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Classical solution methods of Fokker-Planck equations (see e.g. [1],[2],[3]) lead to negative densities at least in the tales where
the density solutions strongly approach zero. To avoid these inconsistencies the paper proposes to apply central differences
schemes in combination with large-scaled quadratic optimization programming [4].

1 Introduction to the problem

Stochastic dynamical systems are investigated in the time domain by direct path-wise integration along the process trajectories
or indirect in the space domain by solving associated Fokker-Planck equations to determine relative frequencies or probabilities
of the processes. To test details of integration, consider the example of a linear scalar system described by the Itô equation

dXt = −ωgXtdt + σdWt, E(dW 2
t ) = dt. (1)

Herein,ωg is a limiting frequency of the low-pass processXt andσ is the intensity parameter of its excitation by the increments
dWt of the Wiener processWt. It is suitable to introduce dimensionless time and state by

Xt = X̄t

√
E(X2

t ), with E(X2
t ) = σ2/(2ωg), (2)

dτ = ωgdt, dWτ =
√

ωg dWt. (3)

Theintroduction of both dimensionless quantities into the system equation (1) leads to the parameter free equation

dX̄τ = −X̄τdτ +
√

2dWτ , E(dW 2
τ ) = dτ. (4)
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Fig. 1 a) Normalized Gaussian density. b) Density transformed byϕ = arctan λx.

It possesses the Fokker-Planck equation (5) which is easily integrated under the stationarity condition∂p/∂τ = 0.

∂p(x, τ)
∂τ

= − ∂

∂x
[xp(x, τ)]− 1

2
∂2

∂x2
[2p(x, τ)], (5)

p(x) =
1√
2π

exp(−1
2
x2), for |x| ≤ ∞. (6)

Herein,p(x) is the well-known stationary density solution of the Fokker-Planck equation (5). The left picture in figure 1
shows the numerical evaluation ofp(x) in the range|x| ≤ 4.
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2 Transformation to finite solution ranges

Under the stationarity condition∂p/∂τ = 0 the Fokker-Planck equation (5) leads to an ordinary differential equation which
has to be solved under the two boundary conditionsp(x = 0) = C andp(x = ±∞) = 0. Both are necessary to fulfill
the normalization condition that the integration ofp(x) over the entire range|x| ≤ ∞ is one. Because of the homogeneity
of the Fokker-Planck equation the constant C represents a simple factorization and can be chosen to one without any loss of
generality. Vanishing density boundaries onx = ±∞ are necessary to satisfy the radiation conditions that the solution process
remains inside the range|x| ≤ ∞. To investigate these singular boundaries numerically, the transformationφ = arctan λx
is introduced with0 < λ < ∞. Provided thatλ is a free parameter with finite values, thearctan-transformation reduces the
singular density range|x| ≤ ∞ to the finite one|ϕ| ≤ π/2 leading to the transformed density distribution

p(ϕ) =
1

λ
√

2π cos2 ϕ
exp(− tan2 ϕ

2λ2
), for |ϕ| ≤ π/2, (7)

It is shown in the right side of figure 1 for the three parameter valuesλ = .5, 1 andλ = 2. Associated to the transformed
density, above, there is a transformed Itô equation of the form

dΦτ = −(1 + 2λ2 cos2 Φτ ) sin Φτ cosΦτdτ +
√

2λ cos2 ΦτdWτ , (8)

which is derived applying It̂o’s calculus [5] to the angle processΦτ = arctan λX̄τ . The transformed stochastic differential
equation (8) leads to the Fokker-Planck equation

∂

∂ϕ
[(

1
λ2

+ 2 cos2 ϕ) sin ϕ cosϕp(ϕ)] +
∂2

∂ϕ2
[cos4 ϕp(ϕ)] = 0, (9)

when the stationary density solution is of interest only.
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Fig. 2 Discrete and exact solutions of the Fokker-Planck equation (10) for the density parametersλ = .5, 1, 2.

3 Application of central differences schemes

The stationary Fokker-Planck equation (9) of the transformed system can once be integrated leading to the first order form

(
1
λ2
− 2 cos2 ϕ) sin ϕ cos ϕp(ϕ) + cos4 ϕ

∂

∂ϕ
[p(ϕ)] = C. (10)

Herein,C is a constant of integration which is vanishing when symmetry respectively radiation conditions have to be satisfied.
Subsequently, one cosine function in (10) can be cancelled out. Applying the central difference scheme bydp/dϕ ≈ (pn+1 −
pn−1)/(2∆ϕ) with the step size∆ϕ = π/(2N), the discrete form of the Fokker-Planck equation (10) is derived to

anpn + c3
npn−1 − c3

npn+1 = 0, cn = cos n∆ϕ, (11)

an = (2c2
n −

1
λ2

)2sn∆ϕ, sn = sin n∆ϕ. (12)

It is valid for all n = 1, 2, . . . , N − 1. Provided that the density solution is symmetric, the following boundary conditions are
to be satisfied:

p0 = 1, (Normalization), pN = 0. (Radiation Condition) (13)
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Obviously, this discrete formulation leads toN − 1 inhomogeneous equations to be evaluated for givenλ−parameter and step
size∆ϕ. Figure 2 shows evaluations for the parametersλ = .5, 1, 2 and forN = 10 steps on the left picture andN = 23 on
the right-hand side. Correspondingly, the discrete solutions are stable showing good coincidences with the exact solutions for
low parameter valuesλ and small step sizes∆ϕ. For high parametersλ, the step numberN has to be sufficiently increased to
obtain a smooth density close to the exact solution.

4 Application of central differences schemes

Performing all differentiations with respect toϕ, the second order Fokker-Planck equation (9) takes the form

c4 d2p

dϕ2
− 6sc3 dp

dϕ
− 2c2(c2 − 3s2)p +

1
λ2

[sc
dp

dϕ
+ (c2 − s2)p] = 0, |ϕ| ≤ π/2. (14)

Herein,c ands are abbreviations forc = cos ϕ ands = sin ϕ, respectively. Applying the central differences scheme with the
step size∆ϕ = π/(2N) leads to the discrete version of (14)

αnpn + βnpn+1 + γnpn−1 = 0, n = 1, 2, . . . , N − 1. (15)

This recursion formula possesses the coefficientsαn, βn andγn calculated to

αn = 2c4
n + 2c2

n(c2
n − 3s3

n)∆ϕ2 − (c2
n − s2

n)∆ϕ2/λ2, sn = sin n∆ϕ, (16)

βn(γn) = −c4
n ± 3c3

nsn∆ϕ∓ cnsn∆ϕ/(2λ2), cn = cos n∆ϕ. (17)

Figure 3 shows evaluations of (15) together with the exact solutions (7) forN = 10 andλ = .5 in the left picture, respectively
for N = 40 andλ = 2 in the right one. The left sides in both pictures are calculated under the same boundary conditions
p0 = 1 andpN = 0, as previously applied. The right sides in both pictures show solutions which satisfyp0 = 1 andp1 = p−1.
Obviously, these boundary conditions are less optimal. The associated solutions diverge strongly on the right-hand side at the
boundaryn = N andϕ = π/2, respectively.
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Fig. 3 Discrete and exact solutions of the second order Fokker-Planck equation (14) forλ = 0.5 and2.0.

5 Large-scale quadratic optimization programming.

For further improvements higher order schemes may be applied or more efficiently large-scaled quadratic optimization to avoid
negative results in the density tales. For these purposes the scalar equations (15) are written into the vector formAp = b.




α1 β1 0 . . . 0
γ2 α2 β2 . . . 0
...

...
0 0 . . . γN−1 αN−1







p1

p2

...
pN−1


 =




−γ1p0

0
...

−βN−1pN


 . (18)

Solving this system under the boundary conditionsp0 = 1 andpN = 0, the firstNeq-density values, obtained, are positive.
Only in the tale range forNeq < n < N , there are negative density values beginning withpNeq < 0. For the special example
N = 24 andλ = .5, 1, 2 shown on the left side of figure 4, these numbers areNeq = 17, 20 and22. Naturally, negative density
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values are physically meaningless and can only be explained by the approximating procedure in the tale range where density
solutions strongly approach zero. To avoid these inconsistencies, it is proposed to apply large-scale quadratic programming,
given e.g. in Matlab 6.1. Accordingly, the best approximation of the equation systemAp = b under the constraint conditions

p ≥ 0, (N-1 lower bounds), Aeqp = beq, (Neq equality constraints) (19)

is calculated by minimizing the quadratic equation error

(Ap− b)T (Ap− b) = Min! , ⇒ pT AT Ap− 2bT Ap = Min! (20)

Typical numerical results of this minimizing procedure are shown on the right-hand side of figure 4. Particularly forλ = 2 and
N = 24 the optimization results are still good. In contrast to the classical results on the left side of figure 4 there are no negative
density values on the right-hand side. Of course, the non-negative density values, obtained by the quadratic optimization,
converge towards the exact solutions shown in figure 4 for increasingN and decreasing step size∆ϕ, respectively.
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Fig. 4 Discrete, exact and optimized solutions of the Fokker-Planck equation (14).

6 Summary and concluding remarks.

To solve Fokker-Planck equations by central differences schemes with optimally selected boundary conditions, the infinite
solution range is reduced to a finite one utilizing suitable mappings. The paper investigates large-scale quadratic programming
to avoid negative probability densities in the tales. Further improvements can be achieved by higher order differences schemes
or by adaptive finite elements.
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