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Presently, most of the research on vibrations of monolithic piezoelectric rods at weak electric fields is restricted to longitudinal
oscillations of such structural members where free and forced vibrations have been dealt with and in the case of resonance
conditions not only linear but also nonlinear effects within the constitutive relations have been incorporated. On the other hand,
bending and torsional vibrations of piezoceramic one-parametric rods have not been examined yet. The present contribution
develops a linear vibration theory of rods with a focus to bending vibrations taking into account rotatory inertia and shear
deformation. The governing boundary value problem for beams with both longitudinal and as well transversal polarization is
derived, in particular free vibrations are analyzed. Also nonlinear extensions not only of physical nature but also geometrical
ones are addressed. A possible technical application is given.

1 Physical model

Consider a uniform, slender, flexible rod with an axi-symmetric cross-section. Stressless, it is straight and has length` (unde-
formed arc lengthz, cross-sectional coordinatesx, y). The rod is assumed to be a monolithic piezoelectric solid with a prefe-
rence direction by polarization so that there is in a good approximation a planar isotropy. As a first case, an axial polarization
(i.e. in z-direction as usual) is assumed. Space- and time-dependent extensional, bending/shearing and torsional vibrations
w(z, t), u(z, t) (in x-), v(z, t) (in y-direction),β(z, t) (about they-), α(z, t) (about thex-axis) andψ(z, t), respectively, cou-
pled with the electric potentialϕ(z, t) are discussed. A linear theory will be established, i.e., both linear strain-displacement
relations and linear constitutive equations will be formulated as a first step developing a generalized nonlinear theory.

2 Formulation

The linear strain-displacement relations for such a Timoshenko beam are well-known (see [1], for example) and read

Szz = w′ + yα′ − xβ′, 2Sxz = u′ − β − yψ′, 2Syz = v′ + α + xψ′. (1)

where(.)′ = ∂(.)/∂z. Within a rod theory, usual constraint conditions with respect to the stresses are

Txx = Tyy = Txy = 0. (2)

Similar as for the strains (see eq. (1)), also for the electric potentialφ which in general depends fromx, y, z andt, a linear
dependence from the cross-sectional coordinates is assumed (a generalization to another more realistic dependence, see [3],
for instance, is straightforward):

φ(x, y, z, t) = (1 + ax + by)ϕ(z, t) (3)

where the electric field coordinates are related toφ by Ei = −∂φ/∂i, i ∈ x, y, z anda, b are appropriate constants. Under the
assumptions noticed, the well-known constitutive equations for linear piecoceramics (polarized inz-direction) can therefore
be simplified to

Tzz = E(0)
ax Szz − γ(0)

ax Ez, Txz = G(0)
ax Szz − e15Ex, Tyz = G(0)

ax Syz − e15Ey,

Dx = e15Sxz + εS
11Ex, Dy = e15Syz + εS

11Ey, Dz = γ(0)
ax Szz + ν(0)

ax Ez (4)

whereE
(0)
ax andG

(0)
ax are, respectively elastic modulus and shear modulus (depending from the usual stiffness constantscE

ij),

γ
(0)
ax is a piezoelectric coupling factor (depending fromcE

ij and the piezoelectric constantseij) andν
(0)
ax is a dielectric property

(depending fromcE
ij , eij and the dielectric constantsεS

ij). TheDi are the dielectric displacements.
To derive the governing value problem by Hamilton’s principle, kinetic energy densityT and enthalpy densityH of the rod

and the virtual workWvirt of all potentialless actions in the system have to be determined. Using the governing kinematics
and the constitutive equations (4), one obtains (if free vibrations neglecting any dissipative effects will be considered)

T = ρ[u̇2 + v̇2 + (ẇ + yα̇− xβ̇)2 + (x2 + y2)ψ̇2], Wvirt = 0,

H =
E

(0)
ax

2
S2

zz − γ(0)
ax SzzEz − ν

(0)
ax

2
E2

z +
G

(0)
ax

2
(S2

xz + S2
yz)− e15(SxzEx + SyzEy)− εS

11

2
(E2

x + E2
y) (5)
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where ˙(.) = ∂(.)/∂t. The resulting boundary value problem (defining in the usual way cross-sectional moments of inertia
Ix, Iy, Ip and introducing both a corrected torsional stiffnessG

(0)
ax IT as well as shear stiffnessesκx,yG

(0)
ax A) is then composed

by a set of partial differential equations

ρü− κxG(0)
ax (u′′ − β′)− e15aϕ′ = 0, ρv̈ − κyG(0)

ax (v′′ + α′)− e15bϕ
′ = 0,

ρIyβ̈ − E(0)
ax Iyβ′′ + κxG(0)

ax A(u′ − β) + γ(0)
ax aIyϕ′′ − e15Aaϕ = 0,

ρIxα̈− E(0)
ax Ixα′′ + κyG(0)

ax A(v′ + α)− γ(0)
ax bIxϕ′′ + e15Abϕ = 0,

ρẅ − E(0)
ax w′′ − γ(0)

ax ϕ′′ = 0,

ν(0)
ax (A + a2Iy + b2Ix)ϕ′′ − ε11A(a2 + b2)ϕ− γ(0)

ax (Aw′′ − bIxα′′ + aIyβ′′) = 0, (6)

ρIpψ̈ −G(0)
ax IT ψ′′ = 0 (7)

to be supplemented by “geometric” or/and dynamic boundary conditions at the endsz = 0, ` of the rod not specified here.

3 Qualitative Results

As expected for an axi-symmetric cross-section and a polarization in axial direction, the torsional oscillationsψ(z, t) are
purely elastic and decoupled from all other variablesu(z, t), v(z, t), α(z, t), β(z, t), w(z, t) andϕ(z, t). It is obvious that
for a electric potential depending from the cross-sectional coordinates (a, b 6= 0) a complicated coupling of the remaining
variables appears. Calculations of the corresponding eigenfrequencies show that the coupling even for largea, b is weak and
there is only a marginal correction compared with the case that the electric potential is constant in the transverse direction
(a, b = 0). For that case, the coupling between elastic bending and piezoelectric axial vibrations vanishes. The remaining
boundary value problem inw(z, t) andϕ(z, t) describing piezoelectric longitudinal vibrations coincide with formulations
given in the literature (see [5], for instance) and leads to a significant correction of the eigenvalues for elastic rods.

4 Supplements

The governing boundary value problem in the case of a transversally polarized rod can straightforwardly deduced from that
of an axially polarized rod if the axial coordinate is renamed asy, for instance and the cross-sectional coordinates becomex
and (as direction of polarization)z. The axial oscillations are then denoted asv(y, t), the bending vibrations areu(y, t) and
α(y, t) (in and respectively about thex-axis) as wellw(y, t) andβ(y, t) (in and respectively about thez-axis) and the torsional
oscillation remains unchanged:ψ(y, t). Performing all calculation steps as before (introducing corresponding geometrical and
material rod parameters whereG

(0)
tr is an averaged value ofG(0)

tr x andG
(0)
tr z) leads to the final set of differential equations

ρü− κxG
(0)
tr x(u′′ + β′) = 0, ρIzβ̈ − E

(0)
tr Izβ

′′ − κxG
(0)
tr xA(u′ + β) = 0, (8)

ρẅ − κzG
(0)
tr z(w

′′ − α′)− e15ϕ
′′ = 0, ρIxα̈− E

(0)
tr Ixα′′ − κzG

(0)
tr zA(w′ − α)− e15Aϕ′ = 0,

ρv̈ − E
(0)
tr v′′ − γ

(0)
tr aϕ′ = 0, ρIpψ̈ −G

(0)
tr IT ψ′′ + e15Izbϕ

′′ = 0,

εS
11(A + a2Ix + b2Iz)ϕ′′ − (ν(0)

tr za
2 + ν

(0)
tr xb2)Aϕ + γ

(0)
tr Aav′ − e15A(w′′ − α′) + e15Izbψ

′ = 0 (9)

to be closed by corresponding boundary conditions. As expected for a rod polarized in the direction of one of the principal axes
of inertia, the elastic bending vibrationsu(y, t), β(y, t) in the orthogonal transverse direction are decoupled from all the other
variablesw(y, t), α(y, t), v(y, t), ψ(y, t) andϕ(y, t) representing coupled piezoelectric motions. For a potential constant in
transverse direction, there remain coupled piezoelectric bending vibrationsw(y, t), α(y, t), ϕ(y, t) which decouple from the
torsional vibrationsψ(y, t) and also the axial oscillationsv(y, t) both purely elastic in that case.

To add viscous effects and to extend the considerations to both geometrical and physical nonlinearities is straightforward
(see [1] and [5, 2], respectively) but involves great calculation expense.

A possible practical application where a geometrically and physically nonlinear theory is needed to analyze the function in
a quantitative manner, might be a rod-shaped angular rate sensor (see [4], for instance) .

Literatur

[1] G. Karch, J. Wauer. Rotating, Axially Loaded Timoshenko Shaft: Modeling & Stability. In:Vibration of Rotating Systems, DE-Vol.
60, K.W. Wang (Ed.), ASME, New York, 1993, 307-314.

[2] S.K. Parashar, U. von Wagner. Nonlinear Longitudinal Vibrations of Transversally Polarized Piezoceramics: Experiments & Mode-
ling. Nonlin. Dynamics, in print.

[3] S.K. Parashar, U. von Wagner, P. Hagedorn. Nonlinear Shear Induced Flexural Vibrations of Piezoceramic Actuators Exhibited at
Weak Electric Fields: Experiments & Modeling.J. Sound & Vibr., in print.
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