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A NOTE ON COMMUTING POWERS IN BANACH ALGEBRAS

CHRISTOPH SCHMOEGER

Throughout A is a complex unital Banach algebra with unit 1. For a ∈ A the spectrum and
the spectral radius of a are denoted by σ(a) and r(a), respectively.

Let m be a positive integer and a ∈ A. We say that σ(a) is irrotational (mod 2π/m) (see [1])
if λ, µ ∈ σ(a) and λm = µm imply that λ = µ.

The main result of this paper reads as follows:

Theorem. Let a, b ∈ A be invertible and let m be a positive integer.
(1) If ambm = bmam and if σ(a) is irrotational (mod 2π/m), then abm = bma.
(2) If ambm = bmam and if σ(a) and σ(b) are irrotational (mod 2π/m), then ab = ba.
(3) If ambm = (ab)m = bmam and if σ(ab) is irrotational (mod 2π/m), then ab = ba.

For the proof of the above result we need some preparations.

If m is a positive integer, let εk = e2kπi/m for k = 1, . . . ,m. Then

εm
k = 1 (k = 1, . . . ,m), εk �= 1 (k = 1, . . . ,m − 1)

and εm = 1 .

If a ∈ A is invertible, define the bounded linear operator Ta : A → A by

Tax = a−1xa (x ∈ A) .

Proposition 1. Suppose that a ∈ A is invertible, m is a positive integer and that σ(a) is
irrotational (mod 2π/m). Let the bounded linear operator S : A → A be given by

S =
m−1∏
k=1

(Ta − εkI) ,

where I denotes the identity operator on A. Then:
(1) S is invertible;
(2) Tm

a − I = (Ta − I)S = S(Ta − I).

Proof. (1) We show that Ta − εkI is invertible for k = 1, . . . ,m − 1. To this end suppose that
Ta − εkI is not invertible for some k ∈ {1, . . . ,m − 1}. It follows from [1, Proposition 18.9] that
there are λ, µ ∈ σ(a) such that λ = εkµ, hence λm = εm

k µm = µm. Consequently λ = µ and
therefore εk = 1, a contradiction.
(2) follows from the identity

λm − 1 = (λ − 1)
m−1∏
k=1

(λ − εk) (λ ∈ C) .

�
Proposition 2. Let a and m be as in Proposition 1. If x ∈ A and amx = xam, then ax = xa.

Proof. From amx = xam we get (Tm
a − I)x = 0. By Proposition 1 we have S(Ta − I)x = 0.

Since S is invertible, Tax = x and so ax = xa. �
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Proof of the Theorem.
(1) is a consequence of Proposition 2.
(2) By (1), bma = abm. Now apply Proposition 2 to b.
(3) We have

am(ab)m = ambmam = bmamam = (ab)mam .

Thus, by Proposition 2, abam = amab, therefore

bam = a−1abam = a−1amab = amb ,

hence

(ab)mb = ambmb = bambm = b(ab)m .

Now use Proposition 2 to see that abb = bab. Since b is invertible we derive ab = ba. �

Proposition 3. Let a, b ∈ A and m a positive integer.
(1) If σ(a) ⊆ [0,∞), then σ(a) is irrotational (mod 2π/m).
(2) If m ≥ 2 and (1 + r(a))m−1 < 2, then 1 − a is invertible and σ(1 − a) is irrotational

(mod 2π/m).
(3) Suppose that b ∈ A is invertible, a is invertible, σ(a) is irrotational (mod 2π/m) and that

am = bm. Then ab = ba.

Proof. (1) Clear.
(2) We have r(a) < 1, hence 1 − a is invertible. Now let λ, µ ∈ σ(1 − a) and λm = µm. There
are α, β ∈ σ(a) such that λ = 1 − α and µ = 1 − β. Then

0 = (1 − α)m − (1 − β)m =
m∑

k=0

(
m
k

)
(−1)k(αk − βk)

= −m(α − β) +
m∑

k=2

(
m
k

)
(α − β)hk(α, β)

where hk(α, β) = (−1)k(αk−1 + αk−2β + · · · + αβk−2 + βk−1).
Hence |hk(α, β)| ≤ kr(a)k−1. Therefore

m|α − β| ≤ |α − β|
m∑

k=2

(
m
k

)
kr(a)k−1 = |α − β|

(
m∑

k=1

(
m
k

)
kr(a)k−1 − m

)
.

If the function f : R → R is defined by f(x) = (1 + x)m, then f(x) =
m∑

k=0

(
m
k

)
xk, thus

f ′(x) =
m∑

k=1

(
m
k

)
kxk−1, hence

m∑
k=1

(
m
k

)
kxk−1 = m(1 + x)m−1.

It follows that

m|α − β| ≤ |α − β|(m(1 + r(a))m−1 − m)

and so

|α − β| ≤ |α − β|((1 + r(a))m−1 − 1)

Now suppose that α �= β. Then

1 ≤ (1 + r(a))m−1 − 1 < 2 − 1 = 1 ,

a contradiction. This gives λ = µ.
(3) We have

amb = bmb = bbm = bam .
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Now use Proposition 2. �

Examples.
(1) If r(a) < 1, then σ(1 − a) is irrotational (mod 2π/2).
(2) If r(a) <

√
2 − 1, then σ(1 − a) is irrotational (mod 2π/3).

Corollary 1. Suppose that a, b ∈ A, σ(a) ⊆ (0,∞), σ(b) ⊆ (0,∞) and that ambm = bmam for
some positive integer m. Then ab = ba.

Proof. Proposition 3 (1) and Theorem (2). �

Corollary 2. Let A be the Banach algebra of all bounded linear operators on a complex Hilbert
space, let A ∈ A be invertible and let m be a positive integer.
(1) If σ(A) is irrotational (mod 2π/m) and if Am is normal, then A is normal.
(2) If Am(A∗)m = (AA∗)m = (A∗)mAm, then A is normal.

Proof. (1) A∗ is invertible and σ(A∗) = {λ ∈ C, λ̄ ∈ σ(A)}, thus σ(A∗) is irrotational (mod 2π/m).
Now use part (2) of the Theorem.
(2) Since σ(AA∗) ⊆ (0,∞), the result follows from Proposition 3 (1) and part (3) of the Theo-
rem. �

Corollary 3. Suppose that a, b ∈ A, r(a) < 1, r(b) < 1 and

(1 − a)2(1 − b)2 = (1 − b)2(1 − a)2 .

Then ab = ba.

Proof. Example (1) and part (1) of the Theorem. �

The quasi-product x ◦ y of x, y ∈ A is defined by

x ◦ y = x + y − xy .

Given z ∈ A, a quasi-square-root of z is an element x ∈ A with

x ◦ x = z .

Corollary 4. Let a, b ∈ A and a ◦ a = b ◦ b.
(1) If r(a) < 1, then ab = ba.
(2) If r(a) < 1 and r(b) < 1, then a = b.

Proof. (1) Since a ◦ a = b ◦ b, we have (1 − a)2 = (1 − b)2. Now 1 − a is invertible, hence 1− b
is invertible. The result follows from Example (1) and Proposition 3 (3).
(2) By (1), ab = ba. From a ◦ a = b ◦ b we see that

(a − b)(a + b) = −2(a − b) ,

hence

(a − b)(a + b + 21) = 0 .

Corollary 4.3 in [1] gives r(a + b) ≤ r(a) + r(b) < 2, thus −2 /∈ σ(a + b) and so a = b. �

Corollary 5. Let a, b ∈ A and a2 = b2.
(1) If r(1− a) < 1, then ab = ba.
(2) If r(1− a) < 1 and r(1− b) < 1, then a = b.
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Proof. Let ã = 1 − a, b̃ = 1 − b. Then

ã ◦ ã = 1− a2 and b̃ ◦ b̃ = 1 − b2 ,

thus ã ◦ ã = b̃ ◦ b̃. Now use Corollary 4. �

Corollary 6. Suppose that a, b ∈ A, σ(a) ⊆ (0,∞), σ(b) ⊆ (0,∞) and am = bm for some
positive integer m. Then a = b.

Proof. By Proposition 3 (3), ab = ba. Let c = ab−1. Then cm = 1. Let λ ∈ σ(c). Corollary 4.3
in [1] gives λ = α/β with α ∈ σ(a) and β ∈ σ(b), hence λ > 0. Since λm = 1, it follows that
λ = 1. Thus σ(c) = {1}. We have

λm − 1 = (λ − 1)h(λ)

with some entire function h such that h(1) �= 0. Therefore

0 = cm − 1 = (c − 1)h(c)

and h(c) is invertible. Hence c = 1 and so a = b. �
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