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Abstract. The dynamic behavior of multi-section constructions with clearance
during extending and retracting motion of the sections is analyzed. First, an appro-
priate physical modeling is introduced before next, the governing boundary value
problem is derived by applying Hamilton’s principle. Then, a classical discretization
procedure is used to generate a coupled system of nonlinear ordinary differential
equations as the corresponding truncated mathematical model. Performing appro-
priate simulations to be verified by results of an alternative software package and
partly validated by some preliminary experiments, the vibrational behavior of the
suggested type of multi-section telescoping systems can be studied in detail.
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1. Introduction

Graduated multi-section systems of structural components extending
and retracting inside each other are interesting technical systems, e.g.,
mobile cranes, rack feeder, etc. (see [1], for example and Fig. 1). Due
to overall rigid body translation or slew maneuvers combined with the

Figure 1. Rack feeder.
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extending and retracting motion of the sections, bending vibrations
of the system perpendicular to the telescopic axis occur. In technical
applications these vibrations lead to a reduction of the efficiency and
to safety problems so that a controlled vibration suppression seems to
be useful.

A first step to develop efficient and safe multi-section constructions
is an appropriate modeling of such systems and the examination of the
vibrational behavior, which is the objective of the present contribution.
Then, a controller concept for preventing the harmful vibrations can
be developed in a second step, to be presented as another paper in the
near future.

Considering the introduced physical model, Hamilton’s principle is
applied to derive the governing boundary value problem. Galerkin’s
method based on admissible shape functions is used as a discretiza-
tion procedure to generate a system of coupled ordinary differential
equations. For extended parameter studies of multi-section telescopic
systems, a program based on the commercial software package MAPLE
is implemented to generate the equations of motion automatically start-
ing with the system parameters. In general, the equations of motion
are nonlinear and time-variant. Performing appropriate simulations,
the vibrational behavior of multi-section telescoping systems can be
studied in detail.

2. Physical Model

From the viewpoint of mechanics, a non-linear field problem of vi-
brating structural members with variable geometry has to be con-
sidered. Material surface areas of particular components move along
surface areas of other components and define complicated boundary
and transition conditions. The clearance produces non-linear effects.
In many applications, e.g., the rack feeder shown in Fig. 1 or for
mobile cranes, the different segments are slender and can be modeled as
Bernoulli/Euler beams mounted on a rigid vehicle unit and carrying at
some location, e.g., at the end of the last section, a load unit assumed
to be rigid. The vehicle unit together with the first deformable segment
and all the other segments (one of them together with the load) per-
form transverse motions and the extending or retracting motion of the
sections is supplemented. The vehicle motion is either prescribed owing
to ideal sources of energy or controlled by real power supplies, resulting
in bending vibrations of the beams. The contact regions between two
sections are modeled as discrete point contacts. A special feature of the
modeling is to introduce the reaction forces at the contact points in the
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form of distributed line loads (by using Dirac impulse functions), so that
for the contacting sections elementary boundary conditions remain.
The contact formulation itself takes place via one-sided spring-damper
elements.

The procedure is illustrated in Fig. 2a for a two-section telescopic
beam system mounted on a rigid traverse performing a translational
motion accompanied by an extending motion of the two beam segments
with defined clearance between them.
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body 2
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body 1
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body 2
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a) b)
Figure 2. a) System model, b) Contact formulation.

Beam 1 is fixed at a rigid vehicle unit; beam 2 carries a point load
at its end. The vehicle is driven by a horizontal force F as excitation of
the system. The deformation of the beams (including vehicle mass and
load) is represented by the absolute displacements w(x1, t) and v(x2, t).
The model is defined by the following parameters: beam lengths l1,2,
cross-sectional areas A1,2, cross-sectional moments of inertia I1,2, den-
sity ρ and Young’s modulus E of the two flexible components, masses of
load and vehicle mL and mT , respectively, and telescopic length lA(t).
The contact between the beams is realized (see Fig. 2b) via discrete
spring-damper systems in the form of a so-called displacement condition
(not a force condition) [2], the given number n of contact points, the
clearance lS , spring stiffness c, and damping coefficient d. c can be
estimated from the geometry and the material of the contact partners
whereas the estimation of d is more complicated. As the purpose of the
model is the creation of a control concept for vibration suppression, it
is important that the equations of motion stay as simple as possible.
In the controlled system the clearance plays the role of an external
disturbance and as the controller has to work for every kind of contact,
a very accurate estimation of d is not necessary. In the axial direction it
is assumed that there is no friction. This assumption is justifiable as the
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bearing between the different segments is realized as roller bearing in
many applications. The free body diagram in Fig. 3 shows the reactive
forces (contact and axial forces) between the two bodies. It is assumed
here that the force flow leads from the upper part into the lower part.
It has to be noticed that the model has to be modified (which simplifies
the modeling) for specific applications when the telescopic motion of
the upper part is induced by an external system so that the lower part
is not pre-stressed.

g(mL + ρA2l2)

g(mL + ρA2l2)
f1

f2

Figure 3. Free body diagram.

3. Formulation

3.1. Boundary value problem

Applying Hamilton’s principle

δ

∫ t1

t0

(T − U)dt +

∫ t1

t0

Wvirtdt = 0, (1)

the governing boundary value problem can be derived. T is the kinetic
energy, U the potential energy and Wvirt the virtual work of forces with-
out potential of the considered system. If beam segments of uniform
cross-sectional properties ρA1, ρA2, EI1, EI2 are assumed, the kinetic
energy reads

blacksburg.tex; 18/02/2005; 11:45; p.4



Telescopic Systems 5

T =
1

2

∫ l1

0
ρA∗

1w
2
t dx1 +

1

2

∫ l2

0
ρA∗

2v
2
t dx2, (2)

where ρA∗

1 = ρA1 + mT δ(x1) and ρA∗

2 = ρA2 + mLδ(x2 − l2). The
symbol δ( . ) represents Dirac’s delta-function to include the locally
concentrated masses of vehicle and load into the mass distribution of
the corresponding bodies. If the action of the spring-damper systems is
completely included into the virtual work, for the remaining potential
energy one obtains

U =
1

2

∫ l1

0

[

EI1w
2
x1x1

− ρg

(

∫ l1

x1

A∗

1dx̄1 +

∫ l2

0
A∗

2dx2

)

w2
x1

]

dx1

+
1

2

∫ l2

0

[

EI2v
2
x2x2

− ρg

∫ l2

x2

A∗

2dx̄2v
2
x2

]

dx2. (3)

Since no internal damping of the beam segments will be taken into
consideration, as the worst case for control, the virtual work contains
all the contact forces between the beams and the locally concentrated
driving force of the vehicle as distributed loads f1(x1, t) and f2(x2, t)
(see Fig. 3) which couple the resulting field equations:

Wvirt =

∫ l1

0
f1δwdx1 +

∫ l2

0
f2δvdx2. (4)

Due to the formulation of all these locally concentrated forces by
distributed loads using Dirac impulses, the boundary conditions will
be homogeneous. Evaluating Hamilton’s principle (1) introducing T ,
U and Wvirt according to eqs. (2), (3) and (4), respectively, yields the
governing field equations

ρA∗

1wtt + EI1wx1x1x1x1
+ ρA1g[(l1 − x1)wx1

]x1
+ g(mL + ρA2l2)wx1x1

= f1(x1, t) + δ(x1 − l1)g(mL + ρA2l2)wx1
, (5)

ρA∗

2vtt + EI2vx2x2x2x2
+ ρA2g[(l2 − x2)vx2

]x2
+ gmLvx2x2

= f2(x2, t) − δ(x2)g(mL + ρA2l2)vx2
+ δ(x2 − l2)gmLvx2

(6)

and the corresponding boundary conditions

wx1
(0, t) = 0, wx1x1x1

(0, t) = 0, wx1x1
(l1, t) = 0, wx1x1x1

(l1, t) = 0, (7)

vx2x2
(0, t) = 0, vx2x2x2

(0, t) = 0, vx2x2
(l2, t) = 0, vx2x2x2

(l2, t) = 0 (8)

for the two bodies.
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For the special case in which the beam segments contact each other
at the two points x1 = l1 and x2 = 0 only, the distributed forces are
specified as

f1 = δ(x1)F + δ(x1 − lA(t))

(

FK(ξ1(t)) +
d

dt
ξ1(t) · DK(ξ1(t))

)

+ δ(x1 − l1)

(

FK(ξ2(t)) +
d

dt
ξ2(t) · DK(ξ2(t))

)

, (9)

f2 = −δ(x2)

(

FK(ξ1(t)) +
d

dt
ξ1(t) · DK(ξ1(t))

)

− δ(x2 − (l1 − lA(t)))

(

FK(ξ2(t)) +
d

dt
ξ2(t) · DK(ξ2(t))

)

(10)

where

FK(ξ(t)) = c

[

ξ(t) −
1

2

(

ξ(t) +
lS

2

)

sign

(

ξ(t) +
lS

2

)

+
1

2

(

ξ(t) −
lS

2

)

sign

(

ξ(t) −
lS

2

)]

, (11)

DK(ξ(t)) = d

[

1 −

1

2
sign

(

ξ(t) +
lS

2

)

+
1

2
sign

(

ξ(t) −
lS

2

)]

, (12)

ξ1(t) = v(0, t) − w(lA(t), t), ξ2(t) = v((l1 − lA(t)), t) − w(l1, t). (13)

a) b)

lS lS

FK(ξ(t)) DK(ξ(t))

ξ(t) ξ(t)

Figure 4. a) Spring characteristic FK(ξ(t)), b) Damping characteristic DK(ξ(t)).

Fig. 4a shows the spring force FK(ξ(t)) versus the relative position
ξ(t) of the contact points. The non-linear characteristic takes into ac-
count the fact that in the range of backlash no forces can be transferred.
The same is valid for the assumed damping coefficient as shown in
Fig. 4b.
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3.2. Discretization

The discretization of the coupled partial differential equations (5) and
(6) (nonlinear and time-variant in general) together with the corre-
sponding boundary conditions (7) and (8) is done by applying Galerkin’s
method (see [3], for instance). In that procedure the approximate solu-
tions w(x1, t) and v(x2, t) are represented by a series expansion using
selected shape functions Wi(x1) and Vi(x2) (i = 1, 2, ..., N) fulfilling all
boundary conditions (7) and (8):

w(x1, t) =
N
∑

i=1

ui(t)Wi(x1), (14)

v(x2, t) =
N
∑

i=1

uN+i(t)Vi(x2). (15)

The coefficients ui(t) (i = 1, 2, ..., 2N) have to be computed. Appro-
priate shape functions are modes of a corresponding problem shown in
Fig. 5a and Fig. 5b.

a) b)

boundary conditions: boundary conditions:

Wx1
(0) = 0;

Wx1x1x1
(0) = 0;

Vx2x2
(0) = 0;

Vx2x2x2
(0) = 0;

Wx1x1
(l1) = 0;

Wx1x1x1
(l1) = 0.

Vx2x2
(l2) = 0;

Vx2x2x2
(l2) = 0.

Figure 5. a) Problem ”transversally movable-free”, b) Problem ”free-free”.
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Eqs. (14) and (15) yield the final Ritz series

w(x1, t) =
N
∑

i=1

ui(t)

(

cos(λix1) +
cos(λil1)

cosh(λil1)
cosh(λix1)

)

, (16)

v(x2, t) = uN+1(t) + uN+2(t)x2 +
N
∑

i=3

uN+i(t) (17)

× [cosh(κix2) + cos(κix2)

−

cosh(κil2) − cos(κil2)

sinh(κil2) − sin(κil2)
(sinh(κix2) + sin(κix2))].

The discretization applying Galerkin’s procedure leads to a system
of ordinary differential equations of the type

Mü = F(u, u̇, t). (18)

4. Simulation Results

For parameter studies of an n-sectional telescopic system, a program
based on the commercial software package MAPLE is implemented to
generate the equations of motion (18) automatically starting with the
system parameters.

4.1. Case study

Quantitative results are presented here for a 2-sectional system. The
results should illustrate the potentialities of the Galerkin model intro-
duced in this contribution and only represent a small extract of the
existing results which verify that for realistic rigid body motions of
the telescopic system a low-order truncation (N = 4) is sufficient to
get accurate results. The parameters originate from a test rig which is
introduced in Chapter 4.2.

A common operating sequence of a telescopic system is simulated.
The calculations are executed with (lS = 0.01m) and without (lS = 0m)
clearance to show the effect of the clearance on the vibrational behavior.
The system is driven by a force F (t) (see Fig. 6) which acts on the rigid
vehicle unit. The system starts from an initial point without any initial
velocity, is accelerated by the force F (t) during 4 seconds and moves
with constant velocity during another 4 seconds before it is decelerated
till it stops. During the simulations, the telescopic length lA(t) increases
as shown in Fig. 7.
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Figure 6. Driving force F (t).
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Figure 7. Telescopic length lA(t).

Fig. 8 shows the motion of the rigid vehicle unit, evoked by the
driving force F (t). Fig. 9 shows the position of the tip load relative
to the bottom of the telescope. As expected, the amplitude and the
oscillating period of the vibrations increase with increasing telescopic
length. These vibrations have to be suppressed by an appropriate con-
troller concept, to ensure a safe and efficient use of telescopic systems
in technical applications. Moreover, the effect of the clearance on the
vibrational behavior can be seen. The main cause for the distinctive
results with and without clearance is the tilted position of the upper
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Figure 8. Motion of the rigid vehicle unit.
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Figure 9. Position of the tip load relative to the bottom of the telescope.

segment between the lateral limitations of the guidance of the lower
segment. This effect increases with increasing telescopic length and
increasing clearance. The smoothness of the curve (with clearance) is
due to the tip load.

blacksburg.tex; 18/02/2005; 11:45; p.10



Telescopic Systems 11

0 5 10 15
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
tip of the lower segment

time [s]

re
la

tiv
e 

po
si

tio
n 

[m
]

l
S
=0.01m

l
S
=0m

Figure 10. Position of the tip of the lower segment relative to the bottom of the
telescope.
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Figure 11. Position of the upper segment relative to the lower segment in the lower
contact point.

Fig. 10 shows the position of the tip of the lower segment relative
to the bottom of the telescope. High frequency vibrations occur in the
nonlinear calculations with clearance due to the collisions of the two
segments in the contact points.

Fig. 11 and Fig. 12 show the position of the upper segment relative
to the lower segment in two moving contact points. During the accel-
eration and the deceleration the upper segment stays tilted between
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the lateral limitations of the guidance of the lower segment. The two
segments stay in contact. For F (t) = 0 the upper segment freely moves
between the lateral limitations.

0 5 10 15
−6

−4

−2

0

2

4

6
x 10

−3 upper contact point (x
1
=l

1
)

time [s]

re
la

tiv
e 

po
si

tio
n 

[m
]

Figure 12. Position of the upper segment relative to the lower segment in the upper
contact point.

4.2. Verification of the Galerkin model

The presented 2-sectional system was partly validated in a test rig of the
Institut für Fördertechnik und Logistiksysteme, Universität Karlsruhe
(TH) (see Figs. 13a, 13b and 13c).

a) b) c)

Figure 13. a) Tip load mL b) Test rig c) Contact between beams.
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The test rig is composed of two beams of length l1 = l2 = 1.35m. The
cross-sectional areas are A1 = A2 = 0.001m2 and the cross-sectional
moments of inertia are I1 = I2 = 0.83 ·10−8m4. The beam material has
a density ρ = 7850kg/m3 and Young’s modulus E = 2.1·1011N/m2. The
beams are screwed together at a fixed “telescopic” distance lA = 1.15m
(see Fig. 13c). A real telescopic motion is not yet possible. Further
parameters are the number of contact points n = 3, mass of the load
mL = 17.897kg (see Fig. 13a), gravity constant g = 9.81m/s2 and the
contact stiffness c = 0.2375·109N/m to be estimated from the geometry
and the material of the screws. If then the clearance between the beams
is fixed to be zero (lS = 0m), the eigenfrequencies of the Galerkin
model can be computed and compared with experimental values from
the test rig (see Table I). During the experiments, the lower beam of
the test rig is rigidly fixed, which is taken into consideration within the
mathematical model by a very large mass mT = 5000kg of the vehicle.
The calculation results in Table I are based on 5-term truncations (14)
and (15).

Table I. Comparison of eigenfrequencies: test rig -
Galerkin model

test rig Galerkin model difference

f1[Hz] 0.533 0.53 0.56 %

f2[Hz] 6.3 6.35 -0.79 %

f3[Hz] 20.05 21.17 -5.59 %

The good coincidence of the results in Table I shows that in the
presented Galerkin model pre-stressing-effects are modeled in a satis-
factory manner.

As the test rig is only partly finished at the present and clearance can
not be adjusted very accurately, results from the Galerkin model are
compared with results from the commercial software package ADAMS
to ensure the accuracy of the presented Galerkin model. An interface
to the FE-program ANSYS yields the possibility to integrate flexible
bodies into the multi-body program package ADAMS. Applying this,
a model of the test rig can be composed as the basis of dynamic
simulations.

Figs. 14 and 15 compare the simulation results of the presented
Galerkin model to those resulting from ADAMS. Drawn is the po-
sition of the tip load relative to the bottom of the telescope versus
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time. Fig. 14 shows the results of computations without clearance and
Fig. 15 the results of nonlinear computations with clearance (lS =
0.01m). The simulations are based on mT = 100kg, F = 100N and
N = 5. As the implementation of pre-stressing-effects and of telescopic
motion is rather cumbersome in ADAMS, the computations are done
without the influence of gravity and with a fixed telescopic length
lA = 1.15m.
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Figure 14. Linear calculations without clearance lS = 0m.

0 5 10 15 20
−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

time [s]

re
la

tiv
e 

po
si

tio
n 

[m
]

Galerkin model
ADAMS model

Figure 15. Nonlinear calculations with clearance lS = 0.01m.
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Figs. 14 and 15 show that for the Galerkin model a low-order
truncation is sufficient to receive good coincidence with results from
the proven simulation package ADAMS. Furthermore, the simple im-
plementation of pre-stressing-effects and of telescopic motion are im-
portant advantages of the Galerkin model. The main benefit, however,
is the direct access to the system equations which allows a platform-
independent treatment and the application of established control strate-
gies for vibration suppression. In ADAMS a direct access to the system
equations is not possible.

5. Conclusions

To improve efficiency and to overcome possible safety problems of
multi-section constructions during extending and retracting motion of
the sections, a vibration suppression in structural systems of variable
geometry seems to be useful. To achieve this, an appropriate modeling
of the system and a detailed dynamic analysis together with the de-
velopment of an efficient control strategy are the essential problems to
be treated. For slender beam-shaped structural members, the present
contribution has suggested an approach to find a good modeling with
a justifiable computational expense.

The key idea is the description of the multi-section beam system
with reference to an inertial frame and the formulation of contact condi-
tions in a form straightforward to handle. Based on this, the governing
boundary value problem was derived applying Hamilton’s principle,
and a series expansion was introduced to generate a system of non-
linear ordinary differential equations as the corresponding truncated
mathematical model. Displaying the set of equations in semi-symbolic
form by MAPLE makes a platform-independent treatment possible,
and the direct access to the system equations allows the application of
established control strategies for vibration suppression to be the final
objective.

The simulation results to examine the vibrational behavior verify
that for realistic rigid body motions of the telescopic system a low-
order truncation is sufficient and the computational effort is low, even
for systems with clearance.

In a future paper the development of a controller concept for pre-
venting harmful vibrations will be discussed.
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