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Abstract

Magnetohydrodynamic (MHD) phenomena caused by the interaction of electrically
conducting fluids with a magnetic field are exploited in many metallurgical processes
to control and manipulate metals. The knowledge of MHD effects is also a key issue
for the development of fusion reactors where a plasma is confined by a strong magnetic
field and liquid metals are used to produce tritium that fuels the reactor.
A numerical tool, based on an extension of the commercial code CFX, has been

developed to study MHD flows in arbitrary geometries and for any orientation of the
imposed magnetic field. As an example of application a detailed analysis of the MHD
flow in sudden expansions has been performed, focusing on the effects of the magnetic
field and inertia forces on flow and current distribution and on pressure drops caused
by induced three dimensional electric currents.
The results show that by increasing the applied magnetic field the recirculations

that form behind the expansion reduce in size and the spiralling motion is progressively
damped out. For sufficiently high magnetic fields the vortices are suppressed but a
reverse flow is still observed close to the corners of the duct, near the side walls.
Complex current paths have been found and special emphasis has been placed on the

analysis of the evolution of 3D current loops that form in the core region of the duct.
A parametric study has been performed for a constant applied magnetic field varying

the relative strength of inertia effects compared to that of electromagnetic forces. When
Lorentz forces are much larger than inertia forces, no vortices occur. By increasing in-
ertial effects, vortical structures form behind the cross-section enlargement. The results
show that both the pressure drop and the size of the recirculations are strongly affected
by inertia forces.
The numerical results have been compared with experimental data for surface po-

tential and pressure distribution. A very good agreement has been found, confirming
the reliability of this computational approach.





Zusammenfassung

Magnetohydrodynamische (MHD) Effekte, hervorgerufen durch die Wechselwirkung
elektrisch leitender Flüssigkeiten mit einem Magnetfeld, werden in vielen metallurgis-
chen Prozessen benutzt, um Metallschmelzen zu kontrollieren und zu beeinflussen. Ein
weiteres Feld für MHD Anwendungen ist die Energieerzeugung in Fusionsreaktoren, in
denen ein Plasma durch ein starkes Magnetfeld eingeschlossen wird und Flüssigmetalle
als Brutmaterial verwendet werden.
Durch die Erweiterung des Programmpakets CFX wurde ein numerisches Werkzeug

entwickelt, mit dem MHD-Strömungen in beliebigen Geometrien und für jede Orien-
tierung eines vorgegebenen Magnetfelds untersucht werden können. Als Anwendungs-
beispiel wurde eine ausführliche Analyse der MHD-Strömung in einer plötzlichen Expan-
sion durchgeführt. Im Mittelpunkt dieser Analyse standen die Einflüsse des Magnetfelds
und der Trägheitskräfte auf die Strömung und auf die zusätzlichen Druckverluste, die
von dreidimensionalen elektrischen Strömen im Magnetfeld verursacht werden.
Die Ergebnisse zeigen, dass mit zunehmendem Magnetfeld die Rückströmgebiete

hinter der Querschnittserweiterung kleiner werden und die Wirbelströmung nach und
nach abgedämpft wird. Bei einem ausreichend starken Magnetfeld verschwinden die
Wirbel vollständig. Eine Rückströmung im Bereich der Ecken des Kanals, in der Nähe
der magnetfeldparallelen Seitenwände bleibt jedoch erhalten.
In einer Parameterstudie wurde die MHD Strömung in einem homogenen Magnet-

feld untersucht, bei der die relative Stärke der Trägheitskräfte gegenüber der Stärke der
elektromagnetischen Kräfte geändert wurde. Falls die Lorentz-Kräfte wesentlich größer
sind als die Trägheitskräfte, werden Wirbelströmungen unterdrückt. Mit zunehmenden
Trägheitskräften bilden sich Wirbel hinter der Querschnittserweiterung. Nahe der Ex-
pansion findet man komplizierte dreidimensionale Strompfade, die sich im Kernbereich
des Kanals ausbilden. Die Ergebnisse zeigen, dass sowohl der Druckverlust als auch das
Ausmaß der Rückströmung, sowie die dreidimensionalen Strompfade durch die Trägheit-
skräfte beeinflusst werden.
Das elektrische Potential auf der Kanaloberfläche und die Druckverteilung, die als

experimentelle Daten vorliegen, wurden mit den numerischen Ergebnissen verglichen.
Die sehr gute Übereinstimmung der experimentellen Ergebnisse mit den Rechnungen
bestätigt die Zuverlässigkeit des entwickelten Rechenprogramms.
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Dimensional variables

Description Symbol Dimensions

Characteristic length (half channel width) L [m]

Characteristic velocity (average velocity) v0 [ms−1]

Density of the fluid ρ [kgm−3]

Electrical conductivity of the fluid σ [Ω−1m−1]

Electrical conductivity of the wall σw [Ω−1m−1]

Electric field E [Vm−1]

Kinematic viscosity ν [m2s−1]

Magnetic permeability µ [NA−2]

Magnitude of the applied magnetic field B0 [T ]

Source term of momentum equation Sm [kgm−2s−2]

Source term of energy equation ST [Wm−3]

Specific heat capacity cp [Jkg−1K−1]

Temperature T [K]

i



Description Symbol Dimensions

Thermal conductivity of the fluid λ [Wm−1K−1]

Thermal conductivity of the wall λw [Wm−1K−1]

Thickness of duct walls tw [m]

Time t [s]

ii



Dimensionless variables

Description Symbol

Axial coordinate x

Vertical coordinate y

Transverse coordinate z

Electric potential in the fluid φ

Electric potential in the wall φw

Pressure in hydrodynamic scale p

Pressure in MHD scale P = p/N

Thickness of Hartmann layer δHa

Thickness of side layer δside

iii



Dimensionless vectors

Description Symbol (bold)

Unit vectors x, y, z

Current density in the fluid j = (jx, jy, jz)

Current density in the wall jw= (jwx, jwy, jwz)

Lorentz force L = (Lx, Ly, Lz)

Magnetic field B = (Bx, By, Bz)

Velocity v = (u, v, w)

iv



Dimensionless parameters

Description Symbol

Conductance parameter c =
σwtw
σL

Hartmann number Ha = LB0

r
σ

ρν

Interaction parameter N =
σLB20
ρv0

Magnetic Reynolds number Rm = µσLv0

Reynolds number Re =
v0L

ν

v





1 Introduction

The interaction of moving electrically conducting fluids with a magnetic field gives rise
to a rich variety of magnetohydrodynamic (MHD) phenomena.
These effects are exploited both in technical devices, such as pumps and flowme-

ters, and in industrial processes to control and manipulate various materials (Davidson
(1999)). Application of electromagnetic forces to material processing has been recog-
nized as a promising technology and it is based on the fact that magnetic fields can
influence the flow of electrically conducting fluids in different ways.
For example the application of a static magnetic field can damp down fluid motion

and suppress unwanted turbulent fluctuations. This is due to the presence of induced
currents that leads to Joule dissipation and the consequent conversion of kinetic energy
into heat. This is used, for instance, in the continuous casting of large steel slabs to
suppress the motion of the submerged jet that feeds the mould.
In order to homogenize the liquid part of partially solidified ingots to obtain prod-

ucts of high homogeneity and purity, rotating magnetic fields are employed. They can
generate a swirling motion used to stir the melts.
Moreover, high frequency magnetic fields can repel adjacent conductors providing

a method to treat metallic samples without contact to any wall. This phenomenon is
known as electromagnetic levitation.
Electromagnetic processing of materials includes also stabilization of melts and free

surfaces, laser welding and surface treatment, production of very fine powders, semicon-
ductors, high performance superalloys and aluminum.
Concerning MHD devices, electromagnetic flowmeters are often used since they can

work also with corrosive liquids and slurries. They measure the voltage induced by the
motion of the conductor through the magnetic field. The potential produced is propor-
tional to the flow rate of the fluid flowing in the duct. In chemical and metallurgical
industry, MHD pumps are employed. They offer the advantage that they can be utilized
even with aggressive, chemical reactive and very hot fluids. In addition, they do not
have moving mechanical parts and this increases their reliability.
This brief description of some industrial processes and technical systems where MHD

effects are utilized, shows that the magnetic field represents a versatile and non-intrusive
mean to control and influence the flow of liquid metals. Therefore, it can be employed
to develop new production methods and to improve existing processes to obtain for
instance high quality materials.
The increasing interest in the study of MHD phenomena is also related to the develop-

ment of fusion reactors where a plasma is confined by a strong magnetic field (Hunt and
Holroyd (1977)). MHD effects are important in the so called blanket (Morley, Malang
and Kirillov (2005)). This component is located between the plasma and the magnetic
field coils (Fig.1). The blanket absorbs neutrons transforming their energy into heat,
which is then carried away by a suitable coolant and it prevents neutrons from reaching
the magnets avoiding in this way radiation damages. In addition it is responsible for
the breeding of tritium necessary to fuel the reactor. In order to accomplish this task,
the blanket should contain at least some fraction of Lithium. Liquid metal alloys, such
as the eutectic PbLi, are attractive breeder materials due to their high tritium breeding
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Figure 1: General view of the proposed international experimental fusion reactor
(ITER).

capability and their large thermal conductivity. In some design concepts for the blan-
kets, liquid metals are used only as breeder material and helium or water are considered
as possible coolants. There are other concepts in which the liquid metal serves both as
breeder material and as coolant. Important issues involved in the design of the so called
self-cooled blanket are the high pressure drop caused by MHD interactions when the
fluid has to flow at high velocity and the effects of flow redistribution on heat transport.
The electrically conducting fluid is distributed into the breeding zone through a

piping system and manifolds, with smaller size compared with the large breeder units.
As a consequence the liquid metal has to flow through expansions and contractions.
Moreover, the liquid metal is circulated towards external facilities both to remove tritium
and for the purification of the liquid metal itself. Therefore, the liquid metal moves in
the strong magnetic field that confines the fusion plasma giving rise to MHD effects.

1.1 Motivations and problem specification

In order to ensure a successful and effective use of electromagnetic phenomena in in-
dustrial processes and technical systems, a very good understanding of the effects of
the application of a magnetic field on the flow of electrically conducting fluids in chan-
nels and various geometric elements is required. Of special interest is the MHD flow
in sudden expansions since these geometries are basic components of liquid metal de-
vices and circuits as well as of fusion reactor blankets. The MHD phenomena that can
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occur in ducts with sudden cross-section enlargements may strongly influence the dis-
tribution of the flow and affect for instance the thermal performance of the component
under study. Moreover, large MHD pressure drops may occur that increase the power
required to pump the liquid metal through channels and they can also give rise to strong
mechanical stresses.
Flows in expansions can lead to the formation of stagnation zones and regions of

reverse flow. In the case of fusion reactor blankets these stagnant and back flow areas
can result in the appearance of hot spots or in the accumulation of tritium.
Numerical and experimental data are therefore needed to predict pressure drop,

electric current distribution and flow structures that characterize MHD flows in such
geometries. Accurate laboratory experiments are sometimes difficult and too expensive
to perform and moreover, technical limitations can restrict the experiments to a defined
range of parameters. Thus, numerical simulations are a very important tool for studying
MHD flows and supplement the experimental results. A combination of experimental
data, calculations and analytical solutions allows to cover a wide range of the parameters
that describe the operating conditions of engineering systems.

The purpose of the present work is to develop a numerical tool that is able to simulate
MHD flows in arbitrary geometries and for any orientation of the applied magnetic
field. The equations describing MHD flows are implemented in the commercial code
CFX. This latter is a flexible computational fluid dynamics code (CFD) based on the
finite volume approach. It does not model MHD equations but it allows to modify the
fundamental hydrodynamic equations by means of Fortran subroutines. Therefore CFX
can be extended to model MHD phenomena by introducing the electromagnetic forces
as a source term in the momentum equation and by solving an equation that describes
the evolution of the electric potential.
As an example of possible applications, a detailed investigation of MHD flows in

symmetric sudden expansions of rectangular ducts is carried out to analyze the effects
of the magnetic field and inertia forces on flow and current distribution, and on the
pressure drop. Emphasis is placed on the suppression of vortical structures and the
modification of the size of the region where reverse flow occurs.
The electrically conducting fluid flows preferentially in the x direction and the ex-

ternally applied magnetic field is uniform and aligned with the y axis, B = B0y (Fig.2).
The geometry is chosen according to the features of the experimental test section used
in the MEKKA laboratory of the Forschungszentrum Karlsruhe. The expansion ratio
is equal to 4 and the wall conductance parameter c, which describes the ratio of the
electrical conductance of the wall to the fluid material is 0.1.
This numerical approach is validated through the comparison of the results with

the available analytical solution and with the experimental data. Moreover, the results
of the study of the magnetic effects obtained for very small inertia forces confirm the
outcomes of the asymptotic theory. Thus, this modified code can be regarded also as a
starting point for further developments and for application to more complex geometries
related for example to the blanket concepts that are under development.

In the following sections a short review of the basic equations describing the MHD
flows and the used assumptions is given. A discussion of the main MHD phenomena is

3
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Figure 2: Sketch of the geometry used for the present study. The expansion ratio is 4.

included as well.
In Chapter 4.3 the main results of the analysis of the flow in sudden expansions are

discussed. First the 3D hydrodynamic flow is investigated since no results have been
found in the literature. This study is needed to understand how the magnetic field
acts on the flow distribution and in particular on the dimension and the occurrence of
separation regions that form behind the cross-section enlargement. Then the flow of
electrically conducting fluids under a uniform magnetic field is analyzed. The study of
magnetic effects is supplemented by a parametric study in which the magnetic field is
kept constant and inertia forces are progressive reduced compared with Lorentz forces.
Possibilities for further development and applications of the code are outlined.
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1.2 State of art

1.2.1 Magnetohydrodynamic flow

A vast literature is available regarding the study of MHD flows. The early works concern
fully developed, laminar MHD flows in ducts under a uniform magnetic field. This flow
is characterized by the fact that all physical quantities, except the pressure, do not vary
along the flow direction and the pressure gradient in the direction of motion is constant.
For two-dimensional MHD channel flows there are two classes of analytical solutions.

The first comprises the exact solution, which may be represented by Fourier series and
the second one may be obtained as an asymptotic approximation for large Hartmann
numbers, Ha. This latter one is a characteristic dimensionless group whose square gives
a measure for the ratio of electromagnetic to viscous forces.
Exact solutions have been developed by Hartmann (1937) for a one dimensional

problem consisting of rectilinear, laminar MHD flow between two infinite parallel plates.
The imposed magnetic field is uniform and normal to the two surfaces. For sufficiently
high Hartmann numbers the flow is characterized by a core with uniform velocity and
thin boundary layers along the plates. These layers are called Hartmann layers and they
are present along walls on which the magnetic field has a normal component.
Shercliff (1953) found an exact solution for 2D MHD flows in ducts with insulating

walls and pointed out the existence of a second type of boundary layers near walls parallel
to the magnetic field, known as side or parallel layers. Chang and Lundgren (1961)
and Uflyand (1961) obtained exact solutions for MHD flows in channels with perfectly
conducting walls. Hunt (1965) analyzed the case of MHD flows in ducts with perfectly
conducting Hartmann walls and thin conducting sides and the case with Hartmann walls
of arbitrary conductivity and insulating lateral walls. He examined also the solution for
large Hartmann numbers and found that a variation in the conductivity of the side
walls has a strong effect on the velocity profile in the parallel boundary layers and
on the volume flux carried by these layers. Hunt and Stewartson (1965) studied the
MHD flow in rectangular channels with perfectly conducting side walls and insulating
Hartmann walls for high Hartmann numbers using a boundary layer technique. In
their work a description of the main flow regions can be found, consisting in a core
associated with Hartmann layers along walls perpendicular to the magnetic field whose
thickness scales asHa−1 and thicker boundary layers on walls parallel to the field (δside =
O(Ha−1/2)). They also found that the current distribution in the corners of the duct
affects the flow in the boundary layers. Approximate solutions for rectangular ducts
with non-conducting walls have been developed by Shercliff (1953). He obtained a first
approximation for the volumetric flow rate through the channel that was extended to
the case of symmetric ducts with thin walls of arbitrary conductivity by Chang and
Lundgren (1961). Temperley and Todd (1971) treated the fully developed MHD flow
in ducts with thin conducting walls characterized by a conductance ratio c of the order
of one, where c represents the ratio between the electrical conductance of the wall and
fluid material. They applied a general expansion procedure valid for high Hartmann
numbers. The MHD fully developed flow in channels with a small conductance ratio
(c < 0.1) was investigated by Walker (1981) by means of asymptotic expansions. He
analyzed various combinations of the conductivity of side walls and parallel layers, under
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the assumption that Hartmann walls are better conducting than the adjacent boundary
layers (Ha−1 ¿ c¿ 1).
Another type of layers was identified by Ludford (1960) who investigated the MHD

flow around obstacles in channels. It was observed that for high Hartmann numbers
thin internal layers develop along magnetic field lines, tangent to the obstacle. Hunt
and Leibovich (1967) analyzed the 2D flow over a body placed in a duct with diverging
walls. They found that the structure of the internal layers depends on the relative size
of the Hartmann number, Ha, and the interaction parameter, N . This latter one is a
non-dimensional parameter, which describes the relative importance of electromagnetic
forces compared to inertia. Depending on the combination of these two dimensionless
groups, layers of different thickness occur. If N ¿ Ha3/2 their thickness is of the order
of N−1/3 and it corresponds to the case in which a balance between electromagnetic and
inertia forces is established. If N À Ha3/2 the thickness of the layers is proportional
to Ha−1/2 and electromagnetic and viscous forces balance each other. For finding the
equations governing Ludford layers, the two authors studied the MHD flow in a single
sided diverging duct.
Internal layers may occur also when a rectangular duct is turned by an angle in such

a way that the magnetic filed is not parallel to a pair of walls any more. The shear layers
spread from the corners into the fluid along magnetic field lines. Alty (1971) analyzed
this kind of flow considering channels with one pair of walls insulating and the other
perfectly conducting.
The shear layers described above may originate both from geometrical and electrical

discontinuities. They occur for instance in 3D bends, in geometries with varying cross-
section or with changes in wall conductivity or contact resistance along the flow path.
Two different approaches have been used to study general 3D MHD flows. One is

the direct numerical simulation accounting for all the physical effects and the other one
is the asymptotic method that focuses on the main phenomena and is valid for high
Hartmann numbers and interaction parameters. The latter one has been proposed for
application to 3D flows by Kulikovskii (1968). With this approach the flow region can
be divided in a core where a balance between pressure and Lorentz forces is established,
and thin viscous layers in which electromagnetic and viscous forces are dominant. By
integrating the obtained simplified equations along magnetic field lines, the problem is
reduced to a set of coupled 2D equations for pressure and electric potential at the fluid
wall interface. From these variables the complete solution can be reconstructed.
The development of fusion reactors has led to a growing interest in the study of

3D MHD phenomena associated with the presence of these internal layers. Many of
the works described in the following treat the MHD flow in geometries that are closely
related to applications in fusion technology.
Stieglitz, Barleon, Bühler and Molokov (1996) investigated experimentally the flow

in right-angle bends, which turn the flow from a direction perpendicular to the magnetic
field into a direction parallel to the field. Here internal layers aligned with the magnetic
field originate from the sharp corner. The pressure drop along the bend has been found
theoretically by Molokov and Bühler (1994) by means of an asymptotic model. More
significant are MHD flows in bends turned by an angle to form a forward or backward
elbow. In the latter case three core regions are identified separated by internal layers
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(Moon, Hua and Walker (1991)). These configurations create the highest pressure drop.
Weaker effects occur instead in the case of flows in bends in a plane perpendicular

to the magnetic field.
Walker (1986b) studied the flow in a elbow in a plane normal to the magnetic field

and found that the increase in pressure drop due to 3D effects was not significant. The
same conclusion was reached by Bühler (1995) who employed an asymptotic model for
studying the flow in U-bends of rectangular cross-section.
Molokov (1994) investigated MHD flows in ducts with a cross-section enlargement

in the plane perpendicular to the imposed field, concluding that any changes of the
geometry in this plane do not cause considerable 3D effects and the pressure drop is
comparable to that in a duct in which the flow is locally fully developed.
The previous observations justify the investigations in the present analysis of 3D

MHD flows in channels, which enlarge along the direction of the magnetic field.
Expansions and contractions are important geometric elements in liquid metal de-

vices and the study of the flow in such geometries is a key issue for applications in fusion
reactor blankets where the flow is distributed from small pipes to large boxes.
Walker, Ludford and Hunt (1972) analyzed MHD flows in smoothly expanding in-

sulating channels using an inertialess approximation and Walker (1981), by using the
same assumptions, namely high Hartmann number and interaction parameter, consid-
ered the case of ducts with thin conducting walls. This problem has been studied later
by Bühler (2003) by asymptotic techniques. He considered MHD flows in a duct formed
by two different channels of uniform cross-section connected by a smooth expansion.
He performed a parametric study reducing progressively the length of the expansion.
This analysis shows that, approaching the geometry of a sudden expansion, namely for
an infinitesimally small expansion length, the pressure drop increases. In this limiting
situation viscous internal layers become important and stronger 3D phenomena occur.
Therefore ducts with a sudden enlargement give rise to the largest MHD interaction and
for that reason this geometry has been selected for the study reported in this thesis.
All the previous investigations are based on the assumptions of strong applied mag-

netic fields (Ha À 1) and negligible inertial effects (̇N À 1). The study of a wider
range of parameters, which allows for example the investigation of the effects of inertia
forces, can be performed only by a fully numerical approach. Difficulties are related to
the presence of shear layers in which inertia and friction may be dominant and whose
thickness reduces by increasing the Hartmann number. For obtaining an accurate so-
lution these thin layers must be properly resolved, which leads to problems of memory
storage, execution time and convergence rate. For these reasons only few researchers
performed 3D calculations and usually they restricted themselves to small Hartmann
numbers. As an example we can cite the numerical analysis of 3D MHD flow in a
single-sided sudden expansion with insulating walls performed by Aitov, Kalyutik and
Tananaev (1983). Results are presented for Hartmann number equal to ten. A fully
numerical approach has been used by Sterl (1990) who investigated flows in rectangular
ducts with thin conducting walls exposed to a non uniform magnetic field. Hartmann
numbers up to one hundred are reached for the 3D calculations. Numerical solutions are
presented by Myasnikov and Kalyutik (1997) for flows in 3D sudden expansions either
with insulating or perfectly conducting walls for Hartmann numbers lower than forty.
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Kumamaru, Kodama, Hirano and Itoh (2004) performed 3D simulations for liquid metal
flows through a rectangular duct with insulating walls in the inlet region of an imposed
magnetic field for Hartmann number equal to one hundred.
This short overview of the available numerical analyses shows that, in order to get a

complete understanding of 3DMHD phenomena, it is necessary to study further on flows
in the range of high Hartmann numbers and moderate and small interaction parameters.
To conclude this literature review, it is worth stressing the importance of experiments

as a necessary complement for the investigation of the physical phenomena involved in
the process under study.
Experimental results for the flow in channels with a sudden enlargement of the

cross-section are described by Branover, Vasil’ev and Gel’fgat (1967) who focused on
the pressure distribution along the duct and by Gel’fgat and Kit (1971) who investigated
the potential gradient distribution near sudden expansions and contractions. Picologlou,
Reed, Hua, Barleon, Kreuzinger and Walker (1989) studied experimentally the flow in
a geometry where smooth expansions and contractions are located periodically along
the axis of the duct. As a further reference, the experimental studies performed by
Evtushenko, Sidorenkov and Shishko (1992) can be considered, where the MHD flows
in slotted channels and sudden expansions are analyzed.
Closely related to the present work are the experiments on MHD flows in a rect-

angular channel with sudden expansion conducted in the MEKKA laboratory of the
Forschungszentrum Karlsruhe (Horanyi, Bühler and Arbogast (2005)). These experi-
mental data are used to validate the numerical approach and to test the reliability of
the computed results for high Hartmann numbers (Section 4.4).

1.2.2 Hydrodynamic flow

In this section a brief survey of work related to the hydrodynamic flow in sudden expan-
sions is given, focusing on the main flow features and on fundamental issues concerning
the stability of flow configurations. The phenomena of flow separation and reattach-
ment caused by sudden changes in the cross-section of the duct have received significant
attention because of their importance in many engineering applications. A short liter-
ature review is presented also for the flow over backward-facing steps reporting works
that describe flow structures similar to the ones occurring in sudden expansions.

Rectangular sudden expansion

Two-dimensional incompressible flow in a symmetric sudden expansion has been the
subject of several numerical and experimental investigations. According to experimental
studies (Durst, Mellin and H.Whitelaw (1974), Cherdron, Durst and Whitelaw (1978),
Sobey and Drazin (1986), Fearn, Mullin and Cliffe (1990), Durst, Pereira and Tropea
(1993)) at sufficiently low Reynolds numbers a unique steady state solution is found and
the resulting flow field is symmetric with respect to the channel centerline, with two re-
circulation zones of equal size whose length increases linearly with the Reynolds number.
At a critical value of the Reynolds number that depends on the expansion ratio and the
aspect ratio of the duct, the steady symmetric solution becomes unstable and two stable
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asymmetric solutions appear. The experimental findings have been confirmed in exten-
sive numerical investigations (Durst et al. (1993), Alleborn, Nandakumar, Raszillier and
Durst (1997), Drikakis (1997)).
In mathematical terms, bifurcation occurs when multiple stable solutions to Navier

Stokes equations exist (Sobey and Drazin (1986)). Bifurcation properties have been
clarified by Fearn et al. (1990) by using experimental and numerical techniques. They
showed that the asymmetry arises at a critical Reynolds number due to a pitchfork
symmetry-breaking bifurcation where the symmetric state loses its stability. This be-
havior is called exchange of stability and the bifurcation is classified as supercritical.
The dependence of the critical Reynolds number of the symmetry-breaking bifurcation
on the expansion ratio was studied numerically by Alleborn et al. (1997), Battaglia,
Tavener, Kulkarni and Merkle (1997), and Drikakis (1997). It was found that reducing
the expansion ratio tends to stabilize the symmetric solution, i.e., the critical Reynolds
number increases for lower expansion ratios.
With increasing the supercritical Reynolds number the asymmetry becomes stronger

and at a higher Reynolds number a third separation region appears downstream of the
smaller recirculation zone (Durst et al. (1993)). Hawa and Rusak (2001) pointed out
that probably the appearance of this additional recirculation zone does not result from
another bifurcation point of the channel flow problem.
As the Reynolds number is further increased, the experimental evidence indicates

that the flow becomes time dependent, and the unsteadiness is associated with three-
dimensional effects (Fearn et al. (1990), Durst et al. (1993)). Additional contributions re-
garding the symmetry-breaking pitchfork bifurcation include the investigation of Rusak
and Hawa (1999), Hawa and Rusak (2001) who carried out a weakly nonlinear analysis
of the bifurcation and explained the loss of stability of the symmetric state as a result of
the interaction between the effects of viscous dissipation and convection of perturbations
for increasing jet Reynolds number.
When further increasing the Reynolds number, the flow finally becomes turbulent.

Studies by Abbot and Kline (1962) and Restivo and Whitelaw (1978) have shown that
flow asymmetry and hence solution multiplicity remains a feature of flows also in the
turbulent regime.
In contrast to the large number of two-dimensional investigations, only few studies of

three-dimensional flows in sudden expansion have been performed ( Baloch, Townsend
and Webster (1995), Chiang, Sheu and Wang (2000), Schreck and Schäfer (2000)).
Chiang et al. (2000) studied the effects of the side walls on the flow structures showing

that, for a fixed expansion ratio, a critical maximum aspect ratio exists beyond which an
initially symmetric flow becomes asymmetric. This study confirmed the experimental
observation that a decrease in the aspect ratio has a stabilizing effect. They investigated
the vortical flow structures formed behind the expansion through a topological study of
streamline patterns, showing the presence of particle motion screwing towards the plane
of symmetry of the channel.

Backward-facing step

As pointed out in the previous section, only few studies of three-dimensional flows in
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sudden expansions have been performed. Another particular case of flow in geometries
with varying cross-section is represented by the flow over backward-facing steps.
A detailed experimental study of this flow was conducted by Armaly, Durst, Pereira

and Schönung (1983). They found that, although the high aspect ratio of their ex-
perimental test section (1:36) ensured that the oncoming flow was fully developed and
two-dimensional, the flow downstream of the step could become three-dimensional for
intermediate Reynolds numbers. Shih and Ho (1994) studied experimentally the flow
behind a backward-facing step with small aspect ratio showing that the flow in the sepa-
ration region is highly three-dimensional due to the presence of side walls. Williams and
Baker (1997) investigated numerically the laminar flow over the same backward-facing
step geometry used by Armaly et al. (1983) and confirmed the three-dimensionality of
the flow. They also found that the presence of side walls results in the formation of a
vortex pointing from the wall to the channel midplane. The presence of a similar flow
structure that develops near the side wall was shown by Nie and Armaly (2003), who
presented the numerical results for three-dimensional laminar forced convection flow
over a backward-facing step with aspect ratio 1:8.
The occurrence of a spiraling motion from the side wall to the symmetry plane of

the channel was proved by the numerical results of Chiang and Sheu (1998) and by
the experiments and the three-dimensional simulations of Tylli, Kaiktsis and Ineichen
(2002). This flow structure presents similarities with the screwing motion found in
sudden expansions.

The results obtained for the flow over backward-facing steps can enhance our compre-
hension of similar phenomena occurring in symmetric sudden expansions. Moreover, the
investigations performed for the flow over a step show the strong effects of channel side
walls and the presence of interesting three-dimensional flow configurations. Therefore,
they justify the interest in three-dimensional flows in symmetric sudden expansions and
point out the need of further three-dimensional numerical studies for such geometries.
A deep understanding of the structure of the three-dimensional hydrodynamic flow in

sudden expansions is essential for studying the effects of an externally applied magnetic
field on flows in such geometric configurations. Therefore, to allow a direct comparison
between the results for the magnetohydrodynamic flow and the hydrodynamic flow, both
types of flow have to be studied in the same geometry. That together with the limited
number of results available in the literature motivates the numerical investigation of
hydrodynamic flows described in Section 4.2.
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2 Formulation of the problem

Let us consider the flow of an electrically conducting fluid in a duct exposed to an
externally applied magnetic field B.
The complete set of magnetohydrodynamic (MHD) equations governing the prob-

lem under study are obtained by combining the hydrodynamic equations, namely the
Navier-Stokes equations and the mass conservation, with Maxwell’s equations of elec-
trodynamics.

2.1 Assumptions

The mathematical description of the problem is based on the following assumptions. The
fluid is assumed to be incompressible and electrically conducting and the flow is laminar
and isothermal. The latter assumption implies that buoyancy forces and thermoelectric
effects can be neglected and the Navier-Stokes equations are decoupled from the energy
equation.
As an additional assumption the problem is solved in the inductionless approxima-

tion, namely the induced magnetic field is negligible compared with the imposed one.
Therefore the total magnetic field is simply given by the applied, steady magnetic field
B0. This approximation is valid when the dimensionless parameter Rm = µσLv0, called
magnetic Reynolds number, is small (Rm << 1). This non-dimensional group can be
interpreted as the ratio of the induced to the applied magnetic field. Here µ is the
magnetic permeability, σ is the electrical conductivity of the fluid and L and v0 are
a characteristic length and a reference velocity. Neglecting the induced magnetic field
means that the magnetic induction field is dominated by diffusion and is not affected
by the fluid motion.
Since the magnetic field B0 is steady, the electric field E is irrotational (∇×E = 0)

and therefore can be represented as the negative gradient of an electric potential φ, i.e.
E = −∇φ.
The displacement current (∼ ∂E/∂t) introduced by Maxwell in Ampère’s law, which

represents the influence of time-varying electric fields on the magnetic field is also ne-
glected since its influence on MHD flows is many orders of magnitude smaller than the
phenomena studied here (Shercliff (1965)).

2.2 Governing equations

Magnetohydrodynamic equations are often written in dimensionless form so that the
relative strengths of the different terms can be inferred by the size of multiplying non-
dimensional groups, whose magnitudes give an idea of the relative importance of the
various forces acting on the flow. Under the assumptions described in the previous sec-
tion, the flow of an electrically conducting fluid in a imposed magnetic field is governed
by the following dimensionless equations accounting for the conservation of momentum,
mass and charge and by Ohm’s law (Shercliff (1965), Müller and Bühler (2001)):
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∂

∂t
v + (v ·∇)v = −∇p+ 1

Re
∇2v +N (j×B) , (1)

∇ · v =0, (2)

∇ · j = 0, (3)

j = −∇φ+ v×B. (4)

By combining the equations (3) and (4) a Poisson equation for the electric potential is
obtained:

∇2φ = ∇ · (v×B) . (5)

In these equations the variables v, p, j, B and φ denote the velocity, the pressure, the
current density, the magnetic field and the electric potential scaled by the reference
quantities v0, ρv20, σv0B0, B0 and v0B0L, respectively. Here, the half width of the
channel is chosen as characteristic length L and the average velocity in a particular
cross-section of the duct is taken as velocity scale v0. The quantity B0 is the magnitude
of the imposed magnetic field. The fluid properties, namely the density ρ, the electrical
conductivity σ and the kinematic viscosity ν are assumed to be constant. By assuming a
small magnetic Reynolds number (Rem << 1), the main effect of the interaction between
the electromagnetic field and the moving fluid is associated with the appearance of the
electromagnetic force j × B. Hydrodynamic equations and Maxwell’s equations are
therefore coupled by the Lorentz force and the induced electric field v × B present in
Ohm’s law.
The dimensionless groups governing the problem are the Reynolds number

Re =
v0L

ν
,

and the interaction parameter or Stuart number

N =
σLB20
ρv0

.

The Reynolds number, as in conventional fluid mechanics, represents the ratio of inertia
to viscous forces and the interaction parameter gives a measure of the ratio of electro-
magnetic to inertial forces. In the following an additional non-dimensional group called
Hartmann number is employed, whose square characterizes the ratio of electromagnetic
to viscous forces

Ha =
√
NRe = LB0

r
σ

ρν
.
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The present study is concerned with channels with walls of finite thickness tw and finite
conductivity σw. Therefore part of the current flowing in the fluid may close its path in
the walls and the equations

jw = −σw
σ
∇φw, ∇ · jw = 0 (6)

have to be solved in the solid domain.
Henceforth the ratio of the electric conductance of the wall to the fluid one will be

indicated by the conductance parameter

c =
σwtw
σL

.

As boundary condition at the fluid-wall interface the no-slip condition is applied

v = 0.

The electric boundary conditions at the fluid-solid interface state the continuity of wall-
normal component of current density and electric potential

jn = jnw, φ = φw.

The normal component of the electric current vanishes at the external surface of the
wall because the surrounding medium is assumed to be insulating.

2.3 Basic MHD flow characteristics

In this section the main features of the fully developed MHD flow in a duct with square
cross-section are described. The term fully developed denotes a condition where the
velocity profile is no longer changing in the main flow direction, i.e. a flow that has
reached a steady state driven by a constant pressure gradient. The study of fully devel-
oped flow under a uniform applied magnetic field is useful because the equations can be
solved analytically for different cases, and the solutions can be used as benchmarks for
numerical algorithms. In addition, fully developed solutions predict some phenomena
of general interest, especially the existence of different types of boundary layers, which
are important for the understanding of MHD flows.
In the present case the coordinate system is chosen in such a way that x, y and z

are the streamwise, the vertical and the spanwise direction respectively. The origin of
the system is placed at the centre of the channel cross-section. The fluid flows in the
x direction with velocity v = ux under the influence of an external uniform magnetic
field with a constant component in the y direction, B = B0y. Walls perpendicular to
the magnetic field are called Hartmann walls and the walls tangential to the magnetic
field are named side walls (Fig.3).
For sufficiently high Hartmann numbers the flow forms an inviscid core where Lorentz

forces balance pressure forces and thin boundary layers of different type (Shercliff
(1953)).
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Close to the Hartmann walls boundary layers with high velocity gradients are present
to satisfy the no-slip boundary condition. These layers are called Hartmann layers
and their thickness δHa is proportional to Ha−1. In these boundary layers, the velocity
profile is basically determined from a balance between Lorentz and viscous forces and
the electric currents induced in the core can close their path through these layers. The
electric conductivity of the duct walls influences the distribution of the current and
determines the flow pattern in the core.
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Figure 3: Sketch of the duct cross-section; δHa and δSide denote the thickness of the
Hartmann and side layers and L is the characteristic length scale.

Fig.4 shows the velocity distribution along the y direction for a range of Hartmann
numbers. For high Hartmann numbers a flat velocity profile exists in the core region
with exponential decay to zero within thin viscous boundary layers.
Near the side walls a different kind of boundary layer occurs, whose thickness δSide

scales asHa−1/2. In these boundary layers the velocity is considerably higher than that in
the core and for large Hartmann numbers a local minimum is present when approaching
the core (Fig.5).
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Figure 4: Velocity distribution along the y direction at z = 0 for c = 0.1 and different
Hartmann numbers Ha.
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2.4 MHD flow modelling using CFX

The present investigation is carried out using the commercial package CFX 5.6, which is
based on the finite volume method and on a modified form of the SIMPLE algorithm for
pressure-velocity coupling to ensure mass conservation (Patankar (1980)). The discrete
system of linearized equations is solved by an iterative procedure. The solution is
obtained by using a multigrid process that consists in performing the iterations at the
beginning of the run on a fine mesh and then on progressively coarser virtual grids.
Afterwards the results are transferred back to the fine mesh. This technique improves
the performance of the solver and the convergence rate.
Since magnetohydrodynamic equations are not available as an option in CFX-5, these

equations have to be implemented in the code by means of suitable Fortran subroutines.
In order to describe MHD flows it is necessary to introduce the Lorentz force as a
body force in the momentum equation and to solve a Poisson equation for the electric
potential.
Incompressible hydrodynamic flows in CFX are described by the following set of

equations for conservation of momentum, mass and energy:

∂ρv

∂t
+ ρ (v ·∇)v = −∇p+∇ρν∇v + Sm, (7)

∇ · v = 0, (8)

∂ρcpT

∂t
+∇ · (ρcpTv) = ∇λ∇T + ST , (9)

where ρ, ν, cp and λ are the density, the kinematic viscosity, the specific heat capacity
at constant pressure and the thermal conductivity, respectively. The source terms in
the momentum and in the energy equations are denoted by Sm and ST .
Starting from a former implementation of MHD equations in CFX, used for instance

to simulate metal arc welding processes (Spille-Kohoff (2004)), modifications and im-
provements are made to get a reliable tool for investigating numerically MHD flows in
various geometries exposed to a magnetic field of arbitrary orientation. In the previous
implementation a transport equation was solved for the electric potential, which was
described by an additional variable. This equation cannot be solved in a solid domain
and therefore it cannot be employed to describe the MHD flow in channels with elec-
trically conducting walls of finite thickness and to analyze the current and potential
distribution in the walls. To overcome this problem, the CFX-temperature is used to
represent the electric potential. By comparing equations (5) and (9) it is evident that
a purely diffusive equation is required to describe the electric potential evolution. With
this approach the subroutines used to calculate the current density have to be changed
considering that the currents driven by the static electric field can be interpreted as
CFX-heat fluxes. As will be described in the following, also the form of the Lorentz
force introduced as a source term in the momentum equation has been modified.
In order to implement the MHD equations in dimensionless form, since CFX deals

with dimensional quantities, CFX fluid and solid properties have to be selected in a
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proper way. Comparing the equations (7)-(9) solved in CFX with those governing the
problem under study (1)-(5) the following relations for the density and the kinematic
viscosity are obtained:

ρ = 1, ν = Re−1.

Regarding the energy equation the specific heat capacity is arbitrary both for the fluid
and the solid material whereas the thermal conductivity assumes different values in the
fluid and in the wall related to the electrical conductivity of the two materials:

λ = 1, λw =
σw
σ
.

Here σw and σ are the electrical conductivity of the wall and the fluid respectively.
The source term Sm in the momentum equation (7) is given by the product of the

interaction parameter N and the Lorentz force L expressed by

L = j×B = −∇φ×B+ (v×B)×B. (10)

Using vector identities the second term of the electromagnetic force can be written as
(B · v)B − B2v. This latter behaves as a drag force in a plane perpendicular to the
magnetic field. Through simple mathematical transformations the Lorentz force can be
expressed as the sum of a specified source of momentum and a fluid resistance:

Lx = ∂zφBy − ∂yφBz + aBx −B2u = Sspec,x − CR1u

Ly = ∂xφBz − ∂zφBx + aBy −B2v = Sspec,y − CR1v (11)

Lz = ∂yφBx − ∂xφBy + aBz −B2w = Sspec,z − CR1w

where CR1 is a linear resistance coefficient equal to B2, Sspec,i is the i-component of a
certain source term and a is given by Bxu+Byv +Bzw.
The proposed implementation applies to arbitrary geometries and orientation of the

external magnetic field and forms an efficient tool for MHD analyses.
The default boundary condition for the velocity at the fluid-wall interface is the

no-slip condition v = 0. On the external surface of the walls a zero flux condition
is applied for the current density. The distribution of velocity and electric potential
imposed as inlet boundary conditions is obtained from calculations in which periodic
boundary conditions are used along the streamwise direction to simulate fully developed
flows.
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Another aspect that has to be carefully considered in CFD simulations is the mesh
used to discretize the computational domain. It is important to resolve properly the
geometric features that affect the flow and the regions where the largest gradients of
the variables occur, such as, in the present study, the zone near the expansion and the
boundary layers that develop along the walls. By increasing the Hartmann number,
since the thickness of the boundary layers decreases, the need of resolving adequately
these layers, while preserving the mesh quality by avoiding elements with high aspect
ratio and ensuring a smooth transition between adjacent grids, leads to a progressive
rise in the total number of nodes. As a consequence, restrictions on the accuracy of the
solution at high Hartmann number are related to limitations in the memory storage and
computer capabilities.
The mesh employed changes depending on the Hartmann number. In the flow direc-

tion a biased grid is used to resolve suitably the zone around the expansion in which high
gradients are present. Further upstream and downstream where the flow approaches the
fully developed conditions the number of nodes per unit length is reduced. In the cross-
section of the channel the points are clustered close to the walls. More detailed issues
concerning the resolution of boundary layers and the fundamental requirements that a
grid has to fulfil will be discussed in the next chapter.
Convergence of the solution is judged both considering the value of the residuals of

velocity and mass conservation and by monitoring the solution variables in fixed points in
the computational domain during the run. Values of interest are the maximum velocity
in the side layers both close to the expansion and in the downstream flow region where
fully developed conditions are expected to establish, and the potential difference between
the side walls at given axial positions. The calculations of 3D MHD flows are stopped
when all the root mean square residuals are equal or less than 10−5 and the variables at
the monitored locations remain constant.
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3 Validation of the code

3.1 Introduction

The validation process is a fundamental step required when a code is modified and new
features are implemented. It allows to proof the reliability of the implementation and
to find possible mistakes.
The selected validation cases have been chosen because they permit to draw inter-

esting conclusions that can be applied to the following study. Moreover, they show the
ability of this numerical approach to predict flow features like high velocity jets and three
dimensional currents that are present also in MHD flows through sudden expansions.

3.2 Fully developed channel flow

As a first validation case the fully developed MHD flow in a duct with rectangular cross
section is analyzed. It is characterized by the fact that all the physical variables are
independent of the coordinate in the direction of motion except for the pressure whose
axial gradient is constant. The fluid flows in the x direction driven by this pressure
gradient and a uniform magnetic field is imposed parallel to the y axis (Fig.6). The
channel has same dimensions as the entrance duct of the expansion that will be analyzed
later. The non-dimensional half width is one and the half size along magnetic field lines
is 0.25. All the walls have the same electric conductivity and the conductance parameter
c, which gives the ratio of the conductance of the wall to the fluid material, is assumed
equal to c = 0.1. This quantity together with the Hartmann number Ha are the only
parameters governing the fully developed MHD flow.
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Figure 6: Rectangular duct in a uniform magnetic field. δside and δHa denote the thick-
ness of the side and the Hartmann layers, respectively.

The computed results are compared with the analytical solution obtained following
the approach of Walker (1981), which is valid for high Hartmann numbers (Ha À 1)
and for conductance parameters such that cHaÀ 1. The latter assumption states that
the walls perpendicular to the magnetic field are better conducting than the adjacent
boundary layers. Therefore currents flow preferentially in the walls rather than in the
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Hartmann layers. For large enough Hartmann numbers, Walker divides the cross section
of the duct in an inviscid core, where electromagnetic and pressure forces balance each
other, and thin boundary layers in which viscous effects are confined. The solution in
the core region shows that the velocity is uniform and does not change along magnetic
field lines and the potential varies linearly in the transverse direction z.
In the side layers the solution is found by eliminating currents and velocity from the

governing equations, deriving in this way a separable equation for the electric potential,
which is solved in terms of Fourier series.
The study of the effect of the mesh on the accuracy of the solution has been performed

for various Hartmann numbers (Ha = 100, 300, 500, 1000). From the analysis of the
results and the comparison with the analytical solution it is possible to obtain some
basic guide lines for creating an appropriate grid to resolve characteristic MHD flow
features.
The velocity profile in the side layer is characterized by a strong gradient close to

the wall, a high velocity jet and, for sufficiently large Hartmann numbers, by a local
minimum that appears near the interface between the core region and the layer. These
flow features become stronger with increasing Hartmann number and determine the
structure of the mesh needed to get an accurate solution.
Four meshes have been selected, which resolve one after the other the regions of

interest in the side layer.
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Figure 7: Numerical results for axial velocity at y = 0 for c = 0.1 and Ha = 500
calculated by using four different meshes. The solid symbols indicate the analytical
solution.

Fig.7 shows the velocity profile along the z direction for the flow at Ha = 500.
Starting from the results obtained using grid 1, first the mesh is refined near the side
wall to predict with precision the high velocity gradients (grid 2). The same number of
nodes is used in the side layer for both the grids. As a consequence by narrowing the
first cell at the fluid-wall interface the resultant mesh in the rest of the layer is coarser
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than grid 1. It leads to a reduction of the maximum velocity and a larger deviation
from the analytical solution at the border of the layer.
The next step consists of increasing the number of nodes in the zone where the

highest velocities are present in order to reach the maximum jet velocity (grid 3). The
results show that it is still necessary to refine the grid where the local minimum of
velocity occurs (grid 4). The resultant mesh consists of 150 nodes in the z direction, of
which 27 are contained in a region of thickness∆z = 0.1 close to the wall. By comparing
with the analytical solution the velocity distribution along the z coordinate calculated
by using grid 4 the maximum relative error is about 2%. The results can be further
improved by increasing the number of nodes in the duct cross-section proving that the
numerical approach is able to predict thoroughly the fully developed flow profile in a
rectangular duct.
However, since these results are used as inlet boundary conditions for the 3D cal-

culations for which a fine grid is required not only near the walls but also across the
expansion, a restriction on the total number of nodes used to discretize the cross-section
of the inlet duct is imposed due to limitations of the memory storage.
For the flow at Ha = 1000 the boundary layers are very thin and next to the walls

there are strong velocity gradients. It has been verified that, in order to predict with
high accuracy the velocity profile in the side layers, a large number of nodes is required,
which is beyond the above mentioned limit.
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Figure 8: Numerical and analytical solution for axial velocity for c = 0.1, Ha = 100
(a)-(b) andHa =300 (c)-(d).
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Figure 9: Calculated velocity profiles are compared with the analytical solution for
c = 0.1 and Ha = 500.
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Figure 10: Comparison between the computed velocity profiles and the analytical solu-
tion for c = 0.1 and Ha = 1000.

The results obtained by employing a grid valid also in the three dimensional calcu-
lations are shown in Fig.8, 9 and 10. The axial velocity is plotted versus the directions
y and z and it is compared with the analytical solution. For Ha = 1000 the used mesh
allows to reach a maximum velocity in the side layer within an accuracy of about 4% of
the analytical solution but overestimates the velocities near the core-side layer interface.
Concerning the resolution of the Hartmann layers the investigation shows that it is

a critical point due to the presence of high velocity gradients. Without a sufficiently
fine grid, which consists in the presence of at least 4 nodes inside the layer, the fast
decreasing of the core velocity to zero at the wall cannot be properly represented and
also a reduction of the core velocity is observed. Since the thickness of the Hartmann
layer decreases with raising the Hartmann number (δHa ∼ Ha−1), the total number
of nodes required along magnetic field direction to discretize the channel cross section
increases with the Hartmann number. For the flow at Ha = 500 about 35 points have
to be used. In Fig.8(b), (d), 9(b) and 10(b) the computed velocity is plotted along the
vertical direction y and it is compared with the analytical solution for Ha = 100, 300,
500 and 1000, respectively. A fairly good agreement is found between the solutions.
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3.3 MHD flow in plane sudden expansion

The two-dimensional MHD flow in symmetric sudden expansions with expansion ratio
of four and perfectly conducting walls is investigated. The fluid flows along the x
direction and the imposed magnetic field is uniform and parallel to the y axis (Fig.11).
The parameters governing the problem, namely the Hartmann number Ha and the
interaction parameter N , are chosen according to the ones reported by Aleksandrova,
Molokov and Bühler (2003) and this permits a direct comparison with the numerical
results in the literature so that the present computational approach can be further
validated. Moreover some useful information about grid properties required to get an
accurate numerical solution can be inferred.
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y

v

Figure 11: Sketch of the plane symmetric sudden expansion.

Three cases are analyzed and the corresponding dimensionless groups are reported
in Table 1.

Ha N Re = Ha2/N
case 1 40 1.6 1000
case 2 400 15.7 10189
case 3 1000 1000 1000

Table 1: Governing parameters for the three cases investigated.

To ensure that the computed solutions predict correctly the flow configuration, a
grid sensitivity study has been performed to investigate the effects of mesh resolution in
the region across the expansion and around the corners. Details of the grid-independent
tests are presented for the highest Hartmann number (Ha = 1000). For this study, non-
uniform mesh distributions have been used with a finer grid near the expansion and in
the vicinity of the Hartmann walls. Fig.12 shows an example of the grid used for the
calculations. Four meshes have been selected whose main characteristics are summarized
in Table 2. In the table ∆x1 indicates the length of the first cell immediately behind
the enlargement of the channel and the cell located symmetrically with respect to the y
axis has the same size, ∆y1 is the height of the first control volume close to the wall of
the small duct and the height of the cell in the large duct immediately adjacent to this
control volume is called ∆y1 exp.
By comparing the calculated solution for Ha = 1000 with that in the literature, the

maximum difference occurs in the region close to the expansion corner located at the
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Figure 12: Sample of the grid used for the calculations.

point P (0, 0.25, 0) in which a high velocity jet is present. Therefore the deviation ε
from the reference value of the maximum u velocity at x = 0 is taken as a sensitive
measure of the accuracy of the solution.
The grid independent study has been performed starting from the results obtained

using grid A. For this mesh the difference ε is larger than 13 %. As shown in Table 2, a
first improvement in the solution is obtained by increasing the grid density close to the
expansion (grid B), namely by narrowing the length ∆x1. The results are further im-
proved by raising the number of nodes near the external wall of the small duct (grid C),
corresponding to a reduction in the height ∆y1. A perfect agreement is reached by
decreasing the height ∆y1 exp, that is by smoothing the transition between the fine grid
close to the wall of the small channel and the mesh in the core region of the large duct
(grid D). In this way the refinement of the grid across the expansion and around the
corner (point P) is completed. It is worthwhile noticing that in this case with perfectly
conducting walls the refinement of Hartmann layers does not affect the solution in the
core as all the currents close through the wall. The resolution of this boundary layer has
only local effects since it allows to calculate properly the large velocity gradients that
take place to satisfy the no-slip condition at the wall.
The numerical results, obtained employing grid D, are compared with the solution

given by Aleksandrova et al. (2003). In Fig.13 the streamwise velocity component is

GRID Nodes in the Ha-layer ∆x1 ∆y1 ∆y1 exp ε (%)
A 1 0.008 0.0005 0.002 13.7
B 1 0.004 0.0005 0.002 4.5
C 3 0.004 0.0002 0.002 3.4
D 3 0.004 0.0002 0.0003 1.1

Table 2: Main features of meshes used for the grid independent study for Ha = 1000.
ε is the deviation from the value in the literature (Aleksandrova et al. (2003)) of the
maximum velocity calculated along y at x = 0.
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Figure 13: Velocity component u versus the vertical direction y, parallel to the magnetic
field, at different axial positions. The results are calculated using grid D. The symbols
correspond to the solution reported by Aleksandrova et al. (2003).

plotted along the vertical coordinate y at various axial positions for Ha = 1000. At
the inlet of the channel the flow is fully developed. Approaching the expansion there
is a reduction of the velocity in the core and an increase close to the Hartmann walls
leading to the formation of a characteristic M-shaped profile along the field direction.
The velocity of the jets rises and reaches the maximum value at the junction between
the small and the wide duct (x = 0). This is due to the fact that the flow redistributes
quickly in the large channel following the wall profile (Fig.14). This comparison shows
that the employed numerical tool is able to predict accurately the presence of high
velocity jets.
In Fig.15 the velocity component u is plotted along the axial coordinate at y = 0. The

flow is fully developed both upstream and downstream and the strongest modifications
in the velocity distribution take place near the expansion in a thin layer parallel to the
applied magnetic field.
As mentioned at the beginning of this section, two other cases have been studied

(Table 1). The results show similarly a very good agreement with the reference solution.

This analysis not only increases our confidence in the numerical approach but high-
lights the importance of gathering nodes in the region around the expansion and the
corners of the duct. In the following investigations, channels with walls of finite conduc-
tivity are considered where the current can flow also through the boundary layers and
along the walls. As a consequence, the resolution of these layers becomes fundamental
for a correct prediction of the flow pattern in the entire computational domain. This
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observation sheds light on the problems related to memory storage and computational
time, which arise simulating three dimensional MHD flows at high Hartmann numbers
while preserving the accuracy of the solution. This is due to the fact that the thickness
of the boundary layers decreases with increasing the Hartmann number and a minimum
number of nodes is always required inside these layers.
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Figure 14: Velocity streamlines for the flow at Ha = 1000 and N = 1000.
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Figure 15: Velocity component u along the channel midline y = 0 for Ha = 1000 and
N = 1000. The solution is computed on grid D. The symbols indicate results from the
literature ( Aleksandrova et al. (2003)).
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3.4 3D MHD flow under a non-uniform magnetic field

Let us consider the flow of an electrically conducting fluid in a rectangular duct with con-
stant cross-section exposed to an externally applied non-uniform magnetic field aligned
with the y-axis (Fig.16).
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Figure 16: Sketch of the geometry. The cross section marked inside the duct is located
at x = 0 and corresponds to the region with the largest magnetic field gradient.

In accordance to the formulation of Sterl (1990) the imposed magnetic field, which
varies in the streamwise direction, has the following form:

By(x) =
1

1 + e−x/x0
. (12)

If x0 is positive By increases from zero to one with a steep gradient, if x0 is negative the
magnetic field has the opposite profile. This shape of the applied field can model the
entrance or the exit of a magnet.
The magnetic field is assumed to have only one component in the y direction since, as

verified by Sterl (1990), applying an additional component Bx in the axial direction does
not affect significantly the solution. It implies only a small reduction of the pressure drop
and of the amount of fluid driven into the side layers. This accords with the arguments
discussed by Talmage and Walker (1987) and Walker (1986a).
The numerical results for the flow at Ha = 50, N = 1000, c = 0.1 and x0 = 0.15 are

described and compared with the ones in the literature (Sterl (1990)). A non equally
spaced grid is used clustered in the region of large magnetic field gradient and in the
boundary layers that develop along the duct walls.
Fig.17 shows the comparison between the computed solution and the reference results

for characteristic quantities that vary along the x-direction, namely the pressure along
the centerline of the duct (z = 0) and at the side wall (z = 1), the axial pressure gradient
and the transverse potential difference. In the figure the strength of the applied magnetic
field is also indicated. A very good agreement is found between the two solutions. Some
deviation occurs in the transverse potential difference in the downstream region. It
can be explained considering that the actual results are obtained using a much higher
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non-uniform magnetic field at Ha = 50, N = 1000, c = 0.1. The symbols indicate the
reference results (Sterl (1990)).
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Figure 18: The upper curve is the imposed magnetic field. The vector plots illustrate
the redistribution of the velocity in the plane y = 0 perpendicular to the B-field for the
flow at Ha = 50, N = 1000, c = 0.1.

28



numerical resolution than what was possible in the past. This argument may explain
the observed difference at the exit of the geometry.
In Fig.18 the velocity distribution is shown on the symmetry plane y = 0 perpendic-

ular to the magnetic field. The velocity vectors across the channel are plotted at various
axial locations. At the entrance the velocity profile is purely hydrodynamic. Approach-
ing the zone of inhomogeneous magnetic field the velocity profile begins flattening in
the core region and velocity jets start arising close to the side walls.
The main typical phenomena occurring in the duct can be explained considering that,

due to the variation of the magnetic field in the streamwise direction, an axial potential
difference is generated, which drives currents in flow and counter flow direction. The
resulting Lorentz force acting in the z direction towards the centre of the channel have
to be balanced by a pressure gradient. Hence the pressure is higher in the middle than
on the side walls (Fig.17). The induced axial currents close their path throughout the
width of the duct and these transverse currents are responsible for a negative net Lorentz
force that opposes the flow. The fluid try to bypass this braking region by flowing close
to the lateral walls where the retarding electromagnetic force is weaker. As a result, the
velocity is strongly reduced in the core and increased near the walls.

This study introduces some of the 3D MHD phenomena, which arise if the induced
potential difference varies in the axial direction. Such variation can be caused by a
non-uniform magnetic field as in the present case, by a reduction of the x-component
of the velocity observed in expansions or bends, or because of varying conductance
properties of the channel walls. In the following chapter the additional and new features
characterizing 3D MHD flows in ducts with an abrupt change in the cross-section are
described focusing on flow pattern, current distribution and the important role of the
magnetic field in damping separation effects.
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4 Results and discussion

As an application of the developed computational tool, the MHD flow in sudden ex-
pansion of rectangular ducts is investigated. The geometry features and the coordinate
system are in accordance with the ones described in Chapter 1.

4.1 Introduction

The study of flow separation and the determination of the resultant changes in the
flow field are fundamental problems of fluid dynamics. Considering the flow in sudden
expansions, a pressure increase occurs behind the cross-section enlargement and, due to
this adverse pressure gradient, a reverse flow can take place and the flow in the boundary
layers can separate. This phenomenon is associated with the formation of vortices.
In two dimensional flows separation and reattachment points are defined by Prandtl’s

criterion, which states that the wall shear stress τw is zero at these points. This criterion
is not appropriate for three dimensional separated flows for which another method has
to be found.
The use of the Theory of Critical Points introduced by Legendre (1956) was

suggested to describe the separation of three dimensional boundary layers ( Lighthill
(1963)).
Critical points are singularities in the flow field where the velocity vanishes and the

direction of the vector quantity under consideration is undetermined. These singular
points can be classified into two main categories: nodes and saddle points.
Nodes include nodal points and foci. A nodal point is a point common to an infinite

number of streamlines. At this point all streamlines except one are tangential to a single
line. Degenerated nodal points exist where every streamline has a distinct tangent and
they act as sources or sinks. A focus is characterized by the fact that all the trajectories
spiral around it and no common tangent is present.
At a saddle point only two lines pass through the critical point whereas the other

streamlines avoid the singular point and take on hyperbolic shape.
The three dimensional features of the flow can be deduced and interpreted by study-

ing limiting streamlines’ pattern and analyzing the flow topology, namely the distri-
bution, the type and the relations of critical points (Délery (2001), Tobak and Peake
(1982)). Limiting streamlines are so called because they are streamlines on a surface
whose distance from a no-slip wall tends to zero. The wall streamlines permit to identify
separation and reattachment lines in three dimensional flows. In separation processes
the limiting streamlines tend to converge towards a common line named separation line.
The inverse of a line of separation is a line of reattachment characterized by the fact
that the streamlines diverge from it. Therefore, Prandtl’s separation criterion (τw = 0)
valid for two dimensional flows is replaced by a criterion of convergence and divergence
of wall streamlines to and from a critical line.

In the following, the basic concepts of the theory of critical points and limiting
streamlines’ pattern are employed to describe the three dimensional separated flow oc-
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curring behind symmetric sudden expansions. All the results are obtained for a fixed
expansion ratio of 4.
First the evolution of the topology of the hydrodynamic flow with increasing the

Reynolds number is analyzed together with the main 3D flow structures. Afterwards,
details of the flow at Re = 100 are given since it is chosen as the reference case for
the study of the effects of a magnetic field on the configuration of the flow in sudden
expansions. In Section 4.3 the answer of the reference asymmetric hydrodynamic flow
to the application of a uniform magnetic field is studied by raising progressively the
imposed field while the Reynolds number remains constant. The last part of the chapter
consists of a parametric study in which the strength of inertia forces with respect to
electromagnetic forces is varied by choosing various interaction parameters N in the
case of flow under a constant magnetic field (Ha = const).

4.2 3D hydrodynamic flow

In order to generate grid-independent solutions for the three dimensional flow, initially a
scan of a range of Reynolds number (5 6 Re 6 150) has been performed using a relatively
coarse grid and successively the grid has been refined. Calculations on the fine grid
have been performed for Reynolds numbers around some noticeable values, namely the
critical Reynolds number corresponding to the symmetry-breaking bifurcation and the
Reynolds number defining the appearance of the secondary separated flow downstream
of the small bubble.
Considering that in the case in which the flow is not normal to the faces of the grid

elements, for instance in recirculation regions, numerical diffusion can limit the accuracy
of the solution, two different advection schemes have been used and compared. The effect
of numerical diffusion consists in damping the flow features owing to the presence of a
numerical viscosity that arises from the discrete approximation to the advection term
in the momentum equation.
First the first order upwind scheme has been employed together with a progressive

mesh refinement and then a second order scheme has been selected to find out the
importance of the numerical diffusion on the accuracy of the solution.
Let us consider as samples a coarse and a fine grid. By comparing the results on the

two grids for a constant Reynolds number using the upwind scheme, the difference in
the reattachment length is about 10 %. This deviation is reduced to 1÷ 2 % by using
the second order accurate discretisation.
The comparison between the solutions on the fine grid obtained by using the two

advection schemes shows a difference in the recirculation length of 20 % for the flow at
Reynolds number equal to 100. This deviation reduces for smaller Reynolds number (4
% for Re = 10).
The results described in the following are obtained by employing the second order

advection scheme and the fine grid.

To achieve a good understanding of the three dimensional flow features, a topological
study of limiting streamlines is performed. The data used for drawing the wall stream-
lines are those at the first interior plane of nodes adjacent to the corresponding no-slip
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boundary. The locations of the critical points are found as the positions where the two
velocity components on the plane of interest are zero simultaneously.
The analysis shows that at low Reynolds number the flow is symmetric with respect

to the plane y = 0 and the recirculations increase in size with raising the Reynolds
number. It is worth noticing that the flow remains symmetric with respect to the plane
z = 0 for all the Reynolds numbers investigated. Beyond a critical value of the governing
dimensionless group (Rec ' 27) the flow becomes asymmetric. A further increase of the
Reynolds number (Re > 36) leads to the appearance of secondary flow. Differences
are observed between the development of the recirculations on the side wall and on the
middle plane of the duct as described in the following.
Fig.19 shows the limiting streamlines on the side wall of the channel for the symmetric

flow atRe = 10 andRe = 20. The red lines indicate the points on the wall where the axial
velocity component changes its sign or becomes zero. They pass through the critical
points and they give a good indication of the reattachment length of the separation
region.
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Figure 19: Limiting streamlines on the lateral wall of the duct for the flow at Re = 10 (a)
and Re = 20 (b). The red lines indicate the locations where the u-velocity component
is zero. ST designates the stagnation points and Fs the foci on the side wall.

The topology of these flows on the lateral wall of the channel is characterized by two
half saddle points (stagnation points, ST1 and ST2), which correspond to the reattach-
ment locations of the primary recirculation zone on the upper and lower wall of the duct
and by two foci (F1s, F2s), which the streamlines spiral on. A wall reattachment line can
be identified as the line, which the limiting streamlines diverge from. It is the trace on
the wall of a surface that separates the back flow region from the rest of the flow. With
rising the Reynolds number, the foci move downstream and the recirculations become
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longer as shown in Fig.19(b).
The foci are the traces on the side wall of a 3D spiralling path that transports the

fluid from the lateral walls to the middle plane (z = 0) of the duct. They are associated
with an isolated line originating from the foci themselves, which the other streamlines
spiral around taking on helical shape. This line will be referred to as vortex core line.
Owing to the symmetry of the flow with respect to the planes y = 0 and z = 0, in the
following the 3D flow structures are shown only in a quarter of the channel.
A comprehensive picture of the three dimensionality of the flow at Re = 10 is given

in Fig.20. Here particles are released at the inlet plane at various distances from the side
wall. The red line indicates the vortex core line defined above. The top view (Fig.20(b))
shows that the flow coming from points very close to the side wall, marked by the blue
and the black lines, enter the recirculation and swirl around the vortex core line reaching
the middle plane of the duct. Particles injected further from the lateral wall (green line)
turn only few times around the vortex line and they only approach the symmetry plane
z = 0. At a certain distance from the side walls the fluid flows directly downstream and
it is no longer trapped into the vortex. More in details, all the particles inserted in the
range −0.65 < z < 0.65 do not contribute to the recirculation.
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Figure 20: Lateral (a) and top (b) view of 3D streamlines for the flow at Re = 10. The
red line is the vortex core line whose starting point on the side wall is the focus F1s.

By increasing the Reynolds number (Re > 27) the flow becomes asymmetric and the
flow topology on the side wall changes as shown in Fig.21(a).
As for the symmetric flow, two foci (F1s, F2s), trace on the lateral wall of the vortical

structures, and two reattachment points (ST1, ST2) are present. Two additional critical
points appear on the side wall: a node N3s that feeds the recirculations and a saddle
point SD1s that separates the two bubbles. These new points disappear at some distance
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Figure 21: Limiting streamlines on the side wall for the flow at Re = 30 (a), Re = 35
(b) and Re = 40 (c).

from the side walls where the flow pattern resembles the 2D flow. As a result of this
configuration, the reattachment lengths on the lateral wall of the recirculations forming
the primary separation zone remain comparable by increasing the Reynolds number
(x1 ' x2).
This can be explained considering that by raising further the Reynolds number the

longitudinal distance between the node N3s and the stagnation point ST1 increases since
the two singularities move in opposite direction as shown in Fig.21(b) for the flow at
Re = 35.
When the secondary flow occurs (Re > 36), the streamlines touch the upper wall

in a point very close to the node N3s giving rise to two singularities indicated by ST1
and ST3 in Fig.21(c). One of these points is the reattachment position of the small
bubble (ST1) and the other one is the separation point of the additional recirculation
(ST3). Therefore a jump in the reattachment length on the side wall (ST1) is observed
and it is associated with the appearance of the secondary flow. This can be seen in
Fig.22 where reattachment and separation points both on the side wall and on the
symmetry plane z = 0 are plotted as a function of Reynolds number. In the range
25 < Re < 36 the reattachment points x1 and x2 on the lateral wall remain very close
till the secondary flow appears. Scanning the axial location of the node N3s in this range
of Reynolds number, it is found that its position changes following well the black dashed
curve drawn in Fig.22(a). By replacing the previously identified values of x1 with this
new curve a bifurcation diagram similar to that for the points on the middle plane is
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obtained.
The additional separation zone included between x3 and x4 is present only in a

limited spanwise range close to the side walls and does not extend to the duct midplane.
With increasing Reynolds number it moves downstream as suggested by the rising of
the distance between the end of the small recirculation (x1) and the separation point of
the secondary flow (x3).
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Figure 22: Locations of reattachment and separation points of recirculations on the side
wall (a) and on the symmetry plane z = 0 (b) as a function of Reynolds number. The
black dashed line (a) indicates the axial position of the node N3s.

The previous observations are summarized in Fig.23 where the lines along which the
axial velocity component u vanishes are plotted on the top wall of the duct and compared
for various Reynolds numbers. Here the modifications leading to the appearance of
the secondary recirculation are clearly displayed starting from the symmetric flow at
Re = 25.
Regarding the evolution of the recirculation lengths on the symmetry plane z = 0

(Fig.22(b)), when the flow is symmetric with respect to the plane y = 0, the extent of
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the top wall for various Reynolds numbers Re. At Re = 25 the flow is still symmetric.
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Figure 24: Limiting streamlines on the upper wall of the channel for the symmetric flows
at Re = 10 (a) and Re = 25 (b). The topology close to the reattachment line remains
the same while it changes near the expansion along the separation line.
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the back flow region is smaller than that on the side wall. After the onset of the asymme-
try, by increasing the supercritical Reynolds number, one of the recirculations becomes
smaller and smaller (x1) and finally remains almost constant whereas the other one (x2)
grows progressively with Reynolds number. The bifurcation diagram is analogous to
that for the 2D flow.
It is worth also describing the changes of the flow topology on the top of the channel

with raising Reynolds number. In Fig.24 the limiting streamlines are depicted on the
upper wall of the duct for the symmetric flows at Re = 10 and Re = 25.
The topology of the flow at Re = 10 is characterized by two nodes N1t and N2t that

act as a source and as a sink respectively. The node N1t lies on the reattachment line
that separates the recirculation region from the downstream flow and the node N2t on a
separation line. For higher Reynolds number near the corners, on the separation line two
symmetric sinks are observed together with two saddle points that separates the flow
entering the central node N2t from that moving into the lateral sinks. By increasing the
Reynolds number, the nodes at the corners remain approximately in the same position
while the saddle points move towards the middle plane till they join together creating
a single saddle point SD2t as shown in Fig.24(b) for Re = 25.
Above the symmetry breaking Reynolds number a new topological structure occurs

on the top wall as depicted in Fig.25. The node that was present on the reattachment
line splits into two nodes of reattachment N1ta and N1tb and a new saddle point SD1t
appears in between. With increasing Reynolds number, these two nodes move towards
the side walls. Limiting streamlines emerging from the nodes are prevented from crossing
the center line z = 0 by the presence of a separation line that connects the two saddle
points SD1t and SD2t.
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Figure 25: Limiting streamlines on the top of the duct for Re = 30. Downstream, along
the reattachment line new topological features are present: two reattachment nodes
acting as sources and a saddle point.

Concerning the topology of the flow on the bottom of the channel where the long
recirculation develops when the asymmetry occurs, the flow structure is characterized by
two saddle points separating two families of streamlines that originate from the nodes on
the reattachment line similarly to the configuration on the top wall shown in Fig.25 for
the flow at Re = 30. This topology is preserved while increasing the Reynolds number.
The last part of this section is dedicated to the description of the main characteristics

of the flow at Re = 100. As mentioned before, this flow is assumed as the reference
hydrodynamic case and it will be compared with the magnetohydrodynamic flow at the
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Figure 26: Limiting streamlines on the side wall (a) and on the top (b) of the duct for
the flow at Re = 100.

same Reynolds number for understanding the effects of the magnetic field on the size
and the occurrence of the separation regions behind sudden expansions.
Let us consider the wall streamlines plotted on the side wall of the duct (Fig.26(a)).

The complexity of the flow is made visible by the increased number of critical points
describing the kinematic aspects of the streamlines. The topological analysis reveals
that, after the occurrence of the secondary recirculation, the node N3s behind the small
recirculation almost coincide with the half saddle point that identifies the reattachment
location of the reverse flow on the top of the duct. Fig. 26(b) shows that the secondary
recirculation does not extend throughout the channel width but is restricted to the sides.
Moreover, additional flow patterns develop in front of the primary vortex where

the flow moves preferentially towards the side walls and strong transverse velocities are
found. The foci F1s and F2s on the lateral wall are the starting points of the centerline
of the main vortical structures. The swirling motions are depicted in Fig.27. The red
lines are the vortex core lines.
The previous results highlight the importance of the vortex core line to visualize the

3D flow structures. Therefore to summarize the effects of the rise of Reynolds number
on the flow configuration, the core line of the long primary recirculation is shown in
Fig.28 for various Reynolds numbers. The center line of the small separation zone is
not plotted because its behavior is similar to that of the core line characterizing the
symmetric flow with the only difference that the line is slightly stretched downstream
owing to the higher velocity. With increasing the Reynolds number the core line of the
long vortex elongates and the focus F2s on the side wall shifts downstream.
Calculations have been performed also for the 2D flow and the computed value of

Reynolds number corresponding to the symmetry-breaking bifurcation point (Rec ∼= 18)
agrees well with the results in literature ( Drikakis (1997), Revuelta (2005)). The com-
parison between the solutions for two dimensional and three dimensional flows confirms
the stabilizing effect of the side wall observed by Cherdron et al. (1978) and Schreck
and Schäfer (2000), which results in a higher critical Reynolds number for the three
dimensional flow.
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Figure 27: Lateral (a) and top (b) view of the 3D spiralling motion around the vortex
core line (red lines) for Re = 100. The nodes on the side wall are the origins of the
vortex core lines.
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recirculation for various Reynolds numbers. In the legend only some Reynolds numbers
are indicated.
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4.3 3D MHD flow in sudden expansions

4.3.1 Variation of the applied magnetic field at constant flow rate

The three-dimensional MHD flow in rectangular ducts with sudden expansion is studied
to investigate how an applied magnetic field affects an asymmetric hydrodynamic flow
at Re = 100. The Hartmann number Ha is progressively increased while keeping the
Reynolds number constant. Following the same approach used for the analysis of the
hydrodynamic flow (Section 4.2) a topological study is carried out. The investigation
of critical points and limiting streamlines allows to reconstruct the 3D features of the
MHD flow.
Fig.29 shows the limiting streamlines on the side wall of the channel for the flow at

various Hartmann numbers starting from the case without magnetic field (Ha = 0). The
red points indicate the foci, which are the traces on the lateral wall of the vortex core
lines. These latter represent the centerlines of the vortical structures that form behind
the expansion. The position of these lines will be later compared for different Hartmann
numbers and used to explain how the magnetic field affects the size of the recirculations.
The region of reverse flow is limited downstream by a reattachment line made visible

by the fact that the streamlines diverge from it. This line is indicated for the flow at
Ha = 30 by the green curve. The red line, drawn here only for Ha = 5, corresponds
to the points where the axial velocity component u vanishes. It provides an effective
mean to visualize the longitudinal extent of the separation zone. The point where this
line touches the wall perpendicular to the magnetic field, marked by the blue dot, is the
reattachment point of the recirculation on the side wall.
For the hydrodynamic case (Ha = 0) the flow topology is quite complex (refer to

Section 4.2). The flow is asymmetric and a secondary recirculation develops downstream
of the small primary separation region on the top of the duct. By applying the magnetic
field the length of the back flow region starts reducing. For Ha = 3 only a small trace
of the secondary flow remains and the size of the recirculation is already reduced by
20% compared with the hydrodynamic case. By increasing the Hartmann number the
separation area shrinks further. The topology of the MHD flow at Ha > 4 resembles
that of the symmetric hydrodynamic flow for Re 6 25.
The separation zones occur due to the effect of viscous forces and the presence of

an adverse pressure gradient that retard the flow near the wall of the duct. As a result
the fluid is forced to move in direction opposite to the main flow. In addition, when the
interaction parameterN is small inertia forces are strong and oppose to the modifications
of velocity profile. Therefore, some distance from the expansion is required before the
fluid can “fill” all the large duct, reaching the Hartmann walls.
In Fig.30 the lines where the velocity component u becomes zero on a plane adjacent

to the side wall are compared for various Hartmann numbers. They clearly show that
the magnetic field tends to reduce the axial size of the recirculations. In the figure x1
indicates the position of the reattachment point. The dependence on the interaction
parameter of the reattachment length is shown in Fig.31. A linear approximation of
the numerical results in logarithmic scale shows that for Ha > 50 the length x1 is
proportional to N−0.3. This could be an indication that the side layers are dominated
by an inertia-electromagnetic balance in this range of parameters.
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Figure 29: Limiting velocity streamlines on the side wall parallel to B for c = 0.1,
Re = 100 and various Hartmann numbers Ha. The red points are the foci, traces on
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Figure 31: Reattachment length x1 at the side walls as a function of the interaction
parameter N in logarithmic scale for Re = 100. The curve that fits well the results is
proportional to N−0.3.

In Fig.32 limiting streamlines are drawn on the wall perpendicular to the magnetic
field for several Hartmann numbers. For the asymmetric flow (Ha = 3) the topology
on the bottom of the duct is considered. On this wall the long primary recirculation
is present. It is worthwhile to remark the presence of additional 3D flow patterns
immediately behind the expansion, in front of the primary recirculation, for the flow at
Ha = 0. For Ha = 5 this region is still present and it is very small as indicated by the
red line where u = 0, but at higher Hartmann numbers it disappears.
The flow topology on the Hartmann wall for moderate Hartmann numbers is charac-

terized by two nodes that act as sources (red dots) and by a node close to the expansion
that behaves as a sink. The border of the region of reverse flow is indicated by the reat-
tachment line that passes through these sources and through the saddle point located on
the symmetry plane. By rising the Hartmann number the length of the zone of back flow
reduces, the two sources move closer to the expansion and to the side walls. The saddle
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point approaches the sink till both disappear. Later in this section an interpretation of
these changes of the flow topology is given.
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Figure 32: Limiting streamlines on the wall perpendicular to the magnetic field for
various Hartmann numbers Ha and Re = 100. The red points are the nodes that
behave as sources of streamlines.

The lines corresponding to the points where the axial velocity is zero are depicted on
the wall perpendicular to the magnetic field for a range of Hartmann numbers (Fig.33).
The locations indicated by x1 and x0 coincide with the reattachment points along the
side wall and on the symmetry plane z = 0, respectively. The reattachment point x0
is plotted as a function of the interaction parameter N in Fig.34. Interpolating the
points in the logarithmic graph of Fig.34 the result shows that x0 scales as N−1. This
result indicates that inertial effects in the core are damped out by the application of the
magnetic field.
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Figure 33: Lines along which the velocity component u vanishes, drawn on the Hartmann
wall for various Hartmann numbers Ha and Re = 100. x1 and x0 are the reattachment
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Figure 34: Reattachment point x0 on the top of the duct along the symmetry plane
z = 0 as a function of the interaction parameter N for Re = 100.

The effects of an applied magnetic field on the flow can be better understood analyz-
ing the 3D velocity streamlines and by comparing the outcomes for the flow at moderate
(Ha = 30) and large Hartmann number (Ha = 700).
In Fig.35 three-dimensional velocity streamlines are drawn for the flow at Ha = 30,

N = 9 and c = 0.1. Fluid coming from the upstream core enters the large duct and
flows in the downstream core (orange lines). Flow injected in the inlet duct in the side
layer far from the Hartmann walls stays in this layer while moving downstream (blue
path).
The topological study of the flow showed the existence on the side wall of two foci,

which are the starting points on the lateral wall of the lines around which a spiralling
motion develops. One vortex core line is indicated by the red curve in Fig.36. As a
result of this swirling movement, the fluid is transferred from the upstream side layer
towards the Hartmann walls and to the center of the large channel as shown in Fig.37.
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Figure 35: Flow atHa = 30, N = 9 (Re = 100) and c = 0.1. Flow from the upstream core
enters the downstream core (orange path) and flow in the side layer, far from Hartmann
walls, stays in this layers moving downstream (blu lines).
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Figure 36: Streamlines for the flow at Ha = 30, N = 9 (Re = 100) and c = 0.1. The
red line is the vortex core line.

45



Moving further from the side walls the flow still contribute to the formation of vortices
but the diameter of the spiralling path increases.
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Figure 37: 3D streamlines for the flow at Ha = 30, N = 9 (Re = 100) and c = 0.1. The
lateral view shows the upward motion (a) and the top view the movement to the middle
of the duct (b). The red line is the centre of the vortical structures.

Another typical flow path exists, which is of particular interest since, with few mod-
ifications, it appears also for the flow at high Hartmann numbers when the vortical
motion disappears, suppressed by the action of the electromagnetic forces. In Fig.38
this new flow pattern is depicted. The flow coming from the side layer goes upward
to the Hartmann wall and then backward towards the vertical wall of the expansion.
Moving along this wall the fluid approaches the symmetry plane at z = 0 by flowing
in directions perpendicular to the magnetic field and to the main flow. Here the flow
describes a V-shaped trajectory, which defines the region in which the spiralling motion
takes place as shown in Fig.38 by the position of the vortex core line.
The knowledge of the main 3D flow paths, which characterize the velocity field of

the flow at moderate Hartmann numbers, allows to explain better the meaning of the
critical points previously identified on the Hartmann wall. In Fig.39 the red dot is the
node that acts as a source. The fluid entering this node can flow in various directions.
The green point close to the expansion wall is the sink located on the symmetry plane
at z = 0. The saddle point that bounds the back flow region is marked by a cross.
The limiting streamlines on the wall perpendicular to the magnetic field showed

that for high Hartmann numbers the sink and the saddle point on the symmetry plane
disappear. This indicates that the V-shaped path vanishes and the vortical structure
does not extent any more throughout the width of the channel. The vortical regions start
shrinking also in the transverse direction z. For sufficiently high Hartmann number the
swirling motion is suppressed by the electromagnetic forces. As a consequence, the
vortex line can be depicted only for the flow at moderate Hartmann number. Fig.40
shows how the position of this line changes by rising the applied magnetic field . The
lateral view indicates that the magnetic field tends to damp out the vortices in the axial
direction. The focus F1 on the symmetry plane moves towards the Hartmann walls and
closer to the expansion.
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Figure 38: 3D flow path for the flow at Ha = 30, N = 9 and c = 0.1. The red line is the
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Figure 39: Flow at Ha = 30, N = 9 and c = 0.1. The streamlines show the meaning
of the critical points characterizing the flow topology on the Hartmann wall. The red
point is the source, the green one is the sink and the cross is the saddle point.
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Figure 40: Vortex core lines for several Hartmann numbers and Re = 100. F1 is the
trace of the vortex core line on the symmetry plane z = 0.

For large enough Hartmann numbers the size of the vortices, indicated by the ex-
tent of the core line, reduces also in the transverse direction z until the swirl vanishes
(Fig.40(b)). This effect can be also visualized by drawing the velocity streamlines on
the symmetry plane z = 0 (Fig.41). The dashed line at x = 1 is plotted as a reference.
By rising the Hartmann number above Ha = 20 the focus, trace of the vortex line, is
not present any more and the size of the V-shaped path decreases progressively. For
high Hartmann numbers the streamlines follow perfectly the contour of the large duct.
This phenomenon can be explained considering that for moderate Hartmann number

the interaction parameter N is relatively small. Therefore inertia is stronger than the
electromagnetic forces and prevents the fluid from following the shape of the duct.
The velocity profile is only slightly affected by the magnetic field and the initially fully
developed velocity profile propagates across the expansion without strong modifications.
With rising the Hartmann number electromagnetic forces increases and inertia effects
become weaker. As a result the velocity profile is strongly affected by the applied
magnetic field and flow patterns that deviate greatly from usual hydrodynamic flow are
observed.
In order to understand these modifications of the velocity distribution, a description

of the fundamental 3D MHD phenomena occurring in sudden expansions is required.
Due to the reduction of the axial component of the velocity from the small to the

large duct, the transverse potential difference is strongly reduced and as a consequence
an axial potential difference occurs, which drives additional currents inside the fluid
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Figure 41: Streamlines on the plane z = 0 for various Hartmann numbers and Re = 100.

along the walls parallel to the magnetic field. These currents close through the width
of the channel. In Fig.42 a schematic representation of the current distribution on the
plane y = 0 is shown.
Both upstream and downstream at some distance from the expansion where the flow

is fully developed, 2D currents flow in the positive transverse direction. In the small
duct the induced three-dimensional currents j3D have the same direction as those in
the fully developed region and they cause a Lorentz force that opposes the flow. As
a consequence part of the mechanical energy is converted into electric energy and this
yields an additional contribution to the pressure gradient.
Behind the expansion the 3D currents flow in opposite direction compared to the 2D

currents and if they are sufficiently high a net negative transverse current appears, which
creates a positive electromagnetic force that accelerates the flow. Part of the electric
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Figure 42: Schematic representation of the distribution of fully developed and induced
3D currents on the plane y = 0. The contour plots indicate the potential distribution
for Ha = 700 and N = 4900.
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Figure 43: Axial component of pressure gradient along the axis of the duct forHa = 700,
N = 4900 and c = 0.1. The variable P is given by p/N where p is the pressure in the
hydrodynamic scale.
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Figure 44: Pressure distribution along the axis of the duct for Ha = 700 and N = 4900.
∆P3D indicates the additional pressure drop caused by the 3D current density. It is
related to the pressure loss in hydrodynamic scale as ∆P3D = ∆p3D/N .
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energy is transformed again into mechanical energy. This leads to some pressure recovery
as can be seen from the pressure gradient plotted along the axis of the channel in Fig.43.
The variable P indicated in the figure is given by the pressure in the hydrodynamic
scale (as defined in Section 2.2) divided by the interaction parameter N. Owing to Joule
dissipation an irreversible pressure drop remains.
This latter is indicated by ∆P3D in Fig.44 where the pressure is plotted along the

axis of the channel for Ha = 700 and N = 4900.
In Fig.45 the additional pressure drop∆p3D caused by the 3D current density induced

by the axial gradient of the electric potential is plotted as a function of the Hartmann
number. For large Hartmann numbers the pressure loss increases as Ha3/2.
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Figure 45: Pressure drop ∆p3D as a function of the Hartmann number. The continuos
line is the best fit of the numerical results for high Hartmann numbers.

For Ha < 10 the pressure loss does not vary considerably and it approaches the
hydrodynamic value as shown in Fig.46.
In Fig.47 the current component jz is plotted along the streamwise direction on the

symmetry plane y = 0. The closing of the current path and therefore the presence of
this transverse component jz of the current density has a profound influence on the
development of the flow. Hence, the distance between the expansion (x = 0) and the
point xe in which jz vanishes on the axis of the duct has been chosen as a measure
for the thickness of the internal layer. In Fig.48 the thickness of the expansion layer is
plotted as a function of the interaction parameter N. The results indicate that for large
N it scales as N−1/3. This is in agreement with the asymptotic analysis, which shows
that when N << Ha3/2 as in the case under study, in the internal layer the main force
balance is established between inertial and electromagnetic forces and the thickness of
the parallel layer is proportional to N−1/3.
Let us consider now the 3D velocity paths for the MHD flow at Ha = 700, N = 4900

and c = 0.1. Fig.49 shows that the fluid coming from the upstream core crosses the
internal layer and expands in the large duct following the shape of the channel. As
shown before, neither back flow nor V-shaped path are present on the symmetry plane.
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Figure 46: Pressure drop ∆p3D as a function of the Hartmann number. The red point
indicates the result for the hydrodynamic flow (Ha = 0).
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Figure 47: Transverse component of the current density plotted along the axis of the
duct for various Hartmann numbers.
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Figure 49: Velocity streamlines for the flow at Ha = 700, N = 4900 and c = 0.1. They
describe the transfer of flow from the upstream to the downstream core.

It is interesting to observe how the flow redistributes across the expansion due to the
effect of Lorentz forces created by the axial 3D currents. The electromagnetic force is
directed towards the lateral walls and as a result the flow is pushed into the side layers.
Due to this distribution of the electromagnetic forces, a transverse pressure gradient
arises. The pressure is not uniform in a cross-section as can be seen from Fig.50 where
the pressure is plotted along the axis at z = 0 and close to the side wall (z ' 1). A
non-zero value of the transverse pressure difference indicates three-dimensional MHD
effects.
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Figure 50: Pressure variation along the centerline of the duct (z = 0) and at the side
wall (z = 1) for Ha = 700 and N = 4900. In the figure P = p/N , where p is the pressure
in the hydrodynamic scale.

Fig.51 shows the flow path that transfers the fluid from the upstream core into
the internal and the side layer. The expansion layer collects the flow from the core and
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redistributes it in the layers that develops along walls parallel to the magnetic field. This
exchange of flow between core and parallel layers can be clearly seen in Fig.52 where
the velocity streamlines are plotted on the plane y = 0 together with the distribution of
the transverse velocity component w.
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Figure 51: Flow at Ha = 700, N = 4900 and c = 0.1. The streamlines at y = 0 show
the exchange of flow between the upstream core and the downstream side layer through
the internal layer.
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Figure 52: Velocity streamlines on the plane y = 0 for Ha = 700, N = 4900 and c = 0.1.
The contour plots show the transverse velocity component w.

In Fig.53 the axial velocity u is plotted along the z direction on the symmetry plane
y = 0 at different axial locations. Upstream the velocity profile is fully developed with
a flat uniform core and velocity jets close to the side walls. Approaching the expansion
the velocity reduces in the core, increases along the side walls and the profile at the
core-side layer interface is deformed. The maximum velocity in the side layer is reached
at the expansion. Moving downstream the velocity in the parallel layer reduces and the
velocity distribution evolves towards fully established conditions.
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Figure 54: Contour plots of vertical velocity v close to the side wall (z = 0.98) for
Ha = 700, N = 4900 and c = 0.1.
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The rapid redistribution of the flow in the large duct is due to the fact that close to
the expansion in the internal layer, a strong vertical component of the velocity occurs,
whose magnitude increases approaching the side walls. This can be explained considering
that, as shown by the 3D velocity streamlines, at the expansion the flow is redistributed
both in the internal layer and in the downstream core.
Fig.54 shows the contour plots of the vertical velocity v in a plane near the parallel

wall (z = 0.98). The maximum value is reached immediately behind the expansion,
close to the internal corner.
In order to complete the description of the flow at large Hartmann numbers, it is still

necessary to describe the path that creates the back flow region. For high Hartmann
numbers the spiralling motion, present for moderate magnetic fields, is suppressed by the
strong electromagnetic forces. A reverse flow is still present near the outer corner of the
duct as shown in Fig.55. Here the flow path that involves the side and the internal layer
and transfers the fluid towards Hartmann walls and to the core is depicted. Compared
to the flow at moderate Hartmann number, the main difference lies in the fact that the
zone of back flow does not extend throughout the width of the channel but is confined
to the side layer. As a consequence the downward flow near the vertical symmetry plane
disappears. The fluid is transferred from the side layer to the center of the channel
moving parallel to the vertical wall of the expansion namely in the internal layer. This
path is formed by flow coming from the upstream side layer, near Hartmann walls. This
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Figure 55: Streamlines for the flow at Ha = 700, N = 4900 and c = 0.1. The reverse
flow is confined in the side layer, close to the outer corner of the duct.

motion can be also seen by observing the contour plots of the transverse velocity w close
to the parallel walls (z = 0.95). In Fig.56 the blue zone indicates a region of negative
transverse velocity, where the flow is directed towards the middle of the duct.
In Fig.57 the velocity component w is plotted along the dashed line indicated in the

previous figure, located at x = 0.01 and close to the parallel wall (z = 0.95). The maxi-
mum transverse velocity in the expansion layer occurs approximately in correspondence
to the internal corners at y = ±0.25. In the middle of the channel near y = 0 the
transverse velocity is reduced, while for |y| > 0.5 the fluid moves towards the center of
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Figure 56: Contour plots of the transverse velocity component w on a plane close to the
side wall (z = 0.95) for Ha = 700, N = 4900 and c = 0.1.
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Figure 57: Transverse velocity w along magnetic field direction at x = 0.01, close to the
side wall (z = 0.95) for Ha = 700, N = 4900 and c = 0.1.

Fig.58 summarizes some of the previous results for x = 0 showing the changes of the
profile of the axial velocity at the expansion with rising the Hartmann number.
For small Hartmann numbers the electromagnetic forces are weak and the magnetic

field has only a slight effect on the flow, in addition inertia is strong and as a conse-
quence the velocity profile at the expansion resembles the fully developed distribution.
By increasing the Hartmann number the electromagnetic forces become stronger than
inertia forces. As a result the velocity reduces in the core and increases in the side
layers. This redistribution of the flow leads to the formation of the typical M-shaped
velocity profile. Along magnetic field lines the increase of the Hartmann number yields
a higher velocity close to the Hartmann walls than in the core (Fig.59).
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various Hartmann numbers Ha.
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After describing the effects of the magnetic field on the velocity distribution, it is
interesting to show the modifications that the current field undergoes by increasing the
Hartmann number.
In the following the paths of 3D currents are described for the flow at Ha = 50 and

Ha = 400. Due to the symmetry of the solution with respect to the plane y = 0, the
current loops are shown only for y > 0.
In Fig.60 the current paths are depicted for the flow at Ha = 50, N = 25 and

c = 0.1. Upstream and downstream at some distance from the expansion the current
distribution corresponds to fully developed conditions, the current loops are 2D and
they close in cross-sectional planes (path 1). Approaching the expansion the current
loops start inclining in the direction of the motion due to the presence of induced axial
currents (path 2). It can be seen clearly in Fig.61.
As the walls of the channel are conducting (c = 0.1), currents induced in the core

can return not only in the boundary layers but also in the walls. Near the expansion
currents can flow both through the Hartmann walls of the small duct and in the vertical
wall of the expansion as shown by the path 2a in Fig.61.

B

path 1

path 3

path 2

path 1

path 4

z

x

y

BB

path 1

path 3

path 2

path 1

path 4

z

x

y

z

x

y

Figure 60: Current paths for the flow at Ha = 50, N = 25 and c = 0.1. The blue points
indicate the line around which the core loops develop.

Behind the expansion current loops that close exclusively in the core without in-
volving the boundary layers and the walls are observed (path 4). They create a sort
of current tube whose diameter reduces moving upward as indicated by the two green
loops in Figs.60 and 61. The centerline of these core loops is marked by the blue points.
The tube that develops around this line bends towards the wall of expansion.
The position of the points that form the core line corresponds to the location where
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both the axial and the transverse component of current density become zero on a xz
plane. When the current tube bends towards the expansion wall, the centre of the loop
is defined as the point where the vertical and the z-components of current density vanish
on a yz plane.

x

y

B

path 1

path 1

path 2

path 3

path 4

path 2a

x

y

x

y

BB

path 1

path 1path 1

path 2

path 3

path 4

path 2a

Figure 61: Projection of current streamlines on a xy plane for the flow at Ha = 50,
N = 25 and c = 0.1. The blue dots mark the center line of the core loops.

The core loops indicated as path 4 are enclosed in larger paths as shown in Fig.62.
The red line marked as path 4a is similar to the core loops described above since it closes
only in the core without extending into the side layers or the walls but it is deformed
and surrounds all the current tube. The blue line is the line around which core loops
develop.
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Figure 62: Current streamlines that form the core tube for Ha = 50, N = 25 and
c = 0.1. The blue line marks the centerline of the core loops. xe is the center of the core
loop on the plane y = 0 .

It is interesting to notice the presence of paths that recirculate all around the zone
in which a negative transverse component of current density occurs, namely they sur-
round the region where 3D phenomena take place. An example is shown in Figs.60
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and 61 (azure path). This loop, named path 3, involves both the side layers and the
walls. Behind these paths the current loops start evolving towards the fully developed
distribution (yellow path).
Downstream of the zone where the strongest three-dimensional effects occur, the

current distribution on a cross-sectional plane can be represented by two small loops
near the Hartmann walls, inside large paths that close both in the side layers and in
the walls (Fig.63). For higher Hartmann numbers these loops become smaller and move
closer to the Hartmann walls. This is due to the fact that these walls are much better
conducting than the adjacent layers (c >> Ha−1) and therefore almost all the current
return through the walls.
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Figure 63: For the flow at Ha = 50, N = 25 and c = 0.1 the current distribution in a
cross-sectional plane (x = 2), behind the area of strong 3D phenomena, shows two small
local loops inside larger paths.

Let us consider now the current distribution for the MHD flow at Ha = 400, N =
1600 and c = 0.1. The same categories of current loops found for the flow at moderate
Hartmann numbers can be identified, but the current paths are modified by the action
of the increased magnetic field. Figs.64 and 65 show the current path for the flow at
Ha = 400. The first difference compared with the flow at Ha = 50 is the tendency
of current loops to develop in the core in planes perpendicular to the magnetic field.
Here for high Hartmann numbers the main force balance is established between pressure
gradient and Lorentz force and the momentum equation shows that the pressure can be
interpreted as a kind of streamfunction for the current. Since in the core the pressure
is uniform along magnetic field lines, this supports the observation that the current in
the core flows mainly in horizontal planes. The largest values of the y-component of
current density are observed inside the parallel walls, close to the internal corners of the
cross-section enlargement in the expansion layer.
As shown for the flow at Ha = 50, there are current lines that surround the area

in which core loops develop (path 3 in Fig.64). Some of these paths, after entering the
large duct, move to the middle of the channel before approaching again the side walls
as indicated by the blue loop in Fig.64. The point where the current line narrows, close
to the centre of the duct, can be interpreted as a saddle point. It indicates the location
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Figure 64: Current streamlines for the flow at Ha = 400, N = 1600 and c = 0.1. The
green path is called path 4.
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Figure 65: Projection of current streamlines on a xy plane for the flow at Ha = 400,
N = 1600 and c = 0.1.
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where the transverse component of current density starts flowing again in the direction
of the 2D currents. This pattern is schematically represented in Fig.66. Here current
streamlines are plotted on the plane y = 0. They show the trace of core loops (path 4),
whose center is indicate by the red dot, and the path that encloses the zone of strong
three-dimensional effects (path 3). The saddle point, marked by the green cross, bounds
downstream the region where 3D currents are large enough to give rise to a net negative
z-component of current density. In other words the core loops form in front of the saddle
point.
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Figure 66: Current paths on the plane y = 0 for Ha = 400, N = 1600 and c = 0.1.
The center of core loops is marked by the red dot. The green cross indicates the saddle
point.

In Fig.67 the transverse component of current density is plotted along the axis of the
channel. The point in which jz becomes negative corresponds to the centre of the core
loop on the plane y = 0 (red dot) and it has been used as a measure for the thickness
of the internal layer. The location where jz flows again in the same direction as the 2D
currents indicates the saddle point (green cross).
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Figure 67: Transverse component of current density plotted along the axis of the duct
for Ha = 400, N = 1600 and c = 0.1.

The previous investigation showed that with rising the applied magnetic field the
3D MHD phenomena tend to concentrate close to the expansion, in the internal layer.

63



This effect can be clearly seen by comparing the position of the centerline of the core
loops created by the induced 3D currents for various Hartmann numbers (Fig.68). As
shown before by the study of the distribution of the z-component of current density
along the axis of the duct, the thickness of the internal layer, measured by xe, reduces
progressively by increasing the Hartmann number.
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Figure 68: Centerlines of the core loops created by 3D currents for various Hartmann
numbers. xe is the center of the current loop on the plane y = 0.

The analysis of limiting current streamlines on yz planes at various axial positions
allows to grasp the basic structure of the current field, supporting the foregoing observa-
tions. When limiting streamlines are studied, it is important to remember that they are
only the trace of three-dimensional current lines on a plane. Therefore in the following
discussion they are also named pseudo streamlines.
Fig.69 (a) shows core paths, whose centerline is marked in blue, and loops generated

in front of the expansion, which close through the walls and in the core region in the large
duct. The vertical line at x = 0.05 shows the position of the plane on which limiting
current streamlines are drawn. These latter are depicted in Fig.69(b). The center of the
pattern of pseudo streamlines coincides with the position where the current tube bends
towards the expansion.
Limiting streamlines for the current are also plotted on the plane x = 0.6. The

results are shown in Figs.70 and 71. In Fig.70(a) the vertical line indicates the position
of this plane on which the pseudo current streamlines are represented. In Fig.70(b) the
black lines are the limiting current streamlines and those coloured are the 3D paths.
The lines along which they coincide make clear the meaning of pseudo streamlines

as projection of 3D loops on a plane. The downward and upward motion in the region
close to the side walls is the return path of the current through the side layers and
towards the parallel walls. The central part where lines are almost horizontal indicates
the uniform core in which current tends to describe 2D paths. The green loops is the
line that identifies the saddle point in the center of the duct.
The pattern in Fig.70(b) confirms also the observation that by increasing the mag-

netic field the Hartmann layer is not a return path for the current since the walls are
much better conducting.
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Figure 69: Current paths for Ha = 400, N = 1600 and c = 0.1. (a) The vertical line
at x = 0.05 indicates the plane on which limiting current streamlines are plotted. (b)
Pseudo current streamlines are drawn in black.
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Figure 70: Current lines for Ha = 400, N = 1600 and c = 0.1. (a) The vertical line
at x = 0.6 indicates the plane on which pseudo streamlines are drawn. (b) Limiting
streamlines are plotted in black.
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pseudo streamlines.
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4.3.2 Variation of flow rate at constant magnetic field

In this section the effects of inertia forces on the MHD flow in sudden expansions are
investigated by performing a parametric study in which several interaction parameters
N are used for a constant Hartmann number of Ha = 400.
In order to understand how inertia influences the distribution of the flow in the

channel, let us compare first the pattern of velocity streamlines on the symmetry plane
y = 0 for various interaction parameters (Fig.72).
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Figure 72: Velocity streamlines on the plane y = 0 for the flow at Ha = 400, c = 0.1
and various interaction parameters N (Re = Ha2/N). The blue lines, located at x = 0.5
are used as reference mark.

For small N , the strong inertia forces transport the fluid further downstream and the
axial extent of the region where the fluid redistributes towards the side walls increases
compared to that for the flow at large interaction parameter. The blue dashed lines
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in the figure are located at x = 0.5 and they are plotted as a reference. When the
importance of electromagnetic forces compared to inertia effects increases, namely for
higher interaction parameters, the redistribution of the flow towards the side walls and
downstream to the core occurs in a zone closer to the expansion. This behavior is also
well described by the rise of the transverse component of the velocity at the expansion
that accelerates the fluid towards the parallel walls (Fig.73). As a result, the maximum
velocity of the jets that form in the side layers is larger for higher N as displayed in
Fig.74.
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Figure 73: Transverse velocity w plotted along the z direction at the expansion ( x = 0),
on the plane y = 0 for Ha = 400 and various interaction parameters N .

As described in the previous section and as shown also by the streamlines on the plane
y = 0 (Fig.72), at the junction between the small and the wide channel a layer, named
internal or expansion layer, develops along magnetic field lines, in which the strongest
gradients of flow variables are localized. Here, when the values of the interaction param-
eter and the Hartmann number are such that N << Ha3/2, an inertial-electromagnetic
balance is established.
In order to find how inertia forces act on the thickness of the internal layer, velocity

streamlines are drawn on the middle plane of the duct at z = 0 and they are compared
for a range of the interaction parameter (Fig.75). The blue dashed lines in figure are
located at x = N−1/3. This choice is due to the fact that the foregoing investigation
confirmed the results of the asymptotic analysis according to which the thickness of the
expansion layer in the inertialess limit scales as N−1/3. Therefore, at least for large
interaction parameters, this is a proper way for displaying the thickness of this parallel
layer.
For lower values ofN , as shown in the figure forN = 20 and 50, the flow coming from

the small duct far from the side walls needs some distance from the expansion before
approaching the Hartmann walls. As a consequence almost stagnant zones occur near
the external edge of the expansion where viscous forces are important and the trace of
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Figure 74: Axial velocity component along the transverse direction z at the expansion
(x = 0), on the symmetry plane y = 0 for Ha = 400.
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Figure 75: Velocity streamlines on the middle plane of the duct ( z = 0) for Ha = 400.
The blue dashed lines are located at x = N−1/3.

69



a V-shaped path is observed on the middle plane of the duct. By rising the interaction
parameter, i.e. when inertia forces become weaker and even negligible, at least outside
the internal layer where inertia effects might be instead significant, the flow expands
into the large channel moving rapidly towards the Hartmann walls. As a result a high
vertical velocity v is present near the internal edge of the expansion ( y ' 0.25) within
the expansion layer.
In Figs.76 and 77 the vertical velocity v is plotted along the axial direction at y = 0.25

on the middle plane of the channel (z = 0) and near the side wall (z = 0.98), respectively.
For large interaction parameters the velocity distribution on the central plane of the
duct suggests that first the flow redistributes quickly towards the Hartmann walls as
indicated by the strong positive vertical velocity and then the fluid spreads through the
core moving slightly downward as indicate by the negative values of v. By decreasing the
interaction parameter the maximum vertical velocity reduces and the negative values
tend to disappear. This supports the prior observations concerning the fact that at
small N the flow distributes slowly over the cross-section of the duct. When inertia
forces are weaker the location of the maximum vertical velocity moves closer to the exit
of the small channel.
By comparing the velocity profiles at z = 0 and z = 0.98 it can be seen that the

vertical velocity reaches the highest values near the parallel side walls.
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Figure 76: Vertical velocity plotted along the axial direction near the internal edge of
the expansion at y = 0.25, on the middle plane at z = 0 for Ha = 400 and a range of
the interaction parameter N .

In the following the modifications of the 3D flow structures due to the action of
inertia forces are analyzed. Fig.78 shows the flow paths that transfer the fluid from the
upstream side layer, close to the Hartmann layers, towards the Hartmann walls of the
large duct and backward to the expansion wall. The fluid is then transported close to
the middle plane of the channel. These paths create the V-shaped trajectory observed
while analyzing the velocity streamlines on the plane z = 0.
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Figure 78: Flow paths for Ha = 400 and N = 50 that transport the fluid from the
upstream side layer, close to the horizontal walls, towards the Hartmann walls and to
the center of the duct forming, near the middle plane, a V-shaped trajectory.
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Figure 79: The red and the green paths represent the swirling motion that appears for
small and moderate interaction parameters. The results are for the flow at Ha = 400
and N = 50.

When inertia is sufficiently strong (N 6 100) vortical structures appear, which trans-
port the fluid from points near the upstream Hartmann layers to the symmetry plane
z = 0 and towards Hartmann walls (Fig.79). It can be observed that compared with
the swirling motion described for the flow at small and moderate Hartmann numbers
(Section 4.3.1), which was created by particles inserted very close to the side walls, the
vortical path occurring at Ha = 400 and moderate N is created by fluid injected at some
distance from the parallel walls (red and green paths in Fig.79(a)). The flow coming
from the upstream side layer, near the lateral walls contributes instead to the particle
track that describes the V-shaped trajectory (black streamline in Fig.79). In the range
of N investigated the vortices do not reach the middle plane of the channel.
Considering the vortex core line, which the streamlines spiral around, it ends very

close to the Hartmann walls. For N = 8 two symmetric foci, centers of the swirling
motion, are found on the first plane of nodes in the fluid domain adjacent and parallel
to the Hartmann walls. This can be seen in Fig.80 where limiting streamlines are plotted
on the walls perpendicular to the magnetic field. The red dots indicate critical points
that act as sources of streamlines, the green crosses are saddle points and for N = 8 the
red circles mark the foci, which are the final points of the vortex core line. Along the
blue curves the axial component of the velocity is zero. By reducing the relative strength
of inertia with respect to electromagnetic forces, only the two sources close to the side
walls remain and they move progressively towards the expansion wall. This supports
the results that show how strong electromagnetic forces tend to suppress vortical flow
structures.
The top view in Fig.81 shows the vortical paths for Ha = 400 and N = 50 together

with the line along which the axial component of the velocity vanishes (blue curve). It
confirms the observations resulting from the previous analysis stating that this curve
provides useful information about the size of the regions where the vortices occur. When
inertia forces are much weaker than the electromagnetic forces so that no swirling motion
appears, this line marks the zone in which the flow directed towards the expansion wall
takes place.
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Figure 81: (a) Top view of vortices formed behind the expansion (green and red paths)
for the flow at Ha = 400 and N = 50. The blue curve indicates the points where the
axial velocity components u becomes zero. (b) Limiting streamlines are plotted on the
Hartmann wall. The red dots are critical points that act as sources of streamlines.
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The lines where the x-component of the velocity is zero can be therefore used to get
a global view of inertial effects on the MHD flow at Ha = 400. In Fig.82 these lines
are plotted on the Hartmann wall and compared for various interaction parameters. By
reducing N , the back flow region grows both in the axial and in the transverse direction.
For N 6 100 the vortical flow structures start appearing.
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Figure 82: Lines where the x-component of the velocity is zero plotted on the Hartmann
wall for Ha = 400 and several interaction parameters N . x1 marks the end of the back
flow region on the side wall, z1 indicates the extent of the zone of reverse flow on the
expansion wall.

In Fig.83(a) the axial position of the point x1 that identifies on the side wall the end
of the zone of back flow is plotted as a function of N−1/3. The results suggest that in
the inertialess limit, namely for very high interaction parameters (N −→ ∞), the size
of the back flow region on the side wall tends to a finite value. This means that even
when inertia is negligible a small zone with negative velocities remains in the corners of
the expansion. Considering the straight line that fits in the best way the results for high
interaction parameters and extrapolating this line towards infinite N the finite value
x1,∞ is found. In Fig.83(b) the quantity x1 − x1,∞, which measures the inertial fraction
of the reattachment length, versus the interaction parameter N is shown in logarithmic
scale. The results indicate that by increasing N the thickness of the inertial part of the
zone of reverse flow reduces as N−1/3.
It is also interesting to study the evolution of the transverse size of the area of reverse

flow along the expansion wall. This is indicated by the location of the point z1 marked
in Fig.82. The results in Fig.84 show that when inertia effects reduce (N−1/3 −→ 0),
the dimension of the back flow region on the expansion wall tends to a value different
from zero. For small interaction parameters this extent remains almost constant.

Following the same approach used for the study of the effects of an increasing mag-
netic field at constant flow rate (Re = const), the axial position xe of the center of the
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Figure 83: (a) Axial position of the point x1 on the side wall that bounds the back flow
region, plotted as a function of N−1/3. x1,∞ is the value of the reattachment length in
the inertialess limit (N −→∞). (b) Inertial part of the reattachment length versus N .
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current loops formed on the plane y = 0 in the core region of the duct is assumed as a
measure for the thickness of the internal layer. It is defined as the point on the axis of
the channel where the transverse component jz of the current density changes the sign.
The position of the core lines of the current tubes, formed by these current core paths,
is compared for various interaction parameters in Fig.85. It is important to notice that
the concept of internal layer can be applied only as long as xe << L where L is the
characteristic length of the duct.
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Figure 85: Centerlines of the current tubes that form in the core region of the duct for
Ha = 400. xe is the centre of the current loop on the plane y = 0 and it is used as a
measure for the thickness of the internal layer.

In Fig.86(a) the thickness of the internal layer is plotted as a function of N−1/3.
As for the reattachment length, the results indicate that in the inertialess limit, as
N−1/3 −→ 0, the size of the expansion layer tends to a finite value xe,∞. This latter
is found by extrapolating the linear trend towards infinite N . In Fig.86(b) the inertial
fraction xe−xe,∞ of the internal layer is plotted as a function of the interaction parameter
N in logarithmic scale. Approaching the inertialess limit the inertial part of the thickness
of the expansion layer varies as N−1/3.
The evolution of the thickness of the expansion layer resembles closely that of the

point x1 that bounds the reverse flow zone on the side wall. It can be observed that for
large interaction parameters the inertial part of the internal layer and of the reattach-
ment length have the same asymptotic behavior, but x1 − x1,∞ is larger than xe − xe,∞
as shown in Fig.87.

The application of MHD effects to technical devices and industrial processes requires
not only the knowledge of the flow distribution but also of the additional pressure drop
∆p3D caused by the 3D MHD phenomena that occur across the expansion.
The variation of the pressure along the axis of the channel is depicted in Fig.88 for

the flow at Ha = 400 and three interaction parameters. Here the variable P is again
given by the pressure in the hydrodynamic scale, as defined in Section 2.2, divided by
the interaction parameter N .
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Figure 86: (a) Thickness of the internal layer as a function of N−1/3 for Ha = 400. (b)
Thickness of the inertial part of the internal layer xe−xe,∞ plotted versus the interaction
parameter N in logarithmic scale.
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Figure 87: Inertial part of the thickness of the internal layer (xe − xe,∞) and of the
reattachment length on the side wall (x1 − x1,∞) as a function of N .
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Fig.88 shows that both at the inlet and at the outlet of the duct at some distance from
the expansion fully developed conditions are established, characterized by a constant
pressure gradient. This latter is indicated by the straight lines both in the small and in
the large channels. With increasing inertia, i.e. with decreasing N , the total pressure
drop increases.
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Figure 88: Pressure distribution along the axis of the duct for Ha = 400 and three inter-
action parameters N . The straight lines indicate the fully developed pressure gradients
in the small and in the large channel. The additional pressure drop due to 3D MHD
effects is indicated by ∆P3D for N = 1000. The quantity P is given by p/N where p is
the pressure in the hydrodynamic scale.

In Fig.89 the additional MHD pressure drop is plotted as a function of N−1/3. For
moderate interaction parameters (N ' 40) a maximum value for the pressure drop is
found. For large interaction parameters (N−1/3 → 0) the pressure drop seems to reduce
as N−1/3.

The results of this parametric study show that even for high interaction parameters
(e.g. N = 3000) there is an effect of inertia on the flow distribution. The changes that
the velocity field undergoes for large N are localized mainly in the side layers as shown
by the increase of the axial velocity in the parallel layers at the expansion. Inertial
effects are also important in the internal layer. By raising the relative importance of
inertia forces compared to Lorentz forces, i.e. by reducing the interaction parameter,
first the internal layer becomes thicker and as a consequence the redistribution of the
flow towards the side layers occurs over a longer axial distance. Then a further decrease
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of the interaction parameter leads to the formation of vortical structures that involve
both the parallel layers and the core of the duct.
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Figure 89: Pressure drop due to 3D MHD phenomena plotted as a function of N−1/3

for Ha = 400.
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4.4 Comparison with experimental data

In the following section, the numerical results are compared with the available exper-
imental data. Experiments on MHD flows in conducting rectangular channels with a
sudden expansion have been performed in the MEKKA laboratory of the Forschungszen-
trum Karlsruhe (Horanyi et al. (2005)).
Fig.90 shows a sketch of the test section. It is positioned in such a way that the

main flow direction is perpendicular to the magnetic field that is generated by a dipole
magnet. Its strength can reach 2.1 T. The cross-section of the channel enlarges along the
field direction and the expansion ratio is four. The stainless steel wall has a thickness
of 3 mm and the resultant conductance parameter is around 0.03.
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Figure 90: Geometry used in the experiments. The expansion ratio of the duct is 4 and
the conductance parameter c is 0.03.

The operating fluid is the eutectic sodium-potassium alloy Na22K78. This operat-
ing medium has been chosen because its physical properties, the high specific electric
conductivity and the low density, allow to get the characteristic numbers, namely the
Hartmann number Ha and the interaction parameter N , typical in a fusion reactor blan-
ket. A proper choice of the working fluid is also related to its chemical behavior and
to operational and safety aspects. The choice of sodium-potassium alloy ensures for in-
stance a good electrical wetting of the fluid-wall interface and the possibility of working
at room temperature. Problems associated with the use of this operating fluid concerns
its reactivity with moist air and the consequent fire and explosion hazard.
The measured quantities that are compared with the calculations are the pressure

variation along the streamwise direction and the surface potential.
Pressure difference measurements are performed by means of four capacitive pressure

transducers of different sensitivity arranged in parallel. Fig.91(a) shows the test section
and some of the 16 pipes used for measuring the pressure differences. A valve system
switches the pipes connected with the transducers, selecting in this way the discrete
points between which pressure difference is measured.
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(a)
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Figure 91: (a) Test section connected to the 16 pipes used for pressure difference mea-
surements. (b) Insulating plates that cover the test section fitted with electric potential
probes.
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The values of electric potential on the walls of the duct are measured by more than
300 spring loaded needles positioned on insulating plates that cover the test section. In
Fig.91(b) one can see the fiberglass plates under which the test section lies and some of
the electric potential probes mounted on them.
The MHD flow at high Hartmann numbers and interaction parameters is determined

once the pressure in the duct and the distribution of the electrical potential on the walls
of the channel are known. For strong magnetic fields, the potential along field lines is a
known function and therefore its surface distribution permits to estimate the potential
in the entire flow domain. In planes perpendicular to the magnetic field, according to
Ohm’s law, if currents are negligible the potential gradient is proportional to the velocity
and to the magnetic field. Therefore from measurements of potential gradient on the
Hartmann walls it is possible to get information about velocity distribution.
A detailed description of the experimental facility and measurement techniques can

be found in Barleon, Mack and Stieglitz (1996).
Calculations are performed using exactly the same geometry and the physical param-

eters employed in the experiments. It allows a direct comparison with the experimental
data and serves as a further validation of the present implementation of MHD equations.
Fig.92 shows the potential distribution on the side wall of the duct for the flow at

Ha = 500, N = 50 and c = 0.03.
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Figure 92: Contour plots of the calculated electric potential on the side wall of the duct
for the flow at Ha = 500, N = 50 and c = 0.03. The numerical results are compared
with the experiments along the dashed lines (Figs.93 and 94).

In Figs.93 and 94 the electric potential on the side wall is plotted along magnetic
field lines at various axial locations. The numerical results are compared with the
experiments for the flow at Ha = 500 and two different interaction parameters N .
The potential profile along field lines on the parallel walls can be regarded as an

image of velocity distribution in the side layer. The difference between the potential at
the wall and in the core gives information on the flux carried by the side layer.
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Figure 93: Electric potential on the side wall plotted along field lines at different axial
locations. The symbols are the experimental data and the lines the numerical results
for the flow at Ha = 500, N = 50 and c = 0.03.
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Figure 94: Electric potential distribution on the side wall of the duct along magnetic
field lines at different axial positions. The symbols denote the experimental data and
the lines the calculated values for the flow at Ha = 500, N = 125 and c = 0.03.
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In Fig.95 the calculated pressure on the Hartmann walls is plotted along the x di-
rection and compared with the experimental results for Ha = 500 and two different
interaction parameters N . The two values in brackets show probably wrong measure-
ments caused by the presence of bubbles in the pressure piping system.
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Figure 95: Pressure variation along the axial direction on Hartmann walls for Ha = 500
and two interaction parameters, N = 50 (a) and N = 125 (b).

An excellent agreement between calculations and experimental data is found for the
flow at Ha = 500 both for the pressure distribution on the Hartmann walls along the
streamwise direction and for the surface potential.
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5 Final remarks

5.1 Summary

Magnetohydrodynamic phenomena caused by the interaction of electrically conducting
fluids with a magnetic field have many engineering applications. The study of MHD
effects can be carried out by means of analytical solutions, based on asymptotic tech-
niques, valid for large Hartmann numbers and high interaction parameters as well as by
direct numerical simulations. These latter are usually restricted to the study of MHD
flows in simple geometries and at moderate applied magnetic field. Additional data can
be obtained by performing experiments. Due to their cost and to technical limitations
they cover generally only a limited range of parameters.
For these reasons a code has been developed to study MHD flows in arbitrary geome-

tries exposed to a magnetic field of any orientation. The numerical approach is based
on a pre-existing implementation of MHD equations in the commercial code CFX. By
using this tool it was not possible to solve the MHD equations in solid walls. Therefore
modifications and improvements have been done to include this option and a differ-
ent approach has been considered for calculating the electric potential and the current
density.
The code has been validated through the comparison of the calculated results with

those available in the literature for the MHD flow in rectangular ducts exposed to a
spatially varying magnetic field and with the analytical solution for the fully developed
MHD flow in rectangular channels. A further validation of this numerical approach is
given by the very good agreement between numerical and experimental data for wall
potential and pressure distribution.

The code has been used to investigate the MHD flow in sudden expansions of rect-
angular ducts with walls of finite conductivity, focusing on the effects of the magnetic
field and inertia forces on the size and the occurrence of separation regions. Starting
from the analysis of an asymmetric hydrodynamic flow for a reference Reynolds number,
the imposed magnetic field, namely the Hartmann number Ha, has been progressively
increased.
When the magnetic field is weak (Ha = 3) the flow is still asymmetric but the length

of the separation regions is strongly reduced. By raising the Hartmann number the flow
becomes symmetric and a continuous reduction of the axial extent of the recirculation
zones is observed. The dependence on the interaction parameter N of the reattachment
length on the side wall of the channel shows that it scales as N−0.3. This result can
indicate that in the side layers a balance between inertia and electromagnetic forces is
established. A different behavior is observed on the middle plane of the duct. Here
the length of the recirculation varies as N−1. The back flow region on this symmetry
plane is present only in a limited range of the Hartmann number. For Ha > 20 the
vortical structures start shrinking also in the transverse direction. When the magnetic
field is strong enough (Ha > 60) the swirling motion is suppressed but in the side layers,
close to the outer corners of the expansion, a reverse flow is still present. At this stage
the flow redistributes rather rapidly in the large channel towards Hartmann walls and
the strongest gradients of the flow variables are localized in a thin internal layer, which
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spreads into the fluid from the corners of the expansion developing along magnetic field
lines.

The analysis of the current distribution in the channel shows the presence of a number
of characteristic current paths observed in all the range of parameters investigated.
Upstream and downstream at some distance from the expansion the current closes its
path in a cross-sectional plane showing the two dimensionality characteristic of fully
developed conditions. Approaching the expansion the current loops start inclining in
the direction of the motion due to the presence of 3D currents induced in the streamwise
direction by an axial potential difference. When the magnetic field is sufficiently strong
the 3D currents superimposed on the 2D current distribution lead to the formation of
current loops that close exclusively in the core without involving the boundary layers
and the walls. The center of these current paths is located in the large duct and moves
closer to the expansion by increasing the Hartmann number. The distance between the
center of the current core loop on the symmetry plane and the cross-section enlargement
has been chosen as a measure for the thickness of the internal layer. This latter, for high
interaction parameters, varies as N−1/3 in accordance with the results of the asymptotic
theory valid for N << Ha3/2. In addition, there are current streamlines that surround
all the region where the strongest 3D phenomena take place.
By raising the applied magnetic field the current in the core of the channel tends

to flow in planes perpendicular to the field. This tendency towards two dimensionality
can be explained by the formation at large Hartmann numbers of a inviscid core with
uniform velocity where the main balance of forces is established between the pressure
gradient and the Lorentz force. Here the pressure, which can be regarded as a sort of
streamfunction for the current density, does not vary along field lines.
The study of the influence of the imposed magnetic field on the flow in sudden expan-

sions has been performed by keeping the Reynolds number constant. As a consequence,
an increase of the Hartmann number implies a rise of the interaction parameter that
corresponds to a smaller ratio of inertia to electromagnetic forces.
It is therefore also interesting, in order to understand how inertia forces act on the

structures of MHD flows at relatively high Hartmann number, to perform a parametric
study by combining several interaction parameters with a constant Hartmann number
(Ha = 400). An increase of inertia forces leads to a reduction of the velocity of the jets
in the side layers and to a decrease of the transverse velocity. This implies that the
flow redistributes towards the parallel walls, through the internal layer, over a longer
axial distance from the expansion. As a result, the thickness of the internal layer raises.
For N > 800 the thickness of the inertial part of the internal layer is proportional to
N−1/3. When inertia forces are sufficiently large vortical structures form behind the
cross-section enlargement.
The additional pressure drop related to the 3D MHD phenomena has been calcu-

lated. For large interaction parameters the pressure loss seems to vary linearly with
N−1/3. By increasing the relative strength of inertia compared to electromagnetic forces
a maximum value for the pressure drop has been found. A further decrease of the
interaction parameter (N < 30) leads to a reduction of the additional pressure drop.
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5.2 Conclusions

The results of the study of the effects of an increasing magnetic field on the flow at
constant Reynolds number show that for moderate Hartmann number vortices form
behind the expansion. Moreover, regions with very small velocities appear close to the
external edge and the outer corners of the cross-section enlargement. The presence of
almost stagnant zones might represent a problem for technical applications since they
can affect for example the heat transfer, leading to the appearance of hot spots.
However it is important to notice that, even if the velocities are very small, there is

always a circulation of the fluid. This is important for instance in fusion reactor blankets
where a continuous exchange of flow is required to avoid accumulation of tritium.
Another issue that has to be carefully considered is the effect of inertial forces on flow

distribution. The results of the parametric study, performed for a constant Hartmann
number and by reducing the relative importance of inertia forces, show that inertial
effects are important even when the interaction parameter is high (N = 3000). This
study extend the present knowledge (N = ∞), gained through asymptotic techniques,
into the range of moderate and small interaction parameter.
The numerical approach described in this work can be considered as an effective tool

for accurate calculations of 3D MHD flows in arbitrary geometries with walls of various
electric conductivity, under the action of a magnetic field of any orientation.
However it is necessary to observe that there are limitations regarding the maximum

Hartmann number that can be employed if a very accurate solution is expected. It can
be explained considering the results for the fully developed flow at Ha = 1000. They
show that, in order to calculate the maximum velocity of the jets in the side layers within
an accuracy of 4% of the analytical solution, a very fine grid is required in these layers.
This leads to a large increase of the total number of nodes needed to discretize the cross-
section of the channel. Since these results are used as inlet boundary conditions for 3D
calculations, the utilized number of nodes should not exceed a maximum value, which
has to be compatible with the number of grid points employed for resolving the 3D
computational domain. Therefore the maximum Hartmann number that can be used,
while preserving the accuracy of the solution, is limited practically by computational
resources, namely by limitations in the memory storage and CPU time. If a lower
accuracy of the solution is acceptable and therefore a smaller number of nodes can be
used to discretize the computational domain, the MHD flow at larger Hartmann number
(Ha > 1000) could be simulated approximately.

5.3 Recommendations for further studies

In order to study the MHD flow in the range of Hartmann numbers relevant for applica-
tion in fusion technology (Ha ∼ 104) a further modelling and development of the code
is required. An idea is to implement analytic wall functions, which are of special con-
cern for the current density, avoiding in this way to resolve the Hartmann layers. The
effects of these thin viscous layers could be included by defining appropriate boundary
conditions.

This code has been applied also to the study of electrical flow coupling across common
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dividing walls of adjacent ducts for fully developed MHD flow. The results show that
even in the 2D case peculiar velocity profiles are present. Therefore the problem of
electrical coupling in three dimensional geometries is also an interesting subject for
future investigations. This is a problem that arises for example in the so called Helium
Cooled Lithium Lead (HCLL) concept for the blanket in fusion reactors. Here the flows
in channels are electrically coupled through the common walls represented by cooling
and stiffening plates.
In order to improve further our knowledge about MHD flows in sudden expansions

it could be interesting to perform also transient calculations in order to investigate the
effect of instabilities that can occur at high Reynolds numbers in the side layers (Ting,
Walker, Moon, Reed and Picologlou (1991), Burr, Barleon, Müller and Tsinober (2000)).
Another challenging task is represented by the analysis of MHD flow in channels

exposed to a time-varying magnetic field.
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Appendix

Dimensionless equations

The momentum equation

ρ

·
∂

∂t
v+ (v ·∇)v

¸
= −∇p+ ρν∇2v + j×B,

can be written in dimensionless form by choosing different scales for the pressure. Two
options are considered in the following.
The scales for the velocity, the length, the time and the magnetic field are the same

in both the approaches. By indicating the dimensional variables by an asterisk and the
scales by the subscript 0, the dimensionless variables can be expressed as follows:

v =
v∗

v0

∇ = ∇∗ L

t =
t∗

L/v0

B =
B∗

B0

The two scales chosen for the pressure are indicated as hydrodynamic and MHD
scale. The non dimensional pressure in the hydrodynamic scale is given by:

phyd =
p∗

p0hyd
=
p∗

ρv20

The momentum equation then becomes

∂

∂t
v+ (v ·∇)v = −∇phyd + 1

Re
∇2v +N (j×B) , (13)

where Re is the Reynolds number and N is the interaction parameter.
By using the magnetohydrodynamic scale the dimensionless pressure reads as

pmhd =
p∗

p0mhd
=

p∗

σLv0B20

and the equation for the conservation of momentum in non dimensional form can be
written as

1

N

·
∂

∂t
v + (v ·∇)v

¸
= −∇pmhd + 1

Ha2
∇2v+ j×B, (14)
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where Ha is the Hartmann number. This type of equation highlights the fact that for
strong magnetic fields, i.e. Ha >> 1, N >> 1, the MHD flow is governed by a balance
between pressure and Lorentz forces.
The relation between the dimensionless pressures in hydrodynamic and MHD scale

is the following

phyd = pmhdN (15)

In order to simplify the notation, avoiding the use of subscripts, in the thesis the
pressure in the hydrodynamic scale has been indicated by p and the pressure in the
MHD scale by P . Therefore the relation (15) becomes

p = P N. (16)

The momentum equation in hydrodynamic scale (13) can be used to describe both
the hydrodynamic and the magnetohydrodynamic flow. Equation (14) instead is not
valid for Ha = 0, namely in the absence of an applied magnetic field.
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