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ABSTRACT 

Inverse dynamics analysis of human motion requires that 
the trajectories of the selected anatomical points are known. 
Therefore, standard motion capture technique by tracking 
marker points is generally used to obtain the trajectories. The 
tracking process, however, introduces high-frequency noise into 
the trajectories and the measured data can not be used directly 
to proceed in the inverse dynamic analysis. A mechanical sys-
tem is consistent with kinematic data if the constraint equations 
of position and their time derivatives are satisfied by any pa-
rameters contained in the data set. Spurious reaction forces 
result from violations of the constraint equations using non 
consistent data. Therefore, a method is applied in this paper, 
whereby a new set of trajectories is generated by performing a 
projection of the observed positions, velocities and accelera-
tions onto the corresponding constraint manifold to ensure the 
consistency of the data mentioned above. Finally, the kinemat-
ics of the system is described with the corrected data set. 

 

INTRODUCTION 

Inverse dynamic analysis is used in the studies of human 
motion to evaluate muscle and reaction forces between adjacent 
anatomical segments. There are no experimental methodologies 
for measuring these forces directly. Therefore, human motion 
studies rely on mathematical and computational models. The 
quality of the results is affected by the choice of the biome-
chanical model and by the kinematic data provided as input. 
1
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Kinematic data required for the inverse dynamic analysis 
of the biomechanical model can be gathered by motion capture 
technique. Therefore, marker points are usually attached to 
anatomical joints and segment extremities (Figure 1) and 
tracked [1, 4, 11]. The further data processing uses filter tech-
nologies to eliminate any high-frequency component arising 
from the digitization process in order to obtain smoother data, 
but this does not ensure that the kinematic data is consistent 
with the mechanical model adopted and the underlying kine-
matic constraint equations are not satisfied yet.  

 
Figure 1: marker points 

In the present work, a projection method is used to correct 
the tracked positions of the marker points to ensure non vio-
lated position constraints of the mechanical system.  

Projection methods are basic components of several inte-
gration methods for differential algebraic equations. These 
methods all use some class of projection onto the correspond-
ing constraint manifold. In DAE terminology the substitution 
of the constraints by its time derivatives is called index reduc-

Trajectories of a set of marker points 
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tion. Index reduction by differentiation suffers in long-time 
simulations from the drift-off effect. An early attempt to avoid 
the numerical problems of the drift-off effect in the DAE for-
mulation goes back to the work of Baumgarte [2]. Today, it is 
state-of-the-art to avoid the constraint violation by projection 
techniques [1,5,6,7]. If the violation of the constraints during 
the time integration of the DAE formulation exceeds some er-
ror bound, then the solution is projected onto the constrained 
manifold. Mathematically, the projection defines a minimiza-
tion problem that can be solved efficiently by Newton-Raphson 
iterations. The same method is applied in this paper to obtain 
consistent trajectories to perform an inverse dynamic analysis. 
A new set of trajectories is generated by performing a projec-
tion of the observed positions, velocities and accelerations onto 
the corresponding constraint manifold to ensure the consistency 
of the data. The inverse dynamic analysis is performed after-
wards with the corrected and consistent input data. 

The procedures mentioned above are demonstrated on a 
simple mechanical model and the results will be discussed with 
respect to the underlying principles of the techniques used. The 
model consists of rigid bodies which are connected by revolute 
joints. Inverse dynamic analysis is performed using a formal-
ism based on natural Cartesian coordinates [9]. The position 
and orientation of a rigid body are defined in a global reference 
frame using the Cartesian coordinates of a set of basic points 
and unit vectors. It is convenient to use this definition for bio-
mechanical inverse dynamic analyses since the coordinates of 
the digitized points can be taken directly to define the anatomi-
cal segments of the biomechanical model [13, 14]. 

Rigid body definition 

Natural coordinates use points and vectors to define the 
position and orientation of rigid bodies [9, 12]. The rigid body 
constraints result of the properties of the body, i.e., distances 
between pairs of points on a rigid body remain constant, angles 
between pairs of unit vectors or between two-point segments 
and unit vectors remain constant. Physical relations are ex-
pressed mathematically by constraint equations, respectively. 
This formulation uses the scalar product to define the rigid 
body constraints in a unified way, as well as joint and driver 
constraints. Equation (1) defines the general form of the scalar 
product 

 1 2 1 2 1 2cos 0T − < >=r r r r r ,r , (1) 

where r1 and r2 are vectors, |r1| and |r2| are the respective 
norms and <r1,r2 > is the enclosed angle between the vectors. 
Figure 2 shows an example of a rigid body, for which the posi-
tion and orientation is defined by the position of two points i 
and j and two unit vectors u and v, with related constant an-
gles , and φ γ ψ . The position vectors of the points i and j in 
the global reference frame are defined by ri and rj. 
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Figure 2: basic element 

Thus, a vector containing the generalized coordinates to de-
scribe the position and orientation of a rigid body can be de-
fined as: 

 
T

e i j⎡ ⎤= ⎣ ⎦q r r u v . (2) 

It has 12 natural coordinates. Furthermore, the degrees of 
freedom of the rigid element are limited to six degrees of free-
dom by six constraint equations: 

• an equation defining the constant distance between 
the points i and j (length l), 

• three equations to maintain constant angles 
constφ γ ψ= = =  

• and the two conditions that u and v are unit vectors.  

Thus the six constraint equations of a rigid body read: 
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Kinematic joint definition 

Once the constraint equations of a rigid body have been de-
rived to guarantee the desired rigid characteristics of a body, it 
is necessary to formulate the constraint equations for the rela-
tive motion of the bodies. Figure 3 shows the method of model-
ling a spherical or a revolute joint between two rigid bodies, 
where m and n describes the name of a body respectively. The 
point on the joint as part of body m is described by position 
vector m

jr , the point on the joint as part of body n by position 
vector n

ir . 

y

z x

ir
jr

u

v

φ γ

ψ

ijr
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Figure 3: joint between two bodies 

In case of a spherical joint both points coincide and the con-
straint equation results to: 

 0m n
j i− =r r . (4) 

For a revolute joint a point on a body coincides with a point on 
the related body. Furthermore, two angles formed by two vec-
tors respectively have to be kept constant. Thus the constraint 
equations are derived to:  

 

0m n
j i

m T n
ij

m T n

const

const

− =

=

=

r r

v r

v u

 (5) 

With the definition of the rigid body and the joints, the basic 
structure of the kinematic model is known. Only parameters 
consisting of angles and lengths need to be known to describe 
the complete system, yet. The rigid body constraints and the 
joint constraints can be rewritten into the common nonlinear 
position equations 

 ( ), t =C q O , (6) 

where q is the vector of the system dependent coordinates and t 
refers to time. Differentiation of (6) with respect to time results 
in 

 ( ) ( ), ,q tt t=C q q C q , (7) 
where qC  is the Jacobian matrix and q is the vector of depend-
ent velocities. tC  is the partial derivative of the constraint equa-
tions with respect to time. For a scleronomous constraint, the 
corresponding entry in tC  is zero. If the position of the multi 
body system is known, equation (7) allows computing the de-
pendent velocities of the multi body system. The essential dif-
ference between (6) and (7) is, that the position equations are 
nonlinear and the velocity equations are linear. 
Differentiating the velocity equation (7) again with respect to 
time, the constrained equation for the accelerations is obtained 
as follows 

 ( ) ( ), , ,q dt t=C q q Q q q , (8) 
Where qC  is once more the Jacobian matrix, which was already 
derived before, and q is the vector of dependent accelerations. 

dQ  is a vector containing any quadratic terms obtained by dif-
ferentiating equation (7). The acceleration problem (8) is al-

mu

mv

m
ijr

nu

n
ijrm

jr n
ir nv
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ways non-homogeneous as long as the velocities are not equal 
to zero. 
The kinematic of the multi body system is completely defined 
with equations (6), (7) and (8). 

Equation of motion 

The equations of motion for a general multi body system 
can be formulated by 

 T
q e+ =Mq C λ Q , (9) 

where q is the vector of generalized acceleration, M is the 
global mass matrix of the system, Qe is the vector of general-
ized external forces, λ is the vector of the Lagrange multipliers 
associated with the kinematic constraints and qC  is the Jaco-
bian matrix. 

In order to perform an inverse dynamic analysis it is as-
sumed that the motion of the system and the external forces 
applied to the model are fully known. Therefore, Equation (9) 
is rewritten to 

 T
q e= −C λ Q Mq  (10) 

Equation (10) only has a unique solution for the unknown La-
grange multipliers λ when the number of kinematic constraints 
equals the number of coordinates of the system. Furthermore, 
the positions, velocities and accelerations have to be consistent 
with the kinematics of the system. This is important if inverse 
dynamics is applied for a given motion which is measured by 
motion capture for example. Such data in general are noisy and 
thus lead to large errors in the accelerations and therefore also 
to the reaction forces. However, at this point the fact can be 
used that the measured data should also fulfil the constrained 
equations (6), (7), (8) for position, velocities and acceleration. 
Therefore, the Cartesian coordinates of the marker points have 
to be modified in such a way that the kinematic constraints are 
fulfilled. The procedure to calculate a new set of trajectories of 
marker points from a given set of noisy data is accomplished by 
performing a kinematic analysis of the system. First, the ini-
tially non-consistent positions are used to calculate average link 
lengths between the marker points. These average lengths are 
further used to define the dimensions of the rigid bodies of the 
biomechanical model, so that the model has constant link 
lengths during the analysis. 

A possibility to generate a new set of consistent input 
data is proposed by [14]. Therefore, the mechanical model is 
driven throughout the kinematic analysis, using the rotational 
driver constraint equations. The curves that express the history 
of the intersegmental angles are calculated from the input data 
and interpolated using cubic splines. It is then possible, to 
evaluate the system position at any intermediate time step. As a 
result, the kinematic analysis produces a new set of marker 
positions, which are consistent with the kinematic structure of 
the mechanical model. 

The present work shows another possibility to gener-
ate a new set of consistent input data for the inverse dynamic 
analysis. Figure 4 presents an overview of the process. 
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Figure 4: Overview of the data reconstruction process 

The proposed approach was not tested on measured data from 
human motion, but rather on a much simpler system with syn-
thetic data. This system is depicted in Figure 5 and Figure 6, 
which consists of four rigid bodies and four revolute joints. In 
order to measure the error between reconstructed and the origi-
nal motion no measured data was used to test the model. There-
fore, the source data was created from a reference model, for 
which any kind of data consisting of parameters, position, ve-
locity, acceleration, constraint forces and driving forces was 
known. Then, some marker points were defined in this model 
and noise was applied to their trajectories to imitate the output 
of a motion capture procedure. The noisy data obtained was 
used as the only source data for further derivation of the equa-
tions of motion. Then inverse dynamics was applied assuming 
that mass and inertia parameters of the rigid bodies and the 
applied external forces are known. 

 

 

 
4

Mechanical System (Example) 

The previous described procedure is applied on a system 
with four degrees-of-freedom, which is shown in Figure 5. 
Four rigid bodies and four revolute joints form the rigid body 
system. Figure 6 visualizes the four rotation axes defined by 
the vectors u1, 1

ijr , v2 and u4. The number of the resulting coor-
dinates q is 48, the number of rigid body constraints is 24. A 
total of 20 joint constraints are implied by the four revolute 
joints. The system is driven from the initial position (see Figure 
5) to the final position (see Figure 6), where the ideal model 
was available with any of the variables known by a numerical 
simulation. The simulation data is used to generate noisy input 
data by adding noise. Further, it can be used to evaluate the 
trajectories at the end. Assuming the case, that a real biome-
chanical model is available, most of the variables would not be 
known, i.e. muscle forces and joint forces. 

 
Figure 5: 4 DOF Test example 

 
Figure 6: 4 DOF System 

Measurement and data processing 

The source data for a further examination is gathered from 
the ideal model. Figure 7 is an example for the position data 
processing, where the first curve describes the original data 
representing the reference model. Then, a random generator is 
used to obtain the noisy data presented by the second curve and 
further processing is necessary to reduce the high-frequency 
noise. Therefore, a filter was applied using zero-phase filtering 
to reduce the noise level. The third curve in Figure 7 represents 
the filtered data for use as the input data to calculate the kine-
matics. 

1
ijr

2v
4u

1Revolute joint : u

1Revolute joint : ijr

2Revolute joint : v

4Revolute joint : u1u
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Figure 7: Example of original, noisy and filtered input data 

Parameter estimation 

For the kinematical structure of the system and the filtered 
input data, the parameters can now be calculated. But the input 
data obtained by the zero-phase filter is still not consistent with 
the kinematical structure and will lead to violations of the ki-
nematic constraints. 
These disparities are typical for motion capture techniques due 
to the limited resolution of the digital image as well as the posi-
tions of the markers, which are strongly affected by skin move-
ments. Furthermore, the real anatomic joints do not describe 
ideal mechanical joints, as assumed by the model. 

Now, the rigid bodies are identified from the available in-
put data. Following, the trajectories are associated to the par-
ticular body and the constant average length and the constant 
average angles of any rigid body are determined. It is not en-
sured, yet, that the parameters determined are equal in time, as 
shown in Figure 8.  

 
Figure 8: Distances between marker points are not constant 

The process of measuring the positions of marker points during 
the motion results in varying distances and angles due to the 
inconsistent input, see Figure 8. In this figure lk,i refers to dis-
tance k at time ti. This means that lk,i, lk,i+1, lk,i+2 corresponds to 
the same length at three successive time steps. Though all these 
lengths should be equal, this is not the case if the length is cal-
culated using the measured and filtered data. As the real length 
is not known a priori it is approximately obtained by averaging 
the lengths over all time steps which are available. Thus, the 
actual input data would still cause violations of the kinematic 
constraints of the mechanical system. The constraint equations 
are then completely defined with the knowledge of the constant 
lengths and angles as well as the position and the types of the 
joints. 
This part of the procedure deserves the most attention and it 
will be the subject for future works.  
 

,k il , 1k il + , 2k il +

1,k il + 1, 1k il + + 1, 2k il + +

1 

2 

3 
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Position correction 

In the following it is assumed that only holonomic and 
scleronomic constraints have to be fulfilled, which leads to 

 ( ) =C q 0 . (11) 

The data available from the measurement qm do not fulfill 
equation (11), which results in 

 ( )m ≠C q 0 . (12) 

It is now taken into consideration to change qm in such a way, 
that qm fulfils equation (11). Therefore, the Newton-Raphson 
method is applied. It is based on a linearization of the nonlinear 
constraint equations (11) by replacing the equations with the 
first two terms of its approximation by a Taylor series. Once the 
substitution has been made, the corrected values q can be ob-
tained by 

 ( ) ( )( )i q i i+ − =C q C q q q 0 . (13) 

The iterative scheme of the Newton-Rhapson method is used in 
terms of a least-squares approach for any time step. It has a 
quadratic convergence rate in the neighbourhood of the solu-
tion. Using the non-consistent positions as an initial value 

, 0 ,i r i m= =q q , a convergent solution is obtained after two or 
three iterations and thus, this is a new set of corrected coordi-
nates iq . 
In the case of kinematical driven systems, where the number of 
coordinates is equal to the number of constraint equations, the 
recursive formula (14) for the Newton-Rhapson scheme is ob-
tained by rewriting equation (13) 

 ( ) ( )1

, 1 , , , .i r i r q i r i r

−

+ ⎡ ⎤= − ⎣ ⎦q q C q C q  (14) 

In this equation, the subscript r represents the iteration index 
and the subscript i indicates the time index. The Iteration is 
executed until the largest error becomes smaller than a pre-
defined error bound ε 
 ( ), 1max | |i r ε+ <C q . (15) 

In case of a kinematical driven system, the matrix qC is in gen-
eral a square and non-singular matrix. Therefore, the related 
system of linear equations (14) has an exact solution. 
In this work, no kinematical driver constraint equations are 
added to the system to obtain a square matrix qC . The present 
linear system in (14) includes m equations with n unknown 
variables, with n > m and, thus, the Jacobian matrix qC of the 
system does not have an inverse and equation (14) represents 
an underdetermined linear system. Its solution is not unique. A 
basic solution of the linear system, which has at most m nozero 
components, can be found, but even this may not be unique. 

A partial replacement for the inverse in equation (14) is 
provided by the Moore-Penrose pseudoinverse [6,10]. There-
fore, the system (14) results to 

 ( ) ( )1†

, 1 , , ,i r i r q i r i r

−

+ ⎡ ⎤= − ⎣ ⎦q q C q C q  (16) 
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where ( ) 1†

,q i r

−
C q is the pseudoinverse of the Jacobian matrix. 

The computed solution for this system is also called the mini-
mal norm solution because it minimizes i∆q , where 

, 1 ,i i r i r+∆ = −q q q . 

This is reasonable for the considered application to determine a 
correction as small as possible. 

An example is introduced to show the difference between 
the basic and the minimal norm solution. Consider Figure 9, 
which shows a moving point on a circular path. It is now as-
sumed, that the vector q defines the exact location of the point 
and the vector qm defines the measured position. For the given 
system, there is one constraint equation 

 2 2 2 0x y l≡ + − =C . (17) 
The Jacobian matrix qC can be derived from the velocity equa-
tions 

 [ ]2 2 0q

x
x y

y
⎡ ⎤

≡ =⎢ ⎥
⎣ ⎦

C q . (18) 

To calculate the new, corrected data with the recursive formula 
(16), the equation can be written to 

 [ ] 1 2 2 2

1

2 2 r r
r r r r

r r

x x
x y x y l

y y
+

+

−⎡ ⎤
⎡ ⎤= + −⎢ ⎥ ⎣ ⎦−⎣ ⎦

. (19) 

Figure 10 shows three possibilities for a solution ∆q . 

 
Figure 9: Moving point on a circular path 

The first solution q1 is obtained by calculating the minimal 
norm solution of the underdetermined equation (19) with the 
condition (20) 

 1 minm−q q . (20) 
The second and the third solutions are called a base solution, 
which has one nonzero component. Solution q2 is given by 

 [ ] 2
2 0

m
m

x x−⎡ ⎤
− = ⎢ ⎥

⎣ ⎦
q q  (21) 

and solution q3 results in 

 [ ]3
3

0
m

my y
⎡ ⎤

− = ⎢ ⎥−⎣ ⎦
q q . (22) 

The preferred solution is q1, which fulfills the minimal norm 
condition.  

x

mq

3q

2q

1ql
q

y
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Any data calculated by the iteration rule (16) satisfies the 
position constraint equations. In the following the corrected 
position vectors will be named iq . 

Velocity and acceleration correction 

A mechanical system is considered to be totally consistent 
if its velocities and accelerations are consistent with the veloc-
ity and acceleration equations as well. 

In a next step, the velocities and accelerations ,i mq  and ,i mq  
are obtained by numerical differentiation of the corrected posi-
tion coordinates iq  with respect to time. Both are not consistent 
with the velocity and acceleration constraint equations. This 
may be expressed as follows: 

 
( ) ( )
( ) ( )

,

, ,

, , ,

, , , .
q i i m t i

q i i m d i i m

t t

t t

− ≠

− ≠

C q q C q 0

C q q Q q q 0
 (23) 

In this case again, a minimal norm solution can be found by 
minimizing the correction ∆q and ∆q: 

 , ,| | min, | | mini m i i m i− −q q q q . (24) 
The goal is now to compute the corrected velocities and accel-
erations in such a way, that 

 
( ) ( )
( ) ( )

, , ,

, , , .
q i i t i

q i i d i i

t t

t t

=

=

C q q C q

C q q Q q q
 (25) 

The solution of the constrained linear least-squares problem 
results to the corrected generalized consistent velocities iq and 
accelerations iq . 

Inverse dynamic analysis 

The main objective of the inverse dynamic analysis is the 
calculation of the reaction forces and the driving forces. In or-
der to perform the inverse dynamic analysis it is assumed that 
the motion (corrected positions, velocities and accelerations q , 
q, q) ,of the system and the external forces Qe are fully known. 
Therefore, equation (9) is rewritten to 

 T T
q f e+ + =Mq C λ B λ Q  (26) 

where λf are the Lagrange multipliers associated to the driving 
forces and λ are the Lagrange multipliers associated to the con-
straint forces. Matrix B is calculated to fulfill the condition: 

 0T
q =BC . (27) 

This means that the rows of B constitute an orthogonal basis of 
the nullspace of the Jacobian matrix qC . The equation of mo-
tion (26) can now be solved for the Lagrange multipliers 

T

f⎡ ⎤⎣ ⎦λ λ because the leading matrix in (28) is square and 
nonsingular: 

 T T
q e

f

⎡ ⎤
⎡ ⎤ = −⎢ ⎥⎣ ⎦

⎣ ⎦

λ
C B Q Mq

λ
. (28) 
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Each Lagrange multiplier is associated with a reaction force 
and each reaction force has a physical meaning depending on 
the related type of kinematic constraint. For the computation of 
the matrix B the Singular Value decomposition and the QR 
decomposition are used as follows. 

Method based on the Singular Value decomposition (SVD). 

The SVD [9, 12] decomposes a rectangular matrix qC , as indi-
cated in the sketch in Figure 10. 

 
Figure 10: SV Decomposition 

It can be decomposed according to equation (29) [8, 15], 
 T

q =C U SV , (29) 

where matrix U is orthogonal and of size m m× . Matrix S is 
composed of a diagonal matrix of size m m× which contains 
the singular values and a zero matrix given by f n m= −  col-
umns ( f degrees of freedom). Matrix V is orthogonal of size 
n n× and can be decomposed into two submatrices Vd and Vi 
of sizes m n×  and f n×  respectively. The most important 
property of the SVD is that the rows of the matrix Vi constitute 
an orthogonal basis of the nullspace of matrix qC . Since, 

 T
q i =C V 0  (30) 

the following relationship results in: 
 i =V B . (31) 

Method based on the QR decomposition. 

This method of constructing matrix B is similar to the previous 
method. QR decomposition [9, 12] is not an iterative process, 
as a main advantage, and therefore, it requires fewer arithmeti-
cal operations. 
The method decomposes matrix T

qC as indicated in the sketch 
of Figure 11. 

 
Figure 11: QR decomposition 

T
qC  can be decomposed as shown in equation (32), 

 T
q =C QR  (32) 

where Q is an orthogonal n n× matrix formed by an n m×  ma-
trix Q1 and an n f×  matrix Q2, with: 

qC

n

m TUm

m m

f

mS

m

0 dV

iV

m

n
1Qn

m

2Q

f

R

m

f

m

0

T
qC
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 1 2 20, 0T T T
q= =Q Q Q C . (33) 

R is a rectangular n m×  matrix formed by an upper triangular 
matrix m m×  and a zero matrix of order f m× . The applica-
tion of this decomposition to the problem is straightforward 
when considering that the f columns of Q constitute an or-
thogonal basis of the nullspace of matrix qC . Thus, matrix B 
can be written as 

 2
T=B Q . (34) 

With known matrix B, the solution of (28) is given by:  

 ( )1T T
q e

f

−⎡ ⎤
⎡ ⎤= −⎢ ⎥ ⎣ ⎦

⎣ ⎦

λ
C B Q Mq

λ
. (35) 

The forces associated to the rigid body and joint constraints are 
given by T

c q=F C λ . The driving forces result in T
f q f=F C λ . 

Conclusion 

Inverse dynamic analysis was carried out with and without 
kinematically consistent data. Significant differences could be 
observed. Using non consistent data, the constraint equations 
are violated resulting in spurious reaction forces and driver 
forces. In contrast, a corrected data set was calculated and the 
resulting consistent positions, velocities and accelerations 
match the reference data very well (Figure 12). 

 
Figure 12: Comparing the reference, filtered and corrected 

positions, velocities and accelerations 

Furthermore, reaction forces resulting from consistent kine-
matic data match the original data better than the forces ob-
tained with filtered data without kinematical correction (see 
Figure 13). 

Corrected position

Reference position 

Filtered position

Corrected velocity
Reference velocity 

Filtered velocity 

Corrected acceleration 

Reference accelerationFiltered acceleration 
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Figure 13: Comparing the reference filtered and corrected re-

action force 

In the future, we intend to apply this procedure on human mo-
tion capture data. 
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