A NOTE ON COMMUTING POWERS IN BANACH ALGEBRAS

CHRISTOPH SCHMOEGER

Throughout \mathcal{A} is a complex unital Banach algebra with unit 1. For $a \in \mathcal{A}$ the spectrum and the spectral radius of a are denoted by $\sigma(a)$ and r(a), respectively.

Let m be a positive integer and $a \in \mathcal{A}$. We say that $\sigma(a)$ is irrotational (mod $2\pi/m$) (see [1]) if $\lambda, \mu \in \sigma(a)$ and $\lambda^m = \mu^m$ imply that $\lambda = \mu$.

The main result of this paper reads as follows:

Theorem. Let $a, b \in A$ be invertible and let m be a positive integer.

- (1) If $a^m b^m = b^m a^m$ and if $\sigma(a)$ is irrotational $(\text{mod } 2\pi/m)$, then $ab^m = b^m a$.
- (2) If $a^m b^m = b^m a^m$ and if $\sigma(a)$ and $\sigma(b)$ are irrotational (mod $2\pi/m$), then ab = ba.
- (3) If $a^m b^m = (ab)^m = b^m a^m$ and if $\sigma(ab)$ is irrotational $(\text{mod } 2\pi/m)$, then ab = ba.

For the proof of the above result we need some preparations.

If m is a positive integer, let $\epsilon_k = e^{2k\pi i/m}$ for $k = 1, \dots, m$. Then

$$\epsilon_k^m = 1 \quad (k = 1, \dots, m), \ \epsilon_k \neq 1 \quad (k = 1, \dots, m - 1)$$

and $\epsilon_m = 1$.

If $a \in \mathcal{A}$ is invertible, define the bounded linear operator $T_a : \mathcal{A} \to \mathcal{A}$ by

$$T_a x = a^{-1} x a \quad (x \in \mathcal{A}).$$

Proposition 1. Suppose that $a \in A$ is invertible, m is a positive integer and that $\sigma(a)$ is irrotational (mod $2\pi/m$). Let the bounded linear operator $S: \mathcal{A} \to \mathcal{A}$ be given by

$$S = \prod_{k=1}^{m-1} (T_a - \epsilon_k I) \,,$$

where I denotes the identity operator on A. Then:

- (1) S is invertible;
- (2) $T_a^m I = (T_a I)S = S(T_a I).$

Proof. (1) We show that $T_a - \epsilon_k I$ is invertible for $k = 1, \dots, m-1$. To this end suppose that $T_a - \epsilon_k I$ is not invertible for some $k \in \{1, \dots, m-1\}$. It follows from [1, Proposition 18.9] that there are $\lambda, \mu \in \sigma(a)$ such that $\lambda = \epsilon_k \mu$, hence $\lambda^m = \epsilon_k^m \mu^m = \mu^m$. Consequently $\lambda = \mu$ and therefore $\epsilon_k = 1$, a contradiction.

(2) follows from the identity

$$\lambda^m - 1 = (\lambda - 1) \prod_{k=1}^{m-1} (\lambda - \epsilon_k) \quad (\lambda \in \mathbb{C}).$$

Proposition 2. Let a and m be as in Proposition 1. If $x \in A$ and $a^m x = xa^m$, then ax = xa.

Proof. From $a^m x = xa^m$ we get $(T_a^m - I)x = 0$. By Proposition 1 we have $S(T_a - I)x = 0$. Since S is invertible, $T_a x = x$ and so ax = xa.

Proof of the Theorem.

- (1) is a consequence of Proposition 2.
- (2) By (1), $b^m a = ab^m$. Now apply Proposition 2 to b.
- (3) We have

$$a^{m}(ab)^{m} = a^{m}b^{m}a^{m} = b^{m}a^{m}a^{m} = (ab)^{m}a^{m}$$
.

Thus, by Proposition 2, $aba^m = a^m ab$, therefore

$$ba^{m} = a^{-1}aba^{m} = a^{-1}a^{m}ab = a^{m}b$$
,

hence

$$(ab)^m b = a^m b^m b = ba^m b^m = b(ab)^m.$$

Now use Proposition 2 to see that abb = bab. Since b is invertible we derive ab = ba.

Proposition 3. Let $a, b \in A$ and m a positive integer.

- (1) If $\sigma(a) \subseteq [0, \infty)$, then $\sigma(a)$ is irrotational $(\text{mod } 2\pi/m)$.
- (2) If $m \geq 2$ and $(1 + r(a))^{m-1} < 2$, then 1 a is invertible and $\sigma(1 a)$ is irrotational $(\text{mod } 2\pi/m)$.
- (3) Suppose that $b \in \mathcal{A}$ is invertible, a is invertible, $\sigma(a)$ is irrotational $(\text{mod } 2\pi/m)$ and that $a^m = b^m$. Then ab = ba.

Proof. (1) Clear.

(2) We have r(a) < 1, hence 1 - a is invertible. Now let $\lambda, \mu \in \sigma(1 - a)$ and $\lambda^m = \mu^m$. There are $\alpha, \beta \in \sigma(a)$ such that $\lambda = 1 - \alpha$ and $\mu = 1 - \beta$. Then

$$0 = (1 - \alpha)^m - (1 - \beta)^m = \sum_{k=0}^m {m \choose k} (-1)^k (\alpha^k - \beta^k)$$
$$= -m(\alpha - \beta) + \sum_{k=0}^m {m \choose k} (\alpha - \beta) h_k(\alpha, \beta)$$

where $h_k(\alpha, \beta) = (-1)^k (\alpha^{k-1} + \alpha^{k-2}\beta + \dots + \alpha\beta^{k-2} + \beta^{k-1})$. Hence $|h_k(\alpha, \beta)| \leq kr(a)^{k-1}$. Therefore

$$m|\alpha - \beta| \le |\alpha - \beta| \sum_{k=2}^{m} {m \choose k} kr(a)^{k-1} = |\alpha - \beta| \left(\sum_{k=1}^{m} {m \choose k} kr(a)^{k-1} - m \right).$$

If the function $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = (1+x)^m$, then $f(x) = \sum_{k=0}^m \binom{m}{k} x^k$, thus

$$f'(x) = \sum_{k=1}^{m} {m \choose k} kx^{k-1}$$
, hence $\sum_{k=1}^{m} {m \choose k} kx^{k-1} = m(1+x)^{m-1}$.

It follows that

$$m|\alpha - \beta| \le |\alpha - \beta|(m(1 + r(a))^{m-1} - m)$$

and so

$$|\alpha - \beta| \le |\alpha - \beta|((1 + r(a))^{m-1} - 1)$$

Now suppose that $\alpha \neq \beta$. Then

$$1 \le (1 + r(a))^{m-1} - 1 < 2 - 1 = 1$$

a contradiction. This gives $\lambda = \mu$.

(3) We have

$$a^m b = b^m b = b b^m = b a^m$$
.

Now use Proposition 2.

Examples.

- (1) If r(a) < 1, then $\sigma(\mathbf{1} a)$ is irrotational $(\text{mod } 2\pi/2)$.
- (2) If $r(a) < \sqrt{2} 1$, then $\sigma(1 a)$ is irrotational (mod $2\pi/3$).

Corollary 1. Suppose that $a, b \in \mathcal{A}$, $\sigma(a) \subseteq (0, \infty)$, $\sigma(b) \subseteq (0, \infty)$ and that $a^m b^m = b^m a^m$ for some positive integer m. Then ab = ba.

Proof. Proposition 3 (1) and Theorem (2).

Corollary 2. Let A be the Banach algebra of all bounded linear operators on a complex Hilbert space, let $A \in A$ be invertible and let m be a positive integer.

- (1) If $\sigma(A)$ is irrotational (mod $2\pi/m$) and if A^m is normal, then A is normal.
- (2) If $A^m(A^*)^m = (AA^*)^m = (A^*)^m A^m$, then A is normal.

Proof. (1) A^* is invertible and $\sigma(A^*) = \{\lambda \in \mathbb{C}, \ \bar{\lambda} \in \sigma(A)\}$, thus $\sigma(A^*)$ is irrotational (mod $2\pi/m$). Now use part (2) of the Theorem.

(2) Since $\sigma(AA^*) \subseteq (0, \infty)$, the result follows from Proposition 3 (1) and part (3) of the Theorem.

Corollary 3. Suppose that $a, b \in A$, r(a) < 1, r(b) < 1 and

$$(1-a)^2(1-b)^2 = (1-b)^2(1-a)^2$$
.

Then ab = ba.

Proof. Example (1) and part (1) of the Theorem.

The quasi-product $x \circ y$ of $x, y \in \mathcal{A}$ is defined by

$$x \circ y = x + y - xy$$
.

Given $z \in \mathcal{A}$, a quasi-square-root of z is an element $x \in \mathcal{A}$ with

$$x \circ x = z$$
.

Corollary 4. Let $a, b \in A$ and $a \circ a = b \circ b$.

- (1) If r(a) < 1, then ab = ba.
- (2) If r(a) < 1 and r(b) < 1, then a = b.

Proof. (1) Since $a \circ a = b \circ b$, we have $(\mathbf{1} - a)^2 = (\mathbf{1} - b)^2$. Now $\mathbf{1} - a$ is invertible, hence $\mathbf{1} - b$ is invertible. The result follows from Example (1) and Proposition 3 (3).

(2) By (1), ab = ba. From $a \circ a = b \circ b$ we see that

$$(a-b)(a+b) = -2(a-b),$$

hence

$$(a-b)(a+b+21) = 0$$
.

Corollary 4.3 in [1] gives $r(a+b) \le r(a) + r(b) < 2$, thus $-2 \notin \sigma(a+b)$ and so a=b.

Corollary 5. Let $a, b \in A$ and $a^2 = b^2$.

- (1) If r(1-a) < 1, then ab = ba.
- (2) If r(1-a) < 1 and r(1-b) < 1, then a = b.

Proof. Let $\tilde{a} = \mathbf{1} - a$, $\tilde{b} = \mathbf{1} - b$. Then

$$\tilde{a} \circ \tilde{a} = \mathbf{1} - a^2$$
 and $\tilde{b} \circ \tilde{b} = 1 - b^2$,

thus $\tilde{a} \circ \tilde{a} = \tilde{b} \circ \tilde{b}$. Now use Corollary 4.

Corollary 6. Suppose that $a, b \in \mathcal{A}$, $\sigma(a) \subseteq (0, \infty)$, $\sigma(b) \subseteq (0, \infty)$ and $a^m = b^m$ for some positive integer m. Then a = b.

Proof. By Proposition 3 (3), ab = ba. Let $c = ab^{-1}$. Then $c^m = 1$. Let $\lambda \in \sigma(c)$. Corollary 4.3 in [1] gives $\lambda = \alpha/\beta$ with $\alpha \in \sigma(a)$ and $\beta \in \sigma(b)$, hence $\lambda > 0$. Since $\lambda^m = 1$, it follows that $\lambda = 1$. Thus $\sigma(c) = \{1\}$. We have

$$\lambda^m - 1 = (\lambda - 1)h(\lambda)$$

with some entire function h such that $h(1) \neq 0$. Therefore

$$0 = c^m - \mathbf{1} = (c - \mathbf{1})h(c)$$

and h(c) is invertible. Hence c = 1 and so a = b.

References

[1] F. F. Bonsall, J. Duncan, Complete Normed Algebras, Springer (1973).

CHRISTOPH SCHMOEGER
MATHEMATISCHES INSTITUT I
UNIVERSITÄT KARLSRUHE (TH)
ENGLERSTRASSE 2
76128 KARLSRUHE
GERMANY

 $E ext{-}mail\ address: christoph.schmoeger@math.uni-karlsruhe.de}$