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Abstract

The present thesis is a result of my work conducted in the Division Theoretical Bioinformatics
at the German Cancer Research Center (DKFZ).

The explosive growth in the amount of biological data demands the use of computers for the
maintenance and the analysis of these data. This led to the evolution of Bioinformatics, an inter-
disciplinary field at the intersection of biology, computer science and information technology.

This thesis deals with the task, which comes from Proteomics. One of the concerns of Pro-
teomics is the prediction of protein properties such as active sites, domains, secondary structure,
shape, localization and interactions. The goal of my work is to automate the classification of pro-
teins into subcellular location categories. This thesis focuses on the construction of predictors
which use only the primary sequence of a protein for this classification task.

As a base learning algorithm I use Bayesian classification procedure. This scheme represents
each class with a single probabilistic summary. I examined the use of two models for the de-
scription of class density, Markov Chain Model and Multinomial Model. I found that Bayesian
classification used with Markov Chain Model was superior in terms of prediction accuracy.

I propose the extension of this base learning procedure that seek to further improve the accu-
racy. I introduce a new learning algorithm, termed as Bayesian Classification Tree (BCT), which
combines the recursive structure of decision trees with the Bayesian classification procedure. The
results are encouraging, since for all real-world data sets used for the evaluation of algorithms
in this study, the hybrid approach outperforms significantly the original Bayesian classification.
BCT also outperform clearly other methods proposed and investigated in this work, which sug-
gests that BCT is a useful tool for subcellular localization prediction of proteins.

Since different learning algorithms employ different knowledge representations and search
heuristics, different search spaces are explored and diverse results are obtained. This is the reason
why I explore also the use of ensemble learning methods. Ensemble methods build sets of classi-
fiers using a base learning algorithm and classify new examples by combining their predictions. I
evaluate different schemes to generate base classifiers: bagging, pairwise classification, different
alphabet size for the Markov Chains using the knowledge about structural properties of amino
acids, learning classifiers from different regions of the protein sequences. I have empirically
evaluated several meta-learning schemes, such as stacking, arbitration, grading and construction
of the decision tree of base classifiers.

Further, I propose another divide-and-conquer approach, which constructs a type of proba-
bilistic decision tree with classifiers in the leaves and mixture models on non-terminal nodes. A
general training approach based on maximum likelihood, called Expectation Maximization (EM)
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algorithm, is used to estimate models on the intermediate and terminal nodes of the tree.
I extend the general framework of Mixtures of Experts, and especially of localized MEs, and

propose to use the Bayesian classifier as gate and experts. I outline how this model can be trained
by the EM algorithm.

In addition, I investigate the recently proposed paradigm of delegation, evaluate it and offer
two extensions, which connect this paradigm with ensemble and meta learning.

All the methods introduced in this thesis present the new way for the analysis of sequence
data and contribute to further development of Bioinformatics, Proteomics and Machine Learning.

Key words: Machine Learning, Data Mining, Classification, Bayesian Classification, De-
cision Trees, Markov Chains, Ensemble methods, Clustering, Mixture Models, EM algorithm,
Mixtures of Experts, Delegating Classifiers, Bioinformatics, Proteomics, Protein Subcellular Lo-
calization Prediction
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Chapter 1

Introduction

1.1 Motivation

High throughput sequencing technology has made it possible to determine the complete se-
quences of a number of genomes. There are more than 1200 genome sequences deposited in
public databases [EBI, 2003]. This has created the need for fully automated methods to analyze
sequence data and to identify or classify individual genes and proteins.

The most reliable way to determine a biological molecule‘s structure or function is by direct
experimentation. The Human Genome Project gave us the raw sequences of an estimated 100000
human genes, only a small fraction of which have been studied experimentally. This provides
strong motivation for developing computational methods that can infer biological information
from sequence alone.

Demands for sophisticated analyses of biological sequences are driving forward the newly-
created and explosively expanding research area of computational molecular biology, or bioin-
formatics.

Discerning significant similarities between anciently diverged sequences amidst a chaos of
random mutation, natural selection and genetic drift presents serious signal to noise problems.
Many of the most powerful sequence analysis methods are now based on principles of proba-
bilistic modelling. Examples of such methods include sequence alignments, the use of Hidden
Markov Models (HMMs) to identify distant members of sequence families, for prediction of
protein secondary structure and modelling of binding motifs, gene finding and the inference of
phylogenetic trees using maximum likelihood approaches.

As part of this annotation process a number of systems have been developed that support au-
tomated prediction of subcellular localization of proteins. To cooperate towards the execution of
a common physiological function (metabolic pathway, signal-transduction cascade, cytoskeleton,
etc.), proteins must be localized in the same cellular compartment. The subcellular localization
of a protein, the location or compartment it occupies within the cell, is one of its most basic
features. There is an involved machinery within the cell for sorting newly synthesized proteins
and sending them to their final locations. Identifying the destination of proteins in the cell is
key to understanding their function and facilitating their purification. Even if the basic function
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of a protein is known, knowledge of the subcellular location may provide insights as to which
pathway an enzyme is involved in. A schematic illustration is given in 1.1 to show the different
subcellular locations of proteins.

Experimental determination of subcellular location is mainly accomplished by three ap-
proaches: cell fractionation, electron microscopy and fluorescence microscopy. However, cur-
rently it is still time-consuming and costly to acquire the knowledge solely based on experimental
measures.

Automated prediction of protein subcellular localization is an important tool for genome
annotation and drug discovery. Many efforts were made in this regard. Actually, a new branch in
proteomics, the so-called Prediction of Protein Cellular Attributes has emerged [Chou, 2002].

[Nakai and Kanehisa, 1992] developed an integrated expert system called PSORT to sort pro-
teins into different compartments using sequentially applied

”
if-then“ rules. The rules were based

on different signal sequences, cleavage sites, and the amino acid composition of individual pro-
teins. At every node of an

”
if-then“ tree a protein was classified into a category based on whether

it satisfied a certain condition. One advantage of this process was that it could potentially mimic
the actual physical decisions in the real sorting process.

Among other existing computational prediction methods there are three basic approaches.
One approach is based on amino acid composition using artificial neural nets (ANN), such

as NNSPL [Reinhardt and Hubbard, 1998], or support vector machines (SVM), used in SubLoc
[Hua and Sun, 2001].

A second approach such as TargetP of [Emanuelsson et al., 2000] uses the existence of pep-
tide signals, which are short subsequences of approximately 3 to 70 amino acids, to predict
specific cell locations. For example, the KDEL, SKL and SV40-like motifs characterize endo-
plasmic reticulum (ER), peroxisome and nuclear proteins.

ProLoc [Xie et al., 2002] can be classified as a method combining both amino acid composi-
tion and sorting signals. ProLoc searches also for compartment-specific domains.

A third approach such as the one used in LOCkey [Nair and Rost, 2002] is to do a similarity
search on the sequence, extract text from homologs and use a classifier on the text features. Some
tools combine a variety of individual predictors.

Existing predictors have several shortcomings. The performance of the existing programs
varies. Most prediction methods achieve high accuracy for the most populated compartments,
such as the nucleus and cytosol, but are generally less accurate on the numerous compartments
containing fewer individual proteins. The lack of data for certain localization sites contributes
to poor performance for specific localizations. Data sets used for training vary in size. Many
existing predictors use only three or four different subcellular localizations. Very few predictors
deal with the issue of multicompartmental proteins (proteins that may be localized to different
organelles). Currently, there is no precise estimate of how many proteins are multicompartmen-
tal.

As pointed out by [Reinhardt and Hubbard, 1998], many genes are automatically assigned
in large genome analysis projects, and these assignments are often unreliable for the 5‘-regions.
This can result in missing or only partially included leader sequences, thereby causing problems
for sequence-motif-based localization algorithms. Similar considerations apply to the localiza-
tion of EST (expressed sequence tags) fragments.
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In this work I propose several methods for accurate automated prediction of localization
from sequence information alone. Moreover, I use the primary sequence of a protein for the
prediction, without employing methods for homology analysis, identification of sorting signals
and other motifs. It may enable my methods to better localize proteins for which gene-prediction
places the N-terminus incorrectly.

1.2 Thesis layout and original contribution

The aim of my work is to make a good predictor. This means finding a Machine Learning method
that generates a predictor based on a set of examples, where the predictor is a good approximation
of the function that generated the examples.

This thesis focuses mostly on classification task. A widely applied method in the machine
learning and statistical community is Bayesian classification. Bayesian classifiers work well on
a wide range of problems. They possess the advantages of learning speed, simpleness, incremen-
tality. The method for implementing the Bayesian classifier is based on obtaining the posterior
probabilities of class membership through the estimation of the class prior probabilities and the
class conditional densities. This is a generative approach to classification, since a model of the
joint distribution of the input data and the class labels is provided.

I apply the idea of Bayesian classification to the problem of prediction of protein subcellular
locations. The core part of the design of the Bayesian classifier is the selection of the appropriate
model for the generation of data instances of each class. I examined the use of two such mod-
els, Markov Chain Model and Multinomial Model. Chapter 2 focuses on the use of Bayesian
classification and describes the models for density estimation.

To solve complex classification problems we can use hierarchical architectures, just like lin-
ear networks have led to multi-layer perceptrons. I decided to exploit the idea of recursive par-
titioning, which was widely used in the classification with decision trees, and designed a hybrid
algorithm, which I present in Chapter 3. I called it Bayesian Classification Tree (BCT). The
main idea is to use Bayesian classification on each non-terminal node of the decision tree. After
a short recall of the principles of decision trees, my approach is defined and compared with other
related hybrid approaches. The last part of the Chapter 3 shows the results of experiments on all
data sets. The results reveal the superiority of Bayesian Classification Trees when compared to
the single Bayesian classification.

In the nineties, Meta Machine Learning (MML) methods have been developed for combining
predictors. The intuition that different classifiers behave in qualitatively different ways has moti-
vated attempts to build a better meta classifier via some combination of classifiers. The purpose
can be to achieve lower generalization error as the combined predictor can be better than the
single predictors. Another purpose is to prevent overfitting on the training set.

Two groups of meta machine learning methods exist: Ensemble methods and Mixtures of
Experts (ME) methods.

Chapter 4 deals with Ensemble methods. The attraction that this topic exerts on Machine
Learning researchers is based on the premise that ensembles are often much more accurate than
the individual classifiers that make them up. An overview of various ensemble methods is given.
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I employed several base-level classifiers and classifier combination methods in my comparative
studies. I generate different classifiers by using different data representation: by manipulating the
training set, by using different alphabets of amino acids for Markov Chain Models, by learning
classifiers from different regions of the protein sequences. I also investigate the use of pairwise
classification for multiclass problem. The base level learning algorithm still remains Bayesian
classification. The generated classifiers are then combined. I have empirically evaluated several
state-of-the-art methods for ensemble combination: stacking, arbitration, grading and construc-
tion of the decision tree of classifiers.

In Chapter 5 I propose another divide-and-conquer approach, which constructs a type of
probabilistic decision tree with classifiers in the leaves and mixture models on non-terminal
nodes. In order to learn the parameters of the mixture model, a general training approach based
on maximum likelihood, called Expectation Maximization (EM) algorithm, is used.

The term Mixtures of Experts covers a variety of methods. In Chapter 6 I extend the general
framework of Mixtures of Experts, and especially of localized MEs. Thus, we have an archi-
tecture consisting of gating Bayesian classifier which partition the data and weight the expert
Bayesian classifier predicting the class probabilities. It is also outlined how this model can be
trained by the EM algorithm.

Chapter 7 is dedicated to the modern paradigm of delegation. The key idea of a delegating
classifier is that it only makes predictions with a maximum level of confidence and delegates
the prediction to another classifier otherwise. My contribution in this part of the thesis consists
of empirical evaluation of the delegating paradigm on my classification task and developing of
two further extensions. One is the use of ensemble of classifiers instead of a single classifier at
each stage of the delegation process. The second extension provides some connections between
delegating and meta-learning.

Finally, a summary is given in Chapter 8 and proposals for future work.
All the methods proposed in this thesis were succesfully implemented by myself and empiri-

cally evaluated on the different biological data sets, which I describe further in this introductory
chapter.

1.3 Data

The input data for my algorithms is the amino acid sequences of the proteins, classified into
different subcellular location groups. Figure 1.2 shows a cutoff from the file with sequences,
assigned to Golgi apparatus.

I applied my methods to the previously published data sets of protein sequences used by other
working groups.

1.3.1 Data set of Reinhardt and Hubbard

The first data set was previously used by [Reinhardt and Hubbard, 1998], [Yuan, 1999] and also
by [Hua and Sun, 2001]. It included only globular proteins, because transmembrane proteins
could be predicted with a much higher accuracy by some known methods (see [Krogh et al., 2001]).
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As shown in Table 1.1, there are 2427 protein sequences from eukaryotic species classified into
four location groups: cytoplasmic, extracellular, nuclear and mitochondrial. There are also 997
prokaryotic sequences, which were assigned to three location categories: cytoplasm, extracellu-
lar and periplasmic, shown in Table 1.2.

Cellular location Number of proteins
Cytoplasmic 684
Extracellular 325
Mitochondrial 321
Nuclear 1097
Sum 2427

Table 1.1: Eukaryotic sequences within each subcellular location group of the Reinhardt data set
(Data Euk).

Cellular location Number of proteins
Cytoplasmic 688
Extracellular 107
Periplasmic 202
Sum 997

Table 1.2: Prokaryotic sequences within each subcellular location group of the Reinhardt data
set (Data Prok).

1.3.2 Data set of Huang and Li

The second data set was used as the raw data set in [Huang and Li, 2004]. Sequences were
selected from all eukaryotic proteins with annotated subcellular location in SWISS-PROT re-
lease 41.0 [Boeckmann et al., 2003]. All proteins with ambiguous words such as PROBABLE,
POTENTIAL, POSSIBLE and BY SIMILARITY and also proteins with multiple annotations
of locations were excluded. The transmembrane proteins were excluded also. The number of
proteins and their distributions in 11 categories are listed in Table 1.3.

1.3.3 Apoptosis proteins

Apoptosis, or programmed cell death, is a fundamental process controlling normal tissue home-
ostasis by regulating a balance between cell proliferation and death. This process is currently an
area of intense investigation. When apoptosis malfunctions, a variety of formidable diseases can
ensue: blocking apoptosis is associated with cancer and autoimmune disease, whereas unwanted
apoptosis can possibly lead to ishemic damage or neurodegenerative disease.
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Cellular location Number of proteins
Chloroplast 1141
Cytoplasm 2437
Cytoskeleton 24
Endoplasmic 132
Extracellular 4165
Golgi 32
Lysosome 131
Mitochondria 1100
Nuclear 3326
Peroxisome 122
Vacuole 53
Sum 12663

Table 1.3: Protein sequences within each subcellular location group of the data set of Huang and
Li (Data SWISS).

Many efforts in pharmaceutical research have been aimed at understanding the structure and
function of apoptosis proteins. To understand the apoptosis mechanism and functions of various
apoptosis proteins, it would be helpful to obtain information about their subcellular location.

The authors of [Zhou and Doctor, 2003] constructed a training data set, containing 98 apop-
tosis proteins classified into four categories (see Table 1.4). The proteins were derived from
SWISS-PROT [Bairoch, 2000]. Of the 12 other apoptosis proteins, five are located in nucleus,
one in microtubule, and one in lysosome. [Zhou and Doctor, 2003] used covariant discriminant
function for their prediction and the results of their study can be seen in Table 1.4. In my study I
used the same data set, which I call Data Apoptosis, except one protein (Q9OX1), the sequence
of which could not be retrieved.

Cellular location Number of proteins Accuracy (%)
Cytoplasmic 43 97.7
Plasma membrane 30 73.3
Mitochondrial 13 30.8
Other 12 25.0
Sum 98 72.5

Table 1.4: Apoptosis proteins within each subcellular location group (Data Apoptosis) and pre-
diction accuracies achieved in [Zhou and Doctor, 2003].

1.3.4 Gram-negative bacteria data set

A manually curated data set of proteins of experimentally known subcellular localization was
constructed by [Gardy et al., 2003]. Gram-negative bacterial sequences with an annotated sub-
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cellular localization were extracted from SWISS-PROT release 40.29 [Bairoch, 2000]. All pro-
teins, denoted as fragments and whose annotations were listed as

”
by similarity“ or

”
putative“

or with ambiguous annotation, were removed. The proteins were manually checked against the
literature for experimental verification of the annotated localization. The final data set consists
of 1443 proteins and is available online at http://www.psort.org/dataset. Gram-negative bacteria
have five major subcellular localization sites. The data set comprises 1302 proteins resident at
a single localization site and 141 proteins resident at multiple localization sites. For my experi-
ments I used the newest version of the data set (see Table 1.5).

Following the method of [Gardy et al., 2003], for the sequences with dual locations, if one of
their locations is predicted, I will consider them as correctly predicted.

Cellular location Number of proteins
Cytoplasmic 278
Cytoplasmic/Cytoplasmic Membrane 16
Cytoplasmic Membrane 309
Cytoplasmic Membrane/ Periplasmic 51
Periplasmic 276
Periplasmic/Outer Membrane 2
Outer Membrane 391
Outer Membrane/Extracellular 78
Extracellular 190
Sum 1591

Table 1.5: Bacterial proteins within each subcellular location group (Data Gram).

The most widely used predictive tool for Gram-negative bacteria has been PSORT I of
[Nakai and Kanehisa, 1991]. However, it does not predict extracellular sequences and its overall
prediction accuracy reaches only 61%.

[Gardy et al., 2003] developed a multimodular method PSORT-B, which comprises six mod-
ules examining the query sequence for different characteristics such as:

• amino acid composition,

• similarity to proteins of known localization,

• presence of a signal peptide,

• transmembrane alpha- helices,

• motifs corresponding to specific localization.

PSORT-B contains an outer membrane motifs module, a classifier, which uses a machine
learning approach to identify frequent sequences occurring only in beta-barrel proteins, both inte-
gral outer membrane proteins and autotransporter proteins, which possess a beta-barrel transport
domain.
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This program then constructs a Bayesian Network to generate a final probability value for
each localization site. This approach reaches an overall prediction accuracy of 74.8%, signifi-
cantly improving on the previous results of PSORT I by 14%. However, gives modest prediction
for some location categories, such as cytoplasmic (69.4%) and periplasmic (57.6%). The authors
argue that it is due in part to the lack of experimental study of periplasmic proteins. PSORT-B
predicts outer membrane proteins most accurately of all the localizations (90.3%). This was a
particular focus of authors, because outer membrane proteins- as primary cell surface compo-
nents of Gram-negative bacteria - are attractive potential vaccine targets, diagnostic agents and
drug targets of medical, agricultural and environmental interst.

1.4 Accuracy measures

To compare the prediction performance of the classification methods I used standard performance
measures.

By Jack-knife test (or leave-one-out cross-validation) the learning step is performed with all
sequences except the one, for which the location is to be predicted. The prediction quality was
evaluated by the overall prediction accuracy and prediction accuracy for each location:

overall accuracy =

∑K
c=1 T (c)

N

accuracy(c) =

T (c)
N(c)

,

where N is the total number of sequences, N(c) is the number of sequences observed in
location c, K is the number of locations and T (c) is the number of correctly predicted sequences
of location c.

In k-fold cross-validation the data set is partitioned randomly into k equally-sized partitions,
and learning and evaluation is carried out k times, each time using one distinct partition as the
testing set and the remaining k − 1 partitions as the training set. The choice of k = 5 implies
that 80% of the sequences are used for training and 20% for testing.
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Figure 1.1: Schematic illustration to show the twelve subcellular locations of proteins: chloro-
plast, cytoplasm, cytoskeleton, endoplasmic reticulum, extracell, Golgi apparatus, lysosome,
mitochondria, nucleus, peroxisome, plasma membrane, and vacuole. Note that the vacuole and
chloroplast proteins exist only in a plant. Reproduced from [Chou, 2001].
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Figure 1.2: Cutoff from the file with amino acid sequences of proteins, assigned to Golgi appa-
ratus.
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Chapter 2

Bayesian classifier for subcellular
localization prediction of proteins

In this Chapter I review the induction of Bayesian classifiers, propose two models for the class-
conditional densities and report the results of application of Bayesian Classification procedure
on my real-world data sets.

2.1 Bayesian classifiers

In supervised Machine Learning, a learning algorithm is given a training set D including N
training instances {(x1, y1), . . . , (xN , yN)}, where yi ∈ {c1, . . . , cK} (a set of K classes). A
learning algorithm produces a classifier, which is a hypothesis about the unknown function f for
which y = f(x). The classifier is later used to predict the unknown class yi ∈ {c1, . . . , cK} for a
new instance xi.

One approach to produce a classifier is to use the Bayes’ theorem (the Bayes rule). According
to it, the class for xi should be the one which maximizes the probability:

P (cj|xi) =
P (cj)P (xi|cj)

P (xi)
=

P (cj)P (xi|cj)∑
k P (ck)P (xi|ck) = prior∗class−conditional

normalization

Estimating the probability P (xi) is unnecessary because it is the same for all classes. The
remaining probabilities can be estimated from the training set D. Priors are often estimated as
the proportion of samples of class or using a priori knowledge.

One must specify how to compute the term P (xi|cj). In my work I model the class-conditional
densities with two parametric methods, which I introduce in the next two Sections. In nominal
domains, one typically stores a discrete distribution for each attribute in a description. The naive
Bayesian classifier assumes independence of attributes within each class.

Note that the estimation of the class-conditional densities involves K-subproblems, in which
each of the density is estimated based on the data belonging to the class only. As a consequence
it is straightforward to introduce new classes without having to reestimate the whole model.
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Advantage of the Bayesian classifier is its ease of training. The basic process can operate
either incrementally or nonincrementally, since the order of training instances has no effect on
learning. In contrast to many induction methods, which learn only when they make some error,
a Bayesian classifier incorporates information from every instance that it encounters.

A possible criticism of Bayesian classifiers is that they are modeling too much: for each
class many aspects of the data are modeled which may or may not play a role in discriminating
between classes. Often Bayesian classifiers also require more parameters and more computation
during recall since when a new example is presented, the posterior probabilities of all classes
need to be calculated.

Bayesian classifier relies on an important assumption: that the variability of the data set
can be summarized by a single probabilistic description, and that this is sufficient to distinguish
between classes. From an analysis of Bias-Variance this implies that Bayesian classifier uses
a reduced set of models to fit the data. The result is low variance, but if the data can not be
adequately represented by the set of models, we obtain a large bias.

2.2 Models used

2.2.1 Markov Chain model

Let s be a protein sequence of length n,

s = s1s2 . . . si−1si . . . sn,

where si is the amino acid residue at sequence position i.
For a first-order Markov model the frequencies of the residues in position i depend on the

residue in position i− 1. The probability of a sequence s to belong to the class c is given by the
ordinary Markov chain formula:

P c(s) = P c
1 (s1)P

c
2 (s2|s1)P

c
3 (s3|s2) . . . P c

n(sn|sn−1)

Here P c
n(sn|sn−1) is the conditional probability (also called transition probability) of observ-

ing residue sn in position n, given that sn−1 is in position n − 1. Because sn and sn−1 can
be any of the 20 amino acids, the statistics of consecutive pair-residues will generate a matrix
with 20 ∗ 20 elements, each representing the occurring frequency of amino acid pair (sn−1, sn),
denoted by F c(sn−1, sn).

The conditional probability can be calculated as:

P c
n(sn|sn−1) = F c(sn−1,sn)∑

sn
F c(sn−1,sn)

Markov chain models for the prediction of protein subcellular locations were first used by
[Yuan, 1999].
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2.2.2 Multinomial Model

Introducing class-conditional amino acid distributions P (a|c), the probability of a sequence s to
belong to the class c is given by

P (s|c) =
∏

a P (a|c)n(s,a),

where count variables n(s, a) indicate how often an amino acid a occurred in a sequence s .
The parameters of each class, i.e. class-conditional amino acid distributions, can be estimated

from the training set D as following:

P (a|c) =
∑

s|cs=c n(s,a)
∑

s|cs=c n(s)

Here n(s) =
∑

a n(s, a) denotes the length of the sequence.

2.3 Results and discussion

The Bayesian Classification approach was validated with Jack-knife test and confusion matrices
were constructed according to the results of this procedure.

I found that Markov Chain Model works better compared to Multinomial Model concerning
the prediction performance. Subsection 2.3.1 presents the results of Bayesian classification based
on Multinomial Model for some data sets, Subsection 2.3.2 presents the results of Bayesian
classification based on Markov Chain Model for all data sets used in the study.

2.3.1 Results of Bayesian Classification based on Multinomial Model

Tables 2.1 - 2.6 report the corresponding results.

Predicted group
Cytoplasmic Extracellular Mitochondrial Nuclear Sum

Cytoplasmic 489 70 61 64 684
Extracellular 67 159 29 70 325
Mitochondrial 132 33 127 29 321
Nuclear 176 61 101 759 1097
Sum 864 323 318 922 2427

Table 2.1: Confusion matrix of prediction results of Bayesian Classification approach based on
Multinomial Model for Data Euk.
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Cellular location Accuracy (%)
Cytoplasmic 71.5
Extracellular 48.9
Mitochondrial 39.6
Nuclear 69.2
Overall accuracy 63.2

Table 2.2: The predictive accuracy for subcellular locations of Bayesian Classification approach
based on Multinomial Model for Data Euk.

Predicted group
Cytoplasmic Extracellular Periplasmic Sum

Cytoplasmic 631 1 56 688
Extracellular 6 84 17 107
Periplasmic 40 22 140 202
Sum 677 107 213 997

Table 2.3: Confusion matrix of prediction results of Bayesian Classification approach based on
Multinomial Model for Data Prok.

Cellular location Accuracy (%)
Cytoplasmic 91.7
Extracellular 78.5
Periplasmic 69.3
Overall accuracy 85.8

Table 2.4: The predictive accuracy for subcellular locations of Bayesian Classification approach
based on Multinomial Model for Data Prok.
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Predicted group
Cytoplasmic Plasma membrane Mitochondrial Other Sum

Cytoplasmic 34 2 4 3 43
Plasma membrane 3 17 10 0 30
Mitochondrial 1 0 11 0 12
Other 6 0 0 6 12
Sum 44 19 25 9 97

Table 2.5: Confusion matrix of prediction results of Bayesian Classification approach based on
Multinomial Model for Data Apoptosis.

Cellular location Accuracy (%)
Cytoplasmic 79.1
Plasma membrane 56.7
Mitochondrial 91.7
Other 50.0
Overall accuracy 70.1

Table 2.6: The predictive accuracy for subcellular locations of Bayesian Classification approach
based on Multinomial Model for Data Apoptosis.
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2.3.2 Results of Bayesian Classification based on Markov Chain Model

Tables 2.7 - 2.16 report the corresponding results.

Predicted group
Cytoplasmic Extracellular Mitochondrial Nuclear Sum

Cytoplasmic 539 32 60 53 684
Extracellular 60 200 37 28 325
Mitochondrial 118 14 168 21 321
Nuclear 167 42 76 812 1097
Sum 884 288 341 914 2427

Table 2.7: Confusion matrix of prediction results of Bayesian Classification approach based on
Markov Chain Model for Data Euk.

Cellular location Accuracy (%)
Cytoplasmic 78.8
Extracellular 61.5
Mitochondrial 52.3
Nuclear 74.0
Overall accuracy 70.8

Table 2.8: The predictive accuracy for subcellular locations of Bayesian Classification approach
based on Markov Chain Model for Data Euk.
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Predicted group
Cytoplasmic Extracellular Periplasmic Sum

Cytoplasmic 654 2 32 688
Extracellular 7 80 20 107
Periplasmic 32 17 153 202
Sum 693 99 205 997

Table 2.9: Confusion matrix of prediction results of Bayesian Classification approach based on
Markov Chain Model for Data Prok.

Cellular location Accuracy (%)
Cytoplasmic 95.1
Extracellular 74.8
Periplasmic 75.8
Overall accuracy 89.0

Table 2.10: The predictive accuracy for subcellular locations of Bayesian Classification approach
based on Markov Chain Model for Data Prok.
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Predicted group
Chlor Cytop Cytos End Ext Gol Lys Mit Nuc Per Vac Sum

Chloroplast 604 159 3 10 77 0 3 213 64 8 0 1141
Cytoplasm 100 1275 181 62 190 20 15 320 229 44 1 2437
Cytoskeleton 0 4 13 0 1 0 0 0 6 0 0 24
Endoplasmic 4 16 0 67 9 0 17 9 8 2 0 132
Extracellular 63 290 0 43 2971 28 112 157 435 24 42 4165
Golgi 2 11 0 0 5 5 1 1 7 0 0 32
Lysosome 4 5 0 0 12 0 107 1 1 1 0 131
Mitochondria 82 182 0 13 56 1 12 665 65 21 3 1100
Nuclear 70 471 23 106 262 12 17 150 2203 7 5 3326
Peroxisome 10 21 0 1 5 0 1 31 3 50 0 122
Vacuole 1 6 0 3 17 0 4 5 2 0 15 53
Sum 940 2440 220 305 3605 66 289 1552 3023 157 66 12663

Table 2.11: Confusion matrix of prediction results of Bayesian Classification approach based on
Markov Chain Model for Data SWISS.
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Cellular location Accuracy (%)
Chloroplast 52.9
Cytoplasm 52.3
Cytoskeleton 54.2
Endoplasmic ret 50.8
Extracellular 71.3
Golgi apparatus 15.6
Lysosome 81.7
Mitochondria 60.5
Nuclear 66.2
Peroxisome 41.0
Vacuole 28.3
Overall accuracy 63.0

Table 2.12: The predictive accuracy for subcellular locations of Bayesian Classification approach
based on Markov Chain Model for Data SWISS.

Predicted group
Cytoplasmic Plasma membrane Mitochondrial Other Sum

Cytoplasmic 39 2 2 0 43
Plasma membrane 0 27 3 0 30
Mitochondrial 0 1 11 0 12
Other 5 1 0 6 12
Sum 44 31 16 6 97

Table 2.13: Confusion matrix of prediction results of Bayesian Classification approach based on
Markov Chain Model for Data Apoptosis.

Cellular location Accuracy (%)
Cytoplasmic 90.7
Plasma membrane 90
Mitochondrial 91.7
Other 50.0
Overall accuracy 85.6

Table 2.14: The predictive accuracy for subcellular locations of Bayesian Classification approach
based on Markov Chain Model for Data Apoptosis.
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Predicted group
Cytoplasm Inner membrane Periplasm Outer membrane Extracell Sum

Cytoplasmic 248 2 31 4 8 293
Inner membrane 43 268 9 8 3 331
Periplasmic 27 9 233 23 15 307
Outer membrane 46 6 28 355 19 454
Extracellular 11 8 24 39 124 206
Sum 375 293 325 429 169 1591

Table 2.15: Confusion matrix of prediction results of Bayesian Classification approach based on
Markov Chain Model for Data Gram.

Cellular location Accuracy (%)
Cytoplasmic 84.6
Inner membrane 80.7
Periplasmic 75.9
Outer membrane 78.2
Extracellular 60.2
Overall accuracy 77.2

Table 2.16: The predictive accuracy for subcellular locations of Bayesian Classification approach
based on Markov Chain Model for Data Gram.
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Chapter 3

Bayesian Classification Trees: hybrid
approach

I present in this Chapter a new supervised learning procedure, which I call Bayesian Classifi-
cation Tree (BCT). This is a hybrid representation, learned by a combination of two methods,
decision trees and Bayesian classification. The combination of two formalisms into a hybrid
makes it possible to draw on the particular strengthes of each of the individual formalisms. In
the next Section I give a short introduction to decision trees. In Section 3.2 I define my new al-
gorithm. Section 3.3 relates the proposed algorithm to the previously proposed methods. Section
3.4 demonstrates the results of the empirical study using my data sets.

3.1 Decision trees

Most of Machine Learning algorithms for supervised learning problems use a divide and conquer
strategy that attacks a complex problem by dividing it into simpler problems and recursively
applies the same strategy to the subproblems. Solutions of subproblems can be combined to
yield a solution of the complex problems.

A decision tree is a special type of classifier. It uses a standard technique for building clas-
sification rules from data, the so called recursive partitioning algorithm, which constructs a tree
from the training set. The well known decision tree based algorithms are ID3 [Quinlan 1986],
CART [Breiman et al., 1984], ASSISTANT [Cestnik 1986] and C4.5 [Quinlan 1993].

A decision tree contains zero or more internal nodes and one or more leaf nodes. A decision
(inner) node specifies a test to be carried out on example and each outcome of the test has its
own branch leading to the appropriate subtree. All internal nodes have two or more child nodes.
Each leaf node has a class label associated with it.

The task of constructing a tree from the training set has been called tree induction or tree
growing. Most existing tree induction systems proceed in a greedy top-down fashion. Starting
with an empty tree and the entire training set, some variant of the following algorithm is applied
until no more splits are possible.
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Input: a set of labelled instances.

• If all the training examples at the current node belong to a single class or if some other
stopping rule applies, create a leaf node labelled with that class.

• Otherwise, select a test with mutually exclusive outcomes using a splitting rule;

• create as many child nodes as there are outcomes, divide the training set into subsets, each
corresponding to one outcome and assign these subsets to the corresponding child node;

• for each child node, call the algorithm recursively.

Stopping rules are used if further growing is unnecessary. Sometimes they employ param-
eters, which control the complexity of the resulting decision tree. Most recent algorithms stop
growing trees when certain conditions are satisfied:

• The node is pure or almost pure, the majority of the examples it contains are of the one
class.

• The level of the node is equal to the maximum depth of the tree.

• The size of the node (the number of examples falling at the node) is smaller than a certain
size.

• The utility of a split of the node is not significantly better as the utility of the node [Kohavi, 1996].

A survey of many different splitting rules can be found in [Breiman et al., 1984]. Some
common tests are Information Gain, Gini Index of Diversity, χ2 and G Statistic tests.

One advantage of decision tree classification should be noted. The decision tree segments the
data, a task that is an essential part of the Data Mining process in large databases.

The main drawback of the decision tree approach is its instability: small variations of the
training set could cause large changes in the resulting predictors. These classifiers have high
variance but they can fit any kind of data: the bias of a decision tree is low.

3.2 Bayesian Classification Trees

In this section I introduce my algorithm called Bayesian Classification Tree (BCT).
The BCT builds a decision tree in the well-known top-down manner. The Bayesian Classifi-

cation algorithm repeatedly presents examples at each node. Trees generated by this procedure
are not binary. The number of descendants of each decision node is equal to the number of
classes that fall at this node. The intuition behind this procedure is that the majority of the ex-
amples, which arrive at one child after the application of Bayesian classifier at the father’s node,
will have one class label. The outline of the algorithm is as following:
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Input: a set of labelled instances.

• If the majority of the training examples at the current node belong to a single class or if the
size of the node is smaller than ThreshSize, create a leaf node labelled with that class.

• Otherwise, learn Bayesian classifier for the current node from the training examples;

• create as many child nodes as there are classes at the node;

• apply the Bayesian classifier on the examples, e.g. predict for each example its class and
assign this example to the corresponding child node;

• for each child node, call the algorithm recursively.

Figure 3.1 shows schematically a Bayesian Classification Tree.
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Figure 3.1: Bayesian Classification Tree.
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3.3 Related work

The final model of Bayesian Classification Tree approach is closely related with the recursive
naive Bayes presented in [Langley 1993]. The naive Bayesian classifier was applied to domains
with nominal attributes. The author claims that this recursive approach should outperform the
naive Bayesian classifier in domains that involve disjunctive concepts, since they violate the
independence assumption on which the naive scheme relies. The recursive approach should
better classify the cases which occupy noncontiguous regions of the instance space, because
one cannot represent such disjunctive situations with a single probabilistic summary for each
class. The author managed to show superiority of his method over simple Naive Bayes only on
synthetic data specifically generated.

A method for combining decision trees and Linear Threshold Units (LTUs), which are the
basic units of Rosenblatt‘s perceptron, has been proposed in [Breiman et al., 1984].

My algorithm resembles also the Linear Machine Decision Tree (LMDT) of Brodley and Ut-
goff [Brodley and Utgoff, 1995]. Each internal node in LMDT tree is a linear machine, which is
a set of linear discriminant functions that are used to classify an example. As in LTUs, linear ma-
chines specify a set of weights for each class-attribute pair, but they operate competitively. The
LMDT is an incremental method for inducing decision trees and requires many passes through
the training set.

The FACT system in [Loh, 1988] recursively partition the input space using a linear discrim-
inant function. The number of descendants of each node is equal to the number of classes.

The COBWEB algorithm of [Fisher, 1987] uses an identical organization of probabilistic
concepts in a hierarchy.

I should also mention the Probabilistic Linear Tree (Ltree) and Probabilistic Bayes Tree
(Btree) of [Gama 1997]. The method consists of combining a decision tree with a discriminant
function by means of constructive induction (see [Gama 1998]). Constructive induction discov-
ers new features from the training set and transforms the original instance space into a new one
by applying attribute constructor operators. In Btree at each decision node a new instance space
is defined by the insertion of new attributes, which is derived from the class predictions, given
by a naive Bayesian classifier learned at each node.

3.4 Results and discussion

In the experimental study of Bayesian Classification Tree approach I used Bayesian classifiers
based on Markov Chain Model.

The results were validated with 10-fold cross-validation procedure.
The results show that my method can significantly improve the accuracy of the predictions

when compared to the single global Bayesian classifier. Table 3.1 shows the result of comparison
of overall accuracies, achieved with two approaches- Bayesian classification (BC) and Bayesian
Classification Trees (BCT)- on all data sets used in this study.
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Data set BC-approach Accuracy (%) BCT-approach Accuracy (%)
Data Euk 70.8 78.7
Data Prok 89.0 89.3
Data SWISS 63.0 77.4
Data Apoptosis 85.6 89.7
Data Gram 77.2 83.2

Table 3.1: Performance comparison of two approaches BC and BCT.

3.4.1 Data set of Reinhardt and Hubbard

Tables 3.2 - 3.5 show the results of BCT procedure with eukaryotic and prokaryotic data. The
overall prediction accuracy of 78.7% achieved with BCT for eukaryotic proteins is better than
73.0% of [Yuan, 1999] achieved with fourth-order Markov chains, is comparable with 79.4%
achieved with support vector machines in [Hua and Sun, 2001] and is lower than 85.2% of
[Huang and Li, 2004]. The overall result of 89.3% for prokaryotic proteins was slightly better
than 89.1% of [Yuan, 1999] achieved with fourth-order Markov chains.

Predicted group
Cytoplasmic Extracellular Mitochondrial Nuclear Sum

Cytoplasmic 522 30 46 86 684
Extracellular 28 256 9 32 325
Mitochondrial 87 14 170 50 321
Nuclear 84 18 33 962 1097
Sum 721 318 258 1130 2427

Table 3.2: Confusion matrix of prediction results of Bayesian Classification Tree approach for
Data Euk.

Cellular location Accuracy (%)
Cytoplasmic 76.3
Extracellular 78.8
Mitochondrial 53.0
Nuclear 87.7
Overall accuracy 78.7

Table 3.3: The predictive accuracy for subcellular locations of Bayesian Classification Tree ap-
proach for Data Euk.
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Predicted group
Cytoplasmic Extracellular Periplasmic Sum

Cytoplasmic 657 1 30 688
Extracellular 8 78 21 107
Periplasmic 31 16 155 202
Sum 696 95 206 997

Table 3.4: Confusion matrix of prediction results of Bayesian Classification Tree approach for
Data Prok.

Cellular location Accuracy (%)
Cytoplasmic 95.5
Extracellular 72.9
Periplasmic 76.7
Overall accuracy 89.3

Table 3.5: The predictive accuracy for subcellular locations of Bayesian Classification Tree ap-
proach for Data Prok.
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3.4.2 Data set of Huang and Li

For the results of experiments with Bayesian Classification Tree approach with this data set see
Tables 3.6 and 3.7. It is interesting, that for this big data set the BCT was 14.4% superior than
single Bayesian classifier.

Predicted group
Chlor Cytop Cytos End Ext Gol Lys Mit Nuc Per Vac Sum

Chloroplast 840 90 0 5 41 0 2 95 59 8 1 1141
Cytoplasm 77 1735 4 14 147 5 13 141 279 20 2 2437
Cytoskeleton 0 11 6 0 1 0 0 0 6 0 0 24
Endoplasmic 6 20 0 79 11 1 3 2 9 1 0 132
Extracellular 44 176 0 7 3513 15 34 83 256 14 23 4165
Golgi 1 7 0 0 4 7 1 2 10 0 0 32
Lysosome 0 8 0 0 23 0 97 2 0 1 0 131
Mitochondria 82 145 0 5 73 1 6 674 95 19 0 1100
Nuclear 47 232 8 12 156 4 7 100 2755 3 2 3326
Peroxisome 8 16 0 1 7 0 1 18 5 66 0 122
Vacuole 0 3 0 1 10 0 2 4 6 0 27 53
Sum 1105 2443 18 124 3986 33 166 1121 3480 132 55 12663

Table 3.6: Confusion matrix of prediction results of Bayesian Classification Tree approach for
Data SWISS.
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Cellular location Accuracy (%)
Chloroplast 73.6
Cytoplasm 71.2
Cytoskeleton 25.0
Endoplasmic ret 59.8
Extracellular 84.3
Golgi apparatus 21.9
Lysosome 74.0
Mitochondria 61.3
Nuclear 82.8
Peroxisome 54.1
Vacuole 50.9
Overall accuracy 77.4

Table 3.7: The predictive accuracy for subcellular locations of Bayesian Classification Tree ap-
proach for Data SWISS.
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3.4.3 Apoptosis proteins

For the results of experiments with Bayesian Classification Tree approach with this data set see
Tables 3.8 and 3.9. Even with the single Bayesian classifier I reached the overall accuracy of
85.6%, which is 13.1% higher than that reached in [Zhou and Doctor, 2003] with covariant dis-
criminant algorithm (compare with Table 1.4). The BCT approach reaches the overall accuracy
of 89.7%.

Predicted group
Cytoplasmic Plasma membrane Mitochondrial Other Sum

Cytoplasmic 41 2 0 0 43
Plasma membrane 1 27 2 0 30
Mitochondrial 0 1 11 0 12
Other 3 1 0 8 12
Sum 45 31 13 8 97

Table 3.8: Confusion matrix of prediction results of Bayesian Classification Tree approach for
Data Apoptosis.

Cellular location Accuracy (%)
Cytoplasmic 95.3
Plasma membrane 90
Mitochondrial 91.7
Other 66.7
Overall accuracy 89.7

Table 3.9: The predictive accuracy for subcellular locations of Bayesian Classification Tree ap-
proach for Data Apoptosis.
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3.4.4 Gram-negative bacteria data set

The results of experiments with Bayesian Classification Tree approach with this data set are
reported in Tables 3.10 and 3.11.

The overall prediction accuracy of my method reaches 83.2%, which is 8.4% higher than
that of PSORT-B (74.8%) introduced in [Gardy et al., 2003], though I do not use specialized
algorithms or particular input vectors for each localization site. Compared with PSORT-B, my
method gives significantly better predictive performances for all the localization sites except
outer membrane proteins (OMPs). PSORT-B reaches 90.3% for OMPs, however, it utilizes an
extra module for OMPs based on identification of frequent sequences occurring only in beta-
barrel proteins. I reach the accuracy of 87.1% for outer membrane proteins, which is also very
high. The identification of OMPs is of particular interest, because they are on the surface of the
bacteria and so are the most accessible targets to develop new drugs against.

It is remarkable, that for periplasmic proteins my method reaches the accuracy of 79.1%,
which is 21.5% higher than that of PSORT-B.

However, the predictive accuracy of my method is 5.7% lower than that of CELLO, reported
in [Yu et al., 2004].

Predicted group
Cytoplasm Inner membrane Periplasm Outer membrane Extracell Sum

Cytoplasmic 223 13 37 14 3 290
Inner membrane 28 291 9 9 2 339
Periplasmic 23 11 239 18 11 302
Outer membrane 11 4 18 378 23 434
Extracellular 7 4 17 31 167 226
Sum 292 323 320 450 206 1591

Table 3.10: Confusion matrix of prediction results of Bayesian Classification Tree approach for
Data Gram.

Cellular location Accuracy (%)
Cytoplasmic 76.9
Inner membrane 85.8
Periplasmic 79.1
Outer membrane 87.1
Extracellular 73.9
Overall accuracy 83.2

Table 3.11: The predictive accuracy for subcellular locations of Bayesian Classification Tree
approach for Data Gram.
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Chapter 4

Ensemble Modeling

The main motivation for combining models in ensembles is to improve their predictive perfor-
mance. An ensemble of classifiers is a set of classifiers whose individual predictions are com-
bined in some way to classify new examples. There is a plethora of terms in the literature, such as
committee, classifier fusion, aggregation to indicate sets of learning machines that work together
to solve a machine learning problem. The variety of terms reflects the absence of a unified theory
on ensemble methods and the youngness of this research area.

Empirical studies showed that classification ensembles are often much more accurate than the
individual base learner that make them up. Many learning algorithms apply local optimization
techniques that may get stuck in local optima (for instance greedy local optimization approach
used by decision trees and gradient descent used by neural networks). Building an ensemble
using, for instance, different starting points may achieve a better approximation.

The basic framework includes two parts: learning and application. In the learning part, an
ensemble including base classifiers is generated. In the application part, the class predictions of
the base classifiers need to be integrated in some way to produce the final classification. There
are two main approaches to the integration: combination approach, where the final outcome is
composed using the predictions of all base classifiers and selection approach, where one of the
classifiers is selected and the final class predictions is the one produced by it. The two main
methods for a selection (competitive combination) are:

• Gating, employed by Mixtures of Experts, which I handle in Chapter 6,

• Rule-based switching: In this case the switching between the models can be triggered on
the basis of the output of one of the models. For example, in the stydy on the diagnosis of
myocardial infarction (heart attack) in [Baxt, 1992], two models were optimized separately
by varying the proportion of high risk and low risk patients in the training sets. The first
model was trained to make as few positive errors as possible, and the second model trained
to make as few negative errors as possible. The output of the first model was used unless
it exceeds a threshold, in which case the output of the second model was used.

Sections 4.1, 4.2, 4.3, 4.4 provide background of the field without striving for completeness.
The interested reader should see [Dietterich, 2000] for a broad survey of ensemble methodology.
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In Section 4.5 I analyze the performance of pairwise classification as a general ensemble
technique.

In Sections 4.6 and 4.7 I generate ensemble of localization predictors using different repre-
sentations of protein sequences.

In the literature can be found the idea of training a meta-classifier to utilize the predictions
of multiple base-classifiers. Voting is then used as a baseline method against which the learned
combiners are compared. The rest of the Chapter focuses mostly on meta-learning.

One such meta-classification scheme is the family of stacking algorithms. The basic idea of
stacking is to use the predictions of the original classifiers as attributes in a new training set that
keeps the original class labels. Section 4.8 surveys some recent results in stacking.

A kind of meta-learning technique is the arbiter meta-learning. I discuss this technique and
present the results of my experiments with it in Section 4.9.

In Section 4.10 I apply the idea of grading, another ensemble learning scheme, to my classi-
fication task.

In the last Section of this Chapter I employ an interesting classifier combination approach,
which connects previously learned classifiers in kind of a decision tree using the validation of
their performance.

4.1 Generation of ensembles

Ensembles can be generated using a single learning algorithm, such as decision tree learning or
neural network training. Different classifiers are generated by

• manipulating the training set, as done in bagging and boosting. In the first, training sets
are fully independent by bootstrapping, in the second they differ as a result of previous
classification.

Training sets may also be different if each of the classes is first split by a cluster analysis
and then the classes are separated cluster by cluster.

Another example is the set of two-class discriminants that may be used to solve a K-class
problem. For the approaches of training each classifier on different parts of the data two
further distinctions can be made. The first is whether the different parts of the data are
chosen randomly or whether they are chosen to be regions that can be described by the
attributes (modelled). The second distinction is whether the data partition is absolute (i.e.
each classifier is trained on its own mutually exclusive part of the data) or whether they are
overlapping).

• manipulating the input features, using different representations of data

• manipulating the output targets or

• injecting randomness in the learning algorithm.
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[Zheng, 1998] proposes Naive Bayesian Classifier Committees. Each member of the com-
mittee is a naive Bayesian Classifier based on a subset of all the attributes available for the task.

Another approach is to generate base classifiers by applying different learning algorithms
(with heterogeneous model representations) to a single data set.

4.2 Voting

The simplest method for combining classifiers is voting. Voting counts the number of predictions
for each class in the vector of the responses of the base classifiers and predicts the most frequently
predicted class. Several variations of voting have been proposed:

• Unanimity. The combined classifier decides that an input pattern x comes from class Cj

if and only if all the classifiers decide that an x comes from class Cj , otherwise it rejects x.

• Modified unanimity. The combined classifier decides that an input pattern x comes from
class Cj if some classifiers support that x belongs to Cj and no other classifier supports
that x belongs to any other class ( i.e. rejects x), otherwise it rejects x.

• Weighted or unweighted majority. The combined classifier decides that an observation
x belongs to class Cj if more than half of the classifiers support that x belongs to Cj. A
modification of this rule is to require a different proportion of classifiers to agree instead
of half of them.

• Thresholded plurality. The combined classifier decides that an observation x belongs to
class Cj if the number of classifiers that support it is considerably bigger than the number
of classifiers that support any other class

Combining classifiers with voting is simple, but it has a drawback: it neglects the differences
of skills of different base classifiers. The weight of the decision of all the classifiers is equal,
even when some of the classifiers are much more accurate than others.

4.3 Popular ensemble methods: boosting, bagging, arcing

Best known ensemble methods are bagging (bootstrap aggregating) [Breiman, 1996a] and boost-
ing [Freund and Schapire, 1996], which rely on learning a set of diverse base classifiers (typically
by using different subsamples of the training set), whose predictions are then combined by simple
voting.

The boosting procedure is as follows: a classifier is trained on a randomly chosen subset D1

of the available training data. This classifier is then used to filter the remaining training data to
produce a second training set D2 for a second classifier. Flip a fair coin, if the coin comes up
heads, examples are passed through the first classifier until it misclassifies a pattern. This pattern
is then added to the second training set D2. If the coin comes up tails, examples are passed
through the first classifier until it correctly classifies a pattern. This pattern is then added to the
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second training set D2. This process is continued until enough patterns have been collected to
train the second classifier.

After training the second classifier both classifiers are used to produce a third training set D3

for a third classifier. The remaining training data is passed through the first two classifiers. If
they disagree on the classification of a pattern it is added to a third training set D3. If they agree
the pattern is discarded. This process is continued until enough patterns have been collected to
train the third classifier. The boosted classifiers are combined using either averaging or a voting
scheme. The voting scheme works as follows: if the first two classifiers agree, their answer is
used as the prediction, if they disagree, the answer of the third classifier is used as the prediction.

AdaBoost (Adaptive Boosting) creates a sequence of training sets and determines weights of
the training instances, with higher weights for those that are incorrectly classified.

AdaBoost combined with probabilistic neural network algorithm was applied for protein sub-
cellular localization in the recent paper of [Guo et al., 2004].

Boosting and Bagging applied to C4.5 were used in [Melville and Kokku] for the prediction
of functional classification of genes using expression data and phylogenetic profiles.

The arcing method by [Breiman, 1996b] uses a simplified procedure for weighting of the
training instances.

The bagging algorithm uses classifiers trained on bootstrap samples, created by randomly
drawing a fixed number of training data instances from the pool which always contain all training
instances. Results are aggregated by voting. [Breiman, 1996a] has shown that bagging nearest
neighbor classifiers in general will not be effective, because they are stable: small perturbations
in the training data will not change the hypothesis very much.

4.4 Classifier diversity and coverage

Important questions of ensemble modeling are: how many classifiers are required in an ensemble
to obtain a desired accuracy and how many are needed for an improvement over the accuracy of
the best single classifier?

Clearly, fewer classifiers is prefered, since training and application costs will be lower.
Experts which are very similar tend to provide redundant information, and the high level of

their dependence means not only minimal gains from aggregation but also difficulties during the
integration process. Thus, heterogeneity among experts is highly desirable.

Ideally, the classifiers should be diverse: each should work well on different parts of the
given data set as no benefit arises from combining the predictions of a set of classifiers that all
classify the same portion of the data correctly. A related objective is to maximize coverage of
the data, which is the percentage of the data that at least one classifier can classify correctly. A
proper training of base classifiers, it means here training avoiding overfitting, is important, as
the performance of the base classifiers is not of primary importance, instead, sacrificing a small
amount of accuracy in each classifier of the ensemble may result in increased coverage. See for
the ilustration of this idea an example in [Brodley and Lane, 1996].

Achieving coverage greater than the accuracy of the best single classifier requires diversity
among the classifiers.
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[Wolpert, 1992] has suggested, that
”
one should try to find generalizers which behave very

differently from one another, which are in some sense ‘orthogonal’, so that their guesses (predic-
tions) are not synchronized“.

How different the resulting classifiers are and especially how this should be measured is an
open, but heavily studied topic [Kuncheva, 2003].

One metric for determining the similarity of the classification decisions of a set of learning
algorithms is classification overlap, which requires counting the number of instances, that were
classified the same way by each of the classifiers. A set of classifiers S1 is more diverse than
another set S2 if:

overlap(S1) < overlap(S2).

[Ali and Pazzani, 1996] define diversity as the percent of test instances for which the classi-
fiers make different predictions, but for which one of them is correct.

In [Tsymbal et al., 2002] another measure was used. A diversity of the classifier Cli and the
whole ensemble Divi is the average difference in the predictions on test instances of all the pairs
of classifiers including Cli:

Divi =
∑N

j=1

∑K

k=1,k 6=i Dif(Cli(xj),Clk(xj))

N∗(K−1) ,

where Cli(xj) denotes the classification of the instance xj by the classifier Cli, Dif(a, b) is
the difference in two classifications a and b, which is zero if classifications are the same and one
if they are different, K denotes the number of classifiers and N is the number of data instances.

[Skalak, 1995] proposes to use the term complementary component classifiers rather than
dissimilar. The author warns of choosing dissimilar classifiers without regard to whether they
will actually work well together in a composite classifier. Consider an analogy to a basketball
team. Team members may be selected according to some criterion of dissimilarity. They may
be from different states or of different races. But if they are chosen so that together they should
make a winning team, then a good play-maker, a good outside shooter and a good rebounder will
be chosen as part of the team.

4.5 Pairwise classification as an ensemble technique

Pairwise classification is a technique for turning multi-class problems into two-class problems.
There are two most popular approaches: one-against-one and one-against-rest approach.

One-against-rest approach uses the examples of the corresponding class as positive examples
and all the others as negative examples.

One-against-one (or round robin) approach (see [F ürnkranz, 2002a] and [F ürnkranz, 2002b])
learns one classifier for each pair of classes, using only training examples for these two classes
and ignoring all others. There are total K ∗ (K − 1)/2 classifiers for the K-class problem. For
example we have 55 classifiers for the 11-class problem of location prediction for DATA SWISS.
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A new example is classified by submitting it to each of these classifiers and combining their
predictions via simple voting. This will often result in poor classification performance. Assume
pattern x comes from class Cj. There will be (K − 1) ∗ (K − 2)/2 classifiers which have never
seen objects from this class. Combining this ignorant classifiers will therefore result in almost
random classification. This becomes even more prominent for larger number of classes. For
a classification problem with more than 4 classes the majority of the classifiers are ignorant of
class Cj, and for a 10-class problem even 80%.

Nevertheless, in [F ürnkranz, 2002b] it was shown that the use of round robin ensembles can
increase the classification performance of decision tree learners, even though they can directly
handle multi-class problems.

I learned 6 pairwise Bayesian classifiers with eukaryotic data and combined their results with
plurality voting scheme. Tables 4.1 and 4.2 report the results. Compared to the results of single
global Bayesian Classification procedure (see Table 2.8), there is no improvements on overall
accuracy and also on accuracies for single locations.

Predicted group
Cytoplasmic Extracellular Mitochondrial Nuclear Sum

Cytoplasmic 536 29 63 56 684
Extracellular 62 199 35 29 325
Mitochondrial 120 13 167 21 321
Nuclear 171 43 73 810 1097
Sum 889 284 338 916 2427

Table 4.1: Confusion matrix of prediction results of round-robin procedure for Data Euk.

Cellular location Accuracy (%)
Cytoplasmic 78.4
Extracellular 61.2
Mitochondrial 52
Nuclear 73.8
Overall accuracy 70.5

Table 4.2: The predictive accuracy for subcellular locations of round-robin procedure for
Data Euk.

In [F ürnkranz, 2002b] the author argues that the most pressing issue for further research in
pairwise classification is an investigation of the effects of different voting schemes.

I have conducted the following experiment. I allowed a classifier only to vote for a class if
it has a certain minimum confidence in its prediction. As I work with probabilistic Bayesian
classifiers and I have the posterior probabilities for each class, I allow a classifier only to vote for
a class if the posterior probability of this class is bigger than a certain threshold. Otherwise, it
rejects an example (gives out

”
unknown“ class). We become so the cautious classifiers, which I

treat also in Chapter 7.
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Furthermore, I ordered the classes so that the classes, which are underrepresented, are ranked
higher, and I give the preference to the higher ranked classes in case of a tie.

Tables 4.3 and 4.4 show the results of this experiment. Note from Table 4.3, that 5 sequences
were classified as

”
unknown“. Although the drop in overall accuracy is observed, we can state

the increase of the prediction accuracy for two underrepresented classes (Mitochondrial and Ex-
tracellular).

Predicted group
Cytoplasmic Extracellular Mitochondrial Nuclear Sum

Cytoplasmic 456 44 133 49 684
Extracellular 46 201 50 25 325
Mitochondrial 79 11 219 12 321
Nuclear 151 55 112 779 1097
Sum 732 311 514 865 2422 \2427

Table 4.3: Confusion matrix of prediction results of round-robin procedure with cautious pair-
wise classifiers and ordered classes for Data Euk.

Cellular location Accuracy (%)
Cytoplasmic 66.7
Extracellular 61.8
Mitochondrial 68.2
Nuclear 71
Overall accuracy 68.2

Table 4.4: The predictive accuracy for subcellular locations of round-robin procedure with cau-
tious pairwise classifiers and ordered classes for Data Euk.

4.6 Combining localization predictors learned with reduced
amino acid alphabet

Since there are some similarities between amino acids, the amino acid alphabet can be simplified.
The amino acids can be regrouped into smaller groups of classes according to their physicochem-
ical or structural properties.

[Yu et al., 2004] uses the reduced 3-peptide amino acid composition in which 20 amino acids
are classified into four groups (charged, polar, aromatic, nonpolar). This helps to overcome the
size problem for n-peptide composition when n gets larger.

The work of [Yu et al., 2004] is an example of using the idea of ensemble of classifiers
for predicting subcellular localization of proteins. The authors used Support Vector Machines
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(SVMs) and because the SVM separates two classes, for multiclass classification the combi-
nation of one-against-one classifiers should be used. For 5 classes of Gram-negative bacteria,
5(5−1)/2 = 10 SVM classifiers should be constructed. Also the four sequence coding schemes:
A1, A2, X4 and F3X5 were used. The notation An denotes the n-peptide composition of amino
acids, Fn denotes the n-peptide composition with the alphabet reduced to the four letters (each
letter for the group of amino acid), Xk denotes the partitioned composition of amino acids in
which the sequence is partitioned into k regions of equal length. Therefore, 10∗4 = 40 classifiers
were constructed. The votes from these classifiers were combined with the jury voting scheme
to determine the final assignment. In the case of identical votes, more weights were given to the
votes from A1. The same method was applied for predicting protein three-dimensional folds in
[Yu et al., 2003].

I used the reduced alphabet of amino acids taken from [Li et al., 2003]. These groupings of
residues are biologically relevant in various aspects and similar to some other results. Figure 4.1
shows the groupings that are organized in a hierarchical manner.

Figure 4.1: The groupings of 20 kinds of amino acids from n = 2 to n = 20, where n is the
number of groups.

52



I explore the effect of reduction of alphabet size for the Markov Chains and found that it does
not hurt Bayesian Classification and classification with Bayesian Classification Trees so much,
if the alphabet will be reduced to the length of 12. Table 4.5 shows the results of BC and BCT
procedures used with Markov Chains learned with reduced alphabet of 12 amino acid groups for
eukaryotic data. Compare them with the results shown in Table 2.8 and Table 3.3.

Cellular location BC Accuracy (%) BCT Accuracy (%)
Cytoplasmic 75.6 73.8
Extracellular 52.0 79.7
Mitochondrial 51.7 54.8
Nuclear 73.5 85.3
Overall accuracy 68.3 77.3

Table 4.5: The predictive accuracy for subcellular locations of BC and BCT approaches used
with reduced alphabet of 12 amino acid groups for Data Euk.

Tables 4.6 and 4.7 report the results of voting combination of 3 Bayesian classifiers: one
learned with Markov Chain Model, one learned with Markov Chain Model with the reduced
alphabet and one learned with Multinomial Model. No improvement on the overall accuracy of
single Bayesian classifier can be observed.

Predicted group
Cytoplasmic Extracellular Mitochondrial Nuclear Sum

Cytoplasmic 521 42 64 51 684
Extracellular 58 189 33 43 325
Mitochondrial 111 18 167 17 321
Nuclear 147 55 83 797 1097
Sum 837 304 347 908 2427

Table 4.6: Confusion matrix of prediction results of voting combination of 3 Bayesian classifiers
for Data Euk.

Cellular location Accuracy (%)
Cytoplasmic 76.2
Extracellular 58.2
Mitochondrial 52.0
Nuclear 72.7
Overall accuracy 69

Table 4.7: The predictive accuracy for subcellular locations of voting combination of 3 Bayesian
classifiers for Data Euk.
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4.7 Combining localization predictors learned from different
sequence regions

In this Section I report the results of the following experiment: the sequences were partitioned
into 3 regions of equal length. 3 Bayesian classifiers were learned from the corresponding se-
quence regions and then combined with simple voting. The results for eukaryotic data are sum-
marized in Table 4.8 and Table 4.9. The reached overall accuracy of 74.3% compared with
the 70.8% of single Bayesian classifier learned from the whole sequence length (see Table 2.8)
demonstrates the potential usefulness of this approach.

Predicted group
Cytoplasmic Extracellular Mitochondrial Nuclear Sum

Cytoplasmic 530 20 44 90 684
Extracellular 49 206 21 49 325
Mitochondrial 99 12 158 52 321
Nuclear 138 20 30 909 1097
Sum 816 258 253 1100 2427

Table 4.8: Confusion matrix of prediction results of combining classifiers learned from 3 se-
quence regions for Data Euk.

Cellular location Accuracy (%)
Cytoplasmic 77.5
Extracellular 63.4
Mitochondrial 49.2
Nuclear 82.9
Overall accuracy 74.3

Table 4.9: The predictive accuracy for subcellular locations of combining classifiers learned from
3 sequence regions for Data Euk.

4.8 Stacking

Learning ensembles is a useful method for reducing error on a test set. Simple cross validation
schemes choose only the best model on the validation set, which corresponds to a winner-take all
strategy. An alternative approach is to use a combination of models trained on different validation
sets.

[Wolpert, 1992] suggested to use cross-validation to combine models rather than choose be-
tween them and extended this idea under the name of stacked generalization.

The basic idea of stacking is to train I models on a training set D, leaving aside a section of
the training set for validation. Let us assume that only one pattern was leaved aside for validation.
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Each model is evaluated on this pattern and each produces an output. The set of I outputs of the
models and the target label of the pattern is then added as a new training example to a new
training set D2. This process is repeated for all patterns in the training set D, so that a new
training set D2 is generated. This set is used to train level 1 model, which learns to map from
the outputs of the models trained on different partition of the training set, to the target output. At
the end of this process the level 0 models are retrained using the full data set D. Predictions are
made by feeding query data to the level 0 models and feeding their outputs to the level 1 model.

The general framework of combining the predictions of multiple classifiers via a separate,
trainable classifier is commonly referred to as stacking. Since for the training set we have both
the predictions of the based learners (base-level classifiers) and the true class, we can train a
meta-level classifier. Figure 4.2 depicts a stacked classifier architecture.

Instance

Prediction

Component 
classifiers

Combining
classifier

Component 
predictions

Figure 4.2: Stacked classifier architecture.
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The most important issues in stacking are the choice of the features and the algorithm for
learning at the meta-level.

[Ting and Witten, 1999] use base-level classifiers whose predictions are probability distribu-
tions over the set of class values, rather than single class values. The meta-level attributes are
thus the probabilities of each of the class values returned by each of the base-level classifiers.
Multi-response linear regression (MLR) is recommended by the authors for meta-level learning.

[Merz, 1999] proposes a stacking method called SCANN that uses correspondence analy-
sis to detect correlations between the predictions of base-level classifiers. The original meta-
level feature space (the class value predictions) is transformed to remove the dependencies and a
nearest-neighbor method is used as the meta-level classifier on this new feature space.

[Todorovski and Dzeroski, 2000] introduce a new meta-level learning method called meta
decision trees (MDTs). Properties of the probability distributions predicted by the base-level
classifiers (such as entropy and maximum probability) are used as meta-level attributes, rather
than the distributions themselves. These properties reflect the confidence of the base-level classi-
fiers and give rise to very small MDTs, which can be inspected and interpreted. In a leaf node, a
MDT predicts which classifier is to be used for classification of an example, instead of predicting
the class value of the example directly.

Cascading [Gama and Brazdil, 2000] is another related variant where the classifiers are ap-
plied in chain and there is no level 1 classifier. Each base classifier, when applied to the data,
adds his class probability distribution to the data and returns this augmented data set, which is
to be used by the next classifier. Thus, the order in which the classifiers are executed becomes
important. Furthermore, cascading increases the dimensionality of the data set with each step.

I experimented with combining the results of different Bayesian classifiers (learned on a
randomly chosen subsets of data, learned with different models and alphabets) with Naive Bayes.
But this stacked generalizer worked not better as the single Bayesian classifier.

4.9 Arbitration

An arbiter is a classifier that is trained to resolve disagreements between the base classifiers (see
e.g. [Chan and Stolfo, 1995] and [Tsymbal et al., 1999]). An arbiter is generated using the same
learning algorithm that is used to train the base classifiers. In the arbiter technique, the training
set for the arbiter is subset of the union of the training sets for the base classifiers. The choice of
examples picked for the training set for the arbiter is dictated by a selection rule. One version of
the selection rule is as follows:

An instance is selected if none of the classes in the K base predictions gathers a majority
vote (> K/2 votes).

The purpose of this rule is to choose examples that are confusing, i.e. the majority of classi-
fiers do not agree.

In the prediction phase an arbitration rule decides a final classification outcome based upon
the base predictions and the classification predicted by the arbiter. One arbitration rule is as
follows:
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Return the class with a plurality of votes with preference given to the arbiter‘s choice in case
of a tie.

The generation of an arbiter has much in common with the boosting technique that also filters
training instances to train the base classifiers. The approach can be considered as a particular
case of the stacked generalization framework that integrates the results of the base classifiers by
a trained meta-level classifier.

I evaluated empirically the arbiter meta-learning technique. Combining of classifiers, trained
on two training data subsets with Bayesian classification procedure, and arbiter, works slightly
better as the single Bayesian classifier, learned on the whole training data. Tables 4.10, 4.11 and
4.12, 4.13 show the results for Data Euk and Data Gram data sets.

Predicted group
Cytoplasmic Extracellular Mitochondrial Nuclear Sum

Cytoplasmic 520 26 71 67 684
Extracellular 53 208 29 35 325
Mitochondrial 109 11 160 41 321
Nuclear 147 29 65 856 1097
Sum 829 274 325 999 2427

Table 4.10: Confusion matrix of prediction results of arbiter meta-learning procedure for
Data Euk.

Cellular location Accuracy (%)
Cytoplasmic 76.0
Extracellular 64.0
Mitochondrial 49.8
Nuclear 78.0
Overall accuracy 71.9

Table 4.11: The predictive accuracy for subcellular locations of arbiter meta-learning procedure
for Data Euk.

4.10 Grading

One can assume that each classifier has a particular subdomain for which it is most reliable, and
so a description of this area of expertise can be learned.

[Seewald and F ürnkranz, 2001] propose a method called grading that learns a meta-level
classifier for each base-level classifier. The meta-level classifier predicts whether the base-level
classifier is to be trusted, i.e. whether its prediction will be correct. The base-level attributes
are used also as meta-level attributes, while the meta-level outputs are + (correct) and - (incor-
rect). In the prediction phase only the predictions of base-level classifiers that are predicted to be
correct are taken and combined by summing up the probability distributions.
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Predicted group
Cytoplasm Inner membrane Periplasm Outer membrane Extracell Sum

Cytoplasmic 244 8 32 3 6 293
Inner membrane 34 272 14 10 1 331
Periplasmic 30 12 222 28 15 307
Outer membrane 37 19 31 305 62 454
Extracellular 10 9 18 39 130 206
Sum 355 320 317 385 214 1591

Table 4.12: Confusion matrix of prediction results of arbiter meta-learning procedure for
Data Gram.

Cellular location Accuracy (%)
Cytoplasmic 83.3
Inner membrane 82.2
Periplasmic 72.3
Outer membrane 67.2
Extracellular 63.1
Overall accuracy 79.0

Table 4.13: The predictive accuracy for subcellular locations of arbiter meta-learning procedure
for Data Gram.

Grading is very similar to the approach introduced by [Bay, 2000]. They also train a classifier
to learn whether a classification is reliable or not. However, they did not use this approach for
decision making, but instead aimed at providing insight about the domain regions in which a
learner is not able to discriminate well. The negative feedback- when the meta classifier predicts
that the base classifier is wrong- only rules out the class predicted by the base classifier, but does
not help to choose among the remaining classes (except, for two-class problems).

The main differences between grading and stacking (or combiners) is that grading does not
change the original input data- by replacing it with class predictions or class probabilities (or
adding them to it)- but instead modifies the class values.

The approach of [Ortega 2001] builds a referee predictor for each of the component classi-
fiers. The final classification is that returned by the component classifier whose correctness can be
trusted the most, according to a confidence level provided by the referees. It may not be the case
that those regions of the example space where base classifier is reliable can be simply described
by the input data. [Ortega 2001] proposes to use intermediate subconcepts of the base classifier
as features for the induction of referees. This is the point where approach of [Ortega 2001] differs
from grading. The modular architecture of the approach is depicted in Figure 4.3.
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Figure 4.3: The modular architecture of the approach of [Ortega 2001].
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I evaluated the grading approach as it is proposed in [Seewald and F ürnkranz, 2001] on my
classification task using Bayesian classification learning procedure for learning of base and meta
classifiers for each class. Tables 4.14-4.17 summarize the empirical results. I observe that grad-
ing does not help in improving overall classification accuracy compared to single Bayesian clas-
sifier.

Predicted group
Cytoplasmic Extracellular Mitochondrial Nuclear Sum

Cytoplasmic 522 34 72 56 684
Extracellular 60 196 35 34 325
Mitochondrial 116 13 172 20 321
Nuclear 156 49 86 806 1097
Sum 854 292 365 916 2427

Table 4.14: Confusion matrix of prediction results of grading approach for Data Euk.

Cellular location Accuracy (%)
Cytoplasmic 76.3
Extracellular 60.3
Mitochondrial 53.6
Nuclear 73.5
Overall accuracy 69.9

Table 4.15: The predictive accuracy for subcellular locations of grading approach for Data Euk.

Predicted group
Cytoplasmic Plasma membrane Mitochondrial Other Sum

Cytoplasmic 41 2 0 0 43
Plasma membrane 3 23 3 1 30
Mitochondrial 1 0 11 0 12
Other 3 0 3 8 12
Sum 48 25 15 9 97

Table 4.16: Confusion matrix of prediction results of grading approach for Data Apoptosis.

4.11 Decision tree of classifiers

An algorithm that forms a decision tree of classifiers by ordering the classifiers in order of their
performance on the training data was outlined in [Garg and Pavlovic, 2002].
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Cellular location Accuracy (%)
Cytoplasmic 95.3
Plasma membrane 76.7
Mitochondrial 91.7
Other 66.7
Overall accuracy 85.6

Table 4.17: The predictive accuracy for subcellular locations of grading approach for
Data Apoptosis.

Let h1, h2, . . . , hM be the set of M classifiers. A decision tree, which has these classifiers as
its nodes and the value of the leaf represents the output, is constructed as follows.

Let D = {(x1, y1), . . . , (xN , yN)} be the set of training samples, where yi ∈ {c1, . . . , cK} (a
set of K classes). The first step is to evaluate each classifier on the training samples. For each
classifier, K different errors are measured:

em
j = P (yi = ck, k 6= j|hm(xi) = cj)

The classifiers are ordered based on their performance on the training data. The classifier
with the lowest error is picked to form the root node of the decision tree. If em

j is the lowest error,
then hm forms the top node of the decision tree. The output of the decision tree is cj whenever
hm says cj , else the output is based on the decision made by the right subchild of the root node.
The left child of the top node is a leaf with value cj . The right node points to a decision tree
made of the classifiers. To obtain the classifier that forms the root node of the right subtree, the
algorithm is repeated. However, this time the sample set is D̃ = {(xi, yi)} for all i, such that
hm(xi) 6= cj . This process is repeated until all the classifiers are incorporated in the decision
tree.

I tried to combine with this procedure 2 classifiers- one learned with BC approach and one
with BCT approach- in order to improve on the results of BCT (the best of these two) on eukary-
otic data. Tables 4.18 and 4.19 demonstrate the results. However, no synergethic effect of this
combination can be observed. The reason for this can be in the reduction of the available training
data due to the necessity of a separate validation set and as a consequence the reduction of the
quality of the base learners.
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Predicted group
Cytoplasmic Extracellular Mitochondrial Nuclear Sum

Cytoplasmic 506 25 68 85 684
Extracellular 35 238 17 35 325
Mitochondrial 98 9 167 47 321
Nuclear 80 26 37 954 1097
Sum 719 298 289 1121 2427

Table 4.18: Confusion matrix of prediction results of DT of classifiers procedure for Data Euk.

Cellular location Accuracy (%)
Cytoplasmic 74
Extracellular 73.2
Mitochondrial 52
Nuclear 87
Overall accuracy 76.8

Table 4.19: The predictive accuracy for subcellular locations of DT of classifiers procedure for
Data Euk.
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Chapter 5

Growing Classification Trees using mixture
modeling

A meta-level classifier should be capable of identifying the areas of expertise of its base-level
classifiers and following the best expert for each new item of discussion. If a meta-level classifier
is inaccurate, it will be incapable of exploiting the full data coverage provided by base-classifiers.
[Brodley and Lane, 1996] argue that the increasing coverage through diversity is not enough to
ensure increased prediction accuracy- if the integration method does not utilize the coverage.

In this chapter I will consider methods that explicitly assign a different classifier for each
mutually exclusive subset of the data, so the regions of expertise are defined before learning the
base-level classifiers rather than afterwards. The subsets of instances are typically defined using
models.

I use an unsupervised approach called clustering to find the areas in training data. In the next
section I give some background information on clustering, especially on model-based clustering
of sequences. Then I give a short introduction to EM algorithm, which helps to identify the
distributions in the data and to classify the data points based on the probability to belong to these
distributions. I also handle the problem of finding the number of clusters in the data. In section
5.4 I present my algorithm, followed by the section with the results.

5.1 Model-based clustering

Clustering algorithms based on probabilistic models offer a principled alternative to distance-
based algorithms. Data is viewed as sample from a population that consists of a number of
subpopulations (clusters or components). Each cluster can be described by a probability distri-
bution.

Consider a data set consisting of N sequences, D = {s1, . . . , sN}. The problem addressed
in this section is the discovery of a natural grouping of the sequences into K clusters. This is
analogue to clustering in multivariate feature space which is normally handled by methods such
as k-means and Gaussian mixtures. Here, however, we are trying to cluster the sequences rather
than the feature vectors.
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A probabilistic model for this problem is that of a finite mixture model.

p(s) =
∑K

j=1 αjpj(s|θj),

where s denotes a sequence, αj is the weight of the jth model, and pj(s|θj) is the density
function for the sequence s given the component model pj with parameters θj). When we assume
that the pjs are Markov Chains, then the θjs are the transition matrices and initial state probabil-
ities, all for the js component. There is no crossover in this mixture model. Data is assumed to
come from one component or the other.

We are interested in learning the maximum-likelihood (ML) or maximum a posteriori (MAP)
parameter estimates given the data D, i.e.

θML = argmaxθ{p(D|θ)}

and

θMAP = argmaxθ{p(D|θ)p(θ)},

where under the usual assumption that data instances are conditionally independent given the
underlying model, we have

p(D|θ) =
∏N

i=1 p(si|θ),

known as the likelihood.
I fit mixture model to the data with the help of Expectation Maximization algorithm (EM).

5.1.1 Related work

The concept of using a generative model for clustering non-vector data has been independently
pursued in several different contexts. [Poulsen, 1990] introduced a particular form of Markov
mixtures and an EM algorithm for modeling heterogeneous behavior in consumer purchasing
data. More general versions of Markov mixtures were developed by [Smyth, 1997], [Smyth, 1999]
and [Ridgeway, 1997].

The use of Hidden Markov Models for clustering sequences was used in the context of dis-
covering subfamilies of proteins in [Krogh et al., 1994].

5.2 Parameter estimation and the EM algorithm

In this section I provide a general description of an EM algorithm that can be applied to mixture-
model clustering. The name to the algorithm was given by [Dempster et al., 1977] in their fun-
damental paper. Complete proofs can be found in the excellent tutorial of [Bilmes, ].

The EM algorithm is a general technique for finding maximum likelihood (ML) or maximum
a posteriori (MAP) parameters when some aspect of the data is considered as missing. In a
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mixture context, the missing data consists of the cluster labels for each individual: if we knew
these labels then parameter estimation would be quite straightforward.

The EM algorithm operates in two re-estimation steps.
In the E-step one calculates the posterior probabilities of the unobserved clustering variables

p(ci|si, θ) for each data sample under each of the K cluster models using the current value of the
parameters.

In the M-step one updates parameters by weighting each data sample according to its class-
conditional probability.

That leads to a sequence of parameter settings, which results in non-decreasing likelihood (or
posterior probability), which is guaranteed to find at least a local maximum of the ML or MAP
objective function.

Once we define a proper likelihood over the data of interest, then specification of any specific
EM algorithm (for any particular type of models) follows in a direct manner from the general
principles of EM.

5.2.1 EM algorithm for mixture of Markov Chains

Let D = {s1, . . . , sN} denote the sequences to be clustered. It is assumed that each sequence is
assigned to one of the clusters C = {c1, . . . , cK} with some probability P (c) and

∑
c P (c) = 1.

The number of clusters K is fixed.
Let n(s, ai, aj) indicate the observed frequency of occurring of the amino acid aj after the

amino acid ai in the sequence s.

n(s, ai) =
∑20

j=1 n(s, ai, aj)

Introducing class-conditional transition probabilities P c(aj|ai) and class prior probabilities
P (c) (stacked in a parameter vector θ) the likelihood for the mixture model is defined by:

L(θ|D) =
∏

s

∑
c P (c)P (s|cs = c; θ),

where

P (s|cs = c; θ) =
∏

i,j P c(aj|ai)
n(s,ai,aj).

The two steps of EM algorithm for the model take the form:

E-step:

P (cs = c|s; θt) = P (c)P (s|cs=c;θt)
P (s|θt) =

P (c)
∏

i,j P c(aj |ai)
n(s,ai,aj )

∑
c′ P (c′)

∏
i,j P c(aj |ai)

n(s,ai,aj )

M-step:

P (c) = 1
N

∑
s P (cs = c|s; θt)

P c(aj|ai) =
∑

s P (cs=c|s;θt)n(s,ai,aj)∑
s P (cs=c|s;θt)n(s,ai)

.
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5.2.2 EM algorithm for mixture of Multinomial Models

Amino acid frequencies are encoded using count variables n(s, a), which indicate how often an
amino acid a occured in a sequence s; n(s) =

∑
a n(s, a) denotes the length of the sequence.

Introducing class-conditional amino acid distributions P (a|c) and class prior probabilities
P (c) (stacked in a parameter vector θ) the likelihood for the mixture model is defined by

L(θ|D) =
∏

s

∑
c P (c)P (s|cs = c; θ),

where

P (s|cs = c; θ) =
∏

a P (a|c)n(s,a).

For this model the two steps of EM algorithm take the form:

E-step:

P (cs = c|s; θt) = P (c)P (s|cs=c;θt)
P (s|θt) =

P (c)
∏

a P (a|c)n(s,a)

∑
c′ P (c′)

∏
a P (a|c′)n(s,a)

M-step:

P (c) = 1
N

∑
s P (cs = c|s; θt)

P (a|c) =
∑

s P (cs=c|s;θt)n(s,a)∑
s P (cs=c|s;θt)n(s) .

Since the EM algorithm is hill-climbing the likelihood surface, the quality of the final solution
can depend critically on the initial conditions.

5.3 Learning the number of mixture components

The problem of learning the best value for K in a mixture model is a difficult one in practice
even for the case of Gaussian mixtures. There has been considerable prior work on this problem.
Penalized likelihood approaches are popular, such as Bayesian Information Criterion (BIC) and
Akaike Information Criterion (AIC), where the log-likelihood on the training data is penalized
by the substraction of a complexity term.

[Smyth, 1997] investigated the use of Monte-Carlo cross-validation approach for determining
the number of clusters K from the data.

Let LK(Dtest) be the log-likelihood, where the model with K components is fitted to the
training data D, but the likelihood is evaluated on Dtest. We can view this likelihood as a func-
tion of a parameter K. Maximizing out-of-sample likelihood over K has been shown to be a
reasonable model selection strategy, more robust then penalized likelihood methods.

In Monte-Carlo cross-validation approach the data is partitioned into a fraction β for testing
and 1− β for training and this procedure is repeated M times where the partitions are randomly
chosen on each run (i.e. need not be disjoint). For the mixture clustering problem β = 0.5 was
found empirically to work well.
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5.4 Growing Classification Trees

In this section I propose an algorithm, which can also be seen as a decision-tree hybrid. The
main idea is to fit a clustering model in every internal node of the tree and to partition the data at
this node into the corresponding groups. The leaves contain Bayesian classifiers.

Top-down methods require a procedure to determine whether the classifier is optimal for a
given space (or subspace) or whether the space should be splitted into a new set of subspaces. I
use 5-fold cross-validation procedure to assess the quality of the classifier on the leaf and split
the leaf, if the quality is below Threshold. The final procedure is as follows:

Input: a set of labelled instances.

• If the quality of the classifier learned on the training examples at the current node is above
Thresh, create a leaf node with this classifier on it.

• Otherwise, cluster the training examples;

• Let K- number of clusters found at the node. If K = 1, create a leaf node with the classifier
on it.

• Otherwise, create K child nodes and assign the examples to the corresponding child nodes;

• for each child node, call the algorithm recursively.

5.4.1 Related work

In this connection the work of [Kohavi, 1996] is very interesting, where the author proposes an
algorithm, NBTree, which induces a hybrid of decision-tree classifiers and Naive-Bayes classi-
fiers: the decision-tree nodes contain univariate splits as regular decision-trees, but the leaves
contain Naive-Bayes classifiers.

The utility of the node is 5-fold cross-validation accuracy estimate of using Naive-Bayes
classifier at the node. The utility of a split is the weighted sum of the utility of the nodes, where
the weight given to a node is proportional to the number of instances that go down to that node.
A split is defined to be significant if the relative (not absolute) reduction in error is greater than
5% and there are at least 30 instances in the node.

In [Seewald et al., 2000] a C4.5-style learner is introduced with alternative leaf models (Naive
Bayes, IB1 (nearest neighbour algorithm) and multi-response linear regression), which can re-
place the original C4.5 leaf nodes during reduced error post-pruning. The authors consider their
hybrid approach as a step towards the construction of learners that locally optimize their bias for
different regions of the instance space.

The method I propose here resembles also Utgoffs Perceptron trees [Utgoff, 1988], in which
each decision node contains an attribute test, and each leaf node contains a Linear Threshold
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Unit (LTU). The associated learning algorithm is called by the author the perceptron tree error
correction procedure and it is an incremental algorithm. It uses the following splitting criteria:
if the space of instances at a node is not linearly separable, then it is necessary that the space be
splitted (partitioned) into subspaces.

[Torgo, 1999] proposed the usage of kernel regressors in the leaves of regression tree. In this
work a good performance level is achieved with much smaller trees than if kernel regression was
not used.

5.5 Results and discussion

I have stated that this procedure works comparable to Bayesian Classification Tree procedure
described in Section 3, only slightly worser. Tables 5.1, 5.2 and 5.3, 5.4 show the results of the
experiments with Data Euk and Data Apoptosis.

Predicted group
Cytoplasmic Extracellular Mitochondrial Nuclear Sum

Cytoplasmic 493 13 70 108 684
Extracellular 33 241 7 44 325
Mitochondrial 87 5 162 67 321
Nuclear 79 11 21 986 1097
Sum 692 270 260 1205 2427

Table 5.1: Confusion matrix of prediction results of Growing Classification Tree approach for
Data Euk.

Cellular location Accuracy (%)
Cytoplasmic 72.1
Extracellular 74.2
Mitochondrial 50.5
Nuclear 89.9
Overall accuracy 77.5

Table 5.2: The predictive accuracy for subcellular locations of Growing Classification Tree ap-
proach for Data Euk.
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Predicted group
Cytoplasmic Plasma membrane Mitochondrial Other Sum

Cytoplasmic 40 0 1 2 43
Plasma membrane 0 27 3 0 30
Mitochondrial 1 0 11 0 12
Other 3 0 1 8 12
Sum 44 27 16 10 97

Table 5.3: Confusion matrix of prediction results of Growing Classification Tree approach for
Data Apoptosis.

Cellular location Accuracy (%)
Cytoplasmic 93
Plasma membrane 90
Mitochondrial 91.7
Other 66.7
Overall accuracy 88.7

Table 5.4: The predictive accuracy for subcellular locations of Growing Classification Tree ap-
proach for Data Apoptosis.

I have also conducted another kind of experiment. I implemented the algorithm, where I used
classifiers at each terminal node, but have not used clustering at each decision node, instead the
classification like in Bayesian Classification Tree procedure described in Section 3. The results
of this experiment with Data SWISS are shown in Tables 5.5 and 5.6. Note, that the overall
accuracy is even higher than achieved with Bayesian Classification Tree procedure (compare
with the Table 3.7).
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Predicted group
Chlor Cytop Cytos End Ext Gol Lys Mit Nuc Per Vac Sum

Chloroplast 853 80 1 6 34 0 3 98 61 5 0 1141
Cytoplasm 68 1803 5 11 136 3 9 125 260 16 1 2437
Cytoskeleton 0 10 8 0 0 0 0 0 6 0 0 24
Endoplasmic 5 10 0 91 7 0 3 5 10 0 1 132
Extracellular 45 168 0 9 3578 10 25 63 244 12 11 4165
Golgi 0 8 0 0 6 6 1 1 10 0 0 32
Lysosome 0 10 0 0 16 0 102 1 1 1 0 131
Mitochondria 82 141 0 7 66 0 3 693 97 11 0 1100
Nuclear 41 271 2 12 135 5 7 62 2787 3 1 3326
Peroxisome 5 18 0 1 4 0 2 15 3 74 0 122
Vacuole 1 3 0 1 15 0 2 4 3 0 24 53
Sum 1100 2522 16 138 3997 24 157 1067 3482 122 38 12663

Table 5.5: Confusion matrix of prediction results of Growing Classification Tree approach for
Data SWISS.

Cellular location Accuracy (%)
Chloroplast 74.8
Cytoplasm 74
Cytoskeleton 33.3
Endoplasmic ret 68.9
Extracellular 85.9
Golgi apparatus 18.8
Lysosome 77.9
Mitochondria 63.0
Nuclear 83.8
Peroxisome 60.7
Vacuole 45.3
Overall accuracy 79.1

Table 5.6: The predictive accuracy for subcellular locations of Growing Classification Tree ap-
proach for Data SWISS.
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Chapter 6

Classification using Mixtures of Experts

The Mixture of Experts model is the application of the divide-and-conquer principle where the
problem is treated as one of combining multiple models (experts), each of which is defined over
a local region of the input space. The selection of the most appropriate expert can be governed by
a supervisor learning machine. This idea led to the architecture, where a gating model performs
the division of the input space and experts (e.g. small neural networks) perform the effective
calculation at each assigned region separately. An extension of this approach is the Hierarchical
Mixture of Experts method, where the outputs of the different experts are combined by different
supervisor gating models hierarchically organized.

The Mixture of Experts algorithm differs from other ensemble algorithms in the relation be-
tween the combination model and the basic learners. Most ensemble learning algorithms, e.g.
stacking, first train the basic predictors (or use existing predictors) and then try to tune the com-
bination model. The Mixture of Experts algorithm trains the combination model simultaneously
with the basic learners and the current model determines the data sets provided to each learner
for its further training.

The problem of training Mixtures of Experts can be treated as a maximum likelihood esti-
mation problem. A general technique for this task is the Expectation Maximization algorithm
(EM), wich I have already discussed in Chapter 5. For Mixtures of Experts the EM decouples
the estimation process in a manner that fits well with the modular structure of the architecture.

Section 6.1 describes a mathematical framework for Mixtures of Experts model and the EM
algorithm.

In Section 6.2 I propose the model, which I call Mixture of Bayesian Classifiers.
The two main advantages of the Mixture of Experts are localization of the different experts

and usage of a dynamic model for combining the outputs. The Mixture of Experts is suitable
when the patterns can be naturally divided to simpler (homogeneous) subsets and the learning
task in each of these subsets is not as difficult as the original one. However, real world problems
may not exhibit this property and furthermore, even when such a partition exists, the required
gating function may be complex and the initial stage of localizing the experts has a hen-and-egg
nature.

I have not found any paper which describes the use of Mixture of Experts in the field of
Bioinformatics. In the biomedical research [Ansch ütz, 2001] applied this model for skin cancer
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diagnosis.

6.1 Mixtures of Experts

A mixture of experts consists of m experts, the outputs yj(x) of which are weighted by the outputs
of a gating network gj(x) for input vector x:

y(x) =
∑m

j=1 gj(x)yj(x).

A mixture of experts is a probabilistic model that can be interpreted as a mixture model for
estimating conditional probability distributions:

p(c|x) =
∑m

j=1 gj(x)φj(c|x),

where the φj represent the conditional densities of target value c for expert j. In terms of a
mixture model, the gating network corresponds to input-dependent mixture coefficients. Note
that, the gating network splits the data in a soft way, allowing several experts to be selected at a
time.

A gating model learns to partition the data space and experts are attributed to these different
regions. Since the gating model deals with the decomposition in smaller tasks, the choice of
the type of gating model is an important one. Originally, it has been assumed that the gate is
a feed-forward neural network [Jordan and Jacobs, 1994]. In [Xu et al., 1995] another type of
gate was proposed based on an unsupervised mixture model. Such a localized gating model was
based on GMMs (Gaussian Mixture Models). [Moerland, 1998] gives a general derivation of the
EM algorithm for a localized mixtures of experts and showed that one can choose any type of
mixture model as gating model. [Moerland, 1998] used also mixtures of latent variable models.

So, for localized model we have:

gj(x) =
αjpj(x)∑
i αipi(x)

,

where
∑

i αi = 1 , αi ≥ 0, and the pis are probability density functions; thus the gating
network outputs gj sum to one and are non-negative.

To obtain a one-pass solution for the gating model parameters, maximum likelihood estima-
tion is performed on the joint density:

p(x, c) = p(c|x)p(x) =
∑m

j=1 αjpj(x)φj(c|x),

which by maximum likelihood leads to the following error function on the training data
{xn, cn}:

E = −
∑

n log
∑m

j=1 αjpj(x
n)φj(c

n|xn).

Minimization of this error function is done by iteratively repeating a two-step procedure. The
E-step consists of calculating the expected values of the so-called missing variables zn

j :
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ε(zn
j ) =

αjpj(x
n)φj(c

n|xn)
∑m

i=1 αipi(xn)φi(cn|xn)
= hj(x

n, cn).

The error function can be interpreted as the sum of an unsupervised part that encourages good
density estimation (gate) and a supervised part that encourages correct classification (experts).
The gate error function is:

−
∑

n

∑m
j=1 hj(x

n, cn)log(αjpj(x
n)).

This is almost the error function that is minimized in the M-step when applying the EM
algorithm to a simple mixture model. The only difference is in the definition of their posteriors
h that in the case of a localized mixture of experts include both input and output values and thus
incorporate the supervised errors at the output of the expert networks.

The expert error function and consequently the M-step for the experts of the localized model
is identical to the one obtained in [Jordan and Jacobs, 1994] for standard mixture of experts.

The exact form of the M-step of the EM algorithm depends on the choice of the model for
the gate and experts.

6.2 Mixtures of Bayesian Classifiers

The closely related work to my approach is that of [Wiering, 2003]. His architecture is similar
to the architecture of Hierarchical Mixture of Experts model of [Jordan and Jacobs, 1994], but
instead of using linear networks as models, the author used Naive Bayesian Classifiers (NBC).
Thus, the architecture consists of gating NBCs which partition the data and weight the expert
NBCs predicting the class probabilities.

Have a look at Figure 6.1 which depicts the architecture of the model I propose. This is the
Mixture of Experts model, where gate and experts are Bayesian Classifiers, which I have already
used in all previous Chapters.

For the initialization of Mixture of Experts model I use the procedure proposed in the paper of
[Avnimelech and Intrator, 1999], which initializes the partition of the data set to different experts
in a boost-like manner. The algorithm is as follows:
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Figure 6.1: The Mixture of Bayesian Experts architecture. The total output is the weighted sum
of the expert outputs, where the weights are gating classifier outputs.
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The Boosted Mixture of Experts (BME) algorithm

1. Train the first expert on all the training set.

2. Assign the data instances on which the current experts are not confident to the initial
training set of the new expert and train it.

3. Refining stage:

- Partition the data according to the confidence of each expert on each data
instance

- Train each expert on its training set.

4. If more experts are required - return to step 2.

One can also use a randomizing initialization process. Two runs on the same data produce,
in general, different results.

Also a Hierarchical Mixture of Experts (HME), which has a tree structure, can be considered
further. The leaves of the tree contain the expert classifiers and the non-terminal nodes contain
the gates, which in my case can be also Bayesian classifiers. The difference to the model I
have proposed in Chapter 5 is that HMEs can train the parameters of the gates and experts
simultaneously employing the EM procedure.

6.3 Results and discussion

Following Tables demonstrate that some improvement of the overall performance of classifica-
tion can be achieved with ME compared to single Bayesian classification for eukaryotic and
apoptosis data. But MEs did not manage to outperform BCT.

Predicted group
Cytoplasmic Extracellular Mitochondrial Nuclear Sum

Cytoplasmic 483 10 62 129 684
Extracellular 38 173 49 65 325
Mitochondrial 106 4 125 86 321
Nuclear 86 15 22 974 1097
Sum 713 202 258 1254 2427

Table 6.1: Confusion matrix of prediction results of Mixture of Experts approach for Data Euk.
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Cellular location Accuracy (%)
Cytoplasmic 70.6
Extracellular 53.2
Mitochondrial 38.9
Nuclear 88.8
Overall accuracy 72.3

Table 6.2: The predictive accuracy for subcellular locations of Mixture of Experts approach for
Data Euk.

Predicted group
Cytoplasmic Plasma membrane Mitochondrial Other Sum

Cytoplasmic 38 0 0 5 43
Plasma membrane 0 29 1 0 30
Mitochondrial 0 1 11 0 12
Other 2 2 0 8 12
Sum 40 32 12 13 97

Table 6.3: Confusion matrix of prediction results of Mixture of Experts approach for
Data Apoptosis.

Cellular location Accuracy (%)
Cytoplasmic 88.4
Plasma membrane 96.7
Mitochondrial 91.7
Other 66.7
Overall accuracy 88.7

Table 6.4: The predictive accuracy for subcellular locations of Mixture of Experts approach for
Data Apoptosis.
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Chapter 7

Delegating classifiers

In this section I want to apply and analyse the idea of delegating classifiers, which was proposed
in [Ferri et al., 2004]. Section 7.1 first summarizes the delegation framework. In Section 7.2 I use
the Bayesian classification as learning algorithm for the base classifiers and apply the delegation
procedure to my classification task. In Section 7.3 and Section 7.4 I propose two possibilities to
extend a fundamental notion of delegation and combine it with the ensemble methods.

7.1 Cautious classifiers and delegation

The novel approach of delegation can be summarized by the motto: let others do the things that
you cannot do well.

[Ferri, 2004] introduced the notion of a cautious classifier as one that classifies only the
examples for which it is sure of being able to make the right decision, and abstains for the rest of
its inputs, leaving them for another classifier.

The closest idea to delegation comes from a variant of separate-and-conquer technique in-
troduced in [Frank and Witten, 1998]. PART algorithm learns a decision tree, selects the branch
with largest coverage, removes the rest of the tree and trains a second tree with the remaining
examples.The process continues until all the examples are covered.

Delegation is a serial (not parallel or hierarchical), transferring (no combination), multi-
classifier method. The resulting classifier is not a combination of classifiers, but a decision
list.

Since each classifier retains part of the examples, the next classifier has fewer examples for
training and, hence, the process can be much more efficient than other ensemble methods.

The idea of delegation arises two main questions. First, we have to determine a threshold
or decision rule to decide when to apply the classifier and when to delegate to the next one.
Second, we have to determine good techniques to generate classifiers that perform better as
previous classifiers for the examples that they have delegated. As answers to these questions,
[Ferri et al., 2004] proposes following:

• The decision whether an example has to be tackled by the classifier is made by the classifier
itself, using its own estimated reliability.
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• The next classifier is trained solely with the examples rejected by the previous classifier.

It may happen that the first classifier retains all the examples of one class and hence the next
classifier has fewer classes than the first one.

Let us consider for a classifier f the associated functions fclass(e), fconf (e). The function
fclass(e) returns the class assigned by classifier f to example e. The function fconf (e) returns the
confidence (i.e. an estimate of the reliability) of the prediction given by classifier f to example
e. If we have n classifiers, each with corresponding confidence threshold, then the delegating
decision rule is as follows:

Decision rule for a delegating classifier with thresholds τ 1, τ2, . . . , τn

IF f 1

conf (e) > τ1 THEN PREDICT f 1

class(e)
ELSE IF f 2

conf (e) > τ2 THEN PREDICT f 2

class(e)
. . .
ELSE IF f n−1

conf (e) > τn−1 THEN PREDICT f n−1

class (e)
ELSE PREDICT f n

class(e)

One can consider the scenario, where the last classifier delegates its low-confidence examples
back to the first. It is called then round rebound. The rationale is that if an example is rejected
by all the classifiers, it would be best classified by the first rather than the last classifier because
the first classifier is more general and potentially less overfitting.

The general algorithm for learning a delegating classifier, which was proposed in the work of
[Ferri et al., 2004], is following:

Procedure Learn delegating classifier(Train)

Tr1 ← Train, i ← 0

do
i ← i + 1

LEARN f i with Tr i

Obtain τ i

Tr> := {e ∈ Tr i : f i

conf (e) > τ i}

Tr≤ := {e ∈ Tr i : f i

conf (e) ≤ τ i}

Tr i+1 ← Tr≤

until Tr> = 0 or i > maxIterations

[Ferri et al., 2004] proposes also some approaches to determine the thresholds of the classi-
fiers. One of them is that a classifier retains a fixed percentage of the examples. More formally,
given a fraction ρ, a classifier f and a training set Tr, we can obtain the threshold τ as following:

τ = max{t : |{e ∈ Tr : fconf (e) > t}| ≥ ρ ∗ |Tr |}
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The method is called Global Absolute Percentage.
An alternative approach is to have a different threshold τc for each class c in order to handle

imbalanced data sets. This is called Stratified Absolute Percentage.
Since there are examples, that are removed for the next classifier in the chain, patterns in

the data, obscured for the previous classifier, can be revealed by the next classifiers in the chain.
For example when delegation is used with fence-and-fill methods (i.e. methods that partition the
instance space into regions), after the clearing the space the remaining small areas may be joined
into bigger areas.

When using divide-and-conquer methods, such as decision trees, there will be several dele-
gating nodes, which can be joined into a graft node.

When using decision trees, the method of safe pre-pruning can be used, which would detect
when a node is not leading to leaves with confidence greater than the threshold.

The authors of [Ferri et al., 2004] proposed also the use of different learning algorithms for
the base classifiers. The first classifier can be an efficient classifier (e.g. Naive Bayes), while
further down the delegation chain will be more data-intensive methods.

7.2 Delegating Bayesian Classifiers

I investigated the use of the idea of delegating classifiers with Bayesian classification algorithm
for learning of base classifiers.

Assume the function fprobc
(e) returns the probability of class c for example e. The class

assigned by classifier f to example e is fclass(e) = argmaxcfprobc
(e).

Let me denote as fconf (c) the reliability of the prediction of class c by classifier f. This value
can be calculated as the fraction of training instances of class c assigned to the class c by the
classifier f during the training phase. Then I assume that

fconf (e) = maxc{fprobc(e)} ∗ fconf (fclass(e)).

If fconf (c) is not greater than the threshold, we can prune this class c by labeling it as dele-
gating. In the prediction phase, the instances, assigned by the classifier to the delegating class,
will be directed to the subsequent classifier.

The top-down classification procedure, proposed in Chapter 5, can be used also as learning
algorithm for the base classifiers. In this case, as the reliability fconf (e) of the prediction given
by classifier f to example e the 5-fold cross-validation accuracy estimate of Bayesian classifier
at the terminal node, which the example e reaches, can be used. Non-accurate nodes can be
labeled as delegating. Subtrees leading to delegating nodes could be pruned. This would increase
efficiency.

7.2.1 Results and discussion

The experiments show that delegating approach yields improvements on the overall accuracy re-
sults of Bayesian Classification approach, but works not better than Bayesian Classification Tree
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approach. Tables 7.1-7.4 show the results of delegating procedure for eukaryotic and apoptosis
data.

Predicted group
Cytoplasmic Extracellular Mitochondrial Nuclear Sum

Cytoplasmic 480 20 61 123 684
Extracellular 41 240 11 33 325
Mitochondrial 88 11 154 68 321
Nuclear 92 28 28 949 1097
Sum 701 299 254 1173 2427

Table 7.1: Confusion matrix of prediction results of delegating approach for Data Euk.

Cellular location Accuracy (%)
Cytoplasmic 70.2
Extracellular 73.8
Mitochondrial 48
Nuclear 86.5
Overall accuracy 75.1

Table 7.2: The predictive accuracy for subcellular locations of delegating approach for Data Euk.

Predicted group
Cytoplasmic Plasma membrane Mitochondrial Other Sum

Cytoplasmic 39 3 0 1 43
Plasma membrane 1 27 2 0 30
Mitochondrial 0 1 11 0 12
Other 4 0 0 8 12
Sum 44 31 13 9 97

Table 7.3: Confusion matrix of prediction results of delegating approach for Data Apoptosis.

7.3 Delegating ensembles

Here I want to develop further the delegating paradigm and propose to use at each stage of
delegation not the single classifier, but the combined classifier. I use the unanimity variation of
voting (see Section 4.2) to combine the predictions of base classifiers. The combined classifier
decides that an input sample comes from class Cj if and only if all the classifiers decide for
class Cj, otherwise it rejects the sample (gives out unknown class). In order to make each of
the base classifiers more strict, I use the same procedure as described in 4.5. I allow a classifier
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Cellular location Accuracy (%)
Cytoplasmic 90.7
Plasma membrane 90
Mitochondrial 91.7
Other 66.7
Overall accuracy 87.6

Table 7.4: The predictive accuracy for subcellular locations of delegating approach for
Data Apoptosis.

only to vote for a class if the posterior probability of this class is bigger than a certain threshold.
Otherwise, it rejects an example.

Let f be a combined classifier. The delegating decision rule is as follows:

Decision rule for a delegating combined classifier

IF f1

class(e) 6= unknown THEN PREDICT f 1

class(e)
ELSE IF f2

class(e) 6= unknown THEN PREDICT f 2

class(e)
. . .
ELSE IF fn

class(e) 6= unknown THEN PREDICT f n

class(e)
ELSE PREDICT f 1

class(e)

Note, that I used here the round rebound.
Table 7.5 and Table 7.6 demonstrate the results of the experiment with Data Euk. As base

classifiers I used three classifiers: two learned with multinomial and chain model correspondently
and one learned with chain model but with reduced alphabet.

Predicted group
Cytoplasmic Extracellular Mitochondrial Nuclear Sum

Cytoplasmic 531 22 60 71 684
Extracellular 58 208 31 28 325
Mitochondrial 103 10 177 31 321
Nuclear 130 38 68 861 1097
Sum 822 278 336 991 2427

Table 7.5: Confusion matrix of prediction results of Delegating Ensembles approach for
Data Euk.

7.4 Using delegating approach with meta-learning

In this Section I want to propose how the approaches of delegating and meta-learning can be
combined.
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Cellular location Accuracy (%)
Cytoplasmic 77.6
Extracellular 64
Mitochondrial 55.1
Nuclear 78.5
Overall accuracy 73.2

Table 7.6: The predictive accuracy for subcellular locations of Delegating Ensembles approach
for Data Euk.

The idea is following. For each class, which can be predicted by the base classifier, one meta
classifier is learned, whose task is to predict, when the base classifier will err assigning the query
instance to this class. So this meta classifier will be learned on two-class training set (classes +
and -), consisting of instances, which were truely classified (class +) and falsely classified (class
-) by the base classifier.

In the prediction phase, an instance will be directed to the subsequent base classifier, if it is
assigned by the actual base classifier to some delegating class. Otherwise, it will be considered
by the corresponding meta classifier. If this meta classifier predicts class -, the instance will be
directed to the subsequent base classifier. If it predicts class +, the class label will be given out
as final prediction.

The class will be labeled as delegating during the training phase, if its corresponding meta
classifier is precise for class +. The precision for class + is defined as following:

precision(+) =

T (+)
A(+)

,

where A(+) is the number of instances assigned to class + and T (+) is the number of in-
stances correctly assigned to class + during the validation of meta classifier.

The reason for this, why I use here by the assessment of the meta classifier not the overall
accuracy of the meta classifier, but its precision for class +, is following. Since the sequences,
falsely classified by the meta classifier as belonging to the class -, will be delegated for further
learning of base classifiers, they will have the chance to be classified (hopefully correctly) by
the following classifiers. The sequences, which are falsely classified by the meta classifier as
belonging to the class +, will never get the chance to participate in the subsequent learning
procedure, which could possibly learn to classify them correctly.

Table 7.7 and Table 7.8 report the experimental results with eukaryotic data.
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Predicted group
Cytoplasmic Extracellular Mitochondrial Nuclear Sum

Cytoplasmic 486 34 69 95 684
Extracellular 37 246 16 26 325
Mitochondrial 97 15 164 45 321
Nuclear 120 26 40 911 1097
Sum 740 321 289 1077 2427

Table 7.7: Confusion matrix of prediction results of delegating approach used with meta-learning
for Data Euk.

Cellular location Accuracy (%)
Cytoplasmic 71.1
Extracellular 75.7
Mitochondrial 51.1
Nuclear 83
Overall accuracy 74.5

Table 7.8: The predictive accuracy for subcellular locations of delegating approach used with
meta-learning for Data Euk.
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Chapter 8

Conclusions and future perspectives

Subcellular localization is a key functional characteristic of proteins.
In this thesis some novel methods for subcellular localization prediction of proteins are pre-

sented. Many already existing approaches are applied with some extensions and evaluated on this
prediction task, which is the first attempt in the field of genome sequence analysis and protein
function prediction.

Reported results relative to Bayesian Classification used with Markov Chain Model are good
and competitive with the results of other previously published approaches.

The Bayesian Classification Tree approach shows an impressive increase of performance,
when compared with the single Bayesian classifier from which it evolved. It improves in all
data sets and never performs worst. The method is efficient and demonstrates good results in
the empirical evaluation. It outperforms the system PSORT-B for Gram-negative bacteria data,
improves significantly previously obtained results for the apoptosis proteins. It outperforms also
other methods for combining classifiers.

I can not claim that BCT is the best algorithm, but there is strong evidence that, if I need to
use a learning algorithm for a new data set, without any more information, I will first try BCT.

The procedure for Growing Classification Trees using mixture modeling proposed in Chapter
5 produces almost the same results as BCT in terms of prediction accuracy, but it is computa-
tionally more expensive.

The ensemble learning methods I investigated, Mixture of Experts model and delegating
procedure as well, can show certain improvement of classification performance compared to
basic learner, however they did not reach the overall accuracies shown by BCT.

Some improvements over the proposed BCT approach is possible. In particular, the applica-
tion of post-pruning can be investigated.

Hierarchical Mixtures of Experts were left beside the scope of this thesis, but it will be
interesting to compare their behaviour with the method proposed in Chapter 5. The proposed
method can probably be used as the initialization procedure for further learning of HME with
EM-algorithm.

One possible venue for future research may be to use Bayesian classifiers based on variable
memory Markov models (VMMs) [Bejerano, 2004].

Because all the methods I have proposed in this thesis need only raw sequence data, we can
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apply them for different classification tasks and for proteins that has only sequence information.
One of this classification tasks is the prediction of structural groups of proteins. Early work

on proteins identified the existence of helices and extended sheets in protein secondary struc-
tures, a high-level classification which remains popular today. Although the protein folding pro-
cess may require catalysts, such as chaperonins, it is widely accepted that the three-dimensional
(3D) structure of a protein is related to its sequence of amino acids. This implies that it is pos-
sible to predict protein 3D structure from sequence. The most general way of obtaining the
three-dimensional structure from sequnce data is to predict secondary structure, especially in the
absence of a homologous sequence of known structure. With the increasing number of amino
acid sequences generated by large-scale sequencing projects, and the continuing shortfall in crys-
tallized homologous structure, the need for reliable structural prediction methods becomes ever
greater.

It will be possible to use the methods, I have proposed in this work, in multiple areas
of biological analysis, including classification of G-protein coupled receptors (GPCRs), nu-
clear receptors [Bhasin, 2004], enzyme families [Cai et al., 2004], analysis of proteins function
([Cai et al., 2003] and [Han et. al., 2005]) and prediction of RNA binding proteins (see the work
of [Han et. al., 2004]).

I want to make an attempt to develop a method for recognizing the subfamilies of nuclear
receptors. Nuclear receptors are key transcription factors that regulate crucial gene networks
responsible for cell growth, differentiation and homeostasis. They control functions associated
with major diseases (e.g. diabetes, osteoporosis and cancer). The recognition of nuclear receptors
is crucial, because many of them are potential drug targets for developing therapeutic strategies
for diseases like breast cancer and diabetes.

My methods could be applied in the future to predict heterologous expression of proteins in
prokaryotic hosts. The availability of such predictive system would be helpful to researchers
working on recombinant protein expression.

One more way to further improve the prediction performance in future is to incorporate other
kind of knowledge, including gene expression profile and regulatory pathway information. Meta-
learning methods as information fusion technologies provide a convenient framework for this.
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Deutsche Zusammenfassung

Die vorliegende Dissertation ist das Ergebnis meiner Arbeit im Deutschen Krebsforschungszen-
trum (DKFZ) auf dem interdisziplin ären Gebiet Bioinformatik.

Die Bioinformatik verbindet die Gebiete Molekularbiologie, Biochemie und Genetik mit der
Theoretischen und Praktischen Informatik sowie der Computerlinguistik. Sie verf ügt über einen
rapide wachsenden Bestand an offenen Problemen und gewinnt immer mehr an Bedeutung in
allen Bereichen der Biologie. Die Analyse von experimentellen und anderen Daten (z.B. Text)
ist eine zentrale Aufgabe in der Bioinformatik.

Die ersten Algorithmen zur Sequenzanalyse wurden in den 50er Jahren ben ötigt, als die er-
sten Proteinsequenzen verf ügbar wurden. Nachdem Fred Sanger 1975 die enzymatische Sequen-
zierung von DNA erfunden hatte, stieg auch die Anzahl der Nukleotidsequenzen kontinuierlich
an. Das exponentielle Wachstums an biologischen Daten, die im Rahmen nationaler und inter-
nationaler Genomprojekte generiert werden, revolutioniert die Molekularbiologie und Biotech-
nologie. Über 230 vollst ändig sequenzierte Genome sind bereits publiziert worden. Die resul-
tierende grosse Datenmenge wird erg änzt durch weitere Datenquellen, die steigende Bedeutung
gewinnen, z.B. mRNA Expressionsdaten (DNA Chips, EST Daten), Proteomikdaten (2D Gele,
Massenspektren), dreidimensionale Strukturen von Biomolek ülen und biomolekularen Komple-
xen, Protein Interaktionsdaten und metabolitendaten.

Diese Datenvielfalt bietet ein herausragendes Anwendungsfeld f ür die moderne Informatik.
Die Anwendungsm öglichkeiten umfassen u.a.:

• die Analyse von Genexpressionsdaten,

• die Klassifikation von Tumortypen und Toxicogenomics,

• die Erkennung entfernter Homologien,

• Sekund ärstrukturvorhersage,

• Single-Nucleotide Polymorphisms (SNPs), und

• die Analyse von Proteomikdaten.

Erfolge in der biologischen Forschung gr ünden sich immer mehr auf Informationen aus Da-
tenbanken, die die Generierung eigener Daten im Labor unterst ützen.

Die Berechnung von Expressionsmustern bestimmter Gene und die Bestimmung von Pro-
teinprofilen und Funktionsvorhersagen in der Proteomforschung liefern dabei wichtige Impulse
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f ür die Grundlagenforschung und sind u.a. relevant f ür das Verst ändnis von Erbkrankheiten. Die
theoretische Bestimmung von Zielmolek ülen wird f ür das Drug Design ben ötigt. Basierend auf
den empirisch ermittelten Strukturdaten werden therapeutische Ans ätze und potenzielle Wirk-
stoffe entwickelt.

Die potentiellen Einsatzm öglichkeiten der Informatik in den Biowissenschaften gehen weit
über ihre derzeitigen Anwendungen hinaus. Die Rolle, die die Informatik bei den Biowissen-

schaften derzeit spielt, ähnelt der Rolle der Mathematik in der Physik: erst der Einsatz von Infor-
matikmethoden erm öglicht es, in den Biowissenschaften mathematische Modelle zu bilden und
damit zu rechnen.

Die Bioinformatik setzt Methoden aus verschiedenen Gebieten der Informatik ein: u.a. Kom-
binatorische Optimierung, Methoden der Formalen Sprachen, Genetische Algorithmen, Stocha-
stische Algorithmen, Neuronale Netze, Mustererkennung, Maschinelles Lernen, Inductive Logic
Programming, Datenbanksysteme und Data Mining, sowie Computerlinguistik.

Das Ziel dabei ist, Muster und Regelm ässigkeiten in Daten zu erkennen, die neue wissen-
schaftliche Erkenntnisse erm öglichen. Die Muster und Regelm ässigkeiten k önnen pr ädiktiv sein
(wie z.B. bei Klassifikations- oder Regressionsproblemen) oder deskriptiv (wie z.B. bei Proble-
men, bei denen es nur um das Finden von Abh ängigkeiten in Daten geht).

Zur L ösung der obigen Probleme wird in den letzten Jahren immer h äufiger auf Algorithmen
und Techniken des Maschinellen Lernens und des Data Mining zur ückgegriffen. Das Maschinelle
Lernen besch äftigt sich mit Algorithmen, die durch Erfahrung ihre F ähigkeit, eine Aufgabe zu
l ösen, verbessern k önnen. Als Data Mining bezeichnet man den Datenanalyseschritt im Prozess
der Entdeckung neuen Wissens in Datenbanken (

”
Knowlege Discovery in Databases“).

Ziel dieser Doktorarbeit ist die Entwicklung eines intelligenten Systems zur Vorhersage der
Lokalisierung eines Proteins in der Zelle.

Mit der Entschl üsselung zahlreicher Genome und davon abgeleiteter Proteome stellt sich un-
weigerlich die Frage nach der Funktion dieser Proteine. Mitunter kann man mittels Datenbank-
vergleichen homologe Proteine finden, deren Funktion bekannt ist. Alternativ w äre es schon ein
wertvoller Hinweis zur physiologischen Bedeutung eines Proteins, wenn man seine Lokalisation
bestimmen oder vorhersagen k önnte.

Es existieren bereits Programme, die es versuchen, f ür einen unbekannten Protein seine Zel-
lul äre Lokalisierung vorherzusagen.

PSORT ist ein Programm, das unter Verwendung verschiedener Vorhersage-Algorithmen
(z.B. zur Identifizierung von membranspannenden Proteinsegmenten bzw. von Signalsequen-
zen zur Sekretion durch die Cytoplasmamembran) solche Vorhersagen erlaubt. iPSORT ist eine
Weiterentwicklung dieses Ansatzes und basiert auf der Erkennung N-terminaler Sortingsignale.

Ein anderer Ansatz ist im Programm NNPSL verwirklicht und beruht auf der Verwendung ei-
nes neuronalen Netzwerkes, mit dessen Hilfe lediglich von der Aminos äurezusammensetzung ei-
nes Proteins auf dessen Lokalisation geschlossen wird. Im Unterschied zum PSORT-Algorithmus
ist hierbei f ür die erfolgreiche Vorhersage das Vorhandensein von Targetting-Signalen nicht er-
forderlich. Daher arbeitet dieses Programm auch mit Sequenzen aus Genvorhersage-Algorithmen,
bei denen der N-Terminus unter Umst änden nicht korrekt vorhergesagt wurde.

Aus dem Labor von Gunnar von Heijne stammt ein Vorhersage-Algorithmus, TargetP, der
davon ausgeht, dass die meisten Export- und Import-Wege N-terminale Peptidsequenzen als Lo-

96



kalisationssignale erkennen. Auch dieses Programm basiert auf einem neuronalen Netzwerk. Es
ist eines der derzeit besten Vorhersageprogramme.

In der vorliegenden Arbeit befasse ich mich mit den realen Datens ätzen aus der wichtigsten
Datenbank f ür Proteinsequenzen SWISSPROT.

Im Kernpunkt dieser Arbeit steht Klassifikation. Klassifikation beinhaltet das Lernen einer
Konzeptbeschreibung, die es erm öglicht, Datens ätze zu vordefinierten Klassen zuzuordnen. Ei-
ne Klassifizierungsregel versucht, den Wert einer abh ängigen Zielvariablen (die Klasse) aus den
Werten von bekannten Variablen vorauszusagen. Da dem Lernverfahren vorgegebene Klassifi-
kationen f ür alle Trainingsdatens ätze zur Verf ügung gestellt werden, ist es ein Verfahren des
überwachten Lernens. Der Erfolg des Lernens kann beurteilt werden, indem man das gelernte

System f ür eine unabh ängige Testdatenm änge ausprobiert, wobei die richtigen Klassen im Vor-
aus bekannt sind, aber dem System nicht zur Verf ügung gestellt werden.

Als erstes wird in der Arbeit die Bayessche Klassifikationsmethode untersucht. Diese Me-
thode basiert auf der Regel der bedingten Wahrscheinlichkeit von Bayes.

Beim Einlernen von stochastischen Klassifikatoren sind die Verteilungen der klassenbeding-
ten Wahrscheinlichkeiten zu bestimmen. Ich schlage in der Arbeit zwei Modelle f ür die klas-
senbedingten Wahrscheinlichkeiten von Proteinsequenzen vor, arbeite haupts ächlich mit dem
Modell, das auf Markov-Ketten basiert, weil es bessere Klassifikationsergebnisse liefert.

Eine Markov-Kette ist ein stochastischer Prozess, der aufgrund seiner einfachen Struktur Ein-
gang in zahlreiche Modelle gefunden hat, die unter dem Begriff Probabilistisches Maschinelles
Lernen zusammengefasst werden.

Als Evaluierungskriterium f ür die Klassifikationsverfahren wurde die Erfolgsrate genutzt.
Mit dem Ziel die Erfolgsrate der Klassifikation zu verbessern, schlage Ich eine Hybrid-

Methode vor, die die Partitionierungsst ärke einer weiteren Klassifizierungsmethode, n ämlich
Entscheidungsbäume, mit der Bayesschen Klassifikation verbindet. Die empirischen Resultate
zeigen, dass die Erfolgsrate der Klassifikation f ür alle Datens ätze deutlich steigt.

In dieser Arbeit werden Ensemble-Lernmethoden zur Klassifikation untersucht. Ensemble-
Lernen erm öglicht die Konstruktion eines

”
starken“ (

”
m ächtigeren“) Klassifikators durch geig-

nete Kombination einer Anzahl
”
schwacher“ Klassifikatoren. Bagging ist ein Verfahren bei dem

zun ächst mehrere Modelle eines Lernverfahrens parallel erzeugt werden, z.B. mehrere Bayes-
sche Klassifikatoren. Daf ür wird die Trainingsmenge entsprechend aufgeteilt. Die verschiedenen
Ausgaben werden dann zu einem einzigen Modell verschmolzen, dies kann z.B. durch Mehr-
heitsentscheidung geschehen.

Ich erforsche verschiedene Methoden, um eine Menge von Klassifikatoren zu generieren und
zu kombinieren.

Ich untersuche auch einige Varianten von Stacking. Stacking verfolgt das Konzept eines Me-
talernsystems, welches das Abstimmungsverfahren von Bagging ersetzt. Dabei wird ein Meta-
Klassifikator konstruiert, der als input die Ausgabe von mehreren Klassifikatoren verwendet.
Die Idee hinter Stacking ist es, mehrere unterschiedliche Lernalgorithmen auf dasselbe Problem
anzusetzen und deren Ergebnis dann mit einem Meta-Klassifikator, dessen Aufgabe ist es zu
lernen, welcher Algorithmus in welchen F ällen gute Entscheidungen trifft, zu einem Ergebnis
zusammenzufassen.

Ich stelle noch ein weiteres Verfahren vor, der ein Baum aus probabilistischen Modellen
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bildet, wobei die Klassifikation in den terminalen Knoten (Bl ättern) des Baumes stattfindet. Die
Modelle auf den internen Knoten des Baumes werden durch Clusteringverfahren optimiert. Die
Aufgabe des Clustering besteht darin, eine Unterteilung der Dateninstanzen in sinnvolle Gruppen
vorzunehmen. Es wird nach einer Beschreibung dieser Gruppen gesucht. Dabei verwendet man
der Expectation-Maximization Algorithmus (EM).

Weiter schlage Ich die Erweiterung von dem Mixture-of-Experts-Ansatz vor, der statt Neuro-
nale Netze die Bayessche Klassifikatoren als Gate-Modell und Experten besch äftigen soll. Das
Modell wird ebenfalls mit EM-Algorithmus optimiert.

Zus ätzlich untersuche ich das neue Konzept vom Delegieren zur Klassifikation und schlage
noch zwei weitere Erweiterungen vor, die das Delegieren mit dem Meta-Lernen verbinden sollen.

98


