelle A 35: Dynamische Versuche, Probe mit Anriß

Bestrahlungsparameter:	400°C / 0,8 dpa
------------------------	-----------------

Probe	а	W	W-a	B_n	Т	Ε	J_{ID}	K _{ID}	K _{ID}	K direkt
mm			°C	J	N/mm	N∙mm ^{-1,5}	MPa	a m ^{-0,5}		
Z25					20	3,70	149	5648	179	
Z26					-2	2,46	20	1918	61	
Z27					60	5,03	256	7446	235	
Z28	1	4	2	2.00	-30	1,41	3	832	26	
Z29		4	3	3,00	94	4,79	249	7341	232	
Z30					-65	0,41				
Z31					43	4,88	171	6061	192	
Z32					-90	0,20				

Tabelle A 36: Dynamische Versuche, Probe mit Anriß

Bestrahlungsparameter: 450°C / 0,8 dpa

Probe	а	W	W-a	B_n	Т	Ε	J_{ID}	K _{ID}	K _{ID}	K direkt
	mm			°C	J	N/mm	N∙mm ^{-1,5}	MPa	a m ^{-0,5}	
Z33					-5	2,99	92	4374	138	
Z34					-30	1,47	21	2032	64	
Z35					38	5,35	215	6824	216	
Z37	1	4	3	3,00	79	5,55	252	7382	233	
Z38					101	5,34	238	7180	227	
Z39					-69	0,45				
Z40					38	5,55	268	7623	241	

Tabelle A 37: Dynamische Versuche, Probe mit Anriß

Probe mit Einschnitt

 $a = 1 \text{ mm}, W = 4 \text{ mm}, W - a = 3 \text{ mm}, B_n = 3 \text{ mm}, Probe mit 0,07 \text{ mm-Einschnitt}, T_{anl} = 750^{\circ}\text{C}$

Probe	Т	Ε	J_{ID}	K _{ID}	K_{ID}
	°C	J	N/mm	N∙mm ^{-1,5}	MPa m ^{-0,5}
Y01	190	2,39	68	3729	118
Y02	100	0,44			
Y03	250	3,46	112	4863	154
Y04	150	1,83	35	2582	82
Y05	20	0,16			
Y06	300	3,20	112	4871	154
Y07	58	0,23			
Y08	220	3,00	88	4268	135

Tabelle A 38: Dynamische Versuche, Probe mit 0,07 mm-Einschnitt, 250°C / 0,8 dpa

Probe	Т	Ε	J_{ID}	K _{ID}	K_{ID}
	°C	J	N/mm	N∙mm ^{-1,5}	MPa m ^{-0,5}
Y09	127	1,21	28	2230	71
Y10	20	0,14			
Y11	176	3,00	99	4565	144
Y12	261	3,53	107	4757	150
Y13	75	0,56	20	1996	63
Y14	150	1,87	48	3073	97
Y15	199	3,30	114	4901	155
Y16	-22	0,09			

Tabelle A 39: Dynamische Versuche, Probe mit 0,07 mm-Einschnitt, 300°C / 0,8 dpa

Probe	Т	Ε	J_{ID}	K _{ID}	K _{ID}
	°C	J	N/mm	N∙mm ^{-1,5}	MPa m ^{-0,5}
Y17	91	2,12	92	4403	139
Y18	20	0,95			
Y19	150	3,69	122	5106	161
Y20	-10	0,45	12	1420	45
Y21	180	3,83	117	5003	158
Y22	-52	0,12			
Y23	248	4,20	158	5837	185
Y24	-53	0,10			

Tabelle A 40: Dynamische Versuche, Probe mit 0,07 mm-Einschnitt, 350°C / 0,8 dpa

Probe	Т	Ε	J_{ID}	K _{ID}	K _{ID}
	°C	J	N/mm	N∙mm ^{-1,5}	MPa m ^{-0,5}
Y25	10	2,12	112	4858	154
Y26	-10	1,47	88	4284	135
Y27	40	4,81	179	6215	197
Y28	-52	0,98			
Y29	59	5,10	254	7415	234
Y30	20	3,22	164	5940	188
Y31	111	5,13			
Y32	-78	0,15			

Tabelle A 41: Dynamische Versuche, Probe mit 0,07 mm-Einschnitt, 400°C / 0,8 dpa

Probe	Т	Ε	J_{ID}	K _{ID}	K _{ID}
	°C	J	N/mm	N∙mm ^{-1,5}	MPa m ^{-0,5}
Y33	-5	3,13	206	6658	211
Y34	20	5,16	176	6145	194
Y35	-51	0,74	19	1831	58
Y36	-30	1,44	25	2160	68
Y37	9	4,20	257	7465	236
Y38	-70	0,38			
Y39	80	5,49	185	6317	200
Y40	44	5,66	245	7284	230

Tabelle A 42: Dynamische Versuche, Probe mit 0,07 mm-Einschnitt, 450°C / 0,8 dpa

MANET-II, Versuchsergebnisse

Abbildung A 28: Kerbschlagzähigkeits-Diagramm für MANET-II (ISO-V-Proben) [62]

MANET-II, Chg. 50806, 1075°C (0,5h) + div. Anlaßwärmebehandlung (2h)

Abbildung A 29: Kerbschlagzähigkeits-Diagramm für MANET-II (KLST-Proben)

KLST

Probe	T in °C	E in J
KM01	20	5,06
KM02	-20	1,16
KM03	5	4,15
KM04	65	6,11
KM05	40	5,53

Tabelle A 43: Versuche an MANET-II (KLST-Proben), 1075°C (0,5h) + 600°C (2h)

Probe	T in °C	E in J
MM01	-25	3,82
MM02	21	6,07
MM03	-50	1,68
MM04	45	6,14
MM05	0,0	5,32

T in °C E in J Probe H01 26 7,28 H02 -20 5,14 H03 -40 4,25 H04 -60 2,22 H05 -80 0,39 H06 -100 0,21 H07 150 7,00 H08 300 6,42

Tabelle A 45: Versuche an MANET-II (KLST-Proben), 1075°C (0,5h) + 750°C (2h) [63]

Tabelle A 44: Versuche an MANET-II (KLST-Proben), 1075°C (0,5h) + 700°C (2h)

ASTM-3PB

Probe	L	W	B_n	a_0	a/W	Δa	δ_{tx}	J	F_Q	K	K	K aus J
mm			-	mm		N/mm	Ν	N•mm ^{-1,5}	MPa m ^{-0,5}			
AM02				9,386	0,521	3,500	0,036	41,5	7192	2159	68	77
AM03	98	18	9,00	9,271	0,515	7,700	0,029	71,3	8158	2399	76	64
Tabelle A	Γ abelle A 46: K-Versuche an MANET-II, $T_{anl.} = 600^{\circ}$ C, glatte Standardprobe											

Probe	L	W	B_n	a_0	a/W	Δa	δ_{tx}	J	F_Q	Κ	Κ	K aus J
			mm		-	m	m	N/mm	Ν	N∙mm ^{-1,5}	MPa	a m ^{-0,5}
AM07				8,926	0,496	-	0,040	55,9	9206	2545	80	114
AM08 9	98	18	9,00	9,236	0,513	5,650	0,072	149,8	7741	1259	27	186

Tabelle A 47: K-Versuche an MANET-II, Tanl. = 700°C, glatte Standardprobe

ISO-V-BM

Probe	T in °C	E in J
ISM01	25	9,3
ISM02	50	15,3
ISM03	80	47,7
ISM04	98	115,5
ISM05	93	69,0
ISM07	120	135,3
ISM08	140	139,8
ISM09	160	140,7

Tabelle A 48: Versuche an MANET-II (ISO-V-BM-Proben), 1075°C (0,5h) + 600°C (2h)

Probe	T in °C	E in J
IRM01	25	29,4
IRM02	50	51,0
IRM03	80	143,4
IRM04	65	80,7
IRM05	75	129,0
IRM06	98	150,0

Tabelle A 49: Versuche an MANET-II (ISO-V-BM-Proben), 1075°C (0,5h) + 700°C (2h)

Mini-3PB

Probe	L	W	B_n	a_0	a/W	Δa	δ_{tx}	J	F_Q	Κ	K	K aus J						
			mm		-	m	m	N/mm	Ν	N∙mm ^{-1,5}	MPa	a m ^{-0,5}						
EM01				3,037	0,506	2,246	0,017	24,7	1195	1848	58	76						
EM02				2,932	0,489	0,746	0,017	41,3	1246	1823	58	98						
EM03		30 6	6		2,947	0,491	0,877	0,023	45,6	1304	1923	61	103					
EM04	30			80 6	3,00	2,885	0,481	0,646	0,033	51,4	1736	1980	63	109				
EM06										2,999	0,500	1,213	0,034	62,6	1447	2193	69	120
EM07						2,944	0,491	0,271	0,015	28,4	1337	1968	62	81				
EM08					2,853	0,476	1,736	0,017	80,1	1529	2062	65	136					

Tabelle A 50: K-Versuche an MANET-II, T_{anl.} = 600°C, glatte Miniaturprobe

Probe	L	W	B_n	a_0	a/W	Δa	δ_{tx}	J	F_O	K	K	K aus J
mm			-	mm		N/mm	Ν	N∙mm ^{-1,5}	MPa	a m ^{-0,5}		
EM11				2,855	0,476	2,135	0,018	32,0	1327	2303	73	86
EM12	30	6	2,33	2,889	0,482	2,387	0,020	24,1	1127	2001	63	75
EM13]			2,961	0,494	1,778	0,029	68,7	1126	2150	68	126

Tabelle A 51: K-Versuche an MANET-II, T_{anl} = 600°C, seitengekerbte Miniaturprobe

Probe	L	W	B_n	a_0	W-a	Δa	δ_{tx}	Δa_n	a _{end}	Ε	J
			Nmm	N/mm							
EM19				2,871	3,129	0,042	0,033	0,009	2,938	417	88,9
EM20	20	6	2.00	2,944	3,056	2,038	0,070	1,968	5,007	4280	933,7
EM21	30	ю	3,00	3,076	2,924	0,213	0,065	0,148	3,289	1102	251,3
EM22				3,025	2,975	0,878	0,053	0,825	3,903	2816	631,0

Tabelle A 52: Mehrprobenversuche an MANET-II, Tanl. = 700°C, glatte Miniaturprobe

Probe	Δa_n	Δa_n^*	J	J^*			
	m	m	N/mm				
EM19	0,009	0,016	88,9	97,5			
EM20	1,968	2,068	933,7	1027,1			
EM21	0,148	0,352	251,3	287,7			
EM22	0,825	1,181	631	706,7			

Tabelle A 53: Ermittlung der lokalen J-R-Kurve an MANET-II, Tanl. = 700°C, glatte Miniaturprobe

KLST-BM

Probe	L	W	B_n	<i>a</i> ₀	a/W	Δa	δ_{tx}	J	F_Q	K	K	K aus J				
mm				-	m	m	N/mm	Ν	N∙mm ^{-1,5}	MPa	a m ^{-0,5}					
BM01				0,960	0,240	-	-	5,6	-	-	-	36				
BM02				1,069	0,267	-	-	3,9	-	-	-	30				
BM03				0,927	0,232	0,064	0,045	165,5	-	-	-	195				
BM04	27	4	3,00	1,093	0,273	1,118	0,057	78,9	1480	2107	67	135				
BM05				0,925	0,231	0,059	0,038	106,9	-	-	-	157				
BM06								1,138	0,285	0,005	0,038	59,4	-	-	-	117
BM07				1,190	0,298	1,417	0,048	139,7	1462	2215	70	180				

Tabelle A 54: *K*-Versuche an MANET-II, $T_{anl.} = 600^{\circ}$ C, glatte KLST-BM-Probe

L	W	B_n	a_0	a/W	J	F_{O}	K	K	K aus J
mm		-	N/mm	Ν	N∙mm ^{-1,5}	MPa	a m ^{-0,5}		
			1,125	0,281	83	1005	1880	59	138
27	4	2,33	1,143	0,285	92	1010	1911	60	145
			1,13	0,282	117	1024	1922	61	164
	27	<u>L</u> W 27 4	$\begin{array}{c c} L & W & B_n \\ \hline & & mm \\ 27 & 4 & 2,33 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				

Tabelle A 55: K-Versuche an MANET-II, T_{anl.} = 600°C, seitengekerbte KLST-BM-Probe

Probe	L	W	B_n	<i>a</i> ₀	a/W	J	F_O	K	K	K aus J
			mm		-	N/mm	Ν	N•mm ^{-1,5}	MPa	a m ^{-0,5}
GM04	27	4	2.22	1,051	0,262	49	1190	1946	62	107
GM05	21	4	2,33	1,08	0,270	52	1212	2020	64	109

Tabelle A 56: Dynamische *K*-Versuche an MANET-II, $T_{anl.} = 600^{\circ}$ C, seitengekerbte KLST-BM-Probe, $v_0 = 3,85$ m/s, Raumtemperatur

Probe	а	В	Т	Ε	J_{ID}	K _{ID}	K _{ID}	K_{ID}^{20}	С	р	$J_{ID, cP}$	$K_{ID, cP}$
	mm	l	°C	J	N/mm	N•mm ^{-1,5}	MPa	ι m ^{-0,5}	-	-	N/mm	MPa m ^{-0,5}
LM01			22	1,81	0,0	-	-	117	231	0,645	57	115
LM02			5	1,17	0,0	-	-	104	157	0,629	41	97
LM03	1	2	65	4,69	65,6	3891	123	128	626	0,637	159	192
LM04		3	85	5,27	224,6	7199	228	126	727	0,600	206	218
LM05			45	2,55	134,0	5560	176	137	365	0,578	111	160
LM06			100	5,06	186,9	6567	208	119	691	0,607	192	210
	E7. F	1.000	mincho	Vorouck				DM Dro	hon) 1			

Tabelle A 57: Dynamische Versuche an MANET-II (glatte KLST-BM-Proben), 1075°C (0,5h) + 600°C (2h)

Probe	L	W	B_n	a_0	W-a	Δa	δ_{tx}	Δa_n	a_{end}	Ε	J	
		mm									N/mm	
CM01				1,877	2,123	0,003	0,003	0,000	1,859	15	4,7	
CM02				1,648	2,352	0,008	0,008	0,000	1,621	65	18,4	
CM03	27	4 3,00			0,992	3,008	0,274	0,061	0,213	1,244	1407	311,8
CM04			2.00	0,888	3,112	0,660	0,073	0,587	1,477	2927	627,0	
CM05	21		4	3,00	1,061	2,939	1,697	0,057	1,640	2,735	3856	874,7
CM08					0,801	3,199	0,384	0,040	0,344	1,167	2238	466,4
HM02				0,959	3,041	0,321	0,063	0,258	1,280	1574	345,1	
HM05				1,080	2,920	0,995	0,032	0,963	2,075	2859	652,7	

Tabelle A 58: Mehrprobenversuche an MANET-II, *T*_{anl.} = 700°C, glatte KLST-BM-Probe

Probe	Δa_n	Δa_n^*	J	J^*
	m	m	N/r	nm
CM01	0,000	0,000	4,7	3,6
CM02	0,000	0,000	18,4	16,4
CM03	0,213	0,470	311,8	355,5
CM04	0,587	0,954	627,0	702,2
CM05	1,640	1,869	874,7	962,2
CM08	0,344	0,657	466,4	527,0
HM02	0,258	0,518	345,1	393,4
HM05	0,963	1,511	652,7	731,0

Tabelle A 59: Ermittlung der lokalen J-R-Kurve an MANET-II, Tanl. = 700°C, glatte KLST-BM-Probe

Probe	а	В	Т	Ε	J_{ID}	K _{ID}	K _{ID}	K _{ID}	С	р	$J_{ID, cP}$	K _{ID, cP}
	m	m	°C	J	N/mm	N∙mm ^{-1,5}	MPa	ι m ^{-0,5}	-	-	N/mm	MPa m ^{-0,5}
PM01			23	2,46	60	3725	118	150	334	0,613	91	145
PM02			-25	1,29	5	1076	34	107	172	0,632	44	101
PM03	1	2	45	6,24	232	7320	231	150	851	0,608	237	234
PM04	1	3	35	6,19	211	6985	221	110	840	0,613	229	230
PM05			0	1,81	25	2394	76	114	243	0,625	64	122
PM06			30	4,10	92	4596	145	112	550	0,626	145	183

Tabelle A 60: Dynamische Versuche an MANET-II (glatte KLST-BM-Proben), 1075°C (0,5h) + 700°C (2h)

²⁰ direkt bestimmt

EUROFER 97, Versuchsergebnisse

Abbildung A 30: Kerbschlagzähigkeits-Diagramm für EUROFER 97 (ISO-V-Proben) [67]

Abbildung A 31: Kerbschlagzähigkeits-Diagramm für EUROFER 97 (KLST-Proben)

Anhang

KLST

Probe	T in °C	E in J
UYA03	-100	0,19
UYA09	-99	0,16
UYA08	-94	1,04
UYA07	-89	0,21
UYA06	-84	7,04
UYA02	-80	9,40
UYA11	-50	9,62
UYA10	-20	9,84
UYA01	23	9,63
UYA12	100	9,40
UYA13	250	8,32
UYA14	350	8,10
UYA15	450	6,39

Tabelle A 61: Versuche an EUROFER 97 (KLST-Proben), Anlieferzustand 980°C (0,5h) + 760°C (1,5h)

Probe	T in °C	E in J
UYW10	-99	0,50
UYW09	-94	6,64
UYW08	-90	8,31
UYW07	-85	8,53
UYW02	-79	9,40
UYW12	-50	9,84
UYW11	-20	9,62
UYW01	23	9,62
UYW13	100	9,18
UYW14	250	8,32
UYW15	450	8.53

Tabelle A 62: Versuche an EUROFER 97 (KLST-Proben), 1040°C (0,5h) + 760°C (1,5h)

ASTM-3PB

Probe	L	W	B_n	<i>a</i> ₀	W-a	Δa	δ_{tx}	Δa_n	a _{end}	Ε	J				
		mm									N/mm				
FA01				9,685	8,315	7,346	0,237	7,109	17,031	ca.10 ⁵	2672,5				
FA03	02	18	0.00	9,833	8,167	1,418	0,199	1,219	11,251	50513	1374,4				
FA14	92		10	10	10	10	10	9,00	9,693	8,307	0,956	0,170	0,786	10,649	40956
FA20				10,263	7,737	0,197	0,117	0,080	10,460	12755	366,3				

Tabelle A 64: Mehrprobenversuche an EUROFER 97, glatte Standardprobe

Probe	Δa_n	Δa_n^*	J	J^*
	mm		N/n	nm
FA01	7,109	8,735	2672,5	2939,8
FA03	1,219	1,647	1374,4	1511,8
FA14	0,786	1,247	1095,6	1216,1
FA20	0,080	0,311	366,3	406,6

Tabelle A 65: Ermittlung der lokalen J-R-Kurve an EUROFER 97, glatte Standardprobe

T in °C	E in J
-84	9,72
-89	9,38
-94	7,32
-99	6,43
-104	5,71
-20	9,83
-50	9,63
-75	9,14
-109	1,58
-114	3,02
-116	1,54
22	9,58
100	9,07
250	8,25
	<i>T</i> in °C -84 -89 -94 -99 -104 -20 -50 -50 -75 -109 -114 -116 22 100 250

Tabelle A 63: Versuche an EUROFER 97 (KLST-Proben), Anlieferzustand nachbehandelt mit 980°C (0,5h) + 760°C (1,5h)

Probe	L	W	B_n	ai	W-a	Δa	Ε	J
FA05				mm			Nmm	N/mm
1. Entlastung				11,17	6,83	0	4306	106
2. Entlastung				11,29	6,71	0,12	11760	290
3. Entlastung	02	10	0.00	11,23	6,77	0,06	19900	491
4. Entlastung	32	10	9,00	11,52	6,48	0,35	27500	679
5. Entlastung				11,78	6,22	0,61	35160	868
6. Entlastung				12,01	5,99	0,84	42500	1049

Tabelle A 66: Einprobenversuch FA05, glatte Standardprobe (EUROFER 97)

Probe	L	W	B_n	a_0	W-a	Δa	δ_{tx}	Δa_n	a _{end}	Ε	J
					mi	m				Nmm	N/mm
FA07				10,186	7,814	1,948	0,196	1,752	12,134	31864	1165,1
FA09				9,947	8,053	0,205	0,100	0,105	10,152	8025	284,7
FA11	92	18	7,00	10,047	7,953	0,590	0,161	0,429	10,637	16502	592,8
FA16				10,062	7,938	0,323	0,102	0,221	10,385	11518	414,6
FA18				9,552	8,448	1,207	0,221	0,986	10,759	26843	907,8

Tabelle A 67: Mehrprobenversuche an EUROFER 97, seitengekerbte Standardprobe

Probe	Δa_n	Δa_n^*	J	J^*
	m	m	N/n	nm
FA07	1,752	2,273	1165,1	1398,1
FA09	0,105	0,225	284,7	327,4
FA11	0,429	0,658	592,8	732,1
FA16	0,221	0,388	414,6	501,7
FA18	0,986	1,308	907,8	1116,6

Tabelle A 68: Ermittlung der lokalen J-R-Kurve an EUROFER 97, seitengekerbte Standardprobe

Probe	L	W	B_n	ai	W-a	Δa	Ε	J
FA12				mm			Nmm	N/mm
1. Entlastung				9,7	8,3	0	1130	39
2. Entlastung				10,03	7,97	0,33	3821	132
3. Entlastung				10,24	7,76	0,54	9947	342
4. Entlastung	92	18	7,00	10,87	7,13	1,17	15648	539
5. Entlastung				10,04	7,96	0,34	23705	816
6. Entlastung				11,5	6,5	1,8	26278	905
7. Entlastung				10,74	7,26	1,04	33271	1145

Tabelle A 69: Einprobenversuch FA12, seitengekerbte Standardprobe (EUROFER 97)

Mini-3PB

Probe	L	W	B_n	<i>a</i> ₀	W-a	Δa	δ_{tx}	Δa_n	a _{end}	Ε	J	
					mi	m				Nmm	N/mm	
EA09				3,888	2,112	0,070	0,077	-	3,958	278	87,8	
EA18				2,832	3,168	0,896	0,138	0,758	3,728	4232	890,6	
EA19				2,842	3,158	1,057	0,101	0,956	3,899	4783	1009,7	
EA21				2,953	3,047	0,228	0,134	0,094	3,181	1921	420,3	
EA25					2,923	3,077	1,394	0,177	1,217	4,317	5252	1137,9
EA30	30	6	3.00	2,626	3,374	0,295	0,129	0,166	2,921	2481	490,2	
EA33	50	0	3,00	3,059	2,941	1,455	0,156	1,299	4,514	5504	1247,6	
EA34				3,406	2,594	0,619	0,119	0,500	4,025	2769	711,6	
EA37				3,952	2,048	0,616	0,109	0,507	4,568	1956	636,7	
EA38				3,644	2,356	0,424	0,100	0,324	4,068	1804	510,5	
EA39				3,682	2,318	0,157	0,099	0,058	3,839	971	279,3	
FA11				2,980	3,020	1,864	0,127	1,737	4,844	6751	1490,3	

Tabelle A 70: Mehrprobenversuche an EUROFER 97, glatte Miniaturprobe

Probe	Δa_n	Δa_n^*	J	J^*
	m	m	N/n	nm
EA18	0,758	0,89	890,6	979,7
EA19	0,956	1,179	1009,7	1110,7
EA21	0,094	0,287	420,3	462,3
EA25	1,217	1,316	1137,9	1251,7
EA30	0,166	0,401	490,2	539,2
EA33	1,299	1,535	1247,6	1372,4
EA34	0,500	0,714	711,6	782,8
EA37	0,507	0,629	636,7	700,4
EA38	0,324	0,487	510,5	566,7
EA39	0,058	0,14	279,3	318,4
FA11	1,737	2,053	1490,3	1654,2

Tabelle A 71: Ermittlung der lokalen J-R-Kurve an EUROFER 97, glatte Miniaturprobe

Probe	L	W	B_n	a_0	W-a	Δa	δ_{tx}	Δa_n	a_{end}	Ε	J
					m	m				Nmm	N/mm
EA04				3,688	2,312	0,423	0,102	0,321	4,111	994	368,6
EA05		6 2		3,933	2,067	0,004	0,004	0,000	3,937	34	14,1
EA06				4,317	1,683	0,000	0,000	0,000	4,317	10	5,1
EA07				4,139	1,861	0,561	0,101	0,460	4,700	980	451,4
EA31				2,977	3,023	0,301	0,131	0,170	3,278	1270	360,0
EA32				2,956	3,044	0,026	0,044	-	2,982	ca. 600	169,0
FA01	30	6	2,33	3,792	2,208	0,109	0,056	0,053	3,901	362	140,5
FA02				3,999	2,001	0,012	0,033	-	4,011	109	46,7
FA03				3,353	2,647	0,148	0,091	0,057	3,501	637	206,3
FA04				3,700	2,300	0,013	0,013	0,000	3,713	128	47,7
FA10				2,929	3,071	2,298	0,130	2,168	5,227	4077	1138,1
FA15				2,923	3,077	1,848	0,125	1,723	4,771	4026	1121,7
FA20				2,932	3,068	1,162	0,147	1,015	4,094	2833	791,6

Tabelle A 72: Mehrprobenversuche an EUROFER 97, seitengekerbte Miniaturprobe

Probe	Δa_n	Δa_n^*	J	J^*
	m	m	N/n	nm
EA04	0,321	0,393	368,6	405,5
EA07	0,460	0,509	451,4	496,5
EA31	0,170	0,217	360,0	424,8
FA01	0,053	0,091	140,5	171,4
FA03	0,057	0,090	206,3	251,7
FA10	2,168	2,195	1138,1	1251,9
FA20	1,015	0,971	791,6	870,8

Tabelle A 73: Ermittlung der lokalen J-R-Kurve an EUROFER 97, seitengekerbte Miniaturprobe

Probe	B_{n0}	<i>a</i> ₀	a_{end}	C_{0C}^{21}	C_{0I}^{22}	C_{endC}	C_{endI}
		mm			mn	n/N	
EA04		3,933	4,111	2,693E-04	2,797E-04	2,767E-04	2,781E-04
EA05		3,933	3,937	1,971E-04	2,505E-04	2,320E-04	2,401E-04
EA06		4,317	4,317	2,859E-04	3,492E-04	3,264E-04	3,578E-04
EA07		4,139	4,700	2,758E-04	3,222E-04	2,775E-04	2,978E-04
EA09		3,888	3,958	2,035E-04	2,230E-04	2,005E-04	2,218E-04
EA38	3,00	3,644	4,068	1,936E-04	2,011E-04	1,600E-04	1,624E-04
EA39		3,682	3,839	2,487E-04	2,628E-04	2,570E-04	2,633E-04
FA01		3,792	3,901	1,908E-04	2,049E-04	2,314E-04	2,462E-04
FA02		3,999	4,011	2,586E-04	2,729E-04	2,703E-04	2,770E-04
FA03		3,353	3,501	1,384E-04	1,597E-04	1,645E-04	1,693E-04
FA04		3,700	3,713	-	2,122E-04	-	2,257E-04

Tabelle A 74: Nachgiebigkeiten aus Mehrprobenversuchen an Miniaturproben (EUROFER 97)

KLST-BM

Probe	а	B_n	Т	Ε	J_{ID}	K _{ID}	K _{ID}	С	р	J _{ID, cP}	K _{ID, cP}
		mm	°C	J	N/mm	N∙mm ^{-1,5}	MPa m ^{-0,5}	-	-	N/mm	MPa m ^{-0,5}
EF01			-70	0,71	-	-	-	91	0,629	24	74
EF02			-85	0,33	-	-	-	38	0,573	12	53
EF03			-40	9,85	365	9177	290	1107	0,615	301	264
EF04			-60	0,92	-	-	-	116	0,639	29	82
EF05	4	2.00	-50	1,73	31	2667	84	191	0,643	48	105
EF06		3,00	-42	1,42	119	5249	166	181	0,558	58	116
EF07			-30	9,84	364	9171	290	1179	0,616	319	271
EF08			-45	9,74	347	8948	283	1195	0,619	321	272
EF09			-50	1,68	234	7352	232	269	0,507	99	151
EF10			-45	1,93	93	4630	146	233	0,602	66	123

Tabelle A 75: Dynamische Versuche an EUROFER 97, glatte KLST-BM-Probe

Probe	а	B_n	Т	Ε	J_{ID}	F_Q	K_{ID}	K _{ID}	С	р	$J_{ID, cP}$	K _{ID, cP}
		mm	°C	J	N/mm	Ν	N⋅mm ^{-1,5}	MPa m ^{-0,5}	-	-	N/mm	MPa m ^{-0,5}
EF11			-1	5,65	293,7		8233	260	959	0,614	261	245
EF12			-52	0,40	-		-	-	91	0,516	33	87
EF13	4	0.00	-32	0,20	-		-	-	126	0,539	43	100
EF21	I	2,33	-16	1,05	-		-	-	186	0,614	51	108
EF23			-6	5,71	318,8		8577	271	1013	0,611	278	253
EF24			-11	5,75	249,2		7584	240	1008	0,623	267	248

Tabelle A 76: Dynamische Versuche an EUROFER 97, seitengekerbte KLST-BM-Probe

²¹ über Clipaufnehmer ermittelt

²² über induktiven Wegaufnehmer ermittelt

Probenzeichnungen

Abbildung A 33: Seitenkerbe in Dreipunkt-Biegeprobe nach ASTM E 399, B = 9 mm

Abbildung A 35: Seitenkerbe an Miniatur-Dreipunkt-Biegeprobe, B = 3 mm

Abbildung A 37: Seitenkerbe an KLST-BM-Probe, B = 3 mm

Abbildung A 39: ISO-V-Bruchmechanik-Probe, B = 10 mm, a = 2 mm

Schnittpläne zur Entnahme von Proben

Abbildung A 41: Probenentnahme KLST- und KLST-BM-Probe (EUROFER 97)

Abbildung A 43: Probenentnahme Dreipunkt-Biegeprobe (MANET-II)

Abbildung A 44: Probenentnahme ISO-V-BM-Probe (MANET-II)

Prüfeinrichtungen

Abbildung A 45: Instrumentierte Finne für Kleinlast: Außenansicht

Abbildung A 47: Instrumentierte Finne für Kleinlast: Schnitt durch die DMS-Aufnahme

Abbildung A 48: Probenaufnahme für Miniatur-Dreipunkt-Biegeprobe

Abbildung A 49: Probenaufnahme für Miniatur-Dreipunkt-Biegeprobe, Fixierung

Resonanzmaschine

Abbildung A 50: Probeneinspannung für Resonanzmaschine

Abbildung A 51: Klemmstück für Resonanzmaschine

ISO-	V-BM	Mini	-3PB	KLS ⁻	Г-ВМ
а	M_o	а	M_o	а	M_o
mm	Nm	mm	Nm	mm	Nm
1,0	89,1	2,0	7,0	0,5	5,4
1,4	81,4	2,4	5,7	0,8	4,5
1,7	75,8	2,7	4,8	1,0	4,0
2,0	70,4	3,0	4,0	1,2	3,5
3,0	53,9	3,6	2,5	1,5	2,8
5,0	27,5	4,2	1,4	2,0	1,8

Tabelle A 77: Zulässige Momente für verschiedene Probentypen am Beispiel EUROFER 97 Die üblicherweise angestrebten Rißlängen sind grau hinterlegt.

Stufe		1	2	3	4	5	6	7	8
Startfrequenz		114,25	114,49	114,22	114,12	114,03	113,81	113,84	113,76
Zielfrequenz	ΗZ	114,20	114,10	114,00	113,90	113,80	113,70	113,60	113,50
Moment max.	Nime	3,20	2,80	2,60	2,40	2,20	2,10	1,90	1,70
Moment stat.	INIT	1,76	1,54	1,43	1,32	1,21	1,16	1,05	0,94
R		0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Lastwechsel		12900	27700	8000	6700	6600	4100	6700	8400

Tabelle A 78: Steuerprogramm für das Anreißen von miniaturisierten Dreipunkt-Biegeproben (EUROFER 97)

Automatisierte Anrißerzeugung mit Rißfortschritts-Sensoren

	ASTM	9 mm	Mini-	3PB	KLST	-BM ²³
Rißlänge	a in mm	F_o in N	a in mm	F_o in N	a in mm	F_o in N
im Kerbgrund	5,0	3780	2	360	0,5	280
30 % rel. Länge	5,4	3550	-	-	1,2	180
40 % rel. Länge	7,2	2610	2,4	290	1,6	130
50 % rel. Länge	9,0	1810	3,0	200	2,0	90
60 % rel. Länge	10,8	1160	3,6	130	2,4	60
70 % rel. Länge	12,6	650	4,2	70	2,8	30

Tabelle A 79: Maximalkräfte zur Rißeinbringung für EUROFER 97

²³ bei *L* = 24 mm

Rissfortschritts-Sensoren vom Typ TK-09-CPB02-005/DP der Firma Measurement Group Messtechnik GmbH werden wie in Abschnitt 5.1.1.2 (Seite 50) beschrieben zur aktiven Steuerung der Belastung beim Einbringen von Anrissen in Dreipunkt-Biegeproben verwendet.

Abbildung A 53 zeigt einen auf eine ASTM-3PB-Probe applizierten Rissfortschritts-Sensor, am oberen Bildrand ist die Rißstarterkerbe zu sehen. Die Trägerfolie, die auf die Probenoberfläche geklebt wird und auf der die Leiterbahnen und Lötpunkte aufgebracht sind, ist als helles Rechteck zu erkennen.

Die 10 geometrisch parallelen und elektrisch parallel geschalteten Leiterbahnen des RFS werden mit einer Gleichspannung beaufschlagt. Sie sind in einem Abstand von

Abbildung A 53: RFS auf Probe

jeweils etwa 0,28 mm aufgebracht, genaue Werte zu Längen und Einzelwiderständen finden sich in Tabelle A 80. Beim Durchtrennen der Leiterbahnen ergibt sich je nachdem, ob zuerst die langen oder die kurzen Leiterbahnen durchtrennt werden, eine unterschiedliche charakteristische Signalreihe.

Um als Spannungsabfall ein Signal brauchbarer Größe ohne zwischengeschalteten Meßverstärker abgreifen zu können, ist, wie in Abbildung A 54 zu sehen, dem RFS ein 50 Ω -Widerstand parallelge-schaltet sowie ein 1 k Ω -Widerstand in Reihe vorgeschaltet. Der parallele Widerstand R_p entlastet den RFS elektrisch, während der in Reihe geschaltete Widerstand R_r das am RFS anliegende Spannungsgefälle stabilisiert.

Leiterbahn Nr.	Länge in mm	R in Ω	G in S
1	8,60	62,0	0,0161
2	8,36	60,2	0,0166
3	8,11	58,3	0,0171
4	7,87	56,5	0,0177
5	7,62	54,7	0,0183
6	7,38	52,9	0,0189
7	7,13	51,1	0,0196
8	6,89	49,3	0,0203
9	6,64	47,5	0,0211
10	6.40	46.0	0.0217

Tabelle A 80: Länge, Widerstand und Leitfähigkeit der Leiterbahnen, G: elektrische Leitfähigkeit in S (Siemens)

Abbildung A 54: Elektrischer Schaltplan des Rißfortschritts-Sensors

Mit
$$U_{\text{max}} = U_{Rr} + U_{RFS}$$
; $U_{RFS} = U_{Rp}$; $\frac{U_{RFS}}{U_{Rr}} = \frac{R_{RFS+Rp}}{R_r}$; $R_{RFS} = \frac{1}{\sum_i G_i}$ folgt:

$$U_{RFS} = U_{max} \cdot \frac{1}{R_r \cdot \sum_i G_i + \frac{R_r}{R_p} + 1}$$
 (80)

G_i Leitfähigkeit der intakten Leiterbahn i

R_{RFS} Widerstand des RFS

 R_{RFS+Rp} Parallelwiderstand von RFS und R_p

U_{RFS} Spannungsabfall am RFS

- U_{Rp} Spannungsabfall an R_p
- U_{Rr} Spannungsabfall an R_r
- U_{max} Versorgungsspannung

Korrelation zwischen Spannungsabfall, Rißlänge und zulässiger Belastung zur Rißeinbringung

Das Spannungssignal am RFS wird über einen Meß- und Steuerrechner in einen Sollwert der servohydraulischen Prüfmaschine umgewandelt. Da der fortschreitende Riß eine Abfolge diskreter, aber nicht genau reproduzierbarer Signale bedingt, wird ein idealer Rißfortschritts-Kraft-Verlauf vorgegeben. Dieser ist das Änderungskriterium für den Sollwert und wird durch ein Polynom vierten Grades approximiert. Das Polynom wird so angepaßt, daß zum Erreichen des Rißstarts (Rißlänge kleiner 6,5 mm) die Kraft

U_{max} in V	U_{RFS} in V	F_o in N
15,0	0,072	3532
13,0	0,063	4200
11,6	0,056	4647
11,0	0,053	4687

Tabelle A 81: Spannungserniedrigung und Krafterhöhung zum Rißstart

überhöht werden kann. Dazu kann das RFS-Signal durch Verringern der Versorgungsspannung künstlich erniedrigt werden (rechter Ast der Kurve und Tabelle A 81).

Beispielhaft für die ASTM-3PB-Probe aus EUROFER 97 mit 9x18 mm Querschnitt ergibt sich für eine gewünschte sichtbare Rißlänge von 9 mm folgendes Polynom:

$$F_o = -0.3236 \cdot U_{RFS}^{-4} + 14.189 \cdot U_{RFS}^{-3} - 206.06 \cdot U_{RFS}^{-2} + 1294.5 \cdot U_{RFS}^{-1} - 670.54$$
 (81)

mit F_o in N und U_{RFS} in V

Abbildung A 55: Erniedrigung der Kraft F_o beim Einbringen des Anrisses in Abhängigkeit von U_{RFS}

Signalverarbeitung

Es existieren für die Kraftregelung ein innerer (Elektronik der Prüfmaschine) und ein äußerer Regelkreis (Rechner), wobei die Stabilität des inneren von der des äußeren abhängig ist. Im inneren Regelkreis wird das Signal der instrumentierten Finne über einen schnellen Gleichstromverstärker (Typ Rohrer DMS37D-S704) extern umgeformt und über den Meßbuchsenanschluß ME 314 (M3) als Größe X an den Analog-Digital-Wandler der S56-Elektronik übergegeben. Über die (1)-Buchse des CE 362-Einschubes wird ein dynamischer analoger Sollwert für diese Regelgröße vorgegeben. Dieser dynamische Sollwert kann an der Bedieneinheit stufenlos zwischen 0 und 120% variiert werden, ein statischer Sollwert beliebiger Größe kann ihm überlagert werden.

Der äußere Regelkreis verwendet einen mit einer Datenerfassungskarte und entsprechendem Programm ausgerüsteten PC (DAP 4000a/112 mit *DasyLab*® V5.61.10). Die Erfassung des Spannungsabfalls am RFS erfolgt mit 1 kHz, der daraus generierte Sollwert wird ebenfalls mit ca. 1 kHz analog ausgegeben. Trotz der relativ hohen Maschinenfrequenz von 30 Hz macht sich diese Ausgaberate, die aufgrund der niedrigen Stützstellenzahl zu leicht treppenförmigen Signalen führt, im Regelkreis der Maschine nicht negativ bemerkbar. Dafür wird eine stabile Datenübergabe von der Programmebene des Rechners zum Digital-Analog-Wandler gewährleistet.

Das RFS-Signal wird in der Programmebene dem oben aufgeführten Polynom als Argument vorgegeben, wodurch der maximal zulässige Kraftwert zur Anrißerzeugung als abhängige Variable ausgegeben wird.

Verformungsmessung über Rißöffnungs-Aufnehmer

Korrektur beim Einprobenversuch

Für die vollständige Durchführung von Einprobenversuchen ist das Verhältnis von Lastangriffspunktverschiebung zu Clipaufweitung nicht konstant. Eine entsprechende Korrektur muß durchgeführt werden. Es bedeuten nachfolgend:

- *F* Kraft am Lastangriffspunkt
- U Spannung am Clip-Aufnehmer
- C_U Nachgiebigkeit aus Clip ermittelt
- s Kolbenweg
- C_s Nachgiebigkeit aus Kolbenweg
- A, B_i Koeffizienten des Polynoms

Die gesuchte Nachgiebigkeit C_s als Ausdruck der Änderung des Lastangriffspunktes mit der Änderung der Last sowie die Nachgiebigkeit C_U als Ausdruck der Rißaufweitung mit der Änderung der Last ergeben sich zu:

$$C_{s}(s) = \frac{s_{2} - s_{1}}{F_{2} - F_{1}}$$
 (82 a) und $C_{U}(U) = \frac{U_{2} - U_{1}}{F_{2} - F_{1}}$ (82 b)

Der Zusammenhang zwischen Rißaufweitung und Verschiebung des Lastangriffspunktes ist wie folgt formuliert und kann differenziert werden:

$$s(U) = A + B_1 \cdot U + B_2 \cdot U^2 + B_3 \cdot U^3 \implies \frac{ds}{dU} = B_1 + 2B_2 \cdot U + 3B_3 \cdot U^2$$
 (83)

Für zwei nicht weit entfernte Punkte ist diese Funktion linearisierbar:

$$\frac{ds}{dU} = \frac{s_2 - s_1}{U_2 - U_1} \quad \Leftrightarrow \quad s_2 - s_1 = [U_2 - U_1] \cdot \frac{ds}{dU} \quad (84)$$

Nach Einsetzen in die Formulierung von Cs folgt

$$C_{s}(s) = C_{U}(U) \cdot \frac{ds}{dU} = C_{U}(U) \cdot \left[B_{1} + 2B_{2} \cdot U + 3B_{3} \cdot U^{2}\right] \quad (85)$$

Das Verhältnis zwischen den Nachgiebigkeiten einer Mini-3PB-Probe $n_c = C_s/C_U$ ist in Abbildung 64 (Seite 59 im Haupttext) für einen Versuch mit Zwischenentlastungen dokumentiert.

Abbildung A 56: Signale von Kolbenweg- (oben) und Clip-Aufnehmer

Temperaturkontrolle und -korrektur

Zur Abschätzung des Wärmeübergangs gemäß Abschnitt 5.1.3.5 (Seite 60) dient eine in der Bruchzone mit einem Pt100-Thermoelement versehene Kerbschlagprobe. Es werden zwei Meßreihen für weite Temperaturbereiche angelegt. Die erste betrachtet die zeitliche Temperaturänderung, bedingt durch allseitige Wärmeabgabe an die Umgebung durch Konvektion und Strahlung. Das dünne Blech des ebenso temperierten Transportschiebers wird dabei als thermodynamische Einheit mit der Probe betrachtet.

Abbildung A 57: Temperaturabhängigkeit des Wärmeübergangs

Eine zweite Meßreihe zum Temperatur-Zeit-Verlauf berücksichtigt den Kontakt der Probe auf dem Widerlager. Dazu wird sie mit der Auflageseite vollflächig mit einer hinreichend großen Metallplatte von Raumtemperatur in Kontakt gebracht. Da die Probe im realen Test bei 22 mm Widerlagerabstand eine Auflagefläche von 5/27 der Seitenfläche aufweist, muß der Wärmeleitungsanteil bei Flächenkontakt entsprechend reduziert werden. Im folgenden sind:

T₀ gemessene Austrittstemperatur aus der Temperiereinheit in °C

*T*₁ gemessene Temperatur bei Ankunft auf dem Widerlager in °C

- T₀₁ mittlere Temperatur zwischen Austritt und Ankunft auf dem Widerlager in °C
- ΔT_{01} Differenz von T_{01} zur Raumtemperatur in K
- T₂ gemessene Temperatur beim Schlag in °C
- T₁₂ mittlere Temperatur zwischen Ankunft auf dem Widerlager und Schlag in °C
- ΔT_{12} Differenz von T_{12} zur Raumtemperatur in K
- T_A vorgegebene Temperatur in der Temperiereinheit (Regelgröße) in °C
- T_K Temperatur im Kerbgrund in °C
- t Zeit in s
- Δt_1 Zeit zwischen Austritt und Aufliegen auf dem Widerlager in s
- Δt_2 Zeit zwischen Aufliegen auf dem Widerlager und Schlag in s

Der Zusammenhang zwischen T_0 , T_1 und Δt_1 wird in der ersten Meßreihe bestimmt, der zwischen T_1 , T_2 und Δt_2 in der zweiten. Die Abkühlung durch Konvektion, gemessen im ersten Zeitraum, liefert den folgenden Zeitgradienten, der von der Differenz zur Raumtemperatur abhängt:

$$\frac{dT_{K}(\Delta T_{01})}{dt} = \frac{T_{1} - T_{0}}{\Delta t_{1}} \quad (86 \text{ a})$$

Die Gesamtabkühlung durch Konvektion und Wärmeleitung, gemessen im zweiten Zeitraum, führt zu einem weiteren Zeitgradienten, ebenfalls abhängig von der Differenz zur Raumtemperatur:

$$\frac{dT_{ges}(\Delta T_{12})}{dt} = \frac{T_2 - T_1}{\Delta t_2}$$
 (86 b)

Die Temperaturabhängigkeit beider Gradienten läßt sich in Abbildung A 57 darstellen und jeweils durch ein Polynom zweiter Ordnung annähern.

Es ergeben sich die Gleichungen mit Zahlenwerten zu:

$$\frac{dT_{K}(\Delta T_{01})}{dt} = 1,8610 \cdot 10^{-1} - 3,0836 \cdot 10^{-2} \cdot \Delta T_{01} - sign(T_{01}) \cdot 6,3495 \cdot 10^{-5} \cdot (\Delta T_{01})^{2} \quad (87 \text{ a})$$

$$\frac{dT_{ges}(\Delta T_{12})}{dt} = 8,2040 \cdot 10^{-2} - 1,0253 \cdot 10^{-2} \cdot \Delta T_{12} - sign(T_{12}) \cdot 1,6764 \cdot 10^{-6} \cdot (\Delta T_{12})^{2} \quad (87 \text{ b})$$

Hierbei erlaubt die Signumfunktion vor dem quadratischen Term eine Verwendung der Gleichung auch für negative Temperaturdifferenzen. Separation des Kontaktwärmeleitungsanteils des Gradienten dT_{ii}/dt liefert für beliebige *T*:

$$\frac{dT_{ii}(T)}{dt} = \frac{dT_{ges}(T)}{dt} - \frac{dT_K(T)}{dt} \rightarrow T_K(t) = T_0 + \frac{dT_K(\Delta T_{01})}{dt} \cdot t + \frac{5}{27} \left(\frac{dT_{ii}(\Delta T_{12})}{dt}\right) (t - \Delta t_1) \quad (88)$$

Für endliche Verweildauern können die Gradienten dT_k/dt und dT_{ii}/dt als jeweils gleich groß für die drei Temperaturdifferenzen $\Delta T_{01}, \Delta T_{02}$ und (T_0 -RT) angenommen werden, woraus folgt:

$$T_{K}(t) = T_{0} + \frac{dT_{K}(T_{0} - RT)}{dt} \cdot t + \frac{5}{27} \left(\frac{dT_{ges}(T_{0} - RT)}{dt} - \frac{dT_{K}(T_{0} - RT)}{dt} \right) (t - \Delta t_{1}) \quad (89 \text{ a})$$

oder zur Vorgabe einer Ofentemperatur T_A bei gewünschter Temperatur T_K im Kerbgrund

$$T_{A}(t) = T_{K} + \frac{dT_{K}(T_{0} - RT)}{dt} \cdot t - \frac{5}{27} \left(\frac{dT_{ges}(T_{0} - RT)}{dt} - \frac{dT_{K}(T_{0} - RT)}{dt} \right) (t - \Delta t_{1}).$$
 (89 b)

Diese Zusammenhänge werden in ein *MS-Excel*®-Formblatt eingebunden. Es genügen die Eingabe der in der Regelung eingestellten Temperatur und eine Anpassung der Versuchszeiten Δt_1 und Δt_2 , um eine hinreichend genaue Aussage über die Temperatur der Probe im Kerbgrund während des Versuchs zu treffen, oder um die notwendige Temperatur in der Temperierkammer für eine bestimmte Prüftemperatur zu ermitteln (so dargestellt in Abbildung A 58).

Strenggenommen nicht direkt übertragbar ist diese Korrektur für Proben schmalerer Breite, wie sie in Abschnitt 5.2.1 geprüft werden – da ihr Volumen im Verhältnis zur Oberfläche geringer ist, gleichen sie sich schneller an die Umgebungstemperatur an. Hier bedürfte es für exakte Aussagen weiterer Meßreihen oder Berechnungen zur Abschätzung.

Abbildung A 58: Eingabe der Temperaturkorrektur für Kerbschlaganlagen

Erweiterung der Kerbschlagbiegeanlage

Ausklinkwinkel	Energie	vo
160° (Norm)	25,00 J	3,85 m/s
120°	19,33 J	3,39 m/s
80°	10,65 J	2,51 m/s
40° (Minimum)	3,01 J	1,34 m/s

Tabelle A 82: Winkelverstellung der Kerbschlaganlage

Anforderungen:

Die technischen Anforderungen gem. ASTM E813 und E399 an J_{IC}- und K_{IC}-geeignete Prüfmaschinen für metallische Werkstoffe sind:

- Wegmessung: im Betrieb Genauigkeit 1% der geforderten Meßlänge, zur Kalibrierung Abweichung von der Linearisierung max. 1% (J_{IC}).
- Kraftmessung: im Betrieb Genauigkeit 1% der Maximalkraft, zur Kalibrierung Abweichung von der Linearisierung max. 1% (J_{IC} ohne Zwischenentlastungen) bzw. 0,2% (J_{IC} mit Zwischenentlastungen).
- Geschwindigkeit: die notwendige und zulässige Geschwindigkeit bestimmen sich aus der Anstiegsrate des Spannungsintensitätsfaktors und sind werkstoffabhängig.

Ermittlung der notwendigen und zulässigen Verfahrgeschwindigkeit

Gemäß ASTM [8] sind die Anforderungen an die Belastungsgeschwindigkeit für die J_{IC}-Ermittlung:

 $\dot{K} = 0.3$ bis 1.5 MNm $^{-\frac{3}{2}}s^{-1}$, mit $\dot{K} = \frac{dK}{dt}$ und $K' = \frac{dK}{ds}$ als zeitlicher und räumlicher Änderung von K folgt: $v = \frac{d}{d}$

ls_	ds	dK	_ 1 .	$\dot{k} = \dot{K}$	(90)
lt -	dK	dt	$\overline{K'}$	$K = \frac{K'}{K'}$	()

Für die K_{IC} -Ermittlung wird nach ASTM angenommen: $\dot{K} = 0,55$ bis 2,75 MNm^{$-\frac{3}{2}$}s⁻¹ [2]

Versu	chsart	K _{IC}	J_{IC}		
Material		MANET-II	EUROFER 97	EUROFER 97	
Größe	Einheit		kleiner Anriß	tiefer Anriß	
Δs	mm	0,139	0,073	0,098	
dK/ds	Nmm ^{-5/2}	9403	16726	13337	
$dK/dt_{\rm min}$	<u>1</u>	17,39	9,49	9,49	
$dK/dt_{\rm max}$	MPa · mm² · s⁻¹	86,96	47,43	47,43	
v _{min}	nm_ o ⁻¹	1,85 E-03	5,67 E-04	7,11 E-04	
v _{max}	11111-5	9,25 E-03	2,84 E-03	3,56 E-03	

Tabelle A 83: notwendige und zulässige Verfahrgeschwindigkeiten

Tabelle A 83 zeigt die aus experimentell ermittelten Daten berechneten Werte für zulässige Belastungsgeschwindigkeiten bei Rißzähigkeitsuntersuchungen, ermittelt für einen bei Raumtemperatur zähen martensitischen Stahl (EUROFER 97), wie er typischerweise bei der J_{IC}-Ermittlung geprüft wird, und für einen bei Raumtemperatur spröden martensitischen Stahl (MANET-II, KIC-Ermittlung).

Der zur Realisierung ausgewählte Servoantrieb erlaubt eine minimale kontrollierte Verfahrgeschwindigkeit von 10⁻⁴ mm/s, was den geforderten kleinsten Wert um ca. 80% unterschreitet; höhere Geschwindigkeiten bis maximal 2 mm/s sind problemlos möglich. Meßwerterfassung und Weiterverarbeitung erfolgen über die Datenerfassungs-Software DasyLab, während die eigentliche Anlagensteuerung weiterhin von der ursprünglichen SPS-Steuereinheit (Fa. Jetter AG, D-71642 Ludwigsburg) vorgenommen wird. Dies gestattet bei einem sicheren Anlagenbetrieb größtmögliche Freiheit bei der Erfassung und Weiterverarbeitung von Versuchsdaten, unter anderem das nachträgliche Hinzufügen weiterer Meßgrößen oder die Ansteuerung der SPS während des Versuchs über den Digitalausgang von DasyLab.

Abbildung A 59:Spindelantrieb und Vorschubeinheit des Linearvorschubs

Rißvermessung

Abbildung A 60: Formular zur Auswertung der Rißfronten
Einprobenversuch

Abbildung A 61: Weg-Zeit-Diagramm zum Einprobenversuch

Ergebnisblätter für K- und J-Auswertung

	A	В	С	D	E	F	G	н
1		AM03	MANET-II	1075 + 600	ASTM-3P	в		
2								
3	Energieaufnahme	mJ	2825			F	Ν	8158
4						L	mn	72,0
5	Polynom Wegaufnehm	er	Verformungsweg	Belastung		d	mn	9,0
6	A	-	3,8966	0,0000		В	mn	18,0
7	B1		0,4787	0,0000		B-I	mn	8,729
8	B2		0,0041	0,0000		I/B		0,5151
9	B3	-	0,0072	0,0000		σs		869
10								
11	Nachgiebigkeiten		aus Clip	Konstantwert				
12	KMD	N/mm						
13		mm/N						
14	Finne	N/mm						
15		mm/N						
16								
17								
18	Rißlänge	mm	9,271					
19	Fq	N	8158					
20	Fmax	N	8158					
21	Fmax/FQ	N	1,0000					
22								
23	к	N*mm^-1,5	2388	2399				
24	K ohne Korrektur	N*mm^-1,5	1342					
25	Korrekturterm	0	1,7874					
26								
27	KMD Ausgleich		aus Clip	Konstantwert	Nullst.			
28	original	N/mm	-53388	208227	3,9003			
29	weniger 5%	N/mm	-50719	197816	3,9003			
30								
31	Größenkriterium	mm	18,8812					
32								
33	K	Mpa*m^0,5	75,85					
34								

Abbildung	A 62:	Ergebnisblat	t für K	-Auswertung

	A	В	С	D	E	
1	Probe	EA21	EUROFER 97	Anlieferzustan	MINI-BM	
2						
3	Energieaufnahme	mJ	1921			
4						
5	Polynom Wegaufnehm	ier Clip	Verformungsweg	Belastung	Entlastung	
6	A	-	-7,4360	-7,4133	2211,2708	
7	B1	-	0,7231	1,1511	2747,6629	
8	B2	-	0,0375	1,8001	1133,7253	
9	B3	-	0,0041	-0,4841	155,9694	
10						
11	Polynom Wegaufnehm	er Laser	Verformungsweg	Belastung	Entlastung	
12	A	-	-8,2945	-9,5181	21,1817	
13	B1	-	-0,9733	-5,6174	-120,2438	
14	B2	-	-0,0026	-5,8369	160,7450	
15	B3	-	-0,0037	-2,4316	-72,1523	
16						
17	Nachgiebigkeiten		aus Clip	Kolbenweg	Laser	
18	Belastung	N/mm	-7914	-7810	-7911	
19		mm / N	-1,2636E-04	-1,2805E-04	-1,2640E-04	
20	Entlastung	N/mm	-10820	-10747	-10842	
21		mm / N	-9,2421E-05	-9,3049E-05	-9,2234E-05	

Abbildung A 63: Ergebnisblatt für J-Auswertung