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On the Optimization of Non-Negative Density
Solutions of Stationary Fokker-Planck Equations

Walter V. Wedig *
Universitat Karlsruhe, D-76128 Karlsruhe, Germany

Classical solution methods of Fokker-Planck equations (see e.g. [1],[2],[3]) lead to negative densities at least in the tales where
the density solutions strongly approach zero. To avoid these inconsistencies the paper proposes to apply central differences
schemes in combination with large-scaled quadratic optimization programming [4].
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1 Introduction to the problem

Stochastic dynamical systems are investigated in the time domain by direct path-wise integration along the process trajectories
or indirect in the space domain by solving associated Fokker-Planck equations to determine relative frequencies or probabilities
of the processes. To test details of integration, consider the example of a linear scalar system describedl dxyuhgalh

dX; = —w, Xydt + odW,, E(dW?) = dt. ()

Herein,w, is a limiting frequency of the low-pass processando is the intensity parameter of its excitation by the increments
dW; of the Wiener procesH/;. It is suitable to introduce dimensionless time and state by

X=X/ B(X?),  with E(X?)=0%/(2w,), 2
dr = wydt, AW, = Jg dW;. ®)

Theintroduction of both dimensionless quantities into the system equation (1) leads to the parameter free equation

dX, = —X,dr + V2dW,, E(dW?) = dr. 4)
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Fig. 1 a) Normalized Gaussian density. b) Density transformed by = arctan A\z.

It possesses the Fokker-Planck equation (5) which is easily integrated under the stationarity copditioe- 0.
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! —LEQ), for |z| < occ. (6)
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Herein, p(z) is the well-known stationary density solution of the Fokker-Planck equation (5). The left picture in figure 1
shows the numerical evaluationgfz) in the rangdz| < 4.
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2 Transformation to finite solution ranges

Under the stationarity conditioflp/9T = 0 the Fokker-Planck equation (5) leads to an ordinary differential equation which

has to be solved under the two boundary conditipfis = 0) = C andp(z = +oo) = 0. Both are necessary to fulfill

the normalization condition that the integrationygf:) over the entire rangk:| < oo is one. Because of the homogeneity

of the Fokker-Planck equation the constant C represents a simple factorization and can be chosen to one without any loss of
generality. Vanishing density boundariesors: +oo are necessary to satisfy the radiation conditions that the solution process
remains inside the rande| < oco. To investigate these singular boundaries numerically, the transformatiomrctan Az

is introduced with) < \ < oo. Provided that\ is a free parameter with finite values, #ectan-transformation reduces the
singular density range:| < oo to the finite ondy| < 7/2 leading to the transformed density distribution

O E———_— )
A2 cos? 2)\2

It is shown in the right side of figure 1 for the three parameter values.5,1 andA = 2. Associated to the transformed
density, above, there is a transforme@léguation of the form

for |p| < 7/2, @)

dd, = —(1 4+ 2X2 cos? @) sin @, cos ®,d7 4+ V2\ cos? &, dW,, (8)

which is derived applying &'s calculus [5] to the angle proce$s = arctan AX,. The transformed stochastic differential
equation (8) leads to the Fokker-Planck equation

0. 1 . 0?2
%[(p + 2 cos? ) sin @ cos pp(p)] + 9,2 [cos® pp(p)] = 0, (9)

when the stationary density solution is of interest only.

0.8 T

0.8—

L Tole) | T p(e) | | | )\‘: .5,1,‘27

0.7

0.6 *
0.6~ *

0.5 — o5k i

041 7 0.4 7

0.3 *
0.3 *

0.2 *

N =10 o=\ | N =23 o —

. f
1. = —-0. . . o 1 : ‘
1.5 1 0.5 [} 0.5 1 15 15 -1 -0.5 ) 0.5 1 15

Fig. 2 Discrete and exact solutions of the Fokker-Planck equation (10) for the density paraimetebs1, 2.

3 Application of central differences schemes
The stationary Fokker-Planck equation (9) of the transformed system can once be integrated leading to the first order form
1 0
(5 = 2008 @)sinpcos () + cos' ()] = C. (10)
Herein,C' is a constant of integration which is vanishing when symmetry respectively radiation conditions have to be satisfied.

Subsequently, one cosine function in (10) can be cancelled out. Applying the central difference scliprhkoby (p,,+1 —
pn—1)/(2A¢p) with the step sizé\p = 7/(2N), the discrete form of the Fokker-Planck equation (10) is derived to

anPrn + Cipnfl - C*ianrl =0, Cp = COS nASOa (11)
1
an = (2¢% — ﬁ)anAgo, Sn = sinnAgp. (12)

Itisvalid foralln = 1,2,..., N — 1. Provided that the density solution is symmetric, the following boundary conditions are
to be satisfied:

po = 1, (Normalization) pn = 0. (Radiation Condition) (13)
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Obviously, this discrete formulation leadsb— 1 inhomogeneous equations to be evaluated for ghveparameter and step

size Ayp. Figure 2 shows evaluations for the paramegets .5, 1,2 and for N = 10 steps on the left picture andl = 23 on

the right-hand side. Correspondingly, the discrete solutions are stable showing good coincidences with the exact solutions for
low parameter values and small step size&¢. For high parameters, the step numbeW has to be sufficiently increased to

obtain a smooth density close to the exact solution.

4 Application of central differences schemes
Performing all differentiations with respect¢g the second order Fokker-Planck equation (9) takes the form

d? d
el A e 2c2(c? — 3s%)p +

1
di? dip se 4 (=l =0, ol <7/2 (14)

ﬁdgp

Herein,c ands are abbreviations fat = cos ¢ ands = sin ¢, respectively. Applying the central differences scheme with the
step sizeAy = 7 /(2N) leads to the discrete version of (14)

anpn+ﬁnpn+1 +'7npn71 - 07 n = 1,2,...,N— 1. (15)
This recursion formula possesses the coefficientss,, and~,, calculated to

o = 2+ 260(ch = 353)AG% = (h — sAGP /A, s, = sinnAe, (16)
Bn(Yn) = —c £ 3¢3 5, A0 F cnsnAp/(2)0?), cn, = cosnAyp. 17)

Figure 3 shows evaluations of (15) together with the exact solutions (7) fer10 and\ = .5 in the left picture, respectively

for N = 40 and A = 2 in the right one. The left sides in both pictures are calculated under the same boundary conditions
po = landpy = 0, as previously applied. The right sides in both pictures show solutions which gatisfy andp; = p_;.

Obviously, these boundary conditions are less optimal. The associated solutions diverge strongly on the right-hand side at the
boundaryn = N andy = 7/2, respectively.
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Fig. 3 Discrete and exact solutions of the second order Fokker-Planck equation (M)for5 and2.0.

5 Large-scale quadratic optimization programming.

For further improvements higher order schemes may be applied or more efficiently large-scaled quadratic optimization to avoid
negative results in the density tales. For these purposes the scalar equations (15) are written into the vegtosférm

(%1 61 0 . 0 P1 —7Y1Po
T2 oo fo ... 0 D2 0

) . . = ) . (18)
0 0 ... 9w-1 an-—1 PN-1 —BN-1PN

Solving this system under the boundary conditipps= 1 andpy = 0, the firstNV.,-density values, obtained, are positive.
Only in the tale range foN,, < n < N, there are negative density values beginning with, < 0. For the special example
N =24 and) = .5,1, 2 shown on the left side of figure 4, these numbershue= 17, 20 and22. Naturally, negative density
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values are physically meaningless and can only be explained by the approximating procedure in the tale range where density
solutions strongly approach zero. To avoid these inconsistencies, it is proposed to apply large-scale quadratic programming,
given e.g. in Matlab 6.1. Accordingly, the best approximation of the equation sy&temb under the constraint conditions

p >0, (N-1 lower boundy, Aeqp = bey, (INeq equality constrainis (19)
is calculated by minimizing the quadratic equation error
(Ap — b)T (Ap — b) = Min!, = pT AT Ap — 20T Ap = Miin! (20)

Typical numerical results of this minimizing procedure are shown on the right-hand side of figure 4. Particulary foand

N = 24 the optimization results are still good. In contrast to the classical results on the left side of figure 4 there are no negative
density values on the right-hand side. Of course, the non-negative density values, obtained by the quadratic optimization,
converge towards the exact solutions shown in figure 4 for increaéiagd decreasing step siZep, respectively.
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Fig. 4 Discrete, exact and optimized solutions of the Fokker-Planck equation (14).

6 Summary and concluding remarks.

To solve Fokker-Planck equations by central differences schemes with optimally selected boundary conditions, the infinite
solution range is reduced to a finite one utilizing suitable mappings. The paper investigates large-scale quadratic programming
to avoid negative probability densities in the tales. Further improvements can be achieved by higher order differences schemes
or by adaptive finite elements.
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