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Vibrations of Piezoceramic Rods

Jorg Wauer*
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Presently, most of the research on vibrations of monolithic piezoelectric rods at weak electric fields is restricted to longitudinal
oscillations of such structural members where free and forced vibrations have been dealt with and in the case of resonance
conditions not only linear but also nonlinear effects within the constitutive relations have been incorporated. On the other hand,
bending and torsional vibrations of piezoceramic one-parametric rods have not been examined yet. The present contribution
develops a linear vibration theory of rods with a focus to bending vibrations taking into account rotatory inertia and shear
deformation. The governing boundary value problem for beams with both longitudinal and as well transversal polarization is
derived, in particular free vibrations are analyzed. Also nonlinear extensions not only of physical nature but also geometrical
ones are addressed. A possible technical application is given.
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1 Physical model

Consider a uniform, slender, flexible rod with an axi-symmetric cross-section. Stressless, it is straight and haguadgth

formed arc length, cross-sectional coordinatesy). The rod is assumed to be a monolithic piezoelectric solid with a prefe-
rence direction by polarization so that there is in a good approximation a planar isotropy. As a first case, an axial polarization
(i.e. in z-direction as usual) is assumed. Space- and time-dependent extensional, bending/shearing and torsional vibrations
w(z,t),u(zt) (in x-), v(z,t) (in y-direction),3(z, t) (about they-), a(z,t) (about ther-axis) andy (z, t), respectively, cou-

pled with the electric potentigh(z, ¢t) are discussed. A linear theory will be established, i.e., both linear strain-displacement
relations and linear constitutive equations will be formulated as a first step developing a generalized nonlinear theory.

2 Formulation

The linear strain-displacement relations for such a Timoshenko beam are well-known (see [1], for example) and read

Szz :w/+ya/ _xﬁla ZSa:z :’U/ —ﬁ—y¢/> QSUZ =Ul+04+5m//- (1)
where(.)’ = 9(.)/0z. Within a rod theory, usual constraint conditions with respect to the stresses are
Tow = Tyy = Tuy = 0. 2)

Similar as for the strains (see eq. (1)), also for the electric poteptrehich in general depends from y, z andt, a linear
dependence from the cross-sectional coordinates is assumed (a generalization to another more realistic dependence, see [:
for instance, is straightforward):

¢(@,y,2,t) = (1 + az + by)p(2, 1) 3)

where the electric field coordinates are related by E; = —0¢/01, i € x,y, z anda, b are appropriate constants. Under the
assumptions noticed, the well-known constitutive equations for linear piecoceramics (polarizdulention) can therefore
be simplified to

Tzz - Eé?()szz - Vég)EZa Tmz = Gg?()szz - 615Em; Tyz - Gggg)syz - 615Ey7
D, = e55:.+ €f1Ew, Dy = 615Syz + EflEy, D, = 7.((12)5” + Vg)()EZ (4)

whereEé?c) andGé?() are, respectively elastic modulus and shear modulus (depending from the usual stiffness ccﬁm)stants

%g?() is a piezoelectric coupling factor (depending froﬁmnd the piezoelectric constants) andu.f\?() is a dielectric property

(depending fromzfj, e;; and the dielectric constarﬁ%). The D; are the dielectric displacements.
To derive the governing value problem by Hamilton’s principle, kinetic energy defisityd enthalpy densit{ of the rod
and the virtual worki?/, ;4 of all potentialless actions in the system have to be determined. Using the governing kinematics

and the constitutive equations (4), one obtains (if free vibrations neglecting any dissipative effects will be considered)

T = pli®+0®+ (w~+yd—28)? + (2% +y*)0?, Wi =0,
EY v e &S,
H = 9 ng - 7§?c)SZZEz ) E? + D) (Siz + ng) —e15(SezBr + Sy By) — T(Eg + ES) (5)
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where(.) = d(.)/dt. The resulting boundary value problem (defining in the usual way cross-sectional moments of inertia
I, 1,, I,, and introducing both a corrected torsional stiffne$® 7 as well as shear stiﬁnesse§yG§9<)A) is then composed
by a set of partial differential equations

pii — k. GO (W = ') — ersa9’ =0, piv — k,GO (W 4+ ') —esbp’ = 0,
pIyB - Eg)()]yﬁ” + ’in;?()A(u/ - B)+ %(L?c)aly@// —eisAap = 0,
pLi — EQ La" + 1, GO AW + o) — v ObL¢" + e154bp = 0,
pio — EQu" —4{0¢" = 0,
VO (A + a®I, + VL)y" — 11 A(a® + b2)p — 4D (Aw” — bl,a" +al,B") = 0, (6)

ply = GQIry" = 0 (7)
to be supplemented by “geometric” or/and dynamic boundary conditions at the ends¢ of the rod not specified here.

3 Qualitative Results

As expected for an axi-symmetric cross-section and a polarization in axial direction, the torsional oscillétiorsare

purely elastic and decoupled from all other variablgs, ¢), v(z,t), a(z,t), B8(z,t), w(z,t) andp(z,t). It is obvious that

for a electric potential depending from the cross-sectional coordinatésA 0) a complicated coupling of the remaining
variables appears. Calculations of the corresponding eigenfrequencies show that the coupling evendfdrikmeak and

there is only a marginal correction compared with the case that the electric potential is constant in the transverse direction
(a,b = 0). For that case, the coupling between elastic bending and piezoelectric axial vibrations vanishes. The remaining
boundary value problem in(z,t) andp(z,t) describing piezoelectric longitudinal vibrations coincide with formulations
given in the literature (see [5], for instance) and leads to a significant correction of the eigenvalues for elastic rods.

4 Supplements

The governing boundary value problem in the case of a transversally polarized rod can straightforwardly deduced from that
of an axially polarized rod if the axial coordinate is renamedg,dsr instance and the cross-sectional coordinates beaome

and (as direction of polarization) The axial oscillations are then denoteduég, t), the bending vibrations arg(y, t) and

a(y, t) (in and respectively about theaxis) as welko(y, t) andS(y, t) (in and respectively about theaxis) and the torsional
oscillation remains unchanged(y, t). Performing all calculation steps as before (introducing corresponding geometrical and

material rod parameters Whe@éf) is an averaged value atl”) andG(O)) leads to the final set of differential equations

tr tr 2
pii = koGl (w + 8) =0, pLB - EPLE" — k.G AW +8) = 0, (8)
pio — kG0 (W — o) —e159" =0, plé— BV Lo — k,GP A — o) — e154¢) = 0,
pi — Et(f)v" — 'yt(?)cup’ =0, ply— GE?)ITT/)H +eisLbp” = 0,
A+l VL) — (7 + ) Ap + 1 Aar’ — e A(w” — o) Feslbd = 0 (9)

to be closed by corresponding boundary conditions. As expected for a rod polarized in the direction of one of the principal axes
of inertia, the elastic bending vibration$y, t), 5(y, t) in the orthogonal transverse direction are decoupled from all the other
variablesw(y, t), a(y,t), v(y, t),¥(y,t) andp(y,t) representing coupled piezoelectric motions. For a potential constant in
transverse direction, there remain coupled piezoelectric bending vibratigns), «(y, t), ¢(y, t) which decouple from the
torsional vibrations)(y, t) and also the axial oscillationgy, t) both purely elastic in that case.

To add viscous effects and to extend the considerations to both geometrical and physical nonlinearities is straightforward
(see [1] and [5, 2], respectively) but involves great calculation expense.

A possible practical application where a geometrically and physically nonlinear theory is needed to analyze the function in
a quantitative manner, might be a rod-shaped angular rate sensor (see [4], for instance) .

Literatur

[1] G. Karch, J. Wauer. Rotating, Axially Loaded Timoshenko Shaft: Modeling & Stability. Wibration of Rotating SystemBE-Vol.
60, K.W. Wang (Ed.), ASME, New York, 1993, 307-314.

[2] S.K. Parashar, U. von Wagner Nonlinear Longitudinal Vibrations of Transversally Polarized Piezoceramics: Experiments & Mode-
ling. Nonlin. Dynamicsin print.

[3] S.K. Parashar, U. von Wagner, P. HagedornNonlinear Shear Induced Flexural Vibrations of Piezoceramic Actuators Exhibited at
Weak Electric Fields: Experiments & Modeling. Sound & Vibr, in print.

[4] J. Soderquist. Piezoelectric Beams & Vibrating Angular Rate SenslifEE Trans. Ultras. Ferroelec. Freq. Con88, 1991, 271-280.

[5] U.vonWagner, P. HagedornNonlin. Effects of Piezoceramics Excited by Weak Electric Fididmlin. Dynamic$81, 2003, 133-149.

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim





