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Preface

An origami can be described as follows: Take finitely many copies of the unit
square in C and glue them together such that each left edge is glued with a right
edge and each upper edge with a lower one. This defines a compact surface. In
fact the surface is naturally punctured by removing the vertices of the squares.
Lifting the euclidean structure of C = R? via the squares defines a natural trans-
lation structure on the surface.
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Figure 1: An origami

The central object of this thesis is a subgroup of SLy(Z) associated to the origami,
called the Veech group. One obtains it in the following way:

Due to the translation structure we may consider affine diffeomorphisms on the
surface. Locally they are of the form

(i) — A - (;) 4 (il) , with A € GLy(R) and ¢ = (t,t5)" € R?.
2

The translation vector ¢ varies with the local charts, whereas the matrix A is
globally the same. All matrices obtained this way from affine diffeomorphisms
form a subgroup of GLs(R): the Veech group of the origami.

One motivation for studying Veech groups is given as follows: Each translation
surface defines a Teichmiiller disk in an appropriate Teichmiiller space T}, of
Riemann surfaces of genus g with n marked points. Sometimes this Teichmiiller
disk projects onto an affine curve in the corresponding moduli space. This curve
is then called a Teichmiiller curve. The Veech group of the translation surface
“knows” whether this happens or not. It knows as well of which type the Teich-
miiller curve is.

The aim of this thesis is to study the Veech groups of origamis. It turns out that
they are in fact subgroups of SLy(Z) of finite index. It is natural to ask which
subgroups of SLy(Z) occur. This is not known in general, but for a large number
of subgroups of SLs(Z) we show that they are the Veech group of some origami.

With Theorem 1 we provide a characterization of the Veech groups of origamis
in terms of subgroups of Iy, the free group on two generators.
We start from the fact that F; is the fundamental group of the punctured torus.



Each origami defines an unramified covering of it, see Chapter 1. It is associated
to a finite index subgroup of F5. As second important ingredient we will use
that GLy(Z) is isomorphic to the outer automorphism group of F». We consider
stabilizing groups in Aut™(F}), consisting of all automorphisms that stabilize a
given finite index subgroup of F,. We prove in Theorem 1, that

[' C SLy(Z) is the Veech group < it is the image of such a stabilizing
of an origami group in Aut™(F).

This characterization is the basis of an algorithm that determines the Veech group
of an origami, see Chapter 4:

More precisely, the algorithm obtains a set of generators and a system of coset
representatives in SLo(Z). It calculates the genus and the number of the cusps of
the corresponding Teichmiiller curve. Furthermore, one obtains a suitable funda-
mental domain of the action of the Veech group on the upper half plane.

The free group F, in the characterization can also be considered as the group
of deck transformations of the universal covering of the punctured torus. In this
sense it is embedded into PSLy(R), the automorphism group of the upper half
plane H. This embedding depends on the complex structure that one has on
the punctured torus. In Chapter 2, we study the Teichmiiller space 17, of once
punctured tori and obtain coordinates for it which are especially appropriate in
this context. In particular we obtain “nice” generators and “nice” fundamental
domains for this family of Fuchsian groups isomorphic to Fs.

The genus of the Teichmiiller curves associated to origamis is not bounded. In
Chapter 5 we explicitly present an infinite sequence X, of origamis whose asso-
ciated Teichmiiller curves have increasing genus.

On the other hand, in each moduli space M, there are Teichmiiller curves of genus
0. We show this in Theorem 2 by finding an explicit origami for each g € N, such
that the normalization of the associated Teichmiiller curve in the moduli space
M, is a projective line without two points and similarly for the projective line
without three points.

The origamis presented in this chapter all have Veech groups that are well known
congruence groups.

In fact, many congruence groups occur as Veech groups of origamis.

In Theorem 4 we show that actually all congruence groups of prime level, with
possibly five exceptions, are the Veech group of some origami.

We study congruence groups of level n by their action on (Z/nZ)?* and consider
the orbit spaces they have. In Theorem 3 we prove that all congruence groups
which are maximal with respect to their orbit space are the Veech group of some
origami.

Theorem 4 then shows that almost any congruence group of prime level has this



property. The theorem can be generalized for arbitrary level n, which is done in
Theorem 5.

It is then natural to ask, whether maybe all Veech groups are congruence groups.
But this is not true at all. In fact it seems that there exist many examples which
are not. In Chapter 7 we give two origamis whose Veech groups are non congru-
ence groups and develop a method to obtain infinitely many other examples out
of them.

In Chapter 1 we introduce the basic objects that we study: origamis, translation
surfaces and Veech groups. Furthermore, we explain the construction that leads
to Teichmiiller curves in the moduli space in order to state the context in which
origamis are studied. In 1.5 we give a glance on what is known in general about
Veech groups and Teichmiiller curves.
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Chapter 1

Origamis and Teichmiller curves

1.1 Origamis

In this section we define origamis and describe some different ways how they can
be presented. I have learnt this theory from [Lo 03].

Definition 1.1. An origami consists of a finite set of copies of the euclidian unit
square that are glued observing the following rules:

e Fach left edge of a square is identified by a translation with a right edge.
e Fach upper edge is identified by a translation with a lower one.
e The closed (topological) surface X, that one obtains, is connected.

This definition by giving simple rules that define a combinatorial object moti-
vated the name origami introduced in [Lo 03]. In fact, the term origami is used
there for somewhat more general objects. We here restrict to what one might
call oriented origamis in the terminology there.

Example 1.2. As a first example we consider an origami consisting of four
squares, see Figure 3.

&)
@
&)

Figure 2: A first example of an origama.



8 ORIGAMIS AND TEICHMULLER CURVES

After identifying edges labeled by the same letter one obtains a closed surface X
of genus 2: it is divided into 4 squares with 8 edges (after identification) and the
two vertices x and @. Hence the Euler characteristic is —2 and the genus is 2.

If one labels the squares of an origami by the numbers 1, ..., d, then the iden-
tification of the edges is given by two permutations o, and o, in Sy, where o},
indicates how the horizontal edges and o, how the vertical edges are glued. In
Example 1.2 we have o, = (123 4) and o, = (1 2)(3 4).

One may present an origami also as a finite oriented graph G as follows: G has
d vertices vy, ..., vg that correspond to the squares of the origami. The edges of
G are labeled by x or y. Two vertices v; and v; are connected by an edge with
label z if and only if the right edge of the square that corresponds to v; is glued
with the left edge of the square that corresponds to v;. They are connected by
an edge with label y if and only if the upper edge of the square corresponding to
v; is glued with the lower edge of the one that corresponds to v;. We will come
back to this presentation of an origami in Section 4.2.

/K /y\
(O~
.y ~v

Figure 3: The graph G for the origami in Example 1.2.

1.2 Origamis as coverings of the once punctured
torus

The “smallest” example for an origami consists of only one square. There is only
one possible way to glue the edges. One obtains a closed surface of genus 1, i.e.
a torus E. The four vertices of the square are glued to one point on E that we
denote as oo.

Let now O be an arbitrary origami and X the @ by a
closed surface that it defines. The images of the el 1 9
b

\ED

d
“Q
3 | 4 e

squares on X define a (topological) covering p N
from X onto E. This covering is ramified at most a

over the point co. The degree of the covering is

the number of squares and the preimages of oo P
on X are the vertices of the square tiling.

In Example 1.2 we have a covering of degree 4
ramified in the two points * and Q.

c d

OOfOO

©,9) o0
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Let E* := E — {oo} and X* := X — p~!(c0). Then p : X* — E* is a finite
unramified covering of the punctured torus.

Conversely, each finite unramified covering p : X* — E* defines an origami O
as follows: Let d be the degree of the covering and let p : m(E*) — Sy be the
monodromy of p. The fundamental group 71 (E£*) of the once punctured torus E*
is isomorphic to the free group on two generators x and y. We identify x with the
horizontal simple closed path on E* and y with the vertical simple closed path
as indicated in the figure.

Y

Figure 4: Generators of m(E™).

Set 7, := p(x) and 7, := p(y). Then we obtain O as the origami that consists
of d squares that are glued according to the permutations 7, and m,, i.e. the left
edge of the ith square is glued to the right edge of the 7, (i)th square and the
upper edge of the ith square is glued to the lower edge of the 7,(i)th square.

These two constructions are inverse to each other. Therefore we may use equiv-
alently the following definition for origamis.

Definition 1.3. An origami O (of genus g > 1) is a (topological) unramified
covering p : X* — E*, where X* is obtained by removing finitely many points
from a compact surface X of genus g. We call X — X* the set of vertices of O.

1.3 Veech groups of origamis

In this section we introduce the main object that we study, the Veech group of
an origami.

We start with the definition of general translation structures on surfaces.

Definition 1.4. An atlas on a surface X such that all transition maps are trans-
lations s called translation atlas. It defines a translation structure p on X.
X, := (X, u) is called translation surface.

We shall identify throughout the whole thesis C with R? by sending {1,i} to
the standard basis of R?. With this identification, a translation is a holomorphic
map, thus a translation atlas defines in particular a complex structure on X and
(X, p) is in this sense a Riemann surface.
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For a translation surface X, = (X, 1) one calls
AffY(X,) ;== {f: X — X]| f orientation preserving affine diffeomorphism}

the affine group, where the diffeomorphisms have to be affine with respect to
the translation structure p on X. Here affine means that the diffeomorphism is
locally defined as a real-affine map

z — A-z+t with some A € GLy(R), t € C. (1.1)

Since all transition maps in the atlas of X are translations, the matrix A in (1.1)
is independent of the chart. Furthermore, composition of diffeomorphisms leads
to multiplication of the matrices. Thus we obtain a homomorphism

der : Afff(X,) — GLy(R), f+— A ( with A as above).

We call the matrix der(f) = A the derivative of the diffecomorphism f. The
derivative is in GLJ (R) iff f preserves the orientation. If X is of finite volume,
then A is in fact in SLy(R).

Definition 1.5. The image I'(X,,) := der(Aff* (X)) of the affine group in SLy(R)
is called the Veech group of X,,.

Let us consider as a first example the torus: Let B be a matrix in SLy(R) and
Ap the lattice in C with

b . . b
B:(CCL d)GSLQ(R) = ABZ: < V1= (CCL),UQZ: <d>>

Then the torus C/Ap has the natural translation structure vp descending from
C. We denote the translation surface (C/Ap,vp) by Eg.

The affine diffeomorphisms on Ep can all be lifted to the universal covering
C. Conversely, an affine diffeomorphism z — A -2z 4+ b on C descends to Ep
if and only if it respects the lattice Ag. But this is the case if and only if
BAB™! € SLy(Z). Thus we obtain the Veech group

['(Ep) = B 'SLy(Z)B, for all B € SLy(R).
In particular one has
['(Er) = SLy(Z), where I is the identity matrix in SLy(R).

In general the group SLy(R) acts on the translation structures of an arbitrary sur-
face X from the right, in the following sense: For B € SLy(R) let pp: C — C
be the R-linear map z +— B - z. For a given translation structure x on X, B
defines a translation structure i - B by composing each chart with pp.

The following remark states how the Veech groups are related to each other.
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Remark 1.6. Let p and 1 - B be defined as above. Then
AffT(X,) & Af7(X,5) and T'(X,p) = BI(X,)B™".

Proof. The map ¢ : X,, — X, p that is topologically the identity on X is an
affine diffeomorphism with derivative B and induces the group isomorphism

AFF(X,) — AR (X,m), [0 fou

Since the derivative of ¢ is B, we have der(¢ f¢~1) = B - der(f) - B™L.
[

Let us return to origamis now. Let O = (p : X* — FE*) be an origami,
using Definition 1.3. Similarly as for the torus we obtain a bunch of natural
translation structures on X*. More precisely, one defines for each B € SLy(R)
a translation structure pup on X* as follows: Let us fix some homeomorphism
h: E — E;=H/A;. Denote Ej := E; — h(oo) . Then h defines a translation
structure py on X* by lifting v;| , via hop to X*. Now, we may define up as

wp = pur - B.

*
By

Note, that one obtains the same translation structure up from Eg, if one pro-
ceeds the following way: The affine map ¢p : 2z — B - z descends to a map

¢p: K — FEp. Then pupg is the lift of the translation structure vp| . via the
B

map @p o hop. Here, we denote similarly as above £}, := Ep — ¢p(h(0))

X*

Lp
h PR

Er——> Ef 2> Ej

Definition 1.7. Let O = (p : X* — E*) be an origami. For each B let up
be the translation structure on X* as explained above. We denote by X}, the
translation surface (X*, ug).

By Remark 1.6 the Veech groups of all these translation surfaces are conjugated
in SLy(R). Therefore we may for the study of Veech groups restrict to B = I.
This motivates the following definition.

Definition 1.8. Let O = (p : X* — E*) be an origami. We call T'(X}) the
Veech group of the origami O and denote

ro) = 1rx") = X

We shall see later in Chapter 3 that I'(O) is always a subgroup of I'(E;) = SLy(Z)
of finite index.
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1.4 Relation to Teichmiiller curves

An important motivation to study Veech groups is their relation to Teichmiiller
disks in the Teichmiiller space and to Teichmiiller curves in the moduli space. In
this section we briefly introduce this concept. For more details one might look
e.g. in [EG 97|, [Lo 03], [McM 03| and references therein.

Let (X, 1) be a translation surface. We will suppose for the rest of this section
that the Riemann surface X defined by the structure p is of finite type. Let g
be its genus and n the number of punctures. Let T}, be the Teichmiiller space
of Riemann surfaces of genus g with n punctures and M,, the corresponding
moduli space.

We have as explained in Section 1.3 for each B € SLy(R) a translation structure
i+ Bon X. Let us denote in the following Xp := (X, - B).

In order to obtain points in the Teichmiiller space T}, we may choose the topo-
logical surface X and the identity mapid : X — Xpg as marking for the Riemann
surface X. This defines a point [Xp] in 7, ,,. Thus we have a map:

SLy(R) — Ty, B [Xg). (1.2)

For two matrices B and B’ with B’ - B™! € SOy(R), the identity map on X
considered as diffeomorphism id : Xz — Xp is holomorphic. Thus [Xp| and
[ Xp/| are the same point in T, ,. Therefore the map in (1.2) factors through
SLs(R)/SO5(R) = H and one has a map:

i: H — Tg,na B - SOQ(R) = [XB] (13)

Since one has also vice versa that the identity map is (isotopic) to a holomorphic
map only if B - B~! is in SO,(R), one obtains that the map in (1.3) is injective.

The image A of the map ¢ in T}, is called a Teichmiiller disk. In fact, ¢ : HH — A
is an isometry with respect to the Poincaré metric on H and the Teichmiiller met-
ric on T} ,,, therefore A is also called geodesic disk. A proof for this result can be
found for e.g. in |Ga 87|.

The affine group Aff*(X;) of X; acts on A by

AT (X)) — Aut(4d), f-[Xp] = [Xglof = [Xap]
with A := der(f).

Here one defines [Xp] o f by the composition of the diffeomorphism f with the
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markingid : X — Xpg. If one considers now the following commutative diagram,

X, f X, id X5
XaB

then the map X 4.5 — Xp is as a composition of affine maps itself affine and has
derivative /. Thus it is biholomorphic and [Xg] o f = [Xa.5]-

This action fits together with the action of the Veech group I'(X) on H by Mébius
transformations, see e.g. [McM 03, Prop. 3.2]. The action of T'(X) is discrete on
H, as was proven in [Ve 89], i.e. T'(X) is a Fuchsian group.

Now one considers the image of the Teichmiiller disk A in the moduli space M, ,,
under the natural projection 7} ,, — M,,. This is sometimes an algebraic curve.
In fact, this happens if and only if the Veech group I'(X) is a lattice in SLy(R),
i.e. H/I'(X) has finite hyperbolic volume. If this happens the image is called a
Teichmiiller curve. Its normalization is then the affine nonsingular curve H/T'(X)
(or rather its mirror image), see e.g. [McM 03].

Thus the Veech group I'((X, 1)) determines whether (X, 1) defines a Teichmiiller
curve in the moduli space. In the case it does, the Veech group determines
furthermore the Teichmiiller curve up to a birational map.

1.5 A view beyond this work

Teichmiiller curves and Veech groups can already be found in the works of
Thurston and Veech, see [Th 88|, [Ve 89]. We have summarized in this section
some of the results that are known so far.

As mentioned in the last section, the Veech group of a translation surface is al-
ways a discrete subgroup of SLy(R). One might ask now whether, vice versa,
all discrete subgroups occur as Veech groups. However this is not the case, see
[HuSc 01].

Since the construction for the Teichmiiller geodesic disk leads to a Teichmiiller
curve if and only if the Veech group is a lattice in SLy(R), there is a particular
interest in such translation surfaces; sometimes they are called Veech surfaces.

First examples were given by Veech himself, e.g. the surfaces obtained by gluing
parallel sides of two regular n-gons (see [Ve 89]). Their Veech groups are the hy-
perbolic triangle groups A(2,n, o) if n is odd and A(m, 0o, 00) if n = 2m, n > 5.
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Here A(r, s,t) denotes the Fuchsian triangle group with signature r, s, ¢. One gets
these translation surfaces also using the construction in [KaZe 75| starting from
billiard tables with the shape of an isosceles triangle with base angles 7 /n.

Other examples were found by the same construction starting from rational tri-
angles with angles (q1, ¢2, g3): The Veech groups assoc1ated to isosceles triangles

with base angles ¢ = ¢ = ]Zler and ¢ = ¢ = %H 7 (k > 2) are the trian-
gle groups A(2k, 00, 00) and A(2k + 1, 00, 00), respectively ([EG 97|, [HuSc 01]);
those associated to the triangles defined by ¢; = 7=, ¢2 = Z, g3 = =37 (n > 4)

are the triangle groups A(3,n, o) ([Wa 98]) The three triangles where (ql, 42, q3)
equals (5,3, 3m), (£,%, &) and (37, %, 57) (in [Vo 96] and [KS 00]) also have
Veech groups that are lattices, namely A(6, 00, 0), A(15, 00, 00) and A(9, oo, 00),

respectively (J[HuSc 01]).!

Not all Veech groups are commensurable to a triangle group. Starting with
L-shaped billiard tables instead of triangles, McMullen finds in [McM 03] an in-
finite sequence of Veech surfaces of genus 2, among them surfaces whose Veech
groups are not commensurable to a triangle group. Their associated Teichmiiller
curves belong to the infinite family of curves in M, mentioned below.

Nevertheless, being a lattice should be considered to be an exception for a Veech
group. For example, the last three triangle-shaped billiard tables given above are
the only acute non-isosceles triangles whose associated Veech group is a lattice,
see |[KS 00], [Pu 01].

The Veech group of an origami, however, is always a subgroup of SLy(7Z) of finite
index and thus a lattice. In fact, Gutkin and Judge obtain the following equi-
valence in [GJ 00]: A translation surface has a Veech group commensurable to
SLo(Z) if and only if it covers a flat torus with at most one branch point. In
other words, origamis can be characterized as those Veech surfaces whose Veech
groups are arithmetic.

Hence, the quotient H/I" is always an affine algebraic curve and all origamis define
thus Teichmiiller curves in the moduli space. We also call them origam: curves.
It is not difficult to see that they are defined over Q, see 4.4.

One has even more: Also the embedded curve C in M, , is an irreducible com-
ponent of a Hurwitz space and thus also defined over Q, see [M& 03]. In [Lo 03],
Pierre Lochak suggests to study them in the context of the action of Gal(Q/Q)
on combinatorial objects, in some sense as generalization of the study of dessins
d’enfants, see also [LS 05]. The group Gal(Q/Q) acts on the set of origami curves
in M, ,,, and this action is faithful as was shown in [M6 03|. More recently, it was

!For a more detailed overview see e.g. [Le 02].
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shown in [M& 04], using different methods, that arbitrary Teichmiiller curves are
also defined over Q.

It would be interesting to know “all” Teichmiiller curves.

For the case of genus 2 many things are already known. For example, [McM 03]
and |[Ca 05] classify Teichmiiller curves in the moduli space M, using different
methods (Jacobians with real multiplication; Kenyon-Smillie invariants defined
in [KS 00]). [McM 03] obtains an infinite family of primitive Teichmiiller curves,
where “primitive” means that the structure defining the Teichmiiller curve is not
the pullback from a surface of lower genus.

Explicit examples of general Teichmiiller curves are studied e.g. in [EG 97|, [Lo 03],
[McM 03], [Ve 89] to list some.

Although origamis are in some aspects more accessible then general translation
surfaces, it is still not that much known about the geometry of origami curves in
the moduli spaces. Equations for particular examples are given e.g. in [M6 03],
|HeSh 05] and in [He 05].

In [HeSh 05|, a particular origami curve in genus 3 is studied that is intersected
by infinitely many other origami curves. Origami curves in genus 2 with one
singularity are explored in [HL1 04]. In particular, it is shown that for each n
there are only two different origami curves in M, ,, in this stratum.

An especially “large” example, a Teichmiiller curve in genus 37 of an origami with
108(!) squares, is studied in [Ba 05]. In [Ma 05] it is detected which strata of the
boundary of the moduli spaces are met by origami curves.



Chapter 2

The Teichmiiller space T 1

We study the Teichmiiller space 77 ; of once punctured complex Riemann surfaces
of genus 1 and give particular coordinates for it by suitably chosen generators of
the fundamental groups.

Recall that 77 ; is isomorphic to the upper half plane H. Thus for ¢ = 1 and
n = 1, the isometric embedding I < 77 ; which was described in Section 1.4
is surjective. This means that the Teichmiiller disk defined by the trivial origami
which consists of only one square is the full 71 ;.

For a general origami O = (p: X* — E*) the Teichmiiller disk is parametrized
by the translation structures that are lifted from the once punctured torus. There-
fore we may also consider the associated Teichmiiller disk as parametrized by 71 ;.

In Chapter 3 we will study origamis via subgroups of the free group F; on two
generators, which is embedded into PSLy(R). The translation structure is then
given by this embedding. In the current chapter we choose particular generators
of the embedded free groups F, and find appropriate fundamental domains for
them.

Let us start with a definition of 7} ;. There are many ways to define the Teich-
miiller space, see e.g. [Ab 80| or [IT 92]. Here we will use the following one.

Definition 2.1.

Ty, = { x: F, = Fy(o, () — PSLy(R) with :
X = H/Im(x) is a punctured torus and x(«), x(3) cover
geodesics on X with oriented intersection number 1 Y/~

Here, F5(a, 3) denotes the free group in the two generators o and 3 and

X1~ X2 = 3C € PSLy(R) with x; =C - 2 - ct.

16
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Furthermore, a geodesic on X covered by some hyperbolic D € PSLy(R) has a
natural orientation since the axis of D has the following orientation: from the
repelling fixed point to the attracting fixed point.

The topology of T}, is inherited from the usual topology on PSLy(R) that one
obtains by the embedding of SLy(R) into R* that sends a matrix to the vector
that contains the entries of the matrix. Since embeddings of the free group F5
are given by the images of the two generators, one may represent them by points
in PSLy(R)%. The equivalence relation embeds 77 ; into a quotient of PSLy(R)?
which will be endowed with the quotient topology.

We may equivalently consider the Poincaré disk model D. We will use the iso-
morphism

z+1

f: D—H, =z -
1z 41

(2.1)

in order to switch between the disk model and the upper half plane. We denote
by G’ the image of a Fuchsian group G in the automorphism group Aut(ID) of D.
Recall that one has:

Aut(D) = {(‘Z 2) € PSL,(C)} = PSU(1,1).

With respect to the Poincaré disk model, we obtain the following definition of
T} ; equivalent to that in Definition 2.1.

Definition 2.2.

T171 = { X, . F2 = FQ(O{,B) — Aut(]D)) with :
X =D/Im(x’) is a punctured torus and x'(«), x'(3) cover
geodesics on X with oriented intersection number 1 Y/~

We now want to find “nice” generators and “nice” fundamental domains of the
Fuchsian groups G that define the points in 71 ;.

For this purpose we define the following normalization condition for pairs (A, B)
of Md&bius transformations. We will prove in Proposition 2.4 that in each equiv-
alence class defining a point in 77 ;, there is a unique representative y that sends
a, 3 to such a normalized pair.

Condition 2.1. Normalization for a pair (A, B) in PSLy(R):
e A and B are hyperbolic and their commutator [A, B] is parabolic.

e B has 0 as repelling fized point and oo as attracting fized point.
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o The axes of A and B intersect in i and their oriented intersection number
15 1.
We define the equivalent condition in the Poincaré disk model for A, B’ in Aut(D)
in the same way.
Condition 2.2. Normalization for a pair (A', B') in Aut(D):

o A" and B’ are hyperbolic (i.e. they have each two fized points on the bound-
ary of D) and their commutator [A', B'] is parabolic (i.e. it has one fized
point on the boundary of D).

e B’ has —i as repelling fized point and i as attracting fized point.

e The azes of A" and B’ intersect in 0 and their oriented intersection number
1s 1.

Furthermore we consider the following normalization conditions for quadrangles
in H, respectively in D, which have their vertices on the boundary.

Condition 2.3. Normalization for a quadrangle Q) in H with vertices at infinity:
e () is a hyperbolic quadrangle Q(zo, z1, 29, 23) with its vertices zy, z1, z2 and
z3 on the boundary of H but not at 0 or oo .
e The diagonals of () intersect in 1.
Respectively, in the Poincaré model:
Condition 2.4. Normalization for a quadrangle Q" in D with vertices at infinity:
e (' is a hyperbolic quadrangle with its vertices on the boundary of D but not
at v or —1.
e The diagonals of Q' intersect in 0.

A quadrangle that fulfils the normalization conditions looks like that in Figure
5, if it is in H, or that in Figure 6, if it is in D.

We will prove that for each such normalized quadrangle @) in H there is a unique
pair (A, B) of matrices fulfilling the normalization condition 2.1 such that A and
B identify the opposite edges of (), respectively the analogous statement for a
normalized quadrangle )’ in D.

IH D

Figure 5: A no?"malized Figure 6: A normalized
quadrangle in H quadrangle in D
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We restrict first to the model of the upper half plane. The transfer to the analo-
gous statements in the language of the disk model D will be done afterwards.

The goal will be to obtain that 77 ; can be parametrized by the set of triples
(G, A, B) fulfilling Condition 2.1 or equivalently by the set of quadrangles fulfill-
ing Condition 2.3, see Proposition 2.5.

For the beginning we show that for each point [(G, A, B)] in T} ; there is a unique
triple (G, A, B) fulfilling Condition 2.1, see Proposition 2.4. We will use the
following remark.

Remark 2.3. If x : Iy, — PSLy(R) defines the point x in Ty 1, then A := x(«)
and B := x(B) are hyperbolic, their commutator [A, B] is parabolic and their azes
intersect with oriented intersection number 1.

Proof. A and B are hyperbolic since they cover geodesics on X. Let v4 and vp
be elements of the fundamental group of X covered by A and B. Let 7o and vp
be standard generators of the fundamental group. Thus, [y¢,vp] is a simple loop
around the puncture.

Since v4 and 7p also generate m(X), the map vo +— v4,7p +— 7p defines an
automorphism of 7;(X). By the theorem of Dehn and Nielsen there is a homeo-
morphism f : X — X such that [ya] = [fo7c] and [yg] = [fo~p]. Since [ye,vp]
is freely homotopic to a simple loop around the puncture, this is also true for
[v4,vB]- Hence [A, B] is parabolic.

The axes of A and B intersect with oriented intersection number 1, since v4 and
~vp do so by definition. O

We now may use the remark and obtain by conjugation generators that have the
desired properties.

Proposition 2.4. Let x be in 11 1. There is a unique triple (G, A, B) consisting
of a subgroup G of Aut(H) generated by two elements A, B € Aut(H) such that

e (A, B) fulfils Condition 2.1 and

o the map x : F» — Aut(H), o — A, f+— B is an element of the
equivalence class .

Proof. Let X : F» — PSLy(R) be a representative of y and A= x(a) and

B := x(B). Let z and z be the repelling and attracting fixed point of B,
respectively. Choose C € PSLy(R) with C(z;) = 0 and C}(z2) = co. Set

A= ClAC! and B :=C,BC,
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Hence, B has 0 as repelling fixed point and oo as attracting fixed point.
By Remark 2.3 the axes of A and B intersect with intersection number 1, let us
say inr-i (r € R, r > 0). Set

) - _
Cy = <\67" \/7_0) and A:= CLAC;', B:=Cy,BCy".

Since C3(0) = 0, Cy(00) = oo and Cy(r i) = i, the Mdbius transformation B still
has the fixed points 0 and co. Furthermore the axes of A and B intersect in i
still with oriented intersection number 1. Therefore, (A, B) fulfils Condition 2.1.
Thus if G is the subgroup of PSLy(R) generated by A and B, then the triple
(G, A, B) has the desired properties.

Furthermore, (A, B) is unique, since the conjugation matrix C' := CC} is uniquely
determined by Condition 2.1. O

As indicated above, we may now improve the statement in Proposition 2.4: We
will see in Proposition 2.5 that in fact for each (A, B) that fulfils Condition 2.1

e the map x : F» — PSLy(R), a+— A, 3 +— B defines a point y in 77 ; and

e we find a unique quadrangle @ fulfilling Condition 2.3 such that @ is a
fundamental domain for G and A and B identify the opposite edges of Q.

Proposition 2.5. The points in 111 correspond to the normalized generator pairs
(i.e. pairs (A, B) that fulfil Condition 2.1) and to the normalized quadrangles (i.e.
quadrangles Q that fulfil Condition 2.3). More precisely: Define the following sets

P = {(A,B) with A, B € PSLy(R)| (A, B) fulfils Condition 2.1}
F = {quadrangle Q| Q fulfils Condition 2.3}

One has the natural homeomorphisms V, and Wy:

v, : Ty, — P, x — (A, B)asin Prop. 2.4

Uy, : P — F, (A B) +— the quadrangle Q with the vertices
29 1= the fized point of [A, B], z1 := B~ (2),
2y = A7Y(21), 23 1= B(22).

Proof. We will show in Lemma 2.8 that U, is well defined, i.e. that the diagonal
geodesics zp2p and z;z3 intersect in ¢. Furthermore we will show in the proof of

Lemma 2.10 that @ is a fundamental domain of the group G generated by A and
B. By the definition of () one has:

A(zo23) = 2120 and  B(z221) = 2320.
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Thus A maps the “left vertical” edge of () to the “right vertical” edge and the
“bottom horizontal edge” to the “top” one.

Finally, we show in Lemma 2.9 and 2.10 that ¥, and ¥, are bijective. All maps
that we use are continuous. Therefore this will finish the proof of Proposition
2.5. 0

It turns out to be useful for the proof of Proposition 2.5 to determine the matrices
that fulfil Condition 2.1 explicitely. As a preparation we state the following
geometrical fact.

Lemma 2.6. Let  and y be in RU {oc}. Then the hyperbolic line | through x
and y contains i iff x-y=—1 or {z,y} = {0,00}.

Proof. If x or y is in {0,000}, then the statement is true. Thus let us suppose
that x,y € R and x < y. If [ contains ¢, we must have x < 0 < y. Thus we are
in the situation of Figure 7.

Figure 7. Geodesic containing 1.

Consider now the triangle A with the vertices z, y and i. We have that [ contains
1 iff A has a right interior angle at ¢, by Thales’ Theorem. This is, by the
Pythagorean theorem of height, the case iff

1 =h=p-q=2-(—y), compareFigure 7.
This is true iff z -y = —1.

Lemma 2.7. Let P be defined as in Proposition 2.5. Then

a b A0 2\

)
Proof. We proceed in three steps.

First step:
Let A = (Z Z) # 41 be in SLy(R). Then:

b
A is hyperbolic and its axis contains i < b=c < A = (Z ﬂ) and a # 0.

a
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To prove this, suppose first that ¢ # 0. Then the fixed points of A are

d—a 1
12 = — 2% :|:2—C (d—a)2+4bc
A is hyperbolic and its axis contains ¢ < z; - 2o = —1 (by Lemma 2.6). This is
equivalent to
d—a., 1., 9 4be
— (=) ((d — dbc)=—-1 —=—-1b=c
(02 = (5 (d = ) + o) o :
Using det(A) = 1 one obtains:
a b . 2 .
A= p 1P (a # 0 since — b = 1 has no solution). (2.3)

If ¢ = 0, then oo is a fixed point of A. If the axis of A contains i, then the other
fixed point is 0. Hence, b = ¢ = 0 and a # 0 since det(A) # 0.
Conversely, if

A = (g 2) with @ € R — {0,1, -1},

then A is hyperbolic with fixed points 0 and oo, i.e. 7 lies on the axis of A. This
finishes the first step.

If (A,B) is in P, then by the normalization condition

B (3 2) (A > 1) (2.4)

and by the first step, A is of the form (2.3) with b # 0, since it does not have the
fixed points 0 and oo. In the second step, we obtain for [A, B] a condition to be
parabolic.

Second step:
Let A be as in (2.3) and B be as in (2.4) (with a,b # 0, |\| > 1), then:

2\

[A, B] is parabolic < b= j:)\2 —

In order to prove this, let us calculate the commutator [A, BJ:

\a b 1462 —\b
. — >\2 -1, _1: Aq
an = (o) A =5 5)

1+ -8 ab(=A2+1
= [A,B] = (b(w) A ( ) (2.5)

(1 - 55) 1402 — A%?

a
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[A, B] is parabolic < the trace of [A, B] is +2

2

& 2(1+b2)—%—/\2b2 = £2.

The left side of the last equation is equal to 2 + b*(2 — 55 — A?). But this is

smaller than 2, since A2 + 5 > 2.

Thus we have:

2
2(140%) — % — A\ = -2

& —PA-1)P=-4

& A-1)=%2 & b=2.

This finishes the second step.

If we consider elements of PSL,(R) we can choose A > 1 and b = 524

As last step we consider the condition that the oriented intersection number of
the axes of A and B is 1.

Third step:
Let A be as in (2.3) and B as in (2.4) with a # 0, b = 2, A > 1. Then:

X2_1>

The axes of A and of B have oriented intersection number 1 < a > 0.

Since B has the oriented axis (0oo), the intersection number is 1, if and only if
the repelling fixed point of A is < 0 and the attracting fixed point is > 0. Since
the two axes intersect in ¢ this is equivalent to Re(A(:)) > 0. We have:
AG) = ai+b2 _ quJrab
bi + % abi + 1+ b2
(a*i + ab)(1 + b* — abi)
(14 6%)2 + a?b?

Since the denominator is real and positive it is sufficient to consider the real part
of the numerator:

ab(1 +b*) +a’b = ab(1 +b* +a®) >0 < a >0 (since b > 0).

From these three steps the Equation (2.2) follows.
O

The following Lemma shows that the map W, introduced in Proposition 2.5 is
well defined.
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Lemma 2.8. Let (A, B) be in P and Q) the quadrangle with the vertices zy, 21,
2y and z3, where zy is the fized point of [A, B], 21 = B71(2), 22 = A™Y(21) and
z3 = B(22). Then Q fulfils Condition 2.3.

Proof. By Lemma 2.7 we have that for some a and some X in R:

a b A0 . 2\
A = <b M) and B = (O %) with a > 0, b:m, A> 1.

In the following, we show that

A2 -1 a N -1 1 1
=a-\- =—- = —— = ——. 2.6
20 = a N1 21 DY ERE 22 0 Z3 ) (2.6)
Then we have in particular that zy- 2o = —1 and 2; - 23 = —1. By Lemma 2.6 it

follows that the hyperbolic geodesic through 2, and 25 and that through z; and
z3 intersect in i. Furthermore we obtain from (2.6) that zy, 21, 22, 23 are not 0
or co. Thus we have shown that () fulfils Condition 2.3.

Proof of the equalities (2.6):

First, we calculate z:

Let (T Z) be an arbitrary matrix in SLo(R). If £ # 0 the fixed points are

t
_u—r (u—1)?% s
2Ty A2 t
If the matrix is parabolic, one has the unique fixed point —**.
Thus - using (2.5) - the fixed point of [A, B] is:
b2 272 2 (1-2%)
= — A\°b —ab* -+ b
0= o 1y - T P 1a R X)
2D (1 Ly 2p(1+02) A5 2(140?)
Using b = 325 and hence bv? + 1 = % one obtains:
a 22 (N2-1? A2 -1
— : A2+ 1) =a-A- . 2.7
v = 3 wo1 pegig MDA 5 (2.7)
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Now, we obtain z;, zo and zs3:

I a N-1
©1 = B (Zo)—x'm (2.8)
1 i (:\\?1)2 X :\\zjr} — ,\22)\1
2 = A (n)="—— P —
NI =-2)(N 1) (A 41) 2.9)
AN =1) a2+ A24+1)  A-a(A2-1) '
A A+
- B - .- - 2.1
z3 (22) PSR (2.10)
]

Finally, we show in the following two lemmas that the maps ¥, and ¥, in Propo-
sition 2.5 are bijective.

Lemma 2.9. The map V, is bijective.

Proof. Let us first go back to the set F:

Let @ be a quadrangle in F with the vertices 2y, 21, 22 and z3. We may assume
without loss of generality that we have zy > z; > z5 > z3. Then the two diagonals
are the geodesic through 2, and 2, and that through z; and z3, respectively. By

Lemma 2.6, it follows that 2z, = —% and z3 = —i. Furthermore we have
2o > 21 > 0.

Conversely, if zj, 2z, are in R with 2y > z; > 0, then the quadrangle with the
vertices zg, 21, 29 := —% and z3 = —i is in F.

Thus we may identify
F e {(2,21) € R} 0< 2 < 2}

Similarly, using the description of P that we gave in Lemma 2.7, we may identify
P« {(\a)eR*a>0\>1}.

Thus we may rewrite the map Wy as follows:

{(Na) eR*A>1,a>0} — {(20,21) €ER*0< 2 <2}

A2 -1 a N -1
This map has the inverse map:
Zo + 21

Uy : F — P defined by (zg,21) — (A := ?JL "= VR0% )-
1

20 — 21
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That W3 is inverse to ¥, follows from the following calculations:

A —1 1

. a
fOI"I’gO\IIQZ id : ZO+ZI:&T—H<A+X):X<)\2_1>
SOl
R NP U

2
)\2—1 ﬁ_]-_ZQ—Zl

)\24—1:;—2—'—1_20—'—21

for Uy o Wy = id:

Lemma 2.10. The map V, defined in Proposition 2.5 is bijective.

Proof. U, is injective since we have shown in Proposition 2.4 that the triple
(G, A, B) is uniquely determined by the required properties.
It remains to show surjectivity: Let (A, B) be in P and @ := W5 ((A, B)) be the
quadrangle with the vertices zy, 21, 2o and z3. By definition of ¥, we had that z
is the fixed point of [A, B], 21 = B~ (2), 22 = A7'(21) and 23 = B(z). Thus
the edge z3z5 of the polygon () is mapped by A to the edge 2pz; and the edge
2129 is mapped by B to the edge zyz3. This gives for the group G := < A, B >
a pairing of the sides of the polygon (), and the vertices zy, 21, 22, 23 are fixed by
parabolic elements in G. It follows by the theorem of Poincaré (see e.g. |Be 83,
Thm. 9.8.4, Exc. 2 (p. 251) and the construction on p. 266]) that G is Fuchsian
and @ is a fundamental polygon. The pairing shows that H/G is a punctured
torus, hence the homomorphism x : Fy(«, ) — PSLy(R), a — A, B — B is
injective and y is in 77 ;. Thus we have: (A, B) = V().

]

With Lemma 2.10 we have provided the last piece needed for the proof of Propo-
sition 2.5. We may now turn to the Poincaré disk model D.

The normalization conditions concerning the upper half plane model and those
concerning the Poincaré disk model are equivalent via the isomorphism 6 in (2.1).
More precisely, we have:

A pair (A, B) in PSLy(R) fulfils Condition 2.1
< The pair (A, B') in Aut(D) with A" := 67140, B':=60"1B0
fulfils Condition 2.2 and
A quadrangle () with vertices zg, 21, 22, 23 on the boundary of H fulfils
Condition 2.3
& The quadrangle Q" with the vertices 07! (z), 07 (21), 07 (22), 07 (23)
on the boundary of D fulfils Condition 2.4.
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Thus the statements given in terms of Fuchsian subgroups of PSLy(R) can be
transferred to subgroups of Aut(DD).

One obtains as analogon to Proposition 2.4 the following proposition. We use
here the description of 7} ; given in Definition 2.2.

Proposition 2.11. Let x' be in T\ ;. Then there is a unique triple (G', A’, B)
consisting of a subgroup G' of Aut(ID) generated by two elements A’, B' € Aut(D)
such that

o (A", B') fulfils Condition 2.2 and

o the map X' : Fy — Aut(D), a« — A, 5 — B is an element of the
equivalence class Y'.

The analogon to Proposition 2.5 in terms of subgroups of Aut(D) is given as
follows.

Proposition 2.12. The points in Ty, correspond to the pairs (A, B') in Aut(D)
that fulfil Condition 2.2. Furthermore, they correspond to the quadrangles with
vertices on the boundary of D fulfilling Condition 2.4.

More precisely: Define the following sets

P = {(A',B") with A, B' € Aut(D)| (A", B) fulfils Condition 2.2}
F' = { quadrangle Q'| Q" fulfils Condition 2.4}

One has the natural homeomorphisms V| and V) :

v, Ty, — P, X — (A,B) asin Prop. 2.11

v, . P — F. (A,B) — the quadrangle Q' with the vertices
29 := the fized point of [A’', B'], z1 := B'"1(2),
29 = AN z1), 23 1= B'(29).

Finally, we may also describe the matrices in P’ explicitely.

a+ B2 9h 4 (a— )
\ob—(a— 1)y g2 ’

1
2
A+
B/ — ( )\1 .
_ Ly

Proposition 2.13.

Pi={(A,B)| A =
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Proof. (of Proposition 2.13)
The claim follows from Proposition 2.5 by conjugation with the isomorphism
given in (2.1) and the following calculations:

1 =i\ [fa b\ (1 i\  [(a—ib b—2Ei\ /1
—i 1) \p =2 )\ ~ \airb —ib+ 1)\ 1

ot HE 24 (o B
2b—(a—ﬁ)i a+ =2 a

—_



Chapter 3

A characterization for Veech groups
of origamis

In this chapter we present in Theorem 1 a characterization of the Veech groups
of origamis in terms of stabilizing subgroups of Aut™(Fy). This result will be the
initial point for our investigations in the subsequent chapters.

Let F» be the free group in two generators and Aut(F5) its group of automor-
phisms. We will use the fact that GLy(Z) is isomorphic to Out(F3), the group of
outer automorphisms of F3, and denote by

3: Aut(Fy) — Out(F) = GLy(Z)

the canonical projection, see Proposition 3.5. In fact, in the following we will re-
strict to the preimage of SLy(Z), which we denote as Aut™ (F,). We call Aut™ (Fy)
the group of orientation preserving automorphisms of Fy.

We will associate to an origami O a subgroup H of F;, see Section 3.1.

Theorem 1. Let O be an origami associated with H C F,. Let
Stabyy i+ gy (H) = {7 € Aut*(£3) | y(H) = H}.

Then the Veech group T'(O) of the origami O is given by

~

ro) = ﬁ(StabAut+(F2)(H)).
Proof. The statement will follow from Corollary 3.4 and Proposition 3.5. O

We call a subgroup G of Aut™(F) stabilizing group, if there is some subgroup H
of Fy of finite index such that

Q = StabAut+ (H) .

(F2)
With this notation we immediately obtain the following characterization for
origami Veech groups from Theorem 1.

29
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Corollary 3.1. I' s a Veech group of some origami if and only if it is the image
in SLa(Z) of some stabilizing group.

By Theorem 1 studying Veech groups for origamis becomes the purely group
theoretical problem of detecting stabilizing groups in Aut®(F,). In particular,
we may omit the restriction to finite index subgroups of F,. This suggests the
following definition.

Definition 3.2. Let U be a subgroup of Fy. Then we call
L(U) = B(StabAut+(F2)(U))

the Veech group of U.

3.1 Origamis and subgroups of F5

In this section, we point out that we may think of an origami as a subgroup of
finite index of F5.

We fix a (topological) unramified universal covering of the punctured torus E*:
v: E* — E*

Let Gal(E*/E*) be the Galois group of v, i.e. the group of deck transformations.
It is by the theorem of the universal covering naturally isomorphic to the funda-
mental group m (E*) of the punctured torus £*, which in turn is isomorphic to
F5 . We fix an isomorphism

=+

na

a:Fy, — m(E*) = Gal(E*/E"). (3.1)

Let now O = (p: X* — E*) be an origami. It defines a finite index subgroup
of F; as described in the following:

By the theorem of the universal covering applied to v there exists an unramified
covering .
w: B* — X* with v = pou.

Furthermore, the Galois group H := Gal(E*/X*) of the covering u is a subgroup
of Gal(E*/E*).

We may now consider H by (3.1) as a finite index subgroup of Fy:

H := Gal(E*/X*) C Gal(E*/E") = F,. (3.2)
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Conversely, each finite index subgroup H of F; defines an origami O as follows:
O := (p: E*/H — E*/F,=FE").

Here again the isomorphism E* /Fy = E* is given by the identification of Fy
with Gal(E*/E*) fixed in (3.1).

Thus we obtain the relation between origamis and finite index subgroups of F5
described as follows.

We say that two origamis O; = (p; : X* — E*)and Oy = (po: Y* — E¥)
are equivalent or the same, if there exists a homeomorphism ¢ : X* — Y™ such
that p; = py ow. Then by the theorem of the universal covering, one obtains
that two origamis O; and O, are equivalent, if and only if the subgroups H; and
H, of F, associated to them as above are conjugated in F,. Thus we have a
one-to-one-correspondence between origamis (up to equivalence) and finite index
subgroups of F» (up to conjugation).

3.2 First part of the proof

We start with some definitions and facts for translation surfaces and more general
G — structures, which we have mainly learnt from [GJ 00] and [Th 97].

Let X, := (X, x) be a translation surface and u : X — X a (topological) uni-
versal covering. We may lift the structure p on X via u to a translation structure
non X. We denote the translation surface (X,7) also by X,,.

A fixed chart (U, ny) of X,] defines a translation map dev : Xn — C, called the
developing map, such that

ny =devly and 1y =t odev|y for a translation ¢ := (U’ ny)
for any other chart (U’,ny) of X,. Here, we consider C as a translation surface

with the global chart id.

Since X,, is simply connected, for any affine diffeomorphism f of X,, there is a
unique affine diffeomorphism aff(f) of C such that devo f = aff(f) odev, and one
obtains a group homomorphism

aff : AffF(X,) — AffT(C), f — aff(f).
The group Gal(X,/X,,) of deck transformations is a subgroup of Aff"(X,), since

a deck transformation is locally the identity. The holonomy map

hol : m(X,) & Gal(X,/X,) — Aff*(C)
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is the restriction of aff to Gal(X,/X,). Furthermore let
proj : Afff(C) — GLy(R)
be the natural projection. Then the group homomorphism

der: Aff"(X,) — GLy(R),
f — proj(aff(f)) where f is some lift of f to X,

is well defined and called derived map. This definition is equivalent to the one we
gave in Chapter 1 in the paragraph before Definition 1.5. Recall that the Veech
group was defined by I'(X,,) := der(Aff"(X,)).

Now, let us return to the particular situation of an origami O = (p: X* — E*).
In Section 1.3, we have defined for each B € SLy(R) a natural translation struc-
ture vg on E* and pup on X*. Since up was defined as lift of v via p,
the covering p becomes a translation covering between the translation surfaces
X5 = (X*, up) and Ej := (E*,vp), i.e. it is locally given by translations.

Recall that all Veech groups I'(X}) for different B are conjugated in GLy(R), see
Remark 1.6, and that we defined the Veech group of I'(O) to be the group I'(X7;).

Therefore, in the following we will always consider X* and E* as endowed with
the translation structure v; and puy, respectively, and denote X* = X7, the uni-
versal covering. Furthermore we write X* = X}, F = E;, A = A;, ¥ := E} and

f = pr.

By the uniformization theorem there exists a biholomorphic map ¢ : H — X* =
X7, where H is the complex upper half plane. In the following we will identify H
with X* = X*; and thus consider it also as a translation surface.

Furthermore, we may choose free generators z and y of F; in such a way that
under the isomorphism « in (3.1) a(x) is the horizontal and «a(y) is the vertical
simple closed path, compare Figure 4 in Section 1.2. Then it follows in particular
for x and y considered as elements in Gal(H/E*) that:

aff(z) = (z — 2+ ((1))) and aff(y) = (z — 2+ <?)) (3.3)
We will use this in the proof of Proposition 3.5.

We may now show the following proposition as first step in order to obtain the
characterization.

Proposition 3.3. Let O = (p: X* — E*) be an origami and H be the upper
half plane, endowed with the translation structure as above. Then we have:
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1. T(O) is a subgroup of I'(H).
2. T(E*) = T(H) = SLy(Z).
3. Let f be in AfF"(X*). Then f descends via p to some f € Aff"(E*) and

Diagram 8 becomes commutative with A := der(f), with f some lift of f to
H and with some b € Z>.

H ! i
%vl u (1) u ldN
C—Ac C \ ZH"‘Z“’/ C >C—A
pl lp
g —1- pr
Diagram 8

Proof.
1.: Let f bein Aff"(X*) and f be some lift of f via u. Since the translation struc-
ture on H is lifted via u, f is also affine and der(f) = der(f). Hence, ['(O) C I'(H).

2.: Let C — FE be the universal covering and w : C — A — E* its restriction to
C — A. Since v = p o u is the universal covering of £E*, there is an unramified
covering h : H — C — A, such that woh = v = powu. But the structure on H was
obtained by lifting the translation structure on E* via v. The map h is therefore
locally a chart of H = X}‘. Thus, the map h is a developing map and the image
of this developing map dev is C — A.

Now, let A be in I(H), then A = der(f) for some f € Aff*(H). By the definition
of the maps der and dev, Part (1) of Diagram 8 is commutative for some b € Z?,
i. e.

(2 Az +b)odev =devo f.

Since the image of dev is C — A, the map z — Az + b respects A = Z2. Thus, A
is in SLo(Z). Hence, we have: I'(H) C SLy(Z).

Conversely, taking a matrix A € SLy(Z), the map z — Az descends to an affine
diffeomorphism f € Aff*(E*). This can be lifted to some f e Aff*(H) with
der(f) = A. Thus, we have: SLy(Z) C T'(H).

Using the same arguments it follows that also I'(E*) = SLy(Z).
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3.: Let f € Aff*(H) be some lift of f to H. If follows by the proof of 2. that f
descends via woh = v to some f € Aff*(E*), and that Diagram 8 is commutative.
U

An immediate consequence of Proposition 3.3 is
Corollary 3.4.

['(0) = {A € SLy(Z) | A =der(f) for some f e Aff*(H) that
descends to X* via u}.

To prove Theorem 1 from Corollary 3.4 we have to state a condition for f in
Aff*(H) to descend via u to some f € AffT(X*).

3.3 Second part of the proof

We will now use the relation of origamis to subgroups of F; described in Section
3.1 in order to state a condition for an affine diffeomorphism f € Aff*(H) to
descend to X*.

Recall that we have:
H = Gal(H/X*) C F, = Gal(H/E") C PSLy(R), see (3.2).
We may use that
F, = Gal(H/E*) = {f € AffT(H) | der(f) = I}. (3.4)
Thus we obtain the following group homomorphism:

x: AffF(H) — Aut™(F)
f o= (foio = fooof™

The map x is well defined, since f ogo f ~1 is again affine with the derivative
der(f)-I-der(f)~' =1 and thus in F, = Gal(H/E*).

Proposition 3.5. We have the following properties of * :

1. The following two sequences are exact and the diagram is commutative:

1 Py AfFF(H) 9%~ SLy(Z) —— 1

NLa (A) Nl* (B) NT[}

1 —Inn(F) — Aut™ (Fy) —= Outt () —=1

Diagram 9
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Here, Inn(Fy) is the group of inner automorphisms of Fy, « is the natural
isomorphism Fy — Inn(Fy), z — (y — zyz~) , f: Out™(Fy) — SLo(Z) is
the group isomorphism induced by the natural homomorphism:

B Aut™(Fy) — SLy(Z), ¢ — A = (Z Z) :

where a is the number of © appearing in p(x), b the number of x appearing in
©(y), ¢ the number of y in o(x) and d the number of y in v(y) (see [LS 77,
14.5, p.25]). Recall that for the canonical projection proj : Fy — Z? sending
x to (1,0)" and y to (0,1)" one has:

VoeAut™(Fy): A:=p3(p) = projo = (z— A-2) o proj. (3.5)

2. An element f € AffY(H) descends to X* via p if and only if f.(H) = H.

Proof.

1.: The exactness of the first sequence follows by (3.4) and by the second part of
Proposition 3.3. The exactness of the second sequence is true by the definition
of Out™t ().

The commutativity of Part (A) of the Diagram is true by the definition of x. We
now prove the commutativity of Part (B):

Recall from (3.3), that:

aff(z) = (21— 2+ ((1))) and aff(y) = (= — 2 + (‘D)

Thus, aff|r, (= hol) is the natural projection proj : F, — Z2. Here we identify
the group of translations of C along some vector in Z? canonically with Z2.

A

We show that the following diagram is commutative with A := der(f).
E N £
prOjl lprOj
72 =R g
Figure 10

Let o be in F, = Gal(H/E). We have to show that proj(f.(c)) = A - proj(o).
We have aff(0) = (2 — z+c¢) and aff(f) = (2 — Az +b) for some b, c € Z?. Thus
we get:

proj(f(0)) = aff( f(o)) = aff(faff(o)aff(f ') = (z = 2 + Ac).

Thus the diagram in Figure 10 is commutative with A = der(f).



36 A CHARACTERIZATION

To conclude we use that the same diagram is also commutative with A = B(f.),
see (3.5). Thus, der(f) = G(fs), and (B) is commutative.
Finally, @ and 3 are both isomorphisms, thus x is also an isomorphism.

5.4.: f € Aff*(H) descends to X* viap <« forall z € H o € H = Gal(H/X)
there is some ¢, , € H such that G.0(f(2) = f(o(2)).
For & := f,(0), by definition of f, we have 5(f(z)) = f(o(2)) for all z € H. Since
F, operates without fixed points on H it follows from the last equation that o, ,
has to be equal to 6 = f*(cr) . On the other hand, 7, , has to be in H.
This proves 2. .

U

With Corollary 3.4 and Proposition 3.5 we have finished the proof of Theorem 1.

3.4 Some applications
In this section we state some immediate conclusions of Theorem 1.

Corollary 3.6 (to Theorem 1).
['(O) is a finite index subgroup of SLo(Z).

As mentioned in section 1.5, this result follows e.g. by [GJ 00, Thm. 5.5]. Their
proof uses completely different methods.

Proof. Let H be defined as above and d := [F; : H].
We have a natural action of Aut*(F}) on the subgroups of F; of index d, and

Stab g i+ (H) = {7 € Aut™(Fy) | v(H) = H}

is the stabilizer of H under this action. Since there are only finitely many sub-
groups of index d in F, the orbit of H under Aut™ (F) is finite and therefore we
have

[Autt(F) : Stab p i+ (H)] < oo.

2)

From Theorem 1 it then follows that I'(O) = 3(Stab i+, (H)) has finite index
in SLy(Z) = B(Aut™(F)), too. O

As an other application of the Theorem we get: In order to check whether an
element A of SLy(Z) is in I'(O), we have to check if there exists some lift 7,4
in Aut*(F,) of A (i.e. a preimage of A under (3) that fixes H. The following
corollary translates this into a finite problem that can be left to a computer.
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Corollary 3.7 (to Theorem 1).
Let as above

O = (p: X* — E*) be an origami of degree d,
F, = Gal(H/E*) and H = Gal(H/X*).

Let furthermore hq, ..., hy be generators of H and oq,...,04 a system of right
coset representatives of H\Fy (denote the right coset H - o; by ;).
Further let 4% € Aut™ (F,) be some fized lift of A € SLo(Z). Then

AeT(0) & 3Fie{l,...,d} such that 5;-y\(h;) = &; for all j € {1,...,k}.

Proof. Let 74 be another lift of A. Thus v) = 67! -4 - ¢ for some ¢ € F, and
for all A in H we have:

ya(h) € H & o-9%(h)-c'€eH & H-0-7%h)=H -0 & ¢-75(h) =05
Hence the claim follows from Theorem 1. O

The last statement can be slightly generalized as follows.

Corollary 3.8 (to Theorem 1). In the situation of Corollary 3.7, let U be the
normalizer of H in Fy and p1, ..., p. a system of right coset representatives of
U\F5. Then

Ael'(0) & 3FJie{l,...,r} such that
Proof. Let 0 and ¢’ be in F5 in the same right coset ¢ = ¢’ of U in F5, i.e.
o' = uo for some u € U = Normp, (H). Then

H-o'-y%h;))=H- -0 & d94(h))d’ '€ H & uoyy(h)o v € H

B ol(h)o € H & (H-0)-A(hy) = H o
Thus the claim follows by Corollary 3.7. O

By Theorem 1 it particularly follows that each characteristic subgroup of F, of
finite index defines an origami with Veech group SLy(Z). One may call such
origamis characteristic. In fact there are many characteristic origamis.

Corollary 3.9. There are infinitely many non trivial origamis having Veech
group SLo(Z).

Proof. For an arbitrary origami O one obtains an origami O’, which covers O and
whose Veech group is the full group SLy(Z), as follows:
Let H be the finite index subgroup of F; corresponding to the origami O. Then

N o= () H)
v € Aut™ (F»)

is a characteristic subgroup of H. The corresponding origami O’ covers O and
has Veech group SLy(Z) by Theorem 1. O
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Several (in fact infinitely many) explicit examples for characteristic origamis can
be found in [He 05]. There exist also origamis with Veech group SLy(Z), such
that the corresponding subgroup of F is not characteristic, see e.g. [Sm 05].

In the following lemma we consider particular parabolic elements that can be
found easily in Veech groups:

Consider a decomposition of an origami O into r cylinders. Without loss of
generality we may assume that the cylinders are horizontal and their height is 1.
For any other direction one may conjugate by a suitable matrix in SLy(Z). Let
l1, ..., I be the lengths of the cylinders and [ := lem({y,...,l.). One has the
following well known fact.

Lemma 3.10. The Veech group of O contains the parabolic element

11
ae= ().

This can be translated into our language of finite index subgroups of F5 as follows:

Let O be an origami and H the corresponding finite index subgroup of F5.

The d squares of the origami correspond to the right cosets Hoy, ..., Hog of H
in F,. The group F; acts on the set of right cosets by multiplication from the
right. The horizontal cylinders correspond to the orbits of < x >. The length of

a cylinder is the length of the corresponding orbit. If /1, ..., [, are these lengths,
we have:
I =lem(ly,...,l,) < [is the smallest number in N such that

VYwe Fy: wrlw™! € H.
In this language we obtain Lemma 3.10 by Theorem 1 as follows.
Proof. Let v € Aut™(F,) be defined by
Vw) =2, Ay) =2y,
Then v is a preimage of A; under the projection § : Aut™(F,) — SLy(Z).

Since az'a™' € H for all a € F,, we have:
Yac Fy: Har' = Ha. (3.6)

Let h be an arbitrary element of H. It can be considered as a word in the
letters z,y, 2Ly~ ': h = w(z,y,2~ Yy~ ). Then v(h) = w(z, 2y, z~ 1,y ta=F).
It follows that

HAy(h) = Hu(z,a*y, 2 'y o) =L Huw(e,y,a'y™) = Hh = H
Thus y(H) = H and A; € I'(H) = I'(O) by Theorem 1. O



Chapter 4

An algorithm for finding the Veech
group of an origami

In this section we present an algorithm that determines the Veech group I'(O) of
an origami O. It is based on the characterization given in Theorem 1.

We have subdivided the description into four parts: In 4.1 we describe how to
find some lift v4 € Aut™* () for any matrix A in SLy(Z) = Out™ (F3), in 4.2 we
show how to decide whether a given matrix A € SLy(Z) is in I'(O), in 4.3 we give
an algorithm that determines generators and a system of coset representatives of
I'(O) in SLy(Z), and finally in 4.4 we state how to calculate the genus and the
number of points at infinity of H/I'(O), the normalization of the corresponding
Teichmiiller curve.

In order to illustrate the algorithm we will use the example O = L(2, 3).

Example 4.1 (The origami O = L(2, 3)).

a
T
el4—Jle
X: _+ |b 3 |C
Rkt
a b ¢ L b
g ak T%‘;_a
- 9
%0}

Diagram 11

In Example 4.1 edges labeled with the same letters shall be glued. This way X
becomes a surface of genus 2. The squares describe the covering map to F. The
point co on E has 2 preimages on the surface X, namely the points e and .
Thus X* = X — {e, x}. The degree d of the covering p is 4.

39
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We identify Fy = Gal(H/E*) with the fundamental group of E* with the base
point @ and H = Gal(H/X) with the fundamental group of X* with the base
point (). The projection of the closed paths on X* to £ defines the embedding
of H into F», x and y are the fixed generators of Fy = 71 (E*). Since the L(2, 3)-
shape is simply connected, the generators of H are obtained by the identifications
of the edges. Thus, H = < 23 2%yx=% xyz~ yry~', y* >. The index [F; : H]
is equal to d = 4.

4.1 Lifts from SLy(Z) to Aut™(Fb)

Let S and T be the following matrices in SLy(Z):

0 —1 11
s () = (1)
We will use the fact that SLy(Z) is generated by S and 7. Furthermore, one has
St = —Sand T7! = —STSTS. Thus, every A € SLy(Z) can be written as

A=W(S,T)or A= —-W(S,T), where W is a word in the letters S and 7.
The homomorphisms

-1
)

vs : Fy — Fy defined by 7g(
yr : Fy — Fy defined by v (

=y and ys(y)
=z and 7 (y)
v_r : Fy — F, defined by v_;(z) = 27! and v_;(y) =y~

z)
z)

x
xy and
) 1

are in Aut™(F,) with 3(vs) = S, B(yr) = T and 3(vy_;) = —I, where the mor-
phism /3 : Aut™(F,) — SLy(Z) is the projection defined in Proposition 3.5.
Hence for A = +W (S, T) the automorphism v, := +W (ys,7y7) € Aut™ (F) is a
lift of A. Here we denote —W (vs,vr) := v_1 o W(~vs,v7).

In order to find a word W such that A = W(S,T) or A = —W(S,T) we will
define a sequence A; := A, A,, ..., Ay such that for 1 <n < N:

Api1=A, - T™.S withk, €Z and Ay =+T* with by € Z.
From this we get that A = £7*b . (=8).Tkn-1. . (=8)-T*. We will conclude

using that 7! = —STSTS.
These considerations give rise to the following algorithm, in which we denote

A, =: (a" b”) with a,, b,, c,, d, € Z.

Cn dn
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Algorithm for finding a lift in Aut™(F}):
Given: A € SLy(Z).
n:=1,A, = A.

1. If ¢, # 0 find k,, € Z, such that
App1 = AT S fulfills || < el

k, := d, div ¢, does this job: d,, = k,c, + 1, with r, € {0,1,... |c,| — 1}

N An+1 _ <—ankn + bn —an) )

Tn —Cp
Increase n by 1.

2. Tterate Step (1) until ¢, = 0. Thus

A, = <i01 i"l) = +T* and

A = +T*n . (=G).Thr. . (=8).-TM = +W(S,T,T7").

3. Replace in W each T-! by —STSTS
= Word W in S and T with A = W(S,T) or A= —-W(S,T).

4. Compute v4 := W(yg,vr) or v4 := =W (vs,7r)-

Result: v4 € Aut(Fy) with B('YA) = A.

Example 4.2.

-3 5
(_2 3> = —T28T3STS = 7%27—17%757%75%75

= %z a2y e 2y e 2y ey,
y = a7 ya?yatya’

4.2 Decide whether A is in the Veech group I'(O)

Let A be in SLy(Z). We want to decide whether A is in I'(O) or not. As in
Corollary 3.7 let hy,. .., hy be generators of H = Gal(H/X) C F, = Gal(H/E"),
o1,...,0q asystem of right coset representatives of H in F, (¢; := H - 0;) and 79
some fixed lift of A in Aut™(F).

Corollary 3.7 suggests how to build the algorithm:
Ae F(O) & die {1,,d} such that Vj S {1,,]{?} 5'1’7104(h]) = 0;.
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Hence, the main step will be to decide for some 7 € F, whether

CE' T = 5i-
In order to do this we present the origami O as directed graph G with edges
labeled by x and y (see Figure 12). The cosets 71, ...,d, are the vertices of G.

Each vertex o; is start point of one x-edge and one y-edge. The endpoint is 7; - ©
and o; - y, respectively.

Figure 12: Graph for O = L(2, 3).

Writing 7 € F; as word in z,y,2~* and y~! defines a not necessarily oriented path
in G starting at the vertex ¢; with end point 7; - 7 . We have:

0; - T = 0; < this path is closed.

Thus we get the following algorithm.

Algorithm for deciding whether A is in I'(O):
Given: A € SLy(Z).

Calculate some lift ¥4 € Aut™(Fy) of A (see 4.1).
For j = 1to k do: hj := 7%(h;).
result := false.
forv=1toddo
help := true.
for j =1 to k do:
if o; - ﬁj # 0; (main step, see above) then help := false.
if help = true then result := true.

Result: If the variable 'result’ is true, then A € I'(0), else A ¢ I'(O).

Example 4.3 (for O = L(2,3)).

Let A := (; (1)) . Take the lift:

1 1

%04 DT xy:vyx_l =u Yy :pyxyx_ly_ T =0

Generators of H (see Ex. 4.1) are:
hy =23 hy := ayz™, hy = 2?yx ™2 hy := yay~t, hy = Y2
For example id - 79 (hy) = id - wvu™ = zou™t = 22u™! = 22 = ~4(H) # H.
But one has: 7-79(h;) =z Vi € {1,...,5}.
= ya(H)=H for yy =274 27! and A € T(O).
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4.3 Generators and coset representatives of I'(O)

Let T'(O) be the projective Veech group, i.e. the image of I'(O) under the projec-
tion of SLy(Z) to PSLy(Z). We first give an algorithm that calculates a list Gen
of generators and a list Rep of right coset representatives of T'(O) in PSLy(Z),
then we determine I'(O). The way how we proceed is based on the Reidemeister-
Schreier method (|LS 77|, I1.4).

We denote by A the image of an element A € SLy(Z) under the projection to
PSLy(Z) and, conversely, denote for A in PSLy(Z) by A some lift of A. More-
over, we write A ~ B (respectively A ~ B) if they are in the same coset, i.e.
['(0)-A=T(0) - B (respectively ['(O) - A =T(0) - B).

Each element of PSLy(Z) can be presented as word in S and T. We use the
directed infinite tree shown in Figure 13: The vertices vy, vy, vs, ... of the tree
are labelled by elements of PSLy(Z). The root vy is labelled by I, the image of
the identity matrix. Each vertex is starting point of two edges, one labelled by
S, one labelled by 7.

Each element of PSLy(Z) occurs as label of at least one vertex. Starting with v
we will visit each vertex v (with label B) and check if it is not yet represented by
the list Rep. In this case we will add it to Rep. Otherwise for each D in Rep
that is in the same coset as B, we add B - D! to the list Gen of generators.

Figure 13: Tree labelled by the elements of P.SLy(Z)

We will first give the algorithm and then proof that the lists Gen and Rep that
are calculated are what they should be.
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Algorithm for Calculating T'(O):
Given: Origami O.
Let Rep and Gen be empty lists.
Add I to Rep. A :=1.
Loop:
B=A-T,C:=A-5
Check whether B is already represented by Rep:
For each D in Rep, check whether B - D! is in I'(O) or —B - D! is in T'(O).
If so, add B- D! to Gen.
If none is found, add B to Rep.
Do the same for C instead of B.
If there exists a successor of A in Rep, let A be now this successor and go to
the beginning of the loop. If not, finish the loop.

Result: Gen: list of generators of I'(O), Rep: list of coset representatives in
PSLy(Z).

Remark 4.4.

1. Any two elements of Rep belong to different cosets.
2. The algorithm stops after finitely many steps.
3. In the end each coset is represented by a member of Rep.

4. In the end I'(O) is generated by the elements of Gen.

Proof.

1.: The statement follows by induction. It is true in the beginning, since Rep
contains only /. After passing through the loop it is still true, since B (respec-
tively C) is only added if B- D~! (resp. C- D7') is not in T'(O) for all D in Rep.

2.: Follows from 1, since I'(O) has finite index in PSLy(Z) (Corollary 3.6).

3.: Let A be an arbitrary element of PSLy(Z). There is at least one vertex in the
tree that is labelled by A. Denote the vertices by vy, vi, vs, ... as in Figure 13
and their labels by Ay, A;, Ao, ..., respectively.

We do induction by the numeration n of the vertices:

Ay = I is in Rep. Suppose for a certain n € N all A;, with k& < n are represented
by Rep.

If A,4: is not itself in Rep then consider the path w from vy to v,4; and let v;
be the first vertex on w that is not in Rep. Hence, its predecessor is in Rep and
A; was checked but not added. Thus, there is some 4; (I < j) in Rep such that
A; - At isin T(0), ie. Aj ~ A,

Let & be the path from v; to v,; and D the product of the labels of the edges
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on w. Then An—i—l = Aj . D
Walking ’the same path’ as @ starting at v; (i.e. a path described by the same se-
quence of S and T) leads to some vertex v,, with m < n+1 and label 4,, = A;-D.
We have A, 1 = A;-D ~ A;- D = A, and by the assumption A,, is represented
by Rep, hence also A, is.

4.: Let GG be the group generated by the elements of Gen. We have by construc-
tion of the list Gen that G C T'(O).

We show again by induction that each label A, in the tree that is in ['(O) is also
in G. This is true for n = 0. Suppose it is true for all £ < n with a certain n € N.
If A, is in T(O), we proceed as in (3) and find some A;, A;, A, and D
(j,I,m < n + 1) such that A; and A, are in the same coset, A; - A;' is in
the list Gen (hence, A; - A;' € G), A,y1 = A;-D and A,, = 4, - D. A, is in
the same coset as A, ;, thus it is an element of I'(O). By the assumption A,, is
then also in G. Hence, we have:

O

Now — knowing I'(O) —, it is easy to determine I'(O). We just have to distin-
guish the two cases, whether —I is in I'(O) or not.

Algorithm for Calculation of I'(O):
Given: Origami O.

Calculate Gen and Rep.

Let Gen’ and Rep’ be empty lists.

Check, whether —I € I'(O).

If yes: For each A € Gen add A to Gen'. Add —I to Gen'.
For each A € Rep add A to Rep’.

Ifno: For each A € Gen, check whether A € I'(O).
If it is, add A to Gen’; if it is not, add —A to Gen'.
For each A € Rep add A and —A to Rep'.

Result: Gen': list of generators of I'(O),
Rep': list of right coset representatives of I'(O) in SLy(Z).
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Example 4.5 (for O = L(2,3)).

1) Result of calculating I'(O):

Gen:
1 3\ 3 -1 3\ samar-17-1 1 0\  sanar 1a
(29 o () crsmsrrn () 0) - rsTers

(g :g) — TSTST ST

is a list of generators of ['(O). In fact, the algorithm produces more generators,
compare Example 4.7. We eliminated here redundant ones.

Rep :

I,T,S, 1% TS, ST, T*S, TST, T*ST
is a system of coset representatives of ['(O) in SLy(Z).

2) Result of calculating I'(O): (—1 € T'(O))

Gen' = GenU{-TI}.
Rep' = I,T,S, T TS, ST, T*S, TST, T?ST

Hence, I'(O) is a subgroup of index 9 in SLy(Z).

4.4 The Geometrical type of the quotient H/I'(O)

The group ['(O) is a subgroup of PSLy(Z) and of finite index, see Corollary 3.6.
It acts as Fuchsian group (via Mébius transformations) on H and V' := H/T'(O)
is an affine algebraic curve.

V is defined over Q by the Theorem of Belyi: We have a covering from H/T'(O)
to H/PSLy(Z) = A'(C) = P!(C) — {oo} ramified at most over the images of i and
p = 1+(2/3)i. Thus, by Belyi’s theorem the projective curve H/I'(O) and hence
also the associated Teichmiiller curve C' introduced in Section 1.4 is defined over

Q. In the following we want to determine the genus and the number of points at
infinity of V' = H/I'(O).

Let A := A(Py, P1, Py,) be the standard fundamental domain of SLy(Z), i.e. the
hyperbolic pseudo-triangle with vertices P, := —% + @i, P o= % + @z and
P :=100.
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We denote by A also the Mobius transformation defined by the matrix A. Then
T and S (as M&bius transformations) send PyPs, to P, Ps, respectively PyP; to
itself (fixing 7).

Let Rep = {A;,..., Ay} be the system of right coset representatives we calcu-
lated in Section 4.3. Then

F = OAZ(A)

is a simply connected fundamental domain of T'(O).

The list Gen of generators prescribes how to glue the edges of F' to obtain
H/T(O). This way, we get a triangulation of H/T'(O) (compare Figure 14). We
calculate the numbers ¢, e, v of the triangles, the edges and the vertices of this
triangulation as described in the following algorithm. Furthermore, the vertices
defined by translates of P,, are exactly the cusps of H/T'(O). We denote their
number by ¢. Thus (using the formula of Euler for calculating the genus) we get
the following result.

Remark 4.6. Let t, e, v and © be the numbers of triangles, edges, vertices and
marked vertices as calculated in the following algorithm. Then H/T'(O) is an
affine curve of genus g = L;eﬂ) with ¥ cusps.

Algorithm determining the geometrical type of H/T'(O):

Generate a list of triangles L := {A;(A),..., A(A)}.

In the triangle A;(A) we call A;(P)A;(P;) (the image of the edge PyP;) ’the
S-edge’. Similarly, we call A;(P;)A;(Py) 'the T-edge’ and A;(Py)A;(Ps) 'the
T~ '-edge’.

For each i,j € {1,...,k} identify

e the T-edge of A;(A) with the T '-edge of A;(A), if A; ~ A; - T, ie. if
(A;T)AT € T(0),

e the T '-edge of A;(A) with the T-edge of A;(A), if A; ~ A;-T~! and

e the S-edge of A;(A) with the S-edge of A;(A), if A, ~ A;-S.
If an S-edge of some triangle A;(A) is identified with itself (i.e. i = j)
create an additional triangle: Add a vertex in the middle of this S-edge
and add an edge from this new vertex to the opposite vertex in the triangle
A;(A). (Compare triangle T2ST in Figure 14). This is done to get in the
end a triangulation of the surface.

t := number of triangles. e := number of edges.

v := number of vertices, v := number of vertices that are endpoints of T-edges.
. 2—(v—e+t)

g ==

Result: g : genus of H/T'(O)  ©%: number of vertices at infinity of H/T(O).
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Example 4.7 (for O = L(2, 3)).

Figure 14: Fundamental domain of ['(L(2,3)).

In Figure 14 edges with the same letters are glued. In the triangle labeled with
TTST there were an edge and a vertex added, since the ’S-edge’ is glued to itself.
Vertices with same numbers are identified. Vertices at infinity are marked by a
filled circle. Ome can verify using the picture that the number of triangles is
t =9+ 1, the number of edges (after identification of those with same labels) is
e = 14 + 1 and the number of vertices (again after identification) is v = 6 + 1.

Furthermore the vertices with the labels 1,4 and 5 are vertices at oo, thus v = 3.

Result: ¢ = 0,0 = 3. Hence,

H/T(L(2,3)) = P' - {0,1,00}.

We may summarize this to the following statement about the corresponding
Teichmiiller curve.

Proposition 4.8. The origami L(2,3) defines a Teichmiiller curve whose nor-
malization s the projective line without three points.

4.5 Some examples

In this section we give the results of the algorithm for some explicit examples.
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1. "Trivial Origamis":
a; ... Qpn
by b,

O=: : .
b by F(O)z{(i d) € SLy(Z)|b =0 mod n',c = 0 mod m'}

a; ... ap

where ¢t := ged(m,n),n’ :==n/t,m' :==m/t

2. "L—Sequence":

Origami | Index | Genus | § Cusps
a L(2,2) |3 0 )
b | b L(2,3) |9 0 3
L(n,m) = Q. . .ay L(2,4) [18 |0 5
nl [ [ ] Jo L5 [36 |0 8
a; as...ap
L(2,6) |54 |0 10
L(2,7) |108 |1 17
L(3,3) |9 0 3
L(4,4) |54 |0 10
3. "X-Sequence":
Origami | Index | Genus | § Cusps
O, 3 0 2
O, 6 0 3
ag a1 ... Qop (g1 05 19 0 A
Op=aq1| [ [ | |ok] o) 24 |0 6
a1 a9 v A9k—1 09k 05 36 0 8
Og 48 0 10
0, 72 1 12
Osg 96 2 14

Remarks on the examples:

As in Example 4.1 edges labeled with same letters are glued. The tables itemize
for an origami O the index of the projective Veech group I'(O) in PSLy(Z) and
the genus and number of cusps of H/T'(O).

The first example consists of origamis that are themselves elliptic curves. The
Veech group I'(O) can be determined using Theorem 1.

The sequence in the second example was introduced to me by Pierre Lochak.
The Veech group e.g. of L(2,2) is given also in [M& 03|. This sequence is studied
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in detail in [HL1 04], where e.g. estimates for the growth of the genus and the
number of cusps are obtained. The Veech groups are not in general congruence
subgroups of SLy(Z), see Proposition 7.8 and the comment following it.

The X-sequence in the third example will be studied in Section 5.2. All Veech
groups in this sequence are congruence groups. They can explicitely be deter-
mined for each k, see Section 5.2.



Chapter 5

Examples for Veech groups of
origamis

In this chapter we calculate the Veech groups for some infinite sequences of
origamis. In particular we show that the X - origamis we introduced in Sec-
tion 4.5 have as Veech groups the well known congruence groups

+I4(2k) = { <‘C’ Z) € SLy(Z)|a = £1,b=0,d = £1 mod 2k }.

Furthermore, we construct for each g > 2 origamis of genus g with Veech group
['(2). In particular we obtain the following result.

Theorem 2. In each moduli space M, (g > 2) there is a Teichmiiller curve
defined by an origami whose normalization is the projective line without three

points.

With a variant of this construction one obtains a projective line without two
points in M,.

In Section 5.1 we give some helpful properties for calculating Veech groups. Fi-
nally, in Sections 5.2 and 5.3 we obtain the results listed above.

5.1 A few properties of the stabilizer group

We list some properties of the stabilizer group that we will use in the next sec-
tions. By N < H we denote that N is a normal subgroup of H.

51
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Let U be a subgroup of F,. Then U defines three subgroups of F; as follows:

Norm(U) := {w € FJwUw ' = U}, the normalizer of U in Fy
<<U>>p = < wuw‘l\ w € Fy,u € U >, the normal closure of U in F3
NT(U) = ﬂ wUw™!, the biggest subgroup N of U
wEF, that is normal in F5

The properties listed in the following remark are easily verified.

Remark 5.1. Let U be a subgroup of Fs, U; with i € I a family of subgroups of
Fy and v an automorphism in Aut®(F,). One has the following properties:

1. Stab(U) C Stab(Norm(U)),

2. Stab(U) C Stab(<< U >>pg,)

8. \er Stab(U;) C Stab((N;c; Us)

4. Stab(y(U)) = ~oStab(U)o~~1
5. Stab(U) C Stab(NT(U))

Let now O be an origami, p : X* — E* the unramified covering and U the finite
index subgroup of F5 corresponding to O. The groups Norm(U), << U >>p,
and NT(U) are also finite index subgroups of F;, and define origamis Oy, O, and
Os.

Again let py : X7 — E*, py : X5 — E* and p3 : X5 — E* be the unramified
coverings defined by these three origamis.

Then p; is the unramified covering of E* of minimal degree such that it is covered
normally by X*, i.e. there exists a normal unramified covering ¢; : X* — X7
with p; o g1 = p.

Similarly, py is the unramified covering of E* of maximal degree that is normal
and covered by X*.

Finally, p; is the minimal unramified covering of E* that factors through p by a
normal g3, i.e. there is a normal covering ¢3 of X* such that po g3 = ps3 .

The properties of stabilizer groups listed above imply the following corollary 5.2
to Theorem 1.

Corollary 5.2. The Veech group I'(O) of the origami O is contained in the Veech
groups T'(O1), T'(Oz) and T'(O3) of the origamis O, Oy and Os.
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5.2 X-origamis

In this section we study in more detail the sequence O, of origamis mentioned in
Section 4.5; we call them X -origamis because of their shape, see Figure 15. We
detect their Veech groups I'(Oy) as congruence groups of level 2k.

Definition 5.3. Let Oy be the origami with 2k squares given in Figure 15, i.e.
the origami defined by the permutations

0a=(12 ... 2k) € Sy and 0y, := ((12)(34)...(2k — 1 2k)) € S

a2 ai A2k @ Agk—1

SRR

1 1 )
ay a2 cee A2k—1 A2k

Figure 15

Edges with same labels are identified. We obtain a closed surface Xj. It is divided
into 2k squares with 4k edges and two vertices @ and *. The genus of X is k.
Recall that Oy defines an unramified covering pj; : X; — E* of degree 2k. The
fundamental group Uy = m(X}) C m(E*) = F, is — if we choose the base point
in the first square:

Up =< 2y, yo ! a2ya=>, adya=2, .. o 2yp=ChD) 21y —(2k=2) o

Proposition 5.4. The Veech group of Oy, is

['(Oy) = {<Z Z) € SLy(Z)]2b =0, a+b = +1 mod 2k, a+c = b+d = 1 mod 2}.

In particular we have

e kodd= T(Oy) is conjugated to +£1'1(2k),
where +1'1(2k) is defined as in the introduction to this chapter.

o k even = I'(Og) has the same index as +1'1(2k) but is not conjugated.
Proof. The proof is divided into the following steps:
1. One obtains for the baby origami O; with two squares:

T(0,) = {(‘C’ Z) € SLy(Z)|a+ ¢, b+ d odd }

and all Veech groups are contained in the first one, i.e. I'(O) C I'(Oy).
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2. The group U can be described alternatively as
Up = {w € Fylf,(w) + A, is divisible by 2k}.
(precise definitions see below)
3. We solve the problem first in the principal congruence group I'(2):

L(Op)NT(2) = {((i Z) €I'(2)]26=0, a+b==x1 mod 2k}
4. Using 3. we show that I'(Oy) is the group claimed in the proposition.

5. Using 4. we show that I'(Oy) has the same index in SLy(Z) as +I'1(2k) and
they are conjugated iff k is odd.

We consider the first element of the sequence Oy:

The corresponding subgroup of F is
Uy =< 22, 2y, yz ' >=< 2% zy,y* >= {w € F| le(w) is even},

where le(w) denotes the length of w as word in x and y.
Hence for an automorphism v € Aut™(F,) we have:

v(Uy) = U, <+ preserves the parity of the length of words
< le(vy(z)) and le(y(y)) are odd

& L(v(2)) +y(7(x)) odd and £, (v(y)) + £,(v(y)) odd
& a+cand b+ d are odd for (CCL Z) = B(y),

By Theorem 1 the Veech group I'(O;) = $(Stab(U;)). This proves the first part
of 1.

Furthermore, U; contains Uy for all £ and it is the normal closure of U, in F5, i.e.
U, = << U >>p,. This can be seen by checking the three generators of U: 1>
and zy are already elements of Uy and 2? = z(xy)z ' (zy~!) with zy and zy™!
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in Uy is also in << Uy >>p,.
Using Corollary 5.2 we obtain the second part of 1.

We identify the 2k squares of the origami O, with the elements of
Z/)2k7 = {0,1,...,2k — 1}.

The group F3 acts from the right on the set of the squares as follows: For w €
F, = m(E*) and a one of the squares, lift the path w on E* via the covering py
to a path on X; with its starting point in the square a. Let b be the square in
which the ending point of the lifted path lies. Then define

CL"[UZ:B.

Since we had chosen the base point for Uy = 71(X}) in the square 0 one has for
v,w in Fy by definition:

weU,<0-w=0 and vwv ' €U < b-w=>bwithb:=0-v (5.1)

Let @ be in Z/2kZ, then x, y, 7, y~! act on a in the following way:

a-r — a-+1 a-r' = a—1
Qo a+1, if a even _ a+1, if a even (5:2)
Y = 1 a=1,ifaodd. Y 7 Va—1,ifaodd.

Here we use that 2%* is in U,.

Now, we obtain the action of any w in Fy on Z/kZ: Each %! contributes =1,
each y*! contributes 1 or —1 depending on the parity of the position of *! in w.

Definition 5.5. For w € F, let fij,(w| odd) be the total number of occurrences
of y and y~' in w at an odd position (y~' counted positive!). Similarly, denote
by £y/(w| even) the number of occurrences of y and y~' in w at an even position.
Furthermore define

Ay(w) =y (w] odd) — t,(w| even).

E.g. for w := xyzy 'z?y~' one has f,/(w| odd) = 1, f,(w| even) = 2 and

Ay(w) = —1.
Using (5.2) we obtain

w:{ a+ . (w) +
a+ﬂx(w)_

Ay(w) , if a even
(5.3)
Ay(w), if a odd .

a -
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Since Uy, = {w € F»|0-w =0}, 2. follows from (5.3).

Before restricting to I'(2) we stay in the general setting and observe that it is

sufficient to consider the two generators xy and y?. More precisely: For v €
Aut+(F2)

v € Stab(Uy) < v € Stab(U;) and v(y?), v(zy) € Uy (5.4)

= follows by 1. and the definition of Stab(Uy).

<« is true since Uy is the subgroup of U; consisting of those words in the three
generators w, := 2, wy = xy and ws := y* of U; for which the number of
occurrences of w; is divisible by k (w; ! counted negative), i.e.

Ur = {w = w(wy, wa, w3) € Uy| ty, (w) is divisible by k}.

Uy is generated as normal subgroup of U; by w¥, wy and wz. Thus it is sufficient
to check 22*, zy and 32 in order to find out, if a given v € Stab(U,) fixes Uy. But
7(2?*) = (w1 )* and the number of occurrences of each generator in it is divisible
by k. Hence it follows (5.4).

As next step observe that in order to check whether A is in I'(Oy) it is sufficient to
consider one preimage of A under (: Let A be in SLy(Z) and o € Aut™(F,) such
that 3(7,) = A. Since 3 is the quotient map Aut*(F,) — Out™(F) = SLy(Z),
an automorphism + is mapped to A by ﬁ iff it is conjugated to 7. Thus we have:

A eT(O) Thm Jy € Stab(Uy) : B(7) = A < Jw € Fy : wyow ™" € Stab(Uy)
) Bez/2KT) b yo(u) = b for all u € Uy, (5.5)

Observe that Norm(Uy) = U; (by checking that it contains the three generators
of Uy). Thus Norm(Uy) has index 2 in F and 1,z are coset representatives. Thus
in (5.5) it is sufficient to consider b € {0, 1}. Together with (5.4) it follows that

AeT(Oy) & (0-%(y*) =0and 0-7y(zy) =0) or
(1-70(y*) = T and 1-yp(ay) = 1). (5.6)

a b
c

d) is in T'(2) .

One has: T(2) =< A, = ((1) i) Ay = G (1)) Ay = (—01 _01) >. (5.7)

We define the three automorphisms

Now, suppose that A = (

T T,y 2y Yoz Yty sy 7_11$’—>$_1,y’_>y_
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and set
G(2) =< 1,72, 7-1 > -
Thus 3(G(2)) = I(2). Let v, be in G(2) with 3(vy) = A.
We will use in the following the fact proven below in Lemma 5.6 that G/(2) respects
Ay, e
Vy e G(2),w e Fy: Ay(y(w)) = Ay(w).

Then we have:

0-v(zy)

ot
w
=

0+ f(v(zy)) + Ay (v(2y))

F (@) + 1:.0() + Ay (zy)
- a+b—1.

Similarly one obtains

|

y(zy) = 14+a+b+1
0-v(y*) = 2b and 1-4(y*)=1+2b

Thus by (5.6) A € I'(Oy,) iff 20 = 0 and a + b = +1 modulo 2k. This proves 3.

4.:

Recall that by 1. the Veech group I'(Oy) is a subgroup of I'(O;). Suppose

that A = (Z Z) is in I'(O1)\I'(2). The index of I'(2) in I'(Oy) is 2, since
. = 10 G 0 -1\ .
by 1. any element of I'(O;) maps to either [ = (0 1) or § = (1 0 ) in

SLo(Z)/T'(2) = SLy(Z/27Z). Therefore A has a decomposition A = B - S for some
matrix B in ['(2). We define the automorphism

'Ys:fEH?Jay'—)f_la

then v, is a preimage of S under (3. Furthermore, we take a preimage vg of B in
G (2), then 4 := v 0 vg is a preimage of A. One obtains:

= 5.3 5.6 —————
0-7aley) E 01 L(al@y) + A,(plye D) "2 a T b 1

Similarly, one calculates 0-y4(y?), 1-va(zy) and 1-v4(y*) and obtains altogether:

0-valzy) =a+b+1 0-va(y?) =2
Loyaley) =1+a+b—1  T-ya(y*)=1+2b

Thus it follows that A € T'(Oy) iff 26 = 0 mod 2k and a + b = F1 mod 2k.
Together with 1. and 3. this finishes the proof of 4.
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In order to obtain that I'(Oy) and +I';(2k) have the same index in SLy(Z), we
use the fact that I'(2k) is contained in I'(Oy) as well as in £I'1(2k). Therefore it
is sufficient to show that their images in SLy(Z/2kZ) = SLy(Z)/T'(2k) have the
same number of elements.

Using 4. we obtain that the image of I'(Oy,) in SLy(Z) is:

{<i1 0 ) | (il +k ok ) le,0 € Z./2Kk7Z, e even, o0 odd}, if k odd (5.8)

e =1 0 +1+k
{(iel j?l) , (il(;_ K ilkJr k) le,e’ € Z)2kZ, e, €' even}, if k even  (5.9)

Thus the image has in both cases 4k elements. The image of +I';(2k) consists of
4k elements as well.

Observe by (5.9) that I'(Oy,) is contained in £1'(2) if k is even. But I'(2) is normal
and does not contain +I';(2k). Therefore I'(Os) is not conjugated to £I'y(2k) if
k is even.

For k odd, one can check by a calculation in SLo(Z/2kZ) that

<(1) lf) T'1(2k) <(1) _1k) =T (Op). (5.10)

O

Lemma 5.6. The number A,(w) = f,/(w| odd) — 1, (w| even) is invariant under
G(2) =< y1,72,7-1 >, t.e. if v is in G(2), then

Vw € Fy 1 Ay(v(w)) = Ay(w).
Proof. 1t is sufficient to check the claim for the generators of G(2):
nireay—aty, presayy—y andyrreahysy

Consider 7 := ~;: Let w be an arbitrary element in F3, thus w is a reduced word
in the four letters =, y, 7%, y~ %

w=w(z,y,z",y") and y(w) = w(z, 2y, 2"y a2,

Observe that for the words of replacement z, 2%y, 271, y~'272 the value of A, is
the same as for the original words z, y, 7! and y~!, their length is odd and that
reduction also does not change the value of A,. Hence Ay (v (w)) = Ay (w).

With the same arguments this is true for 75 and v_;. Thus the claim holds. [

Using this sequence of origamis one can construct origamis having Veech group
+1"1(2k) (for k£ odd). In the following corollary, we use the automorphism -~ :
T x,y xRy
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Corollary 5.7. Let k be odd. Define Vi, := ~(Uy) with the group Uy defined in
Proposition 5.4. Call Py the origam: that is defined by the finite index subgroup
Vi of Fy. Then T'(Py) = £1'1(2k).

Proof. By Remark 5.1 we have Stab(V}) = v o Stab(Uy) o y~!. By Theorem 1 it
follows that

r(n) = sro0ie) = (i 1) ron (j §) @ eren

5.3 Stair-origamis

In this section we consider two infinite sequences Gy and St of origamis of genus
k. We show for both that all origamis in the sequence have the same Veech group.
Because of their shape (see Figures 16 and 17) they are called stair origamis.

The smallest example of the two sequences, the stairs with 3 and 4 squares,
appear e.g. in [M6 03], where the equations for the Teichmiiller curves defined by
these two origamis are calculated. The stair with three squares is because of its
shape also called L-origami and is generalized in another sequence with origamis
all in genus 2 (see e.g [HL2 04]).

The stairs with an odd number of squares occur in [He 05|, where they are used
to construct origamis that cover it having Veech group SLy(Z).

Definition 5.8. Let Gy be the origami with 2k squares (k > 2) in Figure 16
given by the permutations

=(12) ... (2k—12k)andoy,:=(23) ... (2k—22k—1) € Sy

Figure 16

Here opposite edges are identified. One obtains a closed surface with the two
marked points ® and X. Its genus is k. The fundamental group is

Ur =<y, (zy)" oy (zy) "V, (zy) a?(zy) 7,
(zy)'xy*r Hay)j€{0,....,k—1},i€{0,....,k —2} >
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Proposition 5.9. The Veech group I'(Gy) is for all k € N the principal congru-
ence group I'(2).

Proof. The proof is divided into two parts: In the first part we show I'(2) is a
subgroup of I'(Gy); in the second part we show that it is not bigger.

['(Gy) is a subgroup of T'(2):

Recall that the group I'(2) is generated by the three matrices A;, Az, A3 given
in (5.7). Take again the three preimages under [:

1

‘ZL‘I—>I‘ '$‘I—>ZL‘y2 d '$"—>ZL‘7
M- y»—>x2y’72' y oy ana 73 : y»—>y’1

We show that ~;(Uy) = Uy.

Observe that U, contains N :=<< 22, y% >>p,. More precisely, U, is generated
by N and the two elements y and cyc™! with ¢ := (zy)FLa.

Observe furthermore, that v;(N) = N fori = 1,2, 3:

E.g. n(2?) = 22 € N and v,(y?) = 2%y2’y = y((y *2?y)2x*y?)y~t € N. This
works similarly for i = 2 and ¢ = 3. Thus we have v(N) = N for all v € G(2).

Since N < Fy and N C Uy, it follows that
Vn € N,w,v € Fy : wnv = uwv with some u € Uj. (5.11)

One obtains e.g.:
1 (y) = 2%y € Uy and

k—1) _ k—1) (511)

yileye™) = (n(ay) taaya= (n(ey)) "0 = (%) laa?ya ! (ay)
u(zy)Leyz= (2y)~*Y = ucyc™! for some u € U. Thus v,(Uy) = Uy.
This works similarly for ¢ = 2, ¢ = 3, which finishes the proof that I'(2) C I'(Gy,).

I'(2) is the whole group I'(Gy):

The matrices
10 11 0 —1 1 -1
o) b)) ()
0 -1 10
s (7))
form a system of coset representatives of I'(2) in SLy(Z). Thus it remains to
show, that By, By, B3, By and By are not in I'(Gy).

Observe that all generators and thus all elements of U, contain an even number
of occurrences of z. Since y is in Uy, the number £,(7(y)) has to be even for an
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automorphism ~ in Stab(Uy). This implies that the top right entry of an element
of I'(G}) has to be even. From this argument it follows that B;, By, Bs and By
are not in I'(Gy).
It remains to check Bs. We take the preimage 7o : © — xy,y — y in Aut™ (F}) of
Bs under B
Then we have for each other preimage v := w -7y - w™' (w € FY):
Yy tey™) = wyo(vy toy Hw ! = wrtw™t € N C U,
But zytzy~! is not in Uy, thus v & Stab(Uy). From this it follows that Bs ¢
['(Gy).

U

Definition 5.10. Let St;. be the origami with 2k — 1 (k > 2) squares in Figure
17 given by the permutations

0ai=(12) ... (2k—32k—2) and oy, := (23) ... (2k—22k —1) € S,

Figure 17

Again opposite edges are identified. One obtains a closed surface with one marked
point: ®. Its genus is k. The fundamental group is

Up =< y, (xy)* 'a(zy)" ", (ay) a?(xy) 7,
(zy)ay*as™ (zy) 7| j €{0,...,k =2} >

Proposition 5.11. The Veech group T'(Sty) is for all k € N the congruence group

I:={ <Z Z) € SLy(Z)|a+ c and b+ d odd }.

Proof. We have

A el < Aissent to the image of [ = ((1) (1)) or By = ((1) _01)

in SLy(Z)/I'(2) = SL9(Z/27Z) under the natural projection. Thus I' is generated
as normal subgroup of SLy(Z) by I'(2) and the matrix Bs.
Take the automorphisms 7;, v and =3 defined as in the proof of Proposition 5.9
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and take the automorphism ~, : x + 3,y — 2! as preimage of By under 3.
Observe that Uy again contains N =<< z? y? >>p, and is generated by N and
the two elements y and cxc™! with ¢ := (zy)* L.

We have already seen in the last proof that v;(N) = N for i € {1,2,3} and it is
easily seen that 74(N) = N. Furthermore, one can check similarly as in the last
proof that v;(y) and ~;(cyc™!) is in U,. Hence T is contained in the Veech group
of Stk.

Finally we show that B; ¢ T'(St;): Take one fixed preimage of B; under f:

vs :  — x,y — xy. Then for each conjugated automorphism v := wysw*
(w € F,) one has y(z lyz~ly) = wyw™t € Sty, but a7 lyz~'y & St;. Thus
['(Sty) # SLy(Z). It contains I which has index 3. Thus it is equal to I'. O
One has

H/T'(2) = P'"\{0,1,00} and H/T = P"\{0,c},
where I is from Proposition 5.11. Thus it follows for all £ € N with &£ > 2, that

H/T'(Gy) = PN\{0,1,00} and H/I'(St;) = P"\{0,00}

Since the genus of G}, and that of St; is k, we now have in particular proved
Theorem 2.



Chapter 6

Congruence groups

In this chapter we construct origamis whose Veech groups are congruence groups.
We show in Theorem 3 that all congruence groups of level n whose image in
SLy(Z/nZ) is a stabilizing group in the sense of Definition 6.1 occur as Veech
groups of origamis. In particular we obtain with this tool all principal and other
common congruence groups, shown in Section 6.4 explicitely.

But in fact, we obtain much more: Provided with Theorem 3 we can show that
“most” congruence groups occur as Veech groups of origamis, see Theorem 5. If
we restrict to congruence groups of prime level, we can even prove that all of them
are Veech groups of origamis, with possibly five exceptions for small primes, see
Theorem 4.

The basic idea is to consider the group of affine diffeomorphisms on the trivial
n x n - origami Tr(n,n) (see Figure 18). Its image in SLy(R) is the full group
SLy(Z).

Tr(n,n):

Figure 18: Trivial n X n - origami. Opposite sides are glued.

By definition affine diffeomorphisms respect the set of cusps. We will choose a
suitable partition of the set of cusps. If one restricts to affine diffeomorphisms

63
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that respect this partition, i.e. that map each cusp to a cusp in the same class,
then their image in SLy(R) will be a congruence group of level n. We will con-
sider coverings of Tr(n,n) that are ramified over the cusps in a way that fits to
the partition. The Veech group of such a covering origami will be in general a
subgroup of our congruence group. We will find a construction that leads to a
covering whose Veech group is the full congruence group.

We start by defining the type of congruence groups that we obtain this way.
Let us study congruence groups of level n by their natural action on (Z/nZ)>.

Definition 6.1. Let B := {by,..., by} be a partition of (Z/nZ)?, i.e.

U bi=(Z/nZ)? binby=0Yitj and b #0 Vie{1,... k}.
€{1,....k}

B defines an equivalence relation on (Z/nZ)* by:
x~p Y e x,y €Db; for the samei € {1,... k}.

We define the stabilizing group of B in SLy(Z/nZ) resp. the corresponding con-
gruence group of level n as

g = {A€SLy(Z/nZ) A-x~px Vo c (Z/nZ)*}
'z := the preimage of I'p in SLo(7Z).

Observe that I'p is a subgroup of SLy(Z/nZ) and thus I'p is a congruence group
of level n. Since for each A in SLy(Z/nZ) the point (0,0) is a fixed point, it is
appropriate to consider partitions B with b; = {(0,0)}.

We will prove in Theorem 3 that each I'g occurs as Veech group of an origami.
The first part of this chapter is dedicated to the proof: We start in Section 6.1
by finding a subgroup Np of F» having infinite index with I'(Ng) = I'z. We
use this to state in Corollary 6.9 a condition for subgroups of F, to have a Veech
group that is contained in I'g. In Section 6.2 we show that there exist finite index
subgroups fulfilling this condition. Thus they define origamis whose Veech group
is a subgroup of I's. Finally, in 6.3, we construct a finite index subgroup W of
F, such that its Veech group I'(W) is equal to I's. This corresponds by Theorem
1 to an origami O with Veech group I'(O) = I'p.

In the second part of this chapter we investigate which congruence groups we can
obtain with this method. In Section 6.4 we show by giving explicitely suitable
partitions that the principal congruence groups and other common congruence
groups are among them. In 6.5 we point out the relation between stabilizing
groups and orbit spaces. We use this in 6.6 in order to characterize for p prime,
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which subgroups of SLy(Z/pZ) are stabilizing groups. In particular, if p > 11
all subgroups have this property. Thus each congruence group of level p with p
prime and greater than 11 is Veech group of some origami, see Theorem 4. In
6.7 we generalize these results to congruence groups of level p°. If p > 11 it is
still true for n = p° (e € N) that all congruence of level n occur as Veech groups,
see Proposition 6.40. Finally, we generalize this statement in 6.8 again and show
that it is true for an arbitrary natural number n that is not divisible by 2, 3, 5,
7 or 11, see Theorem 5. More precisely, each congruence group of arbitrary odd
level n is a Veech group of some origami, if its image in SLy(Z/nZ) does not have
the same orbit space on (Z/nZ)?* as the full group SLy(Z/nZ), see Theorem 5.

6.1 Infinite index origamis with Veech group I'p

Proposition 6.2. Let B := {by,...,by} be a partition of (Z/nZ)* such that
by = {(0,0)}. There is a subgroup Ng of F» having infinite indezx with

I'(Ng) =Tg.

The group N will be introduced in Definition 6.4. The proof of Proposition 6.2
is carried out in Lemma 6.7, where we calculate the stabilizer of Np in Aut™ (F3).

But first we need some notations.

Definition 6.3. We call an element h in F5 primitive, if it s not a proper power
of an other element, i.e. if there is no W' € Fy such that h = h'* with k € N, k > 2.
Furthermore, we denote by u(h) for an arbitrary element h the biggest natural
number such that h = k') for some I/ € F.

Thus, if & is parabolic it can be written as b = v[z, y|“™v~" or h = vz, y] Wy}
for some v € F; and the number u(h) € N is unique with this property.

We define furthermore the subsets Cy, and F, and the subgroup N, of F; as
follows:

Co = {wlr,ylw™' € B we F}
Py = {vz,ylfvi € Blve FykeZ}
Ny = <Cy>=<PF>

Observe that F, is the set of all parabolic elements of F5. C is the set of all
primitive oriented parabolic elements and corresponds to the set of cusps of F5
on H. Nj is the kernel of the natural projection pgz : Fy — Z2, i.e. Ny is the
commutator [Fy, Fy] of F,. We will define the group Np as a subgroup of N
generated by a certain subset of F,.
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We identify the cusps of Tr(n,n) with the elements in (Z/nZ)?* as indicated in
Figure 18. The partition B = {b,...,b;} defines a partition of the cusps. We
choose k different natural numbers r{, ..., r; greater than 1 and associate to
each element in the class b; the number r;, i.e. we define a map

a:(Z/nZ)* -7 with s+ r; & s € Db
Furthermore, we denote
ai=aopy,: Fy ™ (Z/Z)? S Z  and  ay = a(w),

where p,,,, : Fy — (Z/nZ)?* is the composition of pzz with the natural projection
7? — (Z/nZ).

Notice that « is not a group homomorphism! It induces a well defined map
Ig: Co—7Z by wlyw ! a(w), (6.1)

since:

1

=wlz,ylw ™ = w v € < [z,y] (6.2)

vlz,ylo~ >
= Pon(V) = prn(w) = a(v) = a(w).

Note, that [ is not the restriction of o to Cy! It can be understood as a labeling
of the cusps in Cj.

With these notations we define the group Ng as follows.

Definition 6.4. For o as above let

Co, = {wny™w'eRwek} C PR
Ng = N,=<C,> C N,

This definition is motivated as follows: As said above we identify (Z/nZ)? with
the cusps of Tr*(n,n). They are divided into k classes by the partition B. Cusps
in the same class are labelled by the same number. The (oriented) parabolic
elements v[z,yJv™! in F; define loops around these cusps. For each cusp s we
take the [-th powers of all loops around s, where [ is the label of this cusp. Np
is the group generated by these parabolic elements.

Let H,, be the Galois group Gal(H/Tr*(n,n)), i.e. H,, is the kernel of the
projection p,, : Iy — (Z/nZ)?. The set C, is preserved by conjugation with
elementsin H,, ,: If h € H,, ,,, then p, ,,(h) = (0,0). Thus a(hw) = a(p,,(hw)) =
a(ppn(w)) = a(w) and we have:

hwlz, y]*w™'h™ = hwlz, y]* (hw)™' € C,.
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Hence Np is a normal subgroup of H, .

The parabolic elements in Np arise as [-th powers of a (maybe multiple) loop
around a cusp, where [ is the label of the cusp. This is stated in the following
lemma.

Lemma 6.5. Let h = w[x,y]*w™" be a parabolic element in F,.
h is in Ng <= k is divisible by «,,

Proof. “<" follows immediately from the definition of Np.

“=". Consider the unramified covering C\Z?> — E*. Tt defines an embedding of
71 (C\Z?) into m;(E*) = F,. The Galois group Gal(C\Z?/E*) is Z?, the Galois
group Gal(H/(C\Z?)) is the commutator [F, F5] = Ny. Thus 7;(C\Z?) is iden-
tified via this embedding with [F,, F5] = Ny. Using this we obtain that N is
generated by the loops around the cusps of C\Z?, i.e. around the points in the
lattice Z2.

We choose for each cusp i € Z? a fixed loop v;[z, y]v; *. Two loops v[z,yJv™" and
v'[x, y]v'~! belong to the same cusp iff vo'~! € Ny. Thus fixing v; for each cusp
corresponds to fixing a representative in each coset modulo Ny = [Fy, Fy]. We
may assume that pz2(v;) = i by choosing the base point of 7 (C\Z?) suitably.
Then, Ny = 71(C\Z?) is freely generated by {v;[z,y]v; ' € | i € Z*}.

1

For each j € Z? we consider the group homomorphism
Pj - NO - (Z7 +>7 w = ﬁvj[x,y]vj_l (’UJ),

that counts the number of occurrences of v;[z, y]vj’l in w.
Let us consider an arbitrary parabolic element v[z, y|*v~!. Let i € Z? be the cusp
to which v[z,y]v~! belongs, i.e. i = pz2(v) and vv; ' € Ny. Therefore we have:

ool ) = (o) ule, o) (o))
o o
- et ={§ 17 (6.3

We now return to the group Np. For each generator v|x,y|*v~! using (6.3) we
obtain:
_ 0 ifp 2(@) 75]
) Qw 1 — ) A
QOJ(U[IL',y] v ) { Oy = O[v]. = Oéj, ifng(’l]) :,]
Thus, the image ¢;(Np) in Z is the cyclic group < a; >.

Now, let h = w[z,y]*w™" be in Np and j := pz2(w) € Z*. Then ;(h) 9 kis in
< a; >. Thus k is divisible by a; = v, = - O
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In the next lemma we determine the stabilizer of Nz in Aut™(F;) and prove that
its Veech group I'(Np) is equal to ['p.

But first we describe how the partition B on (Z/nZ)? defines a partition B of
the set of cusps Cy: We have a natural projection

Co — (Z/nZ)?*, wlz,ylw™" — Prn(w).

This map is well defined by the same argument that we used in (6.2).
We define B := {b;,..., b} by

b; is the preimage of b; under the projection Cy — (Z/nZ)2.
This is equivalent to

vlr,yJv~! and w[z,yJw " are in the same class < a(v) = a(w).

Recall that Aut™(F) acts on Cp. We will consider the group Gz of automor-
phisms that respect the partition B of Cy and show in Lemma 6.7 that this is the
stabilizing group of Np. Furthermore we show that its image in SLy(Z) is I'p.

Definition 6.6. Let G5 be the subgroup of Aut™ (Fy) defined as follows:

Gz = {yeAut™(F)|Vwe Fy: vy(wr, ylw™?) is in the same class as
wlz,ylw™! in B}

= {yeAuwtT(F)|Vw e Fy: v(wr, ylwt) = vz, ylv!
with some v € Fy such that o, = oy}

Lemma 6.7. The stabilizer of Np in Aut*(F) is G5.
The Veech group I'(Npg) is equal to T'p.

Proof. Recall that by definition Nz = N,. We proceed in four steps. We show:
1. StabAut+(F2)<Na) = StabAut+(F2)(Ca)
2. StabAut+(F2)(C’a) = gB

3. v€Gz < v(z,9)) = volr, yJvy,* with some vy € H,,,, and
Vw e Fy: al(y(w)) = a(w).

4. 3(Gp) =T5.
Step 1: The group N, is generated by C,, thus we have:

StabAut+ (Ca> - StabAut+ (Fy) (Na).

(F2)
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Now, let v be in Staby s+, (Vo) and h € Co, ie. h = wlz, y|*w~! for some
w in F,. Since vy preserves parabolic elements and their order p in F3, we have
v(h) = v[z,y]* v~ € N, for some v in Fy. By Lemma 6.5 it follows that a,|c,.
Consider I/ := v[z,y]*v~! € C,. Then v(h) is a power of h’. Thus h is a power
of v71(1) and v~Y(I) = w[z,y]*>w™! is in N,. Again by Lemma 6.5 we have
Qulay,. Hence, o, = o, and y(h) = v[z,y]* v~ is in C,. Thus v stabilizes C,,.

Step 2: The claim follows by the following chain of equivalences:

v € Stabp i+ s, (Ca)
& Yw € Fy: y(wlz,y]*w™t) = vlx,y]* v for some v € F,
< (since ~y preserves (oriented )parabolics and their order 1)

Yw € Fy : y(wlz,ylw™) = v[z,y]v" for some v with oy, = a,
& v€G;

Step 3:
Let v be in Aut™(F,) . Choose vy € I such that v([z,y]) = vo[z, y]vy '. Then we
have:

Vw € Fy : y(wla,ylw™) = y(w)vo[z, ylvg 'y(w) ™ (6.4)
“<:77:
Suppose, v fulfills the condition on the right hand side of the equivalence. Then

UOEHn,n _

Vw € Fy: a(y(w)te) = alpun(v(w)ue) "L alpan(rv(w)) = aly(w)) = a(w).

Setting v := y(w)vy we thus have a, = «,, and obtain by (6.4):
Y(wlz, ylw™) = vfz,ylo™! with ay, = a,

Hence, v € G3.

“=" Let v be in Gj.

We have chosen vy above such that v([z,y]) = vo[z,y]vy'. From the definition
of Gz it follows that a(vy) = a(id). (Observe that if a(v)) = a(id) for some v}
fulfilling v([z,y]) = vb[z,y]v, ', than this is by (6.2) true for all v}, fulfilling the
same property.)

This means by the definition of « that p, ,(v) and p,,,,(id) are in the same class
by of the partition B. But we required for B that b = {(0,0)}, thus v, is in the
kernel of p,, , i.e. v € H,, .

Now, let w be in F,. Then by the definition of Gz there is some v € F, with
y(wlz, ylw™) = vz, ylv~! and a, = .

S e, ylo = Yw)volr, ) ((@)ve) ™ = Pan(®) = Paa(y(w) - vo)

= a(®) = a(y(w)w) = a(y(w) "= aly(w) ) = a(v) = a(w)
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Thus ~ fulfills the required condition.

Step 4: Recall that (§ : Aut™(F,) — SL,(Z) is the natural projection. We
define /3, : Aut™(Fy) — SLy(Z/nZ) by composing 3 with the natural projection
SLy(Z) — SLy(Z/nZ).

Recall that 3 is compatible with pge (see Proposition 3.5). Thus we have for
v € Fyand A := Bnn(fy)

Yw € By pun(y(w)) = A pya(w) (6.5)

We obtain the following chain of equivalences:

vef N I'g) < AeTlp
& Aw is in the same class of B as w YV € (Z/nZ)
&  a(Aw) = a(w) Yo € (Z/nZ)?
& a(Apyn(w)) = a(pan(w)) Yw € F
E () = alpaa(w) Yo € F
& o(y(w)) = alw) Yw € Fy

Thus the preimage of I'z in Aut™ (F}) is
B HTp) = {y € Autt(F)| a(y(w)) = a(w) for all w € F}.
By Step 3 we have therefore:
Gs = {y € 871 (T)| ([ y]) = volz, ylvy " with some vy € H,,,n}.

From this it is immediate that B(Q B)
Furthermore, each element + in ﬁ I
If 7/ ([z,y]) = vj[z, y]vg * then set v :=
Hence, 3(Gg) =T

Crlp
Ip)is conjugated to an element v of Gz:
vp Y Y.

In Step 1 and Step 2 we have shown that
StabAut+(F2)(NB) = gB .

By definition we have I'(Ng) = B(StabAut+(F2)(NB)), thus by Step 3 and Step 4
it follows that I'(Np) = I's. O

Corollary 6.8. Let U be a subgroup of Fy with U N Ny = Ng. Then

StabAut+(F2)(U) g gé
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Proof. Since N is characteristic, i.e. its stabilizer is the whole group Aut™(F),
we have:

StabAut+(F2)(U) = StabAut+(F2)(U) N StabAut+(F2)(N0)
Lemma 10
Q StabAut+ (U N NO) = StabAut+ )(NB)
- G;

Let P, be the set of parabolic elements in Npg, i.e.:
P, = {v[z,y]*v™ € Fy|k € Z,v € F, and k is divisible by a,}.
Corollary 6.9. If U is a subgroup of F5 with U N Py = P,. Then
StabAut+(F2)(U) C Gs andin particular: T'(U) C T'g.

Proof. Let 7 be in the stabilizer of U in Aut™(F}). Since ~ stabilizes (oriented)
parabolic elements, it stabilizes U N Py = P,. Since 7 respects the order p of
parabolic elements, it stabilizes C', by exactly the same argument as we used in
Lemma 6.7 in Step 1. But the stabilizer of C, is G3. O

6.2 An origami whose Veech group is a subgroup
of the congruence group I'p

Proposition 6.10. Let B := {by,...,by} be a partition of (Z/nZ)* such that
by = {(0,0)}. There exist origamis whose Veech group is a subgroup of I'p.

The proposition will follow from Lemma 6.11 and Corollary 6.12: We prove that
for an origami O, that is obtained as ramified covering of Tr(n,n) with suitable
ramification behaviour, the Veech group I'(O) is a subgroup of I'z. We show
afterwards that such origamis exist and construct an example.

Lemma 6.11. Let O = p : (X* — E*) be an origami such that p splits as
p: X* - Tr*(n,n) — E* and the extension ¢ - X — Tr(n,n) is ramified over
the cusps of Tr(n,n) in the following way: For each x € b; the preimage q~*(x)
consists of = points with ramification index r;, where N 1is the degree of ¢ and
the r;’s are deﬁned as in Section 6.1. Then for U := Gal(H/X*) C Fy we have:

UNP,=P,,

where a, Ny and N, are defined as in Section 6.1.
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Using Corollary 6.9 and Theorem 1 one obtains immediately the following corol-
lary.

Corollary 6.12. In the situation of Lemma 6.11 we have
['0) CT'p.

Proof of Lemma 6.11.
Since ¢ : X* — Tr*(n,n) is an unramified covering we have:

m(X") =2 Gal(H/X") =U C H,, = Gal(H/Tr*(n,n)) = 7 (Tr*(n, n)).

As in Section 6.1 we label the cusps of Tr(n,n) by the elements of (Z/nZ)?.
Each parabolic element of the form v[z,yJv™" is in H,,. It is a simple loop
around one of the cusps. The base point of 7 (Tr*(n,n)) was chosen suitably
such that v[z,yJv! is a simple loop around the cusp ¢ with ¢ := p,,,(v). Lifting
this loop to X* one obtains a path that is not closed. Since all preimages of the
cusp ¢ have ramification index r;, the smallest natural number k£ such that the
loop v[x,y]*v~! can be lifted to a closed loop on X* is k = r;. Thus

Vv € Fy: r; = min{k € Nog| v[z,y]fv™! € U} with i := p,.(v)

and v[z,y]*v~! € U & k is divisible by r;. (6.6)

This is equivalent to
UNnPF,=P,.

O
Origamis as required in Lemma 6.11 do exist. By the Riemann-Hurwitz formula

one obtains the following restriction on r1, ..., rg, |b1], ..., |bx| and the degree
N of the covering ¢ : X — Tr(n,n):

k
N
2gx —2=N2-2)+S with §:= Z\bj\ - —(r; — 1) for some gx € N.
T
=1 !

The genus of X is then gx := Z£2.
We give in the following an explicit example.
Example 6.13. If £ > 2, choose 79, ..., 1 as different prime numbers with

ged(|b;|,rj) =1for j € {2,...,k}. Set N :=ry-... -1 and r; := N.
If k = 2, choose two prime numbers p and ¢ with ged(g, n?—1) = ged(p, n?—1) =1
and set ry := ¢, ro := q¢(n?> — 1) and N := pg(n® — 1).
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The surface Tr*(n, n) is an elliptic curve with n? cusps. Its fundamental group
m1(Tr*(n,n)) is generated by x", y™ and the simple loops [y, ..., l,2 around the
cusps with the relation

[z, y" ]l - L2 = id.

We denote in the following for i € {1,...,n?} «a; := a(i), where 7 is understood
as element of (Z/nZ)?%, i.e. «; is the label of the cusp i. Let o € Sy be the
N-cycle (1 ... N). We now define a homomorphism ¢ to the symmetric group
Sy as follows:

Q: m(Tr*(n,n)) — Sy,
" —id, y" —id,

N , (NN
lirsoa foric€{2,...,n*}, lLi—o Gy t-tay)

¢ is well defined, since p([z™, y"]ly -l - ... l,2) = id.

Furthermore, we have ord(¢(l;)) = «; for i € {1,...,n*}.

For i > 1, this is true by definition.

If & > 2, this is true for i = 1, since —(%—i—...—i—%) = —(|bﬂ~%—|—...—|—\bk\~%)

is not divisible by any of the primes 5, ..., 7, and thus has order N.
If k=2, then & = ... =~ =" =p Hence () = o~ ?(*~1) and has order g.

Let U C F, be the kernel of ¢ and let O = (p : X* — E*) be the origami
that corresponds to U. The embedding U C m(Tr"(n,n)) defines a covering
q: X* — Tr*(n,n). Its extension ¢ : X — Tr(n,n) has the required ramification
behaviour by the definition of .

Remark 6.14. The result in Corollary 6.12 could — using terms of ramified
coverings — also be described as follows:

Consider an affine diffeomorphism f in Aff*(X*). Since it is affine it descends
via p to E* (see Theorem 1). The covering Tr*(n,n) — E* is characteristic, thus
f descends also via ¢ to some f on Tr*(n,n). Denote the extension of f to X,
resp. of f to Tr(n,n), also by f, resp. by f. The diffeomorphism f acts on the
set of cusps of Tr(n,n), which we identify as before with (Z/nZ)2. Since f is
induced by f, it respects the ramification order, i.e. it preserves the partition B
on Z/nZ x 7Z/nZ. Hence it acts as an element A of ['p.

The lift of f to the universal covering C of Tr(n,n) is an affine map of C which
respects the partition of Z* that one obtains as preimage of B. One can choose
the lift such that 0 is a fixed point.

The derivative A = der(f) is the derivative of this lift as linear map on C. Hence
we have A is in I'pg.
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6.3 An origami with Veech group I'p

Theorem 3. Let B := {by,...,b.} be a partition of (Z/nZ)* such that by =
{(0,0)}. Then 'y occurs as Veech group of an origami.

Proof. We will first define a subgroup W of F; of finite index and then show that
L(W) =T5.

Let U C F; be a subgroup of finite index such that U N Py = P,. The existence
of such groups was assured at the end of section 6.2.
Define W in the following way:

W= (] 1(U) C B

V€G3

All images v(U) have the same index in F,. There are only finitely many sub-
groups of F, with this index. Thus W is a subgroup of finite index of F5.

We now prove that StabAutJr(FQ)(W) =Gpz.

(i) “C”: Since W C U we have PbNW C ByNU = P,.

On the other hand Gy is the stabilizer of C,, thus vy(P,) = P, for all v € Gj3.
P, C U, therefore P, C v(U) for all v € G5 and we have P, C W.

Since anyway P, C F,, we get P, C W N F,.

It follows that Py N W = P,. By Corollary 6.9 we obtain the claim.

(ii) “2” Let v bein G5 and w € W, i.e. w € +/'(U) for all 4/ in G5. Thus v(w) is
in (7' (U)) for all v/ € G5 and hence also in W. It follows that ~ stabilizes V.

So far, we have found a finite index subgroup W of F5, such that
StabAut+(F2)<W> =Gj and therefore T'(W) = B(gB) Lemma 6.7 I,

Let O = (X* — E*) be the origami corresponding to W, i.e. X* = H/W. Then
by Theorem 1 one has:

O

6.4 The principal congruence groups and other
examples

In this section we show for some of the most common congruence groups that
they occur as Veech groups of origamis. By Theorem 3 we just have to find for
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each of them suitable partitions of (Z/nZ)?, where n is the respective level.

At the end of this section we study the case n = 2 and give an example for a
subgroup of SLy(Z/27Z) that is not stabilizing group for any partition of (Z/27).
We will suppose from now on, without mentioning it explicitly, for all partitions

B = {by,..., b} of (Z/nZ)* which we consider, that the first class b; is equal to
{(0,0)}. Furthermore, we sometimes will denote I'p also as I'(B).

Corollary 6.15 (to Theorem 3).
For each n € N, the principal congruence group I'(n) occurs as Veech group of an
origams.

Proof. Define the partition B of (Z/nZ)? as follows:
B = {{i}|i € @/n2)*},
i.e. B consists of n? classes each containing one element. Then
[p={AcSLy(Z/nZ)| A -z =x Vz € (Z/nZ)*} = {id}.
Thus I'p = I'(n) and the claim follows immediately from Theorem 3. O

Remark 6.16. In the proof of Corollary 6.15, one could choose as well the
partition B := {by, by, b3, by} with:

bi = {(0,0)}, by :={(1,0)}, bs :={(0, 1)},
by = {Z S (Z/HZ)ZH @é {(070)7 (1’0)7 (0’ 1)}}

We then have

A:(‘C’ Z) erB@A.G):(é) andA.((l)):(?)@A:id.

This partition with only four classes might be more efficient for concrete compu-
tations. We will return in Section 6.5 to the aspect that the partition B is not
uniquely determined.

Similarly as for the principal congruence groups we proceed for the following list
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of congruence groups of level n:

I'i(n) = {AeSLy(Z)| A= ((1] 11)) mod n, beZ}
Fo(n) = {AeSLy(Z)| A= (g Z) mod n, a,b,d € Z}
Tgm) (n) = {AeSLy(Z)| A= ((1] b -1m) mod n, beZ} (meN,
ged(m,n) # 1),
T (n) = {A€SLyZ) A= (g b-dm mod n, a,b,d € Z} (meN,
ged(m,n) # 1),
TS(n) = {A€SLy(Z)| A= ((1’ _01)6 mod n, e € {1,2,3,4}}
If(n) = {Ae€SLy(Z)| A= (_01 _01)6 mod n, e € {1,2}}

) mod n, a,d € Z}

Corollary 6.17 (to Theorem 3).
The congruence groups T (n), To(n), T (n), T{™(n), TS(n), T-X(n) and T'(n)
and their conjugates in SLy(Z) occur as Veech groups of origamis.

Proof. The case n = 2 is shown separately in Example 6.18, see Remark 6.20.
Thus, we suppose that n > 2.

For any group I in the list above, let I denote its image in SLy(Z/nZ). Note
that I is the full preimage of I'. Therefore, by Theorem 3, we just have to find
for each T' a partition B of (Z/nZ)? such that T is the stabilizer of B.

In the following, we list partitions By, ..., By, such that T'y(n), To(n), T{™ (n),
L™ (n), TS(n), T-!(n), T%(n) is the stabilizer of By, ..., By, respectively.

By = {b1,bs,b3} with by :={(0,0)}, by :={(1,0)},
by :={i € (Z/nZ)?|i ¢ by Uby}
By = {b1,by,b3} with b :={(0,0)},
by := {(,0) € (Z/nZ)* z # 0},
by := {i € (Z/nZ)?|i & by U by}
By = {b1,ba, b3, b} with by :={(0,0)}, by:={(1,0)},
by := {(x,1) € (Z/nZ)* m divides x in Z/nZ}
by :={i € (Z/nZ)*|i & by Uby Ubs}
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By = {b1,b2,b3,b4} with by :={(0,0)}, by :={(2,0) € (Z/nZ)?| x # 0},
by := {(z,y) € (Z/nZ)*|y # 0, m|z }
by :={i € (Z/nZ)2|i ¢ by Uby U by}
Bs = {by,by,b5} with b, :={(0,0)}
by :={(1,0), (0,1), (=1,0), (0, =1)},
by := {i € (Z/nZ)*|i ¢ by Uby}
Bg = {by, by, bs, by} with by == {(0,0)},
by :={(1,0), (—=1,0)}, b3 := {(0,1), (0, 1)},
by :={i € (Z/nZ)?i & by Uby U b3}
Br = {by, by, bs, by} with b :={(0,0)},
by := {(w,0) € (Z/nZ)* w is invertible in Z/nZ},
by := {(0,w) € (Z/nZ)* w is invertible in Z/nZ},
by :={i € (Z/nZ)?i & by Uby U b3}

We show exemplarily that ['*(n) = 'z, and T'%(n) = I'p,.
I'S(n) =Tp,:
['*(n) has four elements, since n > 2:

om0 (G0 ()69

Each element in ' (n) preserves the classes by, by and bs of Bs. Thus I'9(n) C T's,.
Now, let A be in I'g,, i.e. it preserves Bs. Thus we have

() - e (a (e

Hence (a, c¢) and (b, d) are in {(1,0), (0,1), (—=1,0), (0, —1)}. Since the determinant
of A is equal to 1, the only possible combinations are

=0 0) A= 8) A= (8 0) A= 1)
[4(n) =Tp.:

Again, one can check that the elements in I'/(n) preserve the classes by, bo, bs
and b4 of B7.
a b

Now, if A= (c d

(£) =4 () et (3) =4 (3) e

) € I'Y(n), it preserves B; and we have:
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Thus b = c= 0 and A is in T'(n).
The proof for the other groups in our list is done similarly.
With Theorem 3 we obtain that all groups I' in the list occur as Veech groups of

origamis. By Remark 1.6, this is also true for their conjugates in SLy(Z).
U

In the following example we study the case n = 2. In particular, we will obtain
an example for a subgroup of SLy(Z/nZ) that is not stabilizing group of any
partition B of (Z/nZ)?.

Example 6.18. (n =2)

ST(Z/27) = { A = (é ‘D Ay = (é 1) Ay = G ?)

) () (1)

contains 6 elements and is isomorphic to S5. It has six subgroups, namely the
trivial one, three groups of order two, one of order 3 and S5 itself:

ry, = {id} order 1

= 11 = 10 = 01

r, = < (0 1) >, I'y:=< (1 1) >, I'y:=< (1 O) > order 2

- 11 01 1 0

e () () s
I = SLo(Z/2Z) = Ss order 6
The subgroups of order 2, namely 'y, T's and I'y, are conjugated: I's = A4-T' AT
and F4 = A3 . FQ . Agl
Lemma 6.19. Let 'y, ..., T be the preimages of T'1, ..., ['s in SLy(Z), i.e. they
are the congruence groups of level 2.

a) T'y, Ty, I's, Ty and T'g occur as Veech groups of origamis.

b) T's is not stabilizing group for any partition B of (Z./27)>.
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Proof.
a) We use again Theorem 3 and list suitable partitions of (Z/27Z)*:

By = {b1, b, b3,bs} with by :={(0,0)}, by :={(0,1)},

by == {(1,0)}, by == {(1, 1)}
By = {by, b, b3} with by := {(0,0)}, by := {(1,0)}, b3 := {(0,1), (1,1)}
By = {by, b, b3} with by := {(0,0)}, by := {(0,1)}, b3 := {(1,0), (1,1)}
By = {by, by, b3} with by := {(0,0)}, bp := {(1,1)}, b3 := {(0,1), (1,0)}

Bs = {bi,bs} with by == {(0,0)}, by := (Z/2Z)*\{(0,0)}

Then we have for each i € {1,2,3,4,6} that ['; = I'p,. By Theorem 3 we have
thus that I'; is Veech group of some origami.

For I'; and I'y this follows by Remark 1.6 also from the fact that I's is a Veech
group, since ['3 and I'y are conjugated to I'y. The orbits B3 and B, are the images
of By under the matrices A, and As.

b) With By, By, B3, By and Bs we have all partitions of (Z,/27)?, whose first
class by is {(0,0)}. T'5 is not stabilizer of one of them. This proves the claim.

Observe that the orbit space of T's, i.e. the partition of (Z/2Z)? defined by the
set of its orbits, is

By, := {by, by} with by := {(0,0)}, by := {(1,0), (0,1), (1,1)},

i.e. Bp, = Bg and ['; has the same orbit space as L. I_n the_next section we will
see, that the claim already follows from the fact that I's # ['p,.
O

Remark 6.20. Observe that T'y = '(2) = ['{(2) =T%(2), Ty =T4(2) =T(2)
and Ty = I'S(2). Furthermore, I'"™ (2) and T{™(2) are equal to T'y(2) = I';(2) or
to the principal congruence group I'(2), which was already obtained in Corollary
6.15. Thus Lemma 6.19 proves the case n = 2 of Corollary 6.17.

Lemma 6.19 implies that ['s; cannot be detected as Veech group of an origami
with the method that is provided by Theorem 3. Furthermore, the proof of the
second part gives an example of two different subgroups of SLy(Z/nZ) (here with
n = 2), where the orbit spaces are equal. We will see later, in Section 6.6, that
for n prime this happens only rarely.
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6.5 Relation to Orbit spaces

Because of Theorem 3, we are interested in subgroups I' of SLy(Z/nZ), such that
[ is stabilizing group for some partition B of (Z/nZ)?. The partition B is not
unique (see e.g. Remark 6.16). But each subgroup I' of SLy(Z/nZ) defines in a
natural way a partition of (Z/nZ)?, namely its orbit space B(T'). T is not always
the stabilizing group of its orbit space (compare Lemma 6.19.b), but the orbit
space is always the finest of all partitions that are stabilized by T (as will be
shown in Corollary 6.24).

In this section we study these relations between subgroups of SLy(Z/nZ) and
partitions of (Z/nZ)?>. We show that the stabilizing groups correspond one-to-
one to the orbit spaces. This is first described in a more general context.

Definition 6.21. Let G be a group acting on a set X.

Let "H be the set of all subgroups of G and
B the set of all partitions of X.

Between H and B we have the maps B and I as follows:

B : H-—B, r — B() = {T-z|zecX}
= the orbit space of T
I : B=H, B={b:icl} — T(B) = {yeG| yb=bViel}
= the stabilizing group of B
(6.7)

‘H becomes an ordered set by the relation “C”. On B we consider the relation
“<” defined as follows.

Definition 6.22. Let By, By be partitions of X. We say B s finer than By and
denote

By X By & By is a subpartition of Bs,
e Ve,ye X :x~p y = T~p, Y.

The maps B and I preserve these relations and I" o B is increasing, whereas BoT
is decreasing. This is summarized in the following lemma.

Lemma 6.23. The maps B and T' have the following properties:
(1) ThCT, = B(Ty) < B(Ty) VIy,TheX

(2) Bl = BQ = F(Bl) C f(BQ) \V/Bl, BQ eB
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(3) [ € I(B(I')) VI eH
(4) B(I'(B)) = B VBeB
Corollary 6.24. As consequence of Lemma 6.28 one has:

(5) B(T) is the finest partition, that is stabilized by T.

(6) T[(B((B) = [(B) VBeB

(7) B(I'(B(T))) = B(I') Vvl eH

Proof of Corollary 6.24.
_ _ _ _ (4)
(5): Let B be stabilized by T 2 TcI(B) ¥ B(I) < BI(B)) < B.
(6): “O” follows by (3) and “C” follows by (4) and (2).
(7): “=” follows by (4) and “>" follows by (3) and (1

Proof of Lemma 6.23.
(1) flgfg = Vorxe X: Fl'.ﬁU gfngB(fl)jB(fg)

(2): Let By < B and let v be in T'(B,).

We have to show that ~ stabilizes By, i.e.: Vb, € By : yb; = U/,

Let x be in b and b; the class in B, containing z. By the assumption B; =< By,
we have that b; C b;. Since v stabilizes By, it follows that v(z) € b; C V.
Hence, Y} = 0.

(3): LetybeinT and b€ B(T),ie. b=T -z for some z € X.
Theny-b=~- (' 2)=(")-z=T-x2=b=~vec['(B()).

(4): Let bbein B(I'(B)), i.e. b=T(B) - x for some z € X.
One has to show that b = I'(B) -z C b; for some b; € B.
Let b; be the class in B that contains x. By the definition of I'(B), one has

Now, let us return to the original situation with X = (Z/nZ)* and G = SLy(Z/nZ).
The statements in Lemma 6.23 and Corollary 6.24 remain true, if we replace B

by By, the set of all partitions whose first class b; is {(0,0)}, since SLy(Z/nZ)

acts on By.

Furthermore, it is an immediate consequence of Corollary 6.24 that the stabilizing
groups in SLy(Z/nZ) correspond one-to-one to the orbit spaces on (Z/nZ)?.
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Corollary 6.25. Let

B = {B € B| B is orbit space of some subgroup of SLo(Z/nZ)} = B(H),
H=* = {I CSLy(Z/nZ)|T is stabilizing group of a partition B of (Z/nZ)*}
— f(Borb>’

then the maps I : B°®* — H** and B : H**®* — B°® are bijections and
tnverse to each other.

In particular, we obtain the following Corollary.

Corollary 6.26. Let I' be a subgroup of SLo(Z/nZ). Then we have:

[ € H* < there is no r 7%1; with the same orbit space as T,
such that " DO T

In this case, the preimage I of T in SLo(Z) is the Veech group of some origami.

Proof.

“=” IfI" has also the orbit space B(I'), then
S =\ Cor6.25 =
€ rB() = TB(D) O

I.
“<” By (3) we have I' C T(B(I)). )
Furthermore, I'(B(I')) has by (7) the same orbit space as I'. Thus, by the as-
sumption, we have that I' = ['(B(I")) € H=*".

The last statement follows by Theorem 3. O
Finally, we study subgroups H of GG that are not stabilizing groups.

Lemma 6.27. Suppose that H is a subgroup of G, that is not a stabilizing group,
i.e. H € H—"H"*. Then I'(B(H)) has the following property:

VeeX: 3vy#id in [(B(H)) with v(z) = .

Proof. Recall from Lemma 6.23 that we have: H C T'(B(H)). Let now 7o be an
element of I'(B(H)) — H. By Corollary 6.24 we have that B(H) = B(I'(B(H))).
Thus for all z € X one has that 7o(x) and x are in the same orbit space of H an
thus:

F € H: (@) = 7).
From this it follows, that

Y (@) = = with y;'y € T(B(H)) and ;' # id.
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6.6 Congruence groups of prime level

In the following n =: p will be prime. Thus we have Z/nZ = F, is a field and
SLy(F,) has order (p—1)-p- (p+1).

We show in this section that almost all congruence subgroups of level p occur as
Veech groups of origamis, see Theorem 4. To obtain this we will apply Theorem
3. Therefore we study which subgroups of SLy(Z/pZ) are stabilizing groups of
some partition B. The answer to this question is given by Proposition 6.28: Al-
most all subgroups of SLy(IF,) are stabilizing groups.

As tool we will utilize the properties of orbit spaces and stabilizing groups intro-
duced in Section 6.5, here for the group G' = SLy(F,,) acting on the set X =F?.
Throughout the rest of the chapter we will use the notations from Section 6.5, in
particular the maps B and T, see (6.7).

Proposition 6.28. Let p be prime. The subgroups of SLo(IF,) that are the stabi-
lizing groups of their orbit spaces are characterized as follows.

a) If p is a prime number with p > 11, then all subgroups of SLy(FF,) are
stabilizing group of their orbit space, i.e. VI C SLy(F,): T'=T(B(I)).

b) If p is one of the five primes 2, 3, 5, 7 or 11, then a subgroup T of SLy(F,)
is a stabilizing group if its index in SLo(F,) is different from p.

Proof. The claim is true for SLy(IF,) itself.

For a proper subgroup H of SLy(F,) with B(H) # B(SLy(F,)) we prove the claim
in Corollary 6.31.

In Lemma 6.32, we show that if B(H) = B(SLy(F,)), then H has index p in
SLy(F,). Finally, in Proposition 6.33 we obtain that SLy(IF,) has a subgroup of
index p iff p € {2,3,5,7,11}. O]

As a consequence one obtains the following Corollary.

Corollary 6.29 (to Proposition 6.28).
If p > 11, then different subgroups of SLy(F,) have different orbit spaces on Isz.

Proof. Suppose B(I';) = B(I'y) for two subgroups I'; and 'y of SLy(F,), then

Prop._6.28

T, [(B(T})) = [(B(,)) "2 Ty,

We now prove the statements used in the proof of Proposition 6.28.
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Lemma 6.30. Let H be a subgroup of SLy(IF,) with the following property:
VeeF?: JA#id in H suchthat A -z = w. (6.8)
Then H is the full group SLy(FF,).

Proof. By (6.8) we have elements Ay # id and A, # id in H with
0 0 1 1
@)= 0) e e )= 0)

Ay = (i O) €H and A, = (1 b) € H for certain b,c € F .

Thus we have

1 01

1 0 1 1 .
(1 1) and (O 1) are in H.

It follows that: H = SLy(F,) (see e.g. [DSV 03, Lemma 3.2.1] ). O

In particular,

From this we obtain the following Corollary.

Corollary 6.31. Let H be a proper subgroup of SLy(F,) that does not have the
same orbit space as SLy(F,), i.e.

B(H) # By := {by,bo} with by :={(0,0)}, bo :=F\{(0,0)}.

Then H is the stabilizing group of its orbit space.

Proof. Let T' := T'(B(H)) be the stabilizing group of the orbit space of H and
suppose I' # H. By Lemma 6.27 if follows that I' fulfills (6.8). Thus we have
by Lemma 6.30 that I' = SLy(F,). It follows that

[}

B(H) “=" B(I(B(H))) = B(T') = B(SLx(F,)) = Bo.

O

Lemma 6.32. Let H be a proper subgroup of SLo(F,) with the same orbit space
as SLy(F,). Then H has p* — 1 elements and is a subgroup of indez p.

Proof. By the assumption, the orbit space of H consists only of two orbits: b; :=
{(0,0)} and by := F\{(0,0)}. Thus, H acts transitively on b, and its order is
divisible by p? —1 = |by|. But H is a proper subgroup of SLy(F,) which has order
p(p® — 1). Hence the order of H is p?> — 1 and its index in SLy(F,) is p.

[
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Proposition 6.33. SLy(F,) has a subgroup of index p iff p e {2,3,5,7,11}.

Proof. The case p = 2 was already treated in Example 6.18. We obtained the
subgroup I's of index 2 in SLy(Fs).

Let now p be greater than 2. Suppose, SLy(F,) has a subgroup H of index p. We
use the theorem of Dickson, that classifies the subgroups of PSLy(F,) (see e.g.
[Hu 67, 8.27, p.213)).

Let H be the image of H in PSLy(F,). Since p is odd, the index of H in PSLy(F,)
is again p. Thus, the order of H is 5(p — 1)(p + 1). In particular, this excludes
all subgroups of PSLy(FF,) whose order is divisible by p and those whose order
is smaller or equal to $(p + 1), since p > 2. In the list of Dickson that gives all
subgroups of PSL,(F,) there remain the following possibilities for H:

1. Dihedral groups of order 2k with k a divisor of ’%.

2. The alternating group A,.

3. The symmetric group S, for p> = 1 mod 16.

4. The alternating group As for p =5 or p> = 1 mod 5.
Let h be the order of H, i.e. h = 1(p* — 1).

In the first case % is a divisor of ;%1 or ’%1. This is fulfilled for p = 3.
For p > 3 one has:
h _(p—Dp+1) p+1 p-1
AV 2RSS I N
2 4 S R

h

.. 1
Hence, 5 cannot be a divisor of ’%.

Since A, has order 12, H = Ay is possible only if 1(p® —1) =12, i.e. p=>5.
Similarly, we obtain in the third case p = 7 and in the fourth case p = 11.

Conversely, if p € {2,3,5,7,11} one has a subgroup of index p: The theorem of
Dickson assures that all groups in the list occur as subgroups of PSLy(IF,). Thus
we obtain H of index p and define H as its preimage in SLy(IF,). O

By Proposition 6.28 and Theorem 3, we obtain immediately the following result.
Theorem 4. Let p be prime.

a) If p is not in {2,3,5,7,11}, then all congruence groups of level p occur as
Veech groups of origamis.

b) Ifp isin {2,3,5,7,11}, then all congruence groups of level p that have index
different from p in SLo(Z) occur as Veech groups of origamis.
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6.7 Congruence groups of level p°

In this section we generalize the results of the last section to powers of odd primes
and obtain that for almost all primes p all congruence groups of level p¢ (e € N)
occur as Veech groups of origamis, see Proposition 6.40.

We proceed similarly as in the last section: We study first which subgroups of
SLy(Z/p°Z) are stabilizing groups and obtain Proposition 6.34 as generalization
of Proposition 6.28. The proof of the proposition is given by the lemmas and
corollaries afterwards. Finally, we use Theorem 3 in order to obtain the statement
on Veech groups in Proposition 6.40.

Proposition 6.34. Let p be an odd prime and e be a natural number.

a) If p > 11, then all subgroups of SLy(Z/p°Z) are stabilizing group of their
orbit space.

b) If p < 11, then all subgroups of SLo(Z/p°Z) that do not have the same orbit
space as SLo(Z/p°Z) are stabilizing groups.

Proof. The claim is true for SLy(IF,) itself.
b) follows immediately from Corollary 6.38 below.
a) follows from Lemma 6.39 below together with again Corollary 6.38. O

As a consequence one obtains the following corollary.

Corollary 6.35 (to Proposition 6.34).
If p > 11, then different subgroups of SLs(Z/p°7Z) have different orbit spaces on

(Z/p°Z)>.

Proof. The proof works the same way as that of Corollary 6.29.
U

We now provide the tools we need in order to prove the statements we have used
in the proof of Proposition 6.34.

Let throughout the section p be an odd prime and e be a natural number. If
e > 2, one has the natural projection

€

3= 001 Sly(Z/p°L) — SLy(Z/p*"'Z). (6.9)

Let K be the kernel of j.
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The morphism /3 is compatible with the actions of SLy(Z/p¢Z) and SLo(Z/p*~'7Z)
on (Z/p°Z)* and (Z/p°~'7Z)?, respectively, i.e.:

VA€ SLy(Z/p°Z) : The diagram

(Z/p°Z)? =22 (Z)p°L)?

l l is commutative.

(6.10)

z/pz)2 22D gy

The following lemma provides a tool in order to “lift” the results on subgroups of
SLy(F,) to SLy(Z/p€Z). Its proof was explained to me by Stefan Kiihnlein.

Lemma 6.36. Let e > 2 and let H be a subgroup of SLo(Z/p°7Z) such that:
(1) B(H) = SLy(Z/p*'Z), with 3 asin (6.9) and
(2) HN K # {id}, where K is the kernel of 3 as above.

Then H is actually the whole group SLo(Z/p°7Z).

Proof. By the assumption (1) it remains to show, that the kernel K of ( is
contained in H.
The kernel K is given as:

1 /,.e—1 b/ e—1
K:{( Jg,;el_jl pd )\ a,b,de{l,....p},d=1—dp'}.

Hence the order of K is p® and we have an isomorphism of groups:
a 1 +a/pefl b/pefl
®0) ~ K Csuepz, (1) ) G

C/ C/pe—l 1 a'p

It is seen immediately that this map is bijective and one can check by a short
computation that the map is in fact a homomorphism of groups. In the following
we identify these two groups via this isomorphism and write IF;’ =K.

Since K is normal in SLy(Z/p°Z), the group SLy(Z/p°Z) acts on K = F? by
conjugation:

p: SLa(Z/p°Z) — Aut(K) = GL3(F,), A — (B~ ABA™").

Since K = Fp3 is abelian, K acts as subgroup of SLy(Z/p°Z) trivially on itself,
thus p induces an action p of SLy(Z/p°Z)/ K = SLy(Z/p°~*Z) on K:

p: SLa(Z/p'Z) — Aut(K) = GL3(F,).
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Let us consider the restriction p|y : H — Aut(K) of p to H. The subgroup
H N K of K is invariant under p|p.

Again since K is abelian, H N K C H acts trivially on K and we obtain the
induced action of H/H N K on K that still leaves H N K invariant. But by
assumption (1), H/H N K is isomorphic to the full group SLy(Z/p*~'Z). Thus
the induced action is actually equal to p and H N K is invariant under the ac-
tion p. We may consider H N K as invariant subspace of the vector space K = IFp3.

We will show next, that the action p is irreducible, i.e. there are no nontrivial
proper subspaces of IF;’ that are invariant. Since H N K is nontrivial by as-
sumption (2), it follows then, that H N K = K and we obtain the claim by the
assumption (1).

Suppose that we have a nontrivial subspace U of IFP?’ = K that is invariant under
the action of p. It is then in particular invariant under the action of any element,

e.g. the element T := (é D € SLy(Z/p*~'Z). Let us study the action of T on
K =F3.

The standard basis of F? is sent by the isomorphism (6.11) to

. 1—|—pe_1 0 (1 pe_1 o 1 0

The action of T on this basis is given as follows:

= () ) ()

1 e—1 -9 e—1 .
- < +(})9 1_];e—1> = (1,-2,0)" as element in F,.

In the same way one obtains:

p(T) by = (0,1,0)" € F? and p(T) b3 = (1,-1,1)" € F2.

Thus we have:

—_
)

1
p(T) = p( <(1] 1)) =[-2 1 —-1]|] = A aselement of GL3(F,).
0 0 1

Observe that the two subspaces

0 0 1
Uy:=F,|1| and Uy:=F, 1| ®F, [0
0 0 0



CONGRUENCE GROUPS 89

are invariant under the action of A. Since the Jordan canonical form of A is

100
110/,
011

there are only two proper nontrivial subspaces of Fp?’ which are invariant under

A. Hence, with U; and U, we have found them all. Thus U = U;, U = Uy or
U =T} In all three cases the vector (0,1,0)" is contained in U.

Now, let us additionally consider the action of the element R := G (1)) Pro-

ceeding as above for 7', one obtains:

1 -1 0
p(R) = |0 1 0] = B.
2 -1 1

Since U is supposed to be invariant under the whole action of SLy(Z/p*~'Z) and
(0,1,0)" is in U, we have:

0 0 -1 0 -2

11, B-|1]=1]1 and B*-[1]=|1 are in U.

0 0 —1 0 —4
But the span of these three vectors is the whole Fp3. Thus we obtain U = Fp3.
Hence, we have shown that p is irreducible. O

Lemma 6.37. Let H be a subgroup of SLo(Z/p°Z) with the following property:
Vo€ (Z/p°Z)?: FA#id € H suchthat A-x = . (6.12)
Then H is the full group SLy(Z/p°Z).

Proof. We make induction on e: By the proof of Lemma 6.31 the claim is true
for e = 1. Suppose now, that ¢ > 2 and that the claim is true for e — 1.

Let H := $(H). By (6.10) the property (6.12) “descends” to H, i.e.:

vz € (Z/p*'Z)?: 3A € H with A-7 = 7.
By the assumption of the induction it follows that 3(H) = H = SLy(Z/p*'Z).
Next, we show that the intersection of the kernel K of § and H contains a

nontrivial element:
By (6.12) we have some element A # id in H, that fixes the point (1,0), i.e.

A= ((1) 11)) with some b # 0 in Z/p°Z.
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We write b = V' - p* with ¢’ and p coprime and k < e — 1. Then there exists some
z € Z/p°Z such that V/ - z =1 and thus

L peihn 1 b/ 3 pk: _peflfk .z B 1 pefl
A=A _(O 1 =10 1 e KNH.

Hence we have K N H is nontrivial and 3(H) = SLy(Z/p°~'Z). Tt follows by
Lemma 6.36, that H = SLy(Z/p°Z). 0

Corollary 6.38. Let H be a subgroup of SLo(Z/p°Z) and e > 1. Then H is
either the stabilizing group of its orbit space, or it has the same orbit space as
SLQ(Z/peZ)

Proof. The proof works the same way as that of Corollary 6.31. O

Lemma 6.39. Let p be bigger than 11 and e > 1. If H is a proper subgroup of
SLy(Z/p°Z), then it does not have the same orbit space as SLo(Z/p°Z).

Proof. We proceed similarly as in Lemma 6.37, making induction on e again. The
case e = 1 was shown in Lemma 6.32 and Proposition 6.33. Thus let us suppose
now that e > 2 and the claim is true for e — 1.

Suppose furthermore that H has the same orbit space on (Z/p°Z)? as SLo(Z/p°Z),
le.
B(H) = B(SLs(Z/p°Z)). (6.13)
This property “descends” by (6.10) to (Z/p°~'Z)?, i.e. we have:
B(H) = B(SLy(Z/p°'Z)), with H = p(H).
Thus by the assumption of the induction it follows that H = SLy(Z/p*~'Z).
Next, we show that H N K is nontrivial:

Suppose that this is not true.
By (6.17) there is some element A in H with

0)-(7)

e—1
A= (1 Tt . _(;el) € H with some b € Z/p°Z.

Thus we have

0

By the assumption that K N H is trivial, we have that b is not divisible by p*~*.

Thus we may write b = b’ - p” with & and p coprime and r < e — 2.
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Claim: For all n € N we have:

" 1 + npefl nb/pr
A = e—1 .
0 1—np

This follows by induction on n. The statement is true for n = 0. If n > 1 and
the claim it is true for n — 1, we obtain:

A (1 +=1pt (n= 1’ ) _ (1 +pt oy )

0 1— (7’L — 1)p6_1 0 1— pe_l
e>1 (14+np™t  Wp +(n—1bpp"+ (n—1p" — (n— 1)bpp!
N O 1 — npe—l
~ (1+4np=t nbpr .
= ( 0 1 — ppel € SLy(Z/p°Z).

Set n := p¢~'=". Then n is a natural number divisible by p, since r < e — 2, and

we have: —
n_ (1 0p
r=(o ")

Thus A" is a nontrivial element in K. Recall that A was in H, hence we have
Hn K # {id}.

Now we may again use Lemma 6.36 to finish the proof. O

Let us finally turn to congruence groups of level p® that occur as Veech groups.
Using Theorem 3 we obtain from Proposition 6.34 the following proposition.

Proposition 6.40. Let p be an odd prime and e € N.

a) Each congruence group T of level p¢, whose image T in SLo(Z/p°Z) does
not have the same orbit space as SLy(Z/p€Z), is the Veech group of some
origams.

b) If p > 11, then each congruence group of level p° is the Veech group of some
origams.

6.8 Congruence groups of level n

In this section we finally turn to congruence groups of arbitrary level n. In fact
it will be necessary to restrict to odd numbers n. We then may generalize the
results of the last section and obtain in Theorem 5 that “most” of the congruence
groups of level n are Veech groups. If n is not divisible by our five exceptional
primes, then we actually obtain all congruence groups of level n.
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We start again, similarly as in the last two sections, by stating in Proposition 6.41
which stabilizing groups in SLy(Z/nZ) are obtained from generalizing Proposition
6.34 and give proofs for the needed statements afterwards. Finally, we deduce
Theorem 5 from the proposition.

Proposition 6.41. Let n be an odd natural number.

a) If n is not divisible by 3, 5, 7 or 11 then each subgroup of SLy(Z/nZ) is
stabilizing group of its orbit space.

b) In general all subgroups of SLo(Z/n7Z) that do not have the same orbit space
as SLo(Z/nZ) are stabilizing groups.

Proof. The claim is true for SLy(Z/nZ) itself.
b) follows immediately from Corollary 6.45 below.
a) follows from Lemma 6.46 below together with again Corollary 6.45. O

As a consequence one obtains, similarly as in the two previous sections, the
following corollary.

Corollary 6.42 (to Proposition 6.41).
Suppose n is a natural number that is not divisible by 2, 3, 5, 7 or 11. Then
different subgroups of SLy(Z/nZ) have different orbit spaces on (Z/nZ)?.

Proof. One may proceed in the same way as for the proof of Corollary 6.29.
U

We provide now the statements that we used in the poof of Proposition 6.41.
Thus let n be an odd natural number and consider its decomposition into prime
numbers n = pi' - ... p (p; prime, ¢; €N, i € {1,...,r}) with p; <... < p,.

For each i € {1,...,r}, let
Bi: SLe(Z/nZ) — SLo(Z/p{i7Z)
be the natural projection.

The product morphism 3 := (; X ... x (3. is an isomorphism:
B SLo(Z/nZ) — SLo(Z/pi*) X ... x SLa(Z/ps). (6.14)

This follows, since we have by the Chinese remainder theorem the isomorphism:
U Z)py L x ... X L)perZ. — ZJ/nZ. We obtain the inverse map of 5 as

5_1.(<a1 bl) (ar br))’_)<z/1(a1,...,ar) Q/J(bl,...,br))
e a) e a e, e) w(di,....d)
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The determinant of the image is 1, again by the Chinese remainder theorem.

In the following we identify these two groups and write
SLQ(Z/TLZ) = SLQ(Z/plel) X ... X SLQ(Z/prer).

For every i € {1,...,r} the projection (; is compatible with the actions of
SLy(Z/nZ) and SLy(Z/pfiZ) on (Z/nZ)* and (Z/pfiZ)?, respectively, i.e.:

VA € SLy(Z/nZ) : The diagram
(Z/nZ)* £=2% (Z/nZ)?
l l 1s commutative.

o T B;(A)-z o
(Z/pz”Z)Q - (Z/pz"Z)2

(6.15)

In the following we show that only the full group SLy(Z/nZ) projects surjectively
onto all factors SLy(Z/pf'Z).

Lemma 6.43. Let H be a subgroup of SLo(Z/nZ) with:
Bi(H) = SLo(Z/pfZ) for alli € {1,...,r}.
Then H is the full group SLo(Z/nZ).
Proof. We make induction on r. For » = 1 the claim is true. Let us suppose that
r > 2 and the claim is true for » — 1.
Let m:=pi'-...-p. 7 and
Ba: SLe(Z/nZ) — SLo(Z/mZ) with B, = [y X ... X B_1.

Consider the image H := (3,(H). By the assumption of the lemma, the image of
H under the natural projection SLy(Z/mZ) — SLy(Z/p§i7Z) is the whole group
SLo(Z/pfiZ) for alli e {1,...,r —1}.

Thus by the assumption of the induction it follows that 3,(H) = H = SLy(Z/mZ)

and we have the following exact sequences:

| —— {I} x SLo(Z/p%") ———= SLy(Z/nZ) — 2% SLy(Z/mZ) — 1

.

1—=H N ({1} xSLa(Z/pir)) H SLy(Z/mZ) —=1

Diagram 19

We will show that {/} x SLy(Z/pt") actually is contained in H and therefore
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H = SLy(Z/n7).

The map (3, : H — SLy(Z/pS"7Z) is also surjective. Hence, there exist elements
A and B in H with

s = (5 1) wd am=(; ) w sL@m.

Thus we may denote
11 10 .
A= (A, (0 1)) and B = (B, (1 1)) in  SLy(Z/mZ) x SLo(Z/perZ)
= SLy(Z/nZ) ,

with Al, Bl in SLQ(Z/TI’LZ)

Let k£ be the order of A;. Then % is a divisor of
|SLo(Z/mZ)| = 2} [SLo(Z/pfZ)| = T p}= 2 (pi — 1)(pi + 1)

Recall that we have 2 < p; < p, foralli e {1,...,r—1}. It follows that p, does
not divide p; — 1, p; and p; + 1. Thus,

ged(pr, p% 2 (pi — 1)(ps + 1)) = 1.

Therefore £ and p¢~ are coprime. Thus,

AR = (I, (é ’f)) € SLy(Z/mZ) x SLy(Z/p=Z) with ged(k, pir) = 1

is in H. Similarly one obtains:

B' = (I, <} ?)) € SLo(Z/mZ)xSLo(Z/p;y"Z) with some [ € N : ged(l,pi7) =1

is an element of H.

But A* and B' generate {I} x SLy(Z/pcr). Thus, {I} x SLo(Z/p“Z) is a
subgroup of H. From the exact sequences in Diagram 19 it follows now that
H = SLy(Z/nZ). O

Now, provided with Lemma 6.43, we proceed similarly as in Section 6.7 and “lift”
the results on subgroups of SLy(Z/p¢Z) to SLo(Z/nZ).

Lemma 6.44. Let H be a subgroup of SLo(Z/nZ) with the following property:
Vo€ (Z/nZ)*: 3A € H, A+#id such that A-z = . (6.16)
Then H is the full group SLo(Z/nZ).
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Proof. By (6.15) the property (6.16) “descends” for all i € {1,...,r} to 3;(H),
le.

vz € (Z/pfiZ)? : 3A € B;(H), A#1id, such that A-7 = 7.
By Lemma 6.37, it follows that (3;(H) = SLy(Z/pfiZ). Thus we have by Lemma
6.43 that H = SLy(Z/nZ). O

We obtain from the last lemma the following corollary by exactly the same proof
as in Corollary 6.38, only using Lemma 6.44 instead of Lemma 6.37.

Corollary 6.45. Let H be a subgroup of SLo(Z/nZ). Then H is either the
stabilizing group of its orbit space, or it has the same orbit space as SLy(Z/n7Z).

In order to generalize Lemma 6.39 using Lemma 6.43 we have to demand that
all p; are different from 2, 3, 5, 7 and 11.

Lemma 6.46. Suppose that n is not divisible by 2, 3, 5, 7 or 11. If H is a
proper subgroup of SLo(Z/nZ), then H does not have the same orbit space as
SLy(Z/nZ).

Proof. Suppose that H has the same orbit space on (Z/nZ)?* as SLy(Z/nZ), i.e.
B(H) = B(SLy(Z/nZ)). (6.17)

This property “descends” again by (6.15) for all : € {1,...,7} to (Z/pfiZ)? i.e.
we have:

B(Bi(H)) = B(SL2(Z/pfZ)).
It follows by Lemma 6.39 that §;(H) = SLy(Z/pfiZ). Again we use Lemma 6.43

and obtain that H = SLy(Z/nZ).
U

Now we may use again Theorem 3 and obtain the statement indicated above
about congruence groups of level n that occur as Veech groups of origamis.

Theorem 5. Let n be an odd natural number.

a) Each congruence group of level n, whose image in SLy(Z/nZ) does not have
the same orbit space as SLo(Z/nZ), is the Veech group of some origami.

b) If n is not divisible by 2, 3, 5, 7 or 11, then each congruence group of level
n 1s the Veech group of some origami.

Final remark: It is probably not difficult to improve the results in Section 6.7
and 6.8 on congruence groups of level p¢ and n, by studying the five exceptional
primes 2, 3, 5, 7 and 11 individually.



Chapter 7

Remarks on non congruence groups

In the last chapter we have seen that almost all of the congruence groups in
SLo(Z) of prime level occur as Veech groups of origamis. Now, one might ask, if
there are also Veech groups that are non congruence groups. In Section 7.3 we
give a positive answer to this question.

In fact it seems that there are plenty of Veech groups which are non congru-
ence groups. Hubert and Leliévre e.g. have shown that there are infinitely many
origamis of genus 2 with this property, see [HuSc 01]. We will construct in this
chapter for suitable origamis O whose Veech group I'(O) is a non congruence
group an infinite sequence of origamis O,,, such that I'(O,,) is contained in I'(O).
Thus all Veech groups I'(O,,) in this sequence are non congruence groups.

In particular we obtain the following result.

Theorem 6. Each M, (g > 2) contains an origami curve whose Veech group is
a Mon congruence group.

The statement of this theorem will be proved in Section 7.4.

We start in Section 7.1 by introducing the general setting that we will use. In
7.2 we present a construction that defines for a basic origami O a sequence of
origamis O,,, such that the Veech groups I'(O,,) are “controlled” by I'(O). Sections
7.1 and 7.2 are not aiming at non congruence groups exclusively. They might be
used in general to determine Veech groups of origamis.

In 7.3 we present two origamis whose Veech groups are non congruence groups.
In 7.4, finally, we take them as basic origamis and construct the infinite origami
sequences for them by using the tool that we provided in Section 7.2.

7.1 Lifting stabilizing groups of quotients

In this section we pursue the following concept: Our aim is to study for a group
G (in our case G = F3) the stabilizing groups of subgroups H of G in its automor-

96
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phism group. This is in general difficult. But we might find for a subgroup U of
G a quotient group U, that is easier accessible. In particular it should be easier to
obtain for subgroup H of U their stabilizing groups in the automorphism group
of U. We formulate a setting in which they determine the stabilizing groups of
the preimages H of H in U.

General setting

We formulate our purpose first in an a bit more general setting:

Suppose we have:
(1) two groups U and G such that U is a subgroup of G.
(2) a surjective group homomorphism pr : U — U with kernel N.
(3) a subgroup G of Aut(G) such that (7.1)
VyeG: 4(U)=U and v(N) =N, ie.
G C Stabpyg(q)(U) N Stabpygc (V).

Remark 7.1. By (3), G acts via the restriction map p: G — Aut(U), v — 7|v
on U. Furthermore, this action is compatible with pr, i.e. we have a homomor-
phism

f:G — Aut(U) such that

for all v € G the following diagram is commutative:

U = v (7.2)

We define
G :=p(G) C Aut(D).

Let H be a subgroup of U and H := pr—!(H).
Lemma 7.2. One has the following relations between Stabg(H) and Stabg(H ):

a)
Stab(_;(H) = 5’1(Stab§(ﬁ)) (73)

b)
[G : Stabg(H)] = [G : Stabg(H)]. (7.4)
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Proof.
a) Let v be in G. It follows:

v € Stabg(H) < ~(H)=H < B(y)(H) = H, by (7.2) and since H = pr '(H).

b) By a), one has the following commutative diagram of exact sequences:

Jg

1 — K — Stabg(H) — Stab

B

1 K g L,

(H)—1

Q

where K is the kernel of 3. Thus in particular, [G : Stabg(H)] = [G : Stabg(H)].
]

We will apply this now to the situation of origamis or more precisely to subgroups
of F, and their stabilizing groups in Aut™ (F3).
For this purpose we set in (7.1)

G:=F, and G :=Staby + . (U) (7.5)

(F2)(
Condition (3) becomes this way a condition on pr:
(4) N =kernel(pr) = Staby+ ) (N) 2 G = Stabyy+ ) (U)
If we require in addition for the subgroup H in Lemma 7.2 the following property:
(5) Stabyp i+, (H) S Stabyy+ ) (U) =G,

then we have:
Staby i+, (H) = Stabg(H). (7.6)

Thus under the assumption of (4) and (5), Lemma 7.2 provides a description of
StabAut+(F2) (H)

In the construction that is described in the next section we will obtain these
two requirements for free since we will be in the situation given in the following
corollary.

Corollary 7.3. Suppose we are in the setting of (7.1) with

G:=F, and §:=Staby .+, (U) as in (7.5).

(Fz)(

Suppose that N = kernel(pr) is characteristic in U.
Let H be a subgroup of U and H :=pr—'(H). If U is



REMARKS ON NON CONGRUENCE GROUPS 99

e the normalizer of H in Fy, i.e. U = Normpg,(H), or
e the normal closure of H in Fy, i.e. U=<< H >>p,, or
e a characteristic subgroup of F5,

then it follows that:

Stab p y+ g (H) = 57 (Stabg(H)) and

[Staby ¢+ oy (U) : Staby i+ o (H)] = [G : Stabg(H)]

(Fz)( (Fz)(

Proof. Since N is characteristic, we have StabAut+(F2)(N) = Aut™(F). Thus (4)
is fulfilled. By Remark 5.1, we have that Staby i+ ) (H) € Stabp i+, (U) in

the first two cases. In the third case this inclusion is obvious. Therefore condition
(5) holds, too. The claim follows now from Lemma 7.2 and (7.6). O

7.2 Multiple origamis

In this section we construct for an arbitrary finite index subgroup U of F;, a
system of normal subgroups H, C U (n € NU {oo}), such that

VnmeN: njm = H, CH, and ()|H,=Hx. (7.7)

neN

Each H, C U will fit into a setting as in (7.1), such that we may apply Corollary
7.3 in order to study their stabilizing groups.

Recall that all subgroups of F, are free groups (see e.g. |LS 77, Prop. 3.8.]). Let
U be a subgroup of F, of rank & and {gi,...,gx} a set of free generators, i.e.:

U :<gl,...,gk>% F(gl,...,gk) =: Fk

Here F(gi, ..., gx) denotes the free group in the generators gy, ..., gx. In order to
emphasize that U is the free group in k generators we denote U also by Fj, = U.
The set of generators is considered fixed as {g1, ..., gr}-

Observe that in this situation the restriction map p : Staby .+ (U) — Aut(U)
is injective, since F} is a free group and U is of finite index in F;:

Suppose that 7 is in the kernel of p, i.e. 7|y =id. U has finite index, therefore
we have: Yw € Fy, 3n € N with w” € U. Thus, y(w)" = y(w")
this it follows that v(w) = w, since F; is a free group.

Thus v = id and we may denote: Staby i+, (U) S Aut(U).

w"elU
=" w". From
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We now establish for U the setting (7.1) as follows:
(1) G=FK, U=F CHK

(2) U:=Uy :=7%,  pry: F, — ZF the abelianization.
N = kernel(pr.) = [Fj, Fy]

(3) G = Staby e+, (F) C Aut(Fy)

(4) B : G — Aut(ZF) is the restriction to G of the map (7.8)

Aut(Fy) — GLg(Z) induced by the abelianization.

(5) Hoo := {(0,20,...,24) € Z} C U
c v,

with oo @ Fy — Z, u— t,, (u),
where f#,, (u) is the number of occurrences of g; in w.

H,, = pr}(Hs) = kernel(ay,)

Since N, is the commutator [Fy, F}], it is characteristic in U = Fj. Furthermore,
the group H, is the kernel of . Therefore we have U C Normpg,(H,).

Thus we only need the condition Normp,(Hy) C U in order to fulfill the re-
quirements of Corollary 7.3. In Proposition 7.5 we shall formulate a condition on
U (see (7.9)) which implies this inclusion.

Using the natural projection p* : ZF — (Z/nZ)* (n € N), we now obtain the
setting (7.1) for each n € N from (7.8), as follows:

(1) and (3) as in (7.8).
(2) U, := (Z/nZ)*, pr,: F, — (Z/nZ)* with pr, = p¥opr_.
(4) B, : G — Aut((Z/nZ)¥) is the restriction to G of the map

Aut(Fy) — GLg(Z/nZ) induced by pr,,.

(5) Hy, = {(0,29,...,23) € (Z/nZ)*} C U,
H, = pr;'(H,) = kernel(o,) C U,

with oy, © F, = Z, u— 4, (u) mod n.

As above we have that N, := kernel(pr,,) is characteristic in U = Fy, and H,, is
normal in U. Thus we need again only that Normpg, (H,) C U, which will follow
from the same condition (7.9) on U as mentioned above.

But first, let us describe the groups H,, by giving their generators.
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Lemma 7.4. The subgroups H,, of F5 (n € NU{oc}) are given as follows:

a) If n = oo:
Hy = << g9y, 9 >>0

b) If n € N:
H, =<g', digjg;" €F.| i€{0,....n—1} and j € {2,...,k} >

Proof.
a) Recall that H,, = kernel(a,). The normal subgroup

H = << ga...,9xr >>v

is contained in H.

Consider the quotient group U/H. . We have that ¢oH., = ... = gxH. = 0.
Thus for uy, ug in U one has: oo (uy) = aoo(u2) = uiHL = usH._.
Furthermore, “ <= ” holds, since H C H,.,. Thus it follows equality.

b) We may proceed similarly as in a):

H :=<gl gigigi" € F.| i€{0,....n—1}, j € {2,...,k} > is a normal
subgroup of U = F, = < g1,..., gk >.

H, is the kernel of «,, thus H/ is a subgroup of H,. In particular we have
|Fi/ Hy| = |Fy/Hu| = |Z/0Z] = n.

Furthermore we have goH!, = ... = g, H! = 0. Thus F;/H/ is generated by g1 H/.
But the order of gy H] is smaller or equal to n, since g7 is in H/. It follows that
|Fi./H]| < n. Thus we have H,, = H). O

Observe that the groups H,, fulfill the conditions in (7.7), since for all n,m € N
with n|m, the morphism «,, factors as

F, 7 — Z/nZ and F, *3 Z/mZ — Z/nZ,
with the natural projections Z — Z/nZ and Z/mZ — Z/nZ.

We will now apply Corollary 7.3 to this setting. For simpler notations we denote
in the following Z/oc0Z = Z.

Proposition 7.5. Let U =< gy1,...,g9x > (k> 2) be a subgroup of Fy of rank
k and {w;}icr a system of coset representatives with wy = id. Suppose that U has
the following property:

Viel—{1}: wj <<gs....q>>y w;' ZU. (7.9)
Then we have for alln € N U {00}
StabAut+(F2)<Hn) =
ﬁ_l({A = (ai7j)1§i,j§k € SLk(Z/nZ)| CLLQ = ...= al,k = O}) N Q
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Proof. We first show, that (7.9) implies Normp,(H,) = U for all n in NU {occ}:
We already have that H,, is normal in U, i.e. U C Normp,(H,). Let now w be

an element of F5\U. Hence, w = w; - u for some j € [ — {1}, u € U. By (7.9),

there exists some hy, € << go,..., 0 >>p Lem. 74 H_,, such that wjhoowj_1 g U.

Therefore we have w(u theu)w™ & U. But v theu € Hy C H,, since H,, is
normal in U. This shows that w ¢ Normpg, (H,,).

Now, we may use Corollary 7.3 and obtain:
StabAut+(F2)(Hn) = [ '(Stabg (H,))
The claim follows by the following calculation:

Stabg (H,) = {A=(aijh<ijes €Gal (W1,-oy0) = A (0,22, 23)
= =0 }

— {A: (ai,j) €§n| a1’2 = ... = a/Lk; = 0}
U

We now use Proposition 7.5 in order to show that the properties of the groups
H, in (7.7) are passed down to their stabilizing groups and to their Veech groups.

Corollary 7.6. Suppose that U has the property in (7.9). Then we have for all
n € N:

a) StabAut+(F2)(Hoo) C Staby i+ (Hn)  and  T'(Hs) CT(H,).

(F2)<
b) If m € N with n|m, then:

StabAut+(F2)(Hm) C StabAut*(Fg)(Hn) and T(H,) CT(H,).
c)

Stab ot () (Hoo) = (] Stabp it ) (Ha) and  T(Heo) = (1) T(H,)

neN neN

Proof. a) and b)
Let v € Aut*(F). By Proposition 7.5 we have that

VneN: ve StabAut+(F2)(Hn) & Po(r) =A=(aiy)

witha;1o = ... = a1, =0 modn
and € StabAut+(F2)(Hoo) & fu(y) = A= (a;)
with 12 = ... = A1k = 0.

Thus we have for all n € N and for all m € N with n|m, that

StabAut+(F2)(Hoo) - StabAut+ (Hm> - StabAut+(F2)(Hn).

(F2)
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We have in particular by the definition of the Veech group of a subgroup of F5:
[(Hy) C D(Hy) C D(H,).

c)
C: Follows from a).
D: Follows from Remark 5.1.
O

We now return to the language of origamis: Let O be an origami, U the corre-
sponding subgroup of F;. Define for U the subgroups H, (n € N) as above and
let O,, be the origamis corresponding to the groups H,.

By Corollary 7.6 and Theorem 1 we obtain immediately the following result.

Proposition 7.7. If U has the property (7.9), then
VneN: I'(0,) CI'(O) and VYn,meN: nm = I'(0,) CI'(O,).

In particular, if T'(O) is a non congruence group, each I'(O,,) is a non congruence
group. Thus we then obtain infinitely many origamis whose Veech group is a non
congruence group.

7.3 Two non congruence origamis

In this section we present two origamis whose Veech groups are non congruence
groups: the origami L(2,3) and the origami D.

7.3.1 The origami L(2,3)
Let O = (p: X* — E*) be the origami L(2,3) of Example 4.1, see Figure 20.

Figure 20: The origami L(2,3): Opposite sides are glued.

In Example 4.5 we have shown that the Veech group is given as follows:

e (00660

Furthermore we obtained in Example 4.7 that H/T'(L(2,3)) has three cusps rep-
resented in Figure 14 by the vertices 1, 4 and 5. 7%, ST?S~! and (T'S)T*TS)™!
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are parabolic elements that correspond to them, respectively, i.e. they define
loops around these cusps. Their amplitudes are 3, 2 and 4. Here, we define the
amplitude of a parabolic element A in SLy(Z) to be the natural number n such

that A is conjugated to
1 n 1 —n
01) " \o 1)

The following proof, which shows that the described subgroup of SLy(Z) is in fact
a non congruence group, I have learned from Stefan Kiihnlein.

Proposition 7.8. I'(L(2,3)) is a non congruence subgroup of SLo(Z).

Proof. One may use the following result of Wohlfahrt: Define the general level
of a subgroup of SLy(Z) to be the least common multiple of the amplitudes of
the cusps. Then Theorem 2 in [Wo 64] states that if I is a congruence group of
general level m then I'(m) is contained in I'.

Since the amplitudes of the three cusps of I'(L(2,3)) are 3, 2 and 4, the general
level m is lem(3,2,4) = 12.

Suppose that I'(L(2,3)) is a congruence subgroup. By Wohlfahrt’s theorem we
would have:
T(12) C T(L(2,3)). (7.10)

Let p : PSLy(Z) — PSLo(Z/3Z) be the natural projection. Then we have

p(T(L(2,3))) =< G ?) , (g %) >= PSLy(Z/37Z).

Hence Diagram 21 is commutative with N := I'(L(2,3)) N T'(3).

1 I'(3) PSLy(Z) ——PSLy(Z/3Z) — 1
1 N [(L(2,3)) —=PSLy(Z/3Z) —= 1
Diagram 21

Since the index [PSLy(Z) : T'(L(2,3))] of T'(L(2,3)) in PSLy(Z) is 9, it follows
from Diagram 21 that [['(3) : N] = 9.

By (7.10) we have: ['(12) C N C I'(3). But [['(3) : T'(12)] = 2* - 3 (using [Sh 71],
(1.6.2)). Thus [['(3) : N] = 9 would have to be a factor of 2*-3. Contradiction! [

Hubert and Leliévre have generalized this result for the origamis L(n, m) where
(n,m) # (2,2) as defined in Section 4.5, see [HL2 04].
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7.3.2 The origami D
Let D = (p: X* — E*) be the origami of degree 5 given in Figure 22, with
on = (123), o, = (145)(23)
The genus of X* is 2 and it has the 3 marked points e, x, o of order 2, 2 and 1.

o—0
5
® D
"4"6 a
1 2‘3
@ 'a b

Figure 22: The origami D:
edges with the same label and
unlabeled edges that are opposite are glued.

The corresponding subgroup of F is
H =<2y’ aya™, 2®ya™" yay™", yPay™ >

The Veech group I'(H) has index 24 and the following generators:!

_ (-1 0y _ o 1 3\ 3
W (30 e ()

o 1 0\ 6 c—1 o -7 16

b () s a e ()
= (T28)TY(T?*S)™".

(=3 4\ 4 _1 o -9 5

aoe (Y casras a = (0

= (TST?S)T5(TST?S)~",

7 2 _
As = (_18 _5) — (ST3S)T2(ST*S)",

0 —1 11
S = , T = .
1 0 01
!The data of the group I'(H) we list here were calculated with a computer program that
implements the algorithm presented in Section 4.

with
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The following is a system of cosets representatives:
I,T,S,T% TS, ST, T?S, TST, ST*, STS, T?ST, TST?,
ST®, ST®, T?S, TST?, TST?S, ST*, ST3S, TST*ST™!,
TST?*ST=2, TST?ST3; TST?>ST~*, ST®ST

The corresponding origami curve C'(D) has genus 0 and 6 cusps. It is shown with
its natural triangulation (compare Section 4.4) in Figure 23.

More precisely we have the cusps C, Cs, C3, Cy, C5 and Cy of amplitude 3,6,4,4,5
and 2. Hence, the general level of I'(D) is 60.

Figure 23:  The origami curve to D.
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Proposition 7.9. I'(D) is a non congruence group.

Proof. Suppose that I := I'(D) is a congruence group. Since the general level of
I' is 60, we have again by Theorem 2 in [Wo 64], that I'(60) is a subgroup of I'.

We will use the following data:

13 7 2 11
Al—(o 1)61", A6—<_18 _5)€P andT—(O 1)¢F

and find an element in I" whose projection to SLy(Z/60Z) is equal to that of 7'
Recall that

SLy(Z/60Z) = SLy(Z/AZ) x SLy(Z/3Z) x SLo(Z/5Z).

We identify in the following these two groups. Furthermore we denote by py4, ps,
ps and pgo the projection from SLy(Z) to SLe(Z/47), SLs(Z/37), SLy(Z/5Z) and
SLy(Z/60Z). Then pgy = ps X p3 X ps.

We have
o = ()G

i - (2).09.(3)

The order of ps(A;) in SLy(Z/4Z) is 4, the order of p3(A;) in SLy(Z/37Z) is 1
and the order of p5(A;) in SLo(Z/57Z) is 5. We also say: The order of pgo(A1) is
(4,1,5). Since 7=3 mod4 and 7=2 mod5 we have

)61 G (71
mata? = (g 1) (6 1)- (3 1)

and with the same notation as above pgo(Ag) has the order (1,3,5). Thus

mia® = (5 9). (5 1) (5 9)> (7.12)
From (7.11) and (7.12) it follows that
a4 = (5 1) (5 1) (5 1)) = ml(y 1)) = )

But A2 - A € T and T ¢ T, thus T'(60) = ker(pgy) cannot be contained in T.
Therefore, I" cannot be a congruence group of level 60. Contradiction! O

—_

()" = ((

e}

Furthermore:

O =
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7.4 Multiple non congruence origamis

In this section we apply the multiple origami construction to the two origamis
L(2,3) and D introduced in Section 7.3. As consequence we obtain two infinite
sequences D,, and L, of origamis such that the Veech groups I'(L,) and I'(D,,)
are contained in I'(L(2, 3)), respectively I'(D). We use the first sequence to prove
Theorem 6, see Corollary 7.10.

7.4.1 The multiple origamis to L(2, 3)
Let (p: X* — E*) be the origami L(2,3) as in Section 7.3.1.

Figure 24: The origami L(2,3): Opposite sides are glued.
Recall that the corresponding subgroup U of F3 is

2

U=<gq =2° g :=9y° g5 = ayz ', g1 := 2°yz > g5 := yay ' >.

Furthermore, the genus of X* is g = 2 and we have n = 2 cusps {o, e}. The rank
r of the fundamental group is r = 2g +n — 1 = 5. Thus it is freely generated by

gl’ "'7g5'

We now carry out the construction of multiple origamis introduced in Section 7.2
for U and the generators ¢y, ..., g5 and obtain the origamis L, (n € N). By
Lemma 7.4 they correspond to the groups

H, =<g', digjg;" €Fy| i€{0,....,n—1}and j € {2,...,5} >.
Claim: The corresponding origami L, is the origami given in Figure 25 with
o, =(13457891112 ... 4n—34n—14n), o,=(12)(56)...(4n—3 4n—2).

The genus of L, is n + 1 and it has 2n cusps: n of order 3 (all n marked by e in
Figure 25), n of order 1 (all n marked by o in Figure 25).

U1 (%) Un
| o |l ha| g |2 4n-6 fin gnog | Fin
Un41 . Vont Un+2, V2n42 ~ Von _ Usn
hol 1 3 4 5 7 8 4n-7 [ 4n-5 | 4n-4 | 4n-3 | 4n-1| 4n Iho
D [0) [0)) D
V1 Un41 VU2p41 V2 Upgz U2p42 Up  V2p  Usp

Figure 25: The origami L,,: Opposite sides are glued.
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Proof of the claim:

The domain given in the figure is simply connected. Thus the fundamental group
is generated by the paths corresponding to the edges that are glued. We choose
the base point in square 1 and obtain the generators as follows:

edge ho c =gt
edge h; o 3Dy gy 17300 = giflg5g;(i_1) (te{l,...,n})
edge v; s 30Ty 2p 780 = 95—1929;(1'71) (ie{l,...,n})
36-1) = gi’lgggf(ifl) (ie{l,...,n})

i —(i—1 .
=0 19491( ) (ZE{l,...,TL})

edge viy, : 230 Vgyalo
edge viyon @ 230 Dp2yp—2g730-1)
Thus the fundamental group is H,,.

The statement about the genus follows from the Euler formula: We have 4n
squares, 8n edges and 2n vertices. Thus the Euler characteristic is —2n and the
genus is n + 1.

The following result is obtained as a consequence using the fact provided in
Proposition 7.8 that I'(L;) = I'(L(2, 3)) is a non congruence group.

Corollary 7.10 (to Proposition 7.7). The Veech group of L,, is a subgroup of
I':=T(L(2,3)) for all n € N. If n divides m, then I'(L,,,) C I'(L,,).
In particular oll T'(L,) are non congruence groups.

Proof. By Corollary 7.5, we have to show, that Condition (7.9) is fulfilled. The
elements id, z, 22 and y corresponding to the squares of L(2,3) are a system of
coset representatives for U in F». We verify (7.9) by finding for each representative
w # id an element ¢ in << g¢s, g3, G4, g5 >>p= H, such that wgw™ & U. It
can be seen using Figure 24 that the elements we obtain are not in U.

forw: z-gy-a =2 (2Pyx?) o =2y P g U

2

forx?: 2% -gg-2 2 =2 (zyr ) 2=y P ¢ U

fory: yogs -y =y -(yry )y =ylry P ¢ U
O

From Corollary 7.10 we obtain in particular Theorem 6 since the genus of L, is
n+ 1.

Proposition 7.11. For all natural numbers n and m with n # m, we have:

I(Ln) # T(Lm)

Proof. We prove the claim by showing that for all n € N:

(é i) e I'(L,) & 3n divides s.
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=
This is true by Lemma 3.10, since 3n is the smallest common multiple of the
horizontal cylinder lengths.

=

In the proof of Corollary 7.10 we saw that condition (7.9) is fulfilled. Thus, we
have: Normp,(H,) = U, as shown in the proof of Proposition 7.5. Furthermore,
{1,z,2% y} is a system of coset representatives of U. Furthermore let v, and A,
be defined as:

%iff’—)%y’—’fsya As:((l) i)
Thus 7, is a preimage of A, and we have by Corollary 3.8
A, €T(L,) & Jwe{l,z,2* y} withVh € H,: (H, w)y(h) = H, - w.

Take h := xyz~! € H,. Then v,(h) = x*yz~L.

In the following we denote 1 := H,,, 2 := H, -y, 3:= H, -z and 4 := H, - 2%. We
have (see Figure 25):

1-7,(h) T-otyz =1 1. 2°=1-ay ' =1 & 3n|s

3-9(h) = 3.2ty ' =3 & 3-2°=3-2y 2 ' =3 & 3n|s

2-74(h) = 2-2°Myr ' =4n #2 forall s

4-7,(h) 4.xtlyz ' =4 o 4=4. 2y 27D =6 +£2 for all s.
From this it follows that if Ay is in ['(L,), then 3n divides s. O

As a consequence of Proposition 7.11 we obtain the following Corollary.

Corollary 7.12. The Veech group I'(H,) is a nontrivial subgroup of infinite
index in SLy(Z).

Proof. From the proof of Proposition 7.11 it follows that for all s € N

A, = (é f) ¢ (T(H,) =T ().

neN

Thus I'(H) has infinite index in SLy(Z) .

Observe furthermore that for all s € N the least common multiple of the lengths
of the vertical cylinders is 2. Thus by Lemma 3.10 we have

By = (; (1]) € I'(H,) for all n € N and hence B € ﬂ I'(H,) =T(Hy).

neN

Therefore, I'( H.,) is nontrivial. O
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7.4.2 The multiple origamis to D

We consider now the origami D from Section 7.3.2.

o—0

5

® D
”4”6 a
1 2‘3
@ L

Figure 26:  The origami D:
edges with the same label and
unlabeled edges that are opposite are glued.

Recall that the corresponding subgroup of F5 is

2 2 -1

U= <g:=2° g:=y, g3 := ayx?, g := 2?yax !,

g5 = yry ', g5 = yrwy P >
If we carry out the multiple construction for U and g, = 22, then we obtain
similarly as in 7.4.1 the origami shown in Figure 27, with:

op = (123 678 ... bn—45n—35n — 2),
gy = (145)(6910)...(5n—45n—15n)(23)(78)...(5n — 3 5n — 2)

o —0 o —0 o —©
d 10 on
® € ®© © © ©
4 9 on-1
>1 ] bl aq * * b2 a9 >1 bn Qp,
1 2 3 6 7 8 5n-4 [ 5n-3 | 5n-2
. ' al bl ‘ ' a2 e b2 ......... ‘ ' a/n bn

Figure 27 The origami D,,:
edges with the same label and
unlabeled edges that are opposite are glued.

The genus of D,, is 2n and it has n + 2 marked points: 2 of order 2n (marked as

e and ) and n of order 1 (all n marked by o).
We proceed in the following as in Subsection 7.4.1.
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Corollary 7.13 (to Proposition 7.7). The Veech group of D,, is a subgroup of
[':=T(L(2,3)) for all n € N. If n divides m, then I'(D,,) C T'(D,).
In particular oll T'(D,,) are non congruence groups.

Proof. Similarly as in the proof of Corollary 7.10 we have to verify (7.9) for U,

Hy =<< go, ..., g6 >>y and wy := 7, w3 = 22, wy = y, ws = y>. But we
have for all w;, i € {2,...,5}:

1

- 2.1
wigsw; = = wryxr w;, = ¢ U.

This can be seen with the help of Figure 26. O

Finally, we can show also for the origamis D,,, that their Veech groups are all
different.

Proposition 7.14. For all natural numbers n and m with n # m, we have:
[(D,) £ T(Dy)

Proof. Again we proceed as in Subsection 7.4.1. We show that for all n € N:

<(1) i) e I'(D,) < 3n divides s.

<: as in the proof of Proposition 7.11.
=
Again we use that the normalizer Normp,(H,) = U. {1,z,2% y,y?} is a system

of coset representatives of U corresponding to the squares 1, 2, 3, 4 and 5 in
Figure 26. Furthermore we define 7, and A, again as:

Vs x> T, Y o Ty, Asz(é ‘i)
We show, that if 3n does not divide s then
vw € {1,z,2% y,y*} Ih € H, . (H, -w)v,(h) # H, - w.
The claim follows from this again with Corollary 3.8.

Take hy := zyx 2, hy := 2’yx~! € H,. Then ~,(h;) = x*Tyz=2 and ~,(hy) =
x5 2yt
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We denote 1 := H,,, 2:= H, -z, 3:=H,-2? 4:=H,-y and 5:= H, 3%
We see from Figure 27:

T-79(hy) = T-2"ys2=1 I-28=1-2% "2 '=1 & 3n]|s.

2-75(hy) = 2-2"Tya? =2 2.5 =2 2% 2! _07é -® for all s.
3-7s(hg) = 3-a""Pyx~! =3 3=3-zy ' —(s+2) — 10 # 3 for all s.
4-v5(hy) = 4- e Tlyr 2 =5+#4 for all s.

5-7s(h) = 5-2""ya? =Bn—3# 5 for all s.

From this it follows that if Ay is in I'(D,,), then 3n divides s. O

Also for this example we obtain that I'(H,) is a nontrivial subgroup of SLy(Z)
of infinite index.

Corollary 7.15. The Veech group I'(Hy) is a nontrivial subgroup of infinite
index in SLy(Z).

Proof. We use that :

VseNdneN: A, = (é i) ¢ I'(H,), see Proof of Prop. 7.14 and
10
VneN: By = <3 1) € I'(H,), by Lemma 3.10.

Again, the first fact shows that I'(H,,) has infinite index, and the second fact,
that it contains nontrivial elements. O
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