
Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)
von der Fakultät für Wirtschaftswissenschaften
der Universität Fridericiana zu Karlsruhe
genehmigte Dissertation.

Creating Ontology-based Metadata by
Annotation for the Semantic Web

von

Dipl.-Ing.(FH), Dipl.-Inf.wiss. Siegfried Handschuh

Tag der mündlichen Prüfung: 16. Februar 2005
Referent: Prof. Dr. Rudi Studer

Korreferent: Prof. Dr. Christof Weinhardt

To my family.

Acknowledgements

I would like to thank people that supported me during the process of researching
and writing this thesis. First of all, I would like to express my gratitude to
my advisor, Prof. Dr. Rudi Studer, for his support, patience, and encouragement
throughout my PhD studies at the Institute AIFB at the University of Karlsruhe.

I am also grateful to Prof. Dr. Christof Weinhardt on my dissertation committee,
and to Prof. Dr. Andreas Oberweis, who served on the examination committee.

My work very much profited from working with Prof. Dr. Steffen Staab. I learned
a lot from him, he inspiried me with his ideas and he significantly improved my
scientific skills, e.g. by teaching me how to successfully write papers. He and Prof.
Dr. Gerd Stumme gave me invaluable advice on organizing research workshops.

My thanks also goes to all my colleagues in Karlsruhe at the Institute AIFB, the
FZI and Ontoprise GmbH for providing a very fruitful and stimulating working
atmosphere. In particular to Philipp Cimiano, Nenad and Ljiljana Stojanovic,
Sudhir Agarwal and Alexander Mädche.

I’m especially indebted to Dr. Stefan Decker, for taking me on board his Onto-
Agents project and the DARPA DAML program, which funded my work on
semantic annotation.

Tanja Sollazzo, Guylaine Kepeden, Wolf Winkler, Mika Maier-Collin and Kai
Kühn who wrote their diploma theses under my supervision, contributed to
the annotation framework. Furthermore I would like to thank Leo Meyer and
Matthias Braun for their implementation work.

My gratitude goes to Dr. Simon Beck for improving my time management skills
in the final stage of my thesis writing, and my sister-in-law, Caroline for proof-
reading drafts of this thesis - any remaining errors are of course mine.

I thank my friends Esther Stäheli and Sven Ruby for their devotion and putting
up with me over a number of years; and Jorge Gonzalez for his advice and Julien
Tane for the lively discussions.

My family, my parents Philomena and Karl receive my deepest gratitude and love
for the many years of support and for always believing in me. Last, but not least,
I would like to thank my wife Patricia for her patience, love and understanding
and our adorable daughter Ella for being a part of our lives from now on.

v

Acknowledgements

vi

Contents

Acknowledgements v

I. Foundations 1

1. Introduction 3
1.1. Motivation & Problem Description 3
1.2. Research Questions . 4
1.3. Approaches . 5
1.4. Reader’s Guide . 6

2. Metadata and Ontology Languages 9
2.1. Metadata . 9

2.1.1. Metadata Standards . 11
2.1.2. Metalanguages . 11

2.2. XML . 12
2.3. XML Pointer Language (XPointer) 14

2.3.1. XPath Basics . 15
2.3.2. XPointer Standards . 16
2.3.3. Referencing to Text passages with XPointers 17

2.4. RDF and RDFS . 20
2.4.1. The RDF Data Model . 20
2.4.2. RDF Schema . 22
2.4.3. RDF Syntax . 24
2.4.4. Notation 3 . 25

2.5. Ontologies . 27
2.5.1. Ontology Definition . 27
2.5.2. Classification . 29

2.6. Ontology Languages . 30

3. Semantic Annotation for the Web 35
3.1. The Semantic Web . 35
3.2. Infrastructure for the Semantic Web – The Information Foodchain 36
3.3. Processes for the Semantic Web – Knowledge Process and Know-

ledge Meta Process . 38

vii

Contents

3.3.1. Knowledge Meta Process 39
3.3.2. Knowledge Process . 39

3.4. Semantic Annotation . 40
3.4.1. Terminology . 40
3.4.2. The Semantics of Semantic Annotation 41
3.4.3. Layering of Annotation 43

3.5. Summary . 44

II. Metadata for the Semantic Web 45

4. Annotation and Authoring Framework 47
4.1. Introduction . 47
4.2. Case Studies for CREAM . 48

4.2.1. KA2 Initiative and KA2 Portal 49
4.2.2. TIME2Research Portal . 49
4.2.3. Authors’ Annotations of Paper Abstracts at ISWC 50

4.3. Requirements for CREAM . 51
4.4. Design of CREAM . 52

4.4.1. CREAM Modules . 52
4.4.2. Architecture of CREAM 57

4.5. Meta Ontology . 57
4.5.1. Label . 60
4.5.2. Default Pointing . 61
4.5.3. Property Mode . 62
4.5.4. Further Meta Ontology Descriptions 63

4.6. Modes of Interaction . 64
4.6.1. Annotation by Typing . 65
4.6.2. Annotation by Markup 65
4.6.3. Annotation by Authoring 66

4.7. Conclusion . 67

5. Semi-Automatic Annotation 69
5.1. Information Extraction . 69

5.1.1. Process of ontology-based Information Extraction 70
5.1.2. Amilcare . 73
5.1.3. Synthesizing S-CREAM 75
5.1.4. Discourse Representation (DR) 78
5.1.5. Conclusion . 81

5.2. The Self-Annotating Web . 83
5.2.1. The Process of PANKOW 84
5.2.2. Pattern-based Categorization of Candidate Proper Nouns 86
5.2.3. Integration into CREAM 89

viii

Contents

5.2.4. Conclusion . 90

6. Deep Annotation 93
6.1. Introduction . 93
6.2. Use Cases for Deep Annotation 95
6.3. The Process of Deep Annotation 96
6.4. Architecture . 97
6.5. Server-Side Web Page Markup 99

6.5.1. Requirements . 99
6.5.2. Database Representation 99
6.5.3. Query Representation . 100
6.5.4. Result Representation . 101

6.6. Annotation . 102
6.6.1. Annotation Process . 102
6.6.2. Creating Generic Instances of Classes 103
6.6.3. Creating Generic Attribute Instances 104
6.6.4. Creating Generic Relationship Instances 105

6.7. Mapping and Querying . 105
6.7.1. Investigating Mappings 105
6.7.2. Querying the Database 106

6.8. Conclusion . 108

7. Application 111
7.1. Linguistic Annotation . 111

7.1.1. The Ontology-based linguistic annotation framework . . . 112
7.1.2. Annotating anaphoric relations 114
7.1.3. CREAM and OntoMat . 117
7.1.4. Conclusion . 119

7.2. Service Annotation . 120
7.2.1. Use Case . 120
7.2.2. Overview of the Complete Process of CREAM-Service . . 124
7.2.3. Semantic Web Page Markup for Web Services 126
7.2.4. Browsing and Deep Annotation 127
7.2.5. Conclusion . 132

III. Evaluation 135

8. Evaluation of Manual Annotation 137
8.1. Introduction . 137
8.2. Evaluation Setting . 138

8.2.1. General Setting . 138
8.2.2. Semantic Annotation Categories 138

ix

Contents

8.3. Formal Definition of Evaluation Setting 139
8.4. Evaluation Measures . 140

8.4.1. Perfect Agreement — Agreement Precision & Agreement
Recall . 140

8.4.2. Sliding Agreements . 141
8.5. Example of an Evaluation . 143
8.6. Cross-Evaluation Results . 144

8.6.1. Basic statistics . 144
8.6.2. Perfect Agreement: Agreement-Precision & Agreement-

Recall . 145
8.6.3. Sliding Agreement . 146
8.6.4. Overall results . 147

8.7. Conclusion . 148

9. Evaluation of Semi-Automatic Annotation 153
9.1. Introduction . 153
9.2. Method . 154

9.2.1. General Setting . 154
9.2.2. The Domain Ontology . 155
9.2.3. Training of the Annotation 156
9.2.4. Experimental Design . 157
9.2.5. Application of a statistical test 157
9.2.6. Test procedure . 157

9.3. Results . 158
9.3.1. Time Measurement . 158
9.3.2. Results of Group A . 162
9.3.3. Results of Group B . 166
9.3.4. Statistical Results . 169
9.3.5. Summary . 173

9.4. Discussion . 174
9.5. Conclusion . 177

IV. Related Work & Conclusions 179

10.Comparison with Related Work 181
10.1. Related Work for the Basic Framework 181

10.1.1. Knowledge Markup in the Semantic Web 181
10.1.2. Comparison with Knowledge Acquisition Frameworks . . 183
10.1.3. Comparison with Annotation Frameworks 183
10.1.4. Comparison with Authoring Frameworks 185

10.2. Related Work for the Extended Framework 186
10.2.1. Related Work for Deep Annotation 186

x

Contents

10.2.2. Related Work for Pattern-based Annotation 187
10.3. Related Work for Applications of CREAM 189

10.3.1. Comparison with Service Annotation 189
10.3.2. Comparison with Linguistic Annotation 190

10.4. Related Work for Evaluation . 192

11.Conclusion and Future Work 195
11.1. Contributions . 195
11.2. Insights into Semantic Annotation 196
11.3. Open Questions . 197
11.4. Future Research . 198
11.5. Summary . 199

V. Appendix 201

A. Metadata Standards 203

B. Glossary 205

Bibliography 209

xi

Contents

xii

List of Figures

2.1. Indexing of points and notes . 18
2.2. RDF statement . 21
2.3. RDF reification . 22
2.4. RDF Layering . 23
2.5. Different kinds of ontologies and their relationships 30

3.1. Semantic Web Layer Cake . 36
3.2. Information Foodchain for the Semantic Web 37
3.3. Two orthogonal processes with feedback loops 38
3.4. The knowledge process . 40
3.5. Annotation example. 42

4.1. Architecture of CREAM. 59
4.2. SWOBIS template. 64
4.3. Annotation example. 66
4.4. Annotation by Authoring example. 68

5.1. The Process of Information Extraction 71
5.2. Annotation example . 76
5.3. Two Ways to the Target: Manual and Automatic Annotation . . 77
5.4. The Process of PANKOW . 84
5.5. Screenshot of CREAM with PANKOW plugin in interactive mode 91

6.1. The Process of Deep Annotation 97
6.2. An Architecture for Deep Annotation 98
6.3. Screenshot of Providing Deep Annotation with OntoMat-Annotizer 104
6.4. Mapping between Server Database (left window) and Client On-

tology (right window) . 106
6.5. Querying: Persons with first names starting with letter ‘S’ 107
6.6. Querying: F-Logic Query . 108

7.1. The ontology underlying the annotation scheme 116
7.2. The hierarchical organization of the semantic relations. 116
7.3. Annotation Tool Screenshot. 118
7.4. Sequence Diagram for the Use Case 121
7.5. The Complete Process of OntoMat-Service 124

xiii

List of Figures

7.6. Screenshot of OntoMat-Service-Surfer annotating vendor service 130
7.7. Mapping between Client Ontology (left window) and Vendor On-

tology (right window) . 131
7.8. Mapping between Client Ontology (left window) and Insurer’s On-

tology (right window) . 132

8.1. Example Evaluation. 143
8.2. Perfect Agreement . 150
8.3. Sliding Agreement . 151

9.1. Mean values divided into annotation modes and groups. 159
9.2. Mean values grouped by annotation modes 160
9.3. Instance identification of group A 163
9.4. Instance-concept relationship of group A 163
9.5. Instance-attribute relationship of group A 164
9.6. Instance-instance relationship of group A 164
9.7. Sliding agreement: IdMA of group A 165
9.8. Sliding agreement: RIAA of group A 166
9.9. Instance identification of group B 168
9.10. Instance-concept relationship of group B 168
9.11. Instance-attribute relationship of group B 169
9.12. Instance-instance relationship of group B 169
9.13. Sliding agreement: IdMA of group B 170
9.14. Sliding agreement: RIAA of group B 170

xiv

List of Tables

4.1. Design Rationale — Linking Requirements with CREAM Modules. 58

5.1. Comparison of Output: Amilcare versus manual OntoMat 77
5.2. Template Strategy . 80
5.3. Ordering Strategy . 81

6.1. Principal situation . 95

8.1. Basic statistics computed for the generated Semantic Annotation
knowledge bases . 145

8.2. Perfect Agreement with P computed for id(I) 146
8.3. Perfect Agreement with P computed for AC 147
8.4. Perfect Agreement with P computed for AA 148
8.5. Perfect Agreement with P computed for AR 149
8.6. Sliding Agreement Measures: IdMA 149
8.7. Sliding Agreement Measures: RIAA 151

9.1. Average annotation times. 160
9.2. Results of the t-test for the annotation time. 161
9.3. Basic statistic for group A manual and semi-automatic annotation. 162
9.4. Basic statistics for group B . 167
9.5. Results of the t-test over the annotation time 171
9.6. Percentage change of the mean value for the inter-annotator agree-

ment . 172

A.1. Dublin Core Elements . 204

xv

List of Tables

xvi

Part I.

Foundations

“. . . whoever controls the vocabulary, controls the knowledge”
— George Orwell

1

1. Introduction

1.1. Motivation & Problem Description

Like all truly great ideas, Tim Berners-Lee’s principle idea of the Semantic Web
may be easily summarized: When computers not only retrieve, but also un-
derstand what data is available on the Web, we will have a new kind of Web
and new types of intelligent applications in the Web. In the foreseeable future,
however, machines will be too dumb to understand what people have put on
the Web. Therefore, let us put computer-understandable data next to human-
understandable data. Then, the computers will be smarter.

In order to make the vision of the Semantic Web come true, we need a number of
building blocks, some of them elaborated on in recent writings [Fensel et al., 2002;
Hendler and Horrocks, 2002; Fensel et al., 2003; DeRoure and Iyengar, 2002;
Chen et al., 2003; Constantopoulos et al., 2000; Staab et al., 2001a; Frank et al.,
2002a]. For instance, we need standardized languages to describe semantic data,
i.e. data that is as computer-understandable as it is semantically self-describing,
and we need programmes and protocols to actually exchange and understand
semantic data. As a primus inter pares, however, we need semantic data.

The work in this thesis is about providing semantic data, a process often referred
to as “Semantic Annotation” because it frequently involves the embellishment
of existing data, e.g. plain text, that is only understandable for the human with
semantic metadata that describes, e.g., the text. Understandably, Semantic An-
notation is now one of the core challenges for building the Semantic Web.

Since Semantic Annotation is the key notion of this thesis we shall define it in
more detail:

Definition 1.1.1
The term Semantic Annotation describes a process as well as the outcome of
the process1. Hence it describes i) the process of addition of semantic data or
metadata to the content given an agreed ontology and ii) it describes the semantic
data or metadata itself as a result of this process.

1cf. with term “drawing”

3

1. Introduction

1.2. Research Questions

The creation of Semantic Annotation raises a series of research questions. In the
following the most important ones are outlined, which will be addressed by the
work described in this thesis. Initially, the following question must be asked:

• How can the creation of Semantic Annotation be supported? How can the
complexity of creating Semantic Annotation be reduced?

Thus the general question of how to create Semantic Annotation is investigated
and possible solutions are described in this thesis.

The existing Web can be seen as a distributed information system consisting of
HTML pages. The first step is the extension of purely syntactic information, e.g.
HTML documents, with semantics. The challenge here is a knowledge capturing
problem:

• How may one turn existing syntactic resources into interlinked knowledge
structures that represent the underlying information?

However, in order to provide metadata about the content of a Web page, the
author must first create the content and secondly annotate the content in an
additional, a-posteriori, annotation step. The question here is:

• How to combine the authoring of a Web page and the creation of Semantic
Annotation describing its content?

Nevertheless, providing plenty of semantic metadata by annotation, i.e. concep-
tual markup of text passages, is a laborious task. Therefore:

• How can one increase the efficiency of the production of metadata? How
can the annotation process be automated or semi-automated?

Today, a large percentage of Web pages are dynamic. Annotating every sin-
gle dynamic Web page generated from a database would be tedious. Here, the
question is:

• How to annotate the database so that it is reusable for site-specific Semantic
Web purposes?

4

1.3. Approaches

Evaluating metadata creation or more general knowledge engineering is not that
well researched. It lacks generic methods and concrete evaluation and compari-
son measures (compared to recall/precision in information retrieval) that may be
applied for evaluating Semantic Annotation, (viz. ontology population). Further-
more, the measurement of inter-annotator agreement can be used to compare the
human performance with semi-automatic approaches. Therefore, the two ques-
tions of

• How can the metadata creation results between humans be evaluated? How
can the inter-annotator agreement be formally compared?

• How do humans perform in metadata creation compared to information
extraction techniques?

will be addressed and results will be provided in the evaluation chapter of this
thesis.

1.3. Approaches

The core of this thesis is the development of an annotation framework viz.
CREAM to support the creation of metadata (CREAM — CREAting Metadata
for the Semantic Web). CREAM comprises methods for:

• Manual annotation: The transformation of existing syntactic resources
(viz. textual documents) into interlinked knowledge structures that repre-
sent relevant underlying information (Section 4.6.1 and 4.6.2).

• Authoring of documents: In addition to the annotation of existing doc-
uments the authoring mode lets authors create metadata — almost for free
— while putting together the content of a document (Section 4.6.3).

• Semi-automatic annotation: Efficient semi-automatic annotation based
on information extraction that is trained to handle structurally and/or
linguistically similar documents (Section 5.1). Another approach for semi-
automatic annotation is the self-annotating Web. The principle idea of
the self-annotating Web is that it uses globally available Web data and
structure to semantically annotate – or at least facilitate annotation of –
local resources (Section 5.2).

• Deep annotation: Deep annotation results in a semantic mapping to the
underlying database if the database owner cooperates in the Semantic Web
and allows for direct access to the database (Section 6).

5

1. Introduction

1.4. Reader’s Guide

Every chapter is preceded with a brief introductory paragraph which explains
how the work presented in the section fits in the overall structure of the thesis.
The thesis is divided into four main parts, Fundamentals (I), Metadata for the
Semantic Web (II), Evaluation (III) and Related Work & Outlook (IV). These
four main parts are organized as follows:

Part I — Fundamentals:

• Chapter 2 introduces metadata and ontology languages. It introduces
metadata languages, i.e. the eXtensible Markup Language (XML), which
can be used for modeling structures, the XPointer schema for addressing
parts of a document, the Resource Description Framework (RDF), to ex-
press statements, RDF Schema to define a vocabulary for RDF. Finally, it
presents OWL as a fully-fledged stack of ontology languages.

• Chapter 3 is about the vision of the Semantic Web. It shows the Semantic
Web Layer Cake based on the metadata languages introduced before. It
presents how to apply these technologies in order to provide Semantic An-
notation. It presents different points of view for the ontology and metadata
creation, viz. the knowledge meta process and knowledge process as well as
the information foodchain for the Semantic Web. It defines terms that are
used with regard to metadata creation, it shows the different semantics of
Semantic Annotation, gives an insight into first steps towards a method-
ology for Semantic Annotation and presents a layering of Annotation. It
concludes with a comprehensive annotation model.

Part II — Metadata for the Semantic Web:

• Chapter 4 presents a comprehensive annotation and authoring frame-
work, CREAM, that allows for the creation of semantic metadata about
static and dynamic Web pages, i.e. for Semantic Annotation of the Shal-
low and Deep Web. CREAM supports the manual and the semi-automatic
annotation of static Web pages, the authoring of new Web pages with the
simultaneous creation of metadata, and the deep annotation of Web pages
defined dynamically by database queries. This chapter first describes case
studies from which we took a major part of our experiences for guiding
the development of CREAM. We describe there some of the requirements
for Semantic Annotation in detail that we derived from the case studies.
We derive the design and the modules of CREAM from the requirements
elaborated previously. We specify how the meta ontology may modularize

6

1.4. Reader’s Guide

the ontology description from the way the ontology is used in CREAM.
Finally we explain the major modes of interaction within the annotation
tool OntoMat, our reference implementation of CREAM.

• Chapter 5 describes the techniques developed for semi-automatic annota-
tion. These techniques are realized extensions, viz. plugins, of our an-
notation framework. The first extension – S-CREAM (Semi-automatic
CREAtion of Metadata) – allows for creation of metadata and is train-
able for a specific domain. The implementation of S-CREAM in the tool
OntoMat supports the semi-automatic annotation of Web pages. This
semi-automatic annotation is based on the information extraction com-
ponent Amilcare. OntoMat extracts with the help of Amilcare knowledge
structures from Web pages through the use of knowledge extraction rules.
These rules are the result of a learning-cycle based on previously anno-
tated pages. The second extension – PANKOW (Pattern-based Annotation
through Knowledge on the Web), focuses on a method that combines the
use of linguistic patterns to identify instances with the use of the WWW
as a large corpus via a search engine.

• Chapter 6 portrays an extension of the CREAM framework for metadata
creation when Web pages are generated from a database and the data-
base owner is cooperatively participating in the Semantic Web. In order to
create metadata, the framework combines the presentation layer with the
data description layer — in contrast to “conventional” annotation, which
remains at the presentation layer. Therefore, we refer to the framework
as deep annotation.2. This chapter describes the building blocks for deep
annotation. Firstly, it elaborates the use cases. Then it continues with a
description of the overall process, where we find the major requirements
that must be provided: i) server side markup, ii) utilization of the informa-
tion by annotation, iii) creation and exploitation of mapping and iv) query
of the serving database.

• In Chapter 7 we demonstrate the flexibility of the annotation framework
by using it for linguistic annotation and service annotation. The first
Section shows how to exploit the basic framework easily for linguistic an-
notation, while the second section shows how to apply the deep annotation
framework also to annotation and composition of Web services.

Part III — Evaluation:

• Chapter 8 deals with the evaluation of hands-on-experiences exploring
an annotation experiment with human subjects. It describes an empirical

2The term “deep annotation” was coined by Carol Goble in the Semantic Web Workshop of
WWW 2002.

7

1. Introduction

evaluation study of ontology-based semantic annotation. Based on a given
ontology and a set of documents, we analyze in this chapter inter-annotator-
agreement between different humans. The evaluation study uses several
standard and two original measures. The latter take into account a notion
of sliding agreements between metadata – exploiting semantic background
knowledge provided by the ontology.

• Chapter 9 investigates the approach of semi-automatic annotation. Based
on the evaluation study for manual annotation introduced in the previous
Chapter, we adapt the measures to evaluate the similarity between the
annotation produced by different users applying the process of manual an-
notation in comparison to applying the semi-automatic annotation process.
Hence, the evaluation confirms that semi-automatic annotation is faster and
produces more homogeneous metadata than manual annotation. The chap-
ter describes the principal methods of evaluation and presents the results
and a discussion.

Part IV — Related Work & Outlook:

• Chapter 10 deals with the difficult task of giving an overview of related
work on Semantic Annotation. Semantic Annotation as we have presented
it in this thesis is a cross-sectional enterprise. Much work in a number
of disciplines, like knowledge acquisition, computational linguistics, infor-
mation retrieval, information science, information integration, databases,
has researched and applied techniques for solving part of the overall prob-
lem of Semantic Annotation for the Semantic Web. This chapter gives an
overview of related work from a number of different communities.

• Chapter 11 concludes with a short summary of the methodological and
technical results and sketches ideas for further research. It explains the
main contributions of the work described in this thesis and lists a number of
insights gained from doing this research. Additionally, unsolved questions
and further research issues are defined.

8

2. Metadata and Ontology Languages

This Chapter provides a basic introduction to metadata (Section 2.1) and onto-
logy languages. In the following sections different metadata languages are intro-
duced, i.e. the eXtensible Markup Language (XML) (Section 2.2), which can be
used for modeling structures, the XPointer Schema (Section 2.3) for addressing
parts of a document, the Resource Description Framework (RDF) (Section 2.4)
to express statements and RDF Schema (Section 2.4.2) to define a vocabulary
for RDF. Furthermore, a formal definition of an Ontology (Section 2.5.1) is
presented as used in this thesis. Finally, OWL (Section 2.6) is introduced as a
fully-fledged stack of ontology languages.

2.1. Metadata

One way of extending the existing structure of the WWW with semantics and
thus enabling the Semantic Web is by adding metadata. Metadata is a combined
word from “meta” (Greek: between, after, later) and “data” and stands for “data
about data”, i.e. data that describes other data, viz. data that identifies and
describes an information object. In the Semantic Web environment, metadata is
understood as “data describing Web resources” [Manola and Miller, 2004]. The
Digital Library Federation (DLF)1, a coalition of 15 major research libraries in
the USA, defines three types of metadata which can apply to objects in a digital
library:

• Descriptive Metadata: This metadata describes the information object,
relating to what the object contains or is about.

• Administrative Metadata: It indicates the who, what, where and how-
aspects associated with the object’s creation and preservation.

• Structural Metadata: It ties each object to others to make up logical
units (for example, information that relates individual images of pages from
a book to the others that make up the book itself).

1http://http://www.diglib.org/dlfhomepage.htm

9

2. Metadata and Ontology Languages

In general, only descriptive metadata is visible to the users of a system, who
search and browse it to find and assess the value of items in the collection. Ad-
ministrative metadata is usually only used by those who maintain the collection,
and structural metadata is generally used by the interface which compiles indi-
vidual digital objects into more meaningful units (such a journal volumes).

In addition, metadata can be classified along the following dimensions:

• Formality: With regard to formality, metadata may range from very in-
formal descriptions of documents, e.g. free text summaries of books, up to
completely formal descriptions.

• Containment: In the context of containment, described data can be in-
cluded in metadata, e.g. the describing tags are added to the existing code,
while ”others may be stored completely independently from the document
they describe, such as a bibliography database that classifies the documents
it refers to, but does not contain them”.

• Capturing of Information Content (c.f. [Kashyap and Sheth, 1996]):
Kashyap and Seth classify:

– Content Independent Metadata: Examples of this type of meta-
data are location, modification-date.

– Content Dependent Metadata: Examples are size of a document,
max-colors of an image. A categorization of content dependent meta-
data is:

∗ Direct Content-based Metadata: A popular example of this
is a full-text index based on the text of the documents.

∗ Content-descriptive Metadata: This type describes the con-
tent without direct utilization of the content of an information
object. An example of this type is textual annotation describing
the contents of an image. This type of metadata comes in two
varieties:

· Domain-Independent Metadata: Examples are HTM-
L/SGML document type definitions.

· Domain Specific Metadata: This metadata is specific to
the application or subject domain of information. Examples
of this metadata are relief, land-cover from the GIS domain
and area, population from the Census domain.

The metadata under discussion in this thesis is, according to the above classi-
fication, descriptive, formal, domain specific metadata, based on ontologies for
documents available on the Web. The metadata may be contained in the Web
document or stored externally.

10

2.1. Metadata

2.1.1. Metadata Standards

A well known use case for metadata is a library, where classification systems
such as the Dewey Decimal Classification2 or the machine readable MARC stan-
dard3 enable easy access to literature. The MARC formats are standard for the
representation and communication of bibliographic and related information in
machine-readable form.

An example for a widely known and used metadata standard is Dublin Core4. It
was invented for the format and content based processing of network resources,
mainly the WWW. Its roots are in the online library community, its first work-
shop was held in 1995 by the OCLC (Online Computer Library Center) and the
NCSA (National Center for Supercomputing Applications) in Dublin, Ohio, giv-
ing the initiative its name. Dublin Core comprises fifteen core elements, which
can be used for the metatags in a HTML document, see e.g. [Kunze, 1999] for
a description of the use of HTML with Dublin Core. Using Dublin Core it is
possible to do a content based document classification, as for instance known in
the classical library process (e.g. identification of author, title, subject, language,
source etc.). The Dublin Core elements can be grouped into three element classes,
describing content, intellectual property and instantiation [Hillmann, 2001] (see
Table A.1).

Other types of Metadata Schema are MPEG-75, EAS (Encoded Archival De-
scription)6, IEEE LOM (Learning Objects Metadata)7, ADL Scorm8 and RSS
(RDF Site Summary)9.

2.1.2. Metalanguages

Metadata need to be expressed in a standardized way, i.e., the syntax of metadata
is given by metalanguages. Metalanguages, languages for describing languages,
can be used either as ”underlying representation languages for ontologies” [Fensel,
2001, abstract] or as representation languages themselves. The representation
languages, also called ontology languages, represent the resources, viz. the know-
ledge available on the Web, in the taxonomy of an ontology (explained later in
Section 2.5).

2http://www.oclc.org/dewey/
3http://www.loc.gov/marc/gg
4http://dublincore.org
5http://xml.coverpages.org/mpeg7.html
6http://www.loc.gov/ead
7http://ltsc.ieee.org/wg12/
8http://www.adlnet.org/
9http://web.resource.org/rss

11

2. Metadata and Ontology Languages

2.2. XML

In 1989, Tim Berners-Lee and Vinton Cerf created with the Hypertext Markup
Language (HTML) the basic technology for the current WWW. The success
of the Web was brought about by the simplicity of HTML for describing and
rendering documents in the WWW. However, the disadvantages of HTML (cf.
[Fensel, 2001, p.52]) became obvious by the enormous growth of the Web:

• Missing semantics inhibits automatic information retrieval and processing.
The lack of structured data leads to a strong limitation of data exchange
and makes it difficult for software agents to provide services.

• A customization of tags for different applications is not possible. There-
fore, it can be stated that HTML may be regarded more as a ”layout
representation language” rather than a technology to support knowledge
management, communication, and electronic commerce.

To overcome these shortcomings of HTML, the W3C introduced an additional
standard for defining the data structure of Web documents: the eXtensible
Markup Language (XML). XML, a ”child” of the more complex Standard Gen-
eralized Markup Language (SGML), is a tag-based language for describing tree
structures with a linear syntax. Providing seven different means for presenting
information [Bray et al., 2004], the metalanguage has the following advantages:

• XML tags define the structure of the data.

• XML provides arbitrary trees (graphs) as data structures.

• XML allows the definition of application-specific tags and can therefore be
customized for the exchange of specific data structures.

Listing 2.1 shows an example of an XML document. It defines application-specific
tags such as <person> and <firstname> ordered in an hierarchical structure.
Note, that the structure of an XML document is not the same as the structure
it represents. The object model of a document representing a business object is
the model for a document not for a business object.

In order to model the arbitrary trees, various XML schemes exist which define
a grammar for XML documents, e.g. Document Type Definition (DTD) and
XML Schema10. Listing 2.2 shows the DTD and Listing 2.3 the XML Schema
for the example in Listing 2.1. The XML schemes resemble ontologies because
they define tags, their nesting, and attributes for tags [Fensel, 2001, p.72]. The

10http://www.w3.org/XML/Schema

12

2.2. XML

schemes, however, lack any notion of inheritance, define the order in which tags
appear in a document and can not express hierarchies in the manner required by
ontologies.

Another strength of XML is the use of eXtensible Style Language11 (XSL) ,
which defines how a browser should render XML documents in a more expressive
way than Cascading Style Sheets12 (CSSs) for HTML documents. That is to
say, XSL can be used to create different pages from the same data sources and
thus to ”realize dynamically changing pages according to user preferences or con-
texts” [Fensel, 2001, p.57]. This is especially important for one-to-one marketing
strategies in the WWW. However, XSL has more powerful uses than merely
the creation of layouts. The disadvantage that XML does not provide standard
DTDs, i.e. that different users can define different tags like <email> and <mail>
for the same concept, is overcome by XSL. XSL can be used to translate XML
documents using DTD1 into XML documents using DTD2 and thus facilitates
the exchange of data between different users.

Concerning the weaknesses of XML, the use of different DTDs solved by mapping
has been already mentioned. Another problem is inherent to XML: it allows users
to create their own tags, e.g. <person>, which seems to carry some semantics.
From a computational perspective, however, ”these tags carry as much semantics
as a tag like <H1> in HTML [Decker, 2004]. A computer does not by itself at-
tempt to interpret the meaning of labels [Collier, 2001, p.2]. For example, it has
no idea what a person is and how the concept ”person” is related to a concept
”Web page”, e.g. the person is the creator of a Web page. Thus, it can be con-
cluded that XML enables every user to enrich their Web sites with self-defining,
invisible, machine-readable tags, but XML structures only the information and
does not tell us anything about what the structure means.

<?xml ve r s i on =1.0” encoding=”ISO−8859−1”?>

<ontoweb>

<Person>

<f i r s tname >Ste f f en </f i r s tname >

<lastname>Staab</lastname>

<country>Germany</country>

</Person>

<Person>

<f i r s tname >Stefan </f i r s tname >

<lastname>Decker</lastname>

<country>I r e l and </country>

</Person>

</ontoweb>

Listing 2.1: Example for XML

11http://www.w3.org/Style/XSL/
12http://www.w3.org/Style/CSS/

13

2. Metadata and Ontology Languages

<!DOCTYPE ontoweb [
<!Element ontoweb (Person+)>
<!Element Person (f i r s tname , lastname , country ?)>
<!Element f i r s tname (#PCDATA)>
<!Element lastname (#PCDATA)>
<!Element country (#PCDATA)>

]>

Listing 2.2: Example for XML DTD

<schema>

<element name=”ontoweb”>
<complexType>

<element name=”Person ” minOccurs=”1” maxOccurs=”unbounded”>
<sequence>

<element name=”f i r s tname ” type=”s t r i n g”>
<element name=”lastname ” type =”s t r i n g”>
<element name=”country ” type=”s t r i n g ” minOccurs=”0”>

</sequence>

</complexType>

</element>

</schema>

Listing 2.3: Example for XML Schema

2.3. XML Pointer Language (XPointer)

As mentioned above in Section 2.1 metadata can be contained with the data or
stored completely independently from the data, e.g. a Web document. For the
latter one would need a reference from the metadata to the document. Hence, we
describe here the parts of the XPointer language that are useful for the Semantic
Annotation of a document, viz. the addressing of string and nodes.

XPointers are able to reference a defined subset of a XML-Document: Single
Points, String, Nodes and arbitrary combinations of these.

The XPointer [DeRose et al., 2001] design is factored into a basic frame-
work XPointer Framework [Grosso et al., 2002] and three additional schemes:
XPointer element() [Grosso et al., 2003], for addressing elements by their posi-
tions in the document tree, XPointer xmlns() [DeRose et al., 2003], for binding
namespace prefixes to namespace name and XPointer xpointer() [DeRose et al.,
2002], for full XPath-based addressing.

The framework and the schemes define the syntax and the semantic of XPoint-
ers. They extend the XPath recommendation (see next section) that describes a
mechanism to address a node in an XML-Document.

An XPointer identifies fragments of an XML document (e.g. external parsed

14

2.3. XML Pointer Language (XPointer)

entities13). The target XML document is called resource. The identified fragment
is called subresource. A subresource is the content of a location-set. A location-
set consists of a node (XPath node), points, and ranges. Possible nodes are root
node, element node, attribute node, processor node, comment node, text node
and namespace node. Ranges are a part of a document between a start and
an end point. Ranges can cover several text nodes. An XPointer processor is
a software component that interprets XPointers and localizes the corresponding
fragment.

2.3.1. XPath Basics

The XPath standard is extensive and enables unique expressions to reference
nodes. For a complete description of this standard see [Clark and DeRose, 1999].
To demonstrate the simplest form of addressing we take the following example:

<?xml ve r s i on =”1.0” encoding=”ISO−8859−1”?>

<ontoweb>

<Person>

<f i r s tname >Ste f f en </f i r s tname >

<lastname>Staab</lastname>

<country>Germany</country>

</Person>

<Person>

<f i r s tname >Stefan </f i r s tname >

<lastname>Decker</lastname>

<country>I r e l and </country>

</Person>

</ontoweb>

The simplest form of an XPath resembles a path expression from an operating
system. The sequence of nodes along the hierarchy to the target node is separated
by slashes. The expression

/ontoweb/ person [2] / country

selects the element of type country with the content Ireland. The example shows
that one references with square brackets [] the specific contextual position of an
element. Here, the second <country> element is referenced. If a location path
begins with a double slash, all nodes, which comply with the stated conditions,
are located to their right. Hence, the expression

// person/ country

references all <country> elements that are child elements of a <person> element.
The reader may note, that an XPath expression might also refer to more than
one node.

13An external parsed entity need not be well-formed. In particular, it may lack a single root
element.

15

2. Metadata and Ontology Languages

2.3.2. XPointer Standards

The syntactic scheme of an XPointer is:

URI of XML document + ”#” + XPointer

The XPointer can consist of several parts, which are separated by white spaces.
An XPointer part follows a syntax scheme that is defined in: XPointer framework,
XPointer element() scheme and XPointer xpointer() scheme. The basic forms
of these schemes are as follows:

All XPointer processors must be able to support the XPointer framework.
However, it is optional that the processor have the facility to support the other
schemes.

The XPointer frameworks define shorthand pointers. They have the basic form:

URI of XML document + ”#” + Name

Name refers to an element, that has the ID attribute of the value Name. This
attribute has to be defined in the DTD or XML schema corresponding to the
XML document. Given is the following example document:

<ontoweb>

<person id=”6”>Ste f f en </person>

<person id=”57”>Rudi</person>

</ontoweb>

When the attribute id is declared in the DTD or XML schema, then the following
expression

http : //www. ontoweb . org / p e r s o n l i s t . xml#57

is referencing the second person-Element.

The XPointer element() scheme defines a simple syntax to access elements
via the tree structure of the document. For example:

http : //www. ontoweb . org / p e r s o n l i s t . xml#element (/1/5/3)

locates the third child element of the fifth child element of the first root node,
whereas external entities can have several root nodes.

The XPointer xpointer() scheme provides the most comprehensive possibili-
ties for referencing parts of an XML document. One can use all XPath expressions
to identify a node. Additionally, the scheme defines concepts to address points
and ranges inside nodes and beyond the border of nodes (see Section 2.3.3).
Example:

. . .# XPointer (/ person/ r e s ea r che r / a t t r i b u t e : : name [@area=”annotat ion ”])

references the attribute name of all researcher elements that are children of the
person element and their attribute area has the value Annotation.

16

2.3. XML Pointer Language (XPointer)

The XPointer xmlns() scheme defines a syntax for XPointer parts, which
allows a namespace to be defined for the following XPointer parts. To access the
elements in the following document,

<o r gan i za t i on xmlns=”http : //www. ontoweb . org / org”>
<name xmlns=”http : //www. ontoweb . org / person”>S t e f f e n Staab</name>

</organ i zat i on >

the xpointer() function has to use the qualified element names. This is done with
the help of xmlns() scheme as follows:

xmlns (c=http : //www. ontoweb . org / org)
xmlns (p=http : //www. ontoweb . org /person)
xpo inter (/ c : o r gan i za t i on /p : name)

The XPointer framework offers the possibility for custom XPointer schemes.

. . .#mySchema(anyStr ing)

However, one has also then to develop the XPointer processor for that custom
scheme.

The custom schemes enable interested groups to develop their own scheme for
specific applications. This exists for SVG (Scalable Vector Graphics)14, for ex-
ample:

MyDrawing . svg#svgView (viewBox (0 , 200 , 1000 , 1000))

The reader may note, that one could also envisage a custom scheme for Semantic
Annotation.

2.3.3. Referencing to Text passages with XPointers

One requirement for Annotation is the referencing of single words or text parts
in a document (e.g. a XHTML document). For this purpose one can use the
extensions to XPath’s basic node types, viz. point and in particular range.

A point represents a location in a document which it is possible to reference. A
point can lay between two characters of a text node, and before and after any
node of a document. A point has no dimension, i.e. it does not even contain a
single character. A point is referenced by a container node, in which the point is
located, and an index, that indicates the position of the point inside the node.
The index is zero-based.

Figure 2.1 (from [DeRose et al., 2002]) shows the points and nodes of the following
document and the corresponding indexing.

<p>he l l o , big world</p>

With the XPointer node test point() one can directly reference points in a doc-
ument. The expression

14http://www.w3.org/TR/SVG/linking.html#SVGFragmentIdentifiers

17

2. Metadata and Ontology Languages

Figure 2.1.: Indexing of points and notes

xpo inter (/p/em/ point () [2])

references the point directly before the letter ‘g’, whereas the expression /p/em
defines the node, that includes the point, and point()[2] the point at the location
with the index 2 inside the context node (c.f. Figure 2.1).

A range is defined by a start point and an end point. A range represents the
XML structure and the content between the two given points.

The string value of a range is the concatenation of all characters which lay inside
a text node and are located between the start and the end point. The XPointer
recommendation XPointer xpointer() scheme offers several functions. The two
most important functions for the purpose of annotation are the range-to() and
the string-range() function.

The range-to() function returns to a given start and end point the corresponding
range. This function is called:

context−l o c a t i o n / range−to (end−l o c a t i o n)

18

2.3. XML Pointer Language (XPointer)

The start point of the resulting range is the start point of the context location;
the end point of the range is the end point of the end location. For instance

<html>
<body>

<p>

Today ther e w i l l be a ta l k given by Tim Berners−Lee i n
room 244 .
</p>

</body>

</html>

The expression

/html/body/p/ range−to (/ html/body/p/)

returns a range, with the start point immediately before the p element and the
end point immediately after the p element. The expression

/html/body/p/ point () [3 6] / range−to (/ html/body/p/ point () [4 1])

returns a range, with a start point immediately before the word Tim and the end
point immediately after the em element. It represents therefore the document
part:

Tim Berners−Lee

and its string value is Tim Berners-Lee.

The range-to() function is suitable to reference a range, when one knows the
coordinates (container node and index) of the start and end points.

In its simplest form the string-range() function is called with a location-set and
a search string.

s t r i ng−range (l o c s e t , s t r i n g)

As noted before, a location-set may consist of nodes (XPath nodes), points and
ranges. For our purpose, only the cases are relevant, where locset is a node, to
which an XPath expression refers. In the string-value of this node it is searched
for according to the given string. The start and end point is the result of the
function. For instance, the expression

s t r i ng−range (/ html/body , ”Tim Berners−Lee ”)

results for the above document a range with a start point immediately before Tim
(i.e. container node /html/body/p, Index:36) and the end point immediately after
Lee (i.e. container node: /html/body/p/em, Index:11). The referenced document
part of the range is:

Tim Berners−Lee

The string value is Tim Berners-Lee.

19

2. Metadata and Ontology Languages

It is possible that the search string occurs more than once in the node. Here,
the function returns a range for every occurrence. Should the search string be an
empty string, it will be found before the first character, between every character,
and after the last character in the node.

Additional parameters are possible for the string-range():

s t r i ng−range (l o c s e t , s t r i ng , number1 , number2) ,

whereby

number1 - Start index of the range, relative to the index of the string
found. The reader may note, that the string-range() functions use a 1
based indexing.

number2 - The number of characters in the range.

In the above example, the expression

s t r i ng−range (/ , ”Tim Berners−Lee ” , 5 , 11)

leads to a range with a start point immediately before Berners, and a end point
immediately after Lee. The Reference document part and string value is each
represented by Berners-Lee.

In conclusion, one can reference passages of text with ranges. The important
XPointer functions for this purpose are the range-to() function and the string-
range() function.

2.4. RDF and RDFS

The Resource Description Framework (RDF) [Manola and Miller, 2004] provides
a means for adding metadata annotations to Web resources. RDF is a semantic
data model and an attempt to address the aforementioned semantic limitations
of XML. This data model consists of nodes connected by labeled arcs, where the
nodes represent resources and the arcs represent properties of these resources.
RDF Schema (RDFS) [Brickley and Guha, 2004] on the other hand, is used to
define syntax and semantics of subsequent language layers (and even its own).

2.4.1. The RDF Data Model

A typical RDF statement consists of three elements synonymous with the subject,
predicate, and object in a simple sentence. The basic element of RDF is the
triple: a resource (the subject) is linked to another resource (the object) through
an arc labeled with a third resource (the predicate). Therefore, a single triple is

20

2.4. RDF and RDFS

a statement that a subject (e.g. a person, a car, a Web Site) stands in a specific
relation (e..g. “is brother of”; “is driven by”; “is authored by”) to an object
(e.g. a person, Web Site). The object of a statement can be another resource,
identified by a URI (Uniform Resource Identifier), a literal or a datatype value15.
A URI16 can be an HTML document identified by a Uniform Resource Locator
(URL), a special form of a URI, such as http://www.w3.org/Overview.html, a
specific HTML or XML element within a document [Kahan et al., 2001, p.4], or
an object that is not directly accessible via the Web such a printed book [Manola
and Miller, 2004]. With URIs the markup content can be uniquely defined.

An example for a single triple is the following statement: “Siegfried cooperates
with Steffen”. The Subject and the Object of the statement need a URI to
be identified, e.g. http://www.aifb.de/sha.html#sha to identify Siegfried and
http://www.aifb.de/sst.html#sst to identify Steffen. Also the predicate needs an
URI, e.g. http://annotation.org/iswc#cooperates for cooperates. The different
parts of the statement correspond to the RDF triple schema as follows:

Subject (Resource) http://www.aifb.de/sha.html#sha

Predicate (Property) http://annotation.org/iswc#cooperates

Object (Resource) http://www.aifb.de/sst.html#sst

The corresponding graphs looks like that shown in Figure 2.2.

Figure 2.2.: RDF statement

In the following the URIs are abbreviated by using the XML namespace syn-
tax. So instead of writing http://annotation.org/iswc#cooperates the names-
pace form iswc:cooperates is used with the assumption that the substitution of
the namespace prefix iswc with http://annotation.org/iswc# is defined (e.g. see
Listing 2.4).

A very useful feature for the annotation approach is the reification mechanism.
RDF reification allows statements to be made about statements. This can be
used to provide annotation meta-metadata17 , such as a creator, date of anno-
tation, confidence factor. The RDF data model offers the predefined resource

15RDF has adopted the XML Schema model of datatypes
16For a clarification of the relationship between URIs, URLs, and URNs see:

http://www.w3.org/TR/uri-clarification/
17Meta-metadata, because it is metadata of the statement and the statement is metadata of

the annotated document.

21

2. Metadata and Ontology Languages

rdf:statement and the properties rdf:subject, rdf:predicate, and rdf:object to reify
a statement as a resource. Other properties, such as the date of annotation may
then be attached to it. Figure 2.3 illustrates a reified statement.

Figure 2.3.: RDF reification

In addition to these core primitives, RDF defines three types of containers to
represent collections of resources or literals: one distinguishes (i) bags, that are
unordered lists, (ii) sequences, that are ordered lists, and, (iii) alternatives, that
are lists from which property can use only one value.

2.4.2. RDF Schema

As shown above, the RDF data model is a simple model for describing interre-
lationships among resources in terms of named properties and values [Brickley
and Guha, 2004]. The RDF data model, however, provides no mechanism for
declaring these properties, nor does it provide any mechanism for defining the
relationships between these properties and other resources. That is the role of
RDF Schema (RDFS) which describes how to use RDF to describe RDF vocab-
ularies thereby giving specific meaning to the RDF statements. RDFS basically
allows ”classes, attributes (property types), value ranges and cardinality con-
straints for property types” to be defined [Decker et al., 1999, p.9]. By sharing

22

2.4. RDF and RDFS

RDF schemes, the re-usability of metadata definitions can be supported [Manola
and Miller, 2004].

RDF(S) serves as a lightweight semantic layer. RDFS can also be used directly
to describe a lightweight ontology [Fensel, 2001, p.60/61]. The result is only
lightweight, because RDFS provides rather limited expressive power. This is due
to the fact that RDFS lacks a standard for describing logical axioms to model
definitions or complex relationships [Staab et al., 2000b, p.5].

Illustrated here is the way in which an ontology can be modeled in RDF(S) by
presenting a sample ontology (see Figure 2.4) in the abstract data model.

Figure 2.4.: RDF Layering

The most general class is rdfs:Resource. It has two subclasses, namely rdfs:Class
and rdf:Property18 (cf. Figure 2.4). When specifying a domain specific schema
for RDF(S), the classes and properties defined in this schema will become in-
stances of these two resources. The resource rdfs:Class denotes the set of all
classes in an object-oriented sense. That means that classes like iswc:Person or
iswc:Project are instances of the meta-class rdfs:Class. The same holds true for
properties, i.e. each property defined in an application specific RDF-Schema is
an instance of rdf:Property, e.g. iswc:worksFor. RDF-Schema defines the special

18Note that Property belongs to the rdf namespace and not to the rdfsnamespace.

23

2. Metadata and Ontology Languages

property rdfs:subClassOf that defines the subclass relationship between classes.
Since rdfs:subClassOf is transitive, definitions are inherited by the more spe-
cific classes from the more general classes. Resources that are instances of a
class are automatically instances of all superclasses of this class. Similar to
rdfs:subClassOf, which defines a hierarchy of classes, another special type of
relation rdfs:subPropertyOf defines a hierarchy of properties (e.g. one may ex-
press that leaderOf is an rdfs:subPropertyOf of worksFor). RDF-Schema al-
lows the domain and range restrictions to be defined associated with properties.
For instance, these restrictions allow the definition that “a person works for
a project”. As depicted in the middle layer of Figure 2.4 the domain specific
classes iswc:Person, iswc:Researcher, and iswc:Project are defined as instances
of rdfs:Class. In the same way domain specific properties are defined as instances
of rdf:Property, i.e. iswc:worksFor, iswc:firstName, and iswc:lastName. Addition-
ally, RDF-Schema defines more modeling primitives not shown in the Figure. The
property rdfs:label allows a human readable form of a name to be defined and
the property rdfs:comment enables comments.

2.4.3. RDF Syntax

RDF(S)19 is an XML application, i.e., one can serialize RDF(S) in XML, and
thus is a layer above XML in the Semantic Web architecture. Therefore, all
metadata represented in RDF(S) can be also represented in XML. The RDF
recommendation suggests two standard ways to serialize RDF data in XML:
abbreviated syntax and standard syntax. Listing 2.4 shows in abbreviated syntax
the XML serialization of an RDF data model and 2.5 shows the XML serialization
of the corresponding RDFS vocabulary. Another format in which RDF(S) can
be serialized is “Notation 3” (see section 2.4.4).

<?xml ve r s i on = ’1.0 ’?>

<r d f :RDF
xmlns : r d f=’http : //www.w3 . org /1999/02/22− rdf−syntax−ns#’
xmlns : i swc=’http : // annotat ion . org / i swc#’>
<i swc : Person rd f : about=”http : //www. ontoweb . org /home/ s t e f an ”>

<i swc : f i r s tname >Stefan </i swc : f i r s tname >

<i swc : lastname>Decker</i swc : lastname>

<i swc : country>I r e l and </i swc : country>

</i swc : Person>

</rd f :RDF>
</xml>

Listing 2.4: XML serialization of RDF

19The term RDF(S) will be used instead of “both RDF and RDFS”

24

2.4. RDF and RDFS

<?xml ve r s i on = ’1.0 ’?>

<r d f :RDF
xmlns : r d f=’http : //www.w3 . org /1999/02/22− rdf−syntax−ns#’
xmlns : r d f s=’http : //www.w3 . org /2000/01/ rdf−schema#>

<r d f s : Class r d f : ID=”Person”>
</r d f s : Class>

<r d f : Property ID=”f i r s tname”>
<r d f s : domain rd f : r e s ou r c e=”#Person”>
<r d f s : range r d f : r e s ou r c e=”&r d f s ; L i t e r a l ”/>

<r d f : Property>

<r d f : Property ID=”lastname”>
<r d f s : domain rd f : r e s ou r c e=”#Person”>
<r d f s : range r d f : r e s ou r c e=”&r d f s ; L i t e r a l ”/>

<r d f : Property>

<r d f : Property ID=”country”>
<r d f s : domain rd f : r e s ou r c e=”#Person”>

<r d f s : range r d f : r e s ou r c e=”&r d f s ; L i t e r a l ”/>

<r d f : Property>

</rd f :RDF>
</xml>

Listing 2.5: XML serialization of RDFS

2.4.4. Notation 3

Notation3, or ”N3” is a shorthand alternative serialization of RDF, designed with
human-readability in mind, i.e. N3 is much more compact and readable than the
XML serialization of RDF. The format is being developed by Tim Berners-Lee,
with input from Dan Connolly and others.

According to the Notation 3 Specification20, it was created as an experiment in
optimizing the ”expression of data and logic in the same language”.

A subset of N3 is N-Triples21. It is an extremely constrained language which
uses hardly any syntactic sugar at all: it is optimized for reading by scripts, and
comparing using text tools. N-Triples contains on formulae, multiple objects,
multiline literals, blank bNodes, or QNames. It breaks an RDF graph in separate
triples, one on each line. N-Triples generated from the same RDF graph always
come out the same, making it an effective way of validating the processing of an
RDF document. N-Triples is easy to parse, and is an excellent lowest common
denominator for serializations. Therefore it is used by the W3C in the RDF Test
Cases document.

Listing 2.6 is the N3 equivalent of Listing 2.4 just as Listing 2.7 is the N3 equiv-
alent of Listing 2.5.

20http://www.w3.org/DesignIssues/Notation3
21http://www.w3.org/2001/sw/RDFCore/ntriples/

25

2. Metadata and Ontology Languages

: S te f an a : Person ; : f i r s tname ” Ste f an ” ; : lastname ”Decker ” ;
: country ” I r e l and ” .
: S t e f f e n a : Person ; : f i r s tname ” S t e f f e n ” ; : lastname ”Staab ” ;
: country ”Germany ” .

Listing 2.6: Example for data in N3

: Person a r d f s : Class .
: P r o f e s s o r a r d f s : Class ; r d f s : subClassOf : Person .
: f i r s tname r d f s : domain : Person ; r d f s : range : L i t e r a l .
: lastname r d f s : domain : Person ; r d f s : range : L i t e r a l .
: country r d f s : domain : Person ; r d f s : range : L i t e r a l .

Listing 2.7: Example for schema in N3

The examples demonstrate that Notation 3 in comparison with an XML serializa-
tion allows more compact and human readable notation of RDF graphs. Hence,
it will be used often in the later chapters of this thesis.

Excursus: N3 and Rules. Additionally to the RDF expressiveness we also have
rules in N3. A simple rule might say something like (in some central heating
vocabulary) ”If the thermostat temperature is high, then the heating system
power is zero”, or

{ : thermo : temp : high } => { : heat ing : power ”0”} .

The curly brackets here enclose a set of statements, called formula. All formulae
are enclosed by the curly brackets. Apart from the fact that the subject and
object of the statement are formulae, the thermo example shown above is just a
single statement.

The => used here is a special predicate, means implies. This is used to
links formulae. It is actually the short hand of the URI log:implies, or:
http://www.w3.org/2000/10/swap/log#implies. When two formulas linked with
log:implies, it is a rule. Therefore all rules are just a different kind of statements.

Formulas take us out of the things we can represent using the current RDF/XML;
these rules are not part of standard RDF syntax.

We could see formula as a collection of statements, for examples:

{ : thermo : temp : high . : heat ing : power ‘ ‘ 1 ’ ’ . } => { : heat ing : power ”0”} .

is another instant of valid N3 rules. In fact, a formula could be more than just
a collection of statements. We could have variables within a formula. Variables
start with a ? . Examples of variables are:

26

2.5. Ontologies

{?x r d f s : subClass ?a , ?a r d f s : s ubc l a s s b} => {?x r d f s : subClass ?b}

The rule says, if x is subclass of a, and if a is subclass of b then x is subclass of
b.

2.5. Ontologies

2.5.1. Ontology Definition

There are different definitions in the literature of what an ontology should be,
some of which are discussed in [Guarino97]. The most widely accepted definition
originates with [Gruber94]: ”An ontology is an explicit, formal specification of
a shared conceptualization of a domain of interest”. ‘Formal’ refers to the fact
that the ontology should be machine-readable. ‘Shared’ reflects the notion that
an ontology captures consensual knowledge, that is, it is not private to some
individual, but accepted by a group. The reference to ‘a domain of interest’
indicates that one is not concerned with modeling the whole world, but rather
in modeling just the parts that are relevant to the task at hand.

Obviously, this is still far removed from a precise mathematical definition. One
reason for this is that the definition should cover all different kinds of ontologies,
and should not be related to a particular method of knowledge representation.
However, as we want to stress structural aspects here, we present a definition of an
ontological model that is used in this thesis and is valid as the smallest common
denominator for current ontology languages such as OWL or RDF(S). The core
”ingredients” of such an ontology are a set of concepts, a set of properties, and
the relationships between the elements of these two sets. In detail, an ontology
is defined as follows:

Definition 2.5.1
A core ontology is a structure

O := (C,≤C , R,≤R, A)

consisting of

• three disjoint sets C, R and A whose elements are called concepts , relations
and attributes respectively,

• a partial order ≤C on C, called concept hierarchy or taxonomy,

• a partial order ≤R on R, called relation hierarchy.

We furthermore have two functions, domain: R ∪A→ C and range: R→ C.

27

2. Metadata and Ontology Languages

Relations are considered to be binary.

Definition 2.5.2
If c1 ≤C c2, for c1, c2 ∈ C, then c1 is a subconcept of c2, and c2 is a superconcept
of c1. If r1 ≤R r2, for r1, r2 ∈ R, then r1 is a subrelation of r2, and r2 is a
superrelation of r1.

If c1 <C c2 and there is no c3 ∈ C with c1 <C c3 <C c2, then c1 is a direct
subconcept of c2, and c2 is a direct superconcept of c1. We denote this by
c1 ≺ c2. Direct superrelations and direct subrelations are defined analogously.

Definition 2.5.3
A knowledge base is a structure

KB := (CKB , RKB , AKB , I, ιC , ιR, ιA)

consisting of

• three sets CKB , RKB and AKB , whose elements are called, concepts, rela-
tions and attributes respectively,

• a set I whose elements are called instances or objects,

• a function ιC :CKB → P(I) called concept instantiation,

• a function ιR:RKB → P(I × I), called relation instantiation.

• a function ιA:AKB → P(I × STRING), called attribute instantiation.
STRING denotes a the set of all strings.

We assume that each instance i is uniquely identified by some string id(i), called
the identifier of the instance i. The set of all identifiers is id(I).

Given a knowledge base as above, we define the class assignments AC = {(i, c)|i ∈
ιC(c)} ⊆ I × CKB, the relation assignments AR = {(i, r, j)|(i, j) ∈ ιR(r)} ⊆
I × RKB × I and the attribute assignments AA = {(i, a, s)|(i, s) ∈ ιA(a)} ⊆
I ×AKB × STRING.

Conversely, given AC, AR and AA one can obtain ιC , ιR and ιA.

When a knowledge base is given, we can derive the extensions of the concepts
and relations of the ontology, based on the concept instantiation and the relation
instantiation.

Definition 2.5.4
Let KB := (CKB , RKB , AKB , I, ιC , ιR, ιA) be a knowledge base. The extension
[[c]]KB ⊆ I of a concept c ∈ CKB is recursively defined by the following rules:

28

2.5. Ontologies

• [[c]]KB ← ιC(c)

• [[c]]KB ← [[c]]KB ∪ [[c′]]KB , for c′ <C c.

The extension [[r]]KB ⊆ I × I of a relation r ∈ RKB is recursively defined by the
following rules:

• [[r]]KB ← ιR(r)

• [[r]]KB ← [[r]]KB ∪ [[r′]]KB , for r′ <R r.

If the reference to the knowledge base is clear from the context, we also write [[c]]
and [[r]] instead of [[c]]KB and [[r]]KB .

The following definition tells us if a knowledge base is consistent with an ontology.

Definition 2.5.5
A knowledge base KB = (CKB , RKB , AKB , I, ιC , ιR, ιA) is consistent with an
ontology O, if all of the following hold:

• CKB ⊆ C,

• RKB ⊆ R,

• AKB ⊆ A,

• [[r]] ⊆ [[dom(r)]]× [[range(r)]] for all r ∈ R.

• ιA(a) ⊆ [[dom(a)]] × STRING for all a ∈ A.

Ontologies formalize the intentional aspects. The extensional part is provided
by a knowledge base, which contains assertions about instances of the concepts
and relations. To define and instantiate a knowledge base is called ontology
population. The reader may note, that Semantic Annotation does not just enrich
a document with semantic metadata, it also instantiates a knowledge base, viz.
it populates an ontology.

2.5.2. Classification

The ontology and knowledge base definitions introduced above provides struc-
tures for instantiating ontologies and knowledge bases. These structures en-
ables the development of different types of ontologies. Different classification
systems for ontologies have been developed [van Heijst, 1995; Guarino, 1998;
Jasper and Uschold, 1999]. A classification system that uses the subject of con-
ceptualization as a main criterion has been introduced by Guarino (cf. [Guarino,
1998]). He suggests to develop different kinds of ontologies according to their
level of generality as shown in Figure 2.5.

Thus, different kinds of ontologies may be distinguished as follows:

29

2. Metadata and Ontology Languages

Figure 2.5.: Different kinds of ontologies and their relationships

• Top-level ontologies describe very general concepts like space, time,
event, which are independent of a particular problem or domain. Such
unified top-level ontologies aim at serving large communities of users and
applications. Recently, these kinds of ontologies have been also introduced
under the name foundational ontologies.

• Domain ontologies describe the vocabulary related to a specific domain
(such as researcher community or tourism), e.g. by specializing concepts
introduced in a top-level ontology.

• Task ontologies describe the vocabulary related to a generic task or ac-
tivity (e.g. bargain or selling), e.g. by specializing concepts introduced in a
top-level ontology.

• Application ontologies are the most specific ontologies. Concepts in
application ontologies often correspond to roles played by domain entities
while performing a certain activity, i.e. application ontologies are a special-
ization of domain and task ontologies. They form a base for implementing
applications with a concrete domain and scope.

In this work we refer by ontology to domain and in particular to application
ontologies.

2.6. Ontology Languages

In the previous section, the general appearance of an ontology, the conceptualiza-
tion, has been illustrated. To share this conceptualization, a formal knowledge

30

2.6. Ontology Languages

representation of the ontology and further of the knowledge base, viz. the meta-
data is needed which is expressed by an ontology (modeling) language.

A couple of representation mechanisms have been developed that allow for the
formal representation of ontologies. The most common ontology languages for
knowledge representation, also called representation languages, can be differen-
tiated in the following three categories of logics [Fensel, 2001, p.62]:

• Enriched first-order predicate logic languages, e.g. CycL [Lenat and Guha,
1990], Knowledge Interchange Format (KIF) [Genesereth and Fikes, 1992]

and Conceptual Graphs (CGs) [Sowa, 1984]

• Frame-based languages, e.g. Ontolingua [Farquhar et al., 1996], Frame
Logic [Kifer et al., 1995] , and Simple HTML Ontology Extensions (SHOE)
[Heflin and Hendler, 2000a]

• Description Logics, e.g.LOOM [MacGregor, 1991].

The above mentioned ontology languages in their current status are not suitable
to perform Web-based tasks, nor to combine the advantages of the different
logics categories, nor to perform inferencing services well, and limit the volume
of the knowledge base. According to Tim Berners-Lee, ”the challenge of the
Semantic Web [. . .] is to provide a language that expresses both data and rules
for reasoning about the data and that allows rules from any existing knowledge-
representation system to be exported onto the Web”[Berners-Lee et al., 2001].
Therefore, extensive research is being conducted to develop such languages.

DAML+OIL. A number of research groups in the USA and Europe had already
identified the need for a more powerful ontology modeling language. This led to
a joint initiative to define a richer language, called DAML+OIL. DAML+OIL
combines the DARPA22 Agent Markup Language (DAML) with the Ontology
Inference Layer (OIL), the European language, and thus offers ”expressive con-
structs aimed at facilitating agent interaction on the Web”[Noy and McGuinness,
2001]. DAML+OIL in turn was taken as the starting point for the W3C Web On-
tology Working Group in defining OWL, the language that is the recommended
ontology language of the Semantic Web an to be broadly accepted.

OWL. OWL is syntactically layered on top of RDF. Therefore, the official syn-
tax of OWL is the syntax of RDF. However, OWL extends RDF with additional
vocabulary that can be interpreted as OWL ontologies when used to form par-
ticular RDF graphs. Consequently, OWL ontologies can be encoded in normal

22Defense Advanced Research Project Agency

31

2. Metadata and Ontology Languages

<r d f :RDF>
<o : Person rd f : about=”http : //www. ontoweb . org /home/ s t e f an ”>

<o : f i r s tname >Stefan </o : f i r s tname >

<o : lastname>Decker</o : lastname>

<o : country>I r e l and </o : country>

</o : person>

</rd f :RDF>

Listing 2.8: Example for OWL Instances

RDF/XML documents parsed into ordinary RDF graphs. The additional vocab-
ulary defined in OWL renders OWL into a Description Logic language. Several
subsets of OWL (c.f. [Antoniou and van Harmelen, 2004, p.70]) were defined in
the standard to accommodate various interest groups and allow to safely ignore
language features that are not needed for certain applications.

• OWL Full : OWL Full contains all constructors of the OWL language and
allows the arbitrary combination of those constructors. It also allows those
constructors to be combined with RDF and RDF Schema. OWL Full is fully
upward compatible (syntactically and semantically) with RDF. Hence, any
legal RDF document is also a legal OWL Full document. However, this
compatibility leads to “uncontrollable computational properties”[Antoniou
and van Harmelen, 2004, p.70] and brings with it the disadvantage that
OWL Full is “undecidable, dashing any hope of complete (let alone efficient)
reasoning support”[Antoniou and van Harmelen, 2004, p.70].

• OWL DL: OWL DL is a subset of OWL. In order to regain computational
efficiency it restricts the way in which the constructors of OWL and RDF
can be used. As a drawback one loses full RDF compatibility. A legal OWL
DL document will still be a legal RDF document but not necessarily vice
versa. “An RDF document will in general have to be extended in some ways
and restricted in others before it is a legal OWL DL document”[Antoniou
and van Harmelen, 2004, p.71].

• OWL Lite OWL Lite is a subset of OWL DL and thus has a restricted ex-
pressivity. Among other things, it excludes disjointness, enumerated classes
and a cardinality greater than one. “The advantage of this is a language
that is both easier to grasp (for the user) and easier to implement (for tool
builders)”[Antoniou and van Harmelen, 2004, p.71].

The Example 2.8 shows, that instances of classes – in OWL called individuals –
are declared as in RDF (cf., Listing 2.4). Note that OWL, as RDF(S), can be

32

2.6. Ontology Languages

<?xml ve r s i on = ’1.0 ’?>

<!DOCTYPE u r i d e f [
<!ENTITY owl ” http : //www.w3 . org /2002/07/ owl”>
<!ENTITY rd f ” http : //www.w3 . org /1999/02/22− rdf−syntax−ns”>
<!ENTITY rd f s ” http : //www.w3 . org /2000/01/ rdf−schema”>
<!ENTITY xsd ” http : //www.w3 . org /2001/XMLSchema”>

]>
<r d f :RDF

xmlns : owl =”http : //www.w3 . org /2002/07/ owl#”
xmlns : r d f =”http : //www.w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns : r d f s =”http : //www.w3 . org /2000/01/ rdf−schema#”
xmlns : xsd =”http : //www.w3 . org /2001/XMLSchema#”

>

<owl : Class r d f : ID=”Person”>
</owl : Class>

<owl : DatatypeProperty ID=”f i r s tname”>
<r d f s : domain rd f : r e s ou r c e=”#Person”>
<r d f s : range r d f : r e s ou r c e=”&xsd ; s t r i n g ”/>

<owl : DatatypeProperty >

<owl : Property ID=”lastname”>
<r d f s : domain rd f : r e s ou r c e=”#Person”>
<r d f s : range r d f : r e s ou r c e=”&xsd ; s t r i n g ”/>

<owl : DatatypeProperty >

<owl : DatatypeProperty ID=”country”>
<r d f s : domain rd f : r e s ou r c e=”#Person”>
<r d f s : range r d f : r e s ou r c e=”&xsd ; s t r i n g ”/>

<owl : DatatypeProperty >

Listing 2.9: Example for OWL Ontology

serialized in XML and N3. The ontology corresponding to the instance data can
be found in Listing 2.9.

33

2. Metadata and Ontology Languages

34

3. Semantic Annotation for the Web

This Chapter is about the vision of the Semantic Web (Section 3.1). It shows
the Semantic Web Layer Cake based on the metadata languages introduced be-
fore. It demonstrates how to apply these technologies in order to provide Se-
mantic Annotation. Therefore, it presents the necessary infrastructure in (Sec-
tion 3.2) and the underlying processes in (Section 3.3). Subsequently, Section 3.4
defines i) the terminology (Section 3.4.1), ii) the semantic (Section 3.4.2) and iii)
the content (Section 3.4.3) of the markup that we aim to create for the Semantic
Web.

3.1. The Semantic Web

The Semantic Web aims at machine-processable information. The step from the
current Web to the Semantic Web is the step from the manual processing of
information to the automatic processing of information. This step is comparable
to the step from the manual processing of goods to the machine processing of
goods at the beginning of the industrial revolution. Hence, the Semantic Web
can be seen as the dawn of the informational revolution.

The Semantic Web enables automated intelligent services such as information
brokers, search agents, information filters etc. The Semantic Web, consisting of
machine processable information, will be enabled by further levels of interoper-
ability.

Technology and standards need to be defined not only for the syntactic rep-
resentation of documents (like HTML), but also for the their semantic content.
Semantic interoperability is facilitated by recent W3C standardization efforts, no-
tably XML/XML Schema (cf., Section 2.2), RDF/RDF Schema (cf., Section 2.4)
and OWL (cf., Section 2.6). The technology stack envisioned by the W3C is
depicted in Figure 3.1.

As is apparent, XML as well as an XML Schema are the second layer above URIs
and Unicode. The third layer is RDF and RDFS. The next layer is the ontology
language. On top of the ontology language, there is a need for a language to
express logic, so that information can be inferred and better put into relation.
Once there is logic, it makes sense to use it to prove things. The proof layer en-
ables everyone to write logic statements, and an agent can follow these Semantic

35

3. Semantic Annotation for the Web

Figure 3.1.: Semantic Web Layer Cake

“links” to construct proofs, so that validity of a statement, especially an inferred
statement, can be checked. The proof layer combined with digital signatures will
lead to trust. Consequently, ontology and ontology based metadata are the basic
ingredients for the Semantic Web layer cake. An important question is therefore
how to create and use ontology and ontology based metadata.

3.2. Infrastructure for the Semantic Web – The
Information Foodchain

Stefan Decker defines in his thesis [Decker, 2002] with the information foodchain
for the Semantic Web an infrastructure for the Semantic Web and presents ap-
plications for ontology engineering and metadata creation among others.

The food chain (Figure 3.2) starts with the construction of an ontology - prefer-
ably using a support tool, an ontology construction tool1. The ontology is the
foundation for a set of data items. The next part of the information food chain
is a tool to support the task of structuring the HTML pages. A Web page an-
notation tool (cf., Chapter 4) provides the means for browsing an ontology and
for selecting appropriate terms of the ontology and mapping them to sections of

1For example, the Ontology Engineering environment, OntoEdit (cf. [Sure et al., 2002b])

36

3.2. Infrastructure for the Semantic Web – The Information Foodchain

Figure 3.2.: Information Foodchain for the Semantic Web

a Web page. The Web page annotation process creates a set of annotated Web
pages, which are available to an automated agent to achieve his task. Of course,
the annotation process itself has a human component: although the effort to
generate the annotation of a Web page is of an order lower in magnitude than
the creation of the Web page itself, there has to be some incentive to expend the
extra effort. The incentive for the creation of the annotation (which is metadata
for the Web page) is visible on the Web for a community Web portal, which
presents a community of interest distributed on the Web to the outside world in
a concise manner. The data collected from the annotated Web pages simplifies
to a significant extent the task of maintaining a community Web portal because
changes are incorporated automatically, without any manual work. An auto-
mated agent itself needs several sub-components: an important task of the agent
is the integration of data from several distributed information sources. Because
of the need to describe the relationships between the data in a declarative way
(otherwise the agent has to be programmed for every new task), an agent needs

37

3. Semantic Annotation for the Web

an inference engine for the evaluation of rules and queries. The inference engine
is coupled with a metadata repository - the memory of an agent as to where
retrieved information is cached. Furthermore, if an automated agent browses the
Web it will usually encounter data formulated in unknown ontologies. Therefore,
it needs the facility to relate unknown ontologies to ontologies with which it is
already familiar. This facility is an Ontology Articulation Toolkit for information
mediation.

3.3. Processes for the Semantic Web – Knowledge
Process and Knowledge Meta Process

While the information foodchain presents necessary tools and infrastructure this
Section presents the underlying processes of ontology and metadata creation.

Two central processes are distinguished in the thesis of York Sure [Sure, 2003]

based on the duality of ontology and metadata: the development of an ontology,
named knowledge meta process, and then the subsequent creation of a knowledge
base, named knowledge process (see Figure 3.3).

Figure 3.3.: Two orthogonal processes with feedback loops

The knowledge meta process comprises all aspects that are necessary for the cre-
ation of an ontology as well as its extension and adaption. The knowledge process
describes in particular the steps for the creation and processing of ontology based
metadata.

38

3.3. Processes for the Semantic Web – Knowledge Process and Knowledge Meta Process

3.3.1. Knowledge Meta Process

The knowledge meta process is devoted to the modeling of ontologies. The pro-
cess can be regarded as a form of reverse-engineering, because the structure
underlying the resources needs to be derived from the Web resources with the
help of domain experts. But this derivation is not exact: the result, the ontology,
and also the process, the steps to an ontology, are variable.

Considering the result, since each ontology-designer has a certain application
in mind for which he designs his ontology and has another understanding of the
considered domain, a multitude of ontologies can be created for one domain. The
dependence on an application, however, should be not so strong that it limits
the re-usability of an ontology [Noy and McGuinness, 2001, p.4]. With regard
to the process “no single correct ontology-design methodology” exists [Noy and
McGuinness, 2001, p.4] which describes the steps for designing an ontology. Pro-
posals for methodologies, however, have been developed by various researchers
such as the Buchanan-Methodology, the Uschold-Methodology [Uschold1996],
and Methontology by López et al. [Lopez1999]. The methodologies have in com-
mon approximately the following four steps: specification, conceptualization/re-
finement, implementation, and evaluation. More steps which can be added are
a feasibility study (the four steps mentioned above) and a maintenance phase
(following the four steps mentioned above) [Staab et al., 2001c, p.2]. The feasi-
bility study should support the decision if the creation of an ontology is useful
in a certain domain of knowledge. The maintenance phase is important so that
ontologies keep track of the change in the real world and are evolving with time.

3.3.2. Knowledge Process

In the knowledge process (Figure 3.4), which is orthogonal to the knowledge
meta process, metadata is created to describe the relevant information of some
resources with the use of ontology. The resulting metadata consists of instances
of a specific concept connected with properties (attributes and relations) and
axioms. The output of the metadata creation process is the knowledge base, viz.
a collection of this metadata in a specified formal representation language. In the
event that Web resources are described, the knowledge base or a part of it can
be embedded in existing Web page description to provide semantic)information
for intelligent agents in the WWW. The knowledge base can be extended by
inferring “new” facts on the basis of defined axioms. This creation process is the
topic of this thesis.

The reader may note that there exist no methodology for the design of metadata
as there is for the ontology-design.

39

3. Semantic Annotation for the Web

Figure 3.4.: The knowledge process

3.4. Semantic Annotation

In the following we define the terminology, the semantic and the content of meta-
data creation as envisioned in this thesis.

3.4.1. Terminology

The terminology used in this thesis has been elaborated because many of the
terms that are used with regard to metadata creation tools carry several, am-
biguous connotations that imply conceptually important decisions.

• Ontology: An ontology is a formal, explicit specification of a shared con-
ceptualization of a domain of interest (cf., Section 2.5). In our case, an
ontology is defined in RDF(S) or OWL. Hence, an ontology is constituted
by statements expressing definitions of OWL classes – RDF(S) resources,
respectively – and properties ([OWL Reference, 2004], [Brickley and Guha,
2004]).

• Annotations: An annotation in our context is a set of instantiations at-
tached to an HTML document. We distinguish (i) instantiations of OWL
classes, (ii) instantiated properties from one class instance to a datatype
instance — henceforth called attribute instance (of the class instance), and

40

3.4. Semantic Annotation

(iii) instantiated properties from one class instance to another class in-
stance — henceforth called relationship instance.

Class instances have unique URIs, e.g. like ’http://www.aifb.uni-karlsruhe
.de/WBS/sst/#Steffen’. They frequently come with attribute instances,
such as a human-readable label like ‘Steffen’.

• Metadata: Metadata are data about data. In our context the annotations
are metadata about the HTML documents.

• Relational Metadata: We use the term relational metadata to denote
the annotations that contain relationship instances.

Often, the term “annotation” is used to mean something like “private or
shared note”, “comment” or “Dublin Core metadata”. This alternative
meaning of annotation may be emulated in our approach by modeling these
notes with attribute instances. For instance, a comment note “I like this
paper” would be related to the URL of the paper via an attribute instance
‘hasComment’.

In contrast, relational metadata also contain statements like ‘Siegfried coop-
erates with Steffen’, i.e. relational metadata contain relationships between
class instances rather than only textual notes.

Figure 3.5 illustrates our use of the terms “ontology”, “annotation” and “re-
lational metadata”. It depicts some part of the SWRC2 (Semantic Web
Research Community) ontology. Furthermore it shows two homepages, viz.
pages about Siegfried and Steffen (http://www.aifb.uni-karlsruhe.de/WBS/sha
and http://www.aifb.uni-karlsruhe.de/WBS/sst, respectively) with annotations
given in an XML serialization of RDF facts. For the two persons there are
instances denoted by corresponding URIs (http://www.aifb.uni-karlsruhe.de/
WBS/sst/#Steffen and http://www.aifb.uni-karlsruhe.de/WBS/sha/#Siegfried).
The swrc:name of http://www.aifb.uni-karlsruhe.de/WBS/sha/#Siegfried is
“Siegfried Handschuh”. In addition, there is a relationship instance between
the two persons, viz. they cooperate. This cooperation information ‘spans’ the
two pages.

3.4.2. The Semantics of Semantic Annotation

There are two players in the annotation game, the annotation provider and the
annotation consumer. The key is, as Bechhofer et. al. points out [Bechhofer and
Goble, 2001], that consumer and provider share underlying assumptions about
the annotation. Part of this assumption is the common ontology, but part of it
is how the terms of the ontology are to be used.

2http://ontobroker.semanticweb.org/ontos/swrc.html

41

3. Semantic Annotation for the Web

Figure 3.5.: Annotation example.

In the literature about Semantic Annotation it is evident that different assump-
tions exist about the nature and the scope of Semantic Annotation.

Bechhofer et. al. [Bechhofer and Goble, 2001] differentiate between:

• Decoration: Is the idea of creating a kind of user comment about Web
pages. This is view that Annotea has adopted for their annotation (cf.
[Kahan et al., 2001]).

• Linking: To annotate a document with further links. The provision of
dynamic linking as annotation is used by the COHSE project (cf. Section
3.1.1 in [Bechhofer and Goble, 2001]). Annotation within COHSE can be
seen as a mechanism that allows the user to specify possible link anchors
within a document, with the anchor being associated with a conceptual
description.

42

3.4. Semantic Annotation

• Instance Identification: We are making an assertion that there is some
resource in the Web, such that it is an instance of an concept, and the
identifier of the instance, viz. the URI identifies the resource. This means
the instance about the annotation is being made is clearly accessed by the
given URI.

• Instance Reference: We are making an assertion that there is some
individual in the world, such that it is an instance of the concept, and the
identifier of the instance, viz. the URI identifies not the individual itself,
but the a reference in a document to the real world individual. This is the
semantic of annotation that is used by our annotation framework.

• Aboutness: A user expresses that a particular resource (i.e. a Web page)
is about a certain concept, but not an instance of an concept.

• Pertinence: A user expresses that a particular resource (i.e. a Web page)
give further useful information about a concept,

Our viewpoint of annotation is based on instance reference (cf., Section 3.4.1),
but we can emulate most of the other annotation types with our framework.

3.4.3. Layering of Annotation

As shown in the before, there exists different notions of the semantic of Semantic
Annotation. Additionally, [Rinaldi et al., 2003] presents a layering of annotation
which reflects different aspects of content to be represented:

• Structural Annotation: Used to define the physical structure of the
document, it s organization into head and body, into sections, paragraphs
and sentences.

• Linguistic Annotation: Associated to a short span of text (smaller than
a sentence), and identify lexical units. They could be referred to also
as Textual Annotations or Lexical Annotation. This corresponds to the
grammatical structure in ([Euzenat, 2002]).

• Semantic Annotation: Corresponds to our view of Semantic Annotation.
Similar to the representation of the logical structure ([Euzenat, 2002]) of
the document.

As mentioned before our focal point lays on the Semantic Annotation. However,
we aim to present a generic annotation model that is able to deal with most of
the Semantics of Semantic Annotation, as well as with the aspects or layers of
Annotation (cf., Section 7.1).

43

3. Semantic Annotation for the Web

3.5. Summary

The Semantic Web aims at machine-processable information. Fundamental to
the vision of the Semantic Web is the use of a formal markup language for
annotation of Web resources, based on technologies such as facilitated by recent
W3C standardization efforts. One possible infrastructure to realize a Semantic
Web is given in the information foodchain. This foodchain envisions an Ontology-
Construction-Tool for the creation of Ontology and a Web-Page-Annotation-Tool
for formal markup. From a process point of view, the knowledge meta process
comprises all aspects that are necessary for the creation of an ontology and
the knowledge process describes the metadata creation and processing. Hence,
the conception and implementation of an annotation framework that feeds the
information foodchain and thereby supports the knowledge process is the topic of
this thesis. Therefore, we have defined the goal of the annotation process, which
is the creation of relational metadata using the semantic of an instance reference
and representing the logical structure of a Web page.

44

Part II.

Metadata for the Semantic Web

“The Web is about links;
the Semantic Web is about the relationships implicit in those links.”

— Dan Brickley

45

4. Annotation and Authoring
Framework

This Chapter presents an annotation and authoring framework: CREAM, that
allows for the creation of semantic metadata about static and dynamic Web
pages, i.e. for Semantic Annotation of the Shallow and the Deep Web. CREAM
supports the manual and the semi-automatic annotation of static Web pages,
the authoring of new Web pages with the simultaneous creation of metadata,
and the deep annotation of Web pages defined dynamically by database queries.
In the following we first describe the case studies from which we took a major
part of our experiences for guiding the development of CREAM (Section 4.2).
Then, we describe some of the requirements in detail that were derived from the
case studies (Section 4.3). In Section 4.4 we derive the design of CREAM from
the requirements previously elaborated. In Section 4.5, we specify how the meta
ontology may modularize the ontology description from the way the ontology is
used in CREAM. In Section 4.6, we explain the major modes of interaction with
OntoMat, our implementation of CREAM.

References: This chapter is mainly based on [Handschuh et al., 2001], [Hand-
schuh and Staab, 2002] and [Handschuh and Staab, 2003].

4.1. Introduction

The Semantic Web builds on metadata describing the contents of Web pages.
In particular, the Semantic Web requires relational metadata, i.e. metadata that
describe how resource descriptions instantiate class definitions and how they are
semantically interlinked by properties. We have carried out several case studies
that build on this idea of the Semantic Web in order to provide intelligent appli-
cations to make knowledge about researchers, about companies and markets, and
about research papers accessible by semantic means (cf. Section 4.2). An impor-
tant cornerstone of the case studies — and many other scenarios in the Semantic
Web — is a method and a mechanism that let the user easily and comprehensively
contribute relational metadata on which the Semantic Web can be build. For this
purpose, we have developed our Semantic Annotation framework, CREAM —
CREAting Metadata for the Semantic Web — that is presented here. CREAM
is designed to enable the easy and comfortable creation of semantic metadata.

47

4. Annotation and Authoring Framework

CREAM allows for the a posteriori annotation of existing resources. A posteriori
creation of metadata involves the consideration of an item (e.g. a document) by
an agent (possibly, but not necessarily, a human agent) and its description with
metadata. (i), the process may include the identification of elements already
existing within the item. For instance, one may consider an HTML page and
identify its author by a footer appearing within the page. (ii), one may classify
the item to belong to a category like Business though neither the term itself nor
a synonym or hyponym appears in the item.

A posteriori creation of metadata comes with a major drawback. In order to
provide metadata about the contents of a Web page, the author must first cre-
ate the content and second annotate the content in the additional, a-posteriori,
annotation step. To avoid the overhead work, we propose that, (iii), an author
has the possibility to easily combine authoring of a Web page and the creation
of relational metadata describing its content.

Scrutinizing the differences between the modes of interaction (i), (ii), and (iii),
we found that the major problems one must deal with for an annotation frame-
work are identical. In fact, we found it preferable to hide the border between
annotation (i.e. (i) and (ii)) and authoring (i.e. (iii)) as far as possible within
CREAM. Some questions, however, were triggered by the need to modularize
the ontology that defines the structure of the relational metadata from its use for
annotation or authoring. For this purpose, we here introduce a meta ontology
that describes how the annotation and authoring modes of OntoMat interfere
with classes and properties of the ontology proper. There we modularize the
ontology parts needed in the metadata creation process from the ones relevant
for the targeted content description.

For the CREAM framework we have also provided a reference implementation,
viz. OntoMat, which is freely available for download.1

4.2. Case Studies for CREAM

There are many scenarios in which Semantic Annotation may prove beneficial.
Below, we describe three case studies that we have performed and that have
guided our development of CREAM. The case studies have in common that
they require the generation of metadata given a HTML document from which a
human could identify relevant metadata entities.

During the studies, we repeatedly found several principal problems. Some of the
problems were mostly syntactic, viz. people would easily make syntactic errors,
e.g. closing XML parentheses incorrectly or not at all. In the further course,
however, we found that people violated semantic constraints, too, e.g. they would

1http://annotation.semanticweb.org

48

4.2. Case Studies for CREAM

give a string instead of an object identifier. Also, human annotators would violate
pragmatic constraints, e.g. have wrong assumptions about the existence of object
descriptions in the Semantic Web and, thus, make errors when referring to people.

4.2.1. KA2 Initiative and KA2 Portal

The origin of our work facing the challenge of creating relational metadata dates
back to the start of the seminal KA2 initiative [Benjamins et al., 1999], i.e. the
initiative for providing semantic markup on HTML pages for the knowledge ac-
quisition community and its presentation in a Web portal [Staab et al., 2000a].
The KA2 portal2 provides a view onto knowledge of the knowledge acquisition
community. Besides of semantic retrieval as provided by the original KA2 initia-
tive, it allows comprehensive means for navigating and querying the knowledge
base and also includes guidelines for building such a knowledge portal. The
potential users provide knowledge, e.g. by annotating their web pages in a de-
centralized manner. The knowledge is collected at the portal by crawling and
presented in a variety of ways.

Metadata for KA2 was initially contributed by manually editing HTML pages
providing metadata with an ASCII editor. The syntactic errors that arose from
the difficulty of this manual task soon became obvious. However, we still had the
wrong intuition that a simple tool that would take care of syntax issues would
resolve the problem. Thus, OntoPad was developed in order to facilitate editing
[Fensel et al., 1999; Decker, 2002]. However, it was soon found that the semantic
and pragmatic concerns are as important as the syntactic issue and could hardly
be dealt with by such simple tools that were available then.

4.2.2. TIME2Research Portal

In a second case study, we have used Semantic Annotation in order to provide
knowledge about the TIME (telecommunication, IT, multimedia, e-business)
markets in the TIME2Research portal [Staab and Maedche, 2001]. The prin-
cipal idea of the TIME2Research portal is that business analyst review news
tickers, business plans and business reports. A considerable part of their work
requires the comparison and aggregation of similar or related data, which may
be done by semantic queries like “Which companies provide B2B solutions?”,
when the knowledge is semantically available. Therefore, we have created a
knowledge portal for business analysts that let the analysts provide Semantic
Annotation for incoming HTML, Word and Excel documents. Then, they were
able to browse through the metadata and the documents and they could per-
form semantic searches looking for individual as well as semantically aggregated
information provided by annotation.

2http://ka2portal.aifb.uni-karlsruhe.de

49

4. Annotation and Authoring Framework

For the case study we provided OntoAnnotate3. OntoAnnotate gave the human
annotator an easy-to-use interface. He was allowed to highlight some piece of
HTML text, Word text or an Excel cell and then drag’n’drop it onto a cor-
responding — possibly instantiated — concept, attribute or relation from the
ontology. By the control through ontology guidance and browsing of existing
facts most of the semantic and pragmatic problems were dealt with. A substan-
tial part of this paper is about this part of OntoAnnotate that is also realized
within CREAM.

In the TIME2Research case study we found that people would need the possibility
to easily create documents and their metadata in one step, rather than produce
a report and create the Semantic Annotation a posteriori. The reason is that in
a commercial setting people are even more resistant to overhead work than in a
closed-community, academic initiative like KA2.

4.2.3. Authors’ Annotations of Paper Abstracts at ISWC

The most recent case study involved the mark-up of papers for the International
Semantic Web conferences — ISWC-20024, ISWC-20035, and ISWC-20046.

“Eating their own dog food”, authors of accepted paper were required to anno-
tate title-pages and abstracts of their papers in order to contribute to the actual
creation of the Semantic Web and to produce experience in actually providing Se-
mantic Annotation. The authors could, but were not forced to, use the OntoMat
annotation tool and a specifically created ISWC ontology.

The results from the ISWC abstracts annotation study complemented some of
the problematic experiences we gained from KA2. Without a tool, even highly
trained authors of highly valued papers produced mark-up that obviously was
not XML (not to mention RDF) as not all parentheses matched correctly. Others
who did not use a tool reused existing RDF code — copying the syntactic errors
that the original code contained.

Given the code produced by OntoMat, some third parties actually took advan-
tage of the metadata to build applications on top. M. Frank et al. produced a
spreadsheet-like summary of some of the core data exploiting their WebScripter
approach [Frank et al., 2002b]. C. Fillies and F. Weichhardt used their visualiza-
tion methods in order to create a graphical depiction of the underlying metadata
[Fillies and Weichhardt, 2002].7

3OntoAnnotate is now a commercial tool available from Ontoprise GmbH.
4http://annotation.semanticweb.org/iswc/documents.html
5http://annotation.semanticweb.org/iswc2003/
6http://annotation.semanticweb.org/iswc2004/
7Cf. also http://www.semtalk.com/pub/sardinia.htm.

50

4.3. Requirements for CREAM

4.3. Requirements for CREAM

Given the problems with syntax, semantics and pragmatics experienced in the
case studies described above, we can now list a more precise set of requirements.
Thereby, the principal requirements apply for a-posteriori annotation as well as
for the integration of Web page authoring with metadata creation as follows:

• Consistency: Semantic structures should adhere to a given ontology in
order to allow for better sharing of knowledge. For example, the use of an
attribute should be avoided, where the ontology requires a concept instance.

• Proper Reference: Identifiers of instances, e.g. of persons, institutes
or companies, should be unique. For instance, the metadata generated in
the KA2 case study contained three different identifiers for our colleague
Dieter Fensel. Thus, knowledge about him could not be gathered using a
straightforward query.8

• Avoid Redundancy: The provision of decentralized knowledge should be
possible. However, when annotators collaborate, it should be possible for
them to identify (parts of) sources that have already been annotated and to
reuse previously captured knowledge in order to avoid laborious redundant
annotations.

• Relational Metadata: Like HTML information, which is spread on the
Web, but related by HTML links, knowledge markup may be distributed,
but it should be semantically related. Current annotation tools tend to
generate template-like metadata, which is hardly connected, if at all. For
example, annotation environments often support Dublin Core [dub, 2001;
Dublin Core Metadata Template, 2001; Klarity, 2001], providing a means
to state, e.g., the name of authors of a document, but not their IDs9. Thus,
the only possibility to query for all publications of a certain person requires
querying an attribute such as fullname — which is very unsatisfactory in
the case of names like “John Smith”.

• Maintenance: Knowledge markup needs to be maintained. An annotation
tool should support the maintenance task. In the remainder of the paper
we will provide some infrastructure support for the task.

In particular we provide a baseline document management system to enable
the handling of changing documents, facts, and ontologies in the future.

8The reader may see similar effects in bibliography databases. E.g., query for James
(Jim) Hendler at the — otherwise excellent — DBLP: http://www.informatik.uni-trier.de/
˜ley/db/.

9In the Web context one typically uses the term ‘URI’ (uniform resource identifier) to speak
of ‘unique identifier’.

51

4. Annotation and Authoring Framework

However, this needs to be further explored (e.g., along the lines elaborated
for robust linking in [Phelps and Wilensky, 2000] and Ontology Evolution
[Stojanovic et al., 2002a]).

• Ease of Use: It is obvious that an annotation environment should be
easy to use in order to be really useful. However, this objective is not
easily achievable, because metadata creation involves intricate navigation
of semantic structures, e.g. taxonomies, properties and concepts.

• Efficiency: The effort required to produce metadata is a considerable
restrictive factor.The more efficiently a tool supports metadata creation,
the more metadata users tend to produce. This requirement is related to
the ease of use. It also depends on the automation of the metadata creation
process, e.g. on the preprocessing of the document.

• Multiple Ontologies: HTML documents in the Semantic Web may con-
tain information that is related to different ontologies. Therefore the an-
notation framework should cater for concurrent annotation with multiple
ontologies.

Our framework, CREAM, which is presented here, targets a comprehensive so-
lution for metadata creation during web page authoring and a-posteriori annota-
tion. The objective is pursued by combining advanced mechanisms for inferenc-
ing, fact crawling, document management, meta ontology definitions, metadata
re-recognition, content generation, and information extraction. These compo-
nents are explained in the subsequent sections.

4.4. Design of CREAM

4.4.1. CREAM Modules

The requirements and considerations from Sections 1 to 3.4.1 feed into the de-
sign rationale of CREAM. The design rationale links the requirements with
the CREAM modules. This results in a N:M mapping (neither functional nor
injective). An overview of the matrix is given an Table 4.1, page 58.

• Document Editor: The document editor may be conceptually — though
not practically — divided into a viewing component and the component
for generating content:

– Viewer: The document viewer visualizes the document contents. The
metadata creator may easily provide new metadata by selecting pieces
of text and aligning them with parts of the ontology. The document

52

4.4. Design of CREAM

viewer should support various formats10 (HTML, PDF, XML, etc.).
For some formats the following component for content generation may
not be available.

– Content Generation The editor also allows the conventional au-
thoring of documents. In addition, instances already available may be
dragged from a visualization of the content of the annotation inference
server and dropped into the document. Thereby, some piece of text
and/or a link is produced taking into account the information from
the meta ontology (cf. Section 4.5). The newly generated content is
already annotated and the meta ontology guides the construction of
further information, e.g. further XPointers are attached to instances.

• Ontology Guidance and Fact Browser: The framework needs to be
guided by the ontology. In order to allow for sharing of knowledge, newly
created annotations must be consistent with a community’s ontology. If
metadata creators instantiate arbitrary classes and properties the semantics
of these properties remains void. Of course the framework must be able to
adapt to multiple ontologies in order to reflect different foci of the metadata
creators. In the case of concurrent annotation with multiple ontologies
there is an ontology guidance/fact browser for each ontology.

Furthermore, the ontology guidance and the browser for facts already given
are important in order to steer metadata creators towards the creation of re-
lational metadata. We have done some preliminary experiments and found
that subjects have more problems with creating relationship instances than
with creating attribute instances (cf. [Staab et al., 2001b]). Without the on-
tology they would miss even more cues for assigning relationships between
class instances.

Both ontology guidance/fact browser and document editor/viewer should
be easy to use: Drag’n’drop helps to avoid syntax errors and typographical
errors and a good visualization of the ontology can help to correctly choose
the most appropriate class for instances.

• Crawler: The creation of relational metadata must take place within the
Semantic Web. During metadata creation, subjects must be aware of which
entities exist already in their part of the Semantic Web. This is only possi-
ble if a crawler makes relevant entities immediately available. Thus, meta-
data creators may look for a proper reference, i.e. decide whether an entity
already has a URI (e.g. whether the entity named “Dieter Fensel” or “D.
Fensel” has already been identified by some other metadata creators) and
only in this way metadata creators may recognize whether properties have
already been instantiated (e.g. whether “Dieter Fensel” has already been

10The current prototypical implementation of CREAM focuses on HTML/XHTML

53

4. Annotation and Authoring Framework

linked to his publications). As a consequence of metadata creators’ aware-
ness, relational metadata may be created, because class instances become
related rather than only flat templates being filled.

A crawler answers the requirements of proper reference and the avoidance
of redundancy. For example, a researcher might crawl the homepages of his
community before he starts to annotate his homepage in order to reuse and
reference existing metadata. However, a crawler reduces but does not solve
the problems since it is obviously not possible to crawl the whole Web.

We have built an OWL/RDF Crawler11, a basic tool that gathers intercon-
nected fragments of OWL and RDF from the Web and builds a local know-
ledge base from this data In general, OWL/RDF data may appear in Web
documents in several ways. We distinguish between (i) pure OWL/RDF
(files that have an extension like “*.owl” or ”*.rdf”), (ii) OWL/RDF em-
bedded in HTML and (iii) OWL/RDF embedded in XML. Our RDF
Crawler relys on the Jena-API12 which can deal with the different embed-
dings of RDF described above. One general problem of crawling is the
applied filtering mechanism: Baseline document crawlers are typically re-
stricted by a predefined depth value. Assuming that there is an unlimited
amount of interrelated information on the Web (hopefully this will soon
hold about OWL/RDF data as well), at some point OWL/RDF fact gath-
ering by the OWL/RDF Crawler should stop. We have implemented a
baseline approach for filtering: At the very start of the crawling process
and at every subsequent step we maintain a queue of all the URIs we want
to analyze. We process them in the breadth-first-search fashion, keeping
track of those we have already visited. When the search goes too deep, or
the crawler has received sufficient quantity of data (measured as number
of links visited or the total Web traffic or the amount of OWL/RDF data
obtained) it may quit.

• Annotation Inference Server: Relational metadata, proper referencing
and the avoidance of redundant annotation require querying for instances,
i.e. querying whether and, if so, which instances exist. For this purpose as
well as for checking consistency, we provide an annotation inference server
in our framework. The annotation inference server reasons on crawled and
newly created instances and on the ontology. It also serves the ontological
guidance and fact browser, because it allows to query for existing classes,
instances and properties.

The annotation inference server supports multiple ontologies. It distin-
guishes them into different namespaces. CREAM is based on the model,

11RDF Crawler is freely available for download at:
http://projects.semwebcentral.org/projects/owlcrawler/.

12http://jena.sourceforge.net/

54

4.4. Design of CREAM

view, controller paradigm. The annotation inference server constitutes the
model, whereas the ontology/fact browser constitutes the view. Every on-
tology in the annotation server may have a corresponding ontology/fact
browser as a view.

We use Ontobroker’s [Decker et al., 1999] underlying F-Logic [Kifer et
al., 1995] based inference engine SilRI [Decker et al., 1998] as annota-
tion inference server. The F-Logic inference engine combines ordering-
independent reasoning in a high-level logical language with a well-founded
semantics including multiple namespaces [F-Logic Tutorial, 2004]. How-
ever, other schemes like the DAML+OIL iFACT reasoner [Horrocks, 1998;
Broekstra et al., 2001] or a fact serving peer [Nejdl et al., 2002] might be
exploited, too.

• Document Management: Two distinct scenarios exist. Firstly, when
annotating one’s own Web pages, one knows when they change and can
install organizational routines that keep track of annotation and changes of
annotation (e.g. on the annotation inference server). In the second scenario,
one may want to annotate external resources (cf., e.g., [Nejdl et al., 2001]).
Here, redundancy of annotation efforts must be avoided; it is not sufficient
to ask whether instances exist at the annotation inference server. When
an annotator decides to capture knowledge from a Web page, he does not
want to query for all single instances that he considers relevant on this
page, rather he wants information, whether and how this Web page has
been annotated previously.

Considering the dynamics of HTML pages on the Web, it is desirable to
store foreign web pages one has annotated together with their annotations.
Foreign documents for which modification is not possible may be remotely
annotated by using XPointer (cf. Section 2.3, [Goble et al., 2001]) as an
addressing mechanism. When the foreign Web page changes, the old anno-
tations may still be valid or they may become invalid. The annotator must
decide based on the old annotations and based on the changes on the Web
page.

A future goal of document management in our framework will be the semi-
automatic maintenance of annotations on foreign Web pages. When only
few parts of a document change, pattern matching may propose revisions
of old annotations. In our current implementation we use a straightfor-
ward file-system based document management approach. OntoMat uses
the URI to detect the re-encounter of previously annotated documents and
highlights annotations in the old document for the user. Then the user
may decide to ignore or even delete the old annotations and create new
metadata, he may augment existing data, or he may just be satisfied with
what has been previously annotated. In order to recognize that a docu-

55

4. Annotation and Authoring Framework

ment has been annotated before, but now appears under a different URI,
OntoMat computes similarity with existing documents by simple informa-
tion retrieval methods, e.g. comparison of the word vector of a page. If a
similarity is discovered during this process, this is indicated to the user, so
that he can check for congruency.

• Metadata Re-recognition & Information Extraction: Even with so-
phisticated tools it is laborious to provide Semantic Annotations. A major
goal, therefore, is semi-automatic metadata creation taking advantage of
information extraction techniques to propose annotations to metadata cre-
ators and, thus, to facilitate the metadata creation task. Concerning our
environment we envisage the following major techniques:

1. First, metadata re-recognition compares existing metadata literals
with newly typed or existing text. Thus, the mentioning of the
name “Siegfried Handschuh” in the document triggers the proposal
that URI, http://www.aifb.uni-karlsruhe.de/WBS/sha/#Siegfried is
co-referenced at this point.

2. “Wrappers” may be learned from given markup in order to auto-
matically annotate similarly structured pages (cf., e.g., [Kushmerick,
2000]).

3. Message extraction like systems may be used to recognize named en-
tities, propose co-reference, and extract some relationship from texts
(cf., e.g., [MUC7, 1998; Vargas-Vera et al., 2001]).

4. Linguistic Patterns may be used to categorize instances with regards
to a given ontology. This approach combines the idea of using lin-
guistic pattern to identify certain ontological relations as well as using
the Web as a big corpus to overcome data sparseness problems. The
PANKOW approach (Pattern-based Annotation through Knowledge
on the Web) is explained in Section 5.2.

Parts of this component has been realized by using the Amilcare infor-
mation extraction system (cf. 5.1.2)13, but it is not yet available in the
download version of OntoMat.

• Deep Annotation Module The Deep Annotation Module allows to an-
notate the hidden Web, viz., Web pages that are generated from a database.
A detailed description is given in Section 6.

• Meta Ontology: The purpose of the meta ontology is the separation of
ontology design and use. It is specifically explained in Section 4.5.

13http://www.dcs.shef.ac.uk/˜fabio/Amilcare.html

56

4.5. Meta Ontology

Besides the requirements that constitute single modules, one may identify func-
tions that cross module boundaries:

• Storage: CREAM supports three different methods of storage: i) the
annotations will be stored inside the document that is in the document
management component or ii) they are stored in a separate file, iii) alter-
natively or simultaneously it is also possible to store them in the annotation
inference server.

• Replication: We provide a simple replication mechanism by crawling an-
notations into our annotation inference server. Then inferencing can be
used to rule out formal inconsistencies.

4.4.2. Architecture of CREAM

The architecture of CREAM is depicted in Figure 4.1. The design of the CREAM
framework pursues the idea to flexibility and openness. Therefore, OntoMat,
the implementation of the framework, comprises a plug-in structure, which is
flexible with regard to adding or replacing modules. Document viewer/editor
and ontology guidance/fact browser together constitute the major part of the
graphical user interface. Thanks to the plug-in structure they can be replaced
by alternative viewers.

Further capabilities are provided through plugins that establish connections, e.g.
one might provide a plug-in for a connection to a commercial document manage-
ment system.

The core OntoMat already comes with some basic functionalities. For instance,
one may work without a plug-in for an annotation inference server, because the
core OntoMat provides a simple means of navigating the taxonomy per se.

The core OntoMat, which is downloadable, consists of Ontology Guidance and
Fact browser, a document viewer/editor, and an internal memory data-structure
for the ontology and metadata. However, one only gets the fully-fledged semantic
capabilities (e.g. datalog reasoning or subsumption reasoning) when one uses a
plug-in connection to a corresponding annotation inference server.

4.5. Meta Ontology

A meta ontology is needed to describe how classes, attributes and relationships
from the domain ontology should be used by the CREAM environment. Hence, it
describes what role the properties in the domain ontology have in the annotation

57

4.
A

n
n
ot

at
io

n
an

d
A

u
th

or
in

g
F
ra

m
ew

or
k

Table 4.1.: Design Rationale — Linking Requirements with CREAM Modules.

Requirement Storage

Document Editor Replication

Content Ontology Craw- Annotation Document Metadata General Meta

General Viewer Gener- Guidance ler Inference Manage- Re- Information Onto-

Problem ation Server ment recognition Extraction logy

Consistency X X X X

Proper Reference X X X X X

Avoid Redundancy X X X X

Relational Metadata X X X X

Maintenance X X X X

Ease of use X X X X X

Efficiency X X X X X X X X X

Multiple Ontologies X X

58

4.5. Meta Ontology

Figure 4.1.: Architecture of CREAM.

system. In particular, we have recognized the urgent need for the meta ontology
characterizations detailed in Sections 4.5.1 to 4.5.3.

The meta ontology is given with the annotation system. The annotator must
establish the connection of an ontology with the meta ontology. The effort for
the annotator is reduced by default settings for this connection, such as the
name attribute is by default the label of the instance. The task of connecting
the ontology with the meta-ontology is supported by the user interface, e.g. the
annotator can change the role of the properties in the Ontology and Fact Browser.

Thus, the ontology describes what the semantic data should look like and the
meta ontology connected to the ontology describes how the ontology is used by
the annotation environment to actually create semantic data.

This modularization into ontology and meta ontology fulfills the requirement that
it should be possible to define a new ontology or to reuse an existing one quite
independently from the way it is used to create metadata by Web page authoring

59

4. Annotation and Authoring Framework

and annotation.

The reader may note that the descriptions of how the meta ontology influences
the interaction with the ontology, which are given in this section, depend to some
extent on the modes of interaction described in Section 4.6 — and vice versa.

4.5.1. Label

The specification of RDFS [Brickley and Guha, 2004] provides a rdfs:label as a
human-readable version of a resource name. Analogously, one wants to assign an
instance with a human-readable name even if it instantiates a class from a given
ontology that does not use the property rdfs:label per se.

For instance, assume that (part of) the RDF(S) ontology definition is as follows:

:ssn a rdf:Property;

rdfs:comment "Social Security Number";

rdfs:range xml-schema:Integer;

rdfs:domain :Person.

:fullname a rdf:Property;

rdfs:comment "Last Name, First Name, Middle Name";

rdfs:range rdf-schema:Literal;

rdfs:domain :Person.

Then, one might want to state that the property fullname rather than the property
ssn takes the role of rdfs:label for class Person. We may link the meta ontology
(the relevant piece here is rdfs:label) with the ontology proper by:

:label1 a meta_onto:Label;

meta_onto:about_concept :Person;

meta_onto:about_attribute :fullname.

Now, the authoring and annotation environment may exploit this additional piece
of information at (at least) two points of interaction:

1. Instance Generation: When a new instance is about to be created and some
piece of text has been chosen to represent the name, CREAM creates a new
URI and automatically assigns this piece of text to the attribute recorded
as rdfs:label, i.e. here fullname.

2. Content Generation: When an instance is selected for generating content
of a Web page, the generated text is produced by the rdfs:label attribute.
By this method we may produce text that is meaningful to humans with
little interaction, because the author need not to specify the attribute that
should be used but he may just refer to the instance.

60

4.5. Meta Ontology

One may note that another person, e.g. from administration, could choose in-
stead:

:label1 a meta_onto:Label;

meta_onto:about_concept :Person;

meta_onto:about_attribute :ssn.

Thus, this person would create Web page content referring to social security num-
bers when authoring with existing instances and he would create new instances
of Person from given social security numbers and not from names.

The reader may note from this scriptsize example that

• The difference between more or less metadata creation effort is often just
one click.14 For example, without the meta ontology description the fol-
lowing steps would have been necessary for instance creation: an instance
creation with an appropriate label, filling the attribute ”fullname”, filling
of the attribute ”ssn”.

• The connection between ontology and meta ontology is not an objective
one. Rather their linkage depends on the way an ontology is used in a
particular metadata creation scenario.

Statements equivalent to the last text passage hold for the following meta onto-
logy descriptions.

4.5.2. Default Pointing

For many instances that are to be created it is desirable to point to the Web page
from which they “originated”. Analogously to the way that rdfs:label is used, we
use three types of definitions in order to specify the default pointing behavior for
class instances, exploiting the XPointer working draft [DeRose et al., 2001].

Consider the meta ontology properties cream:uniqueDPointer,
cream:autoDPointer, and cream:autoUniqueDPointer. If a property is
rdfs:subPropertyOf one of the following interactions take place during annotation
or authoring:

1. Instance Generation: When a new instance is generated and a property of
that instance is of type cream:autoDPointer or cream:autoUnique-

DPointer, an XPointer to the current (part of the) Web page will be
automatically added into the corresponding slot of the instance.

14We conjecture that the one click difference may distinguish between success and failure of a
tool.

61

4. Annotation and Authoring Framework

2. Content Generation: When an instance is used for generating Web page
content, the attribute containing the XPointer is offered for link generation.
When the attribute is of type cream:uniqueDPointer or cream:auto-

UniqueDPointer indicating uniqueness, a link with text corresponding
to rdfs:label and HRef corresponding to the XPointer will be automatically
generated.

For instance, one may model in the ontology that a Person comes with properties
hasHomepage and fullname and in the instantiation of the meta ontology that
hasHomepage is a subproperty of cream:uniqueDPointer and fullname a subprop-
erty of rdfs:label. During annotation of people homepages, the label and pointer
mechanisms automate, (i), the generation of unique IDs with reasonable labels,
(ii), the creation of pointers to people’s homepages, and, (iii), the correct linking
between people mentioned on the different homepages. Like with rdfs:label, the
linkage between meta ontology and ontology proper may depend on the actual
usage scenario.

4.5.3. Property Mode

The property mode distinguishes between different roles, different ways in which
the property should be treated by the metadata creation environment:

1. Reference: In order to describe an object, metadata may simply point to
a particular place in a resource, e.g. a piece of text or a piece of multime-
dia. For instance, one may point to a particular place at http://www.white-

house.gov in order to refer to the current U.S. president. Even when the
presidency changes the metadata may remain up-to-date.

References are particularly apt to point to parts of multimedia, e.g. to a
part of a scalable vector graphics.

The reader may note that every default pointer is a reference, but not vice
versa. For example, assume a property hasName, which is a reference – it
points to a particular place – to a name on the Web page but not modeled
as a default pointer, therefore the pointer is not automatically created or
considered as unique.

2. Quotation: In order to describe an object, metadata may copy an excerpt
out of a resource. In contrast to the mode “reference”, a quotation does not
change when the corresponding resource changes. A copy of the string “Bill
Clinton” as president of the United States in 1999 remains unchanged even
if its original source at http://www.whitehouse.gov changes or is abandoned.

62

4.5. Meta Ontology

3. Unlinked Fact: An unlinked fact describes an object, but is not in any
way stemming from or depending on a resource. Unlinked facts are typical
for comments. They are also very apt to be combined with references in
order to elucidate the meaning or name of a graphic or piece of multimedia.

For instance, there may be a reference pointing to the picture “Guer-
nica” (http://www.grnica.swinternet.co.uk/guernica.jpg) and attributes that
are specified to be unlinked facts. The unlinked fact-attributes may be
filled by someone who knows Picasso’s paintings, e.g. with specifications
like “Guernica” or “Spanish Civil War”.

The meaning of the property mode may slightly overlap with the definition of the
range of a property, e.g. an unlinked fact is typically only used with an attribute
that has a literal as its range. The reason is that a pointer may be used as a
URI (e.g. [Goble et al., 2001]) and a URI should typically not appear in a literal
(though this is not prohibited). We separate the two aspects, because not every
URI is a pointer and it sometimes makes sense to specify the value of a literal by
a pointer. Thus, the definition of the range of a property as reference, quotation
or unlinked fact may be considered orthogonal to the range of a property being
a literal or a resource.

4.5.4. Further Meta Ontology Descriptions

In concluding this section, we ask the reader to note that the list of possibly useful
meta ontology descriptions sketched here is by no means conclusive. Rather,
we envision (and partially support) the use of meta ontology descriptions for
purposes such as:

• Knowledge acquisition from templates: For example we describe in SWO-
BIS (http://tools.semanticweb.org/) software tools with metadata (cf. Fig-
ure 4.2). For each instance, there are a number of attributes required to
specify a software tool. The meta ontology allows the definition of attribute
instances as being required attribute instances. This information is used to
automatically generate a template like interface for OntoMat — one that
is similar in its structure to a Dublin Core template. This approach is akin
to the way that Protege allows the construction of knowledge acquisition
interfaces [Noy et al., 2000].

• Authoring of dynamic ontology and metadata-based Web pages (also cf.
OntoWebber [Jin et al., 2001]).

• Provisioning of metametadata, e.g. author, date, time, and location of an
annotation. Though this may appear trivial at first sight, this objective
easily clashes with several other requirements, e.g. ease of use of metadata

63

4. Annotation and Authoring Framework

generation and usage. Eventually, it needs a rather elaborate meta onto-
logy, containing not only static, but also dynamic definitions, i.e. rules. For
example, to describe that a person A created an instance X, a second per-
son B created an instance Y and a third person C created a relationships
instance between X and Y, it is necessary to reify the relationship instance.
In order to directly use the relationship instance, it should be translated
by a rule into an unreified relationship instance.

Figure 4.2.: SWOBIS template.

4.6. Modes of Interaction

The metadata creation process in OntoMat is actually supported by three types
of interaction with the tool (also cf. Figure 4.1):

1. Annotation by Typing Statements: This involves working almost exclu-
sively within the ontology guidance/fact browser.

2. Annotation by Markup: This mostly involves the reuse of data from the
document editor/viewer in the ontology guidance/fact browser.

64

4.6. Modes of Interaction

3. Annotation by Authoring Web Pages: This mostly involves the reuse of
data from the fact browser in the document editor.

In order to clarify the different role of the three types of interaction, we describe
here how they differ for generating three types of metadata:

1. Generating instances of classes

2. Generating attribute instances

3. Generation relationship instances

4.6.1. Annotation by Typing

Annotation by typing is almost purely based on the ontology guidance/fact
browser (cf. Section 4.4) and the generated templates (cf. Section 4.5.4). Basi-
cally, the more experienced user navigates the ontology and browses the facts, the
less experienced user should use templates instead. The user generates metadata
(class instances, attribute instances, relationship instances) that are completely
independent from the Web page currently being viewed.

The specification of the rdfs:label property allows to the creation (or re-discovery)
of instances by typing where the URI is given and the rdfs:label property is filled
with the text. The specification of a default pointer by the meta ontology may
associate newly created instances with the currently marked passage in the text.

In addition, the user may drag-and-drop around instances that are already in
the knowledge base in order to create new relationship instances (cf. arrow #0
in Figure 4.3).

4.6.2. Annotation by Markup

The basic idea of annotation by markup is the usage of marked-up content in the
document editor/viewer for instance generation.

1. Generating class instances: When the user drags a marked up piece of
content onto a particular concept from the ontology, a new class instance
is generated. If the class definition comes with a meta ontology description
of a rdfs:label a new URI is generated, and the corresponding property is
assigned the marked up text (cf. arrow #1 in Figure 4.3).

For instance, marking “Siegfried Handschuh” and dropping this piece of
text on the concept PhDStudent creates a new URI, instantiates this URI
as belonging to PhDStudent and assigns “Siegfried Handschuh” to the
swrc:name slot of the new URI. In addition, default pointers may be pro-
vided.

65

4. Annotation and Authoring Framework

2. Generating attribute instance: In order to generate an attribute instance
the user simply drops the marked up content into the corresponding table
entry (cf. arrow #2 in Figure 4.3). Depending on whether the attribute
is specified as reference or quotation the corresponding XPointer or the
content itself is filled into the attribute.

3. Generating relationship instance: In order to generate a relationship in-
stance the user simply drops the marked up content onto the relation of a
pre-selected instance (cf. arrow #3 in Figure 4.3). Like in “class instance
generation” a new instance is generated and connected with the pre-selected
instance.

3

0

1

2

Figure 4.3.: Annotation example.

4.6.3. Annotation by Authoring

The third major process is authoring Web pages and metadata together. There
are two modi for authoring: (i), authoring by using ontology guidance and fact

66

4.7. Conclusion

browser for content generation and, (ii), authoring with the help of metadata
re-recognition or — more general — information extraction. As far as authoring
is concerned, we have only implemented (i) so far. However, we wish to point
out that even very simple information extraction mechanisms, i.e. metadata re-
recognition (cf. Section 4.4) may help the author to produce consistent metadata.

Authoring with Content Generation By inverting the process of markup (cf.
Figure 4.1), we may reuse existing instance description, like labels or other at-
tributes:

1. Class instances: Dropping class instances from the fact browser into the
document creates text according to their labels and — if possible — links
(cf. arrow #1 in Figure 4.4).

2. Attribute instances: Dropping attribute instances from the fact browser
into the document (cf. arrow #2 in Figure 4.4) generates the corresponding
text (for quotations or unlinked facts) or even linked text (for references).

3. Relationship instances: Dropping relationship instances from the fact
browser into the document generates simple “sentences”. For instance,
the dropping of the relationship cooperatesWith between the instances
corresponding to Rudi and Steffen triggers the creation of a small piece of
text (cf. arrow #3 in Figure 4.4). The text corresponds to the instance
labels plus the label of the relationship (if available), e.g. “Rudi Studer
cooperates with Steffen Staab”. Typically, this piece of text will require
further editing.

Further mechanisms, like the creation of lists or tables from selected concepts
(e.g. all Persons), still need to be explored.

4.7. Conclusion

CREAM is a comprehensive framework for creating semantic metadata, relational
metadata in particular — the foundation of the future Semantic Web. CREAM
builds on comprehensive experience we have collected in several case studies
on creating metadata for the Semantic Web. CREAM supports three modes of
interaction for a posteriori annotation and for creating metadata while authoring
a Web page. In order to avoid problems with syntax, semantics and pragmatics,
CREAM employs a rich set of modules including inference services, crawler,
document management system, ontology guidance/fact browser, and document
editors/viewers. Process issues of the annotation/authoring task are modularized
from content descriptions by a meta ontology.

67

4. Annotation and Authoring Framework

3

2

1

Figure 4.4.: Annotation by Authoring example.

OntoMat is the reference implementation of the CREAM framework. It is Java-
based and provides a plug-in interface for extensions for further applications.

68

5. Semi-Automatic Annotation

This Chapter describes techniques developed for semi-automatic annotation.
These techniques are realized extensions, viz. plugins, of our annotation frame-
work CREAM. The first extension – S-CREAM (Semi-automatic CREAtion of
Metadata) – allows for creation of metadata and is trainable for a specific do-
main (Section 5.1) The second extension – PANKOW (Pattern-based Annotation
through Knowledge on the Web), focuses on a method that combines the use of
linguistic patterns to identify instances with the use of the WWW as a large
corpus via a search engine (Section 5.2).

The remainder of of Section 5.1 presents, firstly, the information extraction
scenario (Section 5.1.1). Secondly, Amilcare – the information extraction
component(5.1.2) is described. Thirdly, the focus is on the problems of inte-
gration (Section 5.1.3–5.1.4). Finally a concluding discussion follows in Sec-
tion 5.1.5. The structure of this Section 5.2 is as follows: Section 5.2.1 describes
the principal procedure of PANKOW. Section 5.2.2 details the core algorithmic
approach to categorizing instances from text. Then, we present the integration
into CREAM/OntoMat (Section 5.2.3).

References: Section 5.1 is mainly based on [Handschuh et al., 2002] and Sec-
tion 5.2 is mainly based on [Cimiano et al., 2004].

5.1. Information Extraction

The Semantic Web builds on metadata describing the contents of Web pages.
In particular, the Semantic Web requires relational metadata, i.e. metadata that
describe how resource descriptions instantiate class definitions and how they are
semantically interlinked by properties. In order to support the construction of
relational metadata, an annotation and authoring framework (CREAM) and a
tool (OntoMat) that implements this framework is provided in Chapter 4.

Nevertheless, providing plenty of relational metadata by annotation, i.e. concep-
tual mark-up of text passages, remained a laborious task. In the architecture
Section 4.4.1 the idea that wrappers and information extraction components
could be used to facilitate the work was presented, which is described in this
section as fully-fledged integration that deals with all the conceptual difficulties.
Therefore, the CREAM framework is extended to S-CREAM (Semi-automatic

69

5. Semi-Automatic Annotation

CREAtion of Metadata), an annotation framework that integrates a learnable
information extraction component (viz. Amilcare [Ciravegna, 2001a]).

Amilcare is a system that is able to learn its information extraction rules from
manually marked-up input. S-CREAM aligns conceptual markup, which defines
relational metadata, (such as provided through OntoMat) with semantic and
indicative tagging (such as produced by Amilcare).

There two major type of problems that have been solved for this purpose:

1. When comparing the desired relational metadata from manual markup and
the semantic tagging provided by information extraction systems, one rec-
ognizes that the output of this type of systems is underspecified for the
purpose of the Semantic Web. In particular, the nesting of relationships
between different types of concept instances is undefined and, hence, more
comprehensive graph structures may not be produced (further elaboration
in Section 5.1.3). To overcome this problem, a new processing component,
viz. a lightweight module for discourse representation (Section 5.1.4) is in-
troduced.

2. Semantic tags do not correspond one-to-one to the conceptual description
(Section 5.1.1 and 5.1.4).

• Semantic tags may have to be turned into various conceptual markup,
e.g., as concept instances, attribute instances, or relationship in-
stances.

• For successful learning, Amilcare sometimes needs further indicative
tags (e.g., syntactic tags) that do not correspond to any entity in a
given ontology, but that may only be exploited within the learning
cycle.

5.1.1. Process of ontology-based Information Extraction

This section gives a general overview of the information extraction process. The
information extraction process can be divided into a setup step, a training phase,
with three steps, and into a annotation phase, with two steps, (depicted in Fig-
ure 5.1):

Step 1: Project Definition

The first step is the project definition. A domain ontology is the basis for the
annotation of different types of documents. Likewise a certain kind of document
can be annotated in reference to different ontologies. Therefore, a project defines
the combination of a domain ontology (e.g. the GETESS ontology about tourism)

70

5.1. Information Extraction

Figure 5.1.: The Process of Information Extraction

with a corpus. In this case a corpus is a collection of similar documents, for
example hotel homepages (http://all-in-all.de). In addition, the mapping of the
Ontology to the Amilcare tags has to be defined, i.e. as follows:

• Concepts: Concepts are mapped to tags using the name of the concept,
e.g. the concept with the name ”Hotel” results in a <hotel> tag.

• Hierarchy: The concepts of the ontology are hierarchically structured. On-
toMat offers to map a concept to multiple tags in order to emulate the dif-
ferent levels of conceptualization, e.g. the concept ”Hotel” may be mapped
to the tags <company>, <accommodation>, and <hotel>.

• Attributes: The mapping of attributes to tags is a tradeoff between a spe-
cific and a general naming. The specific naming simplifies the mapping back
to the ontology, but it results in more complex extraction rules. These rules
are less general and less robust. For example, a specific naming of the at-
tribute ”phone” would result in tags like <hotel phone>, <room phone>,
and <person phone> in comparison to the general tag <phone>. There-
fore, the user must decide for each attribute, whether the naming is ade-
quate, as it influences the learning results.

71

5. Semi-Automatic Annotation

Step 2: Annotation

The user can create the training corpus with OntoMat. The user has to choose
a proper sample of the corpus and annotate these documents. The document is
annotated by OntoMat with RDF facts. These facts are linked by an XPointer
description to the annotated text part.

Alternatively, if enough annotated documents already exist in the Web, the user
can starts a crawl of Web pages with OntoMat and collects the documents. The
crawl can be limited in this case to documents which are annotated with the
desired ontology. If necessary, the ontology sub-set and the mapping to the
Amilcare tags must be re-adjusted according to the annotations found in the
crawled documents. Subsequently, the desired type of document must still be
checked manually.

Step 3: Ontology to Amilcare tags mapping

Because Amilcare needs XML tagged files as a corpus, the RDF annotations are
transformed into corresponding XML tags according to the mapping done in the
project definition. Only these tags are used to train. Other tags like HTML tags
will be used as contextual information.

Step 4: Learning

The learning phase is executed by Amilcare, which is embedded as a plugin
into OntoMat. Amilcare processes each document of the corpus and generates
extraction rules as described in Section 5.1.2. After the training Amilcare stores
the annotation rules in a certain file which belongs to the project.

Step 5: Shallow Information Extraction

Now it is possible to use the induced rules for semi-automatic annotation. Based
on the rules the Amilcare plugin produces XML annotation results (cf. A1 in
Figure 5.3).

Step 6: Semi-automatic Annotation

As shown in Figure 5.3, a mapping (A2) is done from the flat markup to the
conceptual markup in order to create new RDF facts (A3). This mapping is
undertaken by the discourse representation (cf. Section 5.1.4). This mapping
results in several automatically generated proposals for the RDF annotation of
the document. The user can interact with these annotation proposals using three

72

5.1. Information Extraction

different automation methods: (i) highlighting the annotation candidates or (ii)
interactive suggestion for each annotation or (iii) a first full automatic annotation
of the document with subsequent refinement.

• Highlighting mode: The user opens a document he would like to annotate
in the OntoMat document editor. Then the highlighting mode marks all
annotation candidates with a colored underline. The user can decide if he
wishes to use this hint for an annotation or not.

• Interactive mode: This mode is also designed for individual document pro-
cessing. The interactive suggestion is a step by step process. Each possible
annotation candidate will be suggested to the user and he can refuse, accept
or change the suggestion in a dialog window.

• Automatic mode: The full automatic approach is useful, if there are a
number of documents that need to be annotated, so that the task can be
performed in a batch mode. All selected documents are annotated auto-
matically. The user can later refine all the annotations in the document
editor.

The result is an RDF-annotated document.

5.1.2. Amilcare

Amilcare is a tool for adaptive Information Extraction from text (IE) designed for
supporting active annotation of documents for Knowledge Management (KM).
It performs IE by enriching texts with XML annotations, i.e. the system marks
the extracted information with XML annotations. The only knowledge required
for porting Amilcare to new applications or domains is the ability of manually
annotating the information to be extracted in a training corpus. No knowledge of
Human Language technology is necessary. Adaptation starts with the definition
of a tagset for annotation.

Then users have to manually annotate a corpus for training the learner. As
will be later explained in detail, OntoMat may be also used as the annotation
interface to annotate texts in a user friendly manner. In this case, OntoMat
provides user annotations as XML tags to train the learner. Amilcare’s learner
induces rules that are able to reproduce the text annotation.

Amilcare can operate in two modes: training, used to adapt it to a new applica-
tion, and extraction, used to actually annotate texts. In both modes, Amilcare
first of all preprocesses texts using Annie, the shallow IE system included in
the Gate package ([Maynard et al., 2002], www.gate.ac.uk). Annie performs
text tokenization (segmenting texts into words), sentence splitting (identifying

73

5. Semi-Automatic Annotation

sentences) part of speech tagging (lexical disambiguation), gazetteer lookup (dic-
tionary lookup) and named entity recognition (recognition of people and organi-
zation names, dates, etc.).

When operating in training mode, Amilcare induces rules for information ex-
traction. The learner is based on (LP)2, a covering algorithm for supervised
learning of IE rules based on Lazy-NLP [Ciravegna, 2001a] [Ciravegna, 2001c].
This is a wrapper induction methodology [Kushmerick, 1997] that, unlike other
wrapper induction approaches, uses linguistic information in the rule generaliza-
tion process. The learner starts inducing wrapper-like rules that make no use
of linguistic information, where rules are sets of conjunctive conditions on adja-
cent words. Then the linguistic information provided by Annie is used in order
to generalize rules: conditions on words are substituted with conditions on the
linguistic information (e.g. condition matching either the lexical category, or the
class provided by the gazetteer, etc. [Ciravegna, 2001c]). All the generaliza-
tions are tested in parallel by using a variant of the AQ algorithm [Mickalski et
al., 1986] and the best k generalizations are kept for IE. The idea is that the
linguistic-based generalization is used only when the use of NLP information is
reliable or effective. The measure of reliability here is not linguistic correctness
(immeasurable by incompetent users), but effectiveness in extracting informa-
tion using linguistic information as opposed to using shallower approaches. Lazy
NLP-based learners learn which is the best strategy for each information/con-
text separately. For example they may decide that using the result of a part
of speech tagger is the best strategy for recognizing the location in holiday ad-
vertisements, but not to spot the hotel address. This strategy is quite effective
for analyzing documents with mixed genres – quite a common situation in Web
documents[Ciravegna, 2001b].

The learner induces two types of rules: tagging rules and correction rules. A tag-
ging rule is composed of a left hand side, containing a pattern of conditions on a
connected sequence of words, and a right hand side that is an action inserting an
XML tag in the texts. Each rule inserts a single XML tag, e.g. </hotel>. This
makes the approach different from many adaptive IE algorithms, whose rules rec-
ognize whole pieces of information (i.e. they insert both <hotel> and </hotel>,
or even multi slots. Correction rules shift misplaced annotations (inserted by
tagging rules) to the correct position. They are learnt from the mistakes made
in attempting to re-annotate the training corpus using the induced tagging rules.
Correction rules are identical to tagging rules, but (1) their patterns also match
the tags inserted by the tagging rules and (2) their actions shift misplaced tags
rather than adding new ones. The output of the training phase is a collection of
rules for IE that are associated with the specific scenario.

When working in extraction mode, Amilcare receives as input a (collection of)
text(s) with the associated scenario (including the rules induced during the train-
ing phase). It preprocesses the text(s) by using Annie, subsequently applies it

74

5.1. Information Extraction

rules, and returns the original text with the added annotations. The Gate anno-
tation schema is used for annotation [Maynard et al., 2002].

Amilcare is designed to accommodate the needs of different user types. While
naive users can build new applications without delving into the complexity of
Human Language Technology, IE experts are provided with a number of facili-
ties for tuning the final application. Induced rules can be inspected, monitored
and edited to obtain some additional accuracy, if needed. The interface also al-
lows balancing precision (P) and recall (R). The system is run on an annotated
unseen corpus and users are presented with statistics on accuracy, together with
details on correct matches and mistakes (using the MUCscorer [Douthat, 1998]

and an internal tool). Retuning the P&R balance does not generally require ma-
jor retraining. Facilities for inspecting the effect of different P&R balances are
provided.

5.1.3. Synthesizing S-CREAM

To synthesize S-CREAM from the existing frameworks CREAM and Amilcare,
let us consider their core processes in terms of input and output, as well as the
process of the as yet undefined S-CREAM. Figure 5.3 surveys the three processes.

The first process is indicated by a circled A1. It is information extraction,
e.g. provided by Amilcare [Ciravegna, 2001a], which digests a document and
produces either an XML tagged document or a list of XML tagged text snippets
(cf. Table 5.1(a)).

The second process is indicated by a circled M. It is manual annotation and
authoring of metadata, which turns a document into relational metadata that
corresponds to the given ontology (as described in detail in 4.6). For instance,
an annotator may use OntoMat to describe how the relationships listed in Ta-
ble 5.1(b) appear on the homepage of hotel “Zwei Linden” (cf. Figure 5.2)

The obvious questions that emerge at this point are: Is the result of Table 5.1(a)
equivalent to the one in Table 5.1(b)? How can Table 5.1(a) be turned into the
result of Table 5.1(b)? The latter is a requirement for the Semantic Web.

The “Semantic Web answer” to this is: The difference between Table 5.1(a)
and Table 5.1(b) is analogous to the difference between a very particular seri-
alization of data in XML and a RDF structure. This means that, assuming a
very particular serialization of information on Web pages, the Amilcare tags can
be specified so precisely1 that indeed Table 5.1(a) can be rather easily mapped
into Table 5.1(b). The only requirement may be a very precise specification
of tags, e.g. “43,46” may need to be tagged as <lowerprice-of-doublebedroom-
of-hotel>43,46</lowerprice-of-doubleroom-of-hotel> in order to cope with its
relation to a double room of a hotel.

1We abstract here from the problem of correctly tagging a piece of text.

75

5. Semi-Automatic Annotation

s = rdfs:subClassOf

t = rdf:type

r = rdfs:range

d = rdfs:domain

L = rdfs:Literal

Zwei Linden

Zwei Linden
single room1double room1

Dobbertin 038736/42472

rate1rate2

25,66 EUR46,02 EUR43,46

name
has_roomhas_room

located_at phone
has_ratehas_rate

price currency
currency

price price

t

Ontology

Metadata

Document

Thing

accommodation
Region

CityHotel

Room

SingleRoom

DoubleRooms

s

s
s

s
s

s

has_room

price currency

located_at

name
d

L

L L

d

r
d

r

Rate

has_rate

r

d

d d

Figure 5.2.: Annotation example

76

5.1. Information Extraction

Document
tagged

Output

DR

IE

Hotel

City

Hotel

City

M

A1 A2 A3

region

City Hotel

accommodation

Thing

located_at

Zwei LindenDobbertin

located_at

Figure 5.3.: Two Ways to the Target: Manual and Automatic Annotation

<hotel>Zwei Linden</hotel>

<city>Dobbertin</city>

<singleroom>Single room</singleroom>

<price>25,66</price>

<currency>EUR</currency>

<doubleroom>Double room</doubleroom>

<lowerprice>43,46</lowerprice>

<upperprice>46,02</upperprice>

<currency>EUR</currency>

...

(a) Amilcare

:Zwei Linden a :Hotel.

:Zwei Linden :name ”Zwei Linden”.

:Zwei Linden :located at :Dobbertin.

:Dobbertin a :City.

:Dobbertin :name ”Dobbertin”.

:Zwei Linden :has room :Single room 1.

:Single room 1 a :Single Room.

:Single room 1 :has rate :Rate2.

:Rate2 a :Rate.

:Rate2 :price ”25,66”.

:Rate2 :currency ”EUR”.

:Zwei Linden :has room :Double room 3.

:Double room 3 a :Double Room.

:Double room 3 :has rate :Rate4.

:Rate4 a :Rate.

:Rate4 :price ”43,46”.

:Rate4 :price ”46,02”.

:Rate4 :currency ”EUR”.

. . .

(b) OntoMat

Table 5.1.: Comparison of Output: Amilcare versus manual OntoMat

77

5. Semi-Automatic Annotation

The “Natural Language Analysis answer” to the above questions is: Learnable
information extraction approaches like Amilcare do not have an explicit discourse
model for relating tagged entities — at least for now. Their implicit discourse
model is that each tag corresponds to a place in a template2 and every document
(or document analogon) corresponds to exactly one template. This is fine as long
as the discourse structures in the text are simple enough to be mapped into the
template and from the template into the target RDF structure.

In practice, however, the assumption that the underlying graph structures/dis-
course structures are quite similar, often does not hold. Then the direct mapping
from XML tagged output to target RDF structure becomes awkward and difficult
to accomplish.

The third process given in Figure 5.3 is indicated by the composition of A1,
A2 and A3. It bridges from the tagged output of the information extraction
system to the target graph structures via an explicit discourse representation.
Our discourse representation is based on a very lightweight version of Centering
[Grosz and Sidner, 1986; Strube and Hahn, 1999] and explained in the next
section.

5.1.4. Discourse Representation (DR)

The principal task of discourse representation is to describe coherence between
different sentences. The core idea is that, during the interpretation of a text
(or, more generally, a document), there is always a logical description (e.g., an
RDF(S) graph) of the content that has been read so far. The current sentence
updates this logical description by:

1. Introducing new discourse referents: i.e. introducing new entities,
e.g., finding the term ‘Hotel & Inn “Zwei Linden” ’ to denote a new object.

2. Resolving anaphora: i.e. describing denotational equivalence between
different entities in the text, e.g. ‘Hotel & Inn “Zwei Linden” ’ and ‘Country
inn’ refers to the same object.

3. Establishing new logical relationships: i.e. relating the two objects
referred to by ‘Hotel & Inn “Zwei Linden” ’ and ‘Dobbertin’ via locatedAt.

The problem with information extraction output is that it is not clear what
constitutes a new discourse entity. Though information extraction may provide
some typing (e.g. <city>Dobbertin</city>), it does not describe whether this
constitutes an attribute value (of another entity) or an entity of its own. Neither

2A template is like a single tuple in an unnormalized relational database table, where all or
several entries may have null values.

78

5.1. Information Extraction

do information extraction systems like Amilcare treat coherence between different
pieces of tagged text.

Grosz & Sidner [Grosz and Sidner, 1986] devised centering as a theory of text
structures that separate text into segments that are coherent to each other. The
principal idea of the centering model is to express fixed constraints as well as
“soft” rules which guide the reference resolution process. The fixed constraints
denote what objects, if any, are available for resolving anaphora and establish-
ing new logical inter-sentential relationships, while soft rules give a preference
ordering to these possible antecedents. The main data structure of the center-
ing model is a list of backward-looking centers, Cb(Uk) for each utterance Uk.
The backward-looking centers Cb(Uk) constitutes a ranked list of what is avail-
able and what is preferred for resolving anaphora and for establishing new logical
relationships with previous sentences.

The centering model allows for relating a given entity in utterance Uk to one of
the backward-looking centers, Cb(Uk−1). For instance, when reading “The chef
of the restaurant” in Figure 5.2 the centering model allows relationships with
“Country inn”, but not with “Dobbertin”.

The drawback of the centering model is that, firstly, it has only been devised
for full text and not for semi-structured text such as appears in Figure 5.2 and,
secondly, it often needs more syntactic information than shallow information
extraction can provide.

Therefore, we use only an extremely lightweight, “degraded” version of centering,
where we formulate the rules on an ad hoc basis as needed by the annotation
task. The underlying ideas of the degrading are that S-CREAM is intended to
work in restricted, albeit adaptable, domains. It is not even necessary to have
a complete model, because we analyze only a very small part of the text. For
instance, we analyze only the part about hotels with rooms, prices, addresses
and hotel facilities.

We specify the discourse model by logical rules, the effects of which we illustrate
in the following paragraphs. Here, we use the same inferencing mechanisms that
we have already exploited for supporting annotation (cf., Section 4.4.1).

As our baseline model, we assume the “single template strategy”, viz. only one
type of tag, e.g. <hotel>, is determined to really introduce a new discourse
referent. Every other pair of tag name and tag value is attached to this entity as
an attribute filled by the tag value. For example “Zwei Linden” is recognized
as an instance of Hotel, every other entity (like “Dobbertin”, etc.) is attached
to this instance resulting in a very shallow discourse representation by logical
facts illustrated in Table 5.2(a).3 This is probably the most shallow discourse
representation possible, because it does not include ordering constraints or other

3Results have been selected to be comparable with Table 5.1.

79

5. Semi-Automatic Annotation

dr:Zwei Linden a :Hotel. :Zwei Linden a :Hotel.

dr:Zwei Linden dr:name ”Zwei Linden”. :Zwei Linden name ”Zwei Linden”.

dr:Zwei Linden dr:city ”Dobbertin”. :Zwei Linden located at :Dobbertin.

:Dobbertin a :City.

:Dobbertin name ”Dobbertin”.

dr:Zwei Linden dr:single room ”single room”. :Zwei Linden :has room :Single room1.

:Single room1 a :Single Room.

dr:Zwei Linden dr:price ”25,66”.

dr:Zwei Linden dr:currency ”EUR”.

dr:Zwei Linden dr:double room ”double room”. :Zwei Linden :has room :Double room1.

:Double room1 a :Double Room.

dr:Zwei Linden dr:price ”43,46”.

dr:Zwei Linden dr:price ”46,02”.

dr:Zwei Linden dr:currency ”EUR”.

(a) Discourse Representation (b) Target Graph Structure

Table 5.2.: Template Strategy

soft constraints. However, it is already adequate to map some of the relations in
the discourse namespace (“dr:”) to relations in the target space, thus resulting
in Table 5.2(b). However, given this restricted tag set, not every relation can be
detected.

For more complex models, we may also include ordering information (e.g. simply
by augmenting the discourse representation tuples given in Table 5.2 by numbers;
this may be modeled by using lists in N3 (see Section 2.4.4) and a set of rules
that maps the discourse representation into the target structure integrating

• rules to only attach instances where they are allowed to become attached
(e.g., see first rule head of Listing 5.2, where prices are only attached where
they are allowed).

• rules to attach tag values to the nearest preceding, conceptually possible
entity. The nearest preceding entity is determined by exploiting the or-
dering information, e.g. as given in Table 5.2 (thus, prices for single and
double room may be distinguished).

• rules to create a new complex object when two simple ones are adjacent,
e.g., to create a rate when it finds adjacent number and currencies (e.g.,
see second rule head of Listing 5.2).

80

5.1. Information Extraction

Further information that could be included is, e.g. adjacency information, etc.
Thus, one may produce Table 5.1(a) out of the discourse representation from a
numbered Table 5.2.

Listing 5.1 is a simplified example of a N3 rule that creates instances given the
information in Table 5.3. The rules says: if the predicate p is in the list of con-
cepts (e.g. city, single room or double room) then instantiate the corresponding
instance y. As a side effect it generates a proper instance name instance and
a proper concept name concept using the cream:instanceName function and the
cream:conceptName function, respectively.

Listing 5.2 combines the complex object creation with the attachment to the
nearest preceding conceptually possible entity. The rule says, if price is
preceding currency, whereas the minimal distance is ensured by the func-
tion cream:minBefore, than create an instance with an unique instance name
(cream:uniqueInstanceName) of type Rate and fill its attributes with the price
and the currency. Further, the rule says, if a single room entity room is preceed-
ing the currency in the discourse structure than attach the corresponding rate
object to the instance uiroom of that room.

The strategy that we follow here is to keep simple things simple and complex
tasks possible. The experienced user will be able to handcraft logical rules in
order to refine the discourse model to his needs. The standard user, will only
exploit the simple template strategy. When the resulting graph structures are
simple enough to allow for the latter strategy and a simple mapping, the mapping
can also be defined by directly aligning relevant concepts and relations by drag
and drop, whilst, in the general, one must write logical rules.

dr:Zwei Linden a :Hotel.

dr:Zwei Linden dr:city (2 ”Dobbertin”).

dr:Zwei Linden dr:single room (3 ”single room”).

dr:Zwei Linden dr:price (4 ”25,66”).

dr:Zwei Linden dr:currency (5 ”EUR”).

dr:Zwei Linden dr:double room (6 ”double room”).

dr:Zwei Linden dr:price (7 ”43,46”).

dr:Zwei Linden dr:price (8 ”46,02”).

dr:Zwei Linden dr:currency (9 ”EUR”).

Table 5.3.: Ordering Strategy

5.1.5. Conclusion

S-CREAM bridges the gap between the output of a information extraction sys-
tem, viz. Amilcare, and the annotation one would yield when doing manual

81

5. Semi-Automatic Annotation

{? ho t e l ?p (?n ?y) .
?p l i s t : i n (dr : c i t y dr : s i ng l e room dr : double room) .
?y cream : instanceName ? i n s tance .
?p cream : conceptName ? concept

} =>

{? i n s tance a : concept } .

Listing 5.1: Example: rule to create instances

{
? ho t e l dr : s i ng l e room (?n0 , ?room) .
? ho t e l dr : p r i c e (? n1 ? p r i c e) .
? ho t e l dr : currency (? n2 ? currency) .
?n1 cream : minBefore ?n2 .
”Rate” cream : uniqueInstanceName ? u i r a t e .
?n0 cream : minBefore ?n2 .
?room cream : uniqueInstanceName ?ui room .

} =>

{
attach r a t e ins tance , at room where i t i s a l lowed to be attached
?ur room : r a t e ? u i r a t e } .
c r ea t e complex ob j e c t r a t e
? u i r a t e a : Rate .
? u i r a t e : p r i c e ? p r i c e . ? u i r a t e : currency ? currency .

Listing 5.2: Example: create rate and attach it to room

ontology based annotation on the same document. The bridging is done by ap-
plying a simple discourse representation, which is specified by logical rules. Using
the concept of discourse representation is a first novel, useful and necessary step
to generate relational markup for a large set of documents.

While this is a first approach, there are also some unsettled points. Firstly, the
process to generate the discourse representation is not automatic but relies on
hand crafted rules. In the ideal case, the information extraction system would
be ontology aware and therefore learn the discourse structure of the given docu-
ments as well. To extend the information extraction system in this way was not
possible for us because we could use Amilcare only as a black box component.We
envisage therefore further research to specify and implement such an ontology
aware information extraction component. Second, to use information extraction
one needs a rather large amount of previously annotated documents, which is
only useful if one has to annotate a group of similar documents.

To our knowledge nobody else has applied discourse representation for semi-
automatic annotation and therefore offered a solution for the bridging problem
to date. So, even with the above mentioned manual work we present the most
advanced solution for that problem.

82

5.2. The Self-Annotating Web

We demonstrate the usefulness and efficiency of the approach in an evaluation.
In this evaluation we compared the annotation task of S-CREAM in comparison
with CREAM, which is described in detail Section 9.

In conclusion S-CREAM is a unique framework that deals with all the conceptual
difficulties of a full-fledged information extraction to support semi-automatic
annotation.

5.2. The Self-Annotating Web

In the section before we presented an approach that extract with help of an infor-
mation extraction component knowledge structures from Web pages through the
use of information extraction rules. These rules are the result of a learning-cycle
based on already annotated pages. While this approach is useful and efficient (as
shown in the evaluation in Section 9, it also has some drawbacks:

• Manual definition of an information extraction system is a laborious task
requiring a lot of time and expert know-how ([Appelt et al., 1993]); and

• Learning of extraction rules requires a large number of examples for learning
the rules.

To overcome this drawbacks, we propose in this Section a different paradigm:
the Self-annotating Web. The principle idea of the self-annotating Web is that
it uses globally available Web data and structures to semantically annotate —
or at least facilitate annotation of — local resources. Initial blueprints for this
paradigm are found in such works as the following:

• Some researchers use explicit, linguistically motivated natural-language de-
scriptions to propose semantic relationships ([Charniak and Berland, 1999;
Googlism, 2003; Hearst, 1992; Maedche and Staab, 2001]).

• Others use the Web to cope with data sparseness problems in tasks that
require statistics about possible semantic relationships ([Agirre et al., 2000;
Grefenstette, 1999; Keller et al., 2002; Markert et al., 2003]).

• In [Flake et al., 2002; Glover et al., 2002], the Web structure itself is used to
determine a focus for harvesting data. Thus, specialized semantic relation-
ships, such as recommendations coming from a particular Web community
can be derived.

In taking a first step towards the Semantic Web, we propose an original method
called PANKOW (Pattern-based Annotation through Knowledge On the Web),

83

5. Semi-Automatic Annotation

Figure 5.4.: The Process of PANKOW

which employs an unsupervised, pattern-based approach to categorize instances
with regard to a given ontology.

The approach is novel, combining the idea of using linguistic patterns to identify
certain ontological relations as well as the idea of using the Web as a big corpus
to overcome data sparseness problems. It is unsupervised as it does not rely on
any training data annotated by hand, and it is pattern-based in the sense that
it makes use of linguistically motivated regular expressions to identify instance-
concept relations in text. The driving principle behind PANKOW is one of
“disambiguation by maximal evidence” in the sense that for a given instance it
proposes the concept with the maximal evidence derived from Web statistics. The
approach thus bootstraps Semantic Annotations as it queries the Web for relevant
explicit natural-language descriptions of appropriate ontological relations.

PANKOW has been conceived for our annotation framework CREAM [Hand-
schuh and Staab, 2002] and has been implemented in OntoMat4 using queries to
the Google Web service API. The automatic annotation produced by PANKOW
has been evaluated against Semantic Annotations produced by two independent
human subjects.

5.2.1. The Process of PANKOW

This section gives a general overview of the process of PANKOW whereas sec-
tion 5.2.2 explains the concrete methods and section 5.2.3 the implementation
details. The process consists of four steps (depicted in Figure 5.4):

4annotation.semanticweb.org/tools/ontomat

84

5.2. The Self-Annotating Web

Input: A Web page.

In our implementation, we assume that Web pages are handled individually
in the CREAM/OntoMat framework ([Handschuh et al., 2001]), though
actually batch processing of a whole Web site would be possible.

Step 1: The system scans the Web page for phrases in HTML text that might
be categorized as instances of the ontology. Candidate phrases are proper
nouns, such as ‘Nelson Mandela’, ‘South Africa’, or ‘Victoria Falls’). We
use a part-of-speech tagger Section 5.2.3) to find such candidate proper
nouns.

Thus, we end up with a

Result 1: set of candidate proper nouns

Step 2: The system iterates through the candidate proper nouns. It uses the ap-
proach described in Section 5.2.2, introducing all candidate proper nouns
and all candidate ontology concepts into linguistic patterns to derive hy-
pothesis phrases. For instance, the candidate proper noun ‘South Africa’
and the concepts Country and Hotel are composed into a pattern resulting
in hypothesis phrases like ‘South Africa is a country ’ and ‘South Africa is
a hotel ’.

Result 2: Set of hypothesis phrases.

Step 3: Then, Google is queried for the hypothesis phrases through its Web
service API (Section 5.2.2). The API delivers as its results

Result 3: the number of hits for each hypothesis phrase.

Step 4: The system sums up the query results to a total for each instance-concept
pair. Then the system categorizes the candidate proper nouns into their
highest ranked concepts (cf. Section 5.2.2). Hence, it annotates a piece of
text as describing an instance of that concept. Thus we have

Result 4: an ontologically annotated Web page.

In principle, the query results of step 3 could be investigated further. For in-
stance, it could make sense to constrain the number of hits for hypothesis phrases
to the ones that occur in Web pages with topics closely related to the topic of the
current Web page, as e.g. measured in terms of cosine distance of the documents.
However, without direct access to the Google databases we have considered this
step too inefficient for use in automatic annotation and hence ignore it in the
following.

85

5. Semi-Automatic Annotation

5.2.2. Pattern-based Categorization of Candidate Proper Nouns

There is some history of applying linguistic patterns to identify ontological re-
lationships between entities referred to in a text. For instance, Hearst [Hearst,
1992] as well as Charniak and Berland [Charniak and Berland, 1999] make use of
such a pattern-based approach to discover taxonomic and part-of relations from
text, respectively. Hahn and Schnattinger [Hahn and Schnattinger, 1998] also
make use of such patterns and incrementally established background knowledge
to predict the correct ontological class for unknown named entities appearing
in a text. The core idea of any such pattern-based approach is that one may
justify an ontological relationship with reasonable accuracy when one recognizes
some specific idiomatic/syntactic/semantic relationships. It is relevant to the
pattern-based approach that the specifically addressed idiomatic/syntactic/se-
mantic relationships may be very easily spotted because they can be typically
specified through simple and efficiently processable regular expressions.

In the following, we first present the set of patterns; in a second step we describe
the procedure to actually search for them; and finally we explain how we use the
information conveyed by them for the actual classification of instances.

Patterns for Generating Hypothesis Phrases

In the following we describe the patterns we exploit and give a corresponding
example from the data set.

Hearst Patterns

The first four patterns have been used by Hearst to identify isa-relationships
between the concepts referred to by two terms in the text. However, they can
also be used to categorize a candidate proper noun into an ontology.

Since the entities denoted by candidate proper nouns are typically modeled as
instances of an ontology, we also describe the problem more conveniently as the
instantiation of a concept from a given ontology. Correspondingly, we formulate
our patterns using the variable ‘<INSTANCE>’ to refer to a candidate noun
phrase, as the name of an ontology instance, and the variable ‘<CONCEPT>’
to refer to the name of a concept from the given ontology.

The patterns reused from Hearst are:

HEARST1: <CONCEPT>s such as <INSTANCE>

HEARST2: such <CONCEPT>s as <INSTANCE>

86

5.2. The Self-Annotating Web

HEARST3: <CONCEPT>s, (especially|including) <INSTANCE>

HEARST4: <INSTANCE> (and|or) other <CONCEPT>s

The above patterns would match the following expressions (in this order): hotels
such as Ritz ; such hotels as Hilton; presidents, especially George Washington;
and the Eiffel Tower and other sights in Paris.

Definites

The next patterns are about definites, i.e. noun phrases introduced by the definite
determiner ‘the’. Frequently, definites actually refer to some entity previously
mentioned in the text. In this sense, a phrase like ‘the hotel ’ does not stand for
itself, but it points as a so-called anaphora to a unique hotel occurring in the
preceding text. Nevertheless, it has also been shown that in common texts more
than 50% of all definite expressions are non-referring, i.e. they exhibit sufficient
descriptive content to enable the reader to uniquely determine the entity referred
to from the global context ([Poesio and Vieira, 1998]). For example, the definite
description ‘the Hilton hotel ’ has sufficient descriptive power to uniquely pick-
out the corresponding real-world entity for most readers. One may deduce that
‘Hilton’ is the name of the real-world entity of type Hotel to which the above
expression refers.

Consequently, we apply the following two patterns to categorize candidate proper
nouns by definite expressions:

DEFINITE1: the <INSTANCE> <CONCEPT>

DEFINITE2: the <CONCEPT> <INSTANCE>

The first and the second pattern would, e.g., match the expressions ‘the Hilton
hotel ’ and ‘the hotel Hilton’, respectively.

Apposition and Copula

The following pattern makes use of the fact that certain entities appearing in a
text are further described in terms of an apposition as in ‘Excelsior, a hotel in
the center of Nancy ’. The pattern capturing this intuition looks as follows:

APPOSITION: <INSTANCE>, a <CONCEPT>

Probably the most explicit way of expressing that a certain entity is an instance
of a certain concept is by the verb ‘to be’, as for example in ‘The Excelsior is a
hotel in the center of Nancy ’. Here’s the general pattern:

COPULA: <INSTANCE> is a <CONCEPT>

87

5. Semi-Automatic Annotation

Finding Patterns

Having defined these patterns, one could now try to recognize these patterns in a
corpus and propose the corresponding instance-concept relationships. However, it
is well known that the above patterns are rare and thus one will need a sufficiently
big corpus to find a significant number of matches.

Thus, PANKOW resorts to the biggest corpus available: the World Wide Web.
In fact, several researchers have shown that using the Web as a corpus is an
effective way of addressing the typical data sparseness problem one encounters
when working with corpora (compare [Grefenstette, 1999], [Keller et al., 2002],
[Markert et al., 2003], [Resnik and Smith, 2003]). Actually, we subscribe to the
principal idea by Markert et al. [Markert et al., 2003] of exploiting the Google
API. As in their approach, rather than actually downloading Web pages for
further processing, we just take the number of Web Pages in which a certain
pattern appears as an indicator for the strength of the pattern.

Given a candidate proper noun that we want to tag or annotate with the ap-
propriate concept, we instantiate the above patterns with each concept from the
given ontology into hypothesis phrases. For each hypothesis phrase, we query
the Google API for the number of documents that contain it. The function
’count(i,c,p)’ models this query.

count : I × C × P → N (5.1)

Thereby, i, c, p are typed variables and shorthand for <INSTANCE>,
<CONCEPT> and a pattern. Correspondingly, I, C and P stand for the set
of all candidate proper nouns, all concepts from a given ontology and all pat-
terns, respectively.

Categorizing Candidate Noun Phrases

We have explored three versions for determining the best categorization.

1. Baseline: The simplest version just adds all the numbers of documents
with hits for all hypothesis phrases resulting from one <INSTANCE>/
<CONCEPT> pair.

countb(i, c) :=
∑

p∈P

count(i, c, p) (5.2)

This baseline countb proved to be effective and empirical results presented
subsequently will report on this method.

88

5.2. The Self-Annotating Web

2. Interactive Selection: In an annotation scenario, it is not always neces-
sary to uniquely categorize a candidate proper noun. Rather it is very
easy and effective to present to the manual annotator the top ranked
<INSTANCE>/<CONCEPT> pairs and let him decide according to the
actual context. This is currently implemented in CREAM/ OntoMat based
on the validity indicated by countb (also cf. Section 5.2.3).

In the first two approaches, one may return the set of pairs Rx (x ∈ {b, ~w})
where for a given i ∈ I, c ∈ C maximizes the strength as aggregated from the
individual patterns as the result of PANKOW:

Rx := {(i, ci)|i ∈ I, ci := argmaxc∈Ccountx(i, c)} (5.3)

and in the last approach, we return the best n matches for each proper noun
resulting in Rn

x (x ∈ {b, ~w}, n ∈ N)5:

Rn
x := {(i, ci)|i ∈ I : ci,j ∈ C ∧ {ci,1 . . . ci,|C|} = C (5.4)

countx(i, ci,1) ≥ countx(i, ci,2) ≥ . . . ≥ countx(i, ci,|C|) ∧

ci = ci,1 ∨ . . . ∨ ci = ci,n}

For our evaluation we will use a characterization that does not accept classifi-
cation of every candidate proper noun, such as Rx does, but only of those that
appear strong enough. Thus, we introduce a threshold θ as follows:

Rx,θ := {(i, ci)|i ∈ I, ci := argmaxc∈Ccountx(i, c) ∧ (5.5)

countx(i, ci) ≥ θ}

5.2.3. Integration into CREAM

We have integrated PANKOW into the CREAM framework (cf., Chapter 4)
extending the CREAM implementation OntoMat by a plugin. The plugin has
access to the ontology structure and to the document management system of
OntoMat. The plugin utilizes the Google API to access its Web service.

The PANKOW plugin implements the process described in Section 5.2.1 starting
with the scanning for the candidate proper nouns by using a POS tagger. We
experimented with two POS taggers: One was QTag6 and the other was Tree-
Tagger ([Schmid, 1994]). The advantage of QTag is that it is implemented in
Java and therefore better to integrate, whereas, Tree-Tagger produces somewhat
better results in our experiments.

5Obviously, R
1
x = Rx.

6http://web.bham.ac.uk/o.mason/software/tagger/index.html

89

5. Semi-Automatic Annotation

In addition, we use a heuristic to achieve higher precision for the candidate
recognition and therefore to reduce the amount of queries. The heuristic considers
the intersection of the POS tagger categorization with the simple capitalized-
words approach which consists in interpreting sequences of capitalized words as
proper noun candidates7. For the capitalized words approach we consider only
words that do not follow a period. Given the example of the lonely planet Web
page about Nigeria8, the POS tagger proposes proper nouns such as “Guinea”,
“Niger”, “Cameroon”, “Benin”, and “Nigeria”. For this concrete example, the
capitalized words approach proposes basically the same proper nouns as the POS
tagger. However, in general the capitalized word heuristic will reduce tagging
errors produced by the POS tagger. While our heuristic approach is practical,
it has some problems with compound words such as ”Côte d’Ivoire” and might
need some fine-tuning.

OntoMat supports two modes of interaction with PANKOW: (i), fully automatic
annotation and, (ii), interactive semi-automatic annotation. In the fully auto-
matic mode, all categorizations with strength above a user-defined θ, viz. Rb,θ,
are used to annotate the Web content. In the interactive mode, the system pro-
poses the top five concepts to the user for each instance candidate, i.e. R5

b . Then,
the user can disambiguate and resolve ambiguities.

The screenshot in Figure 5.5 shows the user interface. In the lower left corner
of the screenshot you can see the progress dialog for the Google queries. The
dialog shows the extracted candidate proper nouns and logs the query results for
the hypothesis phrases. Also shown is the interactive dialog for disambiguation,
e.g. the choice to assign ”Niger” as an instance to one of the concepts “river”,
“state”, “coast”, “country” or “region”. The number in the brackets behind each
concept name gives the number of Web hits.

5.2.4. Conclusion

We have described PANKOW, a novel approach towards the Self-annotating Web.
It overcomes the burden of laborious manual annotation and it does not require
the manual definition of an information extraction system or its training based
on manually provided examples. It uses the implicit wisdom contained in the
Web to propose annotations derived from counting Google hits of instantiated
linguistic patterns. The results produced are comparable to state-of-the-art sys-
tems, whereas our approach is comparatively simple, effortless and intuitive to
use to annotate the Web.

While we consider PANKOW as a valid step towards the self-annotating Web,

7This heuristic works especially well for English, where typically only proper nouns appear
capitalized.

8http://www.lonelyplanet.com/destinations/africa/nigeria/environment.htm

90

5.2. The Self-Annotating Web

Figure 5.5.: Screenshot of CREAM with PANKOW plugin in interactive mode

we are well-aware that effectiveness, efficiency, and range of PANKOW needs to
and can be improved.

With regard to effectiveness, we have mentioned initially that [Flake et al., 2002;
Glover et al., 2002] used the Web structure itself to determine a focus for har-
vesting data. In this line, by determining such a focus we could have a more
domain-specific disambiguation than in our current approach. Such a focus could
for example be determined by crawling only similar documents from the Web as
for example in the approach of Agirre et al. ([Agirre et al., 2000]). For instance,
our annotators tagged ‘Niger’ as a country, while PANKOW found the other
meaning that ‘Niger’ has, viz. it also refers to the river ‘Niger’.

With regard to efficiency, we thank Google for their help and support with their
Web service API. However, the self-annotating Web is not possible with the
kind of implementation that we provided. The reason is that we have issued an
extremely large number of queries against the Google API — to an extent that
would not scale towards thousands or even millions of Web pages in a reasonable

91

5. Semi-Automatic Annotation

time-scale. However, we envision an optimized indexing scheme (e.g., normalizing
the various forms of ‘to be’ in order to recognize ‘George Washington was a
man’) and API that would reduce this number to acceptable load levels. Also,
an interesting direction for further research would be to learn the weights of
the different patterns by machine-learning techniques. Furthermore, in order
to reduce the amount of queries sent to the Google Web service API, a more
intelligent strategy should be devised, which takes into account the ontological
hierarchy between concepts.

With regard to range, we have only covered the relationship between instances
and their concepts, but not other relationships between instances, such as
is located in(Eiffel Tower,Paris). Our first step in this direction will be the
tighter integration of PANKOW with Amilcare [Ciravegna, 2001a], such that
instance data from PANKOW will be used to train Amilcare as has been done
for Armadillo [Ciravegna et al., 2003]. Overall, however, this remains extremely
challenging work for the future.

92

6. Deep Annotation

This Chapter portrays an extension of the CREAM framework for metadata
creation when Web pages are generated from a database and the database owner
is cooperatively participating in the Semantic Web. In order to create metadata,
the framework combines the presentation layer with the data description layer
— in contrast to “conventional” annotation, which remains at the presentation
layer. Therefore, we refer to the framework as deep annotation. Firstly, we
elaborate on the use cases of deep annotation in order to illustrate its possible
scope (Section 6.2). We continue with a description of the overall process in
Section 6.3. Section 6.4 details the architecture that supports the process, where
we find three major requirements that must be provided:

1. A server-side Web page markup that defines the relationship between the
database and the Web page content (cf. Section 6.5)

2. An annotation tool to actually let the user utilize information proper, in-
formation structures and information context for creating mappings (cf.
Section 6.6).

3. Components that let the user investigate the constructed mappings (cf.
Section 6.7), and query the serving database.

References: This chapter is mainly based on [Handschuh et al., 2003].

6.1. Introduction

One of the core challenges of the Semantic Web is the creation of metadata by
mass collaboration, i.e. by combining semantic content created by a large number
of people. To attain this objective we presented in Chapter 4 a basic framework
that deals with the manual and/or the semi-automatic creation of metadata from
existing information.

These approaches, however, as well as older ones that provide metadata, e.g. for
search on digital libraries, build on the assumption that the information sources
under consideration are static, e.g. given as static HTML pages or given as books
in a library, etc. (cf., [A,B] in Table 6.1).

93

6. Deep Annotation

Nowadays, however, a large percentage of Web pages are not static documents.
On the contrary, the majority of Web pages are dynamic.1 For dynamic Web
pages (e.g. ones that are generated from the database that contains a catalogue
of books) it does not seem to be useful to manually annotate every single page.
Rather one wants to “annotate the database” in order to reuse it for one’s own
Semantic Web purposes.

For this objective, approaches have been conceived that allow for the construc-
tion of wrappers by explicit definition of HTML or XML queries [Sahuguet and
Azavant, 2001] or by learning such definitions from examples [Kushmerick, 2000;
Ciravegna, 2001a].

Thus, it has been possible to manually create metadata for a set of structurally
similar Web pages. The wrapper approaches come with the advantage that they
do not require cooperation by the owner of the database. However, their short-
coming is that the correct scraping of metadata is dependent to a large extent
on data layout rather than on the structures underlying the data (cf., [C] in
Table 6.1).

While for many Web sites, the assumption of non-cooperativity may remain
valid, we assume that many Web sites will in fact participate in the Semantic
Web and will support the sharing of information. Such Web sites may present
their information as HTML pages for viewing by the user, but they may also be
willing to describe the structure of their information on the very same web pages.
Thus, they give their users the possibility to utilize

1. information proper,

2. information structures, and

3. information context.

A user may then exploit these three in order to create mappings into his own
information structures (e.g., his ontology) — which may be a lot easier than if
the information a user receives is restricted to information structures [Noy and
Musen, 2000] and/or information proper alone [Doan et al., 2002].

We define “deep annotation” [D] as an annotation process that utilizes informa-
tion proper, information structures and information context in order to derive
mappings between information structures. The mappings may then be exploited
by the same or another user to query the database underlying a Web site in

1It is not possible to give a percentage of dynamic to static Web pages in general, because a
single Web site may use a simple algorithm to produce an infinite number of, probably not
very interesting, Web pages. Estimations, however, based on Web pages actually crawled
by existing search engines estimate that dynamic Web pages outnumber static ones by 100
to 1.

94

6.2. Use Cases for Deep Annotation

order to retrieve semantic data — combining the capabilities of conventional
annotation and databases.

Table 6.1 summarizes the different settings just laid out.

Web site cooperative owner uncooperative owner

static Embedded or remote metadata by
conventional annotation [A]

Remote metadata by conven-
tional annotation [B]

dynamic Deep annotation with server- or
client-side mapping rules [D]

Wrapper construction, remote
metadata [C]

Table 6.1.: Principal situation

Thereby, Table 6.1 further distinguishes between two scenarios regarding static
Web sites. In the one scenario [B], the annotator is not allowed to change static
information, but he can create the metadata and remotely retain it from the
source it belongs to (e.g., by XPointer). In the other scenario [A], he is free to
choose between embedding the metadata created in the annotation process into
the information proper (e.g., via the <meta> tag of a HTML page) or keeping it
remote.2 For deep annotation the two choices boil down to storing the created
mappings either within the database of the server or externally.

6.2. Use Cases for Deep Annotation

Deep annotation is relevant for a large and fast-growing number of web sites
which have cooperation as their aim, for instance:

Scientific databases. They are frequently built to foster cooperation by re-
searchers. Medline, Swissprot, or EMBL are just a few examples that can be
found among the Web. In the bioinformatics community alone it is currently
estimated that 500+ large databases are freely accessible.

Such databases are frequently hard to understand and it is often difficult to
evaluate whether a database table named “species” is equivalent to a table named
“organism” in another database. Exploiting the information proper found in
concrete tuples may help. But whether the “leech” considered as entry to an
“organism” is actually the animal or the plant may be much easier to tell from
the context in which it is presented than from the concrete database entry, which
may resolve to “plant” or “animal” only via several joins.3

Supply Chains. Car manufacturers frequently “outsource” the problem of pro-
viding mappings to their databases for tenders and orders by providing a portal

2Cf. Chapter 4 on those two possibilities.
3Concrete examples are typically not as easy to understand as the leech example!

95

6. Deep Annotation

with only HTML pages to their suppliers. Suppliers then either need to retype
information or to use wrappers in order to replicate information. When the
manufacturers provided information structures on their portal, a one-time deep
annotation process could easily create the mapping for new suppliers.

Syndication. Besides direct access to HTML pages of news stories or market
research reports, etc., commercial information providers frequently provide syn-
dication services. The integration of such syndication services into the portal of
a customer is typically an expensive manual programming effort that could be
reduced by a deep annotation process which defines the content mappings.

For the remainder of the paper we will focus on the following use case:

Community Web Portal (cf., [Staab et al., 2000a]). It serves the information
needs of a community on the Web with possibilities for contributing and accessing
information by community members. A recent example that is also based on
Semantic Web technology is4 [Studer et al., 2002]. The interesting aspect of such
portals lies in the sharing of information and some of them are even designed to
deliver semantic information back to their community as well as to the outside
world.5

The primary objective of a community setting up a portal will remain to offer
access for users. However, given the appropriate tools they could easily pro-
duce information content, information structures and information context to
their members for deep annotation. The way in which this process operates
is described in the following.

6.3. The Process of Deep Annotation

The process of deep annotation consists of the following four steps (depicted in
Figure 6.1):

Input: A Web site6 driven by an underlying relational database.

Step 1: The database owner produces server-side Web page markup according
to the information structures of the database (described in detail in Sec-
tion 6.5).

Result: Web site with server-side markup.

Step 2: The annotator produces client-side annotations conforming to the client
ontology and the server-side markup (Section 6.6).

4http://www.ontoweb.org
5Cf., e.g., [Stojanovic et al., 2001] for an example producing RDF from database content.
6Cf. Section 6.8 on other information sources.

96

6.4. Architecture

42 3

DB DB DB

Mapping

Rules

DB

Mapping

Rules

Web site
Server-side
markup

Client-side
semantic annotation

Published
ontology and
mapping rules Database query

11

Client

Ontology

Ontology-based

Query resultsHTML HTML HTML

Client

Ontology
Client

Ontology

Figure 6.1.: The Process of Deep Annotation

Result: Mapping rules between database schema and client ontology

Step 3: The annotator publishes the client ontology (if not previously com-
pleted) and the mapping rules derived from annotations (Section 6.7).

Result: The annotator’s ontology and mapping rules are available on the Web

Step 4: The querying party loads the second party’s ontology and mapping rules
and uses them to query the database via the Web service API (Section 6.7.1
and 6.7.2).

Result: Results retrieved from database by querying party

Obviously, in this process one single person may be the database owner and/or
the annotator and/or the querying party.

To align this with our running example of the community Web portal, the an-
notator might annotate an organization entry from ontoweb.org according to his
own ontology. Subsequently, he may use the ontology and mapping to instantiate
his own syndication services by regularly querying for all recent entries the titles
of which match his list of topics.

6.4. Architecture

Our architecture for deep annotation consists of three major pillars correspond-
ing to the three different roles (database owner, annotator, querying party) as
described in the process.

97

6. Deep Annotation

Database and Web Site Provider. At the Web site, we assume that there is
an underlying database (cf. Figure 6.2) and a server-side scripting environment,
like Zope, JSP or ASP, used to create dynamic Web pages. Furthermore, the
Web site may also provide a Web service API to third parties who want to query
the database directly.

Figure 6.2.: An Architecture for Deep Annotation

Annotator. The annotator uses an extended version of the OntoMat-Annotizer
in order to manually create relational metadata, which correspond to a given
client ontology, for some Web pages. The extended OntoMat-Annotizer takes
into account problems that may arise from generic annotations required by deep
annotation (see Section 6.6). With the help of OntoMat-Annotizer, we create
mapping rules from such annotations that are later exploited by an inference
engine.

Querying Party. The querying party uses a corresponding tool to visualize the
client ontology, to compile a query from the client ontology and to investigate
the mapping. In our case, we use OntoEdit [Sure et al., 2002a] for those three
purposes. In particular, OntoEdit also allows for the investigation, debugging
and change of given mapping rules. To that extent, OntoEdit integrates and
exploits the Ontobroker [Fensel et al., 1999] inference engine (see Figure 6.2).

98

6.5. Server-Side Web Page Markup

6.5. Server-Side Web Page Markup

The goal of the mapping process is to allow interested parties to gain access to the
source data. Hence, the content of the underlying database is not materialized,
as proposed in [Stojanovic et al., 2002c]. Instead, we provide pointers to the un-
derlying data sources in the annotations, e.g. we specify which database columns
provide the data for certain attributes of instances. Thus, the capabilities of
conventional annotation and databases are combined.

6.5.1. Requirements

All required information has to be published, so that an interested party can
use this information to retrieve the data from the underlying database. This
information has to specify (i) which database is used as a data source and how
this database can be accessed (ii) which query is used to retrieve data from
the database and (iii) which elements of the query result are used to create the
dynamic web page. Those three components are detailed in the remainder of this
section.

6.5.2. Database Representation

The database representation is specified using a dedicated deep annotation on-
tology, which is instantiated to describe the physical structure of the part of the
database which may facilitate the understanding of the query results. Thereby,
the structure of all tables/views involved in a query can be published. For ex-
ample the following representation is part of the HTML head of the Web page
presented in Figure 6.3.

<!--

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:da="http://annotation.semanticweb.org#deepanno">

<da:DB rdf:ID="OntoSQL">

<da:accessService

rdf:resource="www.ontoweb.org/database_access.wsdl"/>

</da:DB>

<da:Table rdf:ID="Person">

<da:name>Person</da:sqlName>

<da:inDatabase rdf:resource="#OntoSQL" />

<da:hasColumns rdf:parseType="Collection">

<da:PrimaryKey rdf:ID="Person.ID"

da:name="ID" da:type="int" />

<da:Column da:name="FIRSTNAME" da:type="varchar"/>

<da:Column da:name="LASTNAME" da:type="varchar"/>

</da:hasColumns>

</da:Table>

99

6. Deep Annotation

<da:Table rdf:ID="Organization">

<da:name>Organization</da:name>

<da:inDatabase rdf:resource="#OntoSQL" />

<da:hasColumns rdf:parseType="Collection" />

<da:PrimaryKey rdf:ID="Organization.ID"

da:name="ID" da:type="int" />

<da:Column da:name="ORGNAME" da:type="varchar"/>

<da:Column da:name="LOCATION" da:type="varchar"/>

...

</da:hasColumns>

</da:Table>

<da:Table rdf:ID="PersonOrg">

<da:name>Person_Org<da:name>

<da:inDatabase rdf:resource="#OntoSQL" />

<da:hasColumns rdf:parseType="Collection" />

<da:PrimaryKey da:name="PERSONID" da:type="int">

<references rdf:resource="#Person.ID"/>

</da:PrimaryKey>

<da:PrimaryKey da:name="ORGID" da:type="int">

<references rdf:resource="#Organization.ID"/>

</da:PrimaryKey>

</da:hasColumns>

</da:Table>

</rdf:RDF>

-->

The property accessService of the <DB> class represents the link to a service
which allows anonymous database access; consequently additional security mea-
sures can be implemented in the service. Usually, anonymous users should only
have read-access to public information. As we rely on a Web service to host the
database access we avoid protocol issues (database connections are usually made
via sockets on proprietary ports).

6.5.3. Query Representation

Additionally, the query itself, which is used to retrieve the data from a particular
source is placed in the header of the page. It contains the intended SQL-query
and is associated with a name as a means to distinguish between queries and
operates on a particular data source.

<!--

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:da="http://annotation.semanticweb.org#deepanno">

<da:Query rdf:ID="Q1">

<da:source rdf:resource="#OntoSQL" />

<da:hasResultColumns rdf:parseType="Collection">

<ColumnGroup rdf:about="#g1" />

<ColumnGroup rdf:about="#g2" />

</da:hasResultColumns>

<da:sql>

100

6.5. Server-Side Web Page Markup

SELECT Person.*, Person_Org.Orgid, Organization.*

FROM Person, Organization, Projekt_Org

WHERE Person.ID = Projekt_Org.PERSONID

AND Organization.ID = Projekt_Org.ORGID

</da:sql>

</da:Query>

<da:Columngroup rdf:ID="#g1">

<da:prefix

rdf:resource="http://www.ontoweb.org/person/">

<da:hasColumns rdf:parseType="Collection">

<Identifier da:name="Id" />

<Column da:name="Firstname" />

<Column da:name="Lastname" />

</da:hasColumns>

</da:Columngroup>

<da:Columngroup rdf:ID="#g2">

<da:prefix

rdf:resource="http://www.ontoweb.org/org/">

<da:hasColumns rdf:parseType="Collection">

<Identifier da:name="OrganizationId" />

<Column da:name="Orgname" />

<Column da:name="Location" />

</da:hasColumns>

</da:Columngroup>

</rdf:RDF>

-->

The structure of the query result must be published by means of column groups.
Each column group must have at least one identifier, which is used in the an-
notation process to distinguish between individual instances and detect their
equivalence. Since database keys are only local to the respective table, but the
Semantic Web has a global space of identifiers, appropriate prefixes have to be
established. The prefix also ensures that the equality of instance data generated
from multiple queries can be detected, if the Web application maintainer chooses
the same prefix for each occurrence of that id in a query. Eventually, database
keys are translated to instance identifiers (cf. Section 6.7.2) via the following
pattern:

< prefix > [keyi − name = keyi − value]

For example: http://www.ontoweb.org/person/id=1

6.5.4. Result Representation

Whenever parts of the query results are used in the dynamically generated Web
page, the generated content is surrounded by a tag, which carries information
about which column of the resulting tuple delivered by a query represents the
used value. In order to maintain compatibility with HTML, we used the
tag as an information carrier. The actual information is represented in attributes
of :

<table>

101

6. Deep Annotation

<tr>

<td>

AIFB

</td>

<td>

Karlsruhe

</td>

...

<td>

Steffen

</td>

...

</tr>

</table>

Such span tags are then interpreted by the annotation tool and are used in the
mapping process.

6.6. Annotation

An annotation in our context is a set of instantiations related to an ontology
and referring to an HTML document. We distinguish (i) instantiations of OWL
classes, (ii) instantiated properties from one class instance to a datatype instance
— henceforth called attribute instance (of the class instance), and (iii) instan-
tiated properties from one class instance to another class instance — henceforth
called relationship instance.

In addition, for deep annotation one must distinguish between a generic anno-
tation and a literal annotation. In a literal annotation, the piece of text may
stand for itself. In a generic annotation, a piece of text that corresponds to a
database field and that is annotated is only considered to be a place holder i.e.
a variable must be generated for such an annotation and the variable may have
multiple relationships allowing for the description of general mapping rules. For
example, a concept Institute in the client ontology may correspond to one generic
annotation for the Organization identifier in the database.

Applying the above terminology, we will refer to generic annotation in detail
as generic class instances, generic attribute instances, and generic relationship
instances.

6.6.1. Annotation Process

An annotation process of server-side markup (generic annotation) is supported
by the user interface as follows:

1. The user opens in the browser a server-side marked up Web page.

102

6.6. Annotation

2. The server-side markup is handled individually by the browser, e.g. it pro-
vides graphical icons on the page wherever a markup is present, so that the
user can easily identify values which come from a database.

3. The user can select one of the server-side markups to either create a new
generic instance and map its database field to a generic attribute, or map
a database field to a generic attribute of an existing generic instance.

4. The database information necessary to query the database in a later step
is stored along with the generic instance.

The reader may note that literal annotation is still performed when the user
drags a marked up piece of content, that is not a server-side markup.

6.6.2. Creating Generic Instances of Classes

When the user drags a server-side markup onto a particular concept of the onto-
logy, a new generic class instance is generated (cf. arrow #1 in Figure 6.3). The
application displays a dialog for the selection of the instance name and the at-
tributes to which the database value may be mapped. Attributes which resemble
the column name are preselected (cf. dialog #1a in Figure 6.3). If the user clicks
OK, database concept and instance checks are performed and the new generic
instance is created. Generic instances will appear with a database symbol in
their icon.

Each generic instance stores the information about the database query and the
unique identifier pattern. This information is resolved from the markup. A
server-side markup contains the reference to the query, the column, and the
value. The identifier pattern is obtained from the reference to the query descrip-
tion and the appropriate column group (cf. Section 6.5.3). The markup used to
create the instance defines the identifier pattern for the generic instance. The
identifier pattern will be used when instances are generated from the database
(cf. Section 6.7.2). For example, the server-side markup ”AIFB” is selected
and dropped on the concept Institute. The content of the markup is ’AIFB’. This creates a new generic
instance with a reference to the query q1 (cf. Section 6.5.3). The dialog-based
choice for the instance name ”AIFB” assigns the generic attribute name with
the database column ”Orgname”. This defines the identifier pattern of the
generic instance as ”http://www.ontoweb.org/org/OrganizationID=$Organiza-
tionID”. OrganizationID is the name of the database column in query q1 that
holds the database key.

103

6. Deep Annotation

Figure 6.3.: Screenshot of Providing Deep Annotation with OntoMat-Annotizer

6.6.3. Creating Generic Attribute Instances

In order to create a generic attribute instance the user simply drops the server-
side markup into the corresponding table entry (cf. arrow #2 in Figure 6.3).
Generic attributes which are mapped to database table columns will also show a
special icon and their value will appear in italics. Such generic attributes cannot
be modified, but their value can be deleted.

When the generic attribute is filled the following steps are performed by the
system:

1. Checking database definition integrity.

2. All attributes of the selected generic instance (except the generic attribute
to be pasted to) are examined. The following conditions apply to each
attribute:

104

6.7. Mapping and Querying

• The attribute is empty or

• The attribute does not hold server-side markup or

• The attribute holds markup, the database name and the query id of
the content on the current selection must be the same. This must be
checked to ensure that result fields come from the same database and
the same query. If this is not checked, non-matching information (e.g.
publication titles and countries) could be queried for.

3. The generic attribute contains the information given by the markup, i.e.
which column of the resulting tuple delivered by a query represents the
value.

6.6.4. Creating Generic Relationship Instances

In order to create a generic relationship instance the user simply drops the se-
lected server-side markup onto the relation of a pre-selected instance (cf. arrow
#3 in Figure 6.3). As in Section 6.6.2 a new generic instance is generated. In
addition, the new generic instance is connected with the preselected generic in-
stance.

6.7. Mapping and Querying

The results of the annotation are mapping rules between the database and the
client ontology. The annotator publishes7 the client ontology and the mapping
rules derived from annotations. This enables third parties (querying party) to
access and query the database on the basis of the semantics that is defined in
the ontology. The user of this mapping description might be a software agent or
a human user.

6.7.1. Investigating Mappings

The querying party uses a corresponding tool to visualize the client ontology, to
investigate the mapping and to compile a query from the client ontology. In our
case, we used the OntoEdit plugins OntoMap and OntoQuery.

OntoMap visualizes the database query, the structure of the client ontology, and
the mapping between them (cf. Figure 6.4). The user can control and change the
mapping and also create additional mappings.

7Here, we used the Ontobroker OXML format to publish the mapping rules.

105

6. Deep Annotation

Figure 6.4.: Mapping between Server Database (left window) and Client Onto-
logy (right window)

6.7.2. Querying the Database

OntoQuery is a Query-by-Example user interface. A query is created by clicking
on a concept and selecting the relevant attributes and relationships. The under-
lying Ontobroker system transforms the ontological query into a corresponding
SQL query. Ontobroker uses the mapping descriptions, which are internally rep-
resented as F-Logic Axioms, to transform the query. The SQL query will be send
as an RPC call to the Web service, where it will be answered in the form of a set
of records. These records are transformed back to an ontological representation.
This task will be executed automatically, so that no interaction with the user is
necessary.

For example, a query is created by selecting the concept Person. In the dialog the
search can be restricted to instances of Person starting with the letter ”S” in the
name (cf. Figure 6.5). This ontological query is expressed as an F-Logic query
and then evaluated by Ontobroker by using the mapping axioms (cf. Figure 6.6).

The data migration will be executed in two separate steps. In the first step,
all the required concept instances are created without considering relationships
or attributes. The instances are stored together with their identifier. The
identifier is translated from the database keys by using the identifier pattern

106

6.7. Mapping and Querying

Figure 6.5.: Querying: Persons with first names starting with letter ‘S’

(see Section 6.5.2). For example, the instance with the name ”AIFB” of the
concept Institute, which is a subconcept of Organization, has the identifier:
”http://www.ontoweb.org/org/OrganizationID=3.

After the creation of all instances we begin computing the values of the instance
relationships and attributes. The way the values are assigned is determined by
the mapping rules. Since the values of an attribute or a relationship have to be
computed from both the relational database and the ontology, we generate two
queries per attribute/relationship, one SQL query and one Ontobroker query.
Each query is invoked with an instance key value (corresponding database key in
SQL-queries) as a parameter and returns the value of the attribute/relationship.

Note that the database communication takes place through bind variables. The
corresponding SQL query is generated, and if this is the first call, it is cached. A
second call would try to use the same database cursor if still available, without
parsing the respective SQL statement. Otherwise, it would find an unused cursor
and retrieve the results. In this way efficient access methods for relations and

107

6. Deep Annotation

Figure 6.6.: Querying: F-Logic Query

database rules can be maintained throughout the session.

6.8. Conclusion

In this Chapter we have described deep annotation, an original framework to
provide Semantic Annotation for large sets of data. Deep annotation leaves
semantic data where they can be handled best, viz. in database systems. Thus,
deep annotation provides a means for mapping and re-using dynamic data in the
Semantic Web with tools that are comparatively simple and intuitive to use.

To reach this objective we have defined a deep annotation process and architec-
ture. We have incorporated means for server-side markup that allows the user
to define semantic mappings by using OntoMat An ontology and mapping editor
and an inference engine are then used to investigate and exploit the resulting
descriptions. Thus, we have provided a complete framework and its prototype
implementation for deep annotation.

For the future, there is a long list of open issues concerning deep annotation
— from the more mundane, though important, ones (top) to far-reaching ones
(bottom):

108

6.8. Conclusion

1. Granularity: So far we have only considered atomic database fields. For
instance, one may find a string “Proceedings of the Eleventh International
World Wide Web Conference, WWW2002, Honolulu, Hawaii, USA, 7-11
May 2002.” as a title of a book whereas one might rather be interested in
separating this field into title, location and date.

2. Automatic derivation of server-side Web page markup: A content man-
agement system like Zope could provide means for automatically deriving
server-side Web page markup for deep annotation. Thus, the database
provider could be freed from any workload, while allowing for participa-
tion in the Semantic Web. Some steps into this direction are currently
pursued in the KAON CMS, which is based on Zope8.

3. Other information structures: For now, we have built our deep annotation
process on SQL and relational databases. Future schemes could exploit
XQuery9 or an ontology-based query language.

4. Interlinkage: In the future deep annotations may even link to each other,
creating a dynamic interconnected Semantic Web that allows to translate
between different servers.

5. Opening the possibility to directly query the database, certainly creates
problems such as new possibilities for denial of service attacks. In fact,
queries, e.g. ones that involve too many joins over large tables, may prove
hazardous. Nevertheless, we see this rather as a challenge to be solved by
clever schemes for CPU processing time (with the possibility that queries
are not answered because the time allotted for one query to one user is up)
than for a complete “no go”.

We believe that these options make deep annotation a rather intriguing scheme
on which a considerable part of the Semantic Web might be built.

8see http://kaon.aifb.uni-karlsruhe.de/Members/rvo/kaon portal
9http://www.w3.org/TR/xquery/

109

6. Deep Annotation

110

7. Application

In this Chapter we present two applications for our annotation framework on
linguistic annotation (Section 7.1) and service annotation (Section 7.2). We show
how to exploit the basic framework easily for linguistic markup. Furthermore,
it shows how to apply the concept of deep annotation also to annotation and
composition of Web services.

The structure of Section 7.1 is as follows: Section 7.1.1 presents the ontology-
based framework for linguistic annotation, and Section 7.1.2 shows how the
framework can be applied to the annotation of anaphoric relations. Section 7.1.3
presents the features of CREAM that are useful for the application of linguistic
annotation. Finally, Section 7.1.4 gives some concluding remarks about using
CREAM for linguistic annotation.

The structure of Section 7.2 is as follows: We first describe a simple use case for
CREAM-Service (CREAM applied for Web services) (cf. Section 7.2.1), including
a detailed WSDL description of a Web service used for the running example. In
section 7.2.2, we describe the process that allows Web services to be turned into
a service Web and that lets a user surfing the Web with OntoMat-Service-Surfer
exploit the very same tool to aggregate and invoke Web services. The first step of
this process, i.e. advertising Web services in a form that combines presentation
for human and machine agent consumption, is sketched in section 7.2.3. The
second step of this process, i.e. using browsing and semantic deep annotation to
tie together conceptual descriptions, is detailed in section 7.2.4.

References: Section 7.1 is mainly based on [Cimiano and Handschuh, 2003] and
Section 7.2 is mainly based on [Agarwal et al., 2003].

7.1. Linguistic Annotation

Linguistic annotation (cf. Section 3.4.3) is crucial for the development and evalu-
ation of natural language processing (NLP) tools. In particular machine-learning
based approaches to part-of-speech tagging, word sense disambiguation, informa-
tion extraction or anaphora resolution - just to name but a few - rely on corpora
annotated with the corresponding phenomenon to be trained and tested. In this
Section, we argue that linguistic annotation can to some extent be considered a
special case of Semantic Annotation with regard to an ontology. Part-of-Speech

111

7. Application

(POS) annotation for example can be seen as the task of choosing the appropri-
ate tag for a word from an ontology of word categories (compare for example the
Penn Treebank POS tagset as described in [Marcus et al., 1993]). The annotation
of word senses such as used by machine-learning based word sense disambiguation
(WSD) tools corresponds to the task of selecting the correct semantic class or
concept for a word from an underlying ontology such as WordNet [Resnik, 1997].
Annotation by template filling such as that used to train machine-learning based
information extraction (IE) systems as (cf., Section 5.1.2) can be seen as the task
of finding and marking all the attributes of a given ontological concept in a text.
An ontological concept in this sense can be a launching event, a management
succession event or a person together with attributes such as name, affiliation,
position, etc. The annotation of anaphoric or bridging relations is actually the
task of identifying the semantic relation between two linguistic expressions rep-
resenting a certain ontological concept.

Most linguistic annotation tools make use of schemes specifying what can actually
be annotated. These schemes can in fact be understood as a formal representation
of the conceptualization which underlies the annotation task. Ontologies are
formal specifications of a conceptualization (cf. Section 2.5) so that it seems the
logical next step to formalize annotation schemes as ontologies and make use of
our annotation framework (cf. Chapter 4) and the corresponding tool OntoMat
for the purpose of linguistic annotation.

7.1.1. The Ontology-based linguistic annotation framework

An ontology is a structure O := (C,≤C , R,≤R, A) as defined in Definition 2.5.1
(page 27).

Our framework basically offers three ways of annotating a text with regard to an
ontology:

• a linguistic expression appearing in a text can be annotated as an instance
of a certain ontological concept c ∈ C

• a linguistic expression in a text can be annotated as an attribute instance of
some other linguistic expression previously annotated as a certain concept
c ∈ C

• the semantic relation between two linguistic expressions respectively an-
notated as instances of two concepts c1, c2 ∈ C can be annotated as an
instance of relation r.

The advantages of an ontology-based linguistic annotation framework as de-
scribed above are the following:

112

7.1. Linguistic Annotation

• The formalization of the annotation scheme as an ontology as well as the
use of standard formalisms such as RDF (cf. Section 2.4) or OWL (cf.
Section 2.6 to encode it, allow the scheme to be reused across different
annotation tools. This meets the interoperability requirement mentioned
in [Ide, 2002].

• The specification of the annotation task, i.e. the annotation scheme, can
be performed in an arbitrary ontology development environment and thus
becomes completely independent of the annotation tool actually used.

• The ontology-based linguistic annotation model offers the kind of flexibility
mentioned in [Ide, 2002] in the sense that it is general enough to be applied
to a broad variety of annotation tasks.

• The fact that annotation is performed with respect to an ontological hi-
erarchy offers annotators the possibility of choosing the appropriate level
of annotation detail so that they are never forced to overspecify, i.e. to
annotate more specifically than they actually feel comfortable with.

In addition, hierarchical linguistic annotation offers further possibilities regard-
ing the computation of the agreement between different annotators as well as
the evaluation of a system against a certain annotation. In this sense, instead
of measuring only the categorial agreement between annotators with the kappa
statistic [Carletta, 1996] or the performance of a system in terms of precision/re-
call, we could take into account the hierarchical organization of the categories
or concepts by making use of measures considering the “hierarchical distance”
between two concepts (cf. Section 8.4.2).

Furthermore, the use of an ontology-based and thus more semantic framework
for linguistic annotation has two further, very interesting properties. On the one
hand, the use of an ontology helps to constrain the possible relations between
two concepts, thus reducing the amount of errors in the annotation process. For
example when annotating Coreference-relations in a text, it seems obvious that
an event and an entity will never confer and in fact such an erroneous annota-
tion can be avoided if the underlaying ontological model actually forbids such
an annotation (see below). Furthermore, by using axioms for example stating
that Coreference is reflexive, symmetric and transitive - thus representing an
equivalence relation - the evaluation of systems becomes much easier and more
straightforward when using an inference machine such as the annotation inference
server module of CREAM (cf., Section 7.1.3 and 4.4.1).

If an annotator for example annotates the following coreferences: Corefer-
ence(A,B) and Coreference(B,C) a system’s answer such as Coreference(A,C)
will actually be deemed correct due to the fact that Coreference is defined as a
transitive relation within the ontology.

113

7. Application

7.1.2. Annotating anaphoric relations

Before showing how our framework can be applied to the annotation of anaphoric
relations in written texts, the assumptions underlying our model need to be ex-
plained. Firstly, we aim at a more semantic annotation of anaphoric relations
than for example described in [Müller and Strube, 2001] because we think that
such a model can to some extent be subsumed by the one we propose. In fact,
we will interpret the term anaphoric in a much wider sense in line with [Krahmer
and Piwek, 2000] and [van Deemter and Kibble, 2000]. They argue for exam-
ple that coreference is not a necessary property of anaphora such as proposed in
[Müller and Strube, 2001]. So annotating the relation between two expressions as
anaphoric will correspond to the most general relation in our hierarchy. In par-
ticular, Identity or Coreference will only be a special type of anaphoric relation
(compare Figure 7.2) in our model.

On the other hand, bridging will be defined in our framework in line with [Asher
and Lascarides, 1999] as “the inference that two objects or events that are intro-
duced in a text are related in a particular way that isn’t explicitly stated”. Thus
Coreference or Identity can represent an anaphoric relation or more specifically
a bridging reference depending on whether or not the identity relation is explicit
or not. Consider the following minimal pair:

(7.1) John bought a car yesterday. The car was in a good state.

(7.2) John bought a car yesterday. The vehicle was in a good state.

In example (7.1), the anaphoric relation is explicit due to the matching heads of
the NPs a car and The car. In (7.2) the anaphoric or bridging relation is not
explicit as world knowledge that cars are vehicles is needed to resolve the refer-
ence. In the semantics-based model for the annotation of anaphoric relations we
propose in this Chapter, both examples will in fact be annotated as instances
of the Coreference or Identity relation. Consequently, we will completely omit
the concept bridging reference in the ontology underpinning the annotation. In
fact, we claim that the classification of an anaphora as a bridging reference, di-
rect anaphora, pronominal anaphora, etc. such as pursued in [Müller and Strube,
2001] can be seen as a byproduct of a more semantic classification as proposed
here if additional grammatical information provided by the annotators is avail-
able. This grammatical information can be added to the concepts depicted in
Figure 7.1.1 in the form of attributes specifying the grammatical form of the
expression, i.e. whether it is for example a noun, an NP, a pronoun, a verb or a
VP, as well as information about its head, gender or tense. The semantic clas-
sification proposed here together with the grammatical information modeled as
attributes of a concept will then yield a classification as envisioned by [Müller and

114

7.1. Linguistic Annotation

Strube, 2001]. For example, if two expressions are annotated as coreferring, this
semantic relation can be further classified as nominal anaphora if the referring
expression is a pronoun, as direct anaphora if the heads of the expression match
or as a bridging reference otherwise. On the other hand, all the Non-Identity
relations modeled in the ontology underlying the annotation task will lead to a
classification as a bridging reference (compare Figure 7.2). However, it should be
mentioned that we do not aim at such a “grammatical” classification of anaphoric
relations. We envision a task as in [Asher and Lascarides, 1999], where bridging
reference resolution corresponds to the task of finding the discourse referent serv-
ing as antecedent as well as the semantic relation between this discourse referent
and the one of the referring expressions.

In our model, an expression can be antecedent for more than one referring expres-
sion, an assumption which seems to be commonly shared by many annotation
schemes. However, in our model a certain expression can also refer to more than
one antecedent. [Poesio and Reyle, 2001] for instance show that the antecedent
of a referring expression can in fact be ambiguous in a way that the overall inter-
pretation of the expression or sentence is not affected. Furthermore, [Poesio and
Reyle, 2001] argue that it is not clear whether the addressees of an utterance ac-
tually are aware of all the possible antecedents for a certain referring expression,
if they underspecify the antecedent of a referring expression in case the overall
interpretation is not affected or if they just choose one of the possible antecedents
without being aware of the other ones. In any case, a model for the annotation of
anaphoric or bridging relations should not a priori exclude that referring expres-
sions can have more than one antecedent. Consequently, the annotation of the
semantic relation between a referring expression and an antecedent can neither
take place at the antecedent nor the referring expression such as in [Müller and
Strube, 2001], but in a functional way, i.e. at a virtual edge between them.

The ontology underlying our annotation scheme is depicted schematically in Fig-
ure 7.1 We distinguish two types of eventualities: events and states, and model
the discourse relations described in [Lascarides and Asher, 1991] as semantic re-
lations between them. In addition, we distinguish between three types of (meta-)
entities: sets of entities, intensional entities [van Deemter and Kibble, 2000] and
(real-world) entities together with the potential relations such as member of,
part of, etc. between them as well as to other types: An entity for example can
play a certain thematic role in some event (compare Figure 7.1).

With such a concept hierarchy as well as semantic relations with a precisely
defined signature, we can for example overcome annotation problems of inten-
sionality and predication as discussed in [van Deemter and Kibble, 2000]. In order
to profit from the benefits of a hierarchical annotation, we also define a hierarchy
for the semantic relations (see Figure 7.2). Thus if annotators, for example, feel
that there is an anaphoric relation between two linguistic expressions, but can
not specify the type of relation, they can choose the most general relation in the

115

7. Application

top

entities eventualities

intensional entityentityset of entities

role_of

statesevents

result

explanation

elaboration

narration

background

part_of

member_of
value_of

Figure 7.1.: The ontology underlying the annotation scheme

anaphoric relations

coreference/identity non-identity

rhetorical relations
value_ofrole_ofpart_ofmember_of

elaborationexplanationbackgroundresultnarration

Figure 7.2.: The hierarchical organization of the semantic relations.

hierarchy, i.e. anaphoric relation. As mentioned in Section 7.1.1, the idea is that
annotators are never forced to overspecify and can annotate at the hierarchical
level they feel comfortable with.

116

7.1. Linguistic Annotation

7.1.3. CREAM and OntoMat

The CREAM framework and the concrete implementation OntoMat is described
in detail in Chapter 4. The framework itself is developed for the creation of
ontology-based annotation in the context of the Semantic Web. However, with
an appropriate ontology one can also take advantage of the framework and use
it for linguistic annotation. In the subsequent section we will briefly emphasize
the features that are relevant to this new purpose (for an extensive description
of the CREAM modules cf. Section 4.4.1).

CREAM Features

User Interface. OntoMat’s document viewer visualizes the document contents.
The Ontology and Fact Browser is the visual interface to the ontology and the
annotated facts. Both the Ontology and Fact Browser and the document editor/-
viewer are intuitive to use: Drag’n’drop helps to avoid syntax errors and typo-
graphical errors and a good visualization of the ontology helps the annotators to
choose correctly the most appropriate class for an instance (compare Figure 7.3).

Annotation. An annotation in our context is a set of instantiations of classes,
relationships and attributes. These instances are not directly embedded into
the text, but are pointing to appropriate fragments of the document. The link
between the annotation and the document is done by using XPointer (cf. Sec-
tion 2.3) as an addressing mechanism. This has some advantages with regard
to the flexibility of annotation as it allows (i) multiple annotation (ii) nested
annotation and (iii) overlapping annotation of text segments.

Annotation Inference Server. The annotation inference server reasons based
on the instances and on the ontology. In doing so, it also takes into account the
axioms modeled within the ontology and can thus be used in the evaluation of a
certain system such as described in Section 4.4.1

Storage. CREAM supports different ways of storing the annotation. This flex-
ibility is given by the XPointer technique which allows the separation of the
annotation from the document. Hence, the annotations can be stored together
with the document. Alternatively or simultaneously it is also possible to store
them remotely, either in a separate file or in the annotation inference server.

117

7. Application

Annotating anaphoric relations

The ontology described in Section 7.1.2 is available in the form of DAML+OIL1

classes and properties, in OWL, as pure RDF-Schema and in F-Logic. In the fol-
lowing, we explain briefly how OntoMat can be used for the creation of instances
consistent with the ontology in question.

Figure 7.3 shows the screen for navigating the ontology and creating annotations
in OntoMat. The right pane displays the document and the left pane shows
the ontological structures contained in the ontology, namely classes, attributes
and relations. In addition, the left pane shows the current Semantic Annotation
knowledge base, i.e. existing class instances, attribute instances and relationship
instances created during the Semantic Annotation. First of all, the user browses

Figure 7.3.: Annotation Tool Screenshot.

a document by entering the URL of the Web document that he would like to
annotate. Then he loads the corresponding ontology into the ontology browser.
He selects a text fragment by highlighting it. There are two ways in which the

1http://annotation.semanticweb.org/ontologies/AnaphOnto.daml

118

7.1. Linguistic Annotation

text fragment may be annotated: as an instance or as a relation. In the case
of an instance, the user selects in the ontology the class in which the text frag-
ment fits in, e.g. for the expression ”a car” in Example 7.1, he would select the
class entity. By clicking on the class, the annotation is created and thus the text
fragment will be displayed as an instance of the selected class in the ontology
browser. The relationships between the created instances can be specified, e.g.
the entity The car can be annotated as coreferring with the preceding entity
a car as described in Section 7.1.1. For this purpose, when selecting a certain
class instance as well as a corresponding semantic relation from the ontology, On-
toMat already presents the possible target class instances according to the range
restrictions of the chosen relation. Hereby erroneous annotations of relations are
avoided (compare Section 7.1.1). Furthermore, literal attributes can be assigned
to every created instance by typing them into the related attribute field. The
choice of the predefined attributes depends on the class to which the instance
belongs. Thus, instances of a certain concept can be annotated with grammatical
information about how they are linguistically expressed, i.e. through an NP, a
noun, a pronoun, a verb, etc. (compare Section 7.1.2).

7.1.4. Conclusion

We have argued that many linguistic annotation tasks can be seen as a special
case of Semantic Annotation with regard to an ontology, and have proposed a
novel ontology-based framework for this purpose. Furthermore, we have applied
our framework to the annotation of anaphoric relations in written texts. For this
purpose we have proposed a relatively complex annotation scheme for anaphoric
relations in which we have deliberatively abstracted from important issues such
as inter-annotator agreement. In fact, the main contribution of this Section is
to show that relatively complex annotation schemes such as the one proposed
can be modeled in our ontology-based framework in a straightforward manner.
The main benefits of the approach presented here are that the annotation can
be performed at different levels of detail with regard to a given taxonomy, and
that the possible relations between two different concepts are constrained by the
underlying ontology, which could make the annotation less error-prone. In addi-
tion we have shown how the modeling of axioms within the ontology can actually
make the evaluation of a system more straightforward. The most important ad-
vantage is that by specifying the annotation scheme in form of an ontology and
adhering to standards such as RDF or OWL, it can be easily exchanged between
different parties and can also be developed independently of the annotation tool
used, which meets the interoperability requirement mentioned in [Ide, 2002]. In
addition, our framework is flexible enough to be applied to various annotation
tasks, which is also a requirement mentioned in [Ide, 2002].

119

7. Application

7.2. Service Annotation

The Stencil Group defines Web services as: loosely coupled, reusable soft-
ware components that semantically encapsulate discrete functionality and are
distributed and programmatically accessible over standard internet protocols.
Though this definition captures the broad understanding of what Web services
are, it raises the question, what Web services have to do with the web. Even
if HTTP is used as a communication protocol and XML/SOAP to carry some
syntax this appears to be a rather random decision than a deeply meaningful
design.

We believe that it makes sense to actually integrate the strengths of the con-
ventional World Wide Web, viz. lightweight access to information in a highly-
distributed setting, with the strengths of Web services, viz. execution of function-
ality by lightweight protocols in a highly-distributed setting. To seamlessly inte-
grate the two aspects we envision a service web that uses XHTML/XML/RDF to
transport information and a Web service framework to invoke operations and a
framework, CREAM-Service, to bind the two aspects together. CREAM-Service
offers an infrastructure, OntoMat-Service-Surfer, that allows

• for seamlessly browsing conventional Web pages, including XHTML adver-
tisements for Web services;

• for direct, manual invocation of an advertised Web service as a one-off use
of the service;

• for tying Web service advertisements to each other when browsing them;

• for tying Web service advertisements to one’s own conceptualization of the
Web space when browsing them; and

• for invoking such aggregated Web services.

For these objectives, we build on existing technologies like RDF (cf., Section 2.4),
ontologies (cf., Section 2.5) or WSDL [W3C, 2003]. To integrate the Web and
Web services into the service Web, we make specific use of a new type of Semantic
Annotation (cf. Chapter 4), namely deep annotation (cf. Chapter 6).

7.2.1. Use Case

A typical use case supported by CREAM-Service is the following (adapted from a
larger scenario in [Maedche and Staab, 2003]): An employee in a small enterprise
needs a new laptop. In order to buy one he defines the characteristics of the
laptop like processor speed, disk size, etc. Based on the configuration of the

120

7.2. Service Annotation

laptop he collects offers from laptop vendors. When he receives an offer he also
solicits insurance terms from a third party. Once the most reasonable laptop and
the best insurance contract terms are determined, the employee purchases the
laptop and closes the service contract.

In our scenario, we assume a laptop vendor and an insurer offering Web ser-
vices with two operations each, i.e. getLaptopOffer / buyLaptop and getInsur

anceTerms / closeServiceContract, respectively. The sequence of operations
that must be executed by the customer is depicted in Figure 7.4.

Figure 7.4.: Sequence Diagram for the Use Case

The laptop vendor and the insurer being Web service providers describe their
Web services with WSDL documents. In Listing 7.1, we show how a conventional
WSDL document of the laptop vendor located at http://laptop-vendor.de/

laptop.wsdl might look like.2

The WSDL document describes:

• Data type definitions in the XML element types. They are only sketched
in Listing 7.1 as they correspond to the laptop vendor’s ontology depicted
in N3 (cf., Section 2.4.4) in Listing 7.3. Thereby, we assume the definitions
given in Listing 7.2. In our running example, the WSDL document of the
laptop vendor, we describe the class Laptop.

• Messages that a service sends and/or receives and that constitute the
Web service operations in the XML element portType. For instance, our

2The single ideosyncrasy we have here is that the WSDL document employs RDFS in order to
describe the data structures instead of the more common XML schema — though actually
WSDL does not require XML Schema and it allows RDFS.

121

7. Application

<?xml ve r s i on =”1.0” encoding=”UTF−8”?> <d e f i n i t i o n s
name=”LaptopService ”

targetNamespace=”http : // laptop . wsdl / laptop /”
<types>

<r d f :RDF>
<r d f s : Class r d f : ID=”Laptop”>

<r d f s : l ab e l>Laptop</ r d f s : l ab e l >
</r d f s : Class>

<r d f : Property r d f : ID=”diskSpace”>
<r d f s : l ab e l>diskSpace </ r d f s : l ab e l >
<r d f s : range r d f : r e s ou r c e=”&r d f s ; L i t e r a l ”/>

<r d f s : domain rd f : r e s ou r c e=”#Laptop”/>

</rd f : Property>

. . .
<r d f : Property r d f : ID=”pr i c e ”>

<r d f s : l ab e l>pr i ce </r d f s : l ab e l >
<r d f s : range r d f : r e s ou r c e=”&r d f s ; L i t e r a l ”/>

<r d f s : domain rd f : r e s ou r c e=”#Laptop”/>

</rd f : Property>

. . .
</rd f :RDF>

</types>

<message name=”getOf f e r sReques t”>
<part name=”proces sorSpeed” type=”proces sorSpeed”/>

<part name=”diskSpace ” type=”diskSpace ”/>

</message>

<message name=”getOf f e r sResponse”>
<part name=”l ap topO f f e r s ” type=”laptops ”/>

</message>

. . .
<portType name=”LaptopService”>

<operat i on name=”getLaptopOf fe r s ”
parameterOrder=”proces sorSpeed diskSpace”>
<input message=”tns : getOf f e r sReques t ” name=”getOf f e r sReques t”/>

<output message=”tns : getOf f e r sResponse” name=”getOf f e r sResponse”/>

</operat ion >

. . .
</portType>

</d e f i n i t i o n s >

Listing 7.1: Web Service Description of Laptop Vendor

running example specifies ‘getOffersRequest’ that a potential customer
would send to the laptop vendor to solicit an offer. getOffersRequest

must be provided with two arguments, namely processor speed and disk
size. It returns a set of laptop offers with properties such as specified in the
vendor ontology (cf. WSDL document in Listing 7.1 and vendor ontology
in Listing 7.3).

WSDL provides a naming convention for URIs such that each conceptual element
(e.g., types, portType, etc.) of a WSDL document can be uniquely referenced.
Such a URI consists of a targetNamespace pointing to the location of the WSDL

122

7.2. Service Annotation

document and to element names of the WSDL document. For example, the URI
http://laptop.wsdl/laptop/#part(getOffersRequest/diskSpace) refers to
the second part (diskSpace) of the message getOffersRequest of the WSDL
document in Listing 7.1 (cf. [W3C, 2003] for further specifications).

The Web service description of the insurer looks similarly. We here only men-
tion that the insurer provides the operations getInsuranceTerms and close-

ServiceContract. getInsuranceTerms requires a description of Laptop (ac-
cording to the insurer’s ontology in Listing 7.4) and a timePeriod, for which
the contract is supposed to run. getInsuranceTerms returns a set of insurance
terms available.

@pref ix r d f s : <http : //www.w3 . org / rdf−schema#>. @pref ix : <#>.
@pref ix a r d f : Type .

Listing 7.2: N3 shortcuts

: Laptop a r d f s : Class .
: p r i c e r d f s : domain : Laptop ; r d f s : range : r d f s : L i t e r a l .
: d i skSpace r d f s : domain : Laptop ; r d f s : range : r d f s : L i t e r a l .
: p roces sorSpeed r d f s : domain : Laptop ; r d f s : range : r d f s : L i t e r a l .
: laptopID r d f s : domain : Laptop ; r d f s : range : r d f s : L i t e r a l .

: O f f e r a r d f s : Class .
: l aptops r d f s : domain : Of f e r ; r d f s : range : Laptop .

: Sa l e a r d f s : Class .
: laptop r d f s : domain : Sa l e ; r d f s : range : Laptop .
: creditCardNumber r d f s : domain : Sa l e ; r d f s : range : L i t e r a l .
: customerReceipt r d f s : domain : Sa l e ; r d f s : range : L i t e r a l .

Listing 7.3: Ontology of the laptop vendor

: Laptop a r d f s : Class .
: i d r d f s : domain : Laptop ; r d f s : range : L i t e r a l .

: ContractTerms a r d f s : Class .
: laptop r d f s : domain : ContractTerms ; r d f s : range : Laptop .
: t imePer iod r d f s : domain : ContractTerms ; r d f s : range : L i t e r a l .
: p r i c e r d f s : domain : ContractTerms ; r d f s : range : L i t e r a l .

Listing 7.4: Ontology of the insurance company

In the remainder of the paper, we assume that the customer has the plan depicted
in Figure 7.4. However, in our running example, we will mostly focus on the first
two steps to illustrate our framework.

123

7. Application

7.2.2. Overview of the Complete Process of CREAM-Service

Figure 7.5 shows the complete process of our framework, CREAM-Service. First,
the Figure consists of process steps, which are illustrated by a circle representing
the step and a person icon representing the logical role of the person who executes
the step, viz. service provider, annotating Service Web surfer and a user invoking
a Web Service. The two latter roles typically coincide. Second, the Figure
comprises information that is used by a person or by OntoMat-Service-Surfer in
a process step.

Figure 7.5.: The Complete Process of OntoMat-Service

The four main steps run as follows:

Init: CREAM-Service starts with a common WSDL Web service description by
the service provider (e.g., Listing 7.1). Obviously, the WSDL document is
primarily intended for use by a machine agent or a software engineer who
has experience with Web services. It is not adequate for presenting it to a
user who is ‘only’ expert in a domain.

Web Service Presentation (Step 1): In the first step, the Web service provider
makes the Web service presentation readable as a nicely formatted
(X)HTML document — possibly including advertisements, cross-links to
other HTML pages or services, or other items that make the Web page
attractive to the potential customer (cf. Section 7.2.3 for details).

Thereby, it is important that the understandable, but informal description
of the Web service is implicitly annotated to relate the textual descriptions
to their corresponding semantic descriptions in their WSDL document.

Step 1 is a manual step that may be supported by tools such as WSDL Doc-
umentation Generator from http://www.xmlspy.com. However, we would
not assume that tools like WSDL Documentation Generator would be suf-
ficient to generate an amenable presentation, as they still produce rather
rigid and technically oriented descriptions.

124

7.2. Service Annotation

Result 1: Human understandable Web page that advertises the Web service and
embeds/refers to machine understandable Web service descriptions (WSDL
+ ontology).

Deep Annotation (Step 2): At a client side, a potential user of the Web ser-
vice browses the Web page. OntoMat-Service-Surfer shows the Web page
like a conventional browser. In addition, OntoMat-Service-Surfer highlights
human-understandable items (e.g. text phrases) that associate an under-
lying machine-understandable semantics.

The logical role of the user here is one of an annotator/surfer. He can
decide to just view the page and proceed directly to step 4 (described
below). Alternatively, he can decide to map some of the terminology used
in the Web page of the Web service to his own terminology (or to the
terminology of someone else).

For the latter purpose, he loads an ontology into OntoMat-Service-Surfer (if
it is not already pre-loaded). Then he aligns terminology mentioned in the
Web page by drag’n’drop-ping it onto the ontology loaded into OntoMat-
Service-Surfer. OntoMat-Service-Surfer generates mapping rules from these
annotations that bridge between the ontology of the service provider and
the ontology loaded into OntoMat-Service-Surfer (cf. Section 7.2.4 for de-
tails).

Typically, the user will map to more than one Web service, i.e. often he
will map to different ontologies.

Result 2: Sets of mapping rules between Web service ontologies and pre-loaded
ontology.

Web Service Planning (Step 3): At the client side, a user might view the Web
services as well as their annotations that yield mapping rules. The third
logical role here is one of a service planner and invocator (this logical role
is shared between the third and fourth step). For this purpose, the user
decides to select

• a set of Web service operations he wants to use and

• a set of mapping rules he wants to use.

The reader may note that very frequently the roles of an annotator/surfer
and a service invocator will just coincide. Hence, the two selections just
mentioned will take place implicitly — just by the Web service pages he
has browsed and the annotations that the service invocator has performed
in step 2 of the CREAM-Service process.

Once the two selections have been performed im- or explicitly, a module for
Web service planning will compute logically possible Web service flows. For

125

7. Application

this objective, Web service planning may employ a rich set of knowledge:
goals, pre-conditions of web services, post-conditions of Web services, pre-
vious similar cases, etc. In the current version of CREAM-Service we just
exploit the pre- and post-conditions derived from mapping one Web service
output to another Web service input via the customer ontology. The Web
service description in the associated WSDL document describes what types
are required for the input of a Web service and what types appear in the
output of a Web service. Since data that wanders from one Web service to
the next can only proceed if types are compatible, OntoMat-Service-Surfer
can compute a restricted set of possible Web service flows.

Though in general this model may be too weak to compute complex flows
it is quite sufficient and straightforward to use with a small number of
selected and semantically aligned Web services — such as an end user or
prototype builder will use.

Result 3: Sets of possible Web service flows.

Web Service Invocation (Step 4): The final user, i.e. the invocator, can select
one such flow from the list or modify any, if none of them fits his needs.
Obviously, he can always create a new flow on his own. Once the user
has a flow that fulfills his current needs, he invocates the flow. During the
execution, the transformation of the data of one ontology to another will
happen automatically via the mapping rules. The user achieves his goal at
the completion of the invocation of the Web service flow.

7.2.3. Semantic Web Page Markup for Web Services

In this section we show how a Web service provider can semantically annotate the
Web pages describing his Web services. Such a combined presentation allows for
improved ways to find the Web services (e.g., by a combined syntactic/semantic
search engine) and it enables a user to understand the functionality of a Web
service and define mapping rules between the ontology used in the Web service
description and the client’s ontology.

The basic idea is that a conventional HTML page about the Web service and
Web service parameters is extended by URIs referring to conceptual elements of
the corresponding WSDL documents. To carry these two pieces of information,
we use wsdlLocation and elementURI inside the span tags. In Listing 7.5, we
show how such a Web service advertisement(HTML page) for the laptop vendor
service might look like.

When such an HTML page is opened in OntoMat-Service-Surfer, the span tags
are interpreted and elements between and are highlighted to
support the annotation step described in the next section.

126

7.2. Service Annotation

<html><head>

<t i t l e>Laptop Vendor Se r v i c e</ t i t l e></head>

<body>

<h1 align=” center ”>Laptop Vendor Se r v i c e</h1><p>

<h2>getLaptopOf fe r s</h2>

This s e r v i c e d e l i v e r s the top o f f e r s o f the l aptops a v a i l a b l e in
the c i t y . We have the l a r g e s t ar ch ive o f the laptop o f f e r s f o r the
c i t y . So , the p o s s i b i l i t y that you f i nd your de s i r ed laptop at a
r easonab l e p r i c e i s very high . Just t ry i t and get convinced from
our gr eat o f f e r s .

< l i> <span {\ bf {} wsdlLocation=”http : // laptop−vendor . de/ laptop . wsdl ”
elementURI=”http : // laptop . wsdl / laptop/#part (
getOf f e r sReques t / proces sorSpeed) ”}>
Proces sor speed S p e c i f i e s the speed o f the
p r oc e s s o r . P l ease use only the un i t s ”MHz” and ”GHz” . For example ,
”2GHz” , ” 1 . 4GHz” and ”1600MHz” are va l i d whereas ”1800” or
”170000KHz” are i n v a l i d . </ l i>

< l i> <span {\ bf {} wsdlLocation=”http : // laptop−vendor . de/ laptop . wsdl ”
elementURI=”http : // laptop . wsdl / laptop/#part (
getOf f e r sReques t / di skSpace) ”}>
Disk space S p e c i f i e s the d i sk space . P l ease use
only the un i t s ”GB” and ”MB” . For example , ”20GB” , ” 30 . 5GB” are
va l i d whereas ”40” or ”25000KB” are i n v a l i d . </ l i>

< l i> <span {\ bf {} wsdlLocation=”http : // laptop−vendor . de/ laptop . wsdl ”
elementURI=”http : // laptop−vendor . wsdl / laptop/#part (
getOf f e r sResponse/ l ap topO f f e r s) ”}>
Top Of f e r s This i s the l i s t o f the most r easonab l e
o f f e r s a v a i l a b l e in the c i t y that f u l f i l l your requi rements .
</ l i>

</p> . . .
</body></html>

Listing 7.5: Web Service Description embedded in HTML Page

7.2.4. Browsing and Deep Annotation

In the following, we describe the second main step of the CREAM-Service process.
This step consists of browsing Web pages about Web services with OntoMat-
Service-Surfer. Thereby, the user may annotate (cf. Chapter 6) these Web pages
generating mapping rules between a client ontology and the ontologies referred
to in the WSDL documents as a ‘side effect’ of annotation. We call this action
‘deep-annotation’ as its purpose is not to provide semantic annotation about the
surface of what is being annotated, this would be the Web page, but about the
semantic structures in the background, i.e. the WSDL elements.3

Thus, this step is about Web service discovery by browsing and using information

3Chapter 6 goes into detail for using deep annotation as the basis of database integration.

127

7. Application

retrieval engines like Google as well as about reconciling semantic heterogeneity
between different Web services, such as described in the WSDL documents and
the Web service ontologies they embed or refer to.

Service Browsing

With OntoMat-Service-Surfer the user can surf the service Web, i.e. he can
browse the Web pages of Web service advertisements and OntoMat-Service-Surfer
highlights Semantic Annotations added by the Web service provider. OntoMat-
Service-Surfer indicates semantically-annotated Web service elements, e.g. input
parameters, by graphical icons on the Web page. Thus, the user may easily
identify relevant terminology that needs to be aligned with his own ontology.

Deep Annotation

The user selects an ontology to be used for annotation and loads it into OntoMat-
Service-Surfer. The user annotates the Web service by drag’n’dropping high-
lighted items from the Web page into the ontology browser of OntoMat-Service-
Surfer. Doing so, he could extend the Web page with metadata if he has write
access, primarily however he establishes mappings between concepts, relations
and attributes from the ontology used by the Web service provider to his client
ontology (cf. Chapter 6).

In the following we describe the deep-annotation of the vendor Web service
shown in Figure 7.6. The Web page advertising the Web service describes the
getLaptopOffer operation and constitutes the context for the usage of the ven-
dor ontology. The aim of the annotator is to translate the terminology used in
the description of getLaptopOffer (cf. the WSDL document in Listing 7.1 and
the vendor ontology in Listing 7.3) into his client ontology (Listing 7.6).

By drag’n’drop, one generates a graph of instances, relations between instances
and attribute values of instances in the browser that visualizes the client ontology
(cf. the left pane depicted in Figure 7.6).

When performing a drag’n’drop one will create a literal instance, if one drops

1. an instance of the vendor ontology onto a concept in the client ontology, or

2. a literal value onto a concept of the client ontology, or

3. if one drop’s an attribute value of an instance onto an attribute in the client
ontology.

For instance, dropping ‘IBM’ onto the concept company would create a cor-
responding literal instance in the client ontology, dropping ‘7MB’ onto a size

128

7.2. Service Annotation

: Product a r d f s : Class .
: i d r d f s : domain : Product ; r d f s : range : L i t e r a l .

: HardDisk a : Product .
: d i s kS i z e r d f s : domain : HardDisk ; r d f s : range : L i t e r a l .
: Computer a : Product .
: hasHDD rd f s : domain : Computer ; r d f s : range : HardDisk .
: p r i c e r d f s : domain : Computer ; r d f s : range : L i t e r a l .
: cpuSpeed r d f s : domain : Computer ; r d f s : range : L i t e r a l .

: Agent a : r d f s : Class .
: Company a : Agent .
: creditCardNumber r d f s : domain :Company ; r d f s : range : L i t e r a l .

: Purchase a : r d f s : Class .
: hasBuyer r d f s : domain : Purchase ; r d f s : range : Agent .
: hasObject r d f s : domain : Purchase ; r d f s : range : Product .

: Insurance a : r d f s : Class .
: hasObject r d f s : domain : Insurance ; r d f s : range : Product .
: p r i c e r d f s : domain : Insurance ; r d f s : range : L i t e r a l .
: t imePer iod r d f s : domain : Insurance ; r d f s : range : L i t e r a l .

Listing 7.6: Ontology of the client

attribute of a selected instance creates a corresponding attribute value for this
selected instance in the client ontology.

When performing a drag’n’drop one will create a generic instance, if one drops

• a concept A from the vendor ontology onto a client ontology concept B.

A generic instance is just a variable that states that concept A in the vendor
ontology corresponds to concept B in the client ontology.4

Thus, one may augment the client ontology (represented in RDF by a graph G) by
a graph G∆ of new and different types of instances.5 Each subgraph of G∆ of non-
separable, newly created instances and values in the client ontology corresponds
to a mapping rule. For instance, one may (i), drag’n’drop ‘processorSpeed (from
vendor ontology) onto cpuSpeed (from client ontology) that belongs to Computer
(again in the client ontology). Thereby, (ii), a generic instance is created for
Computer with value Laptop (as cpuSpeed belongs to Computer and processorSpeed
belongs to Laptop).

The corresponding interpretation in first-order logic is:

FORALL X (instanceOf(X,client:Computer) AND client:cpuSpeed(X,Y)) <-

(instanceOf(X,vendor:Laptop) AND vendor:processorSpeed(X,Y)).

4Corresponding generalizations exist for attributes and relationships.
5The newly populated ontology would then be G

′ := G ∪G∆.

129

7. Application

Figure 7.6.: Screenshot of OntoMat-Service-Surfer annotating vendor service

One may trace the later drag’n’drop action in Figure 7.6, where action 1 picks
up ‘Processor Speed’ with its underlying Web service parameter processorSpeed
(cf. the markup elementURI="http://laptop.wsdl/laptop/#part(getLaptop

OfferRequest/processorSpeed)" in Listing 7.5). It is dropped onto the at-
tribute that comes closest in his client ontology, viz. the aforementioned cpuS-
peed, and generates the consequences just mentioned. Similarly, the second text
item “Disk Space” being annotated with the input parameter diskSpace is han-
dled in action 2. This time, however, the annotator must also create a hasHDD
relationship between the generic instance hardisk1 and the generic instance of
computer1 to build a larger graph representing a mapping rule with two generic
attribute values (on cpuSpeed and diskSpace). Finally, the annotator maps the
output parameters in action 3 (cf. Figure 7.6).

130

7.2. Service Annotation

Figure 7.7.: Mapping between Client Ontology (left window) and Vendor Onto-
logy (right window)

Investigating and Modifying Mapping Rules

The results of deep annotation are mapping rules between the client ontology and
each service ontology. The annotator may publish the client ontology and the
mapping rules derived from annotations. This enables third parties (in particular
logical roles that follow in the CREAM-Service process) to execute the services
on the basis of the semantics defined in the client ontology.

We use F-Logic to define the mapping rules. F-logic is a deductive, object-
oriented database language that combines the declarative semantics and expres-
siveness of deductive database languages with the rich data modeling capabilities
supported by object oriented model [Kifer et al., 1995].6 However, the annotator
does not have to write F-logic rules. They are generated automatically by the
OntoMat-Service-Surfer.

Figure 7.7 and Figure 7.8 give the reader an intuition of how such automatically
generated mapping rules look like when visualized with the OntoEdit plugins
OntoMap (cf., Section 6.7). Figure 7.7 shows the mapping from the company
ontology to the vendor ontology which is a result from the annotation effort
indicated in Figure 7.6. The result for the corresponding mapping of the insurer’s
ontology is depicted in Figure 7.8.

6Thus in our implementation the aforementioned examplary mapping rule looks slightly dif-
ferent than the depicted first-order logic formulation. Since the first-order presentation is

131

7. Application

Figure 7.8.: Mapping between Client Ontology (left window) and Insurer’s On-
tology (right window)

7.2.5. Conclusion

In this Section we have described CREAM-Service (an application of the deep
annotation framework presented in Chapter 6) to tie together the World Wide
Web and Web services into a Service Web. Germane to CREAM-Service is its
blending of browsing the Web, aggregating conceptual descriptions and Web
services and then investigating and invoking them from one platform.

We have also presented OntoMat-Service-Surfer, a tool that constitutes a proto-
type implementation of CREAM-Service. Currently, our prototype understands
WSDL with RDF(S) for Web service descriptions, but its flexible architecture
allows easy integration of more powerful Web service description languages like
DAML-S [Ankolekar et al., 2002].

Clearly, one must be aware of what CREAM-Service and OntoMat-Service-Surfer
can do and what they can’t do. CREAM-Service is not intended to cater to busi-
nesses that want to establish complex Web service connections with intricate
interactions. For this objective, the integration by Semantic Annotation may
provide a quick, first prototype, but Semantic Annotation cannot provide ar-
bitrary complex mapping rules or arbitrarily complex workflows. On the other
hand, CREAM-Service allows exactly for easily building a prototype Web ser-

conceptually close enough, we have decided not to detract the reader by another syntax.

132

7.2. Service Annotation

vice integration and it allows for users with domain knowledge (e.g. consultants
doing ERP configuration) to participate in the Service Web — without much
programming.

CREAM-Service opens up many interesting questions that need to be solved in
the future, such as

• how to automate the way that Web Services are presented to the World;

• how to characterize the boundaries of what functionality can be aggregated
and executed.

• how to annotate mappings between ontologies (semi-) automatically [Patil
et al., 2004].

Eventually, CREAM-Service and OntoMat-Service-Surfer, in conjunction with
their counterparts in Semantic Annotation (cf. Chapter 4) and deep annotation
(cf. Chapter 6), open up the possibility to bring Web pages, databases and Web
Services into one coherent framework and thus progress the Semantic Web to a
large Web of data and services.

133

7. Application

134

Part III.

Evaluation

“Designing Annotation Before It’s Needed.”
— Frank Nack

135

8. Evaluation of Manual Annotation

This Chapter deals with the evaluation of hand-on-experiences exploring an
annotation experiment with human subjects. It describes an empirical evalua-
tion study (Section 8.2 and Section 8.3) of ontology-based Semantic Annotation.
Based on a given ontology and a set of documents, we analyze in this chapter
inter-annotator-agreement between different humans. The evaluation study uses
several standard and two original measures (Section 8.4). The latter take into
account a notion of sliding agreement between metadata – exploiting semantic
background knowledge provided by the ontology. Section 8.5 introduces a simple
sample evaluation and Section 8.6 presents the overall cross evaluation results.

References: This chapter is partly based on [Staab et al., 2001b]

8.1. Introduction

In the previous sections we presented our comprehensive annotation environment.
In this section we focus on the human annotators. The human factor is easily
underestimated, but is extremely critical for the manual creation of metadata.
There is a lack of experience in creating semantically interlinked metadata for
Web pages. It is not clear how human annotators perform overall and, hence, it
is unclear, what can be assumed as a baseline. Though there are corresponding
investigations for only indexing documents, e.g. in library science [Leonard, 1977],
a corresponding more detailed assignment of interlinked metadata that takes
advantage of the structure of RDF is lacking.

In the following we deal with an evaluation of hands-on-experiences, exploring
an experiment with human subjects. We describe an empirical evaluation study
of ontology-based Semantic Annotation. Based on a given ontology and a set of
documents, we have analyzed agreement between different users. Our objective
was to find out about inter-annotator agreement and to come up with some
measures about what can be expected from Semantic Annotation as an input for
machine processing.

137

8. Evaluation of Manual Annotation

8.2. Evaluation Setting

8.2.1. General Setting

We have evaluated our environment for ontology-based Semantic Annotation
with human subjects performing Semantic Annotation. In order to determine
their inter–annotator agreement, we have undertaken the following experiment:
Nine subjects who were undergraduate students in industrial engineering anno-
tated 15 Web pages1 of our institute as part of fulfilling their requirements in
a seminar on the “Semantic Web”. The domain expertise of the subjects was
very sparse. Some of them had some very minor knowledge about the topics
and about semantics from introductory courses in computer science, but no prior
knowledge of ontologies and Semantic Annotation. Before doing the actual an-
notations, subjects received 30 minutes of training. It took about 15 minutes to
explain to them the overall goal of semantic annotation and to teach them the
basic meaning of the Semantic Web Research Community SWRC ontology2. The
rest of the time was used to acquaint them with the annotation tool. All in all,
we have thus expected that the overall achievements could not score very high
compared to an expert annotator.

8.2.2. Semantic Annotation Categories

Individual annotation of the 15 test pages led for each annotator to a set of
RDF (see Section 2.4) annotated HTML files. From these files we extracted
the corresponding annotations as ground facts. Referring to our definition of
annotation in section 3.4.1 we define four semantic categories: i) instance identi-
fication, ii) instance-class relationship, iii) instance-attribute relationship and iv)
instance-instance relationship. According to these four semantic categories, we
distinguished between four different evaluation categories, which are motivated
by the varying difficulties they exhibit for the human annotator:

1. The first one only considers the instance identification. An annotator
may choose to use a string as a identifier to denote a new instance. These
instance identifiers play a role similar to that of primary keys in databases.
In analogy, we rely on the unique name assumption: Two different iden-
tifiers are assumed to denote different instances. In our example, subjects
would, e.g., identify an instance with identifier RudiStuder based on the
identifier proposals given by the tool.

1The Web pages are available at http://ontobroker.semanticweb.org/annotation/SemAnn/
2The SWRC ontology models the Semantic Web Research Community, its researchers, top-

ics, publications, tools and properties between them. A detailed description of the SWRC
ontology and the ontology itself is available at http://ontobroker.semanticweb.org/ontos/
swrc.html

138

8.3. Formal Definition of Evaluation Setting

2. The second category includes all instance–class relationships, such as
instance-of(RudiStuder,FullProfessor) means that RudiStuder be-
longs to the set of FullProfessors or — precisely speaking — the string
“RudiStuder” is a unique descriptor for an instance of a FullProfessor.

3. The third one comprises all instance–attribute relationships, such as
surname-of(RudiStuder,Studer), which means that the surname-of the
entity the identifier of which is RudiStuder is Studer.

4. The last category is constituted by instance–instance relation-
ships. It includes the relations between two distinct instances, such as
married-to(RudiStuder, IreneStuder) or heads(RudiStuder, KMResearch
Group) with their obvious interpretations.

As we will also see in our evaluation in the following, the first one reaches good
values based on the proposals by our tool. Instance–class assignment is very
difficult and results in very low inter–annotator agreement. Attributing seems
comparatively easy, where recognizing instance–instance relationships appears
to be the hardest, as it requires elaborate thinking about the denotation of two
distinct instances at a rather abstract level.

8.3. Formal Definition of Evaluation Setting

The comparison and evaluation of ontology-based Semantic Annotation is not
this well researched (cf. Section 10 for a detailed comparison of existing work).
To the best of our knowledge, no established measure on that we could built did
exist. In our semantic annotation scenario we distinguished two different types
of measures: On the one hand, we adopt the well-known measures of precision
and recall from the information retrieval community. Whereas these measures
denote perfect agreement, we additionally define new measures for sliding agree-
ment, that take into account string similarity and the sliding scale of the given
conceptual structures and compute an inter-annotator accuracy between two an-
notated document sets.

For the Semantic Annotation scenario we distinguish between the ontology O
(cf. Definition 2.5.1) and the knowledge base KB generated on top (cf. Defini-
tion 2.5.3). The ontology acts as the conceptual backbone for generating semantic
annotations. In our setting we had a subject Sn that generates annotations for
a set of documents. The results produced by each of the subjects are defined as
knowledge bases.

Definition 8.3.1 (Semantic Annotation Knowledge Base)
The Semantic Annotation Knowledge Base of subject Sn (KBn) is a knowledge
base as defined in Definition 2.5.3 (page 28). Recall that a knowledge base

139

8. Evaluation of Manual Annotation

is a structure KB := (CKB , RKB , AKB , I, ιC , ιR, ιA). The knowledge base KBn

consists of a set of instances In that are uniquely identified by their corresponding
set of identifiers id(In). The identifier id(in) of an instance in is a string. Each
instance in is assigned to one class cn by the class assignments ACn of subject Sn.
The instance-attribute relationship are described by the attribute assignments
AAn and instance-instance relationships by the relation assignments ARn.

Note that in our current setting ACn has been restricted by the annotation tool
to be functional, i.e. every instance could only be assigned to one class.

8.4. Evaluation Measures

8.4.1. Perfect Agreement — Agreement Precision & Agreement
Recall

Precision and recall are known from their definition on the document level.

Definition 8.4.1 (Precision, Recall)
Precision is the proportion of retrieved set that is relevant:

precision =
relevant ∩ retrieved

retrieved

Recall is proportion of all relevant document in the collection included in the
retrieved set:

recall =
relevant ∩ retrieved

relevant

We adopted these two measures for computing the degree to which annotators
agree on a set of documents with regard to each of the four Semantic Annotation
categories. Formally, this agreement is computed from the overlap of the elements
of two subjects’ Semantic Annotation Knowledge Bases KBn,KBm. The general
notions of Agreement Precision (AP) and Agreement Recall (AR) are defined
based on a pair of sets Qn, Qm:

Definition 8.4.2 (Agreement-Precision, Agreement-Recall)
Agreement-Precision is defined as:

P (Qn, Qm) :=
|Qn ∩Qm|

|Qn|

and Agreement-Recall defined as:

R(Qn, Qm) :=
|Qn ∩Qm|

|Qm|

140

8.4. Evaluation Measures

Agreement precision and agreement recall are related of each other, i.e.
P (Qn, Qm) = R(Qm, Qn) and R(Qn, Qm) = P (Qm, Qn). Hence, in the following
we will only refer to agreement precision, but we will evaluate agreement preci-
sion in “both directions”. This means, when cross-evaluating annotation results
we will evaluate how precisely subject Sn agrees with subject Sm and vice versa.
Since agreement recall is related to agreement precision this way will also yield
all agreement recall numbers. Now, agreement precision for each of the four
categories can be simply defined by specifying Qn and Qm:

1. P for Instance Identification: Qn := id(In);Qm := id(Im)

2. P for Class Assignments: Qn := ACn;Qm := ACm

3. P for Attribute Assignments: Qn := AAn;Qm := AAm

4. P for Relation Assignments: Qn := ARn;Qm := ARm

These measures gave us first ideas about the human intra-annotator agreement
reachable in our evaluation study using the annotation tool However, the prob-
lem is that they lack a sense for the sliding scale of adequacy prevalent in our
hierarchical structures. This became obvious especially when comparing the set
of instance-class relationships AC (cf. Subsection 8.5). To evaluate the qual-
ity of this kind of Semantic Annotations, we also wanted to add some bonus to
annotations that almost fitted an annotation in another ontology and, then, to
compare annotation schemes on this basis.

8.4.2. Sliding Agreements

In this section we introduce the measures we used to compute the sliding agree-
ments for instance identification and class assignment to instances.

Sliding Agreement for Instance Identification

In order to compare instances on a string level, one needs a method for compar-
ing and classifying strings that represent the instance identifiers in the ontology.
One method for judging the similarity between two strings is the edit distance
formulated by Levenshtein [Levenshtein, 1966]. This is a similarity measures
based on the minimum number of token insertions, deletions, and substitutions
required to transform one string in another using a dynamic programming al-
gorithm. For example if we calculate the edit distance between the two in-
stance identifiers RudiStuder and Rudi Studer we compute an edit distance of
leven(RudiStuder, Rudi Studer) = 1.

141

8. Evaluation of Manual Annotation

In order to compare two Semantic Annotation knowledge bases KBn,KBm on a
norm scale of [0, 1] with 1 for perfect match and near zero for bad match accord-
ing to the levenshtein measure, we introduce the averaged Identifier Matching
Accuracy (IdMA) as follows:

IdMA(In, Im) =
1

|In|

∑

ik∈In

IdMA(ik, Im) ∈ [0, 1]

IdMA(ik, Im) = max
il∈Im

1

1 + leven(id(ik), id(il))

Sliding Agreement for Class Assignments – Relative Inter-Annotator
Agreement

Our new evaluation measure should reflect the distance between the annotation
of one annotator to annotations of another annotator. The so called upwards
cotopy [Maedche and Zacharias, 2002] is the underlying measure to compute the
semantic distance in a concept hierarchy.

↑ c := {d ∈ C | c ≤C d}

The semantic characteristics of ≤C are utilized: The attention is restricted to
superconcepts of a given concept c. Based on the definition of the upwards cotopy
(↑ c) the concept match accuracy (CMA) is defined:

CMA(cn, cm) :=
| ↑ cn ∩ ↑ cm |

| ↑ cn ∪ ↑ cm |

Based on the concept matching accuracy defined above we introduce the in-
stance matching accuracy IMA. Given two instance-class relationships
(in, cn) and (im, cm) IMA is calculated as:

IMA((in, cn), (im, cm)) := CMA(cn, cm) ∈ [0, 1]

where in, im ∈ I and cn, cm ∈ C.

The relative intra-annotator agreement RIAA is based on a weighted IMA.
RIAA is the averaged accuracy that the instance–class annotations of an anno-
tator match against their best counterparts contained in another semantic anno-
tation knowledge base:

142

8.5. Example of an Evaluation

RIAA(ACn, ACm) =
1

|ACn|

∑

(in,cn)∈ACn

RIAA((in, cn), ACm)

RIAA((in, cn), ACm) = max
(im,cm)∈ACm

IMA((in, cn), (im, cm))

8.5. Example of an Evaluation

Figure 8.1 depicts an example scenario. In the upper part of the figure, parts of
the SWRC ontology are depicted as conceptual backbone for Semantic Annota-
tion. In the left part of the figure some example we see some annotations done
by Annotator 1, in the right part we see some given by Annotator 2. They have
produced two different Semantic Annotation knowledge bases KB1 and KB2,
based on the SWRC ontology and the given example Web page.

Example

Webpage

Annotator 2: SAKB2

instance-of (AIFB, Institute).

instance-of (SteffenStaab,

AssistantProfessor).

name (SteffenStaab,

AssistantProfessor).

instance-of (NLP, ResearchTopic).

hasTopic (SteffenStaab, NLP).

instance-of (AlexanderMaedche,

PhDStudent).

name(AlexanderMaedche).

instance-of (PAKM2000, Event).

location(PAKM2000, Basel).

Annotator 1: SAKB1

instance-of (AIFB, Institute).

instance-of (Karlsruhe Univ, University).

instance-of (KM, ResearchGroup).

hasParts(AIFB, KM).

instance-of (SteffenStaab,Employee).

name (SteffenStaab, Employee).

Affiliation (SteffenStaab, AIFB).

instance-of (Alexander Maedche, Person).

instance-of (PAKM2000, Conference).

location(PAKM2000, Basel).

SWRC

Ontology

Figure 8.1.: Example Evaluation.

In the example scenario we can see that the instance identifiers AIFB,
SteffenStaab and PAKM2000 match directly. This results in an agreement-
precision for instance identifiers computed as P (I1, I2) = 3/6 = 0.5. We also

143

8. Evaluation of Manual Annotation

see that the instance identifier Alexander Maedche and the instance identifier
AlexanderMaedche are only similar. Their similarity computes to 0.5, leading to
an overall IdMA(I1, I2) of 3.5/6 = 0.58. The sliding measure IdMA reflects the
fact that there are identifiers that match nearly perfectly.

Looking at the instance-class relationships delivers much worse results. One
counts only 1 directly matching instance-class relationship, namely instance-of
(AIFB, Insti tute). So we get an P (AC1, AC2) of 1/6 = 0.17.

The sliding agreement for instance-class relationships recognizes that there
are more near hits, namely instance-of(SteffenStaab,Employee) with
instance-of(Steffen Staab,AssistantProfessor) and instance-of(PAKM2000,
Conference) with instance-of(PAKM2000,Event). We calculate according to
the measure defined above RIAA of 0.34. Additionally we count 0 matching
instance-attribute relationships and 0 matching instance-instance relationships,
viz. we obtain an P (AA1, AA2) of 0 and an P (AR1, AR2) of 0 respectively.

8.6. Cross-Evaluation Results

As already mentioned our evaluation is based on the following input parame-
ters: We selected 15 Web documents describing actual persons, events, research
projects and organizations from our institute. The ontology given to the subjects
was the SWRC vocabulary in its current version 2000-10-09 containing 55 classes
and 157 attributes and relations. The annotations have been stored in RDF on
the Web pages. We extracted the annotations from these Web pages as ground
facts. Our cross-evaluation scenario can be divided into three parts. First, we
present some basic statistics we calculated from the Semantic Annotation know-
ledge bases. Subsequently, the measures computed using agreement-precision
and agreement-recall are explained and interpreted. Additionally, we use IdMA
and RIAA to compute the sliding agreement.

8.6.1. Basic statistics

Table 8.1 shows the basic statistics we obtained in the two phases by counting
each semantic annotation category of the Semantic Annotation knowledge bases.
KB0 is the semantic knowledge annotation base that has been generated by an
expert annotator. It will serve as the gold standard in our evaluation framework.

One may see that the instance identifiers with their corresponding instance–class
relationships have an average of 106 elements, with a low standard deviation
of 25 elements. Standard deviation of instance–attribute and instance–instance
relationships results in a higher value with approx. 50 elements. Some of our stu-
dents (KB5,KB8) have outperformed the gold standard with respect to the basic

144

8.6. Cross-Evaluation Results

Subject |In| and |ACn| |AAn| |ARn|

KB0 (Gold) 123 230 197

KB1 (anso) 110 203 108

KB2 (eryi) 115 162 132

KB3 (hela) 81 157 17

KB4 (makr) 71 121 32

KB5 (mama) 152 292 175

KB6 (mari) 97 150 68

KB7 (midu) 80 137 60

KB8 (stse) 126 226 87

KB9 (taso) 104 173 129

mean 106 186 101

standard deviation 25 53 59

Table 8.1.: Basic statistics computed for the generated Semantic Annotation
knowledge bases

statistics. In the following we will see what agreement measures are computed
based on these 10 given Semantic Annotation knowledge bases.

8.6.2. Perfect Agreement: Agreement-Precision & Agreement-Recall

The Tables 8.2, 8.3, 8.4, 8.5 lists all measures of perfect agreement that we com-
puted in our semantic evaluation study. As highest value for agreement-precision
of instance identification (8.2) we obtained 0.8, by comparing the semantic an-
notation knowledge bases of subject 7 with subject 2. This high value could be
obtained by the tool strategy for generating and proposing instance identifiers to
the users. Agreement-precision of instance–class relationships (8.3) scores much
worse, the highest value has been reached with comparing subject 4 with subject
2, namely 0.46. Analyzing Agreement-precision of instance–attribute relation-
ships (8.4) resulted in a maximum reachable value of 0.6 by comparing subject 2
with subject 5. The best value for the Agreement-precision of instance–instance
relationships (8.5) was 0.29, achieved by comparing subject 3 with subject 2.

Figure 8.2 shows agreement-recall vs. agreement-precision diagrams for matching
instance identifiers (id(i)), matching instance–class relationships (AC), matching

145

8. Evaluation of Manual Annotation

Subject

Subj. 0 1 2 3 4 5 6 7 8 9

0 1 0.44 0.49 0.21 0.24 0.48 0.24 0.25 0.32 0.41

1 0.49 1 0.73 0.46 0.37 0.68 0.43 0.57 0.45 0.71

2 0.52 0.7 1 0.43 0.49 0.78 0.46 0.56 0.5 0.66

3 0.32 0.63 0.6 1 0.33 0.51 0.44 0.42 0.38 0.58

4 0.42 0.58 0.79 0.38 1 0.73 0.54 0.51 0.48 0.59

5 0.39 0.49 0.59 0.27 0.34 1 0.32 0.39 0.44 0.49

6 0.31 0.48 0.55 0.37 0.39 0.49 1 0.39 0.36 0.46

7 0.39 0.79 0.8 0.43 0.45 0.75 0.48 1 0.46 0.76

8 0.31 0.39 0.45 0.25 0.27 0.53 0.28 0.29 1 0.36

9 0.49 0.75 0.73 0.45 0.4 0.72 0.43 0.59 0.43 1

Table 8.2.: Perfect Agreement with P computed for id(I)

instance–attribute relationships (AA) and matching instance–instance relation-
ships (AR). Each point in the diagram represents one comparison. We can see
from the diagrams that the values obtained for instance identifier agreements
range between 0.21 and 0.8. The comparison for instance–class relationships re-
sults range between 0.1 and 0.46. Instance–attribute relationships score between
0.09 and 0.6. Instance–instance relationships score very badly, ranging between
0 and 0,29 with an average of 0,07.

8.6.3. Sliding Agreement

We also computed the sliding agreement measures defined above. Table 8.6
contains IdMA(In, Im) and Table 8.7 contains RIAA(ACn, ACm) computed for
two Semantic Annotation knowledge bases, respectively. The values obtained
for the identifier matching accuracy did not outperform the values we obtained
by computing agreement-precision for identifiers. The average value improved
only from 0.49 to 0.54. The largest value we received was 0.82 by comparing the
knowledge bases of subject 4 with subject 2.

The values obtained for the relative-inter annotator agreement scored obviously
better than the corresponding agreement-precision values for instance–class re-
lationships. Here, the average improved from 0.26 to 0.37. The best value of

146

8.6. Cross-Evaluation Results

Subject

Subj. 0 1 2 3 4 5 6 7 8 9

0 1 0.37 0.37 0.2 0.17 0.22 0.16 0.16 0.14 0.18

1 0.41 1 0.45 0.28 0.19 0.34 0.25 0.29 0.15 0.32

2 0.39 0.43 1 0.27 0.29 0.28 0.23 0.31 0.2 0.26

3 0.3 0.38 0.38 1 0.23 0.19 0.27 0.25 0.16 0.25

4 0.3 0.3 0.46 0.27 1 0.42 0.31 0.25 0.25 0.42

5 0.18 0.24 0.21 0.1 0.2 1 0.15 0.19 0.14 0.22

6 0.21 0.28 0.28 0.23 0.23 0.24 1 0.29 0.15 0.25

7 0.25 0.4 0.45 0.25 0.23 0.36 0.35 1 0.15 0.31

8 0.13 0.13 0.18 0.1 0.14 0.17 0.12 0.1 1 0.16

9 0.21 0.34 0.29 0.19 0.29 0.33 0.23 0.24 0.19 1

Table 8.3.: Perfect Agreement with P computed for AC

0.65 was reached by the comparison of Semantic Annotation knowledge bases
generated by subject 7 and subject 2.

Figure 8.3 depicts the obtained results graphically. On the left side of Figure 8.3
the resulting comparison values for the identifier matching accuracy are shown.
IdMA ranges between 0.32 and 0.82 with an average of 0.54. As shown in the
right part of Figure 8.3 the results obtained for computing RIAA range between
0.19 and 0.65 with an average of 0.37.

8.6.4. Overall results

Due to circumstances in our setting, like lack of domain knowledge and no prior
experience with the ontologies or with the tool, we believe that this result ranks
among the baseline worst cases that will be found in typical Semantic Annotation
settings. Our conjecture is that further training may considerably improve inter-
annotator agreement — though we do not expect any numbers for agreement-
precision and agreement-recall that range in the vicinity of 100%.

Our evaluation case study goes ahead with several limitations that became obvi-
ous during the annotation experiments. Firstly, the sequence of Web pages was
given. This may lead to some unwanted similarities of perception. Secondly, the
subjects were non-experts but a large part of the domain was about common

147

8. Evaluation of Manual Annotation

Subject

Subj. 0 1 2 3 4 5 6 7 8 9

0 1 0.18 0.19 0.12 0.09 0.2 0.11 0.11 0.17 0.18

1 0.21 1 0.46 0.33 0.25 0.5 0.31 0.37 0.33 0.5

2 0.27 0.57 1 0.41 0.41 0.6 0.44 0.49 0.43 0.54

3 0.17 0.43 0.42 1 0.26 0.39 0.34 0.25 0.29 0.38

4 0.17 0.42 0.55 0.34 1 0.5 0.42 0.4 0.32 0.48

5 0.15 0.35 0.33 0.21 0.21 1 0.22 0.27 0.27 0.32

6 0.17 0.42 0.48 0.35 0.34 0.42 1 0.33 0.36 0.39

7 0.19 0.55 0.58 0.29 0.35 0.57 0.36 1 0.38 0.5

8 0.17 0.29 0.31 0.2 0.17 0.35 0.24 0.23 1 0.23

9 0.24 0.58 0.51 0.34 0.34 0.53 0.34 0.4 0.3 1

Table 8.4.: Perfect Agreement with P computed for AA

knowledge. This fact may lead to better results than in more specific domains
without common knowledge.

8.7. Conclusion

This section presents an evaluation of the creation of metadata by annotating
Web pages. Starting from our ontology-based annotation environment, we have
collected experiences in an actual evaluation study. The results provide a baseline
that one may consider for further research about automatic annotation tools. The
evaluation study we have described was performed using several standard and
two original measures. The latter take into account a notion of sliding agreement
between metadata – exploiting semantic background knowledge provided by the
ontology.

Future work will have a start on current studies that have looked at the feasibility
of automatic building of knowledge bases from the Web. In our future work, we
want to integrate such methods into an even more comprehensive annotation
environment – including, e.g. the learning of ontologies from Web documents
and (semi-)automatic ontology-based Semantic Annotation. The general task of
knowledge maintenance, including evolving ontologies and Semantic Annotation
knowledge bases, remains a topic for much further research in the near future.

148

8.7. Conclusion

Subject

Subj. 0 1 2 3 4 5 6 7 8 9

0 1 0 0.05 0 0 0.05 0.01 0 0 0

1 0 1 0.13 0.03 0.01 0.21 0.09 0.09 0.02 0.23

2 0.07 0.11 1 0.04 0.02 0.22 0.08 0.11 0.02 0.09

3 0 0.18 0.29 1 0 0 0 0 0 0.12

4 0 0.03 0.06 0 1 0.03 0.06 0.06 0.19 0.28

5 0.06 0.13 0.17 0 0.01 1 0.07 0.07 0.02 0.11

6 0.01 0.15 0.15 0 0.03 0.18 1 0.06 0.03 0.13

7 0 0.17 0.25 0 0.03 0.22 0.07 1 0.05 0.05

8 0 0.02 0.02 0 0.07 0.05 0.02 0.03 1 0.02

9 0 0.19 0.09 0.02 0.07 0.16 0.07 0.02 0.02 1

Table 8.5.: Perfect Agreement with P computed for AR

Subject

Subj. 0 1 2 3 4 5 6 7 8 9

0 1 0.52 0.58 0.32 0.34 0.57 0.34 0.35 0.44 0.5

1 0.54 1 0.76 0.51 0.43 0.71 0.48 0.62 0.5 0.74

2 0.58 0.73 1 0.48 0.53 0.8 0.52 0.6 0.55 0.7

3 0.4 0.66 0.64 1 0.39 0.55 0.5 0.47 0.44 0.61

4 0.5 0.63 0.82 0.44 1 0.77 0.58 0.56 0.54 0.64

5 0.45 0.54 0.62 0.33 0.39 1 0.37 0.45 0.49 0.54

6 0.39 0.54 0.6 0.44 0.45 0.55 1 0.45 0.43 0.52

7 0.46 0.82 0.82 0.47 0.5 0.78 0.52 1 0.52 0.79

8 0.4 0.45 0.52 0.32 0.35 0.59 0.35 0.37 1 0.43

9 0.55 0.78 0.76 0.5 0.46 0.75 0.49 0.63 0.49 1

Table 8.6.: Sliding Agreement Measures: IdMA

149

8. Evaluation of Manual Annotation

Figure 8.2.: Perfect Agreement

150

8.7. Conclusion

Subject

Subj. 0 1 2 3 4 5 6 7 8 9

0 1 0.41 0.42 0.2 0.19 0.34 0.21 0.2 0.24 0.31

1 0.46 1 0.59 0.36 0.27 0.49 0.34 0.44 0.29 0.51

2 0.45 0.56 1 0.35 0.38 0.53 0.36 0.45 0.37 0.46

3 0.31 0.49 0.5 1 0.28 0.31 0.35 0.33 0.28 0.41

4 0.34 0.42 0.61 0.32 1 0.57 0.4 0.35 0.39 0.52

5 0.28 0.35 0.4 0.17 0.26 1 0.22 0.27 0.31 0.35

6 0.26 0.39 0.43 0.29 0.3 0.35 1 0.33 0.26 0.35

7 0.3 0.6 0.65 0.34 0.31 0.52 0.4 1 0.32 0.51

8 0.24 0.26 0.34 0.18 0.22 0.37 0.2 0.2 1 0.26

9 0.36 0.54 0.51 0.32 0.35 0.52 0.32 0.4 0.31 1

Table 8.7.: Sliding Agreement Measures: RIAA

Figure 8.3.: Sliding Agreement

151

8. Evaluation of Manual Annotation

152

9. Evaluation of Semi-Automatic
Annotation

This Chapter investigates the approach of semi-automatic annotation. Based
on the evaluation study for manual annotation introduced in the previous Chap-
ter, we adapt the measures to evaluate the similarity between the annotation pro-
duced by different users applying the process of manual annotation in comparison
to applying the semi-automatic annotation process. Hence, the evaluation con-
firms that semi-automatic annotation is faster and produces more homogeneous
metadata than manual annotation. The chapter describes the principal methods
of evaluation (Section 9.2) and presents the results (Section 9.3) and a discussion
(Section 9.4).

9.1. Introduction

In Section 5.1 we presented S-CREAM, an extension of CREAM that integrates
a learnable information extraction component. S-CREAM allows semi-automatic
annotation of documents. After a training phase, S-CREAM processes a docu-
ment and identifies instances of concepts, of attributes, and of relations. These
instances are proposed to the user for annotation. Subsequently, the user sup-
plements the annotation manually with the help of the tool.

Our assumption is that the S-CREAM approach reduces the time and the work-
load for the annotator in comparison to purely manual annotation. In order to
test this we present in this chapter an evaluation of the semi-automatic annota-
tion approach.

Based on the evaluation study for manual annotation introduced in Chapter 8, we
adapt the metrics to our extended setting here. Hence, we evaluate the similarity
between the annotations produced by different users applying the process of
manual annotation in comparison to applying the semi-automatic annotation
process.

We conducted an evaluation with 16 participants. The participants were divided
into two groups: group A and group B. Group A undertook first a manual
annotation then a semi-automatic annotation. The sequence of annotation was
reversed for group B.

153

9. Evaluation of Semi-Automatic Annotation

The results of the evaluation are promising. The time for annotation decreases
for group A by about 33% and the inter-annotator agreement increases for both
groups by between 14,57% and 96,33%. Hence, the evaluation proved that our
hypothesis was correct and that semi-automatic annotation is faster and produces
more homogeneous metadata than manual annotation.

The structure of this chapter is as follows: Section 9.2 describes the principal
method of the evaluation. In Section 9.3 we present the results of our evaluation.
Subsequently, we discuss the results and conclude.

9.2. Method

9.2.1. General Setting

The general rule for random samples is: the smaller the sample is, the less infor-
mation it gives about the basic population. In general, one should not consider
less than 10 to 15 human subjects (cf. [Clauß and Ebner, 1995]). Therefore we
choose 16 human subjects for the evaluation. We decided on an even number in
order to divide them into two equal groups. The subjects were students without
any prior knowledge of ontologies and Semantic Annotation. The participants
were between 21 and 31 years of age, eight of them were female.

Each participant annotated ten Web pages, five using manual and five using
semi-automatic annotation. For the purpose of training the subjects we choose
two additional pages. The twelve pages where randomly chosen from the hotel
Web site1, considering the following criteria:

• To ensure a variety for the training of the information extraction system,
each city, where a hotel can be located, occurs not more than once.

• To reduce the variance between the document types, we only consider Web
pages about hotels, no boarding houses, summer cottages, or villas.

• The Web page should have information about the hotel room prices. The
Web page should not be too short or too simple and should not consist
only of pure text. Hotel room prices are usually presented in a structured
form, e.g. a table. A mixture between text and structural information is
typical for documents on the Web and should therefore be presented in the
sample.

• Finally, we ensured that the annotation tool is capable of a proper and fast
rendering of the chosen Web page.

1http://www.all-in-all.de

154

9.2. Method

9.2.2. The Domain Ontology

We choose the GETESS ontology as a basis for the evaluation. GETESS is
an extensive tourism ontology with 1042 concepts, 162 relations and an average
depth of 5.7. The ontology was developed at the institute AIFB for the GETESS
projects (German Text Exploitation and Search System). Based on this we
developed a smaller, simpler and easier to use ontology for the experiment. We
applied the following steps: i) clarification of the goals and ii) development of
the ontology.

Clarification of the Goals. Noy and McGuinness [Noy and McGuinness, 2001]

suggest starting the development of an ontology by defining its domain and scope.
That is, several basic questions need to be answered:

1. For what we are going to use the ontology? The ontology should be used in
the evaluation by students with a very sparse knowledge about annotation.
The ontology should be small and simple to ensure a good overview. On
the other hand, it should contain all concepts and relations to ensure a
reasonable annotation of the Web pages. An annotation expert pruned the
ontology, after a sample annotation of some pages. He reduced the ontology
to 1

5 , i.e. about 200 concepts with an average depth of 3.5.

2. What is the domain that the ontology will cover? We chose hotel Web
pages, in particular Web pages with information about hotel, rooms, con-
figuration, price, address, and the features of the hotel.

3. For what types of questions should the information in the ontology provide
answers? In our case useful questions are:

• In which hotel can I stay overnight for less than 30 Euro?

• Which hotels are in the city of Dresden?

• How many beds are in the hotel “Seelust” in Goldberg?

• Which hotels in Dresden have a conference room for 50 persons?

Development of the Ontology. The goal is to reuse the GETESS ontology as
much as possible. The approach is to simplify the ontology: deletion of unnec-
essary concepts, adding missing concepts and relations, and a reorganization of
the hierarchy of the ontology.

1. Simplify the ontology: We reorganized the ontology in such a way that
each concept belongs to only one superconcept, because single inheritance
is easier to understand for the inexperienced annotator. Furthermore, we

155

9. Evaluation of Semi-Automatic Annotation

looked for classes that have only one direct subclass, which occurs often
in the GETESS ontology and is an indicator of an modeling problem or
an incomplete ontology. Each single subclass has been put into the same
hierarchy as it former superclass and unnecessary subclasses have been
deleted. Concept and relations not necessary for the annotation task have
been deleted.

2. Adding of new concepts and relations: The GETESS ontology is a general
tourism ontology. It considers virtually all essential concepts. However,
some relationships were missing to model the information about the hotel
in a proper way. It was possible to replace some deleted concepts by re-
lations. For example the subconcepts “cable TV” and “color TV” of class
“TV” have been deleted, but the concept “TV” got the boolean attributes
“is color TV” and “is cable TV”. Thus, we were able to reduce the amount
of concepts and the depth of the ontology.

3. Testing the ontology: The creation of an ontology is an iterative process.
To support this, annotation is a very suitable to test the ontology, i.e. to
see if concepts or relationships in the ontology are missing.

The pruned GETESS ontology used for the evaluation, called GETESS EVS
Ontology consists of 187 concept, 150 relations and an average depth of 2,83.

9.2.3. Training of the Annotation

As pointed out in Sections 5.1 and 5.1.3 there is the problem of the input and out-
put of Amilcare, the information extraction component. The S-CREAM frame-
work is ontology based and Amilcare expected flat tags. To ease the task of the
mapping from the flat tags to the ontological concepts and attributes we used a
labeling scheme for the tags to train Amilcare. The tags for the instances start
with the prefix “i ” and the tags for the attributes with the prefix “a ”. This
helps S-CREAM to distinguish between instances and attributes. For example,
<i hotel> and <i lounge> leads to the creation of a new instance Hotel and a
new instance of Lounge. The tag <a hotel name> stands for the attribute name
of an instance of the concept Hotel, and <a address city> is the value of the
attribute city for the instance of address. S-CREAM uses a rule-based discourse
model (cf., Section 5.1.4) to create the instances, attributes, and relationships.
For example, the discourse model states that an instance of Room following an
instance of Hotel is connected by the relationship has room to the Hotel instance.
The training corpus, the Web pages for the training of Amilcare have been anno-
tated after the development of the Ontology according to the above tag labeling
scheme. For the training we used eleven Web pages. The selection of samples
followed the same rationale as the selection for the user annotation. The training
corpus, the test corpus and the evaluation corpus are disjoint.

156

9.2. Method

9.2.4. Experimental Design

The goal is to observe whether the annotation process can be improved and
accelerated by the application of information extraction. Hence, we need two
random samples to compare. One possibility is that two independent groups
work with the tool in the two annotation modes. In such a case, one can observe
bigger differences which have greater relation to differences of the annotation
[Siegel, 2001]. The human factor is very important for the annotation. Because
it is nearly impossible to keep the motivation and the intelligence of two person
on the same level, it is advisable to take the same people for both test runs of the
annotation modes. To avoid a possible learn effect, the whole group is randomly
divided into two groups. The first group, called group A, has eight members
and annotated at first in manual mode and later in semi-automatic mode. The
second group, called group B, also has eight members and uses the modes in the
reverse order. This is called “two dependent samples” according to [Siegel, 2001;
Clauß and Ebner, 1995]. On each annotation cycle there are five pages annotated,
i.e. there are five pages manually annotated and five pages semi-automaticly
annotated. For each annotation mode there is a list of Web pages2. Each list
contains six pages, because the first page is for the training of the annotators.
The annotation of the first page is not considered in the evaluation.

9.2.5. Application of a statistical test

The formulation of the null hypothesis is the first step in the decision process
and it is usually formulated to be rejected. The null hypothesis states that there
is no difference between the samples. If the null hypothesis is rejected then the
alternative hypothesis H1 can be accepted. In our case H1 states: Semi-automatic
annotation using information extraction is faster and more homogeneous than
manual annotation. In contrast H0 states: There is no difference between manual
and semi-automatic annotation.

In our evaluation we compare two dependent samples, i.e. they have been created
by the same person at different points in time in different annotation modes.

9.2.6. Test procedure

Before doing the actual annotations, subjects received 30 minutes of training.
They were given a presentation about annotation and metadata. Group B, start-
ing with semi-automatic annotation, were also given an introduction to informa-
tion extraction in the first annotation session. Group A was given this introduc-

2For manual annotation: http://annotation.semanticweb.org/evaluation/july2002/Cream.html.
For semi-automatic annotation: http://annotation.semanticweb.org/evaluation/july2002/
Scream.html

157

9. Evaluation of Semi-Automatic Annotation

tion in the second annotation session. In the test phase the groups learned to
work with the annotation tool and to use the support of the trained information
extraction component.

The subjects annotated one hotel Web page as a warm up task. This took about
20 to 30 minutes. The goals were to give them a better understanding of the
annotation task, to allow the possibility for questions and to become familiar
with the ontology.

After the warm up each subject annotated five Web pages. Each subject was
given the task of annotating only facts about the hotel, address, rooms, room
inventory and hotel facilities. In principle annotation is not a restricted task
and to annotate everything that suits to the ontology is not a negative outcome.
However, we restricted the annotation task to ensure that the annotators accom-
plished the task on time3.

The tool recorded the annotation time for each Web page. We asked the subject
not to pause on a hotel page, but on the overview page, to get a correct time
measurement.

After the evaluation the annotators filled out a questionnaire, in which they could
describe their impression about the tool, problems, suggestions for improvement
and additional remarks.

9.3. Results

In this section we describe the results of the evaluation. As mentioned before the
16 human subjects where divided in group A and group B. An annotation expert
did the same annotation task to provide a gold standard for the evaluation. Both
groups are compared to the gold standard.

The results of the evaluation consists of the following parts: i) a time mea-
surement, ii) a basic statistic about the annotation, iii) the calculation of the
perfect-inter-annotator agreement and the sliding agreement and finally iv) the
statistical test to verify the significance.

The member of both groups worked under different conditions. Therefore the
presentation of the results is subdivided into the groups to get better insights.

9.3.1. Time Measurement

The annotation tool has recorded for both annotation modes the annotation time
for each Web page in the test sample. The time was added for each participant

158

9.3. Results

Figure 9.1.: Mean values divided into annotation modes and groups.

to a total for all five Web pages. A grouping of the values is shown in Figure 9.1.

The values are presented in minutes. The mean values are shown in Table 9.1.
The exact values for each participant can be found in the Appendix.

• For Group A, the annotation time is reduced by the application of semi-
automatic annotation by about 33%, from 122.94 minutes to 82.54 minutes.
We have two interpretations for this:

1. Semi-automatic annotation does indeed make the annotation process
faster.

2. Usually the first pages are more slowly annotated because the inexpe-
rienced human subject is in the learning phase.

• For Group B, there is nearly no difference: 148.7 minutes for manual an-
notation and 148.4 minutes for semi-automatic annotation. On initial as-
sessment, this is not what we had expected. However, we interpret this as
a compensation for the learn phase of the unexperienced user accompanied
by a possible time-gain of the semi-automatic annotation.

• Apparently, group A was faster than group B. Also, group B shows a greater
variance of results. The question, whether group A was more gifted or

3The complete results of the annotation can be found at:
http://annotation.semanticweb.org/evaluation/july2002/Evaluation.html.

159

9. Evaluation of Semi-Automatic Annotation

whether group B was more hard-working on the annotation, can be an-
swered with the help of the basic statistic relating to the different groups
(Tables 9.3 and 9.4). However, these findings are of small impact for the
evaluation due to the depended samples. We are only interested in the
difference between the annotation modes.

Figure 9.2.: Mean values grouped by annotation modes

Figure 9.2 shows an overall comparison of the annotation modes. It shows clearly
that the annotation process is faster in the semi-automatic mode. Because the
complete data set is used, all learn effects and idiosyncrasies of the human sub-
jects have been balanced. The average time of the manual annotation mode is
135.70 minutes and of the semi-automatic mode is 115.47 minutes, which results
in an average improvement of 15%. Considering the gold standard average time
is improving also by about 15% from 116.51 to 99.29 minutes.

manual semi mean

group A 122.94 82.54 102.74

group B 148.47 148.40 148.44

gold standard 58.93 50.75 54.84

mean value (without gold standard) 135.70 115.47 125.59

mean value (gold standard) 116.51 99.29 107.90

Table 9.1.: Average annotation times.

The difference between the two groups and the gold standard is quite considerable

160

9.3. Results

big: on average the gold standard is 2.3 times faster than the other participants.
This is because the gold standard has developed the ontology and was familiar
with the Web pages. In addition, he followed the annotation instructions more
strictly. Other participants annotated more information on the Web pages than
was necessary. The disparity is shown by the basic statistics.

It is difficult to specify a general duration time for the annotation of a Web
page. There are a number of factors to be considered: size of the Web pages
and the structure, domain, complexity of the ontology. However, in the assigned
evaluation task, an annotation expert (gold standard) needed about 60 minutes
for manual annotation of five web pages and he achieved a time saving of 17%
with the semi-automatic annotation. A layman needs after a short introduction
in average 135 minutes and got a time saving of 15%.

1. variable 2. variable t tα;n−1 PR n significance

manual semi 2.93 1.74 0.01 17 yes

A, manual A, semi 8.66 1.86 0 9 yes

B, manual B, semi 0.11 1.86 0.91 no

Table 9.2.: Results of the t-test for the annotation time.

We are using the t-test to prove the significance of the evaluation. Table 9.2
gives a summary for the annotation time of all tests. The symbols used have the
following meaning:

• Variable 1 and variable 2 are compared by the test.

• The test value is t, it is compared with the tabular value of tα;n−1.

• The PR value is the probability of the coincidence of the measured pair
difference. For example a PR of 0.01 means a significance of 99%.

• The number of valid pairs is n.

• The variable name consists of the group and the annotation mode. The
first row of the table gives the summery of both groups.

The criteria is:
If |t| < tα;n−1, then H0 is accepted.
If |t| ≥ tα;n−1, then H0 is rejected.

The results of the test confirm our assumption, i.e. the results of group A and
the total results are significant. With respect to the annotation time we can
accept our hypothesis, viz. semi-automatic annotation is faster than manual
annotation. In the following we will consider the homogeneity of the results.

161

9. Evaluation of Semi-Automatic Annotation

manual semi

user | In |, | ACn | | AAn | | ARn | | In |, | ACn | | AAn | | ARn |

0 55 62 40 47 48 33

1A 54 29 42 56 36 48

2A 42 69 15 54 38 38

3A 48 70 30 45 66 15

4A 68 22 27 51 22 35

5A 60 89 32 54 34 34

6A 48 52 36 50 56 42

7A 51 89 0 46 46 2

8A 64 59 47 50 49 51

total 490 541 269 453 395 298

mean 54.44 60.11 29.88 50.33 43.88 33.11

standard 8.33 23.28 14.6 3.84 13.02 15.59

deviation

Table 9.3.: Basic statistic for group A manual and semi-automatic annotation.

9.3.2. Results of Group A

Basic Statistic. Table 9.3 shows the basic statistics of group A for both anno-
tation modes. The user with number 0 represents the gold standard. The results
are comparable taking into account that the same user has not annotated the
same Web pages using both annotation modes – because he would already known
the annotations – but rather similar pages. The average number of instances is
54.44 with a deviation of 8.33. For semi-automatic annotation it is 50.33 in-
stances with a deviation of 3.84. Some annotators produced more instances than
the gold standard. User 7A did not created instance-instance relationships in
manual mode, and only two in semi-automatic mode.

Perfect-Interannotator Agreement Figure 9.3 shows the results for the in-
stance identification of group A.

• The values are rather low for manual annotation, most of them are below
0.4. The variance is rather high with values between 0.8 and 0.52.

162

9.3. Results

Figure 9.3.: Instance identification of group A

• Semi-automatic annotation results in clearly higher results, most of the
values are above 0.4. The variance is lower with values between 0.31 and
0.57.

”

The graphical results for the instance-concept relationships of group A are shown
in Figure 9.4

Figure 9.4.: Instance-concept relationship of group A

• The values for manual annotation are rather high with a median variance.
The values are between 0.33 and 0.84.

163

9. Evaluation of Semi-Automatic Annotation

• The values for semi-automatic annotation are also high, the variance is low.
The minimum and maximum are 0.5 and 0.85.

The results for the instance-attribute relationship are shown in Figure 9.5.

Figure 9.5.: Instance-attribute relationship of group A

• The values for manual annotation are low, ranging from 0 to 0.48 and they
have a slight variance.

• The values for semi-automatic annotation are higher, ranging from 0.03 to
0.8 with a high variance.

The results are shown in Figure 9.6 for the instance-instance relationship.

Figure 9.6.: Instance-instance relationship of group A

164

9.3. Results

• The values for manual annotation are rather low, a number of data points
are below the 0.4 line with a high variance. The values are ranging between
0 and 0.7.

• The values for semi-automatic annotation are mostly over 0.4, ranging be-
tween 0 and 0.73. The variance is also high.

Sliding Agreement Figure 9.7 shows the IdMA of group A.

Figure 9.7.: Sliding agreement: IdMA of group A

• The values for manual annotation are higher, the values ranging between
0.08 and 0.64, most of them are below 0.4.

• The values for the semi-automatic are higher with a slight variance. The
values are between 0.32 and 0.58. Nearly all are about 0.4.

Figure 9.8 shows the RIAA of group A:

• Similar to the IdMA values, the manual annotation has higher variance
and lower RIAA values, ranging from 0.07 and 0.64. Most of the values
are below 0.4.

• Semi-automatic annotation has the higher values, from 0.32 to 0.57 and
the lower variance. Most of the points are above 0.4.

In conclusion, the values for the agreement recall are for the most part higher
when working in semi-automatic annotation mode. Also the variance is lower
and therefore the annotation more homogeneous in the case of the instance clas-
sification, the instance-concept relationships and for the sliding agreement.

165

9. Evaluation of Semi-Automatic Annotation

Figure 9.8.: Sliding agreement: RIAA of group A

9.3.3. Results of Group B

Basic Statistic. Table 9.4 shows the basic statistic for group B for both an-
notation modes. A comparison with Table 9.3 shows that group B produced
systematically more annotation than group A. The average number of instances
for manual annotation is 74.33 with a deviation of 14.88. For semi-automatic
annotation it is 60.88 instances with a deviation of 11.12. Nearly all annotators
surpass the gold standard with regard to the amount of instances.

Perfect-Interannotator Agreement Figure 9.9 shows the results for the in-
stance identification.

• The annotation is quite homogeneous, with values between 0.15 and 0.51.

• Semi-automatic annotation yields higher results, with a higher variance.
The values are from 0,18 to 0.66.

The graphical results for the instance-concept relationships are shown in Fig-
ure 9.10.

• The values for manual annotation are rather high with a median variance.
The values are between 0.41 and 0.87.

• The values for semi-automatic annotation are higher, the minimum and
maximum are 0.37 and 0.89.

166

9.3. Results

manual semi

user | In |, | ACn | | AAn | | ARn | | In |, | ACn | | AAn | | ARn |

0 55 62 40 47 48 33

1B 60 44 25 61 52 50

2B 88 73 51 53 37 40

3B 74 71 46 63 61 47

4B 69 67 51 62 61 40

5B 63 56 33 45 44 17

6B 98 116 42 79 87 55

7B 71 82 52 66 75 49

8B 91 79 65 72 78 48

total 669 650 405 548 543 379

mean 74.33 72.22 45 60.88 60.33 42.11

standard 14.88 20.16 11.72 11.12 16.85 11.49

deviation

Table 9.4.: Basic statistics for group B

The results for the instance-attribute relationship are shown in Figure 9.11.

• The values for manual annotation are low. Most of them are below 0.4.
The variance is high and the values range between 0 and 0.59.

• The values for semi-automatic annotation are higher. Most of the values
are over 0.4. The variance is higher and the values are between 0 and 0.81.

The results for the instance-instance relationship are shown in Figure 9.12.

• The values for manual annotation are rather low, a number of data point
are below the 0.4 line with a high variance. The values range between 0.04
and 0.65.

• The values for semi-automatic annotation are mostly over 0.3, ranging be-
tween 0.17 and 0.76. The variance is also high.

In summery, semi-automatic annotation results for the perfect inter-annotator
agreement show more conformity and more variance.

167

9. Evaluation of Semi-Automatic Annotation

Figure 9.9.: Instance identification of group B

Figure 9.10.: Instance-concept relationship of group B

Sliding Agreement Figure 9.13 shows the IdMA of group B.

• The values for manual annotation are between 0.18 and 0.57.

• Semi-automatic annotation shows more values above 0.4. The values are
between 0.22 and 0.68.

Figure 9.14 shows the RIAA of group B.

• The values for manual annotation range between 0.18 and 0.53.

168

9.3. Results

Figure 9.11.: Instance-attribute relationship of group B

Figure 9.12.: Instance-instance relationship of group B

• Semi-automatic annotation has, similar to those of the IdMA, higher values
and a greater variance. The values range between 0.18 and 0.57

9.3.4. Statistical Results

We used the t-test for the samples to verify their significance. Table 9.5 shows
an overview.

The meaning of the symbols are the same as in Table 9.2. We used the f-measure
for the test: the inter-annotator agreement between annotator n and annotator
m is the f-measure of R(n,m) and P (n,m), whereas P (n,m) = R(m,n). We

169

9. Evaluation of Semi-Automatic Annotation

Figure 9.13.: Sliding agreement: IdMA of group B

Figure 9.14.: Sliding agreement: RIAA of group B

compared the inter-annotator agreement between two annotators n and m in the
manual mode with two annotators using the semi-automatic mode of the tool,
for the aggregated test. The tables shows the following results:

• For the tests evaluating the groups, all differences are significant with the
exception of the instance-concept relationship for group B. In this case the
results for manual and semi-automatic annotation are the same.

• For the tests evaluating the overall results of the group, all differences are
significant. For this reason we able to accept the second part of our research
hypothesis: Semi-automatic annotation produces more homogeneous anno-

170

9.3. Results

1. Variable 2. Variable t tα;n−1 PR n Significance

instance identification

manual semi-automatic -9,3 1,67 0 72 yes

A, manual A, semi-automatic -13,02 1,69 0 36 yes

B, manual B, semi-automatic -3,91 1,69 0 36 yes

instance-concept

manual semi-automatic -5,93 1,67 0 72 yes

A, manual A, semi-automatic -8,97 1,69 0 36 yes

B, manual B, semi-automatic -0,88 1,69 0,38 36 no

instance-attribute

manual semi-automatic -8,96 1,67 0 72 yes

A, manual A, semi-automatic -10,76 1,69 0 36 yes

B, manual B, semi-automatic -3,82 1,69 0 36 yes

instance-instance

manual semi-automatic -4,79 1,67 0 72 yes

A, manual A, semi-automatic -5,12 1,69 0 36 yes

B, manual B, semi-automatic -1,89 1,69 0,07 36 yes

IdMA

manual semi-automatic -8,58 1,67 0 72 yes

A, manual A, semi-automatic -12,85 1,69 0 36 yes

B, manual B, semi-automatic -3,12 1,69 0 36 yes

RIAA

manual semi-automatic -8,36 1,67 0 72 yes

A, manual A, semi-automatic -12,03 1,69 0 36 yes

B, manual B, semi-automatic -2,88 1,69 0,01 36 yes

Table 9.5.: Results of the t-test over the annotation time

tation than manual annotation.

Percentage We calculated the mean value for each annotation mode to quantify
the evaluation results. Subsequently, we calculated the percentage increase of the
inter-annotator agreement using semi-automatic annotation (see Table 9.6).

171

9. Evaluation of Semi-Automatic Annotation

Metrics manual semi-automatic Change

instance identification 0.28 0.39 40.3%

instance concept 0.58 0.67 14.58 %

instance attribute 0.19 0.38 96.33 %

instance instance 0.26 0.34 29.82 %

IMA 0.32 0.43 34.19 %

RIAA 0.31 0.41 33.61%

Table 9.6.: Percentage change of the mean value for the inter-annotator agree-
ment

The table shows that the increases range from 14.57% for the instance-concept
relationship to 96.33% for the instance-attribute relationship. The minimal value
for the instance-concept relationship corresponds to the non-significance of this
value in the t-test.

Analysis of the Questionnaire In addition to the evaluation, the annotators
also completed a questionnaire. The results are presented in the following:

• General Questions:

– Q: The concept of Semantic Annotation is . . . ?
A: Ranging from 1 (very easy to understand) to 6 (very hard to un-
derstand).
mean value: 2.25, max: 4, min: 1

– Q: How do you evaluate your previous knowledge in the area of Se-
mantic Annotation?
A: Ranging from 1 (very good) to 6 (very poor).

– Q: How well did you cope with the ontology?
A: Ranging from 1 (very well) to 6 (very badly).

• Manual Annotation

– Q: How do you like the user interface?

– Q: How understandable is the layout of the user interface?

– Q: How clear is the information presented?

– Q: How self-explanatory are the symbols?

172

9.3. Results

– Q: How did you like the handling of the tool?

– Q: How was the overall impression of the tool?

• Semi-automatic Annotation

– Q: How do you like the user interface?

– Q: How understandable is the layout of the user interface?

– Q: How clear is the information presented?

– Q: How self-explanatory are the symbols?

– Q: How did you like the handling of the tool?

– Q: What was your overall impression of the tool?

• General Impression

– Q: Which annotation mode would you prefer for the task?

In conclusion the questionnaire shows the following:

• The participants had little previous knowledge about semantic annotation.
However, they found the idea easy to understand.

• There were some suggestions on ways to improve the ontology, but in gen-
eral they found it easy to use.

• The user interface for the manual annotation mode made a good impression
on the participants. Their usage was problem-free.

• Similarly the user interface for semi-automatic annotation made a good
impression. The marks for this interface are higher than for manual anno-
tation.

• Nearly all participants preferred semi-automatic annotation, four of them
without reservations.

• There were three participants who preferred manual annotation mode. The
main reason was the problem of annotating systematically with the semi-
automatic mode in the way they liked.

9.3.5. Summary

The evaluation proved the advantage of semi-automatic annotation with respect
to annotation time and homogeneity. However, some results of group B, the par-
ticipants in which annotated initially in the semi-automatic annotation mode,
show no difference. Presumably, the training effect was offset by the positive

173

9. Evaluation of Semi-Automatic Annotation

impact of the semi-automatic annotation. In general the participants of the eval-
uation were happy with the improvement of semi-automatic annotation. How-
ever, there were some participants in group B who had some doubts. Especially
for group B it wasn’t easy to learn all at once the interaction and the concept
of Semantic Annotation and to handle the information extraction necessary for
semi-automatic annotation. Hence, we can deduce that one first has to under-
stand the concept of Semantic Annotation and face the inherent problems in
order to appreciate and profit from the assistance of semi-automatic annotation.

The comments of the participants with regards to the user interface reflect the
development status of the annotation tool at the moment of the evaluation. Some
of these improvements have been implemented in the meantime. However, issues
of human computer interaction are important when dealing with manual and
semi-manual annotation but these issues haven’t been the main focus in this
thesis and they are therefore a possible target for future work.

9.4. Discussion

The results of the evaluation allow us to accept our research hypothesis, viz.:Semi-
automatic annotation is faster and more homogeneous than manual annotation.
We are satisfied with this overall result but we will in the following paragraph have
a discussion about possible improvements to the evaluation and the annotation
tools.

Evaluation It is important to find standardized methods and metrics for the
evaluation of annotation frameworks. Hence, we presented such an approach
in this work. Our experience with the actual evaluation shows also some of
the unsettled points, especially soft facts, when measuring the inter-annotator
agreement:

• Similarity of Web pages. One problem is the similarity of the Web
pages in our use case, e.g. every page contained the concepts: Hotel, Ad-
dress, SingleRoom, and so on. Very similar Web pages facilitates training
in information extraction and helps therefore to improve instance recogni-
tion by the semi-automatic annotation. But also it alleviates the task for
the annotator, so that he can easily spot the necessary pieces of text on
the Web page. In this case the support of the semi-automatic annotation
might not be considered by the user as useful as in a scenario with greater
variance among the Web pages.

• Instance Names In the hotel use case presented here, many instances
have the same names as the concepts of the ontology, e.g. the text “TV”

174

9.4. Discussion

in the description of a hotel room indicates an unspecific instance of the
TV that is related to the instance of the concept Room. This simplifies the
information extraction and therefore the annotation task, which leads to a
higher value for the instance-concept relationship metric than in the home
page use case.

• Guidelines We gave the annotator some guidelines for the annotation,
i.e. which parts of the page to annotate. This was done in order to avoid
too much being annotated, meaning too much time would be needed, and
also to avoid too little of a page being annotated and too few data for
an evaluation being produced. Some participants follow these guidelines.
Others did not follow the guidelines and annotated everything which was
represented in the ontology. Although we can not measure the influence
of the guidelines in the evaluation results, it is clear that it improved the
general level of inter-annotator agreement compared with a free annotation.

• Relational Metadata A important concept of the CREAM framework is
the creation of relational metadata not only on one web page but over sev-
eral Web pages, i.e. to inter-connect Web pages with metadata. However,
in the hotel use case there weren’t enough pages with interrelated infor-
mation. Also, the focus on annotating one page facilitates the annotation
task for the unexperienced user. However, future evaluations should also
consider the aspect of related metadata between Web pages.

The Annotation Tool OntoMat. Clearly the annotation tool is the most impor-
tant factor when it comes to the improvement of the annotation task. Specifically,
we found the following aspects during the evaluation:

• The hotel use case shows the problem for the need to annotate alternatives.
For example, there is the description that a room might either have a
bathtub or a shower. Here the annotation tool didn’t allow a logical “OR”
relationship between the instances to be modeled.

• To support inverse relationships is important. At the time of the evaluation
the annotation tool didn’t supported this. Therefore, one had to model the
relationship “has room” for a hotel and “in hotel” for a room. A support
facility for inverse relationships would automatically create the inverse.

• The automatic creation of “anonymous” instance names was only partially
useful in the evaluation. It just numbered the instances, e.g. “room1”,
“room2”, which gave the annotators some trouble to distinguish rooms of
different hotels, e.g. different Web pages, in one session. Hence, the created
name or rather the representation of the instance in the annotation tool

175

9. Evaluation of Semi-Automatic Annotation

should give information for an instance about the selected text, the Web
page of origin and the related concept.

• The description of hotel Web pages requires a lot of “anonymous” instances,
of concepts such as Bath, Shower, SingleRoom, ParkingPlace. Most of these
instances do not have attributes and it is very ineffective to create these
instances again and again. A practical idea might be to reuse these in-
stances. However, this would result in an identity problem, e.g. the shower
of room X is then the same as the shower of room Y. This shows the need
for a special handling of such “anonymous” instances in an ontology.

• In a lot of cases, rooms of different hotels have the same or similar furnish-
ings. Therefore it should be possible to copy such room instances from one
hotel to another hotel and change the appropriate attributes.

• In the original version – not used in the evaluation – of the GETESS on-
tology is a concept of currency, with the subconcepts Euro, US Dollar, Yen,
and so on. The annotation tool so far only allows relationships between
concept instances, so that a relationship to a concept is not possible.

The Information Extraction Component Amilcare The success of semi-
automatic annotation depends on the information extraction component. The
finding of the information extraction is acceptable, but could be improved. Amil-
care was able during the evaluation to find about half of the instances and a third
of the attributes. There are some possibilities for improving this:

• At the time of the evaluation it was not possible to edit the extraction
rules of Amilcare to enable a fine tuning. In the meantime it has become
possible to do this. However, this demands expert knowledge, because the
rules are not intuitive to understand and change.

• Amilcare works with positive and negative examples. This requires that
every occurrence of an instance on the Web page has to be annotated for
the training. This leads to additional requirements we did not fulfill with
our paradigm of Semantic Annotation, because i) a fact is represented and
annotated only once for Semantic Annotation and ii) information extrac-
tion considers the whole Web page source not the rendered Web page, i.e.
comments, script, meta tags etc. hidden in the Web page as well as the title
tag also needed to be marked-up for Amilcare. Otherwise it would be han-
dled as a negative example. This full source annotation is not supported
by our annotation tool.

In addition there is always information which is more difficult to extract using
Amilcare, e.g. the sentence “we are happy to organize your business meeting with

176

9.5. Conclusion

up to 60 persons”. Amilcare didn’t extract the information that this concerns a
conference room with the appropriate capacity, because sentences like this appear
seldom and varying in the corpus, so that Amilcare is not able to create a rule
in that instance.

GATE Amilcare is based on GATE4 (General Architecture for Text Engineer-
ing), a tool for language engineering developed by the University of Sheffield.
The task of GATE is the preprocessing of the text, for example the tokenization
or sentence identification. GATE allows also the markup of documents. How-
ever, it supports a flat annotation without the basis of an ontology. The kind of
annotation generated by GATE is the input that Amilcare needs for the training.
We considered using GATE to create the annotation for the training. However,
at the time of the evaluation the GATE annotation tool was not able to deal
with HTML files without destroying the HTML tags. Hence, we extended our
annotation tool to transform the ontology-based Semantic Annotation into the
flat annotation needed by Amilcare and GATE.

9.5. Conclusion

The evaluation shows that semi-automatic annotation with the help of informa-
tion accelerates the annotation task and increases the inter-annotator agreement.
In general the annotators are pleased with the proposal of the tool and therefore
gave better marks for the semi-automatic annotation mode. The evaluation also
shows the potential for improving automatization in terms of i) user interface of
the annotation tool, ii) the ontology guidance of the annotation tool, and iii) the
training of the information extraction component. However, the evaluation also
shows the limits of this approach, especially the need for a big corpus of similar
documents for the training of the information extraction component as we saw
in the hotel use case.

4http://gate.ac.uk

177

9. Evaluation of Semi-Automatic Annotation

178

Part IV.

Related Work & Conclusions

“All Life Is Problem Solving.”
— Karl R. Popper

179

10. Comparison with Related Work

Semantic Annotation as we have presented it in this thesis is a cross-sectional en-
terprise.1 Therefore there are a number of communities that have contributed to-
wards achieving the objective of Semantic Annotation. For our annotation frame-
work we distinguish the related work between the i) basic framework CREAM
(Section 10.1) ii) the extended framework (Section 10.2) and iii) special annota-
tion applications (Section 10.3).

10.1. Related Work for the Basic Framework

The basic framework of CREAM can be compared along four dimensions: Firstly,
it is a framework for markup in the Semantic Web. Secondly, it may be considered
as a particular knowledge acquisition framework that is to some extent similar
to Protégé-2000 [Eriksson et al., 1999]. Thirdly, it is certainly an annotation
framework, though with a different focus than ones like Annotea [Kahan et al.,
2001]. And finally it is an authoring framework with an emphasis on metadata
creation.

10.1.1. Knowledge Markup in the Semantic Web

We know of three major early systems that use knowledge markup intensively
in the Semantic Web, viz. SHOE [Heflin and Hendler, 2000b], Ontobroker [Decker
et al., 1999], and WebKB [Martin and Eklund, 1999]. All three of them rely on
markup in HTML pages. They all started with providing manual markup by
editors. However, our experiences (cf. [Erdmann et al., 2000]) have shown that
text-editing knowledge markup yields extremely poor results, viz. syntactic mis-
takes, incorrect references, and all the problems outlined in the scenario section.

The SHOE Knowledge Annotator is a Java program that allows users to mark-up
Web pages with the SHOE ontology. The SHOE system [Luke et al., 1997] defines
additional tags that can be embedded in the body of HTML pages. The SHOE
Knowledge Annotator is a little helper (like our earlier OntoPad [Fensel et al.,
1999], [Decker et al., 1999]) rather than a fully-fledged annotation environment.
WebKB [Martin and Eklund, 1999] uses conceptual graphs for representing the

1Just like the Semantic Web overall!

181

10. Comparison with Related Work

semantic content of Web documents. It embeds conceptual graph statements
into HTML pages. Essentially it offers a Web-based template-like interface such
as knowledge acquisition frameworks described in the following section.

A more recent contribution is the RDF annotator SMORE2. SMORE allows
markup of images and emails as well as HTML and text. A tool with similar
characteristics to SMORE is the Open Ontology Forge (OOF) [Collier et al.,
2004]. OOF is seen by its creators as an ontology editor that supports annotation,
taking it a step further towards an integrated environment to handle documents,
ontologies and annotations.

The next group of markup tools that we will discuss is semi-automatic, they have
automatic components but assume intervention by the user in the annotation
process. In this line, the tool the most similar to OntoMat is the system from The
Open University [Lei et al., 2002] and the corresponding MnM [Vargas-Vera et al.,
2002] annotation tool. MnM [Vargas-Vera et al., 2002] also uses the Amilcare
information extraction system. It allows the semi-automatic population of an
ontology with metadata. So far, they have not dealt with relational metadata or
authoring concerns. Another weakness is that it is restricted to either marking
up the slots for a single concept at a time or marking up all the concepts on a
single hierarchical level of a single ontology (but not their slots).

AeroSWARM3 is an automatic tool for annotation using OWL ontologies based
on the DAML annotator AeroDAML [Kogut and Holmes, 2001]. This has both a
client server version and a Web enabled demonstrator in which user enters a URI
and the system automatically returns a file of annotations on another Web page.
To view this in context the user would have to save the RDF to an annotation
server and view the results in an annotation friendly browser such as Amaya.
AeroDAML is therefore not in itself an annotation environment. SemTag is
another example of a tool which focuses only on automatic mark-up [Dill et al.,
2003]. It is based on IBMs text analysis platform Seeker and uses similarity
functions to recognize entities which occur in contexts similar to marked up
examples. The key problem of large scale automatic markup is identified as
ambiguity, e.g. identical strings, such as Niger which can refer to different things,
a river or a country. A Taxonomy Based Disambiguation (TBD) algorithm is
proposed to tackle this problem. SemTag is proposed as a bootstrapping solution
to get a semantically tagged collection off the ground. AeroSWARM and SemTag,
as the most large scale automatic markup systems, focus on class instantiation,
in the goal comparable to our PANKOW approach. Hence, they also have not
dealt with the creation of relation metadata.

KIM [Popov et al., 2003] uses information extraction techniques to build a large
knowledge base of annotations. The annotations in KIM are metadata in the

2http://www.mindswap.org/˜aditkal/editor.shtml
3http://ubot.lockheedmartin.com/ubot/hotdaml/aeroswarm.html

182

10.1. Related Work for the Basic Framework

form of named entities (people, places etc.) which are defined in the KIMO
ontology and identified mainly from reference to extremely large gazetteers. This
is restrictive, and it would be a significant research challenge to extend the KIM
methodology to domain specific ontologies. However named entities are a class
of metadata with broad usage and the KIM platform is well placed to showcase
the kinds of retrieval and data analysis services that can be provided over large
knowledge bases of annotations.

10.1.2. Comparison with Knowledge Acquisition Frameworks

The CREAM framework allows for creating class and property instances and for
populating HTML pages with them. Thus, it targets a roughly similar objective
to the instance acquisition phase in the Protégé-2000 framework [Eriksson et al.,
1999] (the latter needs to be distinguished from the ontology editing capabilities
of Protégé). The obvious difference between CREAM and Protégé is that the
latter does not (and was not intended to) support the particular Web setting,
viz. managing and displaying Web pages — not to mention Web page authoring.
From Protégé we have adopted the principle of a meta ontology that allows a
distinction between different ways that classes and properties are treated. We
just named Protégé-2000 as one example for other existing knowledge acquisition
frameworks.

Another recent knowledge acquisition framework with particular applications in
mind is TRELLIS [Gil and Ratnakar, 2002]. It is designed to support argument
analysis in decision making scenarios. It demonstrates the additional support
that can be given to user when an annotation environment is designed for a spe-
cific purpose. For example, annotations in TRELLIS are in the form of free text
statements. This presents a problem since statements about the same thing can
be phrased differently and consequently not matched up by the user. Therefore a
component called ACE has been built which helps users to formulate statements
in ways which are consistent with terms in the ontology [Blythe and Gil, 2004].
The annotations in TRELLIS can be output as RDF. However, perhaps because
it is designed as a tool for analyzing a wide range of document formats, the au-
thors do not discuss whether it is possible to anchor annotations to a particular
part of a text.

10.1.3. Comparison with Annotation Frameworks

Types of Annotations

There are certain types of annotation. For example (i) the idea of creating a kind
of user comment about Web pages (cf. [Kahan et al., 2001]), (ii) to annotate a
document with further links (cf. Section 2.2 in [Bechhofer et al., 2002]) or (iii)

183

10. Comparison with Related Work

semantic annotation. Also, we can distinguish the Semantic Annotation into
instance creation or aboutness (cf. Section 5 in [Bechhofer et al., 2002]). Our
viewpoint of annotation lies with instance creation (see Section 3.4.1), but we
can emulate most of the other annotation types with our framework.

• User comment: For instance, a user attaches a note like ”An interesting
research topic!” to the term “Semantic Web” on a Web page. In CREAM we
can design a corresponding ontology that allows the comment (an unlinked
fact) “A interesting research topic” to be typed into an attribute instance
belonging to an instance of the class comment with a unique XPointer at
“Semantic Web”.

• Link annotation: A user attaches a URL to a Web page. In CREAM we
can design a corresponding ontology that allows the insertion of the URL
(as reference) into an attribute instance belonging to an instance of the
class URL.

• Aboutness: A user expresses that a particular resource (i.e. a web page) is
about a certain concept, but not an instance of an concept. In CREAM
we can introduce a meta-concept into the corresponding ontology. The
instances of this meta concept are all concepts of the ontology. There-
fore the user interface supports the creation of an aboutness annota-
tion. For instance, a user inserts the URL of a page about students (e.g.
http://www.student.de) (as a reference) to an attribute instance belonging
to the instance of the class AboutStatement. Then he creates a relationship
instance between the AboutStatement and the concept “student” of the
ontology.

The term annotation is also used in the area of Natural Language Processing
(NLP) with a different meaning (cf. Chapter 7.1 and 10.3.2). The levels of
linguistic annotation comprise lemma, morphosyntactic, syntactic, semantic and
discourse annotation [Leech, 1997]. There is also some preliminary work in order
to attempt the combination of semantic Web page annotation with linguistic
annotation [de Cea et al., 2002].

Annotation Tools

There are a lot of — even commercial — annotation tools like ThirdVoice4, Yawas
[Denoue and Vignollet, 2000], CritLink [Yee, 1998] and Annotea (Amaya) [Kahan
et al., 2001]. These tools all share the idea of creating a kind of user comment
about Web pages. The term “annotation” in these frameworks is understood as
a remark assigned to an existing document.

4http://www.thirdvoice.com

184

10.1. Related Work for the Basic Framework

Annotea actually goes one step further. It allows an RDF schema to be used
as a kind of template that is filled by the annotator. For instance, Annotea
users may use a schema for Dublin Core and fill the author-slot of a particular
document with a name. This annotation, however, is again restricted to attribute
instances. The user may also decide to use complex RDF descriptions instead of
simple strings for filling such a template. However, he then has no further support
from Amaya that helps him provide syntactically correct statements with proper
references.

10.1.4. Comparison with Authoring Frameworks

An approach related to CREAM authoring is the Briefing Associate of Teknowl-
edge [Tallis et al., 2001]. The tool is an extension of Microsoft PowerPoint. It
pursues the idea of producing PowerPoint documents with the metadata coding as
a by-product of the document composition. For each concept and relation in the
ontology, an instantiation button is added to the PowerPoint toolbar. Clicking on
one of these buttons allows the author to insert an annotated graphical element
into his presentation. Thus, a graphic element in the presentation corresponds
to an instance of a concept and arrows between the elements corresponding to
relationship instances. In order to be able to use an ontology in PowerPoint one
must have assigned graphic symbols to the concepts and relations, which is done
initially by the visual-annotation ontology editor (again a kind of meta ontology
assignment). The Briefing Associate is available for PowerPoint documents. In
contrast, CREAM does not provide graphic support like the Briefing Associate,
but it supports both parts of the annotation process, i.e. it permits the simulta-
neous creation of documents and metadata and, in addition, the annotation of
existing documents. However, the Briefing Associate has shown very interesting
ideas that may be of future value to CREAM.

The authoring of hypertexts and the authoring with concepts are topics in the
COHSE project [Goble et al., 2001]. They allow for the automatic generation of
metadata descriptions by analysing the content of a Web page and comparing
the tokens with concept names described in a lexicon. They support ontology
reasoning, but they do not support the creation of relational metadata. It is un-
clear to what extent COHSE considers the synchronous production of document
and metadata by the author.

Somewhat similar to COHSE concerning the metadata generation, Klarity [Klar-
ity, 2001] automatically fills Dublin Core fields taking advantage of statistical
methods to allocate values based on the current document.

185

10. Comparison with Related Work

10.2. Related Work for the Extended Framework

In addition the extensions of the basic CREAM framework for deep annotation
and pattern based annotation requires also the comparison with a number of
community work.

10.2.1. Related Work for Deep Annotation

A number of communities that have contributed towards reaching the objective of
deep annotation. So far, we have identified communities for information integra-
tion (Section 10.2.1), mapping frameworks (Section 10.2.1), wrapper construction
(Section 10.2.1), and annotation (Section 10.2.1).

Information Integration

The core idea of information integration lies in providing an algebra that may
be used to translate information proper between different information structures.
Underlying algebras are used to provide compositionality of translations as well as
a sound basis for query optimization (cf., e.g. a commercial system as described
in [Papakonstantinou and Vassalos, 2002] with many references to previous work
— a lot of the latter based on principal ideas issued in [Wiederhold, 1993].

Unlike [Papakonstantinou and Vassalos, 2002], our objective has not been the
provision of a flexible, scalable integration platform per se. Rather, the purpose of
deep annotation lies in providing a flexible framework for creating the translation
descriptions that may then be exploited by an integration platform like EXIP (or
Nimble, Tsimmis, Infomaster, Garlic, etc.). Thus, we have more in common with
the approaches for creating mappings for the purpose of information integration
described next.

Mapping and Merging Frameworks

Approaches for mapping and/or merging ontologies and/or database schemata
may be divided mainly into the following three categories: discovery, [Rahm and
Bernstein, 2001; Cohen, 1998; Doan et al., 2002; Bergamaschi et al., 2001; Noy
and Musen, 2000; McGuinness et al., 2000], mapping representation [Madhavan
et al., 2001; Bergamaschi et al., 2001; Mitra et al., 2000; Park et al., 1997] and
execution [Critchlow et al., 1998; Mitra et al., 2000].

In the overall area, closest to our own approach is [Maedche et al., 2002], as it
handles — like we do — the complete mapping process involving the three process
steps just listed (actually it also takes care of some more issues like evolution).

186

10.2. Related Work for the Extended Framework

What makes deep annotation different from all these approaches is that they all
depend on lexical agreement of part of the two ontologies/database schemata
for the initial discovery of overlaps between different ontologies/schemata. Deep
annotation only depends on the user understanding the presentation — the in-
formation within an information context — developed for him/her anyway. Con-
cerning the mapping representation and execution, we follow a standard approach
exploiting Datalog, giving us many possibilities for investigating, adapting and
executing mappings as described in Section 6.7.

Wrapper Construction

Methods for wrapper construction achieve many objectives that we pursue with
our approach of deep annotation. They have been designed to allow for the con-
struction of wrappers by explicit definition of HTML or XML queries [Sahuguet
and Azavant, 2001] or by learning such definitions from examples [Kushmerick,
2000; Ciravegna, 2001a]. Thus, it has been possible to manually create metadata
for a set of structurally similar Web pages. The wrapper approaches come with
the advantage that they do not require cooperation by the owner of the database.
However, their disadvantage is that the correct scraping of metadata is depen-
dent to a large extent of data layout rather than on the structures underlying
the data.

Furthermore, when definitions are given explicitly [Sahuguet and Azavant, 2001],
the user must directly cope with querying by layout constraints and when defini-
tions are learned, the user must annotate multiple web pages in order to derive
correct definitions. Also, these approaches do not map to ontologies. They typi-
cally map to lower level representations, e.g. nested string lists in [Sahuguet and
Azavant, 2001], from which the conceptual descriptions must be extracted, which
is a non-trivial task. In fact, we have integrated a wrapper learning method, viz.
Amilcare [Ciravegna, 2001a], into our OntoMat-Annotizer. How to bridge be-
tween wrapper construction and annotation is described in detail in Section 5.1.

Annotation

Finally, we need to consider annotation proper as part of deep annotation. In the
latter, we “inherit” the principal annotation mechanism for creating relational
metadata as elaborated above.

10.2.2. Related Work for Pattern-based Annotation

In Chapter 5.2 we presented a novel paradigm: the self-annotating Web as well
as an original method PANKOW which makes use of globally available structures

187

10. Comparison with Related Work

as well as statistical information to annotate Web resources. Though there are
initial blueprints for this paradigm, to our knowledge there has been no explicit
formulation of this paradigm as well as a concrete application of it as previous
presented in Chapter 5.2.

On the other hand, there is quite a lot of work related to the use of linguistic
patterns to discover certain ontological relations from text. Hearst [Hearst, 1992]

and Charniak [Charniak and Berland, 1999] for example make use of a related
approach to discover taxonomic and part-of relations from text, respectively.

Concerning the task of learning the correct class or ontological concept for an
unknown entity, there is some related work, especially in the computational lin-
guistics community. The aim of the Named Entity Task as defined in the MUC
conference series ([Hirschman and Chinchor, 1997]) is to assign the categories
ORGANIZATION, PERSON and LOCATION.

Other researchers have considered this more complex task such as Hahn and
Schnattinger [Hahn and Schnattinger, 1998], Alfonseca and Manandhar [Alfon-
seca and Manandhar, 2002] or Fleischman and Hovy [Fleischman and Hovy,
2002].

Hahn and Schnattinger [Hahn and Schnattinger, 1998] create a hypothesis space
when encountering an unknown word in a text for each concept to which the word
could belong. These initial hypothesis spaces are then iteratively refined on the
basis of evidence extracted from the linguistic context in which the unknown
word appears. In their approach, evidence is formalized in the form of quality
labels attached to each hypothesis space. At the end the hypothesis space with
maximal evidence with regard to the qualification calculus used is chosen as the
correct ontological concept for the word in question. Their approach is very
closely related to ours and in fact they use similar patterns to identify instances
from the text. However, the approaches cannot be directly compared. On the
one hand they tackle categorization into an even larger number of concepts than
we do and hence our task would be easier. On the other hand they evaluate
their approach under clean room conditions as they assume accurately identified
syntactic and semantic relationships and an elaborate ontology structure, while
our evaluation is based on very noisy input — rendering our task harder than
theirs.

Alfonseca and Manandhar [Alfonseca and Manandhar, 2002] have also addressed
the problem of assigning the correct ontological class to unknown words. Their
system is based on the distributional hypothesis, i.e. that words are similar to the
extent to which they share linguistic contexts. Based on this premise, they adopt
a vector-space model and exploit certain syntactic dependencies as features of the
vector representing a certain word. The unknown word is then assigned to the
category corresponding to the most similar vector. However, it is important to
mention that it is not clear from their paper whether they are actually evaluating

188

10.3. Related Work for Applications of CREAM

their system on the 1200 synsets/concepts or only on a smaller subset of these.

Fleischman and Hovy [Fleischman and Hovy, 2002] address the classification of
named entities into fine-grained categories. In particular, they categorize named
entities denoting persons into the following 8 categories: athlete, politician/-
government, clergy, businessperson, entertainer/ artist, lawyer, doctor/scientist,
police. Given this categorization task, they present an experiment in which they
examine 5 different Machine Learning algorithms: C4.5, a feed-forward neural
network, k-nearest Neighbors, a Support Vector Machine and a Naive Bayes
classifier. As features for the classifiers they make use of the frequencies of cer-
tain N-grams preceding and following the instance in question as well as topic
signature features which are complemented with synonymy and hyperonymy in-
formation from WordNet. Fleischman and Hovy’s results are certainly very high
in comparison to ours – and also to the ones of Hahn et al. [Hahn and Schnat-
tinger, 1998] and Alfonseca et al. [Alfonseca and Manandhar, 2002] – but on the
other hand, however, they address a more complex task than the MUC Named
Entity Task, they are still quite some way away from the number of categories
we consider here.

10.3. Related Work for Applications of CREAM

The annotation application for the CREAM framework presented in this thesis
are service annotation (10.3.1) and linguistic annotation (10.3.2).

10.3.1. Comparison with Service Annotation

In Chapter 7.2 we provide an original application of the CREAM framework,
CREAM-Service, to embed the process of Web service discovery (here: by brows-
ing Web pages and retrieving Web pages from search engines like Google), com-
position (here: by deep annotation and reasoning over logically possible config-
urations), and invocation (here: by OntoMat-Service-Surfer, and the mapping
to a client ontology). The consideration of semantic heterogeneity is germane to
CREAM-Service. It offers semantic translations as one of its core modules.

CREAM-Service does not aim at Web service discovery, composition and invo-
cation that is intelligent in the sense that it completely automates the task that
typically the user is supposed to do. Rather, it provides an interface, OntoMat-
Service-Surfer, that supports the intelligence of the user and guides him to add
semantic information to the extent that that only few logically valid paths remain
to be chosen from by the user.

To fully pursue such an objective, one needs a large set of different modules. We
have built on our existing experience and tool framework for Semantic Annotation

189

10. Comparison with Related Work

CREAM and for logical reasoning [Decker et al., 1999]. We have not yet dealt
with the issue of Web service flow execution and monitoring that is certainly
needed to complement our current version of CREAM-Service.

Frameworks that facilitate the building of Web service flows come closest to
our approach. A number of software systems are available to facilitate manual
composition of programs, and more recently web services. Such programs, which
include a diversity of workflow tools [van der Aalst, 1999; Ellis and Nutt, 1993],
and more recently service composition aids such as BizTalk Orchestration [Lowe,
2001] enable a software engineer to manually specify a composition of programs
to perform some task — though they typically neglect the aspect of semantic
heterogeneity that is core to CREAM-Service5.

Web Services Invocation Framework (WSIF) [Apache, 2004] is an open source
framework to execute any Web service, that can be described by a WSDL docu-
ment. However, it does not support the execution of a flow of web services.

Some technologies have been proposed that use some form of semantic markup
of Web services in order to automatically compose Web services to perform
some desired task (e.g. [Narayanan and McIlraith, 2002; Benjamins et al., 1998;
McIlraith and Son, 2002]). In [Narayanan and McIlraith, 2002], the authors use
situation calculus for representing Web service description and Petri nets for de-
scribing the execution behaviors of Web services. In [Benjamins et al., 1998], the
authors present an architecture of intelligent brokers that offer problem solving
methods that can be configured and used by the users according to their needs.
In [McIlraith and Son, 2002] the authors propose an extended version of Golog
for formalizing the provision of high-level generic procedures and customization
of constraints. In [Ponnekanti and Fox, 2002], the authors propose a rule-based
expert system to automatically compose Web services from existing Web services.

On the one hand most recent experiences from such advanced projects like IBrow,
however, have shown that automatic composition techniques cannot yet be car-
ried over to an open world setting. In such a scenario one needs to tightly
integrate the user of a Web service — such as we do in CREAM-Service. On the
other hand CREAM-Service can obviously be extended in the future to consider
more types of automatic semantic matchmaking, service discovery [Paolucci et
al., 2002; Sycara et al., 1999] and configuration of Web services into the Web
service planning phase.

10.3.2. Comparison with Linguistic Annotation

There are a vast amount of frameworks and tools developed for the purpose
of linguistic annotation. However, in Chapter 7.1 we focus on the discussion

5BizTalk even allows for XML-based (non-semantic) translations of data.

190

10.3. Related Work for Applications of CREAM

of frameworks for the annotation of anaphoric or discourse relations in written
texts. In the annotation scheme proposed by [Müller and Strube, 2001] in the
context of their annotation tool MMAX and in contrast to the one proposed in
Chapter 7.1, anaphoric relations are restricted to coreferring expressions, while
bridging relations are restricted to non-coreferring ones. In line with [Krahmer
and Piwek, 2000] and [van Deemter and Kibble, 2000] this is, in our view, a too
strict definition of anaphora, so that we propose a more relation-based classifi-
cation of anaphoric and bridging relations. Furthermore, in [Müller and Strube,
2001], anaphoric relations are further differentiated according to the lexical items
taking part in the relation. We have shown that under the assumption that the
corresponding grammatical information is provided by the annotators, such a
classification can be seen as a byproduct of a more semantic one such as out-
lined in Chapter 7.1. In addition, [Müller and Strube, 2001] propose to specify
antecedence with regard to equivalence classes rather than with regard to par-
ticular antecedents. However, this has the disadvantage that the information
about the actual antecedent which has been selected by an annotator is actu-
ally lost. Thus in our annotation proposal the fact that the Coreference relation
forms equivalence classes is modeled by an underlying axiom system which can
be exploited in the evaluation of a system against the annotation standard.

The annotation scheme proposed by Poesio et al. [Poesio and Vieira, 1998] is
a product of a corpus-based analysis of definite description (DD) use showing
that more than 50% of the DDs in their corpus are discourse new or unfamiliar.
Thus in Poesio et al.’s annotation scheme definite descriptions are also explicitely
annotated as discourse new.

The MUC coreference scheme [Hirschman and Chinchor, 1997] is restricted to
the annotation of coreference relations, where coreference is also defined as an
equivalence relation. Though this annotation scheme may seem quite simple, we
agree with [Hirschman and Chinchor, 1997] that it is complex enough when taking
into account the agreement of the annotators on a task. In fact, it has been shown
that the agreement of subjects annotating bridging [Poesio and Vieira, 1998] or
discourse [Cimiano, 2003] relations can be too low for tentative conclusion to
be drawn [Carletta, 1996]. The motivation of the MUC coreference scheme was
thus to develop an annotation scheme leading to a good agreement. On the
other hand, our motivation is to show how our ontology-based framework can be
applied to the annotation of anaphoric relations in written texts and from this
perspective the MUC coreference annotation scheme would have been in fact too
restricted to actually show all the advantages of our approach.

The UCREL [Fligelstone, 1992] and DRAMA [Passoneau, 1996] annotation
schemes are more related to ours than the schemata above in the sense that
they also provide a rich set of particular bridging relations that can be anno-
tated. However, in contrast to the ontology-based framework presented here,
these bridging relations are not constrained with regard to the conceptual types

191

10. Comparison with Related Work

of their arguments, so that erroneous annotations can not be avoided.

The coreference annotation scheme proposed within the MATE Workbench
project consists of a core as well as an extended scheme [Davies et al., 1998].
The core scheme is in principle identical to the MUC coreference scheme and is
restricted to the annotation of coreference in the sense of [van Deemter and Kib-
ble, 2000]. The extended scheme also allows the annotation of bound anaphors,
of the relationship between a function and its values, of different set, part and
possesion relations, of instantiation relations as well as of event relations. The
MATE scheme is related to our ontology-based annotation scheme in the sense
that relations are also annotated as triples via the link -tag [Davies et al., 1998].
As in our framework, the MATE scheme also allows ambiguities of reference to
be marked up. However, in contrast to the MATE scheme our framework has
no means to specify a preference order on these ambiguous antecedents. On the
other hand, the MATE scheme also includes a reasonable and complete taxonomy
of markables as well as some features relevant for the annotation of coreference in
dialogues such as the treatment of hesitations, disfluencies and misunderstand-
ings.

10.4. Related Work for Evaluation

Our evaluation of inter–annotator agreement is a corresponding investigation to
studies of consist inter–linking of hypertexts or inter-indexing in library science.
On a rough view there is an analogy between indexing a document and identifying
ontology objects for documents. There is also an analogy for the creating of
links between hypertext nodes compared to creating relations between ontology
objects. However, the goals of each approach are not quite comparable and the
ontology structures are more complex than hypertext links and indices.

The survey [Leonard, 1977] describes the measurement of the extent to which
agreement exists among different indexers on the sets of index terms to be as-
signed to individual documents. The study shows that there is a low level of
agreement between the sets of index terms assigned to a document by different
indexers. Even the levels of consistency identifiable in the work of a single in-
dexer on a collection of documents are often comparably low. The results from
the measurement of inter-linker consistency in hypertext databases as shown in
[Ellis et al., 1994] are similar. The work describes an experiment in which the
degree of similarity is measured between a number of hypertext databases that
share a common set of nodes but whose link-sets have been manually created by
different people. In the result the inter–linker consistency is low and varying.
The results of inter–indexing and inter–linking studies are comparable with our
principal conclusion that high levels of agreement are rarely achieved.

A lot of work on evaluating information extraction systems has been done in the

192

10.4. Related Work for Evaluation

Message Understanding Conferences (MUC). In [Lehnert et al., 1994] it is de-
scribed how the basic evaluation text corpus has been developed in a distributed
manner. All contributing sites generated template representations for some spec-
ified segment of the 1300 texts. Pairwise combinations of sites were expected to
compare overlapping portions of their results and work out any differences that
emerged. The authors note that it takes an experienced researcher three days
to cover 100 texts and produce good quality template representation for these
texts. However the question, how quality is measured, remains open in their pa-
per. The authors state that their “estimate also finesses the fact that two people
will seldom agree on the complete representation which can then be compared,
discussed and adjusted as needed.”

[Noy et al., 2000] describes an empirical evaluation of a knowledge acquisition
tool with the target of building domain knowledge bases. Military experts have
been taken as subjects that had no experience in knowledge acquisition or com-
puter science in general. Evaluation criteria are defined along several dimensions,
namely the knowledge-acquisition rate, the ability to find errors, the quality of
knowledge entries, the error–covery rate, the retention of skills and the subjective
opinion. The results document the ability of these subjects to work on a complex
knowledge-entry task and highlight the importance of an effective user interface
enhancing the knowledge– acquisition process.

193

10. Comparison with Related Work

194

11. Conclusion and Future Work

This thesis began with the observation that Semantic Annotation is a prerequisite
for the Semantic Web. The thesis shows how the problem of metadata creation
can be tackled by means of a comprehensive annotation framework. The disser-
tation discusses the requirements for the design, application and evaluation of an
ontology-based annotation framework as well as the prototypical implementation.

The concluding chapter is divided into four sections describing the contributions
of this thesis in more detail, followed by the insight gained into Semantic Anno-
tation, the open questions and topics for future research.

11.1. Contributions

The contributions made by this thesis fall into the following categories:

• Identification of the annotation problem and definition of the re-
quirements. Given the problems with syntax, semantics and pragmatics
with annotation we identified the requirements of: consistency, proper ref-
erence, avoidance of redundancy, relational metadata, maintenance, ease of
use and efficiency.

• Design of a comprehensive and pioneering annotation framework
that reduces the complexity of Semantic Annotation for the annotator. The
framework employs a comprehensive set of modules including inference
services, crawler, document management system, ontology guidance/fact
browser, and document editors/viewers. Process issues pertaining to the
annotation/authoring task are modularized from content descriptions by a
meta ontology. The framework has been prototypically implemented in
the open source project OntoMat1 hosted by the DARPA DAML program.
OntoMat is the reference implementation of the CREAM framework. It is
Java-based and provides a plug-in interface for extensions for further ap-
plications. It has been used in several cases, e.g. the annotation of paper
abstracts for the International Conferences on Semantic Web (ISWC 2002,

1http://projects.semwebcentral.org/projects/ontomat/

195

11. Conclusion and Future Work

2003, 2004) by each of the authors. Also it is in use on class room ma-
chines in an obligatory Semantic Web course2 for informatics students in
Prague,on which some 250 people enroll every year.

The annotation framework comprised methods especially for:

– Manual Annotation: The transformation of existing syntactical re-
sources, viz. documents, into relational knowledge structures which
represent the underlying information.

– Authoring of Documents: Authoring lets users create metadata
— almost for free — while putting together the content of a page.

– Semi-automatic Annotation: Semi-automatic Annotation based
on Information Extraction.

– Deep Annotation: Considers Web pages which are generated from
a database by annotation of the underlaying database.

• Demonstration of the flexibility of the annotation framework by the appli-
cation on linguistic annotation and service annotation. The thesis
shows how to exploit the basic framework easily for linguistic annotation.
Furthermore, it shows how to apply the deep annotation framework also to
annotation and composition of Web services.

• The thesis shows how toevaluate Semantic Annotation using several
different measures applied within a gold standard and inter-annotator set-
ting. It provides a case study for evaluating human annotation in compari-
son with semi-automatic annotation evaluating the annotation framework.

11.2. Insights into Semantic Annotation

In addition to the major contributions listed above, this research provides several
additional insights into Semantic Annotation. This section lists the most salient
perspectives.

• Comprehensive Annotation Format: Semantic Metadata are, simply
expressed, facts that are related to a domain ontology. Though this may
appear trivial at first, however this easily conflicts with several other re-
quirements. We also need a meta ontology describing how the domain
ontology should be used by the annotation framework. Furthermore, there
is the requirement for remote storage of annotation, which leads to the
need for a robust referencing scheme, viz. XPointer. Also, there is the need
for the provision of metametadata, e.g. author, date, time and location of

2http://nb.vse.cz/˜svatek/modz.htm

196

11.3. Open Questions

annotation. In addition, different requirements exist for different semantics
of Semantic Annotation as well as the need to express different aspects of
the content in metadata viz. a layering of the annotation (e.g. Structural
Annotation, Lexical Annotation, Semantic Annotation).

• Automatization: Automatization is vital to ease the knowledge acquisi-
tion bottleneck. To achieve this, the integration of knowledge extraction
technologies into the annotation environment has been undertaken. This
is used to semi-automatically identify entities in text that are instances
of a particular class and relations between the classes. As the evalua-
tion showed, HCI implications are also important here, so that a semi-
automated tool can be used effectively by Web users without expertise in
natural language processing methods.

• User centric design: Annotation is a potential knowledge acquisition
bottleneck as discussed above. To ease the constriction, annotation has to
be carried out by people who are not specialist annotators. To facilitate the
annotation task is especially important for the success of the Semantic Web.
The Annotation interfaces must, therefore, bridge the gap between formal
descriptions of knowledge and Web users understanding their domains of
interest. A good approach is therefore a semantic authoring environment,
so that the environment in which users annotate documents is the same as
the one in which they create, read and edit them.

11.3. Open Questions

In a topic like Semantic Annotation, which is novel and relatively unexplored
it is natural that it raises new questions while it answers old ones. Hence, the
general problem of metadata creation remains interesting. In this section the
open questions that are not answered are identified:

• Firstly, the question of scalability to more and larger dimensions. Like
“what happens if there are 100,000 people known in your annotation in-
ference server?”. Even for the evaluation we had to prune the ontology in
order to make it feasible for the annotation task.

• Secondly, Semantic Annotation takes place within the Semantic Web. For
the proper creation of relational metadata we need unique identifiers of
persons, institutes or companies. While crawling of existing metadata helps
to reduce this problem it is not solved and possibly may never be.

• Thirdly, we are still in the early stages with respect to providing method-
ological guidelines for the purposes of Semantic Annotation.

197

11. Conclusion and Future Work

• Fourthly, probably the most important for the Semantic Web. How to
create incentives for annotation?

11.4. Future Research

A number of future research topics and challenges have already been listed at
the end of each chapter, e.g.

• Improvement of semi-automatic Annotation: The process to gener-
ate the discourse representation is not automatic but relies on hand crafted
rules. In the ideal scenario, the information extraction system would be
ontology-aware and therefore learn the discourse structure of the given
documents as well. To extend the information extraction system in this
way was not possible for us because we were able to use Amilcare only as
a black box component. We envisage therefore further research to spec-
ify and implement this type of an ontology-aware information extraction
component. In addition, to use information extraction one needs a rather
large amount of previously annotated documents, which is only useful if
one has to annotate a group of similar documents. As regards to relational
metadata, we have only covered the relationships within one document,
but not relationships which points towards another document, viz. seman-
ticly enriched hyperlinks. The semi-automatic annotation of interrelated
documents is therefore a topic for further research.

• Improvement of Self-Annotating Web: The self-annotating Web is not
possible with the kind of implementation that we provided. The reason for
this is that we have issued an extremely large number of queries against
the Google API — to an extent that would not scale towards thousands or
even millions of Web pages in a reasonable time-frame. However, we envi-
sion an optimized indexing scheme and API that would reduce this number
to acceptable load levels. Furthermore, in order to reduce the amount of
queries sent to the Google Web service API, a more intelligent strategy
should be devised, which takes into account the ontological hierarchy be-
tween concepts.

• Improvement of Deep Annotation: Granularity and automatic deriva-
tion of server-side Web page markup. Granularity: So far we have only
considered atomic database fields. For instance, one may find a string
“Proceedings of the Eleventh International World Wide Web Conference,
WWW2002, Honolulu, Hawaii, USA, 7-11 May 2002.” as a title of a book
whereas one might rather be interested in separating this field into title,
location and date. Automatic derivation of server-side Web page markup:

198

11.5. Summary

A content management system like Zope could provide the means for au-
tomatically deriving server-side Web page markup for deep annotation.

• Ontology Evolution and Annotation: There exists a tight inter linkage
between evolving ontologies and Semantic Annotation of documents. In a
realistic Semantic Web scenario, incoming information that is to be anno-
tated does not only require more annotating, but also continuous adap-
tation to new semantic terminology and relationships. Stojanovic et. al.
(cf., [Stojanovic et al., 2002b]) gives first insights in this topic. However,
further research must elaborate in great detail how ontology re-visioning
may influence Semantic Annotation and the appropriate strategies to cope
with that.

• Multimedia Annotation: Multimedia annotation requires a different ap-
proach to content and semantics, e.g. one has to deal with the video or
audio content given in multimedia standards. One challenge here is to
combine multimedia standards (like, MPEG-7, MPEG-21, SMIL) with re-
cently established Semantic Web technologies (RDF, OWL) to describe ex-
plicit relational metadata with formal semantics. The semantic description
needs to represent aspects of time and space. Another research challenge
is semi-automatic annotation of multimedia content which needs a trans-
formation from relatively easily extractable low-level audiovisual features
(e.g. color, shapes, movements) into high-level semantic concepts (e.g. goal-
keeper, score a goal) represented by a domain ontology (e.g. football on-
tology). This research question is currently tackled by the 6th Framework
EU IST project “aceMedia”3.

11.5. Summary

Documents created by Semantic Annotation bring the advantages of semantic
search and interoperability. These benefits, however, come at the cost of an
increased authoring effort. In this thesis we have, therefore, presented a com-
prehensive framework which support users in dealing with the documents, the
ontologies and the annotations that link documents to ontologies.

Future research challenges include further improvements to automatic annota-
tion components, such as relation extraction, and developing support systems
for ontology evolution. There are also important human computer interaction
challenges inherent in building integrated systems of this complexity.

3http://www.acemedia.org/

199

11. Conclusion and Future Work

200

Part V.

Appendix

201

A. Metadata Standards

203

A. Metadata Standards

Coverage Content Scope of the content of the resource,

e.g. location, time period or jurisdiction

Description Content Content of the resource

Relation Content Reference to a related resource

Source Content Reference to a resource from which

the present resource is derived from

Subject Content Topic of the resource

Title Content Name given to resource

Type Content Nature of the content of the resource

Contributor Intellectual Name of institutions and persons

Property contributing to resource

Creator Intellectual Name of creator of resource

Property

Publisher Intellectual Name of entity responsible

Property for making the resource available

Rights Intellectual Information about rights held in and

Property over the resource

Date Instantiation Data associated with an event in the life cycle of

the resource recommended for the encoding is

ISO 8601

Format Instantiation Physical or digital manifestation of the resource

recommended is to follow

http://www.isi.edu/in-notes/

iana/assignments/media-types/media-types

Identifier Instantiation unambiguous reference to the resource

within a given context, e.g. URI

Language Instantiation Language the resource is in, according to RFC1766

(obsuleted by RFC3066)

Table A.1.: Dublin Core Elements

204

B. Glossary

an alphabetical list of technical terms in some specialized
field of knowledge; usually published as an appendix to a
text on that field

• Annotation: a comment or instruction (usually added); ”his notes were
appended at the end of the article”; ”he added a short notation to the
address on the envelope”. WordNet (r) 2.0

• HTML: A markup language that is a subset of SGML and is used to create
hypertext and hypermedia documents on the World Wide Web incorporat-
ing text, graphics, sound, video, and hyperlinks. Merriam-Webster Online

• Markup: In computerised document preparation, a method of adding in-
formation to the text indicating the logical components of a document, or
instructions for layout of the text on the page or other information which
can be interpreted by some automatic system. The Free On-line Dictionary
of Computing

• Metadata: Metadata is data about data. A good example is a library
catalog card, which contains data about the nature and location of a book:
it is data about the data in the book referred to by the card.

• Ontology :

– Artificial intelligence: (From philosophy) An explicit formal specifica-
tion of how to represent the objects, concepts and other entities that
are assumed to exist in some area of interest and the relationships
that hold among them.

For AI systems, what ”exists” is that which can be represented. When
the knowledge about a domain is represented in a declarative language,
the set of objects that can be represented is called the universe of
discourse. We can describe the ontology of a program by defining
a set of representational terms. Definitions associate the names of
entities in the universe of discourse (e.g. classes, relations, functions
or other objects) with human-readable text describing what the names

205

B. Glossary

mean, and formal axioms that constrain the interpretation and well-
formed use of these terms. Formally, an ontology is the statement of
a logical theory.

A set of agents that share the same ontology will be able to com-
municate about a domain of discourse without necessarily operating
on a globally shared theory. We say that an agent commits to an
ontology if its observable actions are consistent with the definitions
in the ontology. The idea of ontological commitment is based on the
Knowledge-Level perspective.The Free On-line Dictionary of Comput-
ing

– Information science: The hierarchical structuring of knowledge about
things by subcategorising them according to their essential (or at least
relevant and/or cognitive) qualities. See subject index. This is an ex-
tension of the previous senses of ”ontology” (above) which has become
common in discussions about the difficulty of maintaining subject in-
dices.The Free On-line Dictionary of Computing

• Relational Metadata: Metadata is data about data. A good example is a
library catalog card, which contains data about the nature and location of
a book: it is data about the data in the book referred to by the card.

• Semantic: In general, Semantics (from the Greek semantikos, or ”signifi-
cant meaning,” derived from ”sema,” sign) refers to the study of meaning,
in some sense of that term. Semantics is often opposed to syntax, in which
case the former pertains to what something means while the latter pertains
to the formal structure/patterns in which something is expressed (e.g. writ-
ten or spoken). From Wikipedia, the free encyclopedia

• Semantic Annotation: The term Semantic Annotation describes a process
as well as the outcome of the process (cf. with term “drawing”). Hence it
describes i) the process of addition of semantic information or metadata
to the content given an agreed ontology and ii) it describes the semantic
metadata itself as a result of this process.

• Semantic Web:

– The Semantic Web is an extension of the current Web in which infor-
mation is given well-defined meaning, better enabling computers and
people to work in cooperation. [Berners-Lee et al., 2001]

– A term coined by Tim Berners-Lee which views the future Web as a
web of data, like a global database. The infrastructure of the Semantic
Web would allow machines as well as humans to make deductions and
organize information. The architectural components include semantics
(meaning of the elements), structure (organization of the elements),

206

and syntax (communication). from http://www.w3.org/DesignIssues/
Semantic.html

• Software Agent : In computer science, a software agent is a piece of au-
tonomous, or semi-autonomous proactive and reactive, computer software.
Many individual communicative software agents may form a multi-agent
system. From Wikipedia, the free encyclopedia

• URI A Uniform Resource Identifier (URI), is an Internet protocol element
consisting of a short string of characters that conform to a certain syntax.
The string indicates a name or address that can be used to refer to an
abstract or physical resource.

URIs are a superset of the more commonly-known Uniform Resource Lo-
cator used for website addressing. A URI can be classified as a locator, a
name, or both. URLs are the subset of URIs that, in addition to identify-
ing a resource, provide a means of locating the resource by describing its
primary access mechanism (e.g., its network ”location”). From Wikipedia,
the free encyclopedia

• URL Uniform Resource Locator, URL (pronounced as ”earl”), or Web ad-
dress, is a standardized address for some resource (such as a document or
image) on the Internet. URLs are classified by the ”scheme” which typ-
ically identifies the network protocol used to retrieve the resource over a
computer network. From Wikipedia, the free encyclopedia

• World Wide Web: (the ”Web” or ”WWW” for short) is a hypertext sys-
tem that operates over the Internet. Hypertext is browsed using a program
called a Web browser which retrieves pieces of information (called ”docu-
ments” or ”Web pages”) from Web servers (or ”Web sites”) and displays
them on your screen. You can then follow hyperlinks on each page to other
documents or even send information back to the server to interact with it.
The act of following hyperlinks is often called ”surfing” the Web. From
Wikipedia, the free encyclopedia

207

B. Glossary

208

Bibliography

[Agarwal et al., 2003] S. Agarwal, S. Handschuh, and S. Staab. Surfing the Ser-
vice Web. In Fensel et al. [2003], pages 211–226.

[Agirre et al., 2000] E. Agirre, O. Ansa, E. Hovy, and D. Martinez. Enriching
Very Large Ontologies Using the WWW. In Proceedings of the First Workshop
on Ontology Learning OL’2000 Berlin, Germany, August 25, 2000, 2000. Held
in Conjunction with the 14th European Conference on Artificial Intelligence
ECAI’2000, Berlin, Germany.

[Alfonseca and Manandhar, 2002] E. Alfonseca and S. Manandhar. Extending a
Lexical Ontology by a Combination of Distributional Semantics Signatures. In
Gómez-Pérez and Benjamins [2002], pages 1–7.

[Ankolekar et al., 2002] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila,
D. McDermott, D. Martin, S. A. McIlraith, S. Narayanan, M. Paolucci, and
T. Payne. DAML-S: Web Service Description for the Semantic Web. In Hendler
and Horrocks [2002].

[Antoniou and van Harmelen, 2004] G. Antoniou and F. van Harmelen. Web
Ontology Language: OWL. In S. Staab and R. Studer, editors, Handbook on
Ontologies, Handbooks in Information Systems, pages 67–92. Springer, 2004.

[Apache, 2004] Apache. Web Services Invocation Framework, 2004.

[Appelt et al., 1993] D. Appelt, J. Hobbs, J. Bear, D. Israel, M. Kameyama, and
M. Tyson. FASTUS: A Finite State Processor for Information Extraction from
Real World Text. In Proceedings of the 13th International Joint Conference
on Artificial Intelligence (IJCAI), 1993.

[Asher and Lascarides, 1999] N. Asher and A. Lascarides. Bridging. Journal of
Semantics, 15:83–113, 1999.

[Bechhofer and Goble, 2001] S. Bechhofer and C. Goble. Towards Annotation
using DAML+OIL. In Proceedings of the Knowledge Markup and Semantic
Annotation Workshop 2001 (at K-CAP 2001), pages 13–20, Victoria, BC,
Canada, October 2001.

209

Bibliography

[Bechhofer et al., 2002] S. Bechhofer, L. Carr, C. Goble, S. Kampa, and T. Miles-
Board. The Semantics of Semantic Annotation. In ODBASE: First Interna-
tional Conference on Ontologies, DataBases, and Applications of Semantics
for Large Scale Information Systems, pages 1152 – 1167, Irvine, California,
October 2002.

[Benjamins et al., 1998] V. R. Benjamins, E. Plaza, E. Motta, D. Fensel,
R. Studer, B. Wielinga, G. Schreiber, and Z. Zdrahal. IBROW3 - An in-
telligent brokering service for knowledge-component reuse on the World Wide
Web. In Proc.11th Banff Knowledge Acquisition for Knowledge-Based System
Workshop (KAW98), 1998.

[Benjamins et al., 1999] V. R. Benjamins, D. Fensel, and S. Decker. KA2: Build-
ing Ontologies for the Internet: A Midterm Report. International Journal of
Human Computer Studies, 51(3):687–713, 1999.

[Bergamaschi et al., 2001] S. Bergamaschi, S. Castano, D. Beneventano, and
M. Vincini. Semantic Integration of Heterogeneous Information Sources. In
Special Issue on Intelligent Information Integration, Data & Knowledge Engi-
neering, volume 36, pages 215–249. Elsevier Science B.V., 2001.

[Berners-Lee et al., 2001] T. Berners-Lee, J. Hendler, and O. Lassila. The Se-
mantic Web. Scientific American, pages 30–37, Mai 2001.

[Blythe and Gil, 2004] J. Blythe and Y. Gil. Incremental Formalization of Doc-
ument Annotations through Ontology-Based Paraphrasing. In Feldman et al.
[2004], pages 17–22.

[Bray et al., 2004] T. Bray, J. Paoli, and C.M. Sperberg-McQueen. Ex-
tensible markup language (XML) 1.0. Technical report, W3C, 2004.
http://www.w3.org/TR/REC-xml.

[Brickley and Guha, 2004] D. Brickley and R.V. Guha. RDF Vocabulary De-
scription Language 1.0: RDF Schema. Technical report, W3C, Feb. 2004.
W3C Working Draft. http://www.w3.org/TR/rdf-schema/.

[Broekstra et al., 2001] J. Broekstra, M. Klein, S. Decker, D. Fensel, F. van
Harmelen, and I. Horrocks. Enabling Knowledge Representation on the Web
by Extending RDF Schema. In Proceedings of WWW 2001, pages 467–478.
ACM Press, 2001.

[Carletta, 1996] J. Carletta. Assessing Agreement on Classification Tasks: The
Kappa Statistic. Computational Linguistics, 22(2):249–254, 1996.

[Charniak and Berland, 1999] E. Charniak and M. Berland. Finding Parts in
Very Large Corpora. In Proceedings of the 37th Annual Meeting of the ACL,
pages 57–64, 1999.

210

Bibliography

[Chen et al., 2003] Y.-F.R. Chen, L. Kovács, and S. Lawrence, editors. WWW-
2002 — Proceedings of the 12th International Conference on the World Wide
Web. ACM Press, 2003. Budapest, Hungary, May, 2003.

[Cimiano and Handschuh, 2003] P. Cimiano and S. Handschuh. Ontology-based
Linguistic Annotation. In Proceedings of the Workshop on Linguistic Annota-
tion at the ACL, 2003.

[Cimiano et al., 2004] P. Cimiano, S. Handschuh, and S. Staab. Towards the
Self-Annotating Web. In Feldman et al. [2004], pages 462–471.

[Cimiano, 2003] P. Cimiano. Ontology-driven discourse analysis in GenIE. In
Proceedings of the 8th International Conference on Applications of Natural
Language to Information Systems, pages 77–90, 2003.

[Ciravegna et al., 2003] F. Ciravegna, A. Dingli, D. Guthrie, and Y. Wilks. Inte-
grating Information to Bootstrap Information Extraction from Web Sites. In
IJCAI 2003 Workshop on Information Integration on the Web, Workshop in
Conjunction with the 18th International Joint Conference on Artificial Intel-
ligence (IJCAI 2003), Acapulco, Mexico, August, 9-15, pages 9–14, 2003.

[Ciravegna, 2001a] F. Ciravegna. Adaptive Information Extraction from Text by
Rule Induction and Generalisation. In Bernhard Nebel, editor, Proceedings of
the seventeenth International Conference on Artificial Intelligence (IJCAI-01),
pages 1251–1256, San Francisco, CA, August 4-10 2001. Morgan Kaufmann
Publishers, Inc.

[Ciravegna, 2001b] F. Ciravegna. Challenges in Information Extraction from
Text for Knowledge Management. IEEE Intelligent Systems and their Ap-
plications, 16(6):88–90, 2001.

[Ciravegna, 2001c] F. Ciravegna. (LP)2, an Adaptive Algorithm for Informa-
tion Extraction from Web-Related Texts. In Proceedings of the IJCAI-2001
Workshop on Adaptive Text Extraction and Mining held in Conjunction with
17th International Joint Conference on Artificial Intelligence (IJCAI), Seattle,
USA, August 2001.

[Clark and DeRose, 1999] J. Clark and S. DeRose. XML Path Lan-
guage (XPath), W3C Recommendation 16 November 1999, 1999.
http://www.w3.org/TR/xpath.

[Clauß and Ebner, 1995] G. Clauß and H. Ebner. Grundlagen der Statistik für
Psychologen, Pädagogen und Soziologen. Harri Deutsch Verlag, Januar 1995.

[Cohen, 1998] W. Cohen. The WHIRL Approach to Data Integration. IEEE
Intelligent Systems, pages 1320–1324, 1998.

211

Bibliography

[Collier et al., 2004] N. Collier, A. Kawazoe, A. A. Kitamoto, T. Wattarujeekrit,
T. Y. Mizuta, and A. Mullen. Integrating Deep and Shallow Semantic Struc-
tures in Open Ontology Forge. Special Interest Group on Semantic Web and
Ontology. JSAI (Japanese Society for Artificial Intelligence), 2004.

[Collier, 2001] N. Collier. Machine Learning for Information Extraction from
XML Markup-up Text on the Semantic Web. In Proceedings of the Semantic
Web Workshop at the Tenth International Conference on the World Wide Web
(WWW’10), pages 22–36, Hong Kong, May 2001.

[Constantopoulos et al., 2000] P. Constantopoulos, V. Christophides, and
D. Plexousakis, editors. SemWeb 2000 — Proceedings of the First Interna-
tional Workshop on the Semantic Web, 2000. Workshop at ECDL-2000, Lis-
bon, Portugal, September, 2000.

[Critchlow et al., 1998] T. Critchlow, M. Ganesh, and R. Musick. Automatic
Generation of Warehouse Mediators Using an Ontology Engine. In Proceed-
ings of the 5 th International Workshop on Knowledge Representation meets
Databases (KRDB’98), pages 8.1–8.8, 1998.

[Davies et al., 1998] S. Davies, M. Poesio, F. Bruneseaux, and L. Romary. An-
notating Coreference in Dialogues: Proposal for a Scheme for MATE, 1998.
http://www.cogsci.ed.ac.uk/p̃oesio/anno manual.html.

[de Cea et al., 2002] G. Aguado de Cea, I. varez de Mon, A. Gez-P ez, A. Pareja-
Lora, and R. Plaza-Arteche. A Semantic Web Page Linguistic Annotation
Model. In Semantic Web Meets Language Resources. Papers from the AAAI
Workshop, 2002. http://www.cs.vassar.edu/ ide/events/ParejaLora.pdf.

[Decker et al., 1998] S. Decker, D. Brickley, J. Saarela, and J. Angele. A
Query and Inference Service for RDF. In Proceedings of the W3C
Query Language Workshop (QL-98), Boston, MA, December 3-4, 1998.
http://www.w3.org/TandS/QL/QL98/.

[Decker et al., 1999] S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobro-
ker: Ontology Based Access to Distributed and Semi-Structured Information.
In R. Meersman et al., editors, Database Semantics: Semantic Issues in Mul-
timedia Systems, pages 351–369. Kluwer Academic Publisher, 1999.

[Decker, 2002] S. Decker. Semantic Web Methods for Knowledge Management.
PhD thesis, University of Karlsruhe, 2002.

[Decker, 2004] S. Decker. Semantic Web Community Portal. Web page, 2004.
http://www.semanticweb.org.

212

Bibliography

[Denoue and Vignollet, 2000] L. Denoue and L. Vignollet. An Annota-
tion Tool for Web Browsers and its Applications to Information Re-
trieval. In Proceedings of RIAO2000, Paris, April 2000. http://www.univ-
savoie.fr/labos/syscom/Laurent.Denoue/riao2000.doc.

[DeRose et al., 2001] S. DeRose, R. Daniel Jr., E. Maler, J. Marh, and N. Walsh.
XML Pointer Language (XPointer). Technical report, W3C, 2001. Working
Draft 16 August 2002.

[DeRose et al., 2002] S. DeRose, E. Maler, and R. Daniel Jr. XPointer xpointer()
Scheme, 2002. http://www.w3.org/TR/xptr-xpointer/.

[DeRose et al., 2003] S. DeRose, R. Daniel Jr., E. Maler, and J. Marsh. XPointer
xmlns() Scheme, 2003. http://www.w3.org/TR/xptr-xmlns/.

[DeRoure and Iyengar, 2002] D. DeRoure and A. Iyengar, editors. WWW-2002
— Proceedings of the 11th International Conference on the World Wide Web.
ACM Press, 2002. Honolulu, Hawaii, May, 2002.

[Dill et al., 2003] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran,
T. Kanungo, S. Rajagopalan, A. Tomkins, J.A. Tomlin, and J.Y. Zien. Sem-
Tag and Seeker: Bootstrapping the Semantic Web via Automated Semantic
Annotation. In Proceedings of the 12th International Conference on World
Wide Web, pages 178–186. ACM Press, 2003.

[Doan et al., 2002] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learn-
ing to map between ontologies on the semantic web. In DeRoure and Iyengar
[2002], pages 662–673. Honolulu, Hawaii, May, 2002.

[Douthat, 1998] A. Douthat. The Message Understanding Con-
ference Scoring Software User’s Manual. In 7th Mes-
sage Understanding Conference Proceedings, MUC-7, 1998.
http://www.itl.nist.gov/iaui/894.02/related projects/muc/.

[dub, 2001] Dublin Core Metadata Initiative, April 2001.
http://purl.oclc.org/dc/.

[Dublin Core Metadata Template, 2001] Dublin Core Metadata Template, 2001.
http://www.ub2.lu.se/metadata/DC creator.html.

[Ellis and Nutt, 1993] C.A. Ellis and G.J. Nutt. Modelling and enactment of
Workflow Systems. Application and Theory of Petri Nets, LNCS 691:Modelling
and enactment of workflow systems, 1993.

[Ellis et al., 1994] D. Ellis, J. Furner-Hines, and P. Willett. On the Measure-
ment of Inter-Linker Consistency and Retrieval Effectiveness in Hypertext

213

Bibliography

Databases. In Proceedings of the 17th annual International ACM SIGIR Con-
ference on Research and Development in Information, pages 51–60, Berlin,
1994. Springer.

[Erdmann et al., 2000] M. Erdmann, A. Maedche, H.-P. Schnurr, and S. Staab.
From Manual to Semi-Automatic Semantic Annotation: About Ontology-
Based Text Annotation Tools. In P. Buitelaar & K. Hasida (eds). Proceedings
of the COLING 2000 Workshop on Semantic Annotation and Intelligent Con-
tent, Luxembourg, August 2000.

[Eriksson et al., 1999] H. Eriksson, R. Fergerson, Y. Shahar, and M. Musen.
Automatic Generation of Ontology Editors. In Proceedings of the 12th In-
ternational Workshop on Knowledge Acquisition, Modelling and Management
(KAW’99), Banff, Canada, October, 1999.

[Euzenat, 2002] J. Euzenat. Eight Questions about Semantic Web Annotations.
IEEE Intelligent Systems, 17(2):55–62, Mar/Apr 2002.

[F-Logic Tutorial, 2004] How to Write F-Logic Programs. A Tutorial for
the Language F-Logic, (covers OntoBroker Version 3.7.x-3.8.x), 2004.
http://www.ontoprise.de/documents/tutorial flogic.pdf.

[Farquhar et al., 1996] A. Farquhar, R. Fickas, and J. Rice. The Ontolingua
Server: A Tool for Collaborative Ontology Construction. In Proceedings of
the 10th Banff Knowledge Acquisition for KnowledgeBased System Workshop
(KAW’96), Banff, Canada, November 1996.

[Feldman et al., 2004] Stuart I. Feldman, Mike Uretsky, Marc Najork, and
Craig E. Wills, editors. Proceedings of the 13th international conference on
World Wide Web, WWW 2004, New York, NY, USA, May 17-20, 2004. ACM,
2004.

[Fensel et al., 1999] D. Fensel, J. Angele, S. Decker, M. Erdmann, H.-P. Schnurr,
S. Staab, R. Studer, and A. Witt. On2broker: Semantic-Based Access to
Information Sources at the WWW. In Proceedings of the World Conference
on the WWW and Internet (WebNet 99), Honolulu, Hawaii, USA, pages 366–
371, 1999.

[Fensel et al., 2002] D. Fensel, H. Lieberman, J. Hendler, and W. Wahlster, edi-
tors. Spinning the Semantic Web, Cambridge, MA, USA, 2002. MIT Press.

[Fensel et al., 2003] D. Fensel, K. P. Sycara, and J. Mylopoulos, editors. ISWC-
2003 — Proceedings of the Second International Semantic Web Conference,
LNCS 2870. Springer, 2003.

[Fensel, 2001] D. Fensel. Ontologies: Silver Bullet for Knowledge Management
and Electronic Commerce. Springer, Berlin - Heidelberg - New York, 2001.

214

Bibliography

[Fillies and Weichhardt, 2002] C. Fillies and F. Weichhardt. Graphische En-
twicklung und Nutzung von Ontologien mit SemTalk in MS Office. In R. Tolks-
dorf and R. Eckstein, editors, XML Technologien für das Semantic Web —
XSW 2002, GI-Edition — Lecture Notes in Informatics (LNI), P-14. Bonner
Köllen Verlag, 2002. Workshop 24. – 25. Juni 2002 in Berlin.

[Flake et al., 2002] G.W. Flake, S. Lawrence, C.L. Giles, and F.M. Coetzee.
Self-Organization and Identification of Web Communities. IEEE Computer,
35(3):66–70, March 2002.

[Fleischman and Hovy, 2002] M. Fleischman and E. Hovy. Fine Grained Classi-
fication of Named Entities. In Proceedings of the Conference on Computational
Linguistics, Taipei, Taiwan, August 2002, 2002.

[Fligelstone, 1992] S. Fligelstone. Developing a Scheme for Annotating Text to
Show Anaphoric Relations. In G. Leitner, editor, New Directions in Corpus
Linguistics, pages 153–170. Mouton de Gruyter, 1992.

[Frank et al., 2002a] M. Frank, N. Fridman-Noy, and S. Staab, edi-
tors. Proceedings of the International Workshop on the Semantic
Web, CEUR Workshop Proceedings Vol. 55. http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-55/, 2002. Workshop at WWW-2002,
Honolulu, Hawaii, USA, May, 2002.

[Frank et al., 2002b] M. Frank, P. Szekely, R. Neches, B. Yan, and J. Lopez.
WebScripter: World-Wide Grass-Roots Ontology Translation via Implicit End-
User Alignment. In M. Frank, N. Noy, and S. Staab, editors, Proceedings of the
Semantic Web Workshop 2002 (at WWW-2002), CEUR Proceedings, Volume
55, http://www.ceur-ws.org, pages 22–28, 2002.

[Genesereth and Fikes, 1992] M.R. Genesereth and R.E. Fikes. Knowledge In-
terchange Format Version 3.0 Reference Manual. Report Logic 92-1, Stanford
Logic Group, June 1992. http://logic.stanford.edu/sharing/papers/kif.ps.

[Gil and Ratnakar, 2002] Y. Gil and V. Ratnakar. Trellis: an interactive tool
for capturing information analysis and decision making. In Gómez-Pérez and
Benjamins [2002], pages 37–42.

[Glover et al., 2002] E.J. Glover, K. Tsioutsiouliklis, S. Lawrence, D.M. Pennock,
and G.W. Flake. Using Web Structure for Classifying and Describing Web
Pages. In Proceedings of the Eleventh International Conference on World Wide
Web, pages 562–569. ACM Press, 2002.

[Goble et al., 2001] C. Goble, S. Bechhofer, L. Carr, D. De Roure, and W. Hall.
Conceptual Open Hypermedia = The Semantic Web? In S. Staab, S. Decker,
D. Fensel, and A. Sheth, editors, The Second International Workshop on

215

Bibliography

the Semantic Web, CEUR Proceedings, Volume 40, http://www.ceur-ws.org,
pages 44–50, Hong Kong, May 2001.

[Gómez-Pérez and Benjamins, 2002] Asunción Gómez-Pérez and V. Richard
Benjamins, editors. Knowledge Engineering and Knowledge Management. On-
tologies and the Semantic Web, 13th International Conference, EKAW 2002,
Siguenza, Spain, October 1-4, 2002, Proceedings, volume 2473 of Lecture Notes
in Computer Science. Springer, 2002.

[Googlism, 2003] Googlism, 2003. http://www.googlism.com.

[Grefenstette, 1999] G. Grefenstette. The WWW as a Resource for Example-
Based MT Tasks. In Proceedings of ASLIB’99 Translating and the Computer
21, 1999.

[Grosso et al., 2002] P. Grosso, E. Maler, J. Marsh, and N. Walsh.
XPointer Framework, W3C Recommendation 25 March 2003, 2002.
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/.

[Grosso et al., 2003] P. Grosso, E. Maler, J. Marsh, and N. Walsh. XPointer
element() Scheme, 2003. http://www.w3.org/TR/xptr-element/.

[Grosz and Sidner, 1986] B.J. Grosz and C.L. Sidner. Attention, Intentions, and
the Structure of Discourse. Computational Linguistics, 12(3):175–204, 1986.

[Guarino, 1998] N. Guarino. Formal Ontology and Information Systems. 1998.

[Hahn and Schnattinger, 1998] U. Hahn and K. Schnattinger. Towards Text
Knowledge Engineering. In AAAI’98/IAAI’98 Proceedings of the 15th Na-
tional Conference on Artificial Intelligence and the 10th Conference on Inno-
vative Applications of Artificial Intelligence, pages 524–531, 1998.

[Handschuh and Staab, 2002] S. Handschuh and S. Staab. Authoring and An-
notation of Web Pages in CREAM. In DeRoure and Iyengar [2002], pages
462–473. Honolulu, Hawaii, May, 2002.

[Handschuh and Staab, 2003] S. Handschuh and S. Staab, editors. Annotation
in the Semantic Web. IOS Press, 2003.

[Handschuh et al., 2001] S. Handschuh, S. Staab, and A. Maedche. CREAM
— Creating Relational Metadata with a Component-Based, Ontology-Driven
Annotation Framework. In Proceedings of K-Cap 2001, pages 76–83. ACM
Press, 2001.

[Handschuh et al., 2002] S. Handschuh, S. Staab, and F. Ciravegna. S-CREAM
— Semi-Automatic CREAtion of Metadata. In Gómez-Pérez and Benjamins
[2002], pages 358–372.

216

Bibliography

[Handschuh et al., 2003] S. Handschuh, S. Staab, and R. Volz. On Deep An-
notation. In Chen et al. [2003], pages 431–438. Budapest, Hungary, May,
2003.

[Hearst, 1992] M.A. Hearst. Automatic Acquisition of Hyponyms from Large
Text Corpora. In Proceedings of the 14th International Conference on Com-
putational Linguistics, 1992.

[Heflin and Hendler, 2000a] J. Heflin and J. Hendler. Dynamic Ontologies on the
Web. In AAAI-2000 — Proceedings of the National Conference on Artificial
Intelligence. Austin, TX, USA, August 2000, 2000.

[Heflin and Hendler, 2000b] J. Heflin and J. Hendler. Searching the Web with
SHOE. In Artificial Intelligence for Web Search. Papers from the AAAI Work-
shop. WS-00-01, pages 35–40. AAAI Press, 2000.

[Hendler and Horrocks, 2002] J. Hendler and I. Horrocks, editors. ISWC-2002
— Proceedings of the First International Semantic Web Conference, LNCS
2342. Springer, 2002.

[Hillmann, 2001] D. Hillmann. Using Dublin Core, 2001.
http://dublincore.org/documents/2001/04/12/usageguide/.

[Hirschman and Chinchor, 1997] L. Hirschman and N. Chinchor. Muc-7 corefer-
ence task definition. In Proceedings of the 7th Message Understanding Confer-
ence (MUC-7), 1997.

[Horrocks, 1998] I. Horrocks. Using an Expressive Description Logic: FaCT or
Fiction? In Proceedings of the Sixth International Conference on Principles
of Knowledge Representation and Reasoning (KR’98), Trento, Italy, June 2-5,
1998, pages 636–649. Morgan Kaufmann, 1998.

[Ide, 2002] N. Ide. Linguistic Annotation Framework. Technical Report ISO
TC37/SC4/WG1 N11, ISO TC37 SC4 Language Resource Management, 08
2002.

[Jasper and Uschold, 1999] R. Jasper and M. Uschold. A Framework for Un-
derstanding and Classifying Ontology Applications. Banff, Canada, 1999.
http://sern.ucalgary.ca/KSI/KAW/KAW99/papers.html.

[Jin et al., 2001] Y. Jin, S. Decker, and G. Wiederhold. OntoWebber: Model-
Driven Ontology-Based Web Site Management. In Semantic Web Working
Symposium (SWWS), Stanford, California, USA, August 2001.

[Kahan et al., 2001] J. Kahan, M. Koivunen, E. Prud’Hommeaux, and R. Swick.
Annotea: An Open RDF Infrastructure for Shared Web Annotations. In Pro-
ceedings of the Tenth International World Wide Web Conference, WWW 10,
Hong Kong, China, May 1-5, 2001, pages 623–632. ACM Press, 2001.

217

Bibliography

[Kashyap and Sheth, 1996] V. Kashyap and A. Sheth. Semantic Heterogeneity
in Global Information Systems: The Role of Metadata, Context and Ontolo-
gies. In M. Papazoglou and G. Schlageter, editors, Cooperative Information
Systems: Current Trends and Directions. Academic Press, 1996.

[Keller et al., 2002] F. Keller, M. Lapata, and O. Ourioupina. Using the Web
to Overcome Data Sparseness. In Proceedings of EMNLP-02, pages 230–237,
2002.

[Kifer et al., 1995] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object
oriented and frame-based languages. Journal of the ACM, 42(4):741–843, 1995.

[Klarity, 2001] Klarity – Automatic Generation of Metadata Based on Concepts
within the Document, 2001. Klarity White Paper. http://www.klarity.com.au.

[Kogut and Holmes, 2001] P. Kogut and W. Holmes. AeroDAML: Applying In-
formation Extraction to Generate DAML Annotations from Web Pages. 2001.

[Krahmer and Piwek, 2000] E. Krahmer and P. Piwek. Varieties of Anaphora:
Introduction. In ESSLLI 2000 Reader. 2000.

[Kunze, 1999] J. Kunze. Encoding Dublin Core Metadata in HTML, 1999.
http://www.ietf.org/rfc/rfc2731.txt.

[Kushmerick, 1997] N. Kushmerick. Wrapper induction for information extrac-
tion. In Proceedings of the 15th International Joint Conference on Artificial
Intelligence (IJCAI), 1997.

[Kushmerick, 2000] N. Kushmerick. Wrapper Induction: Efficiency and Expres-
siveness. Artificial Intelligence, 118(1-2):15–68, 2000.

[Lascarides and Asher, 1991] A. Lascarides and N. Asher. Discourse Relations
and Defeasible Knowledge. In Meeting of the Association for Computational
Linguistics, pages 55–62, 1991.

[Leech, 1997] G. Leech. Introducing Corpus Annotation. In R. Garside, G. Leech,
and A.M. McEnery, editors, Corpus Annotation: Linguistic Information from
Computer Text Corpora, 1997.

[Lehnert et al., 1994] W.G. Lehnert, C. Cardie, D. Fisher, J. McCarthy,
E. Riloff, and S. Soderland. Evaluating an Information Extraction System.
Journal of Integrated Computer-Aided Engineering, 1(6), 1994.

[Lei et al., 2002] Y. Lei, E. Motta, and J. Domingue. An Ontology-Driven Ap-
proach to Web Site Generation and Maintenance. In Gómez-Pérez and Ben-
jamins [2002].

218

Bibliography

[Lenat and Guha, 1990] D.B. Lenat and R.V. Guha. Building Large Knowledge-
Based Systems. Representation and Inference in the CYC Project. Addison-
Wesley, Reading, Massachusetts, 1990.

[Leonard, 1977] L. Leonard. Inter-Indexer Consistence Studies, 1954-1975: A
Review of the Literature and Summary of the Study Results. Graduate School
of Library Science, University of Illinois. Occasional Papers No.131, 1977.

[Levenshtein, 1966] I.V. Levenshtein. Binary Codes Capable of Correcting Dele-
tions, Insertions, and Reversals. Cybernetics and Control Theory, 10(8):707–
710, 1966.

[Lowe, 2001] D. et al. Lowe. BizTalk(TM) Server: The Complete Reference.,
November 2001.

[Luke et al., 1997] S. Luke, L. Spector, D. Rager, and J. Hendler. Ontology-
Based Web Agents. In Proceedings of the First International Conference on
Autonomous Agents, Marina del Rey, CA, USA, February 5-8, 1997, pages
59–66, 1997.

[MacGregor, 1991] R. MacGregor. Inside the LOOM description classifier.
SIGART Bulletin, 2(3):88–92, 1991.

[Madhavan et al., 2001] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic
Schema Matching with Cupid. In Proceedings of the 27th International Con-
ferences on Very Large Databases, pages 49–58, 2001.

[Maedche and Staab, 2001] A. Maedche and S. Staab. Ontology Learning for the
Semantic Web. IEEE Intelligent Systems, 16(2):72–79, March/April 2001.

[Maedche and Staab, 2003] A. Maedche and S. Staab. Services on the Move —
Towards P2P-Enabled Semantic Web Services. In Proceedings of the 10th
International Conference on Information Technology and Travel & Tourism,
ENTER 2003, Helsinki, Finland, 29th-31st January 2003. Springer, 2003.

[Maedche and Zacharias, 2002] A. Maedche and V. Zacharias. Clustering
Ontology-based Metadata in the Semantic Web. In Proceedings of the Joint
Conferences 13th European Conference on Machine Learning (ECML’02) and
6th European Conference on Principles and Practice of Knowledge Discovery
in Databases (PKDD’02). Springer, 2002.

[Maedche et al., 2002] A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA -
A Mapping Framework for Distributed Ontologies. In Proceedings of EKAW
2002, LNCS 2473, pages 235–250. Springer, 2002.

[Manola and Miller, 2004] F. Manola and E. Miller. RDF Primer, Feb. 2004.
http://www.w3.org/TR/rdf-primer/.

219

Bibliography

[Marcus et al., 1993] M. Marcus, B. Santorini, and M.A. Marcinkiewicz. Build-
ing a Large Annotated Corpus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330, 1993.

[Markert et al., 2003] K. Markert, N. Modjeska, and M. Nissim. Using the Web
for Nominal Anaphora Resolution. In EACL Workshop on the Computational
Treatment of Anaphora, 2003.

[Martin and Eklund, 1999] P. Martin and P. Eklund. Embedding Knowledge
in Web Documents. In Proceedings of the 8th Int. World Wide Web Conf.
(WWW‘8), Toronto, May 1999, pages 1403–1419. Elsevier Science B.V., 1999.

[Maynard et al., 2002] D. Maynard, V. Tablan, H. Cunningham, C. Ursu,
H. Saggion, K. Bontcheva, and Y. Wilks. Architectural Elements of Lan-
guage Engineering Robustness. Journal of Natural Language Engineering –
Special Issue on Robust Methods in Analysis of Natural Language Data, 2002.
forthcoming.

[McGuinness et al., 2000] D. McGuinness, R. Fikes, J. Rice, and S. Wilder. The
Chimaera Ontology Environment. In Proc. of AAAI-2000, pages 1123–1124,
2000.

[McIlraith and Son, 2002] S. McIlraith and T. Son. Adapting Golog for com-
position of semantic Web services. In Proc 8th International Conference on
Principles of Knowledge Representation and Reasoning, 2002.

[Mickalski et al., 1986] R.S. Mickalski, I. Mozetic, J. Hong, and H. Lavrack. The
Multi Purpose Incremental Learning System AQ15 and its Testing Application
to three Medical Domains. In Proceedings of the 5th National Conference on
Artificial Intelligence, Philadelphia, USA, 1986.

[Mitra et al., 2000] P. Mitra, G. Wiederhold, and M. Kersten. A Graph-Oriented
Model for Articulation of Ontology Interdependencies. In Proceedings of Con-
ference on Extending Database Technology (EDBT 2000). Konstanz, Germany,
2000.

[MUC7, 1998] MUC-7 — Proceedings of the 7th Message Understanding Confer-
ence, 1998. http://www.muc.saic.com/.

[Müller and Strube, 2001] C. Müller and M. Strube. Annotating Anaphoric and
Bridging Relations with MMAX. In Proceedings of the 2nd SIGdial Workshop
on Discourse and Dialogue, pages 90–95, 2001.

[Narayanan and McIlraith, 2002] S. Narayanan and S. McIlraith. Simulation,
Verification and Automated Composition of Web Services. In DeRoure and
Iyengar [2002]. Honolulu, Hawaii, May, 2002.

220

Bibliography

[Nejdl et al., 2001] W. Nejdl, B. Wolf, S. Staab, and J. Tane. EDUTELLA:
Searching and Annotating Resources within an RDF-based P2P Network.
Technical report, Learning Lab Lower Saxony / Institute AIFB, 2001.

[Nejdl et al., 2002] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve,
M. Nilsson, M. Palmer, and T. Risch. EDUTELLA: A P2P Networking In-
frastructure Based on RDF. In DeRoure and Iyengar [2002], pages 604–615.
Honolulu, Hawaii, May, 2002.

[Noy and McGuinness, 2001] N.F. Noy and D.L. McGuinness. Ontology Devel-
opment 101: A Guide to Creating Your First Ontology. Technical Report
SMI-2001-0880, Stanford Medical Informatics, 2001.

[Noy and Musen, 2000] N. F. Noy and M. A. Musen. PROMPT: Algorithm and
Tool for Automated Ontology Merging and Alignment. In Proc. of AAAI-2000,
pages 450–455, 2000.

[Noy et al., 2000] N.F. Noy, W.E. Grosso, and M.A. Musen. Knowledge-
Acquisition Interfaces for Domain Experts: An Empirical Evaluation of
Protege-2000. In Proceedings of the 12th Internal Conference on Software
and Knowledge Engineering. Chicago, USA, July, 5-7, 2000, 2000.

[OWL Reference, 2004] OWL Web Ontology Language Reference.
http://www.w3.org/TR/owl-ref, 2004.

[Paolucci et al., 2002] M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Se-
mantic Matching of Web Services Capabilities. In First Int. Semantic Web
Conf., 2002.

[Papakonstantinou and Vassalos, 2002] Y. Papakonstantinou and V. Vassalos.
Architecture and Implementation of an XQuery-based Information Integration
Platform. IEEE Data Engineering Bulletin, 25(1):18–26, 2002.

[Park et al., 1997] J. Y. Park, J. H. Gennari, and M. A. Musen. Mappings for
Reuse in Knowledge-based Systems. In Technical Report, SMI-97-0697, Stan-
ford University, 1997.

[Passoneau, 1996] R. Passoneau. DRAMA: Instructions for Applying Reference
Annotation for Multiple Applications, 1996.

[Patil et al., 2004] A. Patil, S. Oundhakar, A. Sheth, and K. Verma. METEOR-S
Web Services Annotation Framework. In Feldman et al. [2004].

[Phelps and Wilensky, 2000] T. Phelps and R. Wilensky. Robust Intra-
Document Locations. Proceedings of WWW9 / Computer Networks, 33(1-
6):105–118, 2000.

221

Bibliography

[Poesio and Reyle, 2001] M. Poesio and U. Reyle. Underspecification in
Anaphoric Reference. In Proceedings of the IWCS-4, 2001.

[Poesio and Vieira, 1998] M. Poesio and R. Vieira. A Corpus-Based Investigation
of Definite Description Use. Computational Linguistics, 24(2):183–216, 1998.

[Ponnekanti and Fox, 2002] S. R. Ponnekanti and A. Fox. SWORD: A Developer
Toolkit for Building Composite Web Services. In DeRoure and Iyengar [2002].
Honolulu, Hawaii, May, 2002.

[Popov et al., 2003] B. Popov, A Kiryakov, D. Ognyanoff, D. Manov, A. Kirilov,
and M. Goranov. Towards Semantic Web Information Extraction. In Fensel
et al. [2003].

[Rahm and Bernstein, 2001] E. Rahm and P. Bernstein. A survey of approaches
to automatic schema matching. VLDB Journal, 10(4):334–350, 2001.

[Resnik and Smith, 2003] P. Resnik and N. Smith. The Web as a Parallel Corpus.
Computational Linguistics, 29(3), 2003.

[Resnik, 1997] P. Resnik. Selectional Preference and Sense Disambiguation. In
Proceedings of the ACL SIGLEX Workshop on Tagging Text with Lexical Se-
mantics: Why, What, and How?, 1997.

[Rinaldi et al., 2003] F. Rinaldi, J. Dowdall, M. Hess, J. Ellman, G. P. Zarri,
A. Persidis, L. Bernard, and H. Karanikas. Multilayer annotations in Par-
menides. In Proceedings of the Knowledgte Markup and Semantic Annotation
Workshop, Sanibel, Flodia , USA, October 26, 2003, pages 33–40, 2003.

[Sahuguet and Azavant, 2001] A. Sahuguet and F. Azavant. Building intelligent
Web applications using lightweight wrappers. Data and Knowledge Engineer-
ing, 3(36):283–316, 2001.

[Schmid, 1994] H. Schmid. Probabilistic Part-of-Speech Tagging Using Decision
Trees. In Proceedings of the International Conference on New Methods in
Language Processing, 1994.

[Siegel, 2001] S. Siegel. Nichtparametrische statistische Methoden. Klotz, Es-
chborn, 2001.

[Sowa, 1984] J.F. Sowa. Conceptual Structures: Information Processing in Mind
and Machine. Addison-Wesley, 1984.

[Staab and Maedche, 2001] S. Staab and A. Maedche. Knowledge Portals —
Ontologies at Work. AI Magazine, 22(2):63–75, Summer 2001.

222

Bibliography

[Staab et al., 2000a] S. Staab, J. Angele, S. Decker, M. Erdmann, A. Hotho,
A. Maedche, H.-P. Schnurr, R. Studer, and Y. Sure. Semantic Community
Web Portals. Proceedings of WWW9 / Computer Networks, 33(1-6):473–491,
2000.

[Staab et al., 2000b] S. Staab, M. Erdmann, A. Maedche, and S. Decker. An
Extensible Approach for Modeling Ontologies in RDF(S). In Proceedings of
the ECDL-2000 Workshop “Semantic Web: Models, Architectures and Man-
agement”, Lisbon, September 21, 2000, 2000.

[Staab et al., 2001a] S. Staab, S. Decker, D. Fensel, and A. Sheth, edi-
tors. SemWeb 2001 — Proceedings of the Second International Work-
shop on the Semantic Web, CEUR Workshop Proceedings Vol. 40.
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-40/,
2001. Workshop at WWW-2001, Hong Kong, China, May 1, 2001.

[Staab et al., 2001b] S. Staab, A. Maedche, and S. Handschuh. Creating Meta-
data for the Semantic Web: An Annotation Framework and the Human Factor.
Technical Report 412, Institute AIFB, University of Karlsruhe, 2001.

[Staab et al., 2001c] S. Staab, H.-P. Schnurr, R. Studer, and Y. Sure. Knowledge
Processes and Ontologies. IEEE Intelligent Systems, 16(1), 2001.

[Stojanovic et al., 2001] N. Stojanovic, A. Maedche, S. Staab, R. Studer, and
Y. Sure. SEAL: A Framework for Developing SEmantic PortALs. In Proceed-
ings of K-CAP 2001, pages 155–162. ACM Press, 2001.

[Stojanovic et al., 2002a] L. Stojanovic, A. Maedche, B. Motik, and N. Sto-
janovic. User-Driven Ontology Evolution Management. In Gómez-Pérez and
Benjamins [2002], pages 285–300.

[Stojanovic et al., 2002b] L. Stojanovic, N. Stojanovic, and S. Handschuh. Evo-
lution of Metadata in Ontology-based Knowledge Management Systems. In Ex-
perience Management 2002, German Workshop on Experience Management,
Berlin, March 7-8 2002.

[Stojanovic et al., 2002c] L. Stojanovic, N. Stojanovic, and R. Volz. Migrating
Data-Intensive Web Sites into the Semantic Web. In Proceedings of the ACM
Symposium on Applied Computing SAC-02, Madrid, 2002, pages 1100–1107.
ACM Press, 2002.

[Strube and Hahn, 1999] M. Strube and U. Hahn. Functional Centering —
Grounding Referential Coherence in Information Structure. Computational
Linguistics, 25(3):309–344, 1999.

223

Bibliography

[Studer et al., 2002] R. Studer, Y. Sure, and R. Volz. Managing User Focused
Access to Distributed Knowledge. Journal of Universal Computer Science
(J.UCS), 8(6):662–672, 2002.

[Sure et al., 2002a] Y. Sure, J. Angele, and S. Staab. Guiding Ontology De-
velopment by Methodology and Inferencing. In K. Aberer and L. Liu, edi-
tors, ODBASE-2002 — Ontologies, Databases and Applications of Semantics.
Irvine, CA, USA, Oct. 29-31, 2002, LNCS, pages 1025–1222. Springer, 2002.

[Sure et al., 2002b] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and
D. Wenke. OntoEdit: Collaborative Ontology Development for the Semantic
Web. In Hendler and Horrocks [2002], pages 221–235.

[Sure, 2003] Y. Sure. Methodology, Tools and Case Studies for Ontology based
Knowledge Management. PhD thesis, University of Karlsruhe, 2003.

[Sycara et al., 1999] K. P. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic
Service Matchmaking Among Agents in Open Information Environments. SIG-
MOD Record, 28(1):47–53, 1999.

[Tallis et al., 2001] M. Tallis, N. Goldman, and R. Balzer. The Briefing Asso-
ciate: A Role for COTS Applications in the Semantic Web. In Semantic Web
Working Symposium (SWWS), Stanford, California, USA, August 2001.

[van Deemter and Kibble, 2000] K. van Deemter and R. Kibble. On Corefer-
ring: Coreference in MUC and Related Annotation Schemes. Computational
Linguistics, 26(4), 2000.

[van der Aalst, 1999] W.M.P. van der Aalst. Woflan: A Petri-net-based work-
flow analyzer, Systems Analysis - Modelling - Simulation. Systems Analysis -
Modelling and Simulation, 35(3):345–357, 1999.

[van Heijst, 1995] G. van Heijst. The Role of Ontologies in Knowledge Engineer-
ing. PhD thesis, Universiteit van Amsterdam, 1995.

[Vargas-Vera et al., 2001] M. Vargas-Vera, E. Motta, J. Domingue, S. Bucking-
ham Shum, and M. Lanzoni. Knowledge Extraction by Using an Ontology-
Based Annotation Tool. In Proceedings of the Knowledge Markup and Seman-
tic Annotation Workshop 2001 (at K-CAP 2001), pages 5–12, Victoria, BC,
Canada, October 2001.

[Vargas-Vera et al., 2002] M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni,
A. Stutt, and F. Ciravegna. MnM: Ontology Driven Semi-Automatic and
Automatic Support for Semantic Markup. In Gómez-Pérez and Benjamins
[2002], pages 379–391.

224

Bibliography

[W3C, 2003] W3C. Web Service Description Language (WSDL) Version 1.2,
March 2003.

[Wiederhold, 1993] G. Wiederhold. Intelligent integration of information. Pro-
ceedings of the ACMSIGMOD International Conference on Management of
Data, pages 434–437, 1993.

[Yee, 1998] K.-P. Yee. CritLink: Better Hyperlinks for the WWW, 1998.
http://crit.org/˜ping/ht98.html.

225

