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ZUSAMMENFASSUNG 

 

Hochwasser sind komplexe dynamische Prozesse, die durch räumliche und zeitliche 
Variation geprägt sind. Das Verständnis dieser Prozesse und die Fähigkeit, diese in Form 
von numerischen Modellen nachzubilden sind entscheidend für die Planung und das 
operationelle Hochwassermanagement. Hydrodynamische und hydrologische numerische 
Modelle sind bewährte Methoden der Hochwassermodellierung. In den letzten Jahren 
wurden außerdem Verfahren wie Künstliche Neuronale Netze (KNN), Fuzzy Systeme und 
genetische Algorithmen zu Werkzeugen weiterentwickelt, die sich für die 
Hochwassermodellierung eignen. Jedes dieser Modelle basiert auf einer individuellen 
Philosophie, die sich hauptsächlich in der Modellstruktur, Datenanforderung und 
Fähigkeiten unterscheiden. Außerdem wohnen den Modellen unterschiedliche 
Unsicherheiten inne, die aus den Daten und Modellrestriktionen entstehen. Die 
Unterschiede in den Modellphilosophien und den Unsicherheiten legen nahe, einen sich 
ergänzenden Modellierungsansatz zu schaffen anstatt die Modelle konkurrierend zu 
betreiben. 

Diese Arbeit wurde angeregt von den Möglichkeiten der verschiedenen ergänzenden 
Herangehensweisen, die diese Modelle zusammen anbieten. Ziel dieser Arbeit ist es, die 
verschiedenen Methoden zu identifizieren, zu entwickeln und umzusetzen unter 
Ausnutzung ihrer individuellen Stärken und unter Berücksichtigung der innewohnenden 
Unsicherheiten. Motiviert durch die Ergebnisse wurden verschiedene Untersuchungen für 
den Rhein und den Neckar durchgeführt. 

Die Arbeit liefert eine detaillierte Abschätzung der Fähigkeiten von hydrodynamisch-
numerischen (HN) und hydrologischen Muskingum-Cunge (MC) Modellen sowie KNN- 
und Neuro-Fuzzy-Modellen. Die Anwendung der HN-Modelle zeigt die Vielseitigkeit dieser 
Werkzeuge im Zusammenhang mit der Hochwasser- und Überflutungsflächenvorhersage, 
insbesondere wenn sie in Kombination mit einem geographischen Informationssystem 
genutzt werden. Die Abschätzung zeigt außerdem, wie effektiv KNN-, Neuro-Fuzzy- und 
hydrologische MC-Modelle für nichtlineares Flood-Routing eingesetzt werden können. 
Diese Verfahren sind besonders effizient, wenn nur die Fließvariablen an den Pegelstellen 
von Interesse sind. 

Jedes dieser Modelle ist jedoch nur mit einer Anzahl von Einschränkungen nutzbar. Es ist 
bekannt, dass KNN-, Neuro-Fuzzy- und MC-Modelle nur so lange zur zuverlässigen 
Vorhersage geeignet sind, wie die Eingabedaten innerhalb des Kalibrierungsbereiches 
bleiben. Zur Beurteilung der Performance von KNN- und Neuro-Fuzzy-Systemen jenseits 
des Kalibrierungsbereichs wird eine Anzahl von Methoden untersucht. Die Untersuchung 
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zeigt Möglichkeiten auf, die Vorhersagefähigkeiten dieser Modelle etwas über den 
Kalibrierungsbereich hinaus zu erweitern. 

Weitere Untersuchungen berücksichtigen die Fähigkeit dieser Modelle, Extremereignisse 
vorherzusagen. Die Ergebnisse des KNN-, des Neuro-Fuzzy- und des MC-Modells 
wurden mit denen des HN-Modells verglichen. Der Vergleich zeigt beträchtliche 
Differenzen sowohl in der Größenordnung als auch in der Dauer der Spitzenwerte. Daher 
betonen die Ergebnisse die Einschränkungen eines einzig auf einem KNN-, Neuro-Fuzzy- 
oder dem hydrologischen MC-Verfahren basierenden Modells für Vorhersagen jenseits 
des Kalibrierungsbereichs. In dieser Arbeit wird daher ein Anwendungsbereich für diese 
Modelle festgelegt. 

Die Stärken und Einschränkungen der Modelle sind Grundlage der verschiedenen 
Kopplungsansätze, die in dieser Arbeit beschrieben werden, bei der sich die Qualitäten 
der einzelnen Modelle ergänzen. Der erste Ansatz bezieht sich auf die Vorhersage der 
Wasserstandsganglinien des Rheins. Es wird argumentiert, dass auf Grund der 
vorliegenden Einschränkungen jedes dieser Modelle die Modellierung mit einem einzigen 
für eine Hochwasservorhersage nicht ausreichend ist. Beispielsweise können 
hydrologische, KNN- und Neuro-Fuzzy-Modelle innerhalb des Kalibrierungsbereichs 
verwendet werden, wo diese leicht anzuwenden sind. Für eine Vorhersage außerhalb des 
Kalibrierungsbereichs ist das HN-Modell die beste Wahl. Die Nutzung von mehr als einem 
Modell erhöht außerdem das Vertrauen in die Vorhersage, da die Ergebnisse so 
gegenseitig validiert und verschiedene Szenarien untersucht werden können. 

Die zweite Anwendung bezieht sich auf eine Reihe sich ergänzender Ansätze für die 
Vorhersage von Hochwasserganglinien und Überflutungsgebieten im Flussgebiet des 
Neckars. Das HN-Modell kann Ungenauigkeiten aufgrund von Unsicherheiten in den 
Eingangsdaten (Zuflussganglinien) und dem Fehlen kleinerer seitlicher Zuflüsse 
aufweisen, insbesondere für Hochwasservorhersagen. Daher wurde in einem 
kombinierten Ansatz das KNN als Flood Routing Modell und das HN-Modell als 
Überschwemmungs-Modell genutzt. Das KNN-Modell wird also für die Vorhersage der 
Durchflussganglinien an den Pegelstellen für ein Hochwasservorhersagesystem genutzt. 
Die vorhergesagten Spitzenabflüsse können als Eingangswerte für das HN-Modell 
genutzt werden, welches seinerseits, in Verbindung mit dem digitalen Geländemodell, die 
Überflutungsbereiche an kritischen Stellen des Flussabschnittes vorhersagen kann. 

Diese Arbeit beschäftigt sich außerdem ausführlich mit Unsicherheiten in den 
Eingabedaten, welche aus Wasserstands-Abflussbeziehungen herrühren. Einige 
datenorientierte Ansätze werden für das Management, die Analyse und die Fortpflanzung 
der Unsicherheiten herangezogen. Die Methode des Unsicherheits-Managements 
umfasst die Beziehung zwischen Wasserstand und Abfluss als Ergebnis der nicht-linearen 
KNN-Abbildungsmethode als Alternative zu einer klassischen Wasserstands-Abfluss-
Beziehung. Dies wird anhand der stark gestreuten, nicht linearen Wasserstands-/ 
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Abflusswerte des Neckars und der geschleiften Wasserstands-Abfluss-Beziehung des 
Rheins verdeutlicht. Beide Anwendungen zeigen, dass die nicht-lineare, KNN-basierte 
Abbildungstechnik eine überlegene Alternative zu einer Schlüsselkurve ist. Das Verfahren 
führt außerdem zu einem seriell ergänzenden Modellierungsansatz. Zum Beispiel kann 
die nicht-lineare KNN-Abbildungsmethode als Pre- und Post-Prozessor für die 
Randbedingungen eines Routing-Modells eingesetzt werden. 

In dieser Forschungsarbeit werden auch auf dem Fuzzy-Erweiterungsprinzip basierte 
Methoden für die Analyse und Fortpflanzung von Unsicherheiten als Folge der 
Wasserstands-Abflussbeziehung betrachtet. Die Fuzzy-Regressions-Analyse wird 
genutzt, um die oberen und unteren Unsicherheitsgrenzen zu definieren. Diese Analyse 
definiert Abflüsse als Fuzzy-Zahl zu jedem beliebigen Wasserstand. Der Fuzzy-Alpha-Cut 
einer Abfluss-Fuzzy-Zahl wird zusammen mit einem HN-Modell genutzt, um die 
Fortpflanzung von Unsicherheiten in Flussschläuchen und Überflutungsflächen zu 
bestimmen. Die Arbeit stellt einen Ansatz vor, bei dem sich Fuzzy-Erweiterungsprinzip-
basierte Methoden und HN-Modelle seriell ergänzen. Die Ergebnisse zeigen, dass 
Unsicherheiten im Durchfluss zu entscheidenden Unsicherheiten bezüglich der 
Wasserstände und der Überflutungsflächen führen können.  

Diese Arbeit zeigt die sich ergänzenden Modellierungsansätze für die 
Hochwasservorhersage sowie eine Unsicherheitsanalyse. Die Anwendung dieser sich 
ergänzenden Modellierungsansätze wird zu einer verlässlicheren Hochwasservorhersage 
führen und bessere Entscheidungen für das Hochwasser-Management ermöglichen. 
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SUMMARY  

 

River floods are complex dynamic processes characterised by spatial and temporal 
variations. The understanding of these processes and the capabilities to encapsulate 
them in terms of numerical models are of crucial importance for planning and operational 
management of river floods. The hydrodynamic and hydrologic numerical models provide 
such capabilities and represent conventional approaches to river flood modelling. In the 
recent years, data driven models such as artificial neural networks (ANNs), fuzzy systems 
and genetic algorithm have also emerged as viable tools for river flood modelling. Each of 
these models is based on entirely different philosophy, with major differences in model 
structure, data requirement and capabilities. There are also inherent uncertainties in the 
application of these models that arise from data and model limitations. The differences in 
model philosophies and the inherent uncertainties raise the possibility of a complementary 
modelling approach instead of using them in competitive ways. 

This thesis is motivated by the possibilities of different complementary approaches that 
these models offer together. The main objective of this research is to identify, develop and 
implement complementary methods, with a focus on combining their individual strengths 
and managing the related uncertainties. Driven by these objectives, several studies are 
undertaken using the cases of the Rhine and the Neckar Rivers.  

The research makes a detailed assessment of the capabilities of a hydrodynamic 
numerical (HN) model, a Muskingum-Cunge (MC) hydrological model and an ANN and a 
neuro-fuzzy system based data driven models. The application of the HN models exhibit 
versatility of these tools in the context of river flood forecasting and prediction of 
inundation extent, especially when used in combination with geographic information 
system. The assessment also shows the effectiveness of the ANN, neuro-fuzzy and MC 
hydrological models for nonlinear flood routing. These approaches are particularly efficient 
when only the flow variables at the gauging stations are of interest.  

However, each of these models is also affected by a number of underlying limitations. It is 
well known that the data driven and MC models are only predictive as long as the inputs 
stay within the calibration range. Uncertainties may arise when they are used beyond the 
range of training datasets. A number of methodologies are explored to assess the 
performance of the ANN and neuro-fuzzy models beyond the training data range. In 
particular, the effect of data normalisation range, different activation functions for the 
ANNs and membership functions for the neuro-fuzzy systems are considered. The 
assessment shows the possibilities of extending the prediction capabilities of these 
models to a certain range beyond the training datasets.  
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Further assessment considers the ability of these models to forecast extreme events. For 
this purpose, the results of the ANN, neuro-fuzzy and MC models are compared with the 
HN model results. The comparisons show considerable differences in magnitudes and 
durations of peaks. The results hence underline only a limited ability of the ANN, neuro-
fuzzy and MC hydrological models to forecast beyond the range of training datasets. 
Therefore, the range of applicability of these models are defined. 

The strengths and limitations of these models are in fact the basis for several 
complementary modelling approaches considered in this research. The first approach 
deals with a parallel complementary approach for the prediction of water level 
hydrographs in the Rhine River. It is argued that due to the underlying limitations of each 
of these models, it may not be sufficient to use a single model for flood forecasting 
purpose. As an example, the hydrological and data driven models can be used to forecast 
within the calibration range, where these models offer ease of use. The HN model is the 
best option available for forecasting beyond calibration. The use of more than one model 
also increases the confidence of forecasts as the results can be cross validated and 
different scenarios can be tested. 

The second application considers a series complementary approach for the prediction of 
flood hydrographs and inundation areas in the Neckar River reach. The HN model may be 
affected by the imprecision in the input data or the absence of minor tributaries and lateral 
inflows, especially for flood forecasting purpose. In the series approach, the ANN is used 
as a flood routing model and the HN model is used as inundation model. Hence, in the 
flood forecasting system the ANN predicts the discharge hydrographs at gauging stations. 
The predicted peak discharges can be used as inputs to the HN model, which in 
combination with the digital terrain model can predict inundation extents at critical sections 
in the river reach. 

This thesis also makes an extensive assessment of data uncertainties that arise out of 
stage discharge relationship. A number of data driven approaches are considered for the 
management, analysis and propagation of uncertainties. The method of uncertainty 
management includes the transformation of stage to discharge using an ANN nonlinear 
mapping method as an alternative to the rating curve. This is demonstrated using the 
cases of a highly scattered nonlinear relationship in the Neckar River and a looped stage 
discharge relationship in the Rhine River. Both the applications show that the ANN based 
nonlinear mapping technique provides a superior alternative to the single value 
relationship curve. The method also leads to a possibility of the series complementary 
modelling approach. For instance, the ANN nonlinear mapping method can be used as 
pre-processor and post-processor of the boundary data for a flood routing model.  

The research further considers fuzzy extension principle based methods for the analysis 
and propagation of uncertainties due to the stage discharge relationship. The fuzzy 
regression analysis is used to define the upper and the lower uncertainty bounds of the 
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relationship. The analysis expresses discharges in terms of fuzzy numbers corresponding 
to any measured water level. The fuzzy alpha cut of a discharge fuzzy number together 
with an HN model is used to analyse the propagation of uncertainties in river channels 
and floodplains. The application constitutes a series complementary approach between 
the fuzzy extension principle based methods and the HN model. The results indicate that 
uncertainties in discharges can lead to significant uncertainties in the simulation of water 
levels and inundation areas.  

The thesis hence demonstrates the complementary modelling approaches for river flood 
prediction and uncertainty analysis. Therefore, application of these complementary 
methods will lead to more reliable flood prediction and facilitate in making better flood risk 
management decisions. 
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CHAPTER 1 

BACKGROUND 

 

1.1 Introduction 

River floods are natural phenomena that occur recurrently in a hydrological time scale. 
The phenomenon is characterised by increased water levels in river channels, overspilling 
of natural banks or artificial embankments and subsequent inundation of the surrounding 
floodplains. The floodplains are amongst the most intensely utilised and densely 
populated areas throughout the world and their inundation can cause extensive damage. 
With increasing social and economic development bringing pressure on land use within 
the floodplains, potential for flood damage is increasing on many rivers [White, 2000].  

It has almost become a regular phenomenon that several areas in the world suffer from 
floods every year. In the last decade there has been catastrophic flooding in China, India, 
Bangladesh, Germany, Poland, Mozambique and the United States [ISDR, 2004]. Asia 
represents one of the worst flood affected areas in the world, with the countries like 
Bangladesh, China, India, Vietnam and Nepal being severely affected by floods in a 
regular basis. The 2002 floods in Elbe, Moldau and Danube rivers were some of the worst 
floods to hit Central Europe causing losses of billions of Euros in parts of the Czech 
Republic, Germany and Austria. Other notable flood events in Germany include the Rhine 
River flood of 1993 and 1995 and the Odra River flood of 1997. 

The consequences of floods to the society go far beyond the economic costs. When 
severe flood occur in the inhabited areas, they bring natural disaster involving loss of life, 
property plus serious disruption of the ongoing activities in urban and rural communities 
[Smith and Ward, 1998]. Flood disasters account for about a third of all natural 
catastrophes by number and economic losses and are responsible for more than half of 
the fatalities [Berz, 2000].  

Traditionally, flood management has essentially been problem driven: usually after a 
severe flood event a project would be quickly implemented without giving any thought to 
the impact such solutions would have on upstream and downstream areas [APFM, 2004]. 
The research in the past few decades has led to a better understanding of different 
processes and sub-processes of river flooding and their interactions with the 
surroundings. As a result there is now a shift in paradigm towards a broader integrated 
approach to manage the recurrent cycle of flood disasters in a more effective manner. The 
United Nations guidelines for reducing flood losses [ISDR, 2004] describes the flood 
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disaster management as an end-to-end process for recognizing the risks through a suite 
of planned actions which include: (i) pre-disaster – preventive measures and 
preparedness; (ii) during the flood – disaster relief, response and mitigative actions; and 
(iii) post disaster – rehabilitation, reconstruction, economic recovery, and efforts to assess 
and fine tune the preventive measures.  

Integrated flood management should hence investigate each of these actions in every 
phase of disaster management. Systematic analysis and management tools are essential 
for the evaluation of these broad range of parameters and planning for the alternative 
course of actions. Furthermore, flood management contains a number of semi-structured 
and non-structured problems, which require a modelling capability to grasp and manage 
flood damage reduction systems [Simonovic, 1998]. In this regard, modern data 
acquisition, management and dissemination systems together with the numerical models 
have significant roles to play. 

 
1.2 Flood Risk and Management  

A proactive management of flood risks requires the development of strategies to reduce 
the risks and policies and programmes to put these strategies into effect [ISDR, 2004]. 
Flood risk results from a combination of the associated probability of a flood event and 
potential consequence. Ideally, the flood risk management should take into consideration 
both the elements probability and consequence. 

Plate [1998] described the flood risk management in terms of risk assessment and risk 
mitigation. The risk assessment consists of evaluating the hazard of a flood event and the 
potential damage if the specified hazard event were to occur. Gendreau and Gilard [1998] 
presented an approach that divides the flood risk assessment into the factors of 
vulnerability and hazard assessments. Accordingly, the vulnerability is characterised by 
the sensitivity of specific land use to the flood phenomenon, whereas the hazard is 
characterised by physical parameters of the flood flow such as frequency, depth, 
discharge, duration and velocity.  

The risk mitigation is achieved through altering either or both the hazard and the 
vulnerability, through risk reduction prior to a flood and emergency response during and 
after a flood [White, 2000]. The flood mitigation measures can be broadly classified as 
structural and non-structural measures (Figure 1.1). The structural measures represent 
the traditional approach to flood management focussed on the containment of flood by 
employing engineering and abatement methods. Typical examples of the structural 
measures include levees and storage reservoirs. The structural measures affect the 
hydraulic behaviour of the river and mainly interfere with the hazard component of the 
flood risks [Gendreau and Gilard, 1998].  
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In the recent years, there has been a growing emphasis on the non-structural measures. 
The non-structural measures are based on the strategy of living with the floods rather than 
controlling them. These measures recognise the occurrence of floods as part of natural 
processes and aim to limit losses by means of loss sharing and loss reduction methods. 
The non-structural measures mainly affect the vulnerability component of flood risk 
[Gendreau and Gilard, 1998]. There is seldom a unique structural or non-structural 
solution to reduce and manage risks. In many cases, a combination of both the measures 
might bring an optimum solution.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1. Flood mitigation measures  
Adapted from Smith and Ward [1998] 

 
1.3 Flood Modelling and Forecasting Systems 

The operational flood management comprising of the integrated flood forecasting, warning 
and response system is an important component of the non-structural flood management. 
The flood forecasting systems must be sufficiently accurate in order to promote the 
confidence of communities. The greatest benefits of an effective flood warning system 
occur when flooding is severe, widespread and/or sudden and communities and 
organisations are prepared to mitigate impacts [ISDR, 2004]. 
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It is only with the integrated processes in all stages of operational flood management that 
an optimum level of flood protection is ensured [Nestmann and Emmermann, 2003]. The 
implementation of the integrated system requires data handling, communication, 
forecasting, decision support and dissemination tools together with the management of 
coordination and response activities (Figure 1.2).  

The technologies for the operational flood management consisting of numerical models 
and geographic information system (GIS) are vital components of the integrated system. 
The numerical models provide tools to forecast the likely magnitude, extent and duration 
of the flood events, while the GIS tools facilitate the integration and spatial analysis of 
data, and depiction of the likely inundation extents.  

 
 

 
 

 

 

 

 

 

 
 

Figure 1.2. Integrated flood forecasting, warning and response systems 
Adapted from ISDR [2004] 

 
A typical integrated flood forecasting system consists of a number of subsystems that 
include precipitation forecasts, rainfall runoff models, flood routing and inundation models. 
For instance, a prototype European flood forecasting system developed by a collaboration 
of researchers across Europe consisted a number of components: (i) global numerical 
weather prediction models, (ii) a regional numerical weather prediction model for 
downscaling of global precipitation, (iii) a catchment hydrological model comprising a flood 
simulation model, and (iv) a flood inundation model [De Roo et al., 2003]. Each chain in 
the integrated system adds lead time to the forecasts, which is vital for effective 
coordination and response activities. 

Prediction of flood flows in river channels and floodplains is an important component of 
the integrated flood forecasting system. The system comprising of the flood routing and 
inundation models provides means of predicting the likely magnitude, arrival time as well 
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as extent of inundation of an upcoming flood event. The scope of this thesis is limited to 
the river flood prediction component of the flood forecasting system. The discussion on 
flood forecasting herein, will be limited to river flood prediction.  

 
1.4 River Flood Prediction Systems  

River flood prediction generally requires the forecast of flood hydrographs at the gauging 
stations and calculation of water levels at critical locations in a river reach. The former, 
commonly known as flood routing, involves the prediction of the temporal and spatial 
variations of the flow wave as it moves from upstream to downstream. The latter involves 
the computation of the relationship between peak discharge and water levels.  

A large number of numerical modelling tools are available for the solution of the river flood 
prediction problems. The rapid advancement of the computing technologies together with 
sophisticated algorithms to solve numerical problems have led to the development of a 
large number of efficient and reliable computer models. The modelling tools for river flood 
prediction can be grouped into three distinct classes consisting of physically based 
hydrodynamic models, hydrological models and data driven models.  

The physically based hydrodynamic numerical (HN) models are based on sound 
conservation principles of mass and momentum and are capable of simulating both the 
flood hydrographs and water levels. The system domain of the HN models is discretized in 
terms of finite space – time grids. For instance, a one-dimensional (1D) HN model 
consists of the spatial discretization in terms of river cross sections, structural elements 
like barrages, storage cells, etc., and temporal discretization in terms of time steps. This 
makes the HN models data intensive to set up and operate. However, the HN model is 
also capable of making predictions of the flow parameters such as discharge, water levels 
and velocities at every spatial grid point of the model. In addition, the HN model in 
combination with a digital terrain model (DTM) can also predict the likely inundation 
extents. Due to this reason, the HN model is considered a powerful and versatile tool for 
flood prediction. 

The hydrological flood routing models, on the other hand, constitute a reach by reach 
prediction of discharge hydrographs based on the response of the reach to the inflows. 
They are only capable of simulating the outflow hydrographs from a river reach, which is 
considered as a function of inflow and storage. The parameters of the hydrological models 
may be determined empirically (for example: Muskingum method) or ‘physically based’ 
coefficients (for example: Muskingum-Cunge method). Although less versatile than the HN 
models, the hydrological models are important tools in flood forecasting because of their 
simplicity, limited data requirement and ease in setting up and operating. 

In the recent years, the application of data driven models such as artificial neural networks 
(ANNs), fuzzy rule-based models, neuro-fuzzy systems, genetic programming, and 
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support vector machines etc., are gaining in popularity. The structures of data driven 
models do not explicitly take into account the physical processes inside a system but 
constitute universal approximation of the input and output signals. Physical insight into the 
system is however necessary to understand the dependencies and correlation between 
the datasets. The data driven approaches are capable of simulating any variables that 
they have been trained for. For example, in the context of river flood prediction the data 
driven approaches can be used to forecast downstream flow parameters based on 
upstream flows from the main river and tributaries. The data driven models are relatively 
easy to set up and are advantageous because of their capability to handle highly 
nonlinear data in dynamic systems.  

 
1.5 Uncertainties in River Flood Prediction Systems  

River flood prediction is affected by a number of inherent uncertainties. Imperfect 
knowledge about the procedures and data generates uncertainty in the forecasts of floods 
[Maskey, 2004]. The uncertainties in the river flood prediction can be broadly classified 
into the data, model and parameter uncertainty.  

The accuracy of the data is an important factor that affects the performance of the river 
flood prediction systems. As discussed in section 1.4, the basic data required for a river 
flood prediction system include the flow and topographical data. The flow data may be 
measured or predicted values from another component of the flood forecasting system. 
The measured data too may be based on direct measurement or derivation. For instance, 
the water levels are directly measured values and the discharges are usually derived from 
a stage discharge relationship curve. The uncertainties in the relationship curve in 
particular may be considerable, which can lead to incorrect discharges with potentially 
large errors, influencing flood forecasting, statistical estimation of flood flows for design 
and decisions to promote flood defence schemes [Samuels et al., 2002].  

The uncertainty in flow data will also affect the capability of the prediction models. For 
instance, an HN model set up and calibrated with uncertain flow data, or a data driven 
model trained with the uncertain data will lead to uncertainty in forecasts. The amount of 
data available is also a major factor in considering the prediction capability of the model. 
The availability of large amount of data will not only lead to better calibration/training of the 
model, but also to better model verification, thus enhancing the generalisation capability of 
the model. 

The accuracy of the topographical data will also have a significant effect on the reliability 
of the river flood prediction models. An HN model with inadequate topographic 
representation will not have good prediction capabilities, even with excellent calibration 
[Abbot et al., 2001]. Similarly, the accuracy of the digital terrain model affects the 
capability of the model to predict realistic inundation areas. 
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On the other hand, the uncertainties in the model elements will also lead to the 
uncertainties in predictions. Every model is indeed a model of reality, which includes a 
number of simplifying assumptions and inevitably produces inaccuracies [Babovic et al., 
2001]. In an integrated flood forecasting system consisting of chain of forecast models the 
uncertainty in each forecast models will propagate through the system, hence affecting 
the uncertainty of the entire system. Each chain in the forecasting system will not only add 
vital lead time to the forecast, but also add to the level of uncertainty.  

The uncertainties specific to the river flood prediction models relate to the simplification of 
a highly complex phenomenon of flood wave propagation and inundation. A major source 
of uncertainty arises in the approximation of the complex flows in river channels and 
floodplains. The one-dimensional assumption of the multi-dimensional flow inevitably 
leads to uncertainty. The assumption may be sufficient when flows are predominantly one-
dimensional and problems such as flood routing. But it will lead to uncertainties in the 
case of complex flow in floodplains and prediction of the inundation areas. The multi-
dimensional solution of the problem however will add to the complexity of the model and 
make it expensive in terms of data requirement and computing power. Hence, it is 
important to strike a balance in view of the model uncertainty and specific problem under 
consideration. 

The model parameters such as the Strickler coefficient in a hydrodynamic model also give 
rise to the model uncertainties. The calibration of the HN model is usually an over-
parameterised problem, with more parameters available than the supporting data for the 
model calibration [Cunge, 1998]. Therefore, considerable uncertainty arises in the model, 
particularly in the region where no calibration data is available.  

The range of applicability of the model is another important factor to be considered. 
Usually, only a certain range of datasets is available for model calibration and validation. 
So, the application of model for the prediction of extreme events, where no datasets are 
available for calibration, will lead to uncertainty. This factor is especially critical in the 
application of the data driven models as they are generally considered only valid within 
the range of training (calibration) datasets.  

 
1.6 Research Needs  

The research and applications with regard to river flood prediction have taken three 
different directions. As discussed in the section 1.4, hydrodynamic, hydrological and data 
driven models are the three distinct classes of models available for this purpose. Each of 
these models is based on an entirely different philosophy, although the end result might 
be the same. The data requirement to develop each of these models and their capabilities 
varies a lot too. For instance, an HN model is capable of making simulations at every 
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cross sections. The hydrological and data driven models in contrast can only predict at the 
model output boundary.  

The different philosophy of the model development and their inherent capabilities raises 
the potentials of complementary modelling as opposed to using them in a competitive 
way. The complementary nature of their advantages and disadvantages lead to a notion 
that they can be effectively used together in an optimal manner [Abebe, 2004]. It is 
therefore, important to assess the strengths and limitations of each of the modelling 
approaches. Such an assessment will help in identifying the potential of combination of 
the strengths of these approaches. 

The river flood prediction also needs to be considered from a perspective of managing the 
uncertainties inherent in it. For example, the data uncertainty due to the stage discharge 
relationship curve may potentially constitute a dominant source of uncertainty. This may 
affect the capability of the models to make reliable prediction needed for real time 
operations. In addition, the uncertainty makes it difficult to identify suitable options for 
flood risk management.  

It is therefore imperative to develop methodologies for identifying, quantifying, managing 
and propagating uncertainties in river flood predictions. In this context, too, the data driven 
models based on the fuzzy sets and ANNs can complement the HN and hydrological 
models. Flexible data driven tools based on fuzzy numbers and nonlinear mapping can 
handle the uncertainties and nonlinear relationships and provide methods for the 
quantification, management and propagation of the uncertainties.  

 
1.7 Objectives of the Present Research 

The overall objective of this research is to identify, develop and implement complementary 
physically based and data driven models with regard to river flood prediction and 
uncertainty analysis. The specific objectives of the study are outlined below: 

• To assess the strengths, limitations and range of applicability of the hydrodynamic, 
hydrological and data driven models in the context of river flood prediction. 

• To investigate the possibilities of complementing the hydrodynamic models with 
hydrological and data driven models. 

• To develop the methodologies for complementary modelling with regard to the 
parallel and series complementary approach. 

• To assess the uncertainties of the stage discharge relationship and apply methods 
of managing, quantifying and propagating the uncertainties in the context of river 
flood prediction. 

 



 
Chapter 1: Background 

 
9

1.8 Structure of the Thesis 

The thesis is organised in 7 chapters consisting of background (chapter 1), basic concepts 
(chapters 2 and 3), applications (chapters 4, 5 and 6) and conclusions and perspective 
(chapter 7). An outline of the thesis is given below. 

Chapter 2 gives an overview of the basic concepts of the hydrodynamic and hydrological 
models. This chapter includes the fundamental equations, methods of solution and a 
discussion on the applications of the unsteady flow and the steady flow hydrodynamic 
model together with the Muskingum and the Muskingum Cunge hydrological models. 

Chapter 3 reviews the basic concepts of artificial neural networks and fuzzy systems. It 
describes different neural network architectures and activation functions used in this 
study. There is also a discussion on the practical aspects of the ANN model construction. 
The chapter also describes basic concepts of fuzzy systems in the context of data driven 
flood modelling and uncertainty analysis. Important methods based on fuzzy sets such as 
extension principle, alpha level cut and adaptive network based fuzzy inference system 
used in this thesis are described. There is also a review of applications of the ANNs and 
fuzzy systems, with reference to river flow prediction and related uncertainty analysis. 

Chapter 4 presents a contribution of this research in the context of complementary 
hydrodynamic, hydrological and data driven models for river flood prediction. The 
application of hydrodynamic, hydrological, ANNs and neuro-fuzzy systems are described. 
There is a discussion on the strengths and limitations of each of these models and a 
complementary modelling approach is considered so that the strength of one model can 
complement the other.  

Chapter 5 presents a combined hydrodynamic and artificial neural networks model for 
flood routing and mapping inundation extents. The application assesses the limitations of 
the hydrodynamic model in flood routing, which arise from imprecision in the input data 
and need to estimate lateral inflows. An alternate approach is considered with the 
application of the ANN model for the prediction of discharge hydrographs at the gauging 
stations and the HN models in small sections for the prediction of the inundation areas.  

Chapter 6 considers uncertainties in discharges due to the stage discharge relationship 
and methods of managing and analysing the uncertainties. The uncertainty management 
method includes the nonlinear mapping of the relationship using the ANNs. The 
uncertainty analysis includes the application of fuzzy regression to define the range of 
uncertainty of the relationship. In addition, the propagation of the uncertainties to the river 
channel and floodplains is considered with an application of the extension principle based 
fuzzy alpha cut technique in combination with a hydrodynamic numerical model. 

Chapter 7 summarises the important conclusions of this thesis and gives perspectives for 
further research in the area of river flood prediction and uncertainty analysis.  
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CHAPTER 2  

HYDRODYNAMIC AND HYDROLOGICAL MODELS 

 

This chapter provides background information on hydrodynamic and hydrological models 
for unsteady flow simulation in rivers. The fundamental equations of a full one-dimensional 
hydrodynamic model including energy loss coefficients and dimensionless numbers are 
described. A brief discussion on a method of solution and stability criteria of the numerical 
schemes of the hydrodynamic model is given. The basic concepts of floodplain mapping 
using a steady flow simulation of one-dimensional hydrodynamic model in combination 
with geographic information system (GIS) are discussed. In the case of hydrological 
model, this chapter outlines the basic principles of the Muskingum Cunge simplified 
distributed model. The method of solution and stability criteria of the Muskingum Cunge 
model are included. The chapter also discusses a number of recent applications of the 
hydrodynamic and hydrological models for flood routing. There is a brief description of the 
flood extent mapping and flood risk assessment methods. 

 
2.1 Physically Based Hydrodynamic Numerical Models 

The physically based river modelling system is an important component of flood 
forecasting and risk assessment system. As the name suggests, the physically based 
models are based on the mathematical representation of physical system and processes 
in it. For instance, in the physically based hydrodynamic numerical (HN) models, the 
system domain is defined by river geometry and the underlying processes are described 
in terms of numerical equations. 

The importance of the physically based HN model in a flood prediction system can be 
attributed to its ability to simulate different variables such as discharges, water levels, and 
velocities at every grid point in the model domain. In addition, the HN model can also be 
used for the routing of the flood wave from upstream to downstream location in a river 
reach.  

The physical domain of the modelling system can be described in terms of one-
dimensional (1D) or the multidimensional formulations. The general form are the Navier – 
Stokes equations which describe the unsteady flow of viscous incompressible fluid in a 
three-dimensional (3D) space. In the two-dimensional (2D) formulation, depth averaged 
form of the governing equations are used. The 1D formulation considers the flow variation 
only in the axial direction of flow.  
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Both sufficiency and the applicability of these formulations depend upon a number of 
specific parameters of river flow that needs to be analysed. This thesis mainly takes into 
consideration the simulation of flow and water level at the gauging station and inundation 
mapping at certain sections in the river reach. The scope of this thesis is limited to 1D 
description of flows in the river channel and a network of 2D cells in the floodplains. The 
inundation extents are also defined by the 1D HN model in the river channel, with 
subsequent spatial projection of water levels into the floodplains using the GIS. 

 
2.1.1 Saint Venant Equations 

The 1D HN model is the most commonly used tool for the flood routing and water level 
simulation. The 1D HN model is based on the Saint Venant equations, which is derived 
from the principles of mass and momentum conservation in open channel flow. The terms 
used in the definition of the equation are illustrated in Figure 2.1. 

The Saint Venant equations can be expressed as the continuity equation (2.1) and the 
momentum equation (2.2) [Cunge et al., 1980]: 

1 0∂ ∂
+ =

∂ ∂
y Q
t b x

                (2.1) 
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0              (2.2) 

 

 
Figure 2.1. Definition sketch of Saint Venant equation  

Adapted from Henderson [1966] 
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where  

y  = water surface elevation [m] 

h  = depth of flow [m] 

Q = discharge [m3/s]  

b  = top width of flow [m]  

A  = active cross sectional area of flow [m2] 

g  = gravitational acceleration [m/s2] 

Sf = friction slope 

S0 = bed slope 

x  = distances along the channel [m] 

t   = time [s] 

 
The magnitude of each of the terms in the momentum equation plays a significant role in 
the hydraulics of the system. Chow et al. [1988] defined the terms in the momentum 
equation (2.2) as: 

Q
t

∂
=

∂
 Local acceleration term 

Q
x A
⎛ ⎞∂

=⎜ ⎟∂ ⎝ ⎠

2

 Convective acceleration term 

h
x
∂

=
∂

 Pressure slope term 

Sf = Friction slope term 

S0 = Gravity slope term 

 
The pressure slope may be expressed as: 

h y S
x x
∂ ∂

= +
∂ ∂ 0                  (2.3) 

 
where  

y
x
∂

=
∂

 Water surface slope 

 
The Saint Venant equations of unsteady flow are based upon a number of assumptions 
[Cunge et al., 1980]. These include: (i) the velocity is uniform over the channel cross 
section, (ii) vertical accelerations are negligible, (iii) boundary friction and turbulence can 
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be modelled by resistance laws analogous to steady state flow and (iv) the slope of the 
channel is small, such that the cosine of the angle between the plane of the channel 
bottom and the horizontal plane is essentially unity.  

Based on the assumption (iii), the friction slope can be taken as the slope of the energy 
grade line in steady flow. This is given by: 

f

Q Q
S

K
= 2                  (2.4) 

 
where  

K = conveyance of the channel section with same dimension as discharge [m3/s].  

 
The momentum equation (2.2) can be expressed in terms of water surface slope as: 

Q QQ Q ygA gA
t x A x K

⎛ ⎞∂ ∂ ∂
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2

2 0              (2.5) 

 
The equation (2.2) may also be expressed in the following non-conservative form from 
which simplified forms of the momentum equation can be derived [Chow et al., 1988]: 

( )f
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∂ ∂ ∂ 0 0               (2.6) 

 

 

 
where 

v = mean velocity in the channel [m/s]  

 
Here, the kinematic wave model neglects local acceleration, convective acceleration and 
pressure terms. The diffusion wave model neglects local acceleration and convective 
acceleration terms. The dynamic wave model considers all the terms of the momentum 
equation. 

 
2.1.2 Energy Loss Coefficient  

The energy losses in the river channel can be evaluated in terms of Gauckler–Manning-
Strickler equations:  

fQ KS= 1 2                (2.7a) 

Kinematic wave 
Diffusion wave 
Dynamic wave 
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stK k AR= 2 3                (2.7b) 

st fv k R S= 2 3 1 2               (2.7c) 

 
where 

kst  = Strickler coefficient [m1/3/s] 

R = hydraulic radius, defined as the ratio of flow area A to wetted perimeter P [m] 

 
The Manning coefficient expressed as a reciprocal of Strickler coefficient is used in 
English speaking countries: 

K AR
n

= 2 31
                 (2.8) 

 
where 

n = Manning resistance coefficient [m-1/3s] 

 
The Strickler or Manning coefficient contains a number of factors, and not just the channel 
friction as generally assumed. The value is highly variable and depends upon a number of 
factors including: surface roughness, channel irregularities, channel alignment, size and 
shape of channel, scour and deposition, vegetation, obstructions, stage and discharge, 
seasonal change, temperature, suspended materials and bedload [Chow, 1959]. There 
are several references available listing the typical values [Chow, 1959; Henderson, 1966]. 

Sometimes the Chezy equation is used instead of the Strickler or the Manning equation 
for the representation of energy loss in the open channel. The Chezy equation can be 
expressed as: 

v C RS=                  (2.9) 

 
where 

C = Chezy coefficient [m1/2s-1] 

 
The Strickler or the Chezy coefficient is the main parameter for the calibration of 
hydrodynamic numerical models. The coefficients are calibrated within a range of values 
so as to obtain a good match between the observed and simulated flow variables. The 
range of values can be established based on the site conditions. In general, it is 
acceptable to calibrate the coefficient within a known range of variations than to try to 
calibrate a model by attributing unrealistic values to these coefficients [Abbott et al., 2001]. 
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2.1.3 Dimensionless Numbers 

The dimensionless flow parameters define flow characteristics and give the possibility to 
generalise the flow situation. Mishra and Singh [2002] described the dimensionless 
numbers in relation to the momentum equation (2.2).  

 
2.1.3.1 Froude Number 

The effect of gravity on the state of flow is defined by the square root of the ratio of inertial 
force to gravitational force as the dimensionless Froude Number. The dimensionless 
Froude number (Fr) may be expressed as: 

vFr
gL

=                (2.10) 

where  

L = characteristics length [m] 

 
In open channel flow, the characteristics length (L) is often taken as the hydraulic depth 
(D), which is defined as active cross sectional area of flow (A) divided by the top width of 
flow of free surface (b).  

Depending on the magnitude of the Froude number, the state of flow is subcritical, critical 
or supercritical. When the Froude number is less than 1, the effect of gravitational force is 
less than the inertial force and the state of flow is referred to as subcritical flow. When the 
inertial and gravitational forces are equal, the Froude number is equal to unity and the 
flow is at the critical. When the inertial force exceeds the gravitational force, the Froude 
number is greater than 1, the state of flow is referred to as supercritical flow. 

The inertial term in the momentum equation (2.2) is represented by the convective 
acceleration term and the gravitational force is given by bed slope (S0) [Mishra and Singh, 
2002]. The Froude number also represents an important criterion in the solution of the 
Saint Venant equations. When the state of flow is subcritical, the state of flow is controlled 
by channel characteristics at the downstream end of the river reach. In the case of 
supercritical flow, the flow is governed by the upstream end of the river reach. Hence, the 
boundary conditions for the model based on the Saint Venant equation has to be set 
appropriately based on the state of flow. 

 
2.1.3.2 Reynolds Number 

The Reynolds number (Re) is defined as the ratio of inertial force to viscous force. It can 
be mathematically expressed as: 



 
Chapter 2: Hydrodynamic and Hydrological Models 

 
16

vDRe
ν

=                (2.11) 

 
where 

D = hydraulic depth [m] 

ν  = Kinematic viscosity [m2/s] (defined as ratio of viscosity µ to the fluid density ρ) 

 
The Reynolds number is often used to describe the characteristics of flow. Generally, the 
flow is said to be in laminar state for Re < 2300, transitional state for 2300 ≤ Re ≤ 4000 
and turbulent state for Re > 4000. The flow is considered completely turbulent only for  
Re > 105. The significance of the Reynolds number in the Saint Venant equation is not 
directly apparent although the inertial term is represented by convective acceleration term 
of the momentum equation (2.2). The Saint Venant equations does not directly have the 
viscosity term, but is included indirectly as shown below.  

The friction factor f in pipe flow is the function of the Reynolds number for the laminar and 
transitional zone of the Moody diagram. The friction factor may be expressed by the 
Darcy–Weisbach formula as: 

fgRSf
v

= 2

8
             (2.12a) 

 
which leads to: 

f
gv RS
f

=
8

             (2.12b) 

 
Comparing equations (2.7c), (2.9) and (2.12b), the Chezy and Strickler coefficient can be 
related to the friction factor as [Nestmann, 1998]: 

st
gC k R
f

= =1 6 8
              (2.13) 

 
It is to be noted that in a complete turbulent flow through fully rough zone in a pipe, the 
friction factor f and hence the Chezy coefficient C (in a Moody diagram) becomes 
independent of Reynolds number Re [Henderson, 1966]. In natural channels, this energy 
loss takes place either internally if the medium is viscous, through turbulence if the 
channel boundaries are rough, or if the flow converts from supercritical to subcritical, or in 
combination thereof. The convective acceleration term in equation (2.2), in particular, 
represents the magnitude of turbulence through velocity change, leading to the formation 
of eddies or vortices that dissipate energy [Mishra and Singh, 2002].  
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2.1.4 Numerical Solution of Saint Venant Equation 

The solution of one-dimensional Saint Venant equations is usually based on the finite 
difference approximation schemes. The finite difference schemes can be further classified 
into explicit or implicit. In the explicit schemes, the flow variables at one time level could 
be expressed as the function of values of the dependent variables at an earlier time step. 
In the implicit finite difference schemes, the Saint Venant equations are transformed into a 
set of algebraic equations, which must be solved simultaneously for all grid points in the 
river reach at a given time step. Although explicit schemes are easier to implement, 
implicit schemes are generally preferred due to the numerical stability considerations 
[Fread, 1992].  

 
2.1.4.1 Implicit Finite Difference Scheme 

The implicit finite difference scheme is based on the solution the Saint Venant equations 
(2.1) and (2.5) in a system of partial differential forms. Numerous mathematical methods 
and corresponding numerical schemes exist for the solution of these partial differential 
equations. Of the various schemes, the Preissmann weighted four point scheme is one of 
the most popular. The scheme has been described in a number of literatures [Fread, 
1974; Cunge et al., 1980; Abbott, 1992]. Numerous applications of the Preissmann 
scheme have been reported in river modelling systems such as CARIMA [SOGREAH, 
1978], UNET [USACE, 1997] and FLDWAV [Fread and Lewis, 1998]. 

In the weighted four point implicit scheme, the continuous space-time grid system as 
shown in Figure 2.2 depicts the region in which the solution of the flow equations is 
sought. An x-t plane is a convenient means of representing relationships among the 
variables within the time increment ∆t and space increment ∆x, with ψ space weighing 
factor and θ time weighing factor.  

Figure 2.2. Space – time discretization of the implicit finite difference scheme 
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The temporal and the spatial derivatives by forward-difference quotient at point (x', t') can 
be expressed as follows: 

( ) ( )n n n n
j j j jf f f ff

t t

+ +
+ ++ − +∂

≈
∂

1 1
1 1

2∆
            (2.14) 

( ) ( )( )n n n n
j j j jf f f ff

x x

+ +
+ +− + − −∂

≈
∂

1 1
1 11θ θ

∆
           (2.15) 

 
where, f represents any dependent variable or functional quantity (such as Q and y) and 
the space weighing coefficient ψ = 0.5. The time weighing coefficient is assigned in the 
range 0 ≤ θ ≤1.  

The application of the Preissmann scheme to the derivatives in equations (2.1) and (2.5) 
yield the following equations (2.16) - (2.20) [Cunge et al., 1980]: 

( ) ( )n n n n
j j j jy y y yy

t t

+ +
+ ++ − +∂

≈
∂

1 1
1 1

2∆
            (2.16) 

( ) ( )n n n n
j j j jQ Q Q QQ

t t

+ +
+ ++ − +∂

≈
∂

1 1
1 1

2∆
            (2.17) 

( ) ( )( )n n n n
j j j jQ Q Q QQ

x x

+ +
+ +− + − −∂

≈
∂

1 1
1 11θ θ

∆
            (2.18) 
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+ +
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2 2 2 21 12
1 1

1 1
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1
        (2.19) 

( ) ( )( )n n n n
j j j jy y y yy

x x

+ +
+ +− + − −∂

≈
∂

1 1
1 11θ θ

∆
           (2.20) 

 
Adapting a convention all dependent variables are defined at time level (n+1)∆t such that: 

n n
j jf f f∆+ = +1                (2.21) 

 
Substituting the values of partial derivatives from equations (2.16) - (2.20) to Saint Venant 
equations (2.1) and (2.5), the following system of equations emerge: 

j j j jA y B Q C y D Q G∆ ∆ ∆ ∆+ ++ + + + =1 1 0            (2.22) 

j j j jA' y B' Q C' y D' Q G'∆ ∆ ∆ ∆+ ++ + + + =1 1 0           (2.23) 
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The system of equations (2.22) and (2.23) for N grid points lead to a total of 2(N-1) 
equations with 2N unknowns. Two boundary conditions provide two additional equations 
required for the system of equations to be determinate. These equations are all solved 
simultaneously for all grid points at a certain time step. All the variables at time step n are 

known and time step n+1 are unknown. Using the known values of n
jy and n

jQ  the 

coefficients A, B, C ,….., G’ can be determined and the linearised system of equations 
(2.22) and (2.23) for N points can be solved giving the new approximation of the 
unknowns at new time step (n+1)∆t. The simultaneous solution of 2(N-1)*2(N-1) system of 
equations requires an efficient matrix technique such as the Newton iteration method 
[Cunge et al., 1980].  

 
2.1.4.2. Stability Criteria  

The implicit schemes can generally be considered unconditionally stable for different time 
and distance steps [Cunge et al., 1980]. An important stability criteria for the implicit 
scheme is given by the time weighing factor θ. The Preissmann scheme considered in this 
chapter is unconditionally, linearly stable for θ ≥ 0.5. The solution become fully implicit for 
θ = 1, and fully explicit for θ = 0. The scheme is most stable at θ = 1 and most accurate at 
θ approaches 0.5. Usually, the weighing factor θ = 0.6 can be used to minimise the loss of 
accuracy and avoid the stability problem [Fread, 1992]. 

Useful criteria for the selection of appropriate computational distance ∆x and time step ∆t 
is given by Fread and Lewis [1993]: 

rcTx∆ ≤
20

               (2.24) 

rTt∆ ≤
20

               (2.25) 

 
where 

Tr = minimum time of rise of hydrograph of upstream boundary condition [s] 

 
In practical problems, a number of other criteria may also contribute to the appropriate 
selection of ∆x. These include the considerations of dramatic change channel cross 
sectional properties, changes in channel slope and hydraulic structures such as levees, 
bridges, culverts weirs and spillways [USACE, 1997]. 

 
2.1.5 Steady Flow Simulations 

Flow in open channel can be considered steady if depth, discharge and mean velocity of 
flow at a particular location do not change with time or can be assumed constant during a 
time period. The steady flow equations are usually expressed in terms of classical 
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continuity and energy equations, as given in the references such as Chow [1959] and 
Henderson [1965]. The differential form of the steady flow equations can also be obtained 
from the unsteady flow equation (2.2) by assuming Q = constant and ∂Q/∂t = 0: 

( )f o
Q hgA gA S S

x A x
⎛ ⎞∂ ∂

+ + − =⎜ ⎟∂ ∂⎝ ⎠

2

0            (2.26) 

 
The numerical solution of the classical steady flow equations (continuity and energy) is 
usually undertaken using the standard step method, where numerical computations 
proceed on steps from cross section to cross section [Chow, 1959]. The finite difference 
unsteady flow modelling systems can also be used to obtain the steady flow simulations if 
the boundary conditions are fixed and initial perturbations are allowed to dissipate out of 
the system [Cunge et al., 1980].  

The analysis of the propagation of the flood wave through a river channel generally 
requires full unsteady flow equations. The steady flow computations are useful in 
unsteady flow simulations in cases such as the calculations of initial conditions. The main 
areas of applications of steady flow computations include water surface profile 
computations for hydraulic design problems like dikes and backwater effects of 
construction of structures. Steady flow computations are also widely used in combination 
with geographical information systems for mapping inundation extents. 

 
2.2 Hydrological Flow Routing Models 

A number of simplified hydrological models have been developed for the unsteady flow 
routing in a river reach. The hydrological models, in general, constitute a reach by reach 
prediction of discharge hydrographs based on the response of the reach to the inflow and 
storage. From the principle of mass conservation the difference between the inflow Qj and 
the outflow Qj+1 in a river reach can be expressed as the rate of change of storage S 
[Fread, 1992]: 

( ) ( )j j
dSQ t Q t
dt+− =1              (2.27) 

 
The solution of the equation (2.27) for the outflow Qj+1, with approximation of the storage S 
leads to a lumped flow routing. Amongst different lumped models used for flood routing in 
rivers, the Muskingum model is one of the most popular methods. The model can 
accommodate looped relationships between storage and outflow existing in natural rivers. 
It is a simple method requiring only inflow and outflow from the reach. The following 
empirical linear storage equation defines this relationship: 
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n n n
j j jS K XQ ( - X )Q +⎡ ⎤= +⎣ ⎦11              (2.28) 

where 

n
jS  = storage in the routing reach at time n [m2] 

n
jQ  = inflow at time n [m3/s] 

n
jQ +1= outflow at time n [m3/s] 

K = storage time coefficient with same dimension as travel time [s] 

X = dimensionless weighing factor, ranging between 0 to 0.5.  

 
For the routing interval ∆t the continuity equation takes the following finite difference form. 

n 1 n n 1 n
j 1 1 j 2 j 3 j 1Q C Q C Q C Q+ +
+ += + +             (2.29) 

 
The routing coefficients C1, C2 and C3 are defined in terms of ∆t, K and X: 

1
∆t 2KXC

2K(1 X) ∆t
+

=
− +

            (2.30a) 

2
∆t 2KXC

2K(1 X) ∆t
−

=
− +

            (2.30b) 

3
2K(1 X) ∆tC
2K(1 X) ∆t

− −
=

− +
            (2.30c) 

1 2 3C C C 1+ + =             (2.30d) 

 
The Muskingum model as defined by equations (2.28), (2.29) and (2.30) are based on 
parameters K and X, expressed in terms of C1, C2 and C3. During the solution of these 
equations, parameter K is estimated from the travel time of the flood wave through the 
river reach. The value of parameter X is evaluated using a trial and error procedure.  

Cunge [1969] modified the lumped Muskingum model into a distributed model by 
combining it with the diffusion wave analogy (equation 2.6). The modified equation also 
includes the lateral inflow: 

n 1 n n 1 n
j 1 1 j 2 j 3 j 1Q C Q C Q C Q C+ +
+ += + + + 4            (2.31) 

 
The terms C4 can be obtained from average lateral inflow ql: 

( )
l

4
q ∆t xC

2K 1 X ∆t
=

− +
∆

             (2.32) 
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Cunge [1969] obtained the routing parameters K and X by forcing the numerical diffusion 
to match the hydraulic diffusion as follows: 

xK
c
∆

=                (2.33) 

o

QX
BS c x

⎛ ⎞
= −⎜ ⎟∆⎝ ⎠

1 1
2

             (2.34) 

 
where c is the wave celerity, which can be obtained as: 

dQc
dA

=                (3.35) 

 
2.2.1 Method of Solution 

The Muskingum Cunge (MC) flood routing is carried out by the solution of equation (2.31). 
A simple finite difference solution as schematised in Figure 2.3 is used for the solution of 
the equations. The coefficients C1, C2, C3 and C4 are based on parameters K and X which 
can be obtained from the equations (2.33) – (2.34). The only unknown in these equations 
is the slope parameter S0, which can be obtained from the Gauckler–Manning-Strickler 
equations (2.7a and 2.7b). However, the parameters K and X are also the functions of 

n 1
j 1Q +
+  and require its initial estimate. This may be obtained from n 1 n 1 n n

j 1 j j 1 jQ Q Q Q+ +
+ += + − , 

requiring the subsequent iterations if the estimated and predicted value differ by an 
unacceptable amount [Price, 1985]. Since the parameters K and X are slowly varying 
functions of Q, the first estimate is usually sufficient. The stability criteria as outlined in the 
section 2.3.2 are a necessary condition for the solution of Muskingum Cunge equations. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3. Finite difference discretisation of the Muskingum Cunge equation 
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2.2.2 Stability Criteria  

In the Muskingum Cunge (MC) method, the selection of appropriate intervals of ∆x and ∆t 
is an important criterion for the stability of the scheme. Two dimensionless numbers are 
frequently used for description of the stability criteria. These are the Courant number Cr, 
and the cell Reynolds number D.  

The Courant number is defined as the ratio of physical wave celerity c to grid celerity 
(∆x/∆t) [Mishra and Singh, 2002]:  

tCr c
x
∆

=
∆

               (2.36) 

 
In general, the Courant number Cr is the limiting criteria for the explicit schemes (Cr ≤ 1). 
For the optimal solution of the MC method, temporal and spatial resolution should be 
selected such that Cr ≈ 1. For smoothly rising hydrographs, the criteria for the temporal 
resolution is recommended as [Ponce, 1994]:  

rTt∆ ≤
5

               (2.37) 

 
There are no definite criteria for the spatial resolution ∆x. The combined criteria of the 
Courant number and the cell Reynolds number give a practical consideration for the 
selection of ∆x. Ponce [1994] defined the cell Reynolds number D as the ratio of hydraulic 
diffusivity to grid diffusivity as: 

o

QD
BS c x

=
∆

               (2.38) 

 
The combined Courant number and cell Reynolds number criteria for the determination of 
the temporal and spatial resolution is given by [Ponce, 1994]:  

Cr D+ ≥ 1               (2.39) 
 
 
2.3 Review of Applications 

A review of applications of hydrodynamic and hydrological model with reference to flood 
routing, floodplain mapping and flood risk assessment is given in the following 
paragraphs. 

 
2.3.1 Flood Routing 

The transmission of the flood wave in a river channel is characterised by filling and 
emptying of floodplain storage area. The 1D HN model in a simple configuration does not 
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take this effect into account. A relatively simple way of considering the storage effect is to 
use a quasi 2D model consisting of a full 1D equation for flows in river channels and a 2D 
network of cells in the floodplains [Cunge et al., 1980]. The 2D cell networks are 
represented by series of interconnected cells in the inundation area. The flow exchange 
between the two cells is represented by hydraulic discharge formula such as weir, orifice 
and Strickler law etc.  

Using this approach attenuation of the flood wave due to the storage effects can be 
adequately represented. A number of recent applications have shown the quasi 2D 
approach as an effective tool for the representation of the attenuation effects [Min Thu, 
2002; Willems et al., 2002]. 

The hydrological routing approach provides a simple alternative to the full 1D HN models. 
However, the hydrological routing models are limited by factors such as backwater effects 
and floodplain effects. The modified Muskingum Cunge model has an advantage over the 
lumped Muskingum model. It has only the friction loss coefficient as the model parameter 
which can be obtained from the equation (2.7) or (2.8). The model is considered as the 
nonlinear coefficient method and does not require the outflow hydrograph as downstream 
boundary condition. The model relies upon physical characteristics such as rating curves 
and channel cross sections [Ponce, 1994]. However, it cannot handle the downstream 
disturbance that propagates upstream [Chow et al., 1988]. The method starts to diverge 
from the completely unsteady flow situation when affected by backwater effects and 
rapidly rising hydrographs [USACE 1994]. 

 
2.3.2 Floodplain Mapping and Flood Risk Assessment 

In the case of floodplain mapping and flood risk assessment problems, the ability to 
predict the spatial inundation extent of a flood event is an important criterion. A number of 
methods have been developed in the recent years to support this prediction. The available 
methods include the use of 1D HN model in the river channel with subsequent spatial 
projection in the floodplain using geographic information system (GIS) [Oberle, et al., 
2000; Shrestha et al., 2002; Tate et al., 2002]. The alternative to use of the spatial 
projection is a 1D representation of flow in the channel and a 2D representation in the 
floodplains [Bates and De Roo, 2000; Dhondia and Stelling, 2002].  

A number of applications of the fully 2D flow models have been reported in the recent 
years. In contrast to 1D flow models, which are based on the finite difference schemes, 
the 2D models include the application of finite element [Bates et al., 1996; Aronica et al., 
1998; Tucciarelli and Termini, 2000] or the finite volume methods [Beffa and Connell, 
2001; Connell et al., 2001].  

A number of researchers have made the comparisons of the 1D and 2D approaches of 
river flood inundation. Horritt and Bates [2002] mainly used satellite borne flood extent 
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observations for the calibration of a 1D and 2D models. The models produced similar 
levels of performance despite their different dimensionalities. Oberle [2004] made a 
detailed analysis of the inundation extent from an integrated system of an 1D model and 
GIS with a full 2D model. The analysis showed a very good match between the models 
with less than 5 cm water level difference in 51 percent of the areas and less than 10 cm 
difference in 78 percent of the areas.  

The scope of this thesis for prediction of the inundation extents is limited to the application 
of 1D HN model in the river channel with subsequent spatial projection of water levels in 
the floodplain using GIS. In a typical application the steady flow simulation is performed in 
a relatively short river reach using peak flood discharges. The model is calibrated with the 
observed flood marks in the river. The calibrated model is then used for the computations 
of water surface profiles for peak floods of different return periods.  

The computed water surface profiles can be integrated with the GIS technology for the 
depiction of inundation areas. This usually requires the development of a raster (grid) 
based digital terrain model (DTM), which is the representation of the topographical surface 
in terms of regularly spaced x, y and z coordinates. The DTM can be developed from the 
vector data such as river cross sections, contours and spot elevations. A number of 
methods for conversion of the vector data into the raster based DTM are available such as 
inverse distance interpolation. Alternatively, the vector data can first be interpolated to a 
triangulated irregular network (TIN), which is a surface representation, derived from 
interconnected and non-overlapping triangles. The TIN can then be converted to the 
raster based DTM. The DTM can also be prepared from high resolution Laser induced 
Detection and Ranging (LiDAR) data.  

The water surface profiles from the HN model can be combined with the DTM for 
floodplain modelling. The process of floodplain modelling usually consists of a number of 
steps. The detailed description of this process is available in Shrestha [2000], Oberle et al. 
[2000], Tate et al. [2002] and Oberle [2004]. A brief description is given below.  

i. The steady flow water surface profiles from the HN models are imported to the GIS 
environment.  

ii. Water surface TIN are formed based on water surface profiles and converted to water 
surface grids. 

iii. The water surface grids are subtracted from the digital elevation model to obtain the 
difference model.  

iv Inundation areas are obtained from the difference model in terms of vector polygons.  

 
The process is usually automated by a user interface between the hydrodynamic 
modelling system and the GIS such as HEC-GeoRAS [USACE, 2002]. For this purpose, 
the Institute of Water Resources Management, Hydraulic and Rural Engineering (IWK), 
University of Karlsruhe has developed a GIS-supported flood management system 
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[Oberle et al., 2000]. It consists of a structured graphical user interface for steady flow 
computation. The cross sections of the HN model were linked with lines of equal water 
surface elevation in the GIS. Based on the steady flow simulations and in combination 
with the digital terrain model at the sections, inundation grids and polygons can be 
depicted. 

The methodology can be extended further to undertake risk assessment by dividing it into 
the components of hazard and vulnerability [Gilard, 1996; Shrestha et al., 2002]. The 
general structure of the floodplain mapping and flood risk assessment model is shown in 
Figure 2.4.  
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Figure 2.4. Structure of the flood plain mapping and flood risk assessment model  

Adapted from Shrestha et al. [2002] 
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CHAPTER 3 

DATA DRIVEN MODELS: 
ARTIFICIAL NEURAL NETWORKS AND FUZZY SYSTEMS 

 

This chapter describes basic concepts of artificial neural network (ANN) and fuzzy 
systems in the context of data driven river flood modelling and uncertainty analysis 
applied in this thesis. The chapter starts with the general definition of the ANN and 
different constituents of a neuron of the ANN. An outline of a number of activation 
functions and different network architectures used in this study is given. The chapter also 
discusses practical aspects of the ANN model construction.  

Similarly, a general definition of the fuzzy systems is given together with an outline on a 
number of fuzzy numbers. The important principles for uncertainty analysis such as 
extension principle and alpha level cut are described. The chapter also includes a 
discussion on fuzzy rule based model and adaptive network based fuzzy inference 
system. A review of applications of the neural networks and fuzzy systems, especially with 
reference to river flow prediction and related uncertainty analysis are also included. 

 
3.1 Data Driven Modelling 

The notion of developing models from data has been a subject of significant research 
interest in water resources systems. Such models are mainly based on the artificial 
intelligence methods and can be broadly classified as data driven models. The rapid 
advancement in the information processing technologies together with availability of low 
cost computers have also brought these methods to hydrology and hydraulics. As a result, 
there has been a widespread application of artificial intelligence based data driven 
methods such as artificial neural networks, fuzzy logic, genetic algorithm, support vector 
machines etc., to solve water related problems. 

The application of data driven modelling in water resources systems can also be viewed in 
the framework of hydroinformatics systems, which has been described as an electronic 
knowledge encapsulator that models (part of) the real world for the simulation of physical, 
chemical and biological processes in water systems [Abbott, 1991]. The systems bring 
together computational hydraulics and hydrology, knowledge based systems, artificial 
intelligence based data driven methods, information and commutation systems including 
web-based technologies. In this context, this thesis considers hydraulic, hydrological and 
data driven models as complementary methods. 
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The data driven modelling constitute a universal approximation of the input and output 
signals, without explicitly taking into account the physical processes inside a system. 
These models are able to make abstractions and generalisation of the processes and 
physical insight into the system is necessary to understand the dependencies and 
correlation between the different data signals. The data driven methods provide fast and 
relatively easy means of model development for highly complex, nonlinear and dynamic 
systems. They are also capable of handling noise and uncertainties in data and can 
complement the physically based models, especially when underlying physical processes 
are not well understood and/or affected by uncertainties.  

The artificial neural networks (ANNs) and fuzzy systems based data driven methods have 
individually reached a degree of maturity where they are being applied to real world 
problems [Tsoukalas and Uhrig, 1997]. In this chapter, these methods are considered in 
more detail.  

 
3.2 Artificial Neural Networks 

Artificial neural networks (ANNs) are inspired by the capability of human brains to learn 
from highly complex nonlinear information in a parallel distributed network. They have the 
capability to learn from experiences and rapidly solve hard computing problems. This 
human brain inspired connectionist computing paradigm has been a subject of scientific 
investigation since the early days of computers. First introduced by McCulloch and Pitts, 
[1943], the rapid development of computer technology in the recent years has led to the 
advancement of this computing paradigm. Within the last decade it has experienced a 
huge resurgence due to development of more sophisticated algorithms and emergence of 
powerful computational tools [ASCE, 2000a]. In the recent years, the ANNs have emerged 
as practical technology with successful applications in many fields [Bishop, 1999]. 
Consequently, the ANNs have become one of the most popular data driven techniques 
with applications in diverse field such as modelling dynamical systems and time series 
forecasting, control systems and classification problems.  

The ANNs can generally be defined as parallel interconnected networks capable of 
identifying complex and non-linear systems. A number of alternative definitions of the 
ANNs are available. Haykin [1995] described a neural network as a massively parallel 
distributed processor that has a natural propensity of storing experimental knowledge and 
making it available for use. Knowledge is acquired by the network through a learning 
process. Interneuron connection strengths known as synaptic weights are used to store 
the knowledge. 

Schalkoff [1997] provided a generic definition of an ANN as a structure (network) 
composed of a number of interconnected units (artificial neurons). Each unit has an 
input/output characteristic and implements a local computation or function. The output of 
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any unit is determined by its characteristic, its interconnection to other units, and 
(possibly) external inputs. The network develops an overall functionality through training. 

A typical neuron of the ANN consists of the following features. 

• Input: Propagates input signals to the neuron 

• Synaptic weights: Interneuron connection that weighs their respective input 
signals. 

• Bias: Threshold that has an effect of either increasing or decreasing the net input. 

• Summing Junction: An adder for summing the input signals weighted by 
respective synaptic weights and bias. 

• Activation function: Modifies the signal from the summing junction using some 
given function.  

• Output: Provide the output signal of the neuron. 
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Figure 3.1. Structure of a neuron of an artificial neural network  
Adapted from Haykin [1994] 

 
The architecture of a neuron is defined by the connection of inputs, weights and bias 
together with the activation function. As shown in Figure 3.1, the neuron inputs x1, 
x2,………xn are connected to a neuron by weights wk1, wk2,………… wkn. All the weighted signals 
in the neuron are summed up in a junction to produce a net value uk. The net value may 
be increased or decreased by employing a bias bk. The activation function transforms the 
signal using some given function of uk. The input and the output in the neuron k may be 
expressed in the mathematical terms as follows: 

n

k kj j k
j 1

u w x b
=

= +∑               (3.1) 

( )k κy f u=                (3.2) 
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3.2.1 Activation Functions 

Activation functions constitute an important component of the neural network architecture, 
as it defines the output from a neuron. The commonly used activation functions and their 
modified forms used in this study are given below. 

i. Linear function: The function returns the neuron's output simply as a sum of all the 
weighted inputs of xk and bias. This may be modified by a factor k to provide different 
limiting amplitudes. This function is defined as: 

k ky ku  =                (3.3) 

 
ii. Sigmoidal function: The function produces an output in the range of 0 to +1. This 
function is of the form: 

( )k
k

1y
1 exp -u

=
+

              (3.4) 

 
iii. Hyperbolic tangent function: It is mathematically equivalent to tanh(uk) and produces 
an output in the range of -1 to +1. This function is given by: 

( )
1k

k

2y
1 exp -2u

= −
+

             (3.5) 

 
iv. Hyperbolic tangent + linear function: It can be used to combine non-linearity of the 
hyperbolic tangent function with the linear function using the weighing factor α. This 
function has of the form: 

( ) ( )1 1k k
k

2y u
1 exp -2u
⎛ ⎞

= − + −⎜ ⎟⎜ ⎟+⎝ ⎠
α α            (3.6) 

Figure 3.2 shows these four different activation functions for the data range of –2 to +2. It 
can be seen that the sigmoidal function and linear function provides lowest and highest 
limiting amplitudes respectively of the functions considered. The limiting amplitude range 
of the asymptotes of the sigmoidal and the hyperbolic tangent functions produce a 
'squashing effect' to the input signals. The effect limits the value of output of an ANN to 
values between the two asymptotes, which is useful in keeping the output of a neuron 
within a reasonable dynamic range [Tsoukalas and Uhrig, 1997]. If the output layers use 
sigmoidal or hyperbolic tangent functions, the outputs are restricted to a small range of 
values. The application of the linear function at the output layer makes it possible for the 
network to take any value.  
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The hyperbolic tangent and the sigmoidal functions are most commonly used in the 
hidden layers. The main advantage of these functions is differentiability, which is an 
important criterion for training neural network using gradient based algorithm. 
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Figure 3.2. Activation functions 

 
3.2.2 Multilayer Perceptrons 

The multilayer perceptrons (MLPs) are one of the most widely used types of neural 
networks, which can be trained in a supervised manner to solve highly non-linear 
problems. The structure of the MLPs may consist of a number of hidden layers between 
the input and output layers, each consisting of one or more nodes. The nodes in the 
consecutive layers are connected but not within the same layer. The output of a node in a 
layer is only dependent on the inputs it receives from the previous layer, the 
corresponding weights and bias and the activation function. Thus, there is a uni-directional 
flow of information from the input to the output layer and the MLPs are also often called 
multilayer feedforward networks. Figure 3.3 shows a typical MLP network consisting of 
one input layer, one hidden layer and one output layer. 

An MLP model exhibits nonlinearity given by a smooth nonlinear activation function 
(Haykin, 1994). The presence of a nonlinear activation function is an important 
characteristic, otherwise the MLP reduces to a linear model. The MLP usually consists of 
nonlinear functions such as sigmoidal or hyperbolic tangent functions at the hidden layers 
and linear activation function at the output layer. 

uk 

yk 
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Figure 3.3. Structure of the multilayer perceptron neural network 

 
3.2.3 Dynamic Neural Networks 

In static problems such as pattern recognition the input vector x can be trained to output 
vector y independent of time. However, in the real world dynamic problems, input and 
output vectors are no longer independent of time. For instance, in the river hydrodynamics 
temporal variation from upstream to downstream is an important consideration. 

While the standard MLP is popular in many areas of applications they lack the capability 
to learn the temporal patterns in dynamic systems. The capability of the MLPs in 
modelling such dynamic systems can be enhanced in a number of ways. In a simple 
configuration, the standard feedforward network may be used with a sequence of vectors 
in the input layer at certain time delays. This provides a memory kernel that stores past 
values in the input signal and the temporal pattern is converted to the spatial pattern. A 
tap delay operator can be used to provide the memory, which functions as an input pre-
processor when used only in the input layer. The tap delay operator may be further 
extended to the hidden and the output layers in the network, using multiple inputs of the 
same vector replicated across time. This produces very sophisticated neural topologies, 
which are useful for time series prediction and system identification. Such networks are 
commonly known as time delay neuron networks. An example of the temporal neural 
networks with time delays in the input layer is shown in Figure 3.4. 

Recurrent Networks also belong to the class of temporal networks, and consist of 
feedback loop in the network topology (Figure 3.5). The information from the output of a 
neuron is circulated back in the network using a feedback loop subjected to time delays. 
The feedback allows the network to recirculate signals from the past, providing dynamic 
states to the network. A recurrent ANN maps the signal from state to state, the network 
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input is the initial state and the mapping is through one or more states to form the network 
output [Schalkoff, 1997].  

The feedback may circulate information through the same level of neuron (local feedback) 
or through neurons in preceding layers (global feedback). Partially recurrent networks 
recirculate past outputs of a neuron with a feedback loop to the current or previous layers. 
For example the first layer outputs of a feedforward network can be recirculated to the 
same layer inputs. Such networks are usually referred to as Elman networks. The 
recurrent connection allows the Elman network to both detect and generate time varying 
patterns. If the network uses totally interconnected recurrent network topology, the 
network is often referred to as Hopfield net. Input vectors are used as initial conditions to 
the network, which recurrently updates until it reaches stable output vector [Demuth and 
Beale, 2004].  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

Figure 3.4. Time delay neural network 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5. Recurrent neural network  

 
3.2.4 Radial Basis Function Networks 

The radial basis function network (RBFN) is related to a feedforward network with a 
modified hidden layer and training algorithm, which may be used for mapping purpose 
[Schalkoff, 1997]. The network has a three layer architecture consisting of one input layer, 
one hidden layer and one output layer. The hidden layer of the RBFN consists of 
Gaussian activation function and the output layer consists of linear activation function. The 
structure of a RBFN network is schematised in Figure 3.6. 

The hidden nodes are the most important processing elements of the RBFNs, which are 
radially symmetrical and consist of a radial centre vector, and a distance measure. The 
most common form of the Gaussian activation function in the hidden layer of the RBFNs 
can be expressed as: 
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( )k j kju x w= −
2
            (3.7a) 

ku
ky = e σ− 22              (3.7b) 

 
where, wkj is the weight vector corresponding to the input vector xj of the network and σ is 
the parameter to control the spread of the function.  

In contrast to the MLP, the weight vectors are not connected to the input vectors but are 
used to calculate the distance of the input space from the radial centre. These weights are 
used in conjunction with the Gaussian function to determine the centre of the units 
receptive field.  

The approximation of the input-output relationship is based on obtaining a suitable 
number of nodes in the hidden layer and by positioning them in the input space where the 
data is mostly clustered. The RBFN design and training consists of the determination of 
the RBFN unit centres and hidden layer weights. The number of nodes in the hidden layer 
is determined during training process such that the output of the neuron attains a design 
goal. 

 
Figure 3.6. Structure of radial basis function network (RBFN) 

 
3.2.5 Neural Network Training 

The training process of the ANN involves the adjustment of weights and biases until the 
specified performance criteria is met. This is similar to the idea of calibration, which is 
integral part of hydrological and hydrodynamic modelling. The main difference is that the 
parameters of the hydrological or hydrodynamic models have a physical or conceptual 
meaning, which is lacking in the case of weights and biases of the neural networks.  
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The ANN training may consist of unsupervised or supervised methods. The unsupervised 
training consists of organising the data in terms of suitable classes or clusters. The self-
organizing feature maps, also known as Kohonen maps [Kohonen, 1990] use 
unsupervised learning method. In supervised training, the network performance is judged 
by comparing the desired outputs corresponding to the target vector with the actual 
network outputs. There are a number of algorithms available for supervised training. The 
most popular algorithm for training ANNs are the methods based on the backpropagation 
algorithm. More details on the some of the training algorithm are given in Appendix A.  

 
3.2.6 ANN Model Construction 

The construction of an ANN based model is an iterative process which consists of 
selection and preprocessing of input and output variables, designing the ANN 
architecture, training, cross validation and testing. There are no fixed rules for developing 
an ANN, however, general framework can be based on previous successful applications 
in engineering [ASCE, 2000a]. The basic framework for the ANN model construction is 
shown in Figure 3.7. 

 

 
 

Figure 3.7. ANN model construction  
Adapted from Gautam [2000] 
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3.2.6.1 Data Selection and Pre-processing  

The selection of appropriate input and output datasets is an important consideration in the 
ANN modelling. For the ANN model to be able to generalise the system, it is important 
that the set of data contains different conceivable events. Although an ANN does not 
consider the physical basis of the system, it is necessary to understand different physical 
processes and sub-processes occurring inside the system. The physical insight into the 
system helps in understanding the dependencies of different datasets, leading to a better 
selection of input variables. This helps in including key variables into the training process 
and preventing inclusion of unnecessary and irrelevant information. For instance, a large 
number of unnecessary inputs will lead to a complex model, and drastically slow down the 
training process. In such a situation, a more efficient training can be performed when the 
input variables that do not have significant effects on the performance of the ANN are 
removed.  

Statistical analysis of the input and output spaces can also be performed to identify the 
underlying relationship of the variables like linear trends, seasonality, outliers etc. For 
example, cross correlation analysis may be performed between the input and output 
spaces to identify the corresponding lag times. When the input vectors are highly 
correlated and redundant, principle component analysis may be performed to reduce the 
dimension of the input space.  

Data normalisation is another important step in pre-processing. Typical data normalisation 
is in the range between [0 – 1.0] or [-1.0 – 1.0]. If the ANN is to be used for extrapolation, 
alternative normalisation ranges between [0.1 - 0.9] or [0.2 – 0.8] is suggested [Imrie et 
al., 2000; Dawson et al., 2002]. The activation function also provides the ‘squashing effect’ 
to the inputs and the effect is higher for the higher data range compared to lower data 
range. Due to this effect, the ANN may underpredict when the data in the excess of 
training range are used for model simulation. The lower normalisation range can 
accommodate the data that are in excess of training datasets and helps in limiting the 
squashing effects of the activation functions.  

 
3.2.6.2 Design of an ANN Model 

The design of an ANN model consists of the selection of appropriate network architecture 
and training algorithm. Typical applications involve the training of suitable network 
architectures such as multilayer perceptron, or recurrent networks using the 
backpropagation or the Levenberg Marquardt algorithm. The design of the network 
architecture also requires specification of factors, such as the number of neurons in the 
different layers, the number of hidden layers, and the type of activation functions. An 
optimum ANN model can be considered as the one with the best performance while 
retaining simple and compact network architecture. However, the design of optimum 
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network architecture with number of layers and neurons is a tedious procedure, which 
usually involves trials and errors. A network with too few neurons cannot approximate the 
functional relationship between the input and output. An excessive number of neurons 
may cause a problem called overfitting. The overfitting leads a network that performs very 
well for the training dataset but becomes unable to generalise new situations (Figure 3.8). 
A useful strategy is to start with a simple network architecture with minimum number of 
layers and neurons. The number of layers and neurons can be increased to improve the 
performance.  

 
3.2.6.3 Training, Cross Validation and Testing 

The training of ANNs involves the presentation of inputs and targets to the network and 
adjusting weights until the desired network performance is achieved. However, the 
training process should approximate the functional relationship between the input and 
output and avoid overfitting. For this purpose the available data is generally partitioned 
into three parts for training, cross validation and testing. The validation sets are used 
during the training process to monitor the generalisation capability. Normally, the errors of 
the validation datasets decrease during the initial training iterations but start to rise as the 
network overfits the training data (Figure 3.9). When the validation errors increase for a 
number of iterations in a criteria specified by ‘early stopping’, the training process is 
stopped and the iteration with the least validation error is used. The test sets are 
independent sets of data for evaluation of the performance of the trained networks. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.8. Well fitted and overfitted 
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Figure 3.9. Performance of training  
and validation sets  
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3.3 Fuzzy Systems 

Fuzzy systems such as fuzzy sets and fuzzy logic are based on the concept of ‘partial 
truth’, often encountered in the real world problems. In contrast to the classical set theory, 
defined as either belong to or does not belong to a set, the boundary of a fuzzy set is 
vaguely defined to take into consideration of the partial truth. Zadeh [1965] introduced the 
fuzzy set as a class of object with a continuum of grades of membership. Hence, the 
classical notion of binary membership has been modified for the representation of 
uncertainty in data. 

Fuzzy sets are used to describe the uncertainty and imprecision in a non-probabilistic 
framework [Bárdossy and Duckstein, 1995]. The transition between the membership and 
non-membership can therefore be gradual due to imprecisely and vaguely defined 
boundaries of the fuzzy sets. This property makes the fuzzy set theory viable for the 
representation of uncertainty in a non-probabilistic form [Maskey, 2004]. 

Since, the pioneering work of Zadeh [1965], the fuzzy systems have emerged as powerful 
tools with wide range of applications. Fuzzy systems represent one of the most influential 
concepts in engineering and operational research such as in the representation of 
uncertainty, system modelling and data analysis [Wolkenhauer, 2001].  

 
3.3.1 Membership Functions 

The membership functions are the essence of fuzzy sets, as they offer flexible means of 
defining the degree of belongingness to a set. The degree of belongingness or 
membership may take any value between and including 0 and 1, with no membership at 0 
and full membership at 1. The interval between 1 and 0 contains infinity of numbers, which 
represent partial membership to a given set. In mathematical terms, assuming X as a 
universe set of x values (elements), then A as a fuzzy subset of X, in ordered pairs is 
given by: 

( )( ) ( ) [ ]{ }A AA x, x ; x X , x ,= ∈ ∈ 0 1µ µ            (3.8) 

 
where, ( )A xµ  is the grade of membership of x in the fuzzy subset A.  

A membership function can be of any shape depending on the type of a fuzzy set it 
belongs to. The only condition a membership function must satisfy is it should vary 
between 0 and 1. 

 
3.3.2 Fuzzy Numbers 

Fuzzy numbers are normal and convex fuzzy sets, whose numerical values in the domain 
are assigned by specific grades of membership. While Boolean operations such as union 
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and intersection can be carried out on any fuzzy sets, the fuzzy numbers can be used to 
perform arithmetic operations such as addition, subtraction, multiplication and division. 
The commonly used fuzzy numbers are given below and shown in Figures (3.10)-(3.13). 

 
i. Triangular fuzzy number: It is based on fuzzy number A = (a, b, c) with a ≤ b ≤ c. The 
interval (a, c) is the support of the triangular fuzzy number. This membership function is 
given by: 

( )A

x - a a x b
b - ax
c - x b x c
c - b

x c

≤⎧
⎪
⎪ ≤ ≤
⎪= ⎨
⎪ ≤ ≤
⎪
⎪ ≥⎩

0          if x a

    if 

    if  

0          if  

µ              (3.9) 

 
ii. Trapezoidal fuzzy number: The function is based on fuzzy number A = (a, b, c, d), 
where a ≤ b ≤ c ≤ d. The interval (a, d) is the support of the trapezoidal fuzzy number. This 
membership function is given by: 

( )A

x - a a x b
b - a

x b x c
d - x c x d
d - c

x d

≤⎧
⎪
⎪ ≤ ≤
⎪
⎪= ≤ ≤⎨
⎪
⎪ ≤ ≤
⎪
⎪ ≥⎩

0          if x a

    if 

1         if 

    if 

0 if

µ             (3.10) 

 
iii. Generalised bell fuzzy number: It is based on fuzzy parameters (a, b, c), where, b is 
usually positive and c locates the centre of curve. This membership function is given by: 

( )A b
1x

x c1
a

=
−

+
2µ             (3.11) 

 
iii. Gaussian fuzzy number: The function based on fuzzy parameters (c, σ), where, c 
locates the centre of the curve and σ represents the spread. This membership function is 
given by: 

( )
( )x c

A x e
− −

=

2

22σµ             (3.12) 
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Figure 3.10. Triangular  
fuzzy number 

          

Figure 3.11. Trapezoidal  
fuzzy number 

 

 

Figure 3.12. Generalised bell  
fuzzy number 

 
 
 
 
 
 
 
 
 

Figure 3.13. Gaussian  
fuzzy number 

 
The linear function used in the definition of the triangular fuzzy numbers may be replaced 
by a monotonic function. This is called Left-Right or L-R representation of fuzzy numbers 
[Dubois and Prade, 1980]. According to the modified definition [Bárdossy et al., 1990], a 
fuzzy set A of the set of real numbers is called L-R fuzzy number if the membership of x is 
calculated as follows (Figure 3.14): 

( )A

m - xL x m,
x

x - mR x m,

⎧ ⎛ ⎞ ≤ >⎜ ⎟⎪ ⎝ ⎠⎪= ⎨
⎛ ⎞⎪ > >⎜ ⎟⎪ ⎝ ⎠⎩

     for 0

     for 0

α
α

µ
β

β

         (3.13) 

 
where, m is the central value and α and β are the left and right spreads respectively. L and 
R are the left and right references (Figure 3.15), given by continuous strictly decreasing 
functions defined on [0, 1] and: 

( ) ( ) z
L z R z

z
≤⎧

= = ⎨ >⎩

1 if 0
0 if 1

           (3.14) 

 
The fuzzy set can be written as: 

( )LR
A m, ,= α β              (3.15) 
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Figure 3.14. L-R fuzzy number 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.15. L-R fuzzy functions 

 
3.3.3 Extension Principle 

The extension principle provides a general method for extending crisp mathematical 
operations in order to deal with the fuzzy quantities. The mathematical definition of the 
extension principle from Bárdossy and Duckstein [1995] is as follows.  

Let X and Y be two sets, and f a point to point mapping from X to Y. 

( )f : X Y x X f x y Y→ ∈ = ∈for every          (3.16) 

 
The operator f can be extended to operate the fuzzy subset of X. Let A be the fuzzy 
subset of X with membership function ( )A xµ , then the image of A in Y is the fuzzy subset 

B with the membership function. 

( )
( ) ( ){ }

( )
A

B

sup x ; y f x , x X
x

x X f x y

⎧ ∈ ∈⎪= ⎨
∈ =⎪⎩

 

0     if there is no such that

µ
µ         (3.17) 

 
where sup is the supremum operator (the supremum is the least upper bound). 

 
3.3.4 Alpha Level Cut 

The alpha level cuts (α – level cuts) are based on the extension principle and can be used 
for resolving the fuzzy sets in terms of crisp sets. Parameterisation of the shape of a fuzzy 
number by α levels offer a convenient way of transforming fuzzy arithmetic into simple 
arithmetic operations [Tsoukalas and Uhrig, 1997]. When the membership function of a 
fuzzy set is normal and convex, the interval arithmetic can be used to horizontally cut the 
fuzzy membership function at a finite number of α - levels between 0 and 1. 
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Mathematically, let A be the fuzzy subset of X with membership function ( )A xµ . Then, 

alpha cut (Aα) of the fuzzy subset A is the set of elements, which have at least a 
membership value greater than or equal to α.  

( ){ }AA x X , x= ∈ ≥α µ α            (3.18) 

 
Figure 3.16 shows an example of fuzzy membership function with α – level cut and its 
support. Let an α - level cut intersects at two points corresponding to x1 and x2 

( )x , x X∈1 2 , respectively. Then the set Aα contains all possible values of the variable X 

including and between x1 and x2 and are referred as lower and upper bounds of the α – 
level cut. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.16. Fuzzy membership function and α level cut 

 
3.3.5 Fuzzy Rules 

Fuzzy rules are conditional statements that describe the dependence of one variable on 
another that comprise of fuzzy logic. The fuzzy rules are constructed in the form of ‘if-then’ 
statements such as ‘if x is A’, ‘then y is B’, where x and y are the variables defined on the 
values A and B respectively. The ‘if x is A’ is the antecedent part of the rule and the ‘then 
y is B’ is the consequent part of the rule. In general form, a set of arguments Ai,k in the 
form of fuzzy sets with membership functions ( )Ai ,K xµ  and a consequent Bi may be 

expressed in the following form: 

1 1 2 2is is is THENi , i , k i ,k iIF a A a A ... a A B         (3.19) 

 
In the above statement, ak represents the crisp inputs to the rule and the operator  
stands for AND or OR or XOR. In contrast to the crisp rule, fuzzy rules allow partial and 
simultaneous fulfilment of rules [Bárdossy and Disse, 1993]. The verbal rules are often 
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translated into fuzzy rules consisting of linguistic variables. The linguistic variables offer a 
complementary language to the analytical approaches [Tsoukalas and Uhrig, 1997]. The 
linguistic variables of the fuzziness may be of the forms such as LOW, MEDIUM, HIGH, 
POOR, SATISFACTORY, FAIR, GOOD, EXCELLENT etc. For example, the fuzzy rule 
consisting of linguistic variables may be expressed in the following form. 

IF inflow is HIGH AND reservoir level is FULL, THEN outflow is HIGH     (3.20) 
 
 
3.3.6 Fuzzy Rule Based Model 

A fuzzy rule-based model (FRBM) consists of mapping the relationship between causative 
and resultant data using a collection of fuzzy rules. The process of formulating the input 
output mapping using fuzzy logic is referred to as the fuzzy inference. The FRBM also 
known as the fuzzy inference system consists of membership functions, fuzzy rules and 
fuzzy operators. An important advantage of the FRBM is, that the physical processes can 
be expressed in the form of linguistic variables and rules. The FRBM is most suitable 
where there is very little information or the available information is highly ambiguous 
[Aronica et al., 1998]. The formulation of fuzzy rule based models consists of the following 
steps.  

i. Fuzzification of the input variables: The input variables are subjected to fuzzification, 
which is the process of determining the degree to which the inputs belong to a fuzzy set in 
terms of membership function. The input variables are compared with the membership 
functions on the premise part to obtain the membership values of each linguistic label (in 
the interval between 0 and 1). 

ii. Application of fuzzy operators: In contrast to the traditional rule-based systems where 
crisp rules are used, fuzzy rules are satisfied to varying degrees of weights measured on 
the continuous scale [0,1] depending on the conditions of the rule. The truth value 
corresponding to the fulfilment of the conditions of the rule for a given premise is called 
the degree of fulfilment (DOF) of the rule [Bárdossy and Duckstein, 1995]. The DOF is 
determined based on the membership values of the arguments and logical connector 
used. 

iii. Combination of rule responses: Normally several logical rules of the ‘IF – THEN’ 
form are partially satisfied producing several associated fuzzy consequences. The overall 
response from a rule system can be derived from the combination of the relevant 
individual rule responses. The commonly used combination methods are minimum, 
maximum and additive methods. 

iv. Defuzzification: The combined rule consequence is converted to a crisp set, using a 
process of transforming a fuzzy consequence into a crisp consequence called 
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defuzzification. The commonly used defuzzification methods include mean of maxima and 
centroid of area. 

The two commonly used fuzzy inference methods include Mamdani type and Sugeno type 
methods. The Mamdani type inference system uses a fuzzy output membership function. 
After the application of an implication method, the fuzzy sets from the output variables 
need to be defuzzified. The Sugeno type inference system uses a nonfuzzy membership 
function in the output part, in terms of either constant or linear function. The nonfuzzy 
output makes this method suitable for optimisation and adaptive techniques  
[The Mathworks Inc., 2004a]. 

 
3.3.7 Rule Construction 

Rule construction is the most important part in the process of developing fuzzy rule based 
models. Fuzzy rules may be constructed based on the available knowledge about the 
system or the available data. There are basically the following ways to obtain the fuzzy 
rules:  

i. The rules are defined by expert knowledge directly. 

ii. The rules are assessed based on the combination of expert knowledge and available 
input/output data. 

iii. The rules are derived only from the available input/output data of the system. 

In simple systems, the rules, which are the building blocks of a FRBM, can be obtained 
from expert knowledge. In cases where input/output data are available, it may be more 
efficient to obtain rules from the available datasets. Analogous to neural networks training, 
the fuzzy rules can be formulated from the historical data using training sets. Bárdossy 
and Duckstein [1995] proposed three techniques to obtain fuzzy rules based on training 
datasets. These include the counting algorithm, the weight counting algorithm, and the 
least square algorithm. Jang [1993] proposed the adaptive network based fuzzy inference 
system that identifies parameter of the network through a hybrid learning rule combining 
the backpropagation gradient-descent with least square method. This method is briefly 
described in the following subsection. 

 
3.3.8 Adaptive Network Based Fuzzy Inference System 

Adaptive network based fuzzy inference system (ANFIS) is a fuzzy inference system 
implemented in the framework of adaptive networks [Jang, 1993; Jang and Sun, 1995]. 
The network structure consists of nodes and directional links through which nodes are 
connected. The part or all of the nodes are adaptive, which means the parameters 
pertaining to the nodes can be adjusted to minimise the errors. The network architecture 
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of the ANFIS is similar to the feedforward neural network with supervised learning 
capabilities. Similar to the adjustment of weights and biases in the neural networks, the 
premise parameter of the input membership function and the consequent parameters of 
the output membership functions are adapted in the ANFIS. 

Fundamentally, ANFIS is a network representation of a Sugeno-type fuzzy system, 
endowed with neural network learning capabilities [Tsoukalas and Uhrig, 1997]. In a 
Sugeno-type fuzzy system, the ‘if then rule’ of the system is expressed as the output of 
each rule in a linear combination of input variables ak plus a constant term pk: 

1 1 2 2 0 1 1 2 2IF is is is THENi , i , k i ,k k ka A a A ... a A f p p a p a .... p a= + + + +      (3.21) 

 
ANFIS can construct a network for the realization of these rules based on the input-output 
datasets. The structure of the ANFIS consists of five layers special network topology 
[Jang, 1993; Jang and Sun, 1995]. The structure of the ANFIS as shown in Figure 3.17 is 
described below. 

 
Figure 3.17. Structure of ANFIS  

Adapted from Jang [1993] 

 
Layer 1: The layer is the adaptive (square) node consisting of a membership function with 
a node function. The outputs of this layer are the membership values of the premise part. 
Membership functions commonly used include generalized bell, Gaussian, triangular and 
trapezoidal fuzzy numbers.  

 
Layer 2: It consists of a fixed (circle) node denoted by π. Each node in this layer 

calculates the degree of fulfilment, iν  by multiplication:  

( ) ( ) ( )
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1 2

1ν µ µ µ         (3.22) 
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Layer 3: The layer also consists of a fixed (circle) node, each node represented by N. The 
ith node in this layer calculates the normalized DOF as the ratio of the ith rule’s DOF to the 
sum of all rules DOF: 

1 2

1i
i

k

, i : k
...

νν
ν ν ν

= =
+ + +

          (2.23) 

 
Layer 4: It consists of an adaptive (square) node with a node function given by:  

( )i i i i k kO * f p p x p x .... p x= = + + + +0 1 1 2 2ν ν          (3.24) 

 
where iν  is the output of layer 3 and (p0, p1, p2 ….. pk) are the parameter sets referred to as 

consequent parameters. 

 
Layer 5: It consists of a single node that aggregates the overall output as the summation 
of all incoming sets:  

i ii
y * fΣ ν=              (3.25) 

 
The ANFIS thus formulated needs to be trained for the mapping of input output datasets. 
The training consists of the tuning of the premise and consequent membership function 
parameters. Optimisation algorithms like backpropagation and least square algorithm may 
be used for the tuning of membership functions parameters of the ANFIS.  

The ANFIS implementation in the MATLAB Fuzzy logic toolbox [The Mathworks Inc., 
2004a] makes use of backpropagation to learn the premise parameters and least mean 
square estimation to determine the consequent parameters. The learning procedure has 
two parts: in the forward pass the functional signals go forward till layer 4 and the 
consequent parameters are identified by least mean square procedure. In the backward 
pass, the errors propagate backwards and the premise parameters are updated by 
gradient descent [Jang, 1993]. The hybrid learning procedure is iterated until the errors 
reach the specified tolerance limit [The Mathworks Inc., 2004a]. 

 
3.4 Review of Applications  

In the recent years, there has been a wide range of application of artificial neural networks 
and fuzzy systems in hydrology and hydraulics. Some of the applications with reference to 
river flood prediction are given in the following subsections. 
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3.4.1 ANN Applications 

The application of ANN based models has been gaining in popularity in recent years in the 
field of hydrology and hydraulics. A review of the application of ANNs in hydrology can be 
found in the ASCE Task Committee on Application of Artificial Neural Networks in 
Hydrology [ASCE, 2000b]. Typical applications involve the training of two to three layer 
networks using suitable network architectures like multilayer perceptron, radial basis 
function networks or recurrent networks. The performances of the ANNs have been found 
to be comparable with other data driven modelling approaches [Lekkas et al., 2001; 
Sivakumar et al., 2002]. 

Several researchers have demonstrated the application of the ANNs for rainfall-runoff 
modelling [Minns, 1996; Dawson and Wilby, 1999; Gupta et al., 2000; Solas et al., 2000; 
Shamseldin et al., 2002]. Most of the applications in this area involve training of runoff 
from a catchment based on the observed precipitation data. Frequently, supplementary 
information such as temperature, snowmelt have been added. The results of the studies 
show that the ANNs provide efficient tools for modelling rainfall runoff processes. 

Another popular area of application of the ANNs is the streamflow simulation without 
involving precipitation as input. A typical application in the streamflow simulation involves 
the prediction of flows or water levels at a downstream location in a river reach based on 
the flows or water levels at upstream locations [Thirumalaiah and Deo, 1998; Imrie et al., 
2000; Liong et al., 2000; Lekkas et al., 2001; Sivakumar et al., 2002]. Frequently, inflows 
from the tributaries are also added and the ANNs are used to make predictions based on 
the travel time from upstream to downstream location in a river reach. The results of the 
studies indicate that the ANNs can provide quick and reliable forecasts, particularly when 
they are desired over a certain range of values.  

There are a number of applications of the ANNs in modelling the nonlinear relationship 
between the stage and discharge values [Tawfik et al., 1997; Bhattacharya and 
Solomatine, 2000; Jain and Chalisgaonkar, 2000; Sudheer and Jain, 2003]. The 
applications involve the training of ANNs for discharges based on the water levels. The 
results of the applications show that the ANNs are superior to single value stage 
discharge relationship.  

Hybrid modelling by integrating neural networks with numerical models has also been a 
theme of several studies. The outline of different approaches of integrating the numerical 
models and ANN has been given by van den Boogaard and Kruisbrink [1996]. The 
approaches include; (i) the training of the ANNs based on the observations and/or 
simulated results from the numerical models, (ii) with priori knowledge such as continuity 
equations as constraints, (iii) updating of output variables of numerical models (error 
correction), (iv) as a pre-processor for numerical models, and (v) ANNs embedded into 
the numerical schemes.  
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The recent applications of the integrated ANNs and numerical models include 
encapsulation of the numerical models [Dibike et al., 1999] and the simulation of two-
dimensional flow [Dibike and Abbot, 1999]. There are also a number of applications of the 
ANNs for updating the output variables of the numerical model [Abebe and Price, 2000; 
Babovic et al., 2001; Wright and Dastorani, 2003]. The application of ANNs embedded 
into numerical schemes include the generation of wave equation from hydraulic data, and 
an ANN learning scheme that mimic the numerical scheme for the simple cases of one 
and two dimensional flow problems [Dibike, 2002]. 

An important criterion in application of ANNs for flood flow simulation is the prediction of 
flows beyond the range of training datasets. Minns [1996] applied ANNs to both real and 
theoretical catchments and found that the peak flows were considerably underestimated. 
Thirumalaiah and Deo [1998] used ANNs for river stage forecasting and found that 
although lower water levels were predicted fairly accurately, higher water levels were 
underestimated. Solas et al. [2000] used average, dry and wet years mean annual 
precipitation in a rainfall-runoff modelling application of ANNs and observed that high 
flows were overestimated for the wet years. 

The reasons that the ANNs underestimate or overestimate extreme flows may lie in the 
network structure used and range of training datasets. Thirumalaiah and Deo (1998) 
suggested that this could be due to a smaller number of training patterns for higher water 
levels. Minns [1996] emphasised the need to ensure that the training datasets actually 
contain all conceivable events.  

A number of methodologies useful for making predictions beyond calibration range are 
outlined in Imrie et al. [2000] and Shrestha et al. [2005]. This includes the scaling of the 
input and output datasets and the use of different activation functions at the hidden layers. 
In the ANN applications the inputs data are generally normalised in the range such as  
[0 – 1.0] or [-1.0 – 1.0]. In order to accommodate the data beyond training range, 
alternative normalisation ranges have been suggested. The scaling of training data in a 
range between [0.1 - 0.9] or [0.2 – 0.8] as compared to the range [0.0 – 1-0] have been 
reported to be effective means of improving generalisation [Imrie et al., 2000; Dawson et 
al., 2002]. This can accommodate validation and test datasets in excess of training 
datasets. 

The upper and the lower limits of activation functions such as [0,1] or [-1,1] also provide a 
limiting amplitude to the datasets and affect the generalisation capability of the ANNs. 
Imrie et al. [2000] investigated the effects of different output activation functions for 
improving generalisation using cascade correlation network building strategy. Shamseldin 
et al. [2002] examined the significance of different nonlinear activation functions for the 
hidden and the output layers in the context of overall performance of the multilayer 
feedforward networks. An alternative approach is the application of a nonlinear activation 
function at the hidden and the linear function at the output layers. The application of linear 
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activation in the output layers enables the network to take any range of values [Demuth 
and Beale, 2004]. 

 
3.4.2 Fuzzy Systems Applications 

The application of fuzzy systems in hydrology has been gaining in popularity in the recent 
years. There are a number of applications of fuzzy rule based models in field of hydrology 
in general and river flow forecasting in particular. Bárdossy [1996] used the FRBM for the 
description of elements of the hydrological cycle consisting of infiltration, surface runoff 
and unsaturated flow. In this application, the fuzzy rules derived according to the expert-
specified structure using synthetical datasets were found to provide a robust tool, which 
could handle non-linearities, without requiring a prescribed functional structure.  

Bárdossy [2000] used the fuzzy rules for flood forecasting problem. Fuzzy rules were 
derived from observed flood events using a combinatorial optimization technique for 
forecasting peak discharges and daily discharge are in two catchments. Stüber et al. 
[2000] used the FRBM to develop a streamflow simulation model. The model included the 
upstream flows as inputs and rules are colloquially formulated based on the expert 
knowledge for the prediction of downstream flows. The study further looked at an 
automated generation of fuzzy rule rainfall-runoff model in combination with the 
optimisation algorithm.  

One of the main advantages of using the fuzzy systems is their ability to handle the 
uncertainty in data and model parameters. Maskey [2001] used a fuzzy set theory based 
method to quantify the uncertainty in a flood forecasting model. The method uses experts’ 
judgements on quality and importance of uncertain parameters using linguistic variables. 
Maskey [2004] used a probability theory-based Monte Carlo method and the fuzzy set 
theory-based extension principle method to analyse uncertainties in a flood forecasting 
model. The disaggregation of the precipitation time series was used for the analysis of the 
uncertain temporal distribution of precipitation. The study found that output uncertainty 
due to the temporal distribution can be significant as compared to the uncertainty from 
precipitation magnitude. Abebe [2004] used the FRBM to characterise the overall 
prediction uncertainty of a physically based model. The errors between model predictions 
and corresponding historical observations are used to define extract anticipatory fuzzy 
rules that relate the expected prediction errors.  

Calibration is an important process in the application of hydrological and hydrodynamic 
models. Aronica et al. [1998] used the fuzzy rules for the calibration of a hydrodynamic 
model to address the problem of uncertainty in data. They expressed the model 
performance criteria such as peak discharge, in terms of ‘if/then’ fuzzy rules to derive the 
likelihood measure. Yang et al. [2004] applied the fuzzy multiobjective function for a 
distributed rainfall-runoff model calibration using only three important features of a 
hydrograph (time to peak flow, peak flow, and total runoff volume). The fuzzy 
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multiobjective function describes the acceptability level ranging from 0 to 1 for ‘‘good’’ to 
‘‘bad’’, the multiobjective function were minimised during model calibration. 

Many of the hydrological applications involve the use of statistical regression analysis of 
the independent and dependent variables. The variables are quite often characterised by 
uncertainties and the fuzzy regression analysis provides an alternative tool for the 
definition of the uncertainties. Bárdossy et al. [1990] proposed the application of fuzzy 
regression as an alternative to statistical regression analysis, when the relationship 
between the variables is imprecise, data are uncertain and sample size is insufficient. The 
paper also outlined a number of areas of applications of fuzzy regression in hydrology 
including discharge curves, water quality parameters and soil hydraulic permeability. 
Özelkan and Duckstein [2000] used a multi-objective fuzzy regression modelling of 
conceptual rainfall runoff processes. The study concluded that the multi-objective fuzzy 
regression has an excellent potential for rainfall runoff modelling for the general problem 
of reducing possible model error in the case of uncertain data.  

There are also a number of applications of the neuro-fuzzy system in river flow 
forecasting. Gautam [2000] used the autoregressive exogenous input fuzzy inference 
system (ARXFIS) for the rainfall runoff modelling. The ARXFIS is a Sugeno type dynamic 
fuzzy system obtained by subtractive clustering of data. The ANFIS was used to fine tune 
the parameters. Bazartseren et al. [2003] compared the performance of ANNs and neuro 
fuzzy system for the short term water level prediction. The result of the study showed both 
the ANNs and neuro-fuzzy systems performed comparably well, explicitly outperforming 
the linear statistical models for the prediction horizon.  
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CHAPTER 4  

COMPLEMENTARY HYDRODYNAMIC, HYDROLOGICAL AND 
DATA DRIVEN MODELS 

 

This chapter considers a parallel complementary approach of hydrodynamic, hydrological 
and data driven models for river flow prediction. The methodologies discussed in chapters 
2 and 3 are used to develop hydrodynamic, hydrological and data driven models 
independently. The hydrodynamic numerical (HN) model used in this study includes a 
physically based one-dimensional (1D) model. The hydrological model consists of a 
simplified distributed Muskingum Cunge model. The data driven models considered in this 
study include the artificial neural network (ANN) and the adaptive network based fuzzy 
inference system (ANFIS).  

A reach of the Rhine River from Maxau to Worms gauging stations together with the 
Neckar River from Heidelberg station to Rhine confluence is taken as the study area. All 
four models are separately developed to predict water levels at a downstream gauging 
station at Worms. The performances of each of these independently developed models 
are assessed and the strengths and limitations of each of these approaches are 
considered in detail. The important aspects considered include data requirement, forecast 
horizon and time required to develop each of these models. In addition, the capabilities of 
these models to predict beyond the range of calibration datasets are assessed. A 
complementary modelling approach is discussed, so that the strength of one model can 
complement the other.  

 
4.1 Study Area  

The study is conducted in the section of the Rhine River in South - Western Germany in 
the region of Heidelberg, Karlsruhe, Mannheim and Ludwigshafen. The area consists of a 
reach of about 80 km length from the gauging station Maxau (Rhine km 362.30) to the 
gauging station Worms (Rhine km 443.40) as shown in Figure 4.1. The reach lies in the 
upper Rhine section from Basel (Rhine km 170) to Bingen (Rhine km 530), which flows 
through the plain between the mountains of the Black Forest and the Vosges. This section 
of the Rhine River receives a major tributary the Neckar River at Mannheim (Rhine km 
428.20). Hence, the 26 km reach of the Neckar River from the gauging station Heidelberg 
(Neckar km 26.10) to confluence is also included in the study. The catchment area of the 
Rhine River at the Worms station and the Neckar River at the Heidelberg station are 
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68827 km2 and 13783 km2 respectively [LFU, 2000]. There are no major tributaries in 
either of the reaches. The Rhine river reach does not consist of any structures, while the 
Neckar reach consists of a number of barrages and navigation canals.  
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Figure 4.1. Study reach of the Rhine and Neckar River 

 
4.2 Available Data 

The basic data required for the physically based models are flow time series and river 
cross sections. Similarly, only time series data are required for the data driven modelling 
approaches. The river cross sections consist of river channels and floodplains at 100 m 
intervals. The cross section data are obtained from the following sources:  

• State Office for Land Survey Baden – Württemberg  
(Landesvermessungsamt Baden – Württemberg) 

• Federal Waterways Engineering and Research Institute  
(Bundesanstalt für Wasserbau BAW), Karlsruhe  

• Water and Navigation Office 
(Wasser und Schifffahrtsamt), Heidelberg 

The flow data are obtained from the Water and Navigation Administration (Wasser und 
Schifffahrtsdirektion) South-West, Mainz. The data consists of flow and water level time 
series at one hour intervals from the gauging stations Maxau, Worms and Heidelberg for 
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the 1988, 1990, 1993 and 1994 flood events. The statistical characteristics of the data are 
summarised in the Table 4.1. 

Table 4.1. Statistical characteristics of the flow data 

Gauging 
Station 

 

Year 
 
 

No. of 
records 

 

Maximum 
flow 

(m3/s) 

Minimum 
flow 

(m3/s) 

Mean 
flow 

(m3/s) 

Standard 
deviation 

(m3/s) 
Maxau 1988 1440 4079   843 2083   785 
 1990   348 4200   752 2044   938 
 1993   490 3007 1014 1844   554 
 1994   696 2393 1178 1530   232 
Worms  1988 1440 5268 1093 2791 1075 
 1990   348 4734   933 2558 1052 
 1993   490 4765 1289 2567   914 
 1994   696 3940 1410 2020   555 
Heidelberg 1988 1440 1945   224   619   462 
 1990   348 2299   224   547   523 
 1993   490 2706   246   710   556 
 1994   696 2341   224   453   415 
 
 
The available flow and stage data are plotted against each other for all four years of 
records. Figures 4.2, 4.3 and 4.4 depict the stage discharge plot for the Maxau, Worms 
and Heidelberg gauging stations respectively. It is obvious that the flow data from all three 
stations have been derived from a single value stage discharge curve. However, due to 
unsteady flow in the rivers, the relationship may be characterised by hysteresis, depicting 
different stage discharge relationships for the rising and the falling limbs of a hydrograph. 
A more detailed treatment in this respect is given in chapter 6. As the water levels are 
directly measured values and the discharges values are derived from the curve, the water 
level times have better accuracies compared to discharges. Hence, it is decided to use 
the water levels at the Worms station for the calibration of the hydrodynamic and 
hydrological models and as targets for the training and validation of data driven models. 
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Figure 4.2. Stage discharge relationship for 

the Maxau station 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3. Stage discharge relationship for 

the Worms station 

 
 

 

 

 

 

 

 

 

Figure 4.4. Stage discharge relationship for the Heidelberg station 

 
4.3 Hydrodynamic Numeric Model 

As a first modelling option for the study area a one dimensional (1D) hydrodynamic 
numerical (HN) model is used. This study is only concerned with the flow and water level 
at the gauging stations. Since, the transverse flow and stage variations are not of specific 
interest, the 1D assumption is adequate [USACE, 1993]. Due to this limited scope, the 
use of multidimensional models such as 2D model is ruled out.  

The HN is set up using the 1D modelling system CARIMA from SOGREAH [1978]. The 
CARIMA is a generalised hydrodynamic numerical modelling system based on full one-
dimensional Saint-Venant equations. The solution of these equations is based on the 
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Preissmann implicit finite difference method, which is generally considered unconditionally 
stable for all Courant numbers [Cunge et al., 1980]. The CARIMA modelling system is 
capable of handling a complex network of channels and structures like weirs and bridges. 
As the system is based on the full Saint Venant equations, it is also capable of 
representing the backwater influence of tributaries such as in the Rhine - Neckar 
confluence. A wide range of applications of the CARIMA has been reported in Cunge et 
al. [1980] and it has been used comprehensively in the Institute of Water Resources 
Management, Hydraulic and Rural Engineering, University of Karlsruhe [Theobald, 1999; 
Minh Thu, 2002; Oberle, 2004].  

 
4.3.1 Model Implementation 

The HN model is applied to the study area with a computational grid size of ∆x = 100 m 
and ∆t = 1 hour, which satisfies the stability criteria of equations (2.24) and (2.25). The 
time weighing factor θ = 0.6 is used. The model geometry is defined by cross sections 
consisting of channel bed and floodplains at 100 m interval in both the Rhine and the 
Neckar sub-reaches. The number of cross sections is 811 in the Rhine sub-reach from 
Maxau to Worms and 298 in the Neckar sub-reach from Heidelberg to the confluence. The 
schematisation of the reaches in the HN model is shown in Figure 4.5. 

 

Figure 4.5. Schematisation of the reaches in the HN model 

 

The flow hydrographs Q(t) from the gauging stations at Maxau (Rhine) and Heidelberg 
(Neckar) are used as upstream boundary conditions. Although the stage hydrograph is 
available at the downstream boundary of the Worms station, it will not be available if the 
model is used for flood forecasting purpose. In such a situation, a single value stage 
discharge relationship Q(y) is more convenient to use as the downstream boundary 
condition. However, due to the unsteady flow situation in nature, the relationship is not a 
single valued condition, but takes a looped form. The application of a single valued 
condition causes the unsteady character of the flow to be perturbed along a certain 
distance upstream. Therefore the downstream boundary condition should be located 
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sufficiently downstream from the station being used for calibration [Cunge et al., 1980]. 
Because of this reason, the downstream boundary Q(y) is extended to a further distance 
of 36.6 km. The initial conditions of the model are set up using a steady flow calculation.  

The unsteady flow calibration is done by adjusting the model parameter (Strickler 
coefficient) in such a way that a good match can be obtained between the observed and 
simulated time dependent hydrographs. The stage hydrograph at the Worms station is 
used for the calibration of the model. Different values of the Strickler energy loss 
coefficients at the main channel and the floodplains are used. This consists of 10 different 
values of the Strickler coefficient in the range of 25 to 40 m1/3/s in the river channel and 4 
different values from 15 to 25 m1/3/s in the floodplains. The Neckar reach has been 
calibrated using the steady flow water surface profiles as described in section 5.2 and 
therefore no further calibration is done. The biggest flood event consisting of the 1988 
datasets is used as calibration datasets and 1990, 1993 and 1994 as test datasets.  

 
4.3.2 Results and Discussion 

The comparison of observed and HN-simulated results for the 1988 flood event 
(calibration) is depicted in Figure 4.6. The comparisons for the test datasets (1990, 1993 
and 1994 floods events) are shown in Figures 4.7, 4.8 and 4.9. The performance of the 
HN model is assessed using the statistical criteria of the coefficient of determination (R2), 
and the root mean square error (RMSE). In addition, the peak error (PE) and the 
maximum absolute error (MAE) in water levels are also considered. The detail description 
on these criteria is given in Appendix B. The results of the statistical analysis are 
summarised in Table 4.2.  

The performance of the HN model for the 1988 flood event (calibration datasets) is found 
to be very good, considering both the phase and amplitude portraits of the flood wave. 
The HN model overestimates the peak of the 1990 flood event (test dataset). The 1990 
model results also consist of a phase error leading to an incorrect arrival time of the flood 
peak. However, the performance of the HN model in the cases of the 1993 and 1994 flood 
events (test datasets) are quite reasonable. There are good matches for the flood wave 
phases, with correct simulations of the arrival time of the peak water levels. However, the 
initial low water levels for both of the flood events are overpredicted.  

Table 4.2. Statistical performance of the HN model results 

Flood 
Event 

R2 

 
RMSE 

(m) 
PE 
(m) 

MAE 
(m) 

1988 0.9937 0.16 -0.04 0.32 
1990 0.9611 0.38 0.32 0.46 
1993 0.9842 0.21 0.08 0.22 
1994 0.9820 0.17 0.14 0.41 
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Figure 4.6. Observed and HN model results at the Worms station 

(1988 calibration datasets)  
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Figure 4.7. Observed and HN model results at the Worms station 

(1990 test datasets) 
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Figure 4.8. Observed and HN model results at the Worms station 

(1993 test datasets) 
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Figure 4.9. Observed and HN model results at the Worms station  

(1994 test datasets) 

 
4.4 Muskingum Cunge Hydrological Model  

A Muskingum Cunge (MC) simplified distributed hydrological model is the second model 
applied to the study reach. The model as shown in Figure 4.10 consists of three reaches: 
Maxau – confluence, Heidelberg – confluence and confluence – Worms. The space time 
grid is defined by the stability criteria of the equations (2.36) – (2.39). The time step (∆t) of 
1 hour is chosen, which satisfies the stability criteria for ∆t considering the minimum time 
of rise of upstream hydrograph of 36 hours (1993 and 1994 flood events). Similarly, the 
grid space (∆x) is chosen to get the average Courant number close to 1 according to the 
equation (2.36). Hence, model reaches are further divided into seven sub-reaches (j) 
between Maxau – confluence, three between Heidelberg - confluence and two between 
confluence – Worms. A simple algebraic summation is used for the addition of flows at the 
confluence as given by the equation (4.1). 

( ) ( )confluence out outWorms Confluence Heidelberg ConfluenceQ Q Q− −= +             (4.1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10. Schematisation of the reaches in the Muskingum Cunge based model 
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4.4.1 Model Implementation 

The MC based routing model is developed using the interactive MATLAB/Simulink 
environment. The river reaches are represented by subsystem blocks in the Simulink as 
shown in Figure 4.11. There are further subsystems under each reach subsystem 
consisting of computational elements of the model. The finite difference schemes given by 
the equation (2.29) are formulated using feedback loops and time delays. The river cross 
sections at Maxau, Heidelberg and Worms are used to define the river geometry. Lookup 
tables are used to define the time varying relationship such as stage and discharge (rating 
curve), and stage and cross section variables: flow area, flow width and wetted perimeter. 
Hence, the cross section parameters together with the Strickler coefficients are used to 
obtain the coefficient values C1, C2, and C3 from the equations (2.30a), (2.30b) and 
(2.30c). 

The MC model does not require a downstream boundary condition and the available 
downstream water levels can be used for the model calibration. For the same reason 
described in section 4.2.1 the water levels time series are used in preference to the flow 
time series for the calibration. The MC model calibration is done by adjusting the model 
parameter (Strickler coefficient). In this case too, the 1988 datasets are used for the 
model calibration and the 1990, 1993 and 1994 for model testing. The water levels at the 
Worms station are obtained by transforming the output discharge time series using a 
depth discharge lookup table (rating curve). Best results are obtained with the Strickler 
energy loss coefficients coefficient: 38 m1/3s-1 in the Rhine reach and 35 m1/3s-1 in the 
Neckar reach. The average values of the Courant number obtained are 0.74, 1.35 and 
1.04 for the Maxau – confluence reach, the Neckar-confluence reach and the confluence-
Worms reach respectively.  
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Figure 4.11. Schematisation of the model in Simulink  
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4.4.2 Results and Discussion 

The comparison of observed and MC model simulated results for the 1988 flood event 
(calibration) is depicted in Figure 4.12. The comparisons of the model simulation for the 
1990, 1993 and 1994 floods events (test datasets) are shown in Figures 4.13, 4.14 and 
5.15. The statistical performance of the model results is given in Table 4.3.  

The overall performance of the MC model is found to be good for both the calibration and 
the test datasets. In the case of the 1988 flood event (calibration datasets) there is some 
underprediction in the first peak. However, the MC model depicts better performance for 
the 1990, 1993 and 1994 test datasets. There are very good fits of the amplitude and 
phase portraits of the 1993 and 1994 datasets. In this case also, there is an overprediction 
of the 1990 flood peak. In comparison to the HN model, the MC model has a better 
performance in terms of the R2 and RMSE criteria for all three test datasets. The model 
predicts the flood peaks very well with the peak error (PE) less than 30 cm. The maximum 
absolute error (MAE) in the water level is about 50 cm.  

Table 4.3. Statistical performance of the Muskingum Cunge model results 

Flood 
Event 

R2 

 
RMSE 

(m) 
PE 
(m) 

MAE 
(m) 

1988 0.9931 0.18 0.10 0.52 
1990 0.9823 0.15 0.30 0.48 
1993 0.9962 0.08 0.14 0.22 
1994 0.9927 0.09 0.09 0.26 
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Figure 4.12. Observed and Muskingum Cunge model results at the Worms station  

(1988 calibration datasets) 
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Figure 4.13. Observed and Muskingum Cunge model results at the Worms station  

(1990 test datasets) 
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Figure 4.14. Observed and Muskingum Cunge model results at the Worms station  

(1993 test datasets) 
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Figure 4.15. Observed and Muskingum Cunge model results at the Worms station  

(1994 test datasets) 
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4.5 Data Driven Models 

The third part of this study considers two data driven methods for the study reach. The 
methods include the artificial neural network (ANN) and the adaptive network based fuzzy 
inference system (ANFIS) models. Since both the modelling approaches are quite similar, 
they are considered together.  

The first step in developing the ANN and the ANFIS based model is the selection of 
appropriate model architecture and the model inputs and outputs. The ANN architecture 
selected consists of a recurrent network, which can be trained in a supervised manner to 
solve time varying non-linear problems. The architecture of the ANFIS model consists of a 
grid partitioned structure, with the domains of the antecedent variables partitioned into a 
specified number of membership functions.  

The inputs and outputs to the both data driven models are deliberately taken the same as 
the HN and the MC models, so that the direct comparison of the results can be made. 
Hence, the flow time series from the Maxau stations in the Rhine River and the Heidelberg 
station in the Neckar River are taken as the model inputs. The water level time series at 
the Worms station is taken as the targets. It is to be noted that the data driven models can 
also be trained for flow time series based on the upstream flow time series or water level 
time series based on the upstream water level time series.  

 
4.5.1 Model Implementation 

As both the ANN and the ANFIS models are based on direct mapping of input output 
datasets, they perform best when the inputs are shifted based on the appropriate time 
lags between the inflows and the outflows. The cross correlation analysis is usually done 
to find the appropriate lag time between upstream and downstream [Imre et al., 2000; 
Gautam, 2000]. However, such an analysis did not yield a uniform lag time as the flow at 
the Worms station is influenced by the flow from the Neckar River. Hence, the lag time is 
carefully examined based on peak flows at all three stations. From the examination, 24 
hours lag time from Maxau to Worms and 8 hours lag time from Heidelberg to Worms are 
adapted. The inputs and outputs of the data driven models are shown in Figure 4.16. 

The training sets for both the data driven models are taken as the 1988 flood events data, 
which is the same data used for HN and MC models calibration. The flood event data from 
1990 is used for validation and 1993 and 1994 as test datasets. The inputs and outputs 
are normalised between –1 and 1.  

The structure of the ANN consists of 2 neurons in the input layer, 16 neurons in the first 
hidden layer, 10 neurons in the second hidden layer and 1 neuron in the output layer. It is 
observed during initial trainings that the use of recurrent feedback in the output layer 
enhances the performance of the ANN. Hence, the recurrent networks are used for all the 
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network trainings, although it slowed down the training process considerably. The network 
consists of hyperbolic tangent activation functions in the hidden layers and linear 
activation function in the output layer. The ANN model is developed using the procedure 
of the MATLAB Neural Network Toolbox [Demuth and Beale, 2004]. The backpropagation 
algorithm with Bayesian regularisation of the Levenberg-Marquardt approximation is used 
for the trainings. Early stopping criteria provided by the validation datasets are used to 
prevent overtraining. The test datasets are used independently for the evaluation of the 
model performance. 

The ANFIS model is developed using the procedures of the MATLAB Fuzzy logic toolbox 
[The MathWorks Inc., 2004a]. The structure of the ANFIS model consists of a Sugeno 
type fuzzy system with generalised bell input membership functions and a linear output 
membership function. The network consists of 2 inputs each with 3 input membership 
functions, 9 rules and 1 output membership function. The training algorithm consists of the 
backpropagation and least squares estimation for the adjustment of premise and 
consequent parameters of the ANFIS respectively. In this case too, early stopping criteria 
provided by the validation datasets are used to prevent overtraining and the test datasets 
are used for the independent evaluation of the model performance. 

 
Figure 4.16. Input and output of the data driven models 

 
4.5.2 Results and Discussion 

The comparison of the observed water levels with the simulated results from the ANN and 
ANFIS for the 1988 (training) and 1990 (validation) flood events are given in the Figures 
4.17 and 4.18 respectively. The comparisons for the 1993 and 1994 (test) floods events 
are shown in Figures 4.19 and 4.20. The statistical performances of the ANN and ANFIS 
model results are summarised in Table 4.4 and Table 4.5.  

The overall performance of both the ANN and the ANFIS models are found to be quite 
close to each other for the training, validation and test datasets. In the case of the 1988 
training dataset, results of both the ANN and the ANFIS models have a good match with 
observations. The 1990 (validation) dataset show overprediction of peak water levels with 
the errors of 0.62 and 0.68 m for the ANN and ANFIS models respectively. It is to be 
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noted, that the HN and the MC models also overpredict the peak water levels for the 1990 
datasets. However, both the ANN and ANFIS performed reasonably well for the 1993 test 
datasets with a good fit of the peak water levels. The performances of the ANN and the 
ANFIS are similar for the 1994 test datasets. The statistical performance of the ANN in 
terms of R2, RMSE, PE and MAE parameters are found to be slightly better in comparison 
to the ANFIS model.  

 
Table 4.4. Statistical performance of the ANN model results 

Datasets 
 

R2 

 
RMSE 

(m) 
PE 
(m) 

MAE 
(m) 

Training (1988) 0.9956 0.12  0.03 0.52 
Validation (1990) 0.9886 0.22 -0.62 0.74 
Test (1993) 0.9919 0.10  0.04 0.43 
Test (1994) 0.9883 0.07 -0.11 0.40 
 
 
Table 4.5. Statistical performance of the ANFIS model results 

Datasets 
 

R2 

 
RMSE 

(m) 
PE 
(m) 

MAE 
(m) 

Training (1988) 0.9938 0.12 -0.14 0.50 
Validation (1990) 0.9848 0.24 -0.68 0.77 
Test (1993) 0.9902 0.10 -0.04 0.41 
Test (1994) 0.9839 0.08 -0.02 0.52 
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Figure 4.17. Observed, ANN and ANFIS results the at Worms station 

(1988 training datasets) 
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Figure 4.18. Observed, ANN and ANFIS results at the Worms station 
(1990 validation datasets) 
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Figure 4.19. Observed, ANN and ANFIS results at the Worms station 
(1993 test datasets) 
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Figure 4.20. Observed, ANN and ANFIS results at the Worms Station  
(1994 test datasets) 
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4.6 Data Driven Models Beyond the Range of Training Datasets 

Both the data driven models considered in this study performed reasonably well within the 
range of the training datasets. However, one of the major criticisms against the data 
driven models is the limited ability of extrapolation beyond the training range. A number of 
methodologies for improving the generalisation capability of the ANN have been 
considered. These include different data normalisation range and activation functions as 
discussed in section 3.2.6.1. Some examples of training the ANNs and ANFIS models for 
water level data beyond the training range are discussed in the following paragraphs.  

The 1988 dataset constitutes the biggest flood event of the four datasets available. The 
dataset has two peaks: the first peak has a smaller magnitude of 90.55 m and the second 
peak has the higher magnitude of 91.43 m. For the assessment beyond the training sets, 
the data containing only the first peak of the 1988 flood event together with the 1994 data 
(peak = 90.14m) are used as the training set. The 1993 data (peak = 91.01m) is taken as 
the validation dataset. The 1990 data (peak = 90.98 m) and the dataset containing the 
higher peak of the 1988 data (peak = 91.43m) are taken as the test sets. The inputs and 
outputs are normalised in the range of [0.2 – 0.8] for both the ANN and the ANFIS models. 

The trainings of both the ANN and the ANFIS in this case are found to be more difficult 
than when the models are used to predict within the range of the training datasets. This 
may also be due to lesser number of training patterns used (section 4.2). Hence, a 
number of experiments are made with different activation functions in the case of the ANN 
and different membership functions in the case of ANFIS to assess the capability of the 
data driven models to predict beyond the range of training datasets.  

In this case too, the ANNs with the recurrent architecture are chosen. A number of 
nonlinear activations functions: the sigmoidal function, the hyperbolic tangent function, 
and a combination of linear and hyperbolic tangent functions are used in the hidden layers 
of the ANNs. These functions are described in section 3.2.1. The output layer consists of 
linear activation function. The performance of the ANN models using different activation 
functions for the validation set (1993) and test sets (1988 second peak and 1990) are 
summarised in Table 4.6. The results are shown in Figures 4.21, 4.22 and 4.23.  

The results show an underestimation of the peak water levels for the 1993 (validation) and 
the 1988 (test) datasets and an overestimation of the peak for the 1990 (test) datasets. 
The activation function with higher limiting amplitude led to the higher peaks compared to 
the activation function with lower limiting amplitude. The overall performance of the model 
is found to be the best when hyperbolic tangent + linear activation function (weighing 
factor α = 0.5) in the hidden layers is used.  
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Table 4.6. Statistical performance of different activation functions for beyond training 
range 

Dataset 
 

Activation function 
 

R2 

 
RMSE 

(m) 
PE 
(m) 

MAE 
(m) 

Validation Sigmoidal 0.9902 0.14  0.25 0.43 
(1993) Hyperbolic tangent 0.9921 0.13  0.09 0.41 

 
Hyperbolic tangent + 
linear 

0.9922 
 

0.13 
 

 0.04 
 

0.43 
 

Test Sigmoidal 0.9843 0.15  0.22 0.56 
(1988) Hyperbolic tangent 0.9851 0.15  0.18 0.48 

 
Hyperbolic tangent + 
linear 

0.9854 
 

0.15 
 

-0.04 
 

0.55 
 

Test Sigmoidal 0.9922 0.17 -0.14 0.75 
(1990) Hyperbolic tangent 0.9895 0.19 -0.43 0.74 

 
Hyperbolic tangent + 
linear 

0.9869 
 

0.25 
 

-0.72 
 

0.90 
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Figure 4.21. Observed and ANNs results with different activation functions at the Worms 

station (1993 validation datasets) 
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Figure 4.22. Observed and ANNs results with different activation functions at the Worms 

station (1988 test datasets) 
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Figure 4.23. Observed and ANNs results with different activation functions at the Worms 

station (1990 test datasets) 

 
In the similar way a number of different input membership functions are used in the ANFIS 
for predicting flows beyond the calibrated range. The membership functions include the 
generalised bell function, the Gaussian function and the triangular function. The 
performance of ANFIS using different membership functions for the validation (1993) and 
test (1990 and 1988) datasets are summarised in Table 4.7. The results are compared in 
Figures 4.24, 4.25 and 4.26. Based on the results, the overall performance of the model is 
found to be the best when the Gaussian membership function is used. 
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Table 4.7. Statistical performance of different membership functions for beyond training 
range 

Dataset 
 

Membership 
function 

R2 

 
RMSE 

(m) 
PE 
(m) 

MAE 
(m) 

Validation Gaussian  0.9904 0.14 -0.02 0.47 

(1993) 
Generalised 
bell 

0.9874 
 

0.17 
 

0.05 
 

0.41 
 

 Triangular 0.9880 0.17 -0.11 0.51 
Test Gaussian  0.9842 0.14 -0.02 0.52 

(1988) 
Generalised 
bell 

0.9754 
 

0.21 
 

0.13 
 

0.68 
 

 Triangular 0.9811 0.17 -0.15 0.60 
Test Gaussian  0.9851 0.22 -0.70 0.77 

(1990) 
Generalised 
bell 

0.9892 
 

0.19 
 

-0.53 
 

0.62 
 

 Triangular 0.9845 0.30 -0.92 1.05 
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Figure 4.24. Observed and ANFIS results with different membership functions at the 

Worms station (1993 validation datasets) 
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Figure 4.25. Observed and ANFIS results with different membership functions at the 
Worms station (1988 test datasets) 

0 50 100 150 200 250 300 350
85

86

87

88

89

90

91

92

Time (hrs)

W
at

er
 L

ev
el

 (m
)

Observed
Triangular MF
Gaussian MF
Generalised bell MF

 

Figure 4.26. Observed and ANFIS results with different membership functions at the 
Worms station (1990 test datasets) 

 
4.7 Assessment of Models for Extreme Flows 

The ability of the hydrodynamic, hydrological and data driven models to predict extreme 
events is an important criterion in the application of these models for flood forecasting 
purpose. In order to test this ability, simulations for each the models are made with 
upstream flows multiplied by a factor of 1.5. As the observations are not available, a 
reference model is needed for the comparison of results. Of all the models considered, the 
HN model being based on physical principles offer the best reference for comparison. 
Hence the MC, ANN and ANFIS model results are compared with that of the HN model. 
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However, it is to be noted that the HN model parameters (Strickler coefficient) might also 
change for the extreme events.  

Figure 4.27 shows the comparison of the HN and the MC model results with the upstream 
flows in both the models multiplied by 1.5. The comparison of the models clearly shows 
that although both the models performed similarly for lower discharges, the MC model 
underpredicts the peaks water levels compared to the HN model. The underprection in the 
peak water level is about 50 cm and there is also a considerable difference in the duration 
of the flood wave peak. 
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Figure 4.27. Comparison of the HN and MC models results at the Worms station with 
upstream flows multiplied by 1.5 (1988 data) 

 
Figure 4.28 shows the comparison of the ANN models with the HN model results with 
upstream flows multiplied by 1.5. The ANN-1 includes the simulation from the ANN model 
from section 4.5.1, consisting of hyperbolic tangent functions in the hidden layers. The 
model is trained using 1988 dataset with the maximum peak of 91.43m. The ANN-2 
includes the simulation of the best performing ANN model from section 4.6, consisting of a 
combination of hyperbolic tangent and linear function in the hidden layers. The network is 
trained with the combination of the smaller peak of the 1988 dataset together with the 
1994 datasets. The maximum peak for the training datasets is 90.55 m. The comparison 
of the results show both the ANN-1 and the ANN-2 underpredicts the second peak. The 
underpredictions of the peak values are 48 cm and 75 cm for the ANN-1 and the ANN-2 
models respectively, which are considerable differences for flood forecasting. In the case 
of first peak, the ANN-1 predicts the peak quite well and ANN-2 shows underprediction.  
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Figure 4.28. Comparison of the HN and ANN models results at the Worms station with 
upstream flows multiplied by 1.5 (1988 data) 

 

Figure 4.29 shows the comparison of the HN and ANFIS models, with all the upstream 
flows multiplied by a factor 1.5. The ANFIS-1 consists of the simulation using the ANFIS 
model from section 4.5.1, which is trained using 1988 dataset with the maximum peak 
water level of 91.43 m. The network consists of generalised bell input membership 
function. The ANFIS–2 is the best performing network from section 4.6 with the Gaussian 
input membership function. The training datasets consists of the smaller peak of 1988 
dataset together with the 1994 dataset. The maximum peak water level of the training 
datasets is 90.55m. The comparison of the model results show that the ANFIS-1 predicts 
peak reasonably well and the ANFIS-2 shows underprediction. However, there is a 
considerable difference in the duration of the peak flood wave for both the ANFIS model 
results.  
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Figure 4.29. Comparison of the HN and ANFIS models results at the Worms station with 
upstream flows multiplied by 1.5 (1988 data) 
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The results of the models indicate that there are considerable uncertainties in the 
prediction of the extreme flood events using the hydrological MC model and the data 
driven ANN and ANFIS models. There are significant differences in both the magnitude 
and duration of the peaks. It is interesting here to note that both the ANN and ANFIS 
trained with the higher range of data as training sets performed better compared to the 
models with lower range of data as training sets. Hence, the application of the 
hydrological and data driven models for forecasting extreme events should be viewed with 
caution. It is also important to define the range of applicability of these models. In this 
study all the models can be safely expected to give reasonable prediction upto the range 
of the 1988 peak value (92.5 m). 

 
4.8 Assessment of Model Choices 

The hydrodynamic, hydrological and data driven modelling approaches all demonstrated 
reasonable results for the simulation of water levels at the Worms station using the flows 
from the upstream location. However, it is also important to consider each of these 
modelling approaches from the point of view of their strengths and limitations. The 
important considerations include data requirements, forecasting capabilities, prediction of 
extreme events and difficulties in model set up. These points are discussed in detail the 
following paragraphs. 

 
4.8.1 Data Requirement  

A 1D hydrodynamic model requires a detailed topographical data from the river bed and 
floodplains in terms of river cross sections, which may not be available in many locations. 
The river topography is also constantly changing with time and is affected by factors such 
as sediment transport from the catchment, processes of river bed scouring and 
deposition, construction of structures etc. Hence, the topographical data in an HN model 
need to be updated periodically. This also makes the HN model expensive to develop and 
operate.  

The simplified routing model such as the Muskingum Cunge model requires the 
description of only a few river cross sections and rating curves. The data driven ANN and 
ANFIS models do not require any topographical data (cross sections) as the downstream 
flow parameters can be established directly from input output mapping. From this 
viewpoint, the data driven and simplified routing models have an advantage over the HN 
model, especially when only the flow parameters at gauging stations in a river reach are of 
interest.  

The flow data in the river reach is a necessary input to the hydrodynamic, hydrological 
and data driven models. The upstream flows are necessary as the upstream boundary 
condition for the HN and MC models and as training inputs to the data driven models. 
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Both the HN and MC models can be set up without the downstream flow data. The 
downstream data when available can be used for model calibration. However, a carefully 
set up HN model with friction loss coefficients based on the site conditions can be 
expected to give a reasonable simulation of downstream flows, even without calibration. 
This approach can therefore be adapted to predict flows at intermediate sections in the 
river reach or in case of an ungauged downstream boundary. The simplified distributed 
MC model with ‘physically based’ Strickler coefficients can also be used in ungauged 
boundary. On the other hand, the downstream data are absolutely necessary as target 
data for the data driven models. The good quality of target data is also important for data 
driven models as the models can only be as good as the quality of data.  

 
4.8.2 Prediction Capability 

An HN model predicts flows at a downstream location at time ti based on the flows at the 
upstream location at the same time ti. Since the HN model is based on the simultaneous 
solution of the system of equations for all grid points in a river reach, the model does not 
make prediction of future events. Usually, a hydrological rainfall runoff model of the 
upstream catchment is coupled with the HN model to make forecasts. 

It is important to note here that the HN model is capable of simulating flow parameters at 
each grid point in a river reach. The model can be used for a number of engineering 
problems like dam break simulation, effects of the construction of new structures. The HN 
model in combination with the geographical information system (GIS) can also be used to 
depict inundation areas, and for the assessment of flood risks. 

The explicit solution of the MC method makes it possible to make a short term prediction 
based on the lag time from upstream to downstream. The upstream boundary data can be 
assumed constant for the prediction period. Since the calculation proceeds from time step 
ti to ti+1 at every subsequent sub-reaches, the changes in the upstream boundary will not 
be immediately seen at the downstream boundary. This allows the MC model to make the 
short term prediction of the downstream flow.  

In the case of data driven models, the upstream data can be lagged for the model training 
based on the approximate travel time from upstream to downstream. So it is possible to 
make predictions directly based on the established lag times. In this study it is possible to 
make 8 hours predictions based on the travel time from Heidelberg to Worms and 24 
hours predictions based on the travel time from the Maxau to Worms station. The forecast 
horizon at the Worms station can be improved further by integrating with another model to 
forecast flows at the Heidelberg station (Chapter 5).  

Another important aspect of prediction of downstream flow is the influence of minor 
tributaries. The conservation of mass in physically based models makes it necessary to 
include the minor tributaries and lateral inflows, which may not be gauged in many 
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locations and must therefore be estimated. This is true for both the HN and the MC 
models, which make the models difficult to operate in the case of considerable influence 
of the ungauged tributaries. This is not very relevant in this given example of prediction of 
flow at the Worms station, but is an important factor in chapter 5. There is no conservation 
of mass in the data driven ANN/ANFIS models and a carefully trained data driven model 
can make good predictions even without the minor tributaries and lateral inflows. 

 
4.8.3 Extrapolation and Prediction of Extreme Events 

The prediction of flow beyond the range of calibration is also an important criterion for the 
flood flows simulation. Being based on the full Saint Venant equations and sound physical 
hypotheses, the HN model provides a best option for forecasting beyond calibration. It is 
to be noted that the parameters of the HN model (Strickler coefficient) might also change 
for extreme events. On the other hand the simplified hydrological models are predictive as 
long as the inputs stay within the range of calibration. They have only a limited capability 
of predicting beyond the calibrated range. In the case of data driven models, it is generally 
accepted that the models are only valid within the range of training (calibration) datasets. 
The analysis in section 4.6 generally shows underprediction or overprediction of the peak 
water levels, although the best results of the both ANN and ANFIS are close to the 
observed values.  

The comparison of the HN model with the MC hydrological model and ANN and ANFIS 
data driven models in section 4.7 show considerable differences in both magnitude and 
duration of the peak flows for the extreme events. In the case of both the ANN and ANFIS, 
the models have better performances when the higher range of datasets is used for 
training purpose. Hence, it is important to exercise caution in using the MC and data 
driven models in predicting extreme events and the range of applicability of these models 
should be clearly defined.  

Care should also be exercised to properly select the training, validation and test datasets. 
The use of lower range of data for training purpose and higher range for validation and 
test purpose is useful in assessing the performance of the data driven models beyond 
calibration range. The use of the highest of the available data as training sets improve 
prediction range of the data driven models, which is specially significant if the model is to 
be used for flood forecasting purpose.  

 
4.8.4 Model Development 

An HN model is the most difficult to set up compared to the MC and data driven models 
considered in this study. The HN model needs to be defined in terms of river cross 
sections consisting of river channel and floodplains and appropriate values of Strickler 
coefficients. It is also necessary to include the storage areas and the structures like 
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bridges and weirs in the model. All these requirements make the HN model not only more 
data intensive, but also more cumbersome in setting up. 

As the simplified MC model requires less data in the form of only a few cross sections and 
rating curves, the model is easier to set up compared to an HN model. The data driven 
ANN and the ANFIS models are relatively easy to set up using only the input-output data. 
However, the data driven models require a good knowledge of the model structures and 
training algorithms, which are usually not familiar to many hydraulic engineers and 
hydrologists.  

Based upon the above discussion, the HN, MC and data driven models are summarised in 
Figure 4.30. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.30. Summary of flood prediction models 
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4.9 Concluding Remarks  

The assessment of the hydrodynamic, hydrological and data driven models show that 
each of the modelling techniques has its own strengths and limitations. The simplified 
distributed MC model and the data driven ANN/ANFIS models are more efficient 
compared to the HN model from the point of view of data requirement. Also, the ability of 
the MC and ANN/ANFIS models to make short term prediction make them suitable for 
flood forecasting purpose. The ANN and ANFIS models have an advantage over the MC 
model, as it is not necessary to estimate minor tributaries lateral inflows during flood 
forecasting. 

However, the MC and ANN/ANFIS models have limited capability of prediction beyond the 
calibration (training) range. In such a situation, the HN model is more reliable. The 
importance of the HN model also lies in its capability of simulating flow parameters at 
each grid point in the river reach. The model can be used for a number of engineering 
problems like the dam break simulation and the effects of structures. The HN model in 
combination with the GIS can be used to depict inundation areas and for the assessment 
of risks. 

The ability to simulate the dynamics of flood flow timely and accurately is of crucial 
importance in the flood forecasting operations. Due to the limitations of the hydrodynamic, 
hydrological and data driven models it might not be sufficient to use a single model. There 
will be a more reliable solution when the strengths of the models are combined. It is hence 
argued that it is necessary to set up more than one model for flood forecasting. This is the 
basis for a parallel complementary modelling approach, where the hydrological and data 
driven models can be used to make forecasts within the range of calibration and the HN 
model can be used beyond calibration. The use of more than one model increases the 
confidence of forecasts as the results can be cross validated. It is important to view the 
models as complementary rather than competitive so as to combine the strengths and 
reduce the limitations. 
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CHAPTER 5 

COMBINED HYDRODYNAMIC AND NEURAL NETWORK MODELS 

 

This chapter considers a combined hydrodynamic numerical (HN) and artificial neural 
network models for river flow forecasting and prediction of inundation extents. The HN 
model prepared in subsections between the barrages in Neckar River is described. The 
individual HN models between the barrages from Lauffen to Heidelberg are combined for 
the prediction of discharge hydrographs at the gauging stations. The performance of the 
HN model is assessed, which is affected by a number of factors, most notably the 
imprecision in input data.  

The ANN model is also set up for the same river reach to simulate the discharge 
hydrographs at the gauging stations. The model consists of three independently trained 
ANNs with the outputs from proceeding block as inputs to succeeding block. The methods 
of improving ANNs performance for the prediction of flows beyond the range of training 
datasets are considered using different activation functions.  

After the formulation of individual HN and ANN models, the approaches to combine the 
two models are described. The first approach combines observation data with the HN 
model simulations at a gauging station where no discharge time series are available for 
the ANN training. The second approach describes a combined series HN-ANN approach 
for flood hydrograph simulations at the gauging stations and depiction of the inundation 
areas at desired locations. The chapter also describes a Muskingum network model, 
which combines the learning capability of the ANNs with a simple explicit function of the 
Muskingum model. 

 
5.1 Study Area and Data 

The Neckar River is one of the major tributaries of the Rhine River, which flows through 
the region of Stuttgart, Heidelberg and Mannheim in South-Western Germany. The study 
area consists of a reach of about 100 km from Lauffen to Heidelberg (Figure 5.1) in 
navigable section of Neckar River. The catchment areas of the river are 7915 km2 and 
13787 km2 at the Lauffen and Heidelberg gauging stations respectively [LFU, 2000]. The 
section of the Neckar River receives a number of tributaries including Kocher, Jagst, Elz, 
Schwarzbach, Itter and Elsenz. The reach is an impounded river system consisting of a 
number of barrages, power plants and navigation canals.  
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Figure 5.1. Study reach of the Neckar River 

 
The river cross sections consist of river channels and floodplains at 100 m intervals. The 
cross section data are obtained from the State Office for Land Survey Baden – 
Württemberg (Landesvermessungsamt Baden – Württemberg), Federal Waterways 
Engineering and Research, Institute (Bundesanstalt für Wasserbau BAW), Karlsruhe and 
Water and Navigation Office (Wasser und Schifffahrtsamt), Heidelberg. 

The flow time series data of one hour interval from the gauging stations Lauffen (distance 
from Rhine-Neckar confluence: km 125.10), Rockenau (km 60.70) and Heidelberg  
(km 26.10) are available for the 1988, 1990 and 1993 flood events. The water level time 
series and a limited number of flow data points are available from the Gundelsheim  
(km 93.80) station for the same flood events. Flows from the major tributaries Kocher, 
Jagst, Elz, Schwarzbach, Itter and Elsenz are also available for the same years. The flow 
data are obtained from the Water and Navigation Administration (Wasser und 
Schifffahrtsdirektion) South-West, Mainz. The statistical characteristics of the available 
data from the Lauffen, Rockenau and Gundelsheim stations are summarised in Table 5.1. 
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Table 5.1. Statistical characteristics of the flow data 

Gauging 
Station 

 

Year 
 
 

No. of 
records 

 

Maximum 
flow 

(m3/s) 

Minimum 
flow 

(m3/s) 

Mean 
flow 

(m3/s) 

Standard 
deviation 

(m3/s) 
Lauffen 1988 600 1155 162  571 229 
 1990 228 1611 148  394 397 
 1993 378 1357 121  373 259 
Rockenau 1988 600 1930 341  958 399 
 1990 228 2225 144  583 576 
 1993 378 2680 232  713 579 
Heidelberg 1988 600 1945 374 1060 401 
 1990 228 2299 224  666 604 
 1993 378 2706 275  807 597 
 
 
5.2 Combined Hydrodynamic and Inundation Models 

The combined hydrodynamic and inundation models for the Neckar river are set up for the 
project “Hydrodynamic Numeric - River Model Neckar” (Hydrodynamisch-numerisches 
Flussmodel Neckar) in the framework of “Integrated Conception Neckar Catchment” 
(Integrierende Konzeption Neckar Einzugsgebiet (IKoNE)) [Oberle, 2004]. The project has 
been undertaken by the Institute of Water Resources Management, Hydraulic and Rural 
Engineering (IWK), University of Karlsruhe at the request of the Water Management 
Administration of Baden Württemberg. In the context of the project, the HN model and the 
digital terrain model (DTM) are prepared for the river channels and floodplains. Based on 
the HN model results and the DTM, inundation grids and areas are mapped.  

As schematised in Figure 5.2, the study area consists of eleven subsections between the 
barrages. The HN models are prepared for all individual subsections using the one-
dimensional modelling system CARIMA from SOGREAH [1978]. Due to the relatively 
small distances between the weirs, the HN model of the subsections can be calibrated 
using steady flow simulations. This involves the selection of realistic Strickler coefficient 
values based on the site conditions and comparing the steady flow simulations with the 
observed flood water levels for the relevant flood events. An example of the steady flow 
calibration of the HN model is shown for Heilbronn sub-reach in Figure 5.3. 
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Figure 5.2. Schematisation of sub reaches in the HN model 

Figure 5.3. Steady flow calibration of the HN model in the Heilbronn sub-reach 

 
The results of the HN models are combined with the DTMs in the GIS environment for the 
depiction of the inundation areas using tools developed by the IWK [Oberle et al., 2000]. 
The DTMs of 2.0 m horizontal resolution are prepared in the river channels and 

153

154

155

156

157

158

159

160

161

162

163

113.5114.5115.5116.5117.5118.5119.5120.5
Neckar-km

W
at

er
 L

ev
el

 (m
) 

  Q = 1630 m³/s (HW 1990)

  Q = 1190 m³/s (HW 1988)

Observed 1990

Observed 1988

#

#

#

#

#

#

#

#

#

#

#

#

Heidelberg

Neckargemünd

Neckarsteinach
Hirschhorn

Rockenau

Guttenbach

Neckarzimmern

Gundelsheim

Kochendorf

Heilbronn

Horkheim

Lauffen



 
Chapter 5: Combined Hydrodynamic and Neural Network Models 

 
83

floodplains based on the river cross sections, spot elevations and contour lines. Recently 
(October, 2004), a DTM based on high resolution Laser induced Detection and Ranging 
(LiDAR) data of 1.0 m horizontal resolution is available for the study area. Based on the 
projection of the steady flow profiles into the floodplains in the GIS environment, 
inundation grids and polygons at the individual subsections can be depicted. The 
procedure of mapping the inundation extent in the GIS environment are summarised in 
section 2.4.2. Figure 5.4 shows an example of the DTM for the Heilbronn sub-reach. The 
difference model (inundation grid) and the inundation areas (blue = inundation, red = 
potential inundation) for the 1990 flood event are shown in Figures 5.5 and 5.6 
respectively. 

 

 
 
Figure 5.4. Digital terrain model in a section 

of the Heilbronn sub-reach 

 
 

Figure 5.5. Inundation grid in a section of 
the Heilbronn sub-reach 

 
 

Figure 5.6. Inundation area overlaid over aerial photograph in a section of the Heilbronn 
sub-reach (blue = Inundation, red = potential inundation) 

 
5.3 Unsteady Flow Hydrodynamic Model 

In order to predict inundation areas in the event of upcoming flood, discharges at all 
eleven barrages are required. As a first idea, it is considered to use the HN model for 
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flood routing purpose. The HN models in the entire river reach (Figure 5.2) are combined 
and unsteady flow simulations are performed. The flow hydrographs from the gauging 
stations at Lauffen (Neckar) and the tributaries are taken as upstream boundary 
conditions. As downstream boundary condition, the stage/discharge relationship 
downstream of the gauging station at Heidelberg is used. Storage cells in the floodplains 
are also added together with lateral inflows into the river channel at each subsection of the 
river reach.  

Since the model has already been calibrated in a sub-reach by sub-reach basis, no further 
calibration of the Strickler coefficient is done. The combined HN model is used for the 
simulation of water level and flows at the gauging stations, Gundelsheim, Rockenau and 
Heidelberg. The model results are compared with the measured flows at the Rockenau 
and Heidelberg stations. Since, only a few discharge values are available from the 
Gundelsheim gauging station, the model results are compared with the water level time 
series data.  

 
5.3.1 Results and Discussion 

The comparison of the HN-simulated results for the Gundelsheim station with the 
observed water levels and discharges for the 1988 flood events are shown in Figures 5.7 
(A) and (B). Similarly, the comparison of the model results for the 1990 and 1993 flood 
events are shown in Figures 5.8 (A) and (B), and 5.9 (A) and (B) respectively. The results 
show a good capability of the HN model to reproduce the water level time series for all 
flood events. The phases are accurately reproduced, although there are some errors in 
the amplitude. However, a pattern of underestimation of the lower water levels in all three 
flood events is observed. In the case of discharge time series, there is also a good match 
between the HN simulated and the limited discharge records for all three flood events. 
 

40 60 80 100 120 140 160 180 200
140

141

142

143

144

145

Time (hrs)

W
at

er
 L

ev
el

 (m
)

Observed
HN-Simulated

(A) 

40 60 80 100 120 140 160 180 200
500

1000

1500

2000

Time (hrs)

D
is

ch
ar

ge
 (m

)

Observed
HN-Simulated

(B) 
 

Figure 5.7. Observed and HN model results at the Gundelsheim station  
(1988 flood event): (A) water levels, (B) discharges 
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Figure 5.8. Observed and HN model results at the Gundelsheim station  
(1990 flood event): (A) water levels, (B) discharges 
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Figure 5.9. Observed and HN model results at the Gundelsheim station  
(1993 flood event): (A) water levels, (B) discharges  

 

The HN model is also used to simulate the flood events at Rockenau and Heidelberg. The 
results of the HN simulated discharges and the observed time series data are compared 
in Figures 5.10 (A) and (B) (1988 flood event), 5.11 (A) and (B) (1990 flood event) and, 
5.12 (A) and (B) (1993 flood event). The comparison of the results shows a progressive 
deterioration of the quality of results from upstream to downstream. The 1988 discharges 
are reproduced reasonably well, although there are some phase and amplitude errors in 
the lower discharges. In the case of 1990 discharge time series, phases are well 
reproduced for the peaks. But there are apparent shifts in the phase at lower discharges. 
There are also underpredictions of peaks for both the Rockenau and Heidelberg stations, 
which can be adjusted to a certain extent by using higher lateral inflows. The results of the 
1993 flood simulation depict a considerable underprediction of the peak discharges for 
both the Rockenau and Heidelberg gauging stations. As the errors are quite considerable, 
it will be incorrect to adjust the peak values using only the lateral inflows. The issue is 
dealt in more detail in the section 5.4. 
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Figure 5.10. Observed and HN model results for the 1988 flood event:  
(A) Rockenau station, (B) Heidelberg station 
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Figure 5.11. Observed and HN model results for the 1990 flood event:  
(A) Rockenau station, (B) Heidelberg station 
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Figure 5.12. Observed and HN model results for the 1993 flood event:  
(A) Rockenau station, (B) Heidelberg station 
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5.4 Uncertainties in the 1993 Discharge 

The imprecision in the 1993 flood discharge data has been analysed by Oberle and 
Theobald [2000]. The analysis found inconsistencies in the peak discharges. The results 
of the analysis for the peak flow at Rockenau on 21.12.1993 are summarised in Table 5.2. 
Based on the analysis, it can be seen that the sum of the corresponding upstream 
discharges from Lauffen, Kocher, Jagst and Elz (2424 m3/s) is less than the Rockenau 
value by 256 m3/s. This is without considering the effects of attenuation and retention in 
the floodplains.  

Table 5.2. Peak discharge analysis for the 1993 flood 

Gauging Station Relevant flow time Discharge (m3/s) 

Lauffen (Neckar) 15:00 1304 

Stein (Kocher) 16:00   585 

Untergriesheim (Jagst) 17:00   505 

Mosbach (Elz) 20:00    30 

Total - 2424 

Rockenau (Neckar) 22:00 2680 

 
For a reasonable match between the observed and the simulated values using the HN 
model, it is necessary to introduce an additional upstream flow of about 300 m3/s. It is 
incorrect to introduce such a high discharge as a lateral inflow in the HN model. Hence, 
the peak flow at the Rockenau and Heidelberg stations are underestimated as shown in 
Figures 5.12(A) and 5.12(B).  

Such inconsistencies in measured data can adversely affect the performance of physically 
based HN models, especially for flood forecasting purpose. The conservation of mass in 
physically based models require lateral inflows and minor tributaries flows to be included 
in the model. These flows may not be gauged in many locations and hence need to be 
estimated. 

As described in the section 4.8.2, there is no conservation of mass in the data driven 
models such as the artificial neural networks (ANNs). The ANNs can be trained for the 
simulation of discharges at the gauging stations. Hence, the ANN model is considered as 
a complement to the physically based HN model for the simulation of flows at the gauging 
stations.  
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5.5 ANN River Flow Prediction Model 

This section details the development of a ANN based data driven model for the prediction 
of flows at the gauging stations, Gundelsheim, Rockenau and Heidelberg. An important 
initial step in the development of the ANN model is the selection of appropriate input and 
output datasets. A number of experiments are performed with the division of river reach 
into different ANN blocks. In the first set of experiments, the ANN is used to predict flows 
at the gauging station Rockenau, based on the upstream flows from Lauffen (Neckar), and 
the tributaries Kocher, Jagst and Elz. The network shows a good performance for the 
training and validation datasets, but not for the test datasets.  

As the HN model has performed reasonably well for the section between Lauffen and 
Gundelsheim, it is decided to integrate the HN simulated results at the Gundelsheim 
station for the ANN training. The outline of the different approaches for integrating the HN 
and ANN models has been given by Van den Boogaard and Kruisbrink [1996]. In one of 
the approaches, the ANN can be used as a model reduction of the HN model, so as to 
reproduce only a part of HN model results. This approach enables the ANN to simulate 
missing discharge time series at the Gundelsheim station. In addition, the ANN can be 
used to predict the future flood events without requiring the HN model run. Accordingly, 
the corresponding discharge time series at the Gundelsheim station from the HN model is 
used for the ANN training.  

A cross correlation analysis is performed on time series flows to identify a suitable lag 
time from upstream to downstream points. The cross correlation analyses of the time 
series water level data from the Lauffen, Gundelsheim and Rockenau stations yields the 
suitable lag time for Gundelsheim and Rockenau with respect to upstream stations. 
Similarly, the analysis between the flow data from Rockenau and Heidelberg gives the lag 
time for the Heidelberg station. The lag times for the tributaries inflows are calculated 
based on their distances. The lag times for the forecast stations Gundelsheim, Rockenau 
and Heidelberg with respect to the upstream stations are given in Table 5.3.  

Table 5.3. Lag time with respect to forecast stations 

Forecast station Upstream stations Lag Time (hrs.) 

Gundelsheim (Neckar) 
 
 

Lauffen (Neckar) 
Stein (Kocher) 
Untergriesheim (Jagst) 

4 
3 
2 

Rockenau (Neckar) 
 

Gundelsheim (Neckar) 
Mosbach (Elz) 

3 
2 

Heidelberg (Neckar) 
 
 
 

Rockenau (Neckar) 
Eschelbronn (Schwarzbach)
Eberbach (Itter) 
Meckesheim (Elsenz) 

2 
2 
2 
2 
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The forecast horizons at the Gundelsheim, Rockenau and Heidelberg gauging stations 
with respect to the upstream flows are of 2 hours each. However, the contribution from the 
tributaries Elz, Schwarzbach, Elsenz and Itter are quite small compared to flows in the 
Neckar River. Hence, their flows can be assumed to be constant for the duration of 
forecast to increase forecast horizon. This increases the forecast horizon at the Rockenau 
and Heidelberg stations to 5 and 7 hours respectively. The forecast horizon can be further 
increased by integrating external models such as rainfall-runoff models. 

 
5.5.1 Model Implementation 

It is observed that the integration of HN model results from Gundelsheim improves the 
performance of river flow prediction at the Rockenau station. The river reach is therefore 
divided into three 'sub-reaches' represented by independently trained ANN blocks. The 
inflows and the desired outflows for each of the ANN blocks are summarised in Table 5.4. 
The outputs of the best performing networks from preceding blocks are used as inputs to 
succeeding blocks.  

Table 5.4. Network inputs and desired outputs 

Network block River sub-reach Network input Desired output 

ANN block 1 Lauffen – 
Gundelsheim 

Measured flows from the 
gauging stations at Lauffen 
and tributaries Jagst and 
Kocher  

Simulated flows from 
the HN model at 
Gundelsheim 

ANN block 2 Gundelsheim – 
Rockenau 

Simulated flows from the ANN 
block 1 at Gundelsheim and 
measured flow from gauging 
station at the tributary Enz  

Measured flows from 
the gauging stations at 
Rockenau 
 

ANN block 3 Rockenau – 
Heidelberg 

Simulated flows from the ANN 
block 2 at Rockenau and 
measured flows from gauging 
stations at the tributaries 
Schwarzbach, Elsenz, and 
Itter  

Measured flows from 
the gauging stations at 
Heidelberg 

 
Due to the better quality of results from the HN model, the 1988 data can be considered 
as the most reliable data of the available three flood events datasets. Hence, the 1988 
data are used as the training sets. The 1990 and 1993 data are used as the validation and 
test datasets respectively. From the range of data (Table 5.1), the 1993 data consists of 
highest peak value and the 1988 data consists of lowest peak value. Hence, the ANNs 
models are formulated so that they are capable of predicting beyond the range of training 
datasets.  
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A number of methodologies useful for making prediction beyond calibration range are 
outlined in section 3.4, Imrie et al. [2000] and Shrestha et al. [2005]. This includes the 
scaling of the input and output datasets and use of different activation functions at the 
hidden layers. Accordingly, the input datasets for the ANN trainings are scaled in the 
range between 0.2 and 0.8. A number of ANN models are developed, each with one input 
layer, two hidden layers and one output layer. The numbers of neurons in the networks 
are kept to a minimum of eight in the first hidden layer, four in the second hidden layer 
and one in the output layer. There is no significant improvement of the model performance 
with the increase in number of neurons. Each of the networks consists of linear activation 
function in the output layer. The weighing factor α for the hyperbolic tangent + linear 
function is varied between 0.4 and 0.8 during training process.  

The networks are trained using the procedures from MATLAB neural network toolbox 
[Demuth and Beale, 2004]. This involves network designing using text files containing 
MATLAB code (M-files). The training is done using backpropagation algorithm with 
Bayesian regularisation of the Levenberg-Marquardt approximation. The early stopping 
criteria provided by the validation datasets are used to prevent overtraining. The test 
datasets are used independently for the evaluation of model performance. 

 
5.5.2 Results and Discussion 

The statistical performances of the ANN models using different activation function are 
evaluated in terms of coefficient of determination (R2) and root mean square error 
(RMSE). In addition, the peak error (PE) of discharges between observed and calculated 
flows is considered to assess the capability of the ANNs to predict beyond the range of 
training datasets. The details of the error measurements are given in Appendix B. 

 
5.5.2.1 Performance of the Rockenau ANN Models  

The statistical performance of the ANN models for the validation (1990 flood event) and 
test (1993 flood event) datasets are summarised in Table 5.5. The ANNs are trained with 
the upstream flows from Lauffen (Neckar), and the tributaries Kocher, Jagst and Elz. 
There is an underestimation of the peak flow from all the ANN models using different 
activation functions at the Rockenau station for the test datasets. The underprediction is 
higher for the ANNs consisting of activation function with lower limiting amplitude such as 
sigmoidal and hyperbolic tangent function at the hidden layer. Figures 5.13 (A) and (B) 
show the partial results of the model for the validation (1990) and the test (1993) datasets. 
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Table 5.5. Statistical performance of the ANNs with different activation functions at 
Rockenau station using upstream flows 

Datasets 
 

Activation functions 
 

R2 

 
RMSE 
(m3/s) 

PE 
(m3/s) 

Validation Sigmoidal 0.9796   89 123 
(1990) Hyperbolic tangent 0.9835   84 127 
 Hyperbolic tangent + linear 0.9852   82 114 
  Linear 0.9816   83   74 
Test Sigmoidal 0.9740 144 343 
(1993) Hyperbolic tangent 0.9733 129 333 
 Hyperbolic tangent + linear 0.9729 132 324 
  Linear 0.9718 134 246 
 

0 50 100 150
0

500

1000

1500

2000

2500

Time (hrs)

D
is

ch
ar

ge
 (m

3/
s)

Observed
Linear function
Hyperbolic tangent + linear function
Hyperbolic tangent function
Sigmoidal function

 
(A) 

100 120 140 160
0

500

1000

1500

2000

2500

3000

Time (hrs)

D
is

ch
ar

ge
 (m

3/
s)

Observed
Linear function
Hyperbolic tangent + linear function
Hyperbolic tangent function
sigmoidal

 
(B) 

 

Figure 5.13. Observed and ANN results with different activation functions at Rockenau 
using upstream flows (A) 1990 validation data (B) 1993 test data 

 
5.5.2.2 Performance of the Sub-reach Models 

The performance of different activation functions for the validation and the test datasets 
for the stations Gundelsheim, Rockenau and Heidelberg are summarised in Tables 5.6, 
5.7, and 5.8. In the ANN block 1 between Lauffen and Gundelsheim, the network can 
easily approximate the validation and test datasets. There is a tendency of improvement 
in statistical performance when activation functions with higher limiting amplitudes are 
used. In the case of the peak values, there is generally an underestimation, with the 
lowest error for the linear function. The combination of hyperbolic tangent and linear 
function (α = 0.5) at the first hidden layer gives the best performance in terms of R2 and 
RMSE and is hence selected as the best ANN for the Lauffen – Gundelsheim sub-reach. 
Figures 5.14 (A) and (B) show partial results of the model for the validation (1990) and the 
test (1993) datasets. 
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Table 5.6. Statistical performance of the ANNs with different activation functions 
(Gundelsheim station)  

Datasets 
 

Activation functions 
 

R2 

 
RMSE 
(m3/s) 

PE 
(m3/s) 

Validation Sigmoidal 0.9912 53  22 
(1990) Hyperbolic tangent 0.9920 48  18 
 Hyperbolic tangent + linear 0.9926 50  11 
  Linear 0.9921 50 -10 
Test Sigmoidal 0.9936 77   64 
(1993) Hyperbolic tangent 0.9932 67   54 
 Hyperbolic tangent + linear 0.9932 63   45 
  Linear 0.9923 70   43 
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Figure 5.14. Observed, HN and ANN results with different activation functions at the 
Gundelsheim station (A) 1990 validation data (B) 1993 test data 

 
In the ANN block 2 between Gundelsheim and Rockenau, the performance of the 
networks is similar to the ANN block 1. The application of activation functions with higher 
limiting amplitude produce better results in terms of statistical performance criteria R2 and 
RMSE. There is an overall trend of underestimation of peaks, even with the linear 
activation function for the test datasets. With the application of hyperbolic tangent 
activation functions at the first and second hidden layers, the network is able to predict 
peak flows with the lowest errors for the both validation and test datasets. The partial 
results of the model for the validation (1990) and the test (1993) datasets are shown in the 
Figures 5.15 (A) and (B). 
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Table 5.7. Statistical performance of the ANNs with different activation functions  
(Rockenau station) 

Datasets 
 

Activation functions 
 

R2 

 
RMSE 
(m3/s) 

PE 
(m3/s) 

Validation Sigmoidal 0.9821 79   36 
(1990) Hyperbolic tangent 0.9806 84 128 
 Hyperbolic tangent + linear 0.9810 81   48 
 Hyperbolic tangent in 2 

hidden layers 0.9858 73 -17 
  Linear 0.9799 86 -43 
Test Sigmoidal 0.9832 86 184 
(1993) Hyperbolic tangent 0.9839 85 166 
 Hyperbolic tangent + linear 0.9810 89 147 
 Hyperbolic tangent in 2 

hidden layers 0.9850 76 100 
  Linear 0.9831 96 128 
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Figure 5.15. Observed and ANN results with different activation functions at the Rockenau 

station (A) 1990 validation data (B) 1993 test data  

The statistical performances of the model from the Gundelsheim to Rockenau ANN model 
(Table 5.7) are compared with the Rockenau ANN model, which do not integrate the HN 
model results from Gundelsheim (Table 5.5). The comparison shows that the statistical 
performance in terms of R2, RMSE and the difference in peak flow of the Gundelsheim to 
Rockenau ANN models are generally superior for all activation functions.  

The performance of ANN block 3 between Rockenau and Heidelberg also improves with 
the application of activation functions with higher limiting amplitude. There is also a 
general trend of underestimation of peaks. The difference in peak flow prediction is also 
found to be lower using activation functions with higher limiting amplitude. The hyperbolic 
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tangent + linear function (α = 0.7) gives the best performance in terms of R2, RMSE and 
PE of discharges. The partial results of the model for the validation (1990) and the test 
(1993) datasets are shown in the Figures 5.16 (A) and (B). 

Table 5.8. Statistical performance of the ANNs with different activation functions 
(Heidelberg station)  

Datasets 
 

Activation functions 
 

R2 

 
RMSE 
(m3/s) 

PE 
(m3/s) 

Validation Sigmoidal 0.9781 97 102 
(1990) Hyperbolic tangent 0.9776 98   67 
 Hyperbolic tangent + linear 0.9790 88   36 
 Linear 0.9790 92  -28 
Test Sigmoidal 0.9743 99 153 
(1993) Hyperbolic tangent 0.9750 96 130 
 Hyperbolic tangent + linear 0.9802 94   49 
 Linear 0.9779 98  -61 
 

0 50 100 150
0

500

1000

1500

2000

2500

Time (hrs)

D
is

ch
ar

ge
 (m

3/
s)

Observed
Linear function
Hyperbolic tangent + linear function
Hyperbolic tangent function
Sigmoidal function

(A) 

120 140 160 180 200 220 240 260
500

1000

1500

2000

2500

3000

Time (hrs)

D
is

ch
ar

ge
 (m

3/
s)

Observed
Linear Function
Hyperbolic tangent + linear function
Hyperbolic tangent function
Sigmoidal function

(B) 
 

Figure 5.16. Observed and ANN results with different activation functions at the 
Heidelberg station (A) 1990 validation data (B) 1993 test data  

It is to be noted that the statistical performance of the ANN model for block 1 is not 
consistent with the blocks 2 and 3 since the results of block 1 is compared with the HN 
model simulations and the blocks 2 and 3 with the observed data.  

 
5.5.2.3 Combined ANN Simulation Model 

The best performing network blocks in each of the sub-reaches are combined in the 
MATLAB/Simulink environment and an ANN simulation model is developed. This consists 
of ANNs with the hyperbolic tangent + linear function in first hidden layer in the blocks 1 
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and 3. The ANN block 2 consists of the hyperbolic tangent function in the first and second 
hidden layers. The combined ANN simulation model is schematised in Figure 5.17. 
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Figure 5.17. ANN simulation model  

 
5.5.2.4 ANN Models for Extreme Flows 

In order to test the ability of ANNs to predict extreme events, simulations are made with all 
the upstream flows multiplied by a factor 1.5. The ANN simulation model contains the best 
performing ANN blocks as described in section 5.5.2.3. The HN model simulations are 
also made multiplying the upstream flows by 1.5. The outputs of the HN model and ANN 
simulated results are compared. However, as described in section 4.6, it is to be noted 
that HN model parameters (Strickler coefficient) might also change for the extreme 
events. The Figures 5.18, 5.19 and 5.20 show the comparison of the results at 
Gundelsheim, Rockenau and Heidelberg respectively with the 1990 and 1993 flows 
multiplied by 1.5. 

The comparison of results of the two models indicates underprediction at all three 
stations. It is to be noted that the HN model itself underpredicts the flows at Rockenau and 
Heidelberg for the 1990 and 1993 datasets without multiplications (Figures 5.11 and 5.12). 
Therefore, overall underestimation can be expected to be higher than that obtained by 
comparing with the HN model results, especially in case of the 1993 data. The results 
highlight that the ANNs only have capabilities of predicting flows beyond the calibrated 
range to a certain range. Beyond the range, the results of the ANNs start to diverge from 
the actual values. Hence, caution needs to be exercised in the use of ANNs for 
forecasting extreme events. It is also important to specify forecasting range of the trained 
ANNs. In this study, reasonable results can be expected from the ANNs upto the 1993 
data ranges.  
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(A) (B) 
 

Figure 5.18. HN and ANN results with upstream flows multiplied by 1.5 at the 
Gundelsheim station (A) 1990 data (B) 1993 data 

 

(A) (B) 
 

Figure 5.19. HN and ANN results with upstream flows multiplied by 1.5 at the Rockenau 
station (A) 1990 data (B) 1993 data 

 

(A) (B) 
 
Figure 5.20. HN and ANN results with upstream flows multiplied by 1.5 at the Heidelberg 

station (A) 1990 data (B) 1993 data 
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5.6 Combined HN-ANN Model 

After the development of independent HN and ANN models, a combined HN-ANN 
approach can be used [Shrestha et al., 2004]. For the steady flow simulation and the 
mapping of the inundation extent in the event of an upcoming flood, discharges at each of 
the subsections between the barrages are necessary. This can be obtained from the 
unsteady flow HN model. However, as described in section 5.4, the HN model is sensitive 
to imprecision in the input data. In addition, it is also necessary to estimate minor 
tributaries and lateral inflows, which makes the HN model difficult to use during flood 
forecasting. The ANN model on the other hand is less sensitive to uncertainties in data 
and the model work well without the minor tributaries and lateral inflows. Therefore, the 
ANN can be used as a preprocessor to generate input discharges of the HN model.  

In this approach, the ANN simulation model can be used to forecast flows at 
Gundelsheim, Rockenau and Heidelberg. Based on the ANN prediction, the discharges at 
intermediate locations can be interpolated. The discharges at the desired locations can be 
fed into the HN models at subsections between the barrages and the water levels in the 
river reaches can be simulated. The results can be used in combination of GIS supported 
inundation model for the depiction of inundation areas at critical locations. Hence, this 
approach can also facilitate a quick prediction of inundation extents at critical locations, 
based on the forecasted discharges at the gauging stations. The combined HN - ANN 
dynamic flood simulation model is shown in Figure 5.21. As for example, the ANN routing 
model is used to forecast flows at the Heidelberg gauging station. The peak water levels 
from the ANN routing model is used to predict inundation extent in the Heidelberg sub-
reach. The resulting inundation grid is shown in Figure 5.22. 

 
Figure 5.21. Dynamic simulation of inundation areas 
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Figure 5.22. Depiction of inundation area in the Heidelberg sub-reach 

 
5.7 Muskingum Network Model 

After the development of ANN models for the different sub-reaches of the Neckar River, 
an approach to combine the learning capability of the ANN with the Muskingum routing 
model is formulated. The model uses the explicit function of the Muskingum model with 
the downstream discharges at any time step expressed explicitly in terms of upstream 
discharges and downstream discharges at previous time step (equation 2.29). The 
functional parameters can be estimated using optimisation methods such as the 
Levenberg – Marquardt method.  

The model consists of a single layer linear network with only one node, and a single input 
and single output architecture as shown in Figure 5.23 [Shrestha, 2003]. In this 
formulation, the discharges at previous time steps can be used as inputs by passing 
through tapped delay line (TDL) operator. A linear activation function returns the networks 
output simply as sum of all values passed to it. Hence, the network architecture as shown 
in Figure 5.23 is the same as the finite difference discretisation in Figure 2.3. The network 
weights W11, W12, and W13 are equivalent to the routing coefficients C1, C2 and C3, and the 
equation (2.29) takes the form. 

( ) ( ) ( ) ( )out in in outQ n   W * Q n - W * Q n W * Q n -= + +11 12 131 1            (5.1) 
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Figure 5.23. Representation of finite difference equation as a linear network model 

 
5.7.1 Model Implementation 

The Muskingum network model is applied to the reach between the gauging stations 
Rockenau and Heidelberg. A number of numerical experiments are carried out to 
investigate the performance of the network models. The first set of experiments involved 
the formulation of basic network architecture that replicates the Muskingum method. This 
consists of a single input, single output linear network (LN) with flow at the upstream 
boundary as the input and the downstream boundary as the output. In the second case, a 
bias is introduced to the LN to account for the tributaries and lateral inflows. For the next 
sets of training, the possibilities of improving the network performance with modification of 
the network architecture are considered. This involves the formulation of nonlinear 
network (NLN) with the application of hyperbolic tangent transfer function at the input.  

In this case too, the 1988 flood event dataset is used as the training data, and the 1990 
and the 1993 event data as validation and test data respectively. The observed flow at 
Rockenau alone is taken as the model input and that at Heidelberg as the target.  

 
5.7.2 Results and Discussion 

The results obtained for the verification of the Muskingum method at the Heidelberg 
station are summarised in Table 5.9. With a simple LN structure as shown in Figure 5.23, 
the network is quick to train to the desired output. The analysis of the weights shows the 
sum of weights as 1.045. The error 0.045 can be attributed to tributaries and lateral 
inflows, which are not considered. After the distribution of errors and backward 
calculation, the value of X is obtained at 0.27, well within the desired range between 0 and 
0.5. The value of K was obtained at 2.04 hrs, same as 2 hours obtained by the cross 
correlation analysis. The introduction of bias as expected reduced the error in sum of 
weights to 0.004. The bias value obtained was equivalent to the discharge of 40 m3/s.  
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Table 5.9. Muskingum coefficients calculated from the LN  

Network type Sum of Weights K X 
LN 1.045 2.04 0.27 
LN with bias 1.004 2.06 0.30 
 
 
The comparison of the performance of the LNs with the NLN are summarised Table 5.10. 
It is seen that LNs overestimate peak discharges in both validation and test datasets. The 
application of hyperbolic tangent activation function in the NLN reduces error in peak 
discharge. The activation function also improves the overall R2 and RMSE performances 
for the validation and test datasets. The difference in the peak discharge is also found to 
be least using the hyperbolic tangent activation function. The Figure 5.24 (A) and (B) 
show the results obtained with different network structures.  

It is to be noted that the statistical performance of the LN and the NLN (Table 5.10) are 
not consistent with that of the ANN model in the block 3 in section 5.5.2.2 (Table 5.8) as 
the results from block 2 from the Rockenau station together with the tributaries 
Schwarzbach, Elsenz, and Itter are taken as inputs. In the LN and the NLN, only the 
observed flows at Rockenau are taken as inputs. 

Table 5.10. Statistical performance of the LN and the NLN results at the Heidelberg 
station  

Datasets 
 

Network type 
 

R2 

 
RMSE 
(m3/s) 

PE 
(m3/s) 

Validation LN 0.9919 70 -114 
(1990) LN with bias 0.9920 59   -73 
 NLN with bias 0.9954 45    11 
Test LN 0.9956 67 -203 
(1993) LN with bias 0.9956 53   -55 
  NLN with bias 0.9972 36    36 
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(A) 

 
(B) 

 
Figure 5.24. Observed and LN and NLN results at the Heidelberg station  

(A) 1990 validation data (B) 1993 test data  

 
The results of the model show a good performance of the NLN for the Heidelberg station. 
However, the network becomes difficult to train when the flows with a larger time lag and 
multiple tributaries are to be routed as in the case of the Lauffen to Gundelsheim sub-
reach. The stability criteria as given by the equation (2.36) – (2.39) also requires the 
network to be trained in a number of layers, making the process of training more 
cumbersome. However this procedure is useful for simple reach like Rockenau to 
Heidelberg, where the nonlinear Muskingum network can be quickly trained.  

 
5.8 Concluding Remarks 

This chapter has presented an approach to combine hydrodynamic numerical model with 
artificial neural networks so that one model can complement the other. The HN model is 
used to simulate water levels and inundation areas at subsection between the barrages in 
the river reach. The individual HN models between the barrages are combined for the 
prediction of discharge hydrographs at the gauging stations. The performance of the HN 
model is affected by a number of factors, most notably the imprecision in the input data. In 
addition, for a good match between the observations and the simulated results, it is 
necessary to estimate the minor tributaries and lateral inflows.  

The ANN models can also be trained for the prediction of flow at the gauging stations. 
Different approaches of combining the ANNs with the HN models are explored. In the first 
approach, the observation datasets are combined with HN model results for the ANN 
training in the ‘sub-reaches’. This approach enhances the flexibility of the model 
combination, so that the results of one can be quickly integrated into the other. It enables 
the ANN to simulate missing flow time series and forecast the flood events at the 
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Gundelsheim station without the application of the HN model. This approach also 
improves the overall model performance in the entire river reach. 

In the second approach, the ANN model is used as a pre-processor for the input data of 
the HN model. As HN models are sensitive to imprecision in the input data, the ANN 
model can be used to predict flows at the gauging stations in the event of an upcoming 
flood. Predicted discharges from the ANN can be used as inputs to the HN models at 
small subsections between the barrages in order to predict the inundation extents. Hence, 
this series approach combines the potential of both techniques for a quick and accurate 
prediction of flood hydrographs and simulation of inundation extents. 

The effects of different activation functions at the first hidden layer of multilayer perceptron 
(MLP) neural networks are evaluated for predicting flows beyond the calibrated range. 
This evaluation is made in terms of test datasets with higher peaks, above the range of 
training datasets. Four different activation functions, the sigmoidal, hyperbolic tangent, 
linear, and a combination of hyperbolic tangent and linear functions are investigated in this 
study. The best performing ANNs at individual sub-reaches are combined, which show a 
good prediction capability to a certain extent beyond the range of training datasets. The 
performance of the ANN degrades when the upstream flows are multiplied by a factor 1.5 
and the ANN and the HN model results are compared. It is therefore important to exercise 
caution in the use of ANNs for forecasting extreme flood events. 
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CHAPTER 6 

UNCERTAINTY ANALYSIS OF THE STAGE DISCHARGE 
RELATIONSHIP 

 

This chapter considers uncertainties in discharges due to the stage discharge relationship. 
Different sources of uncertainties are outlined and methods of managing analysing and 
propagating the uncertainties are considered. The uncertainty management method 
includes nonlinear mapping of the stage discharge relationship using artificial neural 
network as an alternative to the rating curve. This is demonstrated using the case studies 
of a highly scattered nonlinear relationship and a looped stage discharge relationship. The 
uncertainty analysis includes the application of fuzzy regress analysis to define the range 
of uncertainties of the relationship. The chapter also considers the propagation of 
uncertainties to river channel and floodplains due to uncertain relationship. This consists 
of an application of the fuzzy extension principle based alpha level cut in combination with 
a one-dimensional hydrodynamic numerical model.  

 
6.1 Stage Discharge Relationship 

Accurate estimation of discharge in the river is essential for the hydrological and hydraulic 
analysis of open channel flow. While the water levels (stages) in a river are measured 
directly and continuously, the flows (discharges) are measured neither directly nor 
continuously. Most discharge records are derived from a functional relationship between 
the stage and the discharge Q(y), referred to as the stage discharge curve or the rating 
curve. The stage discharge relationships constitute a fast and inexpensive means of 
converting measured stage time series to discharge time series [Schmidt, 2004]. In 
addition, the stage discharge relationship also constitutes a convenient downstream 
boundary condition for hydrodynamic numerical models [Cunge et al., 1980].  

The relationship between the discharge Q and the corresponding stage h is most often 
expressed in the forms:  

AQ A h= 2
1                (6.1a) 

( ) ( ) ( )log Q log A A * log h= +1 2             (6.1b) 

where A1 and A2 are parameters calibrated based on the measured values of the 
discharge for a range of river stages.  
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For most gauging stations a single curve relationship between stage and discharge is 
oversimplification. In general the relationship is in the form of a compound curve with 
different stages for different flow ranges [Schmidt, 2002]. Depending upon the channel 
behaviour with respect to stage and flow values at different ranges, two or more curves 
can be fitted to the data.  

 
6.1.1 Uncertainties in Stage Discharge Relationship 

A number of factors affect the accuracy of the stage discharge relationship. The 
uncertainties associated with the relationship can be broadly classified as the 
measurement uncertainties, interpolation uncertainties and flow unsteadiness 
uncertainties. Bárdossy et al. [2004] described it in terms of uncertainties due to stage 
measurement, discharge measurement, discharge curves and dispersion of the flow 
values. 

The uncertainties in the stage measurement are dependent upon the characteristics of the 
gauging station and water surface elevation. An important source of uncertainty is 
displacement of measured values from the reference point, caused by processes such as 
turbulent fluctuations, wind and stationary waves [Bárdossy et al., 2004; Schmidt, 2004].  

The limitations of the discharge measurement methods are also a major source of 
uncertainties. As the discharges are measured indirectly, uncertainties might be 
introduced due to measurement errors from instrumentation or method of flow 
measurement. During floods events discharges measurements are never made 
continuously and can never be considered very accurate [Cunge et al., 1980].  

The uncertainties in the discharge curve are dependent upon the number of 
measurements made. As the discharge values are not measured continuously, it is 
necessary to make interpolations between the measured values. Hence, there exist large 
uncertainties in the interpolated region of the data [Bárdossy et al., 2004]. There is usually 
a lack of measurement of flood discharges and the values are usually derived by 
extrapolating the existing stage discharge relationship curves. The extrapolation gives rise 
to uncertainties in flood discharge values. 

The dispersion of discharge values with respect to a certain depth of flow is an important 
source of uncertainties in the stage discharge relationship. The relationship in not a single 
valued as specified by the most curves but exhibits a looped form as shown in Figure 6.1. 
The effect also termed as hysteresis indicates that there is no unique relationship between 
the depth and the discharge values. This is due to the fact that the stage is not just the 
function of discharge, but also a function of a variable energy slope [Chow et al., 1988]. 
The slope of the water surface is greater on the rising limb than on the falling limb, thus 
the flow is accelerating on the rise and decelerating on the fall [USACE, 1993]. Due to this 
effect the discharge is higher in the rising limb than in the falling limb for a given stage. 
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Hence, when a single valued relationship is used major uncertainty arises in the derived 
discharge values. 

There may also be considerable uncertainty associated with the temporal variations of a 
particular river channel condition. Many channel cross sections change considerably 
throughout the year, especially after a significant flood event. Any change in the channel 
cross section can have a significant effect on the relationship between stage and 
discharge. Hence the stage discharge relationship needs to be updated periodically. 

 
Figure 6.1. Schematic representation of steady and unsteady state rating curves  

Adapted from Chow et al. [1988]  

 
6.1.2 Methods of Uncertainty Analysis and Management 

A number of methods may be used to analyse and manage the uncertainties in the stage 
discharge relationship. As discussed in section 6.1.1. a major source of uncertainty in the 
discharge records is the single valued stage discharge relationship. One method of 
managing this uncertainty is to use a nonlinear mapping method such as artificial neural 
networks (ANNs) as an alternative to the stage discharge relationship curve. The 
applications of the ANN in river flow prediction have been demonstrated in chapters 4 and 
5. In the recent years several researchers have used ANNs for nonlinear mapping of the 
stage discharge relationship [Tawfik et al., 1997; Bhattacharya and Solomatine, 2000; 
Jain and Chalisgaonkar, 2000; Sudheer and Jain, 2003]. 

With regard to the uncertainty analysis, the probability theory and the fuzzy set theory are 
the two most widely used methods. The probability theory assumes uncertainty mainly 
due to randomness while the fuzzy set theory represents the uncertainty due to 
vagueness and imprecision in a non-probabilistic sense [Maskey, 2004].  

Schmidt [2002] used the probability based reliability analysis methods to systematically 
analyse the uncertainties from different underlying sources of the stage discharge 
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relationship. The procedure used for the reliability analysis included the combination of 
mean-value first-order, second-order and point estimation methods. Other widely used 
probability based uncertainty analysis method used in water resources includes the Monte 
Carlo simulation, which is based on the probability distribution of the uncertain parameters 
as random variables [Abebe, 2004; Maskey, 2004].  

The inherent uncertainties in the stage discharge relationship can be represented by 
defining a band of credible upper and lower scenarios of discharges for a given stage as 
an alternative to a single valued relationship curve. The uncertainty band can be defined 
in terms of confidence limits using statistical methods. An example of the method can be 
found in Bárdossy et al. (2004), where a combination of the cross validation and the 
bootstrapping method were used.  

The fuzzy regression analysis also provides an alternative tool for the definition of the 
uncertainty band. Fuzzy regression can be used as an alternative to statistical regression 
analysis, when the relationship between the variables is imprecise, data are uncertain and 
sample sizes are insufficient [Bárdossy et al., 1990]. Using this method, the crisp 
parameters A1 and A2 of the equation (6.1) can be replaced by fuzzy numbers, whose 
spread can be determined using an optimisation algorithm. However, such an application 
for the stage discharge relationship has not been reported yet. Some of the applications of 
fuzzy regression analysis include dose response relationship [Bárdossy et al., 1993; Lee 
et al., 2001], fuzzy linear conceptual rainfall runoff processes [Özelkan and Duckstein, 
2000] and organic/nutrient load and river discharge relationship [Chaves and Kojiri, 2003].  

The fuzzy sets theory also provides a framework for the propagation of uncertainties. For 
this purpose, the membership function of the dependent variable (discharge) defined by 
the fuzzy regression analysis can be used. The uncertainty represented by the fuzzy 
numbers can be propagated using alpha level cut, which offer a convenient way of 
resolving fuzzy sets into crisp sets. Recent applications of the fuzzy alpha level cut 
methods include parameter uncertainty of water transport in layered soil profile [Schulz 
and Huwe, 1999] and precipitation uncertainty of a deterministic rainfall-runoff model 
[Maskey, 2004]. 

This chapter considers the methods of uncertainty analysis and management in the stage 
discharge relationship. An artificial neural network based nonlinear mapping method is 
developed to handle the uncertainties. The fuzzy regression analysis is used to define the 
uncertainty band of discharges in the stage discharge relationship. A resulting 
membership function of discharges is used with the extension principle based alpha cut 
method to analyse the propagation of uncertainties in river channels and floodplains. 
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6.2 Uncertainty Management of Stage Discharge Relationship Using ANNs 

This study includes two applications of the ANNs for the nonlinear mapping of the stage 
discharge relationship. The applications are undertaken using the measured and 
simulated time series data, as an alternative to a single valued stage discharge 
relationship curve. The first case study consists of mapping a highly scattered nonlinear 
relationship between stage and discharge values using the observed flow and stage time 
series data. The second case study deals with the reproduction of looped rating curves 
using simulated flow and water level time series data from a hydrodynamic numerical 
model. 

 
6.2.1 Modelling Nonlinear Stage Discharge Relationship 

The stage and flow time series data from the Lauffen gauging station (Figure 5.1) in the 
Neckar River were obtained from Water and Navigation Administration, South-West 
Mainz. The rating curve in the Lauffen gauging station is considered unreliable and the 
obtained discharge time series was actually based on discharges from the gauging 
stations at Bessigheim and the tributary Enz, both located at a distance of about 12 km 
upstream. The discharges in Bessigheim and Enz are based up rating curve derivations. 
Hence the obtained discharge values in the Lauffen gauging station is affected by 
uncertainties due to (i) rating curve conversion in the upstream stations, (ii) derivation 
based on the upstream stations. When the stage and discharge time series data are 
plotted against one another a highly scattered relationship is depicted (Fig. 6.2).  

The process of establishing discharges at the Lauffen gauging station based on the 
upstream flows can be replaced by a nonlinear mapping method. From the measured 
stages and derived discharge values of historical flood events, a nonlinear mapping 
problem can be formulated with stage as the input variable and discharge as the output 
variable. In this example, the ANN is used as nonlinear mapping tool for the derivation of 
the discharge time series based on the stage time series. The results of the ANN method 
are compared with the conventional rating curve method.  
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Figure 6.2. Stage discharge relationship at the Lauffen gauging station 

 
6.2.1.1 Model Implementation 

The two ANN architectures consisting of a multilayer perceptron (MLP) and a radial basis 
function network (RBFN) are used in this study. The available data consists of 1988, 1993 
and 1998 stage and discharge time series. The 1993 dataset consists of the highest range 
of data. However, it is subject to uncertainties as discussed in section 5.4. Hence, the 
1988 datasets are used for the training purpose, and the 1998 and 1993 datasets are 
used for validation and test purposes respectively. As the model involves extrapolation 
beyond the range of training datasets, the inputs and output datasets are normalised 
between 0.2 and 0.8. The ANNs are trained with the stage time series h and its rate of 
change dh/dt as inputs and the discharge time series Q as a target as shown in Figure 
6.3. 

 
Figure 6.3. Structure of the ANN nonlinear mapping model  
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The four layer MLP neural network is used with 2 neurons in the input layer, 10 neurons in 
the first hidden layer, 8 neurons in the second hidden layer and 1 neuron in the output 
layer. The MLP consists of hyperbolic tangent activation function in the hidden layers and 
linear activation function in the output layer. The RBFN has a two layer network 
architecture consisting of Gaussian activation functions in the hidden layer and a linear 
activation function in the output layer. The number of neurons in the hidden layer of the 
RBFN is 28 neurons as determined iteratively during the training process. Both the ANN 
models are developed using the procedures of the MATLAB Neural Network Toolbox 
[Demuth and Beale, 2004].  

There is no rating curve available for the Lauffen gauging station. For the comparison of 
the results with the ANN models, linear regression of the available stage discharge data is 
carried out. The relationship derived from the regression analysis consists of a two stage 
compound rating curve for low flow and high flows with the boundary point hbound at 450 
cm. The relationship is of the form of equation (6.1a): 

.
i iQ . x h−= 5 2 75272 1553 10  for hi < hbound           (6.2a) 

.
i iQ . x h−= 6 3 19101 4850 10  for hi > hbound           (6.2b) 

 
 
6.2.1.2 Results and Discussion 

The results of the ANN models are analysed using the statistical criteria of coefficient of 
determination (R2) and the root mean square error (RMSE). Similarly, the peak error (PE) 
and the maximum absolute error (MAE) in discharge are also considered. Details of the 
error measurements are outlined in Appendix B. Additional criteria for the error 
measurement include the discharge errors for three different ranges. Based on the 
analysis, it can be seen that the performance of both the ANN models are better 
compared to the conventional rating curve method. The discharge errors obtained by the 
ANN models are less than that from the rating curve. The comparison of the statistical 
performance of the ANNs in terms of R2 and RMSE show that MLP is superior to the 
RBFN network for both the validation and test datasets. The MLP also has the lower 
difference in the peak flow in the validation and test datasets. The discharge hydrographs 
derived from MLP ANNs and the rating curves are compared with the observations for the 
validation and test datasets in Figures 6.4 and 6.5 respectively. The results of the model 
clearly show that ANN nonlinear mapping is superior to the rating curve relationship. 
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Table 6.1. Statistical performance of the ANN model and the rating curve 

Discharge error range (%) Data 
 

Model 
type 

R2 

 
RMSE 
(m3/s) 

PE 
(m3/s) 

MAE 
(m3/s) < 20 m3/s 20-50 m3/s >50 m3/s

1998 MLP 0.9891 24 -19   87 67.4 27.3   5.2 
(validation) RBFN 0.9874 25 -21   81 59.0 35.7   5.3 

 
Rating 
curve 0.9864 26  29   77 58.9 34.4   6.7 

1993 MLP 0.9922 33 -68 145 43.0 50.0   7.0 
(test) RBFN 0.9899 35 -85 150 42.9 49.1   8.0 

 
Rating 
curve 0.9851 49 -88 153 22.2 50.4 27.4 
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Figure 6.4. Observed, MLP ANN simulated and rating curve derived hydrographs for 
validation datasets (1998) 
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Figure 6.5. Observed, MLP ANN simulated and rating curve derived hydrographs for test 

datasets (1993) 
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6.2.2 Modelling Looped Rating Curve 

The application consists of reproduction of the hydrodynamic numerical (HN) model 
simulated looped stage discharge relationship using the ANNs. For this purpose, the HN 
model simulated hydrographs at the Worms gauging station in the Rhine River are used. 
The HN model is described in detail in chapter 4 section 4.3. 

Both the measured stage and discharge hydrographs are available from the gauging 
station. The discharge hydrograph is derived from a single valued stage discharge 
relationship curve as seen in Figure 4.4. However, the relationship may show a looped 
effect due to the unsteady nature of the flood wave propagation. Hence, discharge 
hydrographs derived from the single valued stage discharge relationship are subject to 
uncertainties. An HN model based on full Saint Venant equations is capable of simulating 
the looped effect. This is evident from the relationship between the simulated stage and 
discharge hydrographs as shown in the Figure 6.6. 
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Figure 6.6. HN model simulated stage discharge relationship compared to the rating curve 

at the Worms gauging station 

 
6.2.2.1 Model Implementation 

A number of ANN models are trained for the nonlinear mapping of the looped relationship. 
The architectures of the ANNs used in this example include the MLP and the RBFN. The 
four HN model simulated datasets from 1988, 1990, 1993 and 1994 flood events are 
available. The 1988 data is used as the training set, which consists of the highest range of 
available data. This is done deliberately to improve the prediction range of the model as 
described in section 3.2.6.1. The HN model simulated data from 1990 is used for 
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validation, and 1993 and 1994 as test datasets. The input and output datasets are 
normalised between –1 and 1. In this case too, the ANN inputs consist of the water level 
time series h and its rate of change dh/dt and the targets consist of the discharge time 
series Q as shown in Figure 6.3. 

The structure of the MLP consists of 10 neurons in the hidden layer, and 1 neuron in the 
output layer. The MLP consists of hyperbolic tangent activation functions in the hidden 
layers and linear activation function in the output layer. The RBFN has a two layer 
architecture consisting of Gaussian activation functions in the hidden layer and a linear 
activation function in the output layer. The hidden layer of the RBFN consists of 14 
neurons, which is determined iteratively during the training process, by adding one neuron 
after every training step.  

 
6.2.2.2 Results and Discussion 

The performance of the ANN models are analysed using the criteria R2, RMSE, PE and 
MAE in discharges. In addition, the discharge errors for three different ranges are 
considered. The results of the analysis for the MLP and RBFN are summarised in Table 
6.2. Based on the performance of the model, it can be seen that the performance of the 
MLP are slightly better than the RBFN for both the validation (1990) and the test (1993 
and 1994) datasets. The discharge errors for the most of the data is less than 50 m3/s, 
which is a good result considering the total discharge lie in the range from 1000 to 5000 
m3/s. The results of the MLP networks are compared with the targets values and the 
single valued rating curve in Figures 6.7 for the validation dataset and Figures 6.8 and 6.9 
for the test datasets. The model results clearly show a very good reproduction capability 
of the ANN for simulating a looped rating relationship. 

Table 6.2. Statistical performance of the ANN model results 

Discharge error range (%) Data 
 

Network 
type 

R2 

 
RMSE 
(m3/s) 

PE 
(m3/s) 

MAE 
(m3/s) <20 m3/s 20–50 m3/s >50 m3/s

1990 MLP 0.9995 29 -6 61 67.9 29.3 2.8 
(validation) RBFN 0.9994 35 10 64 57.4 35.9 6.7 
1993 MLP 0.9997 18 29 46 79.0 19.8 1.2 
(test) RBFN 0.9995 22 17 49 60.4 38.0 1.6 
1994 MLP 0.9993 20 30 47 87.0 10.6 2.4 
(test) RBFN 0.9988 23 56 68 63.7 32.5 3.8 
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Figure 6.7. Reproduction of looped rating 
curve for validation datasets (1990)  
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Figure 6.8. Reproduction of looped rating 
curve for test datasets (1993) 
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Figure 6.9. Reproduction of looped rating curve for test datasets (1994) 

 
6.3 Uncertainty Analysis Using Fuzzy Regression  

Statistical regression is a widely used method to develop a relationship between 
dependent and independent variables of a dataset. However, as described in section 
6.1.1, there is no unique one to one relationship between the dependent variable 
(discharge, Q) and independent variable (stage, h), in the stage discharge relationship 
Hence, the stage and discharge do not have a unique one to one relationship. The fuzzy 
regression analysis can deal with such a problem by expressing the uncertain parameters 
in terms of fuzzy numbers. Bárdossy et al. [1993] described the method in terms of (i) L-R 
(left-right) representation of fuzzy number; and (ii) the extension principle. These 
components are described in detail in chapter 3. 

For the fuzzy regression analysis of stage discharge relationship, the stages can be 
assumed as crisp and discharge as fuzzy numbers, with the crisp parameters A1 and A2 of 
the equations (6.1a) or (6.1b) expressed in terms of fuzzy numbers. The analysis can be 
undertaken using both the power relationship (equation 1a) and the logarithmic 
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relationship (equation 1b). The former relationship leads to a nonlinear fuzzy regression 
model and the latter to a linear fuzzy regression model. Both the fuzzy regression models 
are used in this study for the assessment of the stage discharge relationship of the 
Lauffen gauging station in the Neckar River. 

 
6.3.1 Fuzzy Nonlinear Regression Model 

The nonlinear fuzzy regression model is based upon the power relationship (equation 1a), 
with a compound curve for low and high flows meeting at the boundary point hbound. 
Considering the parameters A1 and A2 as fuzzy numbers the equation (6.1a) can be 
rewritten as: 

*A
i iQ A h∗= 2

1   for hi < hbound            (6.3a) 

*A
i iQ A h∗= 4

3   for hi > hbound            (6.3b) 

A A
i iA h A h

∗ ∗∗ ∗=2 4
1 3  for hi = hbound            (6.3c) 

 
Where, ( )j j j j LR

A m , ,∗ = α β is defined by L-R fuzzy functions with the boundary (0,1), with 

mj, αj, and βj representing the central value and the left and right spreads respectively. 
The membership functions corresponding to the L and R parameters can be taken as 
continuously linearly decreasing as shown in Figure 6.10 and defined by the equation 
(6.4): 

( ) ( )L z R z z= = −1                (6.4) 

 

 
Figure 6.10. Linear representation of L-R fuzzy functions 

 
The left and right spreads of the membership functions can be extended to incorporate the 
out of sample points using a credibility factor. By specifying the credibility at a certain level 
H, the fuzziness of the spreads can be controlled. In particular, as the H level increases, 
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the spreads αj and βj also increase. The L-R fuzzy condition for the credibility level H, can 
be written as [Bárdossy, 1990]: 

( ) ( )*
j j j j j j jm L H A m R H− −− ≤ ≤ +1 1α β              (6.5) 

 
The spread of the membership function also depends upon the reference point in the data 
region corresponding to which fuzzy regression analysis is performed. The reference point 
should be selected in the region where the regression is supposed to be crispest, which 
may be the average or maximum of the variables, or in any way fitting the context of the 
problem (Bárdossy et al., 1990). In the case of nonlinear regression, the reference point 
can be considered by dividing the stages hi by the reference point href. Hence, the 
mathematical formulation of the fuzzy nonlinear regression equation for the low and high 
flow can be obtained by combining the equations (6.3) and (6.5): 
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         for hi = hbound       (6.6c) 

 
6.3.2 Fuzzy Linear Regression Model 

The formulation of the fuzzy linear regression model is also based on the compound curve 
stage-discharge relationship for the linear equation (6.1b). The linear equation (6.1b) in 
combination with the equation (6.5) leads to the following system of equations for low and 
high flows.  
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6.3.3 Fuzzy Regression Model Fitting 

The goodness of fit of both the linear and the nonlinear fuzzy regression models can be 
measured in terms of the vagueness criteria of the uncertain parameters. The maximum 
parameter vagueness V is one such criterion, given by the spread of the membership 
functions αj, and βj: 

( )j jV max ,= α β                 (6.8) 

 
For simplicity, a symmetrical membership function is chosen for the left and right sides 
such that, αj = βj. This reduces the maximum vagueness of the model to four parameters 
α1, α2, α3, and α4, two each for the low and the high flows, which need to be minimised. 
Hence both the linear and the nonlinear formulations lead to a multiobjective optimisation 
problem with constraints. In the case of fuzzy nonlinear model, the equations (6.6a, 6.6b 
and 6.6c) and (6.8) provide the constraints and the objective functions. Similarly, for the 
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fuzzy linear model the equations (6.7a, 6.7b and 6.7c) and (6.8) provide the constraints 
and the objective functions respectively.  

The time series stage and discharge hydrographs (Figure 6.2) is used for the fuzzy 
regression analyses. The 1988 and 1993 data are used for the analyses purpose and 
1998 data for the verification purpose. A credibility level H of 0.5 is selected for the 
analyses. A stage value of hbound = 450 cm is chosen as the boundary between the low 
flow and high flow. The reference point is also specified as href = 450 cm, which is 
approximately the average of the stages. The optimisations are performed using the 
sequential quadratic programming method based on the procedures of the MATLAB 
optimization toolbox [The MathWorks Inc., 2004b].  

 
6.3.4 Results and Discussion 

The results of both nonlinear and the linear fuzzy regression analyses produced 
envelopes for the regression data of 1988 and 1993 as shown in Figures 6.11 and 6.12. 
For the validation data of 1998, some low flow points are outside the 0.5(L) and 0.5(R) 
envelopes but well inside 0.0(L) and 0.0(R) level envelopes. The 1998 high flow data are 
all inside the 0.5 level envelopes and the level can be considered as a suitable 
representation of uncertainties for high flows.  

The membership functions of discharges from nonlinear and linear regression 
corresponding to the stages of 450 and 648 cm are illustrated in Figs. 6.13(A) and 
6.13(B). Table 6.3 shows the comparison of the discharges obtained from the nonlinear 
and linear fuzzy regression analyses at membership levels 1, 0.5(L) and 0.5(R). As 
expected, the results of the nonlinear and the linear fuzzy regression models are slightly 
different. The linear fuzzy regression model uses the transformed vagueness criteria, 
which is ultimately minimised (Bárdossy et al., 1993). This leads to higher uncertainty in 
the case of the linear model compared to the correct untransformed nonlinear model.  

The differences in discharges due to the uncertainties are found to be considerable in 
both the analyses. It can also be seen that the spread of the membership function of 
discharges increases with the stages. Therefore, the uncertainties in discharges beyond 
the observed stage of 648 cm will be even greater. The reference point for the analyses is 
taken as the average value of the stages. If the reference point is taken at the minimum of 
observed stages, the spread at the higher discharges can be expected to be even higher.  
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Table 6.3. Comparison of the nonlinear and linear fuzzy regression models 

Discharges from nonlinear regression 
model (m3/s) 

Discharges from linear regression 
model (m3/s) 

Stage hi 
(cm) 
 
 

µ = 1 
 

µ = 0.5 (R)
(upper) 

µ = 0.5 (L)
(lower) 

µ = 1 
 

µ = 0.5 (R) 
(upper) 

µ = 0.5 (L)
(lower) 

250 
350 
450 
550 
648 

    86 
  221 
  445 
  831 
1383 

  106 
  269 
  539 
  938 
1475 

    71 
  182 
  370 
  730 
1273 

    84 
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  813 
1356 
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  269 
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   67 
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  351 
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1239 
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Figure 6.11. Fuzzy regression curves with scattered data for nonlinear model 
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Figure 6.12. Fuzzy regression curves with scattered data for linear model 
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Figure 6.13. Membership functions of nonlinear and linear regression models 
corresponding to stages of (A) 450 cm, (B) 648 cm 

 
6.4 Uncertainty Analysis in Water Level Simulation 

The discharge hydrographs constitute a convenient upstream boundary condition in the 
unsteady flow simulation of the hydrodynamic numerical (HN) models. Similarly, upstream 
discharge values are required for the steady flow simulations of the water surface profiles. 
Hence, the uncertainties in discharge values will lead to uncertainties in the HN model 
simulations. The uncertainties can be taken into account by representing the discharge 
values as fuzzy numbers characterised by their membership functions. 

In the present study, the nonlinear membership functions of the discharge values defined 
by the fuzzy nonlinear regression analysis corresponding to stage 648 cm (Figure 6.13(B)) 
is taken for the propagation of uncertainties in an HN model. The alpha level cut method 
based on the extension principle is used for this analysis. The application involves the 
following steps: 

i. The use of interval arithmetic for horizontal cutting of the membership function of 
discharges at a finite number of α - levels between 0 and 1.  

ii. The steady flow water surface profiles computations using the HN model for the lower 
and upper bound discharges from the α – level cuts.  

iii. Derivation of the membership function of the water levels using the HN model 
simulations at each of the α – levels.  

An example of the α – level cut for the membership function corresponding to stage 648 
cm is shown in Figure 6.14. Since the analysis involves steady flow simulations, the water 
levels along the river reach increase or decrease strictly monotonically with the increase 
or decrease in discharges. Hence, for an α – level cut, the discharges corresponding to 
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lower and upper bounds also give the corresponding lower and upper bound water levels 
in the river reach.  
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Figure 6.14. Alpha cut at 0.5 level of the membership function obtained by nonlinear 
regression analysis corresponding to the stage of 648 cm 

 
6.4.1 Model Implementation 

The above methodology is applied to assess the propagation of uncertainties in a river 
channel due to the uncertainties in discharge. The one-dimensional HN model described 
in detail in chapter 5 is used to make the steady flow simulations. The river section 
consists of the Horkheim subreach from the Weir Lauffen to the Weir Horkheim at the 
immediate downstream of the Lauffen gauging station (Figure 5.2), where uncertainties in 
the stage discharge relationship are analysed. The river section is extended further 
downstream to the Heilbronn subreach so that downstream boundary condition does not 
influence the water levels at the Horkheim subreach.  

The α - level cuts are applied at eleven different levels, at an interval of 0.1 between the 
membership levels (0.0 – 1.0). The discharge values corresponding to the α - levels are 
used as upstream boundary conditions of the HN model. The water levels obtained from 
the HN model are used to derive their membership functions. The resulting water levels 
are also used in combination with geographical information systems (GIS) for the 
depiction of uncertainties in the inundation areas. Other sources of uncertainties such as 
model and parameter uncertainties of the HN model are not considered in this study. 

 
6.4.2 Results and Discussion 

The Figure 6.15 shows the uncertainties in water surface profiles in the Horkheim 
subreach due to uncertainties in the discharges values. The water surface profiles relate 
to discharges corresponding to an upstream stage of 648 cm at the Lauffen gauging 
station for the membership levels 0.5(L), 1.0 and O.5(R). The uncertainty analysis leads to 
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nonlinear membership function of the water levels throughout the river subreach. An 
example of the resulting water level membership function at the Weir Horkheim in the 
downstream section is shown in Figure 6.16. From the illustrations, it is clear that 
uncertainties in the water levels is about 0.5 m between the 0.5 upper and the 0.5 lower 
membership levels, which is a significant value in flood water levels. 

119120121122123124125126
161

162

163

164

165

166

167

Neckar Km

W
at

er
 L

ev
el

 (m
)

Q = 1475 m3/s (membership = 0.5R)

Q = 1383 m3/s (membership = 1.0)

Q = 1273 m3/s (membership = 0.5L)

 
 

Figure 6.15. Uncertainties in water surface profiles in the Horkheim subreach  
(Neckar River) corresponding to uncertain upstream discharges 
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Figure 6.16. Water level membership function at the Weir Horkheim corresponding to 
uncertain upstream discharges 

 
The resulting water surface profiles in the Neckar River subreach at Horkheim are used in 
combination with the GIS for depiction of uncertainties in floodplain modelling. The digital 
terrain model consists of a high resolution Laser induced Detection and Ranging (LiDAR) 
measurements of 1.0 m horizontal resolution. The water surface profiles of the 
membership levels 0.5(R), 1.0 and 0.5(L) corresponding to the upstream stage of 648 cm 



 
Chapter 6: Uncertainty Analysis of the Stage Discharge Relationship 

 
122

at the Lauffen gauging station are used to analyse the uncertainties in the floodplain. 
Figures 6.17(A), 6.17(B) and 6.17(C) depict the difference models of the inundation grids 
(water surface grid – terrain grid) for a section of the Horkheim subreach. The 
uncertainties in the inundation areas due to the uncertainties in discharge values for the 
same section is shown in Figure 6.18. The figures clearly depict a large variation in the 
inundation depths and areas due to the uncertainties in discharge values.  
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Figure 6.17. Difference model for difference membership levels (A) 0.5L (B) 1.0 (C) 0.5R 
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Figure 6.18. Inundation areas for difference membership levels  

 
6.5 Concluding Remarks 

This chapter has presented different approaches for managing and analysing the 
uncertainties in the stage discharge relationship. In the first part of this chapter, artificial 
neural networks are used to manage the uncertainties of the relationship by directly 
mapping the discharge values from the stage values as an alternative to the relationship 
curve. The ANNs are used to reproduce the highly scattered nonlinear relationship and 
mapping looped rating curves. Based on the results of this study, it can be seen that the 
ANN based nonlinear mapping technique provides a superior alternative to the single 
valued relationship curve. When the measured discharges are available, this method can 
be extended to map the nonlinear relationship between the measured stage and 
discharge values. 

In the second part of this chapter, uncertainty analysis of the stage discharge relationship 
curve using the fuzzy extension principle based methods is explored. The uncertainties in 
the relationship are analysed using fuzzy regression methods, which define the lower and 
upper uncertainty bounds of the relationship. The important factors for the regression 
include the selection of the credibility level and the reference point. The nonlinear fuzzy 
regression analysis generally produce a lower spread of dependent variable (discharge) 
compared to the linear fuzzy regression analysis as the latter uses a transformed 
relationship, which is ultimately minimised. The resulting membership function of 
discharge is used for the propagation of uncertainties, using fuzzy alpha level cut in 
combination with a hydrodynamic model. When relationship between the dependent and 
independent variables are monotonic, the fuzzy alpha level cut offers a fast and effective 
methodology for propagating the uncertainties. The results of the study show that the 
uncertainties in the stage discharge relationship can have a considerable effect in the 
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estimation of discharge values. The propagation of uncertainties can cause large errors 
and seriously undermine the performance of the systems such as hydrodynamic models. 
Hence, it is argued that the uncertainty analysis should be an integral part of flood risk 
assessment studies. 

The methods of uncertainty management, analysis and propagation of uncertainties due 
to stage discharge relationship also leads to the possibility of complementary modelling. 
For example, the ANN nonlinear mapping method can be used in a series with the flood 
routing model so that model boundary data can be generated from the stage time series. 
The second application of the analysis and propagation of uncertainties using the fuzzy 
regression and fuzzy alpha cut methods is also an example of series complementary 
approach. 
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CHAPTER 7 

CONCLUSIONS AND PERSPECTIVES 

 

7.1 Conclusions 

This thesis has been inspired by different modelling approaches for river flood prediction 
that originate from hydraulics, hydrology and artificial intelligence. For the scientific 
community to benefit more from these tools, it is important to bring them to a common 
platform and analyse their capabilities. It is also necessary to explore methods of 
analysing uncertainties in river flood forecasting systems so as to facilitate better decision 
making process. Driven by these objectives a number of studies have been undertaken 
using the cases of the Rhine and the Neckar Rivers. 

The research presented in this thesis indicates that carefully set up hydrodynamic 
numerical (HN), hydrological, and data driven models such as artificial neural networks 
(ANNs) and neuro-fuzzy systems are all capable of producing good results. The 
application of the HN model in chapters 4, 5 and 6 demonstrate the versatility of these 
tools in the context of river flood forecasting and prediction of inundation extent. The 
application of the ANN in chapters 4, 5 and 6, and neuro-fuzzy and Muskingum Cunge 
(MC) hydrological models in chapter 4 demonstrate that these models provide effective 
and efficient tools, especially when used within the range of training datasets. Besides 
forecasting, the data driven ANN and fuzzy systems can be used to support uncertainty 
analysis applications. The application in chapter 6 shows the usefulness of these tools for 
the management, analysis and propagation of uncertainties.  

 
7.1.1 Model Strengths and Limitations 

This thesis has extensively assessed the strengths and limitations of hydrodynamic, 
hydrological and data driven modelling approaches in the context of river flood prediction. 
The capabilities of the HN model, Muskingum-Cunge (MC) hydrological model, and ANN 
and neuro-fuzzy data driven models are assessed with a case study from the Rhine River 
reach in chapter 4. Similarly, the thesis considers the capabilities of the HN and ANN 
models with a case study from the Neckar River reach in chapter 5. The philosophy 
behind each of these models is entirely different, although the end result might be the 
same. Important considerations in the context of strength and limitations of the models 
include, data requirements and forecasting capabilities.  
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There are major differences with regard to the data requirement and modelling capabilities 
of these tools. The HN model requires detailed topographical data in the river channel and 
floodplains. The hydrological and data driven models in contrast require little or no 
topographical data. With regard modelling capabilities, the HN model is capable of making 
predictions at every cross section while the hydrological and data driven models are only 
capable of making predictions at the model output boundaries.  

Forecast horizon is another important criterion to be considered. In this regard, an HN 
model predicts flows at a downstream location at a time step based on the flows at the 
upstream location at the same time step. In contrast, the hydrological and data driven 
models, can extend the forecast horizon based on the travel time of the flood wave from 
upstream to downstream. Based on the travel time, it is possible to make short term flood 
forecasts, using only upstream flows as inputs.  

The tributaries and lateral inflows can affect the performance of river flood prediction 
models. Being based on the conservation equations, the HN and hydrological models 
require the consideration of all relevant inputs to the system including minor tributaries 
and lateral inflows. These inflows may not be gauged in many locations, and quite often it 
is necessary to make estimations. On the other hand, the data driven models are based 
on the universal approximation of the input and output variables and do not follow 
conservation principles. Due to this reason, data driven models can be used to predict 
downstream flows even without the minor tributaries and lateral inflows. 

The prediction of flow beyond the range of calibration is an important criterion of the flood 
forecasting systems. Being based on the sound physical principles, the HN model 
provides the best option to simulate the unrecorded events beyond calibration. On the 
other hand, the simplified hydrological models are predictive as long as the inputs stay 
within the range of calibration. The same is true for the data driven models, too. The 
analysis in this thesis has shown that it is also possible to extend the forecasting range of 
the data driven models to a certain extent beyond calibration. In particular, the possible 
methods for the ANNs include the normalisation of data in a range such as [0.2 – 0.8], the 
use of activation function with higher limiting amplitude and the use of the highest range of 
available data for training.  

Further analyses of capabilities of the MC, ANN and ANFIS models in predicting extreme 
events in the Rhine River reach are undertaken by comparing independently with the HN 
model. For this analysis, the upstream flow data are multiplied by a factor of 1.5. The 
results however, show considerable differences in both magnitude and duration of the 
peaks. The assessment of the performances of the ANN and HN models for the Neckar 
River with flow data multiplied by a factor of 1.5 also yielded similar results. Hence, the 
application of these models for predicting extreme events can lead to a considerable 
uncertainty. For this reason, the range of applicability of these models should be clearly 
specified. 
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An important strength of the data driven models to be considered is that they provide fast 
and relatively easy means of model development for highly complex nonlinear dynamic 
systems. They provide flexibility that makes it possible to use for the stand alone 
application and in combination with the other modelling tools. The only requirement is the 
selection of appropriate independent and dependent variables for model development.  

 
7.1.2 Complementary Modelling 

The assessment of the hydrodynamic, hydrological and data driven models show that 
each of the modelling techniques has its own strengths and limitations. The differences in 
modelling philosophies and their inherent capabilities raise the potentials of 
complementary modelling instead of using them in competitive ways.  

Due to the underlying limitations of each of these models, it may not be sufficient to use a 
single model for flood forecasting purpose. There will be a more reliable solution when the 
strengths of the models are combined. This fact underlines the need to set up more than 
one model, which is the basis of the parallel complementary approach. For instance, the 
hydrological and data driven models can be used to make forecasts within the calibration 
range, where these models offer ease of use. The HN model is the best model available 
for forecasting beyond the calibration, as there are uncertainties in the hydrological and 
data driven approaches. The use of more than one model also increases the confidence 
of forecasts as results can be cross validated and different scenarios can be tested. 

A series approach can also be used for the complementary physically based and data 
driven modelling, where the results of one model may be used as input to another model. 
In this context, a number of approaches for combining the ANNs with the HN models are 
explored. First, the observation datasets are combined with the HN model results for 
training the ANNs. This constitutes the HN model reduction, with the encapsulation of a 
part of the HN model into the ANN. The ANNs are trained to forecast flows at a gauging 
station, where only a few discharge data are available using the upstream flows as inputs 
and the HN model results as targets. The trained ANNs can later be used for making 
forecasts at the gauging station without requiring the HN model run.  

In the second approach, the ANN model is used as a pre-processor of the input data for 
the HN model. As the HN model requires the estimation of lateral inflows and tributaries, it 
is not very suitable for real time applications. In such a situation the ANN can be used as 
a flood routing model for the prediction of discharge hydrographs at the gauging stations. 
The flood peaks from the predicted hydrographs can be used as inputs to the HN models 
for the simulation of water levels at critical sections. In combination with a digital terrain 
model (DTM), this approach facilitates quick prediction of inundation extents based on the 
forecasted discharges at the gauging stations. 
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7.1.3 Uncertainty Management and Analysis 

Uncertainty analysis is another area of application where the data driven models can 
complement the hydrodynamic models. One of the major sources of uncertainties in the 
river flood prediction models is due to discharges derived from the stage discharge 
relationship curves. A number of methods are explored for managing, analysing and 
propagating uncertainties. The method for the uncertainty management includes the ANN 
nonlinear mapping of the relationship. The ANNs are used to reproduce the looped rating 
curves from the Worms gauging station in the Rhine River. Similarly, the ANNs are used 
for mapping the highly scattered nonlinear relationship from the Lauffen gauging station in 
the Neckar River. Both of the applications show that the ANN based nonlinear mapping 
method provides a superior alternative to the single value relationship curve. 

The nonlinear mapping method of the stage discharge relationship also leads to a 
possibility of complementary modelling. For instance, in a series complementary approach 
the ANN nonlinear mapping method can be used as a pre-processor and post-processor 
of data to a flood routing model. Accordingly, the method can be used to transform water 
level hydrographs into discharge hydrographs, which give the boundary conditions for the 
flood routing model.  

In order to analyse and propagate uncertainties due to the stage discharge relationship, 
methods based on the fuzzy extension principle: fuzzy regression analysis and fuzzy 
alpha cut are used. For this purpose the stage discharge data from the Lauffen gauging 
station is used. The fuzzy regression analysis is used to define the upper and lower 
uncertainty bounds of the relationship, which produces membership functions of 
discharges corresponding to any measured water levels. The alpha cuts of the discharge 
membership function together with the HN model are used to analyse the propagation of 
uncertainties in water levels and inundation areas. This also constitutes a series 
complementary approach between the fuzzy extension principle based methods and the 
HN model.  

Based on the results of analysis and propagation of uncertainties, it can be seen that the 
uncertainties in discharges can lead to significant uncertainties in water levels and 
inundation areas. Hence, by using method of quantification and propagation of these 
uncertainties it will be possible to make better flood risk management decisions. 

 
7.2 Perspectives for Future Research 

A number of potential areas of future research with regard to river flood prediction and 
related uncertainty analysis are identified. They are outlined below. 
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7.2.1 Combined Data Driven and Multidimensional Models 

The research carried out in this thesis concentrated on the complementary application of 
data driven models and 1D HN models. There are also possibilities to use the 
complementary models with the two-dimensional and three-dimensional models. For 
example, the application of data driven models as a pre-processor to the multidimensional 
models can be another area of application. Such an application may include the 
simulation of boundary conditions of the multidimensional models using data driven 
models. In another complementary modelling approach the data driven models such as 
the ANNs can be used for model reduction of the multidimensional models. The 2D and 
3D models require a lot of computing power and time for simulation and are not suitable 
for real time application. The data driven model can be trained to reproduce a part of the 
results of these models, which can be used for real time applications. 

 
7.2.2 Integrated Data Driven and Physically Based Models 

One of the limitations of the data driven models like the ANNs is their lack of relationship 
with physical processes. For the ANNs to gain wider acceptability it is important that they 
have some explanation capability after training has been completed [ASCE, 2000b]. In 
this regard, one potential area of application is linking the parameters of the hydrodynamic 
and hydrological models with the weights and biases of the neural networks. An 
application using the simple Muskingum method has been demonstrated in chapter 5. The 
next step will be to implement a similar approach in a more complex and extended 
application of hydrological and hydrodynamic modelling. 

 
7.2.3 Uncertainty Analysis in River Flood Forecasting Systems 

This thesis explored the methods of management and analysis of uncertainties using 
ANNs and fuzzy numbers. The application of probability based methods of uncertainty 
analysis is popular in many fields. These methods may also be employed in river flood 
modelling problems. In addition, some variables in river flood modelling may be better 
represented by a probability distribution and others may be better represented by fuzzy 
numbers. The application of a hybrid approach for an uncertainty analysis which combines 
probability based methods with fuzzy based methods [Example: Guyonnet et al., 2003; 
Maskey, 2004] can also be a potential area of application in river flood prediction. 

This thesis concentrated on the methods of analysis, management and propagation of 
uncertainties due to the stage discharge relationship. The propagation of uncertainty has 
been undertaken in combination with a 1D hydrodynamic model, which can also be 
extended for application in combination with multidimensional models. The uncertainty 
due to model parameters such as the Strickler coefficient in hydrodynamic models can 
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also be a subject of further research, especially in the region where data for model 
calibration is scarce.  

The uncertainty analysis methods can also be extended to the applications covering data 
driven models. The data driven models are also affected by both data and model 
uncertainties. For instance, a data driven flood routing model is affected by data 
uncertainties in the input and target data. In addition, model uncertainties may arise when 
these models are used beyond calibrated range. Therefore, uncertainty in data driven 
model can be a subject of further investigation. 

 
7.2.4 Combined Flood Risk and Uncertainty Assessment 

Flood risk assessment consists of components of hazard and vulnerability, both subject to 
uncertainties. For instance, it is a common practice to assess flood hazards in terms of 
associated exceedance probability of a flood event. The vulnerability assessment might 
involve setting tolerance levels of different land use types to parameters such as water 
depth and velocities. Further assessment for damages may involve making estimations of 
parameters such as likely flood losses. Specifying these assessment parameters, 
especially in relation to extreme events, may be affected by significant uncertainties. 
Hence, the uncertainty analysis should be considered as an integral component of flood 
risk assessment. 
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APPENDIX A  

NEURAL NETWORK TRAINING ALGORITHMS 

 

A.1 Backpropagation Algorithm 

The most common type of algorithm used for training the MLPs networks is called error 
backpropagation algorithm. Basically, backpropagation consists of two passes; a forward 
pass and a backward pass through different layers of the network as shown in Figure. A.1. 
The forward pass is applied to transmit the function signal of the network layer by layer. 
The backward pass is used to transmit the error signal and the synaptic weights are 
adjusted based on an error correction rule. The network training procedure can be 
summarised in the following steps: 

i. Initialisation: All the synaptic weights and biases are set to suitable values, usually 
random numbers. 

ii. Presentation of training example: The network is presented with input and output 
vectors as training examples. 

iii. Forward computation: After the application of input vectors, the functional signals of 
the network are computed proceeding forward through the network, layer by layer. 

iv. Backward computation: Computation of the local gradients of the network by 
proceeding backwards layer by layer. The synaptic weights are also adjusted layer by 
layer using an error correction rule. 

v. Iteration: The training proceeds with a new epoch of computations of steps (iii) and 
(iv) until the cost function is at a minimum or an acceptably minimum value. 

 

Function signals

Error signals  
 

Figure A.1. Signal flows in backpropagation networks 
Source: Haykin [1994] 
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A.1.1 Network Errors 

The general approach for the backpropagation training is based on the adjustment of 
weights that minimise the network error. The error signal is taken at the output layer of the 
network, as it is the only "visible" layer for which errors can be calculated. Considering the 
neuron j, the instantaneous error ej at the output of a neuron dj with desired value yj and at 
iteration n is defined as: 

( ) ( ) ( )=j j je n   d n  - y n              (A.1) 

The instantaneous sum of the squared errors at the output of the network is thus written 
as: 

( ) ( )2
j

j C

1E n e n
2 ∈

= ∑               (A.2) 

where C includes all neurons at the output of the network. The average summed square 
error is obtained by summing E(n) over the entire training set N and normalising with 
respect to set size n, as given by: 

( )
N

av
n 1

1E E n
N =

= ∑               (A.3) 

The instantaneous sum of the squared errors E(n) and therefore the average summed 
square error is the function of all free parameters (synaptic weights and biases) of the 
network. During the network training, avE represents the cost function as the measure of 

training set network performance. The objective of the network training is to minimise the 
cost function avE  such that the actual response of the network approaches the target 

response. 

The networks can be trained with two different training styles. In the incremental training, 
the weights of the network are updated each time an input is presented. In this case, the 
instantaneous sum of the squared errors E(n) is used as the cost function. In batch 
training, weights are updated only after all the inputs are presented and the average 
summed square error avE  is used as the cost function. 

 
A.1.2 Adjustment of Weights 

The standard backpropagation error correction rule is based on the gradient descent 
algorithm. The simplest implementation of the gradient descent method updates the 
weights in the direction of negative gradient. One iteration of this algorithm can be written 
as: 

( ) ( ) ( )ji ji jiw n 1 w n ∆w n+ = +              (A.4) 
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Where ( )jiw n 1+  is the vector of updated weights at iteration (n +1) with respect to 

weights ( )jiw n  and weight increment ( )ji∆w n , at iteration n, between the neurons j and i. 

In the batch training mode the network weight increment is defined by the delta rule: 

( ) ( )
( )ji

ji

E n
∆w n η

w n
∂

= −
∂

              (A.5) 

where η is the learning rate constant. The use of a minus sign in Equation (A.5) accounts 
for gradient descent in weight space. Considering a network with linear activation 

functions, the instantaneous error gradient term ( )
( )ji

E n
w n
∂
∂

is given by: 

( )
( )

( )
( )

( )
( )

∂∂ ∂
=

∂ ∂ ∂
j

ji j ji

u nE n E n
*

w n u n w n
             (A.6) 

The output activation ju (n )  appearing at neuron j is given by the sum of input signal xi(n) 

weighted by synaptic weights ( )jiw n : 

( ) ( ) ( )=∑j ji iu n w n x n               (A.7) 

Differentiating Equation (A.7), ( )
( )

∂
=

∂
j

j
ji

u n
x

w n
for the output layer, associative derivative 

( )
( )

∂
∂ j

E n
u n

 is defined as the local gradient δj(n). Substituting the values in Equation (A.5), the 

weight increment ( )ji∆w n  between the neurons j and i can be expressed as the product of 

learning rate constant η, local gradient δj(n) and input signal xi(n): 

( ) ( ) ( )=ji j i∆w n ηδ n x n              (A.8) 

Hence, in case of output layer, the local gradient δj(n) can be expressed as: 

( ) ( ) ( ) ( ){ }∂ ∂
= = −

∂ ∂
k

j j j
k k

E n yδ n d n  - y n
u u

           (A.9) 

In case of hidden layers, the local gradient δj(n) is given by product of the derivative 
( )
( )

∂
∂ j

y n
u n

 and the weighted sum of δ's is computed for the neurons in the next hidden or 

output layer connected to the neuron j. 

( ) ∂
=

∂∑ i
j j j

i

yδ n δ w
u

            (A.10) 
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A.2 Faster Training 

The standard backpropagation algorithm when applied to a multilayer network is often too 
slow for most practical applications [Hagen et al., 1995]. This has to do with the 
performance surface (like mean square error) of the multilayer networks, which may 
consist of many local minimum points. Variations on the backpropagation like the Newton 
and Levenberg-Marquardt algorithm offer faster and efficient training methods.  

A.2.1 Newton's Method 

The Newton's method is based on the second order search method for a minimum. It 
updates the weights between iteration steps n and n+1 using the following relationship: 

( )n 1 n 1w w H g+ −= −             (A.11) 

where the vector 1H g−  consists of variants of Hessian matrix H and gradient vector g, 

which is given by: 

Eg
w
∂

=
∂

             (A.12) 

2

2

EH
w
∂

=
∂

             (A.13) 

The gradient and Hessian Matrix may be represented in the matrix forms as: 
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where N is the number of weights 

The application of the Newton's method in training multilayer perceptron is hindered by the 
need to compute the Hessian matrix, which is a second order derivative. This would be 
computationally very demanding if done at each stage of an iteration algorithm. This 
would also require the Hessian matrix to be inverted at each stage, which will make 
computational procedure very expensive. 

Alternative approaches based on modification of the Newton method have been 
suggested to make it a practical optimisation rule. A quasi-Newton algorithm belongs to 
this class of method and updates the approximate Hessian matrix at each stage of 
iteration. This involves generating a sequence of matrices, which represent increasingly 
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accurate approximation to the inverse Hessian matrix H 1− . The updating is based on the 
first order derivative of the error function.  

From the Newton's method (Equation A.11), the weight vectors at iterations n and n+1 can 
be related by following approximate condition: 

( ) ( ) ( ) ( )( )n 1 n n 1 n1w -w H g -g+ +−−           (A.14) 

This is also known as the quasi-Newton condition function. The approximate inverse 
Hessian matrix is updated at each iteration n so as to satisfy the condition. 

 
A.2.2 Levenberg-Marquardt Method 

The Levenberg-Marquardt algorithm is specially designed for minimising the error function 
at each layer. From Equation (A.2) the sum of square error may be rewritten as  

( ) ( )2
j

j C

1E n e n
2 ∈

= ∑             (A.15) 

Then, the gradient vector may be expressed as 

j T
j j

j C

eEg e J e
w w∈

∂∂
= = =
∂ ∂∑            (A.16) 

where J is the Jacobian vector. The Hessian matrix can also be approximated by 
Jacobians as: 

T
2

EH J J
w
∂

= =
∂

2

            (A.17) 

The Jacobian matrix J may be defined as differentials of the output errors with respect to 
network weights. 
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where N is number of weights and M is number of outputs 
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A.3 Improving Generalisation 

Normally the sum of the square errors of the training sets is chosen as the cost function 
given by the equations (A.1), (A.2) and (A.3). Sometimes, it is possible to improve 
generalisation using modified performance (cost) function. This technique is called 
regularisation, which encourages smoother network mapping by adding a penalty to the 
error function [Bishop, 1999]. A method of regularization by adding a penalty term that 
consists of the mean sum of squares of weights and biases from Demuth and Beale 
[2004]. This is given by  

( )av avF E W= + −1γ γ             (A.18) 

where Eav is the mean sum of squares of network errors, Wav consists of mean sum of 
squares of the network weights and biases and γ  is the performance ratio.  

The optimum value of the performance function can be determined in an automated way 
in the framework of Bayesian regularisation. In this framework, the weights and biases are 
assumed to be random variables with specified distribution. The regularisation parameters 
are related to the unknown distribution, which can be determined using statistical 
techniques. The Bayesian regularisation in combination with the Levenberg-Marquardt 
training has been used extensively in this work.  
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APPENDIX B  

ERROR MEASUREMENT 

 

Table B.1 shows the statistics of the error comparison used in this study. The error 
measurement process consists of analysis of errors between observed and calculated 
values. The overall performance of trained networks can be judged with respect to criteria 
such as the coefficient of determination (R2). The R2 is defined as the ratio of the sum of 
squares of the regression to the total sum of squares. The coefficient is independent of 
the scale of data used and useful in assessing the goodness of fit of the model. The root 
mean square error (RMSE) evaluates the error independent of sample size and can give 
useful insights to amplitude errors. Two additional criteria, the peak error (PE) and 
maximum error (ME) are also considered in this thesis.  

Table B.1. Error measurement formula 

Error measurement Name Formula 

Coefficient of 
determination 

R2 
( )

( )

n
2

cal av
i 1
n

2
obs av

i 1

y y

y y

=

=

−

−

∑

∑
 

Root mean square 
errors 

RMSE ( )
n

2
obs cal

i 1

1 y y
n =

−∑  

Peak error  PE ( ) ( )obs caly max y max−

Maximum absolute 
error 

MAE obs calmax y y−  

 
where n is the number of observations, yobs and ycal are the observed and calculated 
values respectively, and yav is the mean of the observed values. yobs (max) and ycal (max) 
are the maximum of observed and calculated values. 
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   Untersuchungen zur Durchströmung des Kraghammer Sattels an der 

Biggetalsperre nach neuentwickelten Methoden der Felshydraulik; 
W.Wittke, Cl. Louis  
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   Anhang: Veröffentlichungen, Vorträge, Dissertationen der Abteilung für 

Kulturtechnische Untersuchungen (Lehrgebiet Landwirtschaftlicher 
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unter Risiko und Ungewißheit; W. Buck 
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Heft 173/1986 ° Vor- und Nachteile des naturnahen Gewässerlaufes im Vergleich zu 
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Wasserbaulichen Kolloquium am 14.02.1986 in Karlsruhe 
 
Heft 175/1986 ° Naturnahe Umgestaltung ausgebauter Fließgewässer Projektstudie; 
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rung: ein hydrodynamisches Modell; M. Awwad 
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Heft 182/1991  Untersuchungen zum Stabilitätsverhalten von Gerinnesohlen; A.Dittrich, 

M. Rosport, O. Badde 
 
Heft 183/1993  Der Einfluß der Belüftung auf die Kavitationserosion; N. Eisenhauer 
 
Heft 184/1993  nur als Buch erhältlich bei Springer Verlag: Grundlagen naturnaher 
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Kern 
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Heft 186/1994  Turbulente, abgelöste Zweischichtenströmung über Sohlschwellen in 
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Einzugsgebieten mittels stochastischer Methoden unter Verwendung von 
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versorgungssystemen; S. Ates 
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Heft 191/1995  Oberflächenabfluß und Bodenerosion in Kleineinzugsgebieten mit 
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K.Gerlinger 
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Heft 196/1997  Fließwiderstand und Sohlstabilität steiler Fließgewässer unter 

Berücksichtigung gebirgsbachtypischer Sohlstrukturen; M. Rosport 
 
Heft 197/1997  Ein Finite-Punkte-Verfahren für stationäre zweidimensionale 

Strömungen mit freier Oberfläche; C.J. Du 
 
Heft 198/1998  Wechselwirkung Morphologie/Strömung naturnaher Fliessgewässer; 

A.Dittrich 
 
Heft 199/1999  Entwicklung naturnaher Gewässerstrukturen - Grundlagen, Leitbilder, 

Planung; J. Scherle 
 
Heft 200/1999  Zwei-Schichtenströmungen über Sohlenschwellen bei intern 

überkritischer  Strömung; Y. Wang 
 Hydraulic Design Considerations for Low- and High-Head Gates; 
E.Naudascher 

 
Heft 201/1999   Numerische Simulation von Staustufenketten mit automatisiertem 

Betrieb; S. Theobald 
 
Heft 202/1999   Der Einfluß von kurzen Gehölzstreifen auf den Hochwasserabfluß in 

Flüssen mit gegliedertem Querschnitt; K. Becker 
 



Heft 203/1999  Typisierungskonzept zur Festlegung einer ökologisch begründeten 
Mindestwasser menge; M. Scherer 

Heft 204/1999  Inseln und deren Widerstandsverhalten in Fließgewässern; A. Maryono 
 
Heft 205/1999  Boden- und Wasserschutz in landwirtschaftlich genutzten Gebieten der 

Mata Atlântica Brasiliens; M. Kunzmann 
 
Heft 206/2000  Nutzung von Landsat Thematic Mapper Daten zur Ermittlung 

hydrologischer Parameter; S. Belz (auch elektronisch unter: 
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elektronisch unter: http://www.ubka.uni-karlsruhe.de/eva/index.html) 

 
Heft 208/2000°  Three Dimensional Computation of Turbulent Flow in Meandering 

Channels; V. T. Nguyen 
 
Heft 209/2001  Sedimenttransportprozesse im Himalaya-Karakorum und ihre Bedeutung 

für Wasserkraftanlagen; S. Palt (auch elektronisch unter: 
http://www.ubka.uni-karlsruhe.de/eva/index.html) 

 
Heft 210/2002  Die Identifikation hydrologischer Prozesse im Einzugsgebiet des 

Dürreychbaches (Nordschwarzwald); M. Casper (auch elektronisch 
unter: http://www.ubka.uni-karlsruhe.de/eva/index.html) 

 
Heft 211/2001  Einfluß von Regelungsbauwerken auf die Wasserspiegellagen in Flüssen; 

F. Ritzert (auch elektronisch unter: http://www.ubka.uni-
karlsruhe.de/eva/index.html) 

 
Heft 212/2001  Konzept für einen ganzheitlichen Gewässerschutz; W. Hauck 
 
Heft 213/2002  A Hydrodynamic-Numerical Model of the River Rhine; P. T. Minh Thu 

(auch elektronisch unter: http://www.ubka.uni-
karlsruhe.de/eva/index.html) 

 
Heft 214/2002  Zur hydraulischen Systemanalyse von Wasserversorgungsnetzen;           

J. Deuerlein (auch elektronisch unter: http://www.ubka.uni-
karlsruhe.de/eva/index.html) 

 
Heft 215/2002   Feststofftransport und Geschwindigkeitsverteilung in Raugerinnen;  
  K. Koll (nur elektronisch unter: http://www.ubka.uni-

karlsruhe.de/eva/index.html) 
 
Heft 216/2002  Simulationswerkzeuge zur Bewirtschaftung von Staustufenketten;  
  A. Celan 
 
Heft 217/2002   Deutsch-Russisches Wörterbuch für Wasserwirtschaft; R. Krohmer,  
  I.S. Rumjanzev 
 

http://www.ubka.uni-karlsruhe.de/eva/index.html
http://www.ubka.uni-karlsruhe.de/eva/index.html
http://www.ubka.uni-karlsruhe.de/eva/index.html
http://www.ubka.uni-karlsruhe.de/eva/index.html
http://www.ubka.uni-karlsruhe.de/eva/index.html
http://www.ubka.uni-karlsruhe.de/eva/index.html
http://www.ubka.uni-karlsruhe.de/eva/index.html
http://www.ubka.uni-karlsruhe.de/eva/index.html
http://www.ubka.uni-karlsruhe.de/eva/index.html
http://www.ubka.uni-karlsruhe.de/eva/index.html
http://www.ubka.uni-karlsruhe.de/eva/index.html
http://www.ubka.uni-karlsruhe.de/eva/index.html


Heft 218/2002  Entwurfsoptimierung städtischer Abwasserentsorgungsnetze; I. V. 
Domínguez Talavera (auch elektronisch unter: http://www.ubka.uni-
karlsruhe.de/eva/index.html) 

 
Heft 219/2002  Kontrolle von Barrieren: Bestimmung der hydraulischen Leitfähigkeit an 

Hand des Bodenwassergehaltes; R. Schuhmann (auch elektronisch unter: 
http://www.ubka.uni-karlsruhe.de/eva/index.html) 

 
Heft 220/2003  Langfristige, hydrologische Betrachtung der Grundwasserdynamik am 

Beispiel der Mittleren Elbe; P.-A. Burek (auch elektronisch unter: 
http://www.ubka.uni-karlsruhe.de/eva/index.html) 

 
Heft 221/2003  Wassermengenbewirtschaftung im Einzugsgebiet der Ruhr: Simulation 

und Echtzeitbetrieb; T. Brudy-Zippelius (auch elektronisch unter: 
http://www.ubka.uni-karlsruhe.de/eva/index.html) 

 
Heft 222/2004  Russisch-Deutsches Wörterbuch für Wasserwirtschaft; R. Krohmer, 

I.S.Rumjanzev 
 
Heft 223/2004  Mobilisierung und Immobilisierung von mineralischen Feinstkorn-

aggregaten an Gewässersohlen; J.-W. Kim (nur elektronisch unter: 
http://www.ubka.uni-karlsruhe.de/eva/index.html) 

 
Heft 224/2004  Strömungsstruktur und Impulsaustausch in gegliederten Gerinnen mit 

Vorlandvegetation; I. Schnauder (nur elektronisch unter: 
http://www.ubka.uni-karlsruhe.de/eva/index.html) 

 
Heft 225/2004  Towards Decision Support Models for Un-gauged Catchment in India, 

The Case of Anas Catchment;  A. K. Singh (nur elektronisch unter: 
http://www.ubka.uni-karlsruhe.de/eva/index.html) 

 
Heft 226/2004  Integrales Hochwasser-SimulationssystemNeckar – Verfahren, Werk-

zeuge, Anwendungen und Übertragungen; P. Oberle (auch elektronisch 
unter: http://www.ubka.uni-karlsruhe.de/eva/index.html), noch nicht 
erschienen, Aug. 2005 

 
Heft 227/2004  Small Hydropower Plants Based Power Systems for Remote Regions; R. 

K. Maskey (nur elektronisch unter: http://www.ubka.uni-
karlsruhe.de/eva/index.html) noch nicht erschienen, Juli 2005 

 
Heft 228/2004  Spatial Time Domain Reflectometry and its Application for Monitoring 

Transient Soil Moisture Profile; R. Becker (nur elektronisch unter: 
http://www.ubka.uni-karlsruhe.de/eva/index.html)  

 
Heft 229/2005  River Flood Prediction Systems: Towards Complementary 

Hydrodynamic, Hydrological and Data Driven Models with Uncertainty 
Analysis; R. Shrestha (auch elektronisch unter: http://www.ubka.uni-
karlsruhe.de/eva/index.html)  
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Heft 230/2005   Empfehlungen zur naturnahen Gewässerentwicklung im urbanen Raum 
–unter Berücksichtigung der Hochwassersicherheit-; B. Lehmann (auch 
elektronisch unter: http://www.ubka.uni-karlsruhe.de/eva/index.html) 

 
Heft 231/2005  Einfluß der Oberflächenströmung auf die permeable Gewässersohle; S. 

Vollmer (auch elektronisch unter: http://www.ubka.uni-
karlsruhe.de/eva/index.html) 

 
 
Heft 232/2005  Optimization of Internal Hydraulics and of System Design for PUMPS 

AS TURBINES with Field Implementation and Evaluation; P. Singh 
(auch elektronisch unter: http://www.ubka.uni-
karlsruhe.de/eva/index.html) 
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