A NOTE ON COMMUTING POWERS IN BANACH ALGEBRAS

CHRISTOPH SCHMOEGER

Throughout \mathcal{A} is a complex unital Banach algebra with unit 1. For $a \in \mathcal{A}$ the spectrum and the spectral radius of a are denoted by $\sigma(a)$ and $r(a)$, respectively.

Let m be a positive integer and $a \in \mathcal{A}$. We say that $\sigma(a)$ is irrotational $(\bmod 2 \pi / m)($ see [1]) if $\lambda, \mu \in \sigma(a)$ and $\lambda^{m}=\mu^{m}$ imply that $\lambda=\mu$.

The main result of this paper reads as follows:
Theorem. Let $a, b \in \mathcal{A}$ be invertible and let m be a positive integer.
(1) If $a^{m} b^{m}=b^{m} a^{m}$ and if $\sigma(a)$ is irrotational $(\bmod 2 \pi / m)$, then $a b^{m}=b^{m} a$.
(2) If $a^{m} b^{m}=b^{m} a^{m}$ and if $\sigma(a)$ and $\sigma(b)$ are irrotational $(\bmod 2 \pi / m)$, then $a b=b a$.
(3) If $a^{m} b^{m}=(a b)^{m}=b^{m} a^{m}$ and if $\sigma(a b)$ is irrotational $(\bmod 2 \pi / m)$, then $a b=b a$.

For the proof of the above result we need some preparations.
If m is a positive integer, let $\epsilon_{k}=e^{2 k \pi i / m}$ for $k=1, \ldots, m$. Then

$$
\begin{aligned}
& \epsilon_{k}^{m}=1 \quad(k=1, \ldots, m), \epsilon_{k} \neq 1 \quad(k=1, \ldots, m-1) \\
& \text { and } \epsilon_{m}=1
\end{aligned}
$$

If $a \in \mathcal{A}$ is invertible, define the bounded linear operator $T_{a}: \mathcal{A} \rightarrow \mathcal{A}$ by

$$
T_{a} x=a^{-1} x a \quad(x \in \mathcal{A})
$$

Proposition 1. Suppose that $a \in \mathcal{A}$ is invertible, m is a positive integer and that $\sigma(a)$ is irrotational $(\bmod 2 \pi / m)$. Let the bounded linear operator $S: \mathcal{A} \rightarrow \mathcal{A}$ be given by

$$
S=\prod_{k=1}^{m-1}\left(T_{a}-\epsilon_{k} I\right)
$$

where I denotes the identity operator on \mathcal{A}. Then:
(1) S is invertible;
(2) $T_{a}^{m}-I=\left(T_{a}-I\right) S=S\left(T_{a}-I\right)$.

Proof. (1) We show that $T_{a}-\epsilon_{k} I$ is invertible for $k=1, \ldots, m-1$. To this end suppose that $T_{a}-\epsilon_{k} I$ is not invertible for some $k \in\{1, \ldots, m-1\}$. It follows from [1, Proposition 18.9] that there are $\lambda, \mu \in \sigma(a)$ such that $\lambda=\epsilon_{k} \mu$, hence $\lambda^{m}=\epsilon_{k}^{m} \mu^{m}=\mu^{m}$. Consequently $\lambda=\mu$ and therefore $\epsilon_{k}=1$, a contradiction.
(2) follows from the identity

$$
\lambda^{m}-1=(\lambda-1) \prod_{k=1}^{m-1}\left(\lambda-\epsilon_{k}\right) \quad(\lambda \in \mathbb{C})
$$

Proposition 2. Let a and m be as in Proposition 1. If $x \in \mathcal{A}$ and $a^{m} x=x a^{m}$, then $a x=x a$.
Proof. From $a^{m} x=x a^{m}$ we get $\left(T_{a}^{m}-I\right) x=0$. By Proposition 1 we have $S\left(T_{a}-I\right) x=0$. Since S is invertible, $T_{a} x=x$ and so $a x=x a$.

Proof of the Theorem.
(1) is a consequence of Proposition 2.
(2) By (1), $b^{m} a=a b^{m}$. Now apply Proposition 2 to b.
(3) We have

$$
a^{m}(a b)^{m}=a^{m} b^{m} a^{m}=b^{m} a^{m} a^{m}=(a b)^{m} a^{m}
$$

Thus, by Proposition 2, $a b a^{m}=a^{m} a b$, therefore

$$
b a^{m}=a^{-1} a b a^{m}=a^{-1} a^{m} a b=a^{m} b,
$$

hence

$$
(a b)^{m} b=a^{m} b^{m} b=b a^{m} b^{m}=b(a b)^{m} .
$$

Now use Proposition 2 to see that $a b b=b a b$. Since b is invertible we derive $a b=b a$.

Proposition 3. Let $a, b \in \mathcal{A}$ and m a positive integer.
(1) If $\sigma(a) \subseteq[0, \infty)$, then $\sigma(a)$ is irrotational $(\bmod 2 \pi / m)$.
(2) If $m \geq 2$ and $(1+r(a))^{m-1}<2$, then $\mathbf{1}-a$ is invertible and $\sigma(\mathbf{1}-a)$ is irrotational $(\bmod 2 \pi / m)$.
(3) Suppose that $b \in \mathcal{A}$ is invertible, a is invertible, $\sigma(a)$ is irrotational $(\bmod 2 \pi / m)$ and that $a^{m}=b^{m}$. Then $a b=b a$.

Proof. (1) Clear.
(2) We have $r(a)<1$, hence $\mathbf{1}-a$ is invertible. Now let $\lambda, \mu \in \sigma(\mathbf{1}-a)$ and $\lambda^{m}=\mu^{m}$. There are $\alpha, \beta \in \sigma(a)$ such that $\lambda=1-\alpha$ and $\mu=1-\beta$. Then

$$
\begin{aligned}
0 & =(1-\alpha)^{m}-(1-\beta)^{m}=\sum_{k=0}^{m}\binom{m}{k}(-1)^{k}\left(\alpha^{k}-\beta^{k}\right) \\
& =-m(\alpha-\beta)+\sum_{k=2}^{m}\binom{m}{k}(\alpha-\beta) h_{k}(\alpha, \beta)
\end{aligned}
$$

where $h_{k}(\alpha, \beta)=(-1)^{k}\left(\alpha^{k-1}+\alpha^{k-2} \beta+\cdots+\alpha \beta^{k-2}+\beta^{k-1}\right)$.
Hence $\left|h_{k}(\alpha, \beta)\right| \leq k r(a)^{k-1}$. Therefore

$$
m|\alpha-\beta| \leq|\alpha-\beta| \sum_{k=2}^{m}\binom{m}{k} k r(a)^{k-1}=|\alpha-\beta|\left(\sum_{k=1}^{m}\binom{m}{k} k r(a)^{k-1}-m\right)
$$

If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=(1+x)^{m}$, then $f(x)=\sum_{k=0}^{m}\binom{m}{k} x^{k}$, thus $f^{\prime}(x)=\sum_{k=1}^{m}\binom{m}{k} k x^{k-1}$, hence $\sum_{k=1}^{m}\binom{m}{k} k x^{k-1}=m(1+x)^{m-1}$.

It follows that

$$
m|\alpha-\beta| \leq|\alpha-\beta|\left(m(1+r(a))^{m-1}-m\right)
$$

and so

$$
|\alpha-\beta| \leq|\alpha-\beta|\left((1+r(a))^{m-1}-1\right)
$$

Now suppose that $\alpha \neq \beta$. Then

$$
1 \leq(1+r(a))^{m-1}-1<2-1=1
$$

a contradiction. This gives $\lambda=\mu$.
(3) We have

$$
a^{m} b=b^{m} b=b b^{m}=b a^{m} .
$$

Now use Proposition 2.

Examples.

(1) If $r(a)<1$, then $\sigma(\mathbf{1}-a)$ is irrotational $(\bmod 2 \pi / 2)$.
(2) If $r(a)<\sqrt{2}-1$, then $\sigma(\mathbf{1}-a)$ is irrotational $(\bmod 2 \pi / 3)$.

Corollary 1. Suppose that $a, b \in \mathcal{A}, \sigma(a) \subseteq(0, \infty), \sigma(b) \subseteq(0, \infty)$ and that $a^{m} b^{m}=b^{m} a^{m}$ for some positive integer m. Then $a b=b a$.

Proof. Proposition 3 (1) and Theorem (2).

Corollary 2. Let \mathcal{A} be the Banach algebra of all bounded linear operators on a complex Hilbert space, let $A \in \mathcal{A}$ be invertible and let m be a positive integer.
(1) If $\sigma(A)$ is irrotational $(\bmod 2 \pi / m)$ and if A^{m} is normal, then A is normal.
(2) If $A^{m}\left(A^{*}\right)^{m}=\left(A A^{*}\right)^{m}=\left(A^{*}\right)^{m} A^{m}$, then A is normal.

Proof. (1) A^{*} is invertible and $\sigma\left(A^{*}\right)=\{\lambda \in \mathbb{C}, \bar{\lambda} \in \sigma(A)\}$, thus $\sigma\left(A^{*}\right)$ is irrotational $(\bmod 2 \pi / m)$. Now use part (2) of the Theorem.
(2) Since $\sigma\left(A A^{*}\right) \subseteq(0, \infty)$, the result follows from Proposition 3 (1) and part (3) of the Theorem.

Corollary 3. Suppose that $a, b \in \mathcal{A}, r(a)<1, r(b)<1$ and

$$
(\mathbf{1}-a)^{2}(\mathbf{1}-b)^{2}=(\mathbf{1}-b)^{2}(\mathbf{1}-a)^{2}
$$

Then $a b=b a$.
Proof. Example (1) and part (1) of the Theorem.
The quasi-product $x \circ y$ of $x, y \in \mathcal{A}$ is defined by

$$
x \circ y=x+y-x y
$$

Given $z \in \mathcal{A}$, a quasi-square-root of z is an element $x \in \mathcal{A}$ with

$$
x \circ x=z .
$$

Corollary 4. Let $a, b \in \mathcal{A}$ and $a \circ a=b \circ b$.
(1) If $r(a)<1$, then $a b=b a$.
(2) If $r(a)<1$ and $r(b)<1$, then $a=b$.

Proof. (1) Since $a \circ a=b \circ b$, we have $(\mathbf{1}-a)^{2}=(\mathbf{1}-b)^{2}$. Now $\mathbf{1}-a$ is invertible, hence $\mathbf{1}-b$ is invertible. The result follows from Example (1) and Proposition 3 (3).
(2) By (1), $a b=b a$. From $a \circ a=b \circ b$ we see that

$$
(a-b)(a+b)=-2(a-b)
$$

hence

$$
(a-b)(a+b+21)=0
$$

Corollary 4.3 in [1] gives $r(a+b) \leq r(a)+r(b)<2$, thus $-2 \notin \sigma(a+b)$ and so $a=b$.

Corollary 5. Let $a, b \in \mathcal{A}$ and $a^{2}=b^{2}$.
(1) If $r(\mathbf{1}-a)<1$, then $a b=b a$.
(2) If $r(\mathbf{1}-a)<1$ and $r(\mathbf{1}-b)<1$, then $a=b$.

Proof. Let $\tilde{a}=\mathbf{1}-a, \tilde{b}=\mathbf{1}-b$. Then

$$
\tilde{a} \circ \tilde{a}=\mathbf{1}-a^{2} \quad \text { and } \quad \tilde{b} \circ \tilde{b}=1-b^{2}
$$

thus $\tilde{a} \circ \tilde{a}=\tilde{b} \circ \tilde{b}$. Now use Corollary 4 .

Corollary 6. Suppose that $a, b \in \mathcal{A}, \sigma(a) \subseteq(0, \infty), \sigma(b) \subseteq(0, \infty)$ and $a^{m}=b^{m}$ for some positive integer m. Then $a=b$.

Proof. By Proposition 3 (3), $a b=b a$. Let $c=a b^{-1}$. Then $c^{m}=1$. Let $\lambda \in \sigma(c)$. Corollary 4.3 in [1] gives $\lambda=\alpha / \beta$ with $\alpha \in \sigma(a)$ and $\beta \in \sigma(b)$, hence $\lambda>0$. Since $\lambda^{m}=1$, it follows that $\lambda=1$. Thus $\sigma(c)=\{1\}$. We have

$$
\lambda^{m}-1=(\lambda-1) h(\lambda)
$$

with some entire function h such that $h(1) \neq 0$. Therefore

$$
0=c^{m}-\mathbf{1}=(c-\mathbf{1}) h(c)
$$

and $h(c)$ is invertible. Hence $c=\mathbf{1}$ and so $a=b$.

References

[1] F. F. Bonsall, J. Duncan, Complete Normed Algebras, Springer (1973).

Christoph Schmoeger
Mathematisches Institut I
Universität Karlsruhe (TH)
Englerstrasse 2
76128 Karlsruhe
Germany
E-mail address: christoph.schmoeger@math.uni-karlsruhe.de

