Characterization of quasimonotonicity by means of functional inequalities

Karol Baron and Peter Volkmann

Dedicated to the Memory of Raymond Moos Redheffer,
April 17, 1921 - May 13, 2005.

Abstract. It is known that quasimonotonicity of a continuous function can be characterized by means of differential inequalities. Using this we give a characterization by means of functional inequalities.

1 Notations

Let \(\mathbb{R} \) denote the reals, let \(E \) be a real Hausdorff topological vector space, and let \(K \) be a wedge in \(E \), i.e. a non-void subset satisfying

\[
\lambda \geq 0, \ x \in K, \ y \in K \Rightarrow \lambda(x + y) \in K.
\]

We suppose \(K \) to be closed and such that

\[
\text{Int } K \neq \emptyset.
\]

For \(x, y \in E \) we write

\[
\begin{align*}
& x \leq y \iff y - x \in K, \\
& x \ll y \iff y - x \in \text{Int } K.
\end{align*}
\]

\(K^* \) denotes the dual wedge of \(K \), i.e. the set of all linear, continuous \(\varphi : E \to \mathbb{R} \) satisfying \(\varphi(x) \geq 0 \) for \(x \in K \).

A function

(1) \[
f(t, x) : D \to E
\]

(where \(D \subseteq \mathbb{R} \times E \)) is called \textit{quasimonotone increasing} with respect to \(x \), if

\[
(t, x), (t, y) \in D, \ x \leq y, \varphi \in K^*, \varphi(x) = \varphi(y) \Rightarrow \varphi(f(t, x)) \leq \varphi(f(t, y)).
\]

For functions \(u : [t_0, t_1] \to E \) and \(t_0 \leq t \leq t_1 \) we mean by \(u'(t) \) the strong derivative

\[
\begin{align*}
u'(t) &= \lim_{h \to 0} \frac{u(t + h) - u(t)}{h} \text{ (if it exists).}
\end{align*}
\]

2 Known results and a question

The here used quasimonotonicity stems from [7]; Herzog [4] gives a survey of results. For functions (1) being quasimonotone increasing with respect to \(x \) the following is known (cf. [7]):
(P) If \(v, w : [t_0, t_1] \to E \) are continuous functions fulfilling \(v(t_0) \ll w(t_0) \)
and \(v'(t) - f(t, v(t)) \ll w'(t) - f(t, w(t)) \) \((t_0 < t \leq t_1)\), then \(v(t) \ll w(t) \) \((t_0 \leq t \leq t_1)\).

According to Uhl [6] we have the following (converse) result (which for Banach spaces \(E \) is known from [5]):

Theorem A Let \(D \) be an open subset of \(R \times E \), and let \(f : D \to E \) be a continuous function, for which (P) holds. Then \(f(t, x) \) is quasimonotone increasing with respect to \(x \).

In [8] quasimonotonicity occurs in the context of functional equations

\[
(2) \quad u(F(t)) + f(t, u(t)) = 0 \quad (t_0 \leq t \leq t_1)
\]

(cf. the surveys [2] and [1] for such equations), where

\[
(3) \quad t_0 \leq F(t) \leq t.
\]

According to [8] (and inspired by a talk of Brydak [3]) the following holds for functions (1) being quasimonotone increasing with respect to \(x \):

(Q) If \(v, w : [t_0, t_1] \to E \) are continuous functions fulfilling \(v(t_0) \ll w(t_0) \)
and \(w(F(t)) + f(t, w(t)) \ll v(F(t)) + f(t, v(t)) \) (with \(F \) satisfying (3) for \(t_0 < t \leq t_1 \)), then \(v(t) \ll w(t) \) \((t_0 \leq t \leq t_1)\).

Looking at Theorem A now the question arises: Suppose function (1) to be continuous \((D \) being an open subset of \(R \times E \)). Can we use property (Q) to characterize the quasimonotonicity of \(f \)?

3 A negative result

In this paragraph we assume

\[
(4) \quad f(t, x) : R \times E \to E \text{ continuous.}
\]

Suppose \(v, w : [t_0, t_1] \to E \) and \(F : [t_0, t_1] \to [t_0, t_1] \) are such that the hypotheses of (Q) are fulfilled. Passing to the limit \(t \downarrow t_0 \) in the functional inequality leads to

\[
w(t_0) + f(t_0, w(t_0)) \leq v(t_0) + f(t_0, v(t_0)).
\]

With

\[
(5) \quad v(t_0) \ll w(t_0)
\]

we then get

\[
(6) \quad f(t_0, w(t_0)) \ll f(t_0, v(t_0)).
\]
Now, if for \(t \in \mathbb{R} \) and \(a, b \in E \) we always have

\[a \ll b \Rightarrow "f(t, b) \ll f(t, a)" \text{ does not hold}, \]

then (5), (6) cannot occur simultaneously, so the hypotheses of (Q) cannot be satisfied, hence (Q) is (vacuously) true. If \(K \neq E \), then a special case of (7) is a (weakly) monotone increasing function, i.e.

\[a \leq b \Rightarrow f(t, a) \leq f(t, b). \]

On the other hand, if \(K = E \), then the conclusion of (Q) is always vacuously true. Summarizing we can state:

Remark 1 If function (4) is monotone increasing with respect to \(x \) (cf. (8)), then (Q) is vacuously true.

Despite of this, (Q) will be used in a certain sense for a characterization of quasimonotonicity (cf. the next paragraph). But let us first state:

Remark 2 Theorem A does not remain true, when (P) is replaced by (Q).

Let us give an example: \(E = \mathbb{R}^2 \) with its usual topology, ordered by \(K = R^2_+ = \{(x_1, x_2) \mid x_1 \geq 0, x_2 \geq 0\} \), and function (4) defined by

\[f(t, x) = f(t, x_1, x_2) = (-x_2, 0). \]

This linear function is not quasimonotone increasing. On the other hand, (7) holds, hence also (Q).

4 A positive result

The starting point is the observation that function (1) remains quasimonotone increasing with respect to \(x \) if it is changed into

\[f_1(t, x) = \lambda(t)x + h(t)f(t, x) \quad ((t, x) \in D) \]

with arbitrary

\[\lambda : \mathbb{R} \rightarrow \mathbb{R},\ h : \mathbb{R} \rightarrow [0, \infty[. \]

Then we have (Q) also with all the functions (9), and this leads to an analogue of Theorem A, viz.

Theorem B Let \(D \) be an open subset of \(\mathbb{R} \times E \), and let \(f : D \rightarrow E \) be continuous. Suppose (Q) always to be true if \(f \) is replaced by \(f_1 \) from (9), the \(\lambda, h \) being as in (10). Then \(f(t, x) \) is quasimonotone increasing with respect to \(x \).

Proof. If not, then (P) does not hold (according to Theorem A). So there
are continuous \(v, w : [t_0, t_1] \to E \) (on an appropriate interval \([t_0, t_1]; \ t_0 < t_1\))
satisfying
\[
(11) \quad v(t_0) \ll w(t_0),
\]
\[
(12) \quad v'(t) - f(t, v(t)) \ll w'(t) - f(t, w(t)) \ (t_0 < t \leq t_1),
\]
but such that
\[
(13) \quad v(t) \ll w(t) \ (t_0 \leq t \leq t_1) \text{ does not hold.}
\]

Suppose \(t_0 < t \leq t_1 \). In (12) we approximate the derivatives \(v'(t), w'(t) \)
by left-handed difference quotients in such a manner that the inequality \(\ll \)
remains true:
\[
(14) \quad \frac{v(t) - v(t - h(t))}{h(t)} - f(t, v(t)) \ll \frac{w(t) - w(t - h(t))}{h(t)} - f(t, w(t)),
\]
where \(t_0 \leq t - h(t) < t \), hence \(h(t) > 0 \ (t_0 < t \leq t_1) \). Now
\[F(t) = t - h(t) \ (t_0 < t \leq t_1) \]
has property (3), and (14) can be written as
\[w(F(t)) - w(t) + h(t)f(t, w(t)) \ll v(F(t)) - v(t) + h(t)f(t, v(t)) \]
for \(t_0 < t \leq t_1 \). Together with (11) we therefore have the hypotheses of (Q)
fulfilled with \(f \) replaced by the function
\[f_1(t, x) = -x + h(t)f(t, x) \ ((t, x) \in D) \]
\((h(t) \geq 0 \text{ being defined arbitrarily for } t \notin [t_0, t_1]) \). By the hypotheses of Theo-
rem B we get \(v(t) \ll w(t) \ (t_0 \leq t \leq t_1) \), which is a contradiction to (13).

Remark 3 In Uhl’s proof for Theorem A (cf. [6]), (P) is only needed for
linear functions \(v(t) = a + tp, w(t) = b + tq \ (a, b, p, q \in E) \). Taking this into
account, other versions of Theorem B are possible. Our approach reflects
some kind of idea of a general comparison of the functional equation (2) and
the differential equation \(u'(t) = f(t, u(t)) \).

Acknowledgement:
The research of both authors was supported by the Mathematics Depart-
ment of the Silesian University at Katowice (program “Iterative Functional
Equations and Real Analysis”). The research of the first author also was
supported by the DFG (Deutsche Forschungsgemeinschaft).
References

Typescript: Marion Ewald

Authors’ addresses:
K. Baron, Instytut Matematyki, Uniwersytet Śląski, Bankowa 14, 40-007 Katowice, Poland. E-mail: baron@us.edu.pl
P. Volkmann, Mathematisches Institut I, Universität, 76128 Karlsruhe, Germany.