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Abstract

Swirling annular and co-annular jets are widely used in combustion devices,
such as gas turbine combustors, to stabilize the flame by means of a swirl-induced
recirculation zone. Previous experimental and numerical studies have demon-
strated, however, that such flows are prone to instabilities generating large-scale
coherent vortical structures. They have a substantial impact on the mixing of
scalar quantities such as fuel and oxidizer or hot and cold gas and hence on effi-
ciency and security of the installation.

In this work large eddy simulations of unconfined annular and co-annular swirl-
ing jets are reported. The calculations are performed at high Reynolds number
(Re ∼ 80000) and high Swirl number (S ∼ 0.9) matching realistic conditions.
The simulations are validated by comparison with corresponding experiments.
Very good agreement has been obtained for mean flow and turbulent fluctuations.
Also, the low frequency range of the power spectral density of velocity fluctua-
tions has been found to be in good agreement with the experiments.

For some of the cases, flow instabilities leading to large-scale coherent struc-
tures develop. Two complex shear layers are formed in the flow. An inner one on
the boundary of the jet with the recirculation zone and an outer one on the boun-
dary with the surrounding co-flow. Two families of large-scale helical coherent
structures appear, an inner structure oriented quasi-streamwise and located in the
inner shear layer and an outer structure oriented at a larger angle with respect to
the longitudinal axis and situated in the outer shear layer. The Kelvin-Helmholtz
instability has been identified as the major source for the generation of the cohe-
rent vortices.

In order to obtain further insight into the physics of the flows in question several
parametric studies are performed. The level of swirl is varied over a wide range
and different vortex systems are formed for each condition. The results of these
investigations show that the inner shear layer is less stable than the outer one
and the structures first appear in the inner shear layer. The modifications of the
coherent structures in the presence of an oscillating flow rate are also investigated.
It is found that with pulsation, vortex rings are dominant but the helical coherent
structures remain present, especially in the case of pure axial oscillation.



Kurzfassung

Annulare und co-annulare Drallstrahlen werden oft bei Verbrennungsmaschi-
nen wie z.B. von Gasturbinen eingesetzt, um die Flamme mit Hilfe einer drall-
erzeugten Rezirkulationszone zu stabilisieren. Bisherige experimentelle und nu-
merische Untersuchungen haben jedoch gezeigt dass diese Strömungen zu Insta-
bilitäten neigen, die großskalige kohärente Strukturen erzeugen. Sie bestimmen
das Durchmischungsverhalten skalarer Größen wie Brennstoff und Oxidator oder
von heißen und kalten Gasen, und damit Effizenz und Sicherheit der Anlage.

In der vorliegenden Arbeit wurden annulare und co-annulare Drallstrahlen mit
Hilfe der Large-Eddy Simulation untersucht. Die Berechnungen wurden bei gro-
ßen Reynoldszahlen (Re ∼ 80000) und großen Drallzahlen (S ∼ 0.9) durchge-
führt, was realistischen Bedingungen entspricht. Die Simulationen wurden durch
den Vergleich mit Experimenten validiert. Für die Statistiken des mittleren Strö-
mungsfelds und die turbulenten Fluktuationen ergab sich dabei eine sehr gute
Übereinstimmung. Ebenso wurde eine gute Übereinstimmung im niederfrequen-
ten Bereich des Leistungsdichtespektrums der Geschwindigkeitsfluktuationen ge-
funden.

In manchen der untersuchten Fälle kam es aufgrund von Strömungsinstabilitä-
ten zur Entwicklung kohärenter Strukturen. Zwei komplexe Scherschichten entste-
hen in dem Strömungsfeld: im inneren Bereich zwischen dem Freistrahl und der
Rezirkulationszone sowie an der äußeren Grenze des Strahls. Es resultieren zwei
Familien spiralförmiger kohärenter Strukturen : in der inneren Scherschicht sind
diese nahezu in Hauptströmungsrichtung orientiert, in der äußeren Scherschicht
bilden sie einen größeren Winkel mit der Axialkoordinate. Die Kelvin-Helmholtz
Instabilität wurde als die maßgebende Ursache der Entstehung dieser kohärenten
Strukturen identifiziert.

Um einen tiefen Einblick in die Physik der untersuchten Strömungen zu er-
halten, wurden zahlreiche Parameterstudien durchgeführt. Die Stärke des Dralls
wurde über einen großen Bereich variiert und die jeweils entstehenden Wirbelsys-
teme untersucht. Es konnte gezeigt werden, dass die innere Scherschicht weniger
stabil ist als die äußere und dass die ersten Strukturen in der inneren Scherschicht
entstehen. In einer weiteren Studie wurde die Veränderung der kohärenten Struk-



turen aufgrund oszillierenden Massenstroms untersucht. Es zeigte sich, dass mit
dem Pulsieren der Strömung Wirbelringe dominanieren, jedoch die spiralförmigen
Strukturen immer noch vorhanden sind, besonders im Falle rein axialen Oszilla-
tion.
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1 General introduction

1.1 Motivation

The present thesis is devoted to isothermal swirl flows in configurations related
to gas turbine burners. The motivation for this study originates from combustion
applications, which is a field of great economical and ecological relevance. Com-
bustion is the major source for the production of mechanical and electrical energy.
More than 90% of primary energy is generated using combustion processes. This
thesis has been carried out within the project ”Large Eddy Simulation of oscilla-
ting flows in combustion chambers”. This project belongs to a long-term Collab-
orative Research Centre (SFB 606 1) funded by the German Research Foundation
(DFG) (Bockhorn et al., 2003). The focus of the SFB is unsteady combustion.
In some cases, as with reciprocating engines, unsteady combustion is an inherent
feature of the process. In other cases, as in gas turbine flows, unsteady combus-
tion is related to dysfunctions. In recent years, there has been increased demand
for gas turbines that operate in a lean premixed mode of combustion in an effort to
meet stringent emission goals. The development of combustion systems to meet
this goal, and also to increase the system’s efficiency, includes modifications of
the combustion process making use of highly turbulent swirl-stabilized flames.
Unfortunately, detrimental combustion instabilities are often excited within the
combustor when it operates under lean conditions, degrading the performance
and reducing the combustor life. To eliminate the onset of these instabilities and
to develop efficient approaches for their control, the mechanisms responsible for
their occurrence must be understood. Several feedback mechanisms have been
identified in the literature as potential candidates responsible for the sustainment
of combustion driven oscillations. There is, however, no consensus about the real
importance of each of them. Lieuwen et al. (2001) suggested that heat release

1http://www.sfb606.uni-karlsruhe.de



Chapter 1. General introduction

oscillations excited by fluctuations in the composition of the reactive mixture
entering the combustion zone are the dominant mechanism responsible for the
instabilities observed in the combustor. Other authors (Paschereit et al., 2000b;
Külsheimer & Büchner, 2002) stress the relevance of the in-phase formation of
large-scale coherent vortical structures as drivers of combustion instabilities. In
gas turbines that operate in a lean premixed mode of combustion, these large-scale
structures play an important role for reaction and heat-release by controlling the
mixing between the fresh fuel/air mixture and hot combustion products.

In this context, Külsheimer & Büchner (2002) studied the formation of large-
scale vortices in isothermal swirl flows in dependence of frequency and amplitude
of a harmonically modulated mass flow rate. Furthermore, the influence of the
vortical structures on the combustion process was investigated by measuring flame
transfer functions. They found that the critical frequencies for vortex formation in
isothermal measurements and for flame-vortex interaction in the flame measure-
ments are different. In the flame investigations the critical frequency characterizes
the beginning of a noticeable interaction of the flow-controlled vortex formation
with the combustion process.

In a series of experimental studies (Paschereit et al., 1998, 1999, 2000b), the
excitation of thermoacoustic instabilities by the interaction between acoustics and
unstable swirling flow was investigated. Active combustion control was applied
to a swirl-stabilized combustor in which the acoustic boundary conditions were
modified to obtain unstable operation. Several axisymmetric and helical unstable
modes were identified for fully premixed combustion. Isothermal tests were also
performed showing that the dynamics of coherent structures are important, in
particular, in the recirculation region near the combustor axis and in the shear
layers formed at the sudden expansion.

The formation of large-scale coherent structures is a fundamental problem,
which must be understood also in the absence of combustion. This is the starting
point of the project A6 in SFB606. In the first phase of the project, covered by
the present thesis, the isothermal flow is considered. It lays the foundations for
the subsequent study of reactive flows in similar configurations.

2



1.2. High-swirl phenomena

1.2 High-swirl phenomena

Swirling flows are widely used in many engineering applications, such as com-
bustion devices, cyclone separators or heat exchangers. One of the most impor-
tant industrial applications of swirling flows is their use in combustion devices as
mentioned in the previous section. Here, they serve to stabilize the flame near
the burner exit through a recirculation zone generated by the imposed swirl. This
zone can appear detached from any boundary which is advantageous as the walls
are then remote from the flame thus reducing their heat load.

Recirculation in a swirling flow generally is the result of so-called vortex break-
down which occurs when, with increasing swirl, the pressure on the axis decreases
such that the regular spiralling motion becomes unstable and develops a steady or
unsteady stagnation point on or near the axis (Leibovich, 1984). This subject
has attracted considerable attention over many years. A comprehensive review is
given by Lucca-Negro & O’Doherty (2001) where different regimes are described
and the influence of the various parameters is discussed. Numerous experimental
and numerical investigations have been published on this issue, but mostly for
the laminar case (Harvey, 1962; Sarpkaya, 1971; Billant et al., 1998; Ruith et al.,
2003). Recently, spatial stability analyses have been conducted for such cases by
Gallaire & Chomaz (2003). Despite all these efforts no conclusive explanation for
the onset of vortex breakdown is currently available (Lucca-Negro & O’Doherty,
2001; Gallaire & Chomaz, 2003).

Combustor flows are characterized by high Reynolds numbers and broad-band
turbulent fluctuations. The extension of laminar studies of vortex breakdown to
turbulent swirling flows is a delicate issue as illustrated by the ”conical” vortex
breakdown observed by Sarpkaya (1995). Paschereit et al. (2000a) have made an
attempt of a linear stability analysis in the turbulent case starting from a given ex-
perimentally observed average turbulent flow field. Experimental investigations
of turbulent swirling flows have been performed most often for pipe flow with a
sudden expansion (Roback & Johnson, 1983; Sommerfeld & Qiu, 1991; Nejad
et al., 1989; Wang et al., 2004). The region of interest, the dump after the expan-
sion, hence is confined and for some of the cited configurations the expansion rate
is relatively small. Experiments with unconfined turbulent swirling jets have been

3



Chapter 1. General introduction

performed for example by Schneider et al. (2005). They investigated a series of
unconfined swirling premixed natural gas/air flames, and compared with the re-
spective isothermal cases to gain insight into changes of fluid dynamical features
caused by combustion. Simulations in an unbound domain are more delicate due
to the larger domain and the issue of defining far-field boundary conditions.

Turbulent swirling flows, in particular for high swirl numbers, typically feature
pronounced coherent structures (Syred & Beér, 1974; Gupta et al., 1984; Coats,
1996). These are influenced by several effects like internal velocity gradients in
form of shear layers on one hand and the level of the angular velocity on the other
hand. The latter enhances the occurrence of azimuthal instabilities while non-
swirling jets mostly exhibit axisymmetric coherent structures. The most promi-
nent coherent structures in swirling flows are the ”precessing vortex cores” (PVC)
oriented at a low angle with respect to the axis of rotation (Gupta et al., 1984, p.
191). For low swirl numbers coherent structures are relatively weak (Panda &
McLaughlin, 1994) while with higher swirl numbers their intensity increases sub-
stantially (Gupta et al., 1984, chap. 3). Helical vortices in swirl flows bounded
by solid walls have been studied experimentally and theoretically by Alekseenko
et al. (1999).

1.3 Previous work. State of the art

Large Eddy Simulation (LES) is a particularly suitable approach for studying the
generation and evolution of coherent structures in turbulent swirling flows. It
allows to address high-Reynolds number flows and to explicitly compute these
structures. If properly conducted, LES should have only limited sensitivity to
modelling assumptions. The use of LES for swirling flows is relatively recent,
presumably caused by the requirements of computing resources and of specifying
unsteady turbulent inflow conditions. The first LES pertinent to the present con-
figuration was performed by Akselvoll & Moin (1996) for a non-swirling confined
co-annular jet. Pierce & Moin (1998a) subsequently accomplished a correspon-
ding LES with swirl and simulated the experiments of Roback & Johnson (1983)
and Sommerfeld & Qiu (1991). Schlüter (2000) performed LES of combustor
flows using a compressible formulation in the constant density regime and ob-
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served PVC without, however, a corresponding pronounced peak in the spectra
computed. McIlwain & Pollard (2002) used LES to compute a turbulent jet with
a low swirl number. The swirl was found to increase the number of streamwise
braids and therefore it enhanced the breakdown mechanisms of the vortex rings.
Apte et al. (2003) simulated the confined configuration of Sommerfeld & Qiu
(1991) and included the transport of particles. The results for the fluid phase are
in good agreement with the experiment but no detailed analysis of coherent struc-
tures was performed. Wegner et al. (2004a,b) have performed LES and URANS
of an unconfined annular swirling jet and obtained spiralling vortex structures.
The agreement with the experimental data for mean flow and fluctuations, how-
ever, was not entirely satisfactory. Lu et al. (2005) performed LES of a turbu-
lent round jet into a dump combustor. Vortex structures were however only little
addressed but analyzed in terms of their interaction with acoustic modes of the
combustor. Wang et al. (2005) investigated the unsteady flow evolution of a swirl
injector. The configuration was very complex involving three radial swirlers, with
the flow in one of them counter-rotating with respect to the others. Two swirl
numbers were investigated and it was found that for the higher one the flow struc-
tures become much more complicated.

This overview shows that there is still substantial need for the simulation and
analysis of constant-density swirling flows.

LES for reactive swirling flows was performed by Pierce & Moin (1998a).
Menon and co-workers (Kim et al., 1999; Sankaran & Menon, 2002) performed
several such simulations. Sankaran & Menon (2002) observed a strong unsteady
vortex core in the cold flow and quantified the impact of combustion by simula-
ting reactive and non-reactive flow in the same configuration. Huang et al. (2003)
investigated the interaction between turbulent flow motions and oscillatory com-
bustion of a swirl-stabilized combustor. The flow exhibited a very complex struc-
ture, including the bubble and spiral modes of vortex breakdown and a PVC.
Roux et al. (2005) studied the turbulent flow within a complex swirled combus-
tor using compressible LES, acoustic analysis and experiments for both cold and
reacting flows. For their configuration, they found that hydrodynamic structures
such as the PVC appearing in cold flow can disappear when combustion starts
while acoustic modes are reinforced.
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Figure 1.1: Swirl burner used in the experiments of Bender & Büchner (2005).

1.4 Objective of the thesis

The present thesis is concerned with LES of constant-density unconfined flows at
high swirl number and high Reynolds number. The first purpose is to demonstrate
that LES can simulate these flows with high quality, supported by comparison
to a companion experiment. The second and main intention then is to gain un-
derstanding of the complex dynamics of the coherent structures in these flows
and to provide quantitative results on statistics and mechanisms of instability. Si-
mulations are performed for two similar configurations which correspond to two
swirl burners used in companion experiments. The first burner was investigated
by Hillemanns (1988). Recently, this burner was used again by Büchner & Petsch
(2004) for validating their measurement technique prior to performing experi-
ments on a new burner (Bender & Büchner, 2005). For illustration, a picture of
the new burner working in a reactive case is shown in Fig. 1.1.

Once the simulations are validated, the information that can be provided by an
LES is larger than that of the corresponding experiment. Full three-dimensional
instantaneous velocity and pressure fields are available, which allows a clear phy-
sical interpretation of the results. Hence, the goal of the present study is to go
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beyond reproducing the experimental conditions and to obtain further insight into
the physics of the flows in question. To this end several parametric studies are
carried out. First, the level of swirl is varied over a wide range. This gives the
possibility to study the different vortex systems formed for each condition. A
second investigation is concerned with the influence of an imposed oscillation on
the flow. As described in §1.1, when a combustion instability develops in a com-
bustor, pressure oscillations originate. In this context, the aim of the investigation
is to characterize the modifications of the large-scale coherent structures in the
presence of an external oscillation, bearing in mind that the isothermal flow dif-
fers from the reacting flow in a combustor. Another parametric study refers to the
addition of an interior co-annular jet, the so-called pilot jet. This jet is usually in-
troduced in combustors which operate under lean conditions and contains a richer
mixture to stabilize the flame. In addition to providing stability at baseload, the
pilot jet also provides combustion stability during engine startup, load ramping,
transients and fuel transfer operations.
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2 LES: equations, boundary conditions and
numerical method

To a first approximation
all species are insects.

Robert May

In this chapter a brief introduction to the simulation of turbulent flows is pro-
vided. The different approaches, DNS, RANS, LES, are schematically introduced
and the reasons for chosing LES in the present work are explained. Then, the
LES methodology is introduced including sub-grid scale models and boundary
conditions. Finally, the numerical method is described briefly and some of the
validations of the numerical code are presented.

2.1 Governing equations

The basic equations governing fluid flow for a Newtonian fluid with constant den-
sity are the Navier-Stokes equations, which read

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+
∂uiuj

∂xj
= −

1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
+ fi. (2.2)

Here use has been made of Cartesian tensor notation, where xi is the i-th spatial
coordinate and ui is the corresponding velocity component, p is the pressure, ρ
is the density, ν is the kinematic molecular viscosity and fi is a body force (like
gravity, inertia forces, etc). Einstein summation convention applies.

Equation (2.1) represents the conservation of mass and Equation (2.2) the con-
servation of momentum. These equations describe the physics of incompressible
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fluid motion under laminar as well as turbulent conditions. For a detailed deriva-
tion of the Navier-Stokes equations see for example Batchelor (1967).

When making these equations dimensionless it can be shown that the most
important parameter arising is the Reynolds number

Re =
ul

ν
, (2.3)

where u and l are a characteristic velocity and a characteristic length, respectively.
The Reynolds number is a dimensionless quantity which represents the relative
importance of the convective terms in relation to the diffusive terms. Thus, if
Re << 1 the viscous terms are dominant and the resulting flow is laminar. On the
other hand, if Re >> 1 the convective terms are dominant, except in regions of
small size very close to walls where the viscous terms are always important. Most
flows in nature and in engineering applications have a high Reynolds number and
are therefore turbulent.

2.1.1 Turbulence

Turbulence is a very complex phenomenon which has been studied for more than
100 years and which is, even today, not fully understood. It is a broad field and in
this section only some important characteristics are described. More information
can be found in books on the subject like Tennekes & Lumley (1972) and Pope
(2000), or in a recent review article (Jiménez, 2000).

Turbulent flows are chaotic and disordered. The diffusivity of turbulence causes
rapid mixing and increased rates of momentum, heat and mass transfer. Turbulent
flows are always dissipative. Even if it would appear that viscous terms should
not be relevant at high Reynolds number, they cannot be neglected because in
the momentum equation (2.2), the viscosity multiplies the terms with the highest
derivatives and cannot be removed without changing the character of the equa-
tions. The kinetic energy of the turbulence is dissipated into heat. To compensate
for these viscous losses, turbulence needs a continuous supply of energy. If no
energy is supplied, turbulence decays rapidly. A common source of energy is
shear in the mean flow; other sources, such as buoyancy, exist too.

The dissipative nature of turbulence was not explained until the work of Kol-
mogorov (1941); a modern account of his theory can be found in Frisch (1995).
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Kolmogorov (1941) introduced the concept of an energy cascade. He suggested
that turbulence is formed by ’eddies’ of many different sizes. Energy is injected
in the largest ones (of size L) but they become unstable and transfer their energy
to smaller eddies, which repeat the process to ever smaller sizes. This process of
energy transfer is inviscid and no energy is dissipated until the eddies are so small
that viscous forces become important and dissipation of energy takes place. The
length scale at which dissipation occurs is called the ’Kolmogorov scale’.

In order to estimate the Kolmogorov scale, one of the assumptions which is
usually made is that the smallest scales have lost any orientation that might be
imposed by the flow geometry or by the initial conditions. Therefore, they are
assumed to be locally isotropic. In that case, their physical properties can only
depend on the kinematic viscosity ν, and the rate of dissipation ε. It then follows
from dimensional analysis that the Kolmogorov scale η is

η =


ν

3

ε




1

4

. (2.4)

The different strategies for computing turbulent flows differ in which scales are
computed explicitly and which ones are modelled.

2.1.2 Computing turbulence: DNS

Although the turbulent motions are chaotic, we have mentioned that the deter-
ministic Navier-Stokes equations (2.1),(2.2) describe the physics of incompress-
ible fluid motion under turbulent conditions. Therefore, in principle the simplest
approach to computing turbulence should be to solve the Navier-Stokes equa-
tions for a given set of boundary conditions and initial conditions. Direct nume-
rical simulation (DNS) computes explicitly everything down to, and including,
the energy dissipating scales. High-order numerical simulations at resolution of
a few Kolmogorv scales provide results so accurate that some people call them
’numerical experiments’ (Jiménez, 2003). The quality of DNS is only limited by
how much one is willing to spend in resolution, domain size, and running time
to collect statistics. When they can be obtained, the results of DNS are indistin-
guishable from laboratory experiments, although there is always the problem of
having exactly the same conditions.
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Unfortunately, direct simulations are very expensive. The number of cells re-
quired becomes so huge that this approach is not practical in most cases. It is
easy to show (see for example Pope, 2000, p. 347) that in order to represent the
large-scale as well as the small-scale motion in the three spatial directions, the
number of cells N scales with the Reynolds number

N ∝ Re
9

4 . (2.5)

In spite of their cost, direct simulations are an important tool in basic research.
Huge simulations of simple flows are possible for low to moderate Reynolds num-
bers. For example, del Álamo et al. (2004) reported simulations of turbulent chan-
nel flow in large computational boxes at Reτ = 9501 using 2.725 · 109 grid cells,
and for a higher Reynolds number, Reτ = 1900, in a smaller box using 4.5 · 108

cells. The total time it took to finish the largest simulation was about 9 months. In
complex flows, the storage requirements are more demanding and the use of a cor-
responding number of cells is generally not possible. However, large simulations
of complex flows are carried out more and more. For example, Wissink & Rodi
(2006) reported a DNS of transitional flow and heat transfer in a turbine cascade
with incoming wakes. The Reynolds number of the flow was Re = 72000 based
on the mean inflow velocity and the axial chord length. The number of grid cells
was 9.34 ·107. The total time it took to finish each of the simulations reported was
about 3-4 months.

2.1.3 Computing turbulence: RANS

RANS methods are on the other extreme regarding computational cost. They
are the oldest, cheapest and least general methods for computing turbulence. This
approach is actually the most used in industrial applications because of its low cost
which permits the realization of parametric studies. These methods are discussed
in detail in books like Rodi (1993), Durbin & Pettersson-Reif (2001) and Wilcox
(2002).

In these methods the velocity field is decomposed at each point into the mean

1Reτ is the friction Reynolds number, based on the friction velocity uτ =
√

τw/ρ and the channel half-width h,
where τw is the whall shear stress.
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value (time-averaged) and the fluctuation,

ui(x, t) = 〈ui(x)〉 + u′i(x, t), (2.6)

where angular brackets denote the mean value and the prime denotes the fluctu-
ation. With this definition, the mean value of the fluctuation vanishes, 〈u′

i〉 = 0.
Averaging the Navier-Stokes equations (2.1),(2.2) and taking into account the de-
composition (2.6), the Reynolds-averaged Navier-Stokes (RANS) equations are
obtained

∂〈ui〉

∂xi
= 0, (2.7)

∂〈ui〉〈uj〉

∂xj
= −

1

ρ

∂〈p〉

∂xi
+ ν

∂2〈ui〉

∂xj∂xj
−
∂〈u′iu

′
j〉

∂xj
+ 〈fi〉. (2.8)

In equation (2.8) the unknown symmetric tensor

τij = −〈u′iu
′
j〉, (2.9)

acts as a stress tensor, although it actually represents a momentum flux due to the
turbulent fluctuations. Estimating these ’Reynolds’ stresses is the main problem
in the practical computation of turbulent flows. It is possible to write transport
equations for these terms, but they contain triple products 〈u′

iu
′
ju

′
k〉 and other

high-order correlations, which cannot be expressed in terms of simpler quantities.
This process leads to an infinite hierarchy of equations of higher moments, which
has to be closed at some point with a model. The Reynolds stresses are then
determined by a turbulence model, either via the eddy-viscosity hypothesis (see
below) or more directly from modelled Reynolds-stress transport equations (not
discussed in this text, see references mentioned above).

The Boussinesq eddy-viscosity approximation is the most widely used method
to close the equations. The anisotropic part of the Reynolds stress tensor is ap-
proximated then by the product of an eddy-viscosity and the mean-strain rate
tensor

〈u′iu
′
j〉 −

1

3
δij〈u

′
ku

′
k〉 = −2νtSij, Sij =

1

2


∂〈ui〉

∂xj
+
∂〈uj〉

∂xi


 . (2.10)

Still the eddy viscosity νt needs to be determined. Based on dimensional reason-
ing, it can be expressed as the product of a characteristic velocity of the turbulence
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and an integral length scale. These velocity and length scales can be estimated
simply using local quantities which leads to the so-called algebraic models. More
elaborate models solve transport equations for determining the scales and hence
the eddy viscosity. Nowadays, the two-equation models (solving two transport
equations) are the most widely used in industrial applications. For example in the
so-called k − ε model, an equation is solved for the fluctuating kinetic energy k
and another equation for the dissipation rate ε. The velocity scale is proportional
to k1/2 and the length scale is proportional to k3/2/ε. The eddy-viscosity is then
proportional to νt ∝ k2/ε.

The general problem with RANS models is that they have to model the effect
of all the turbulent scales, including the non-universal energy-containing ones.
Therefore RANS models are not universal, and often have to be adapted to the
different cases. There are usually various empirical coefficients which have been
adjusted to give the right results for canonical flows, such as decaying turbulence,
boundary layers, etc.

A special problem related to the present work is the inability of RANS models
to predict accurately the main characteristics of swirling flows (Jakirlić et al.,
2002). These flows present features that are absent in simpler flows in which
the models have usually been tuned. One of these features is, for example, the
secondary shear strain, i.e. in addition to the common mean shear ∂〈ux〉/∂r,
another shear component is present, ∂〈uθ〉/∂r.

Furthermore, in flows with unsteady non-turbulent features, e.g. periodic vortex
shedding behind a circular cylinder, the results obtained with RANS models are
usually unsatisfactory. For these cases an unsteady approach is mandatory. This
can be done within the RANS framework using the so-called Unsteady RANS
(URANS) approach. In eq. (2.6) the mean is not time-independent but obtained
e.g. by ensemble averaging, and therefore in eq. (2.8) the time derivative of the
mean remains present, see for example Durbin (2002). In the flows considered in
this work, that is jets involving high levels of swirl, periodic flow instabilities de-
velop. An unsteady approach is therefore required. The performance of URANS
for such flows has been evaluated by Wegner et al. (2004b). They showed that
the URANS calculations were able to predict the flow instabilities but the level of
fluctuations and the spreading rate of the flow were substantially underpredicted.
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Hence, these methods are not used in this work.

2.1.4 Computing turbulence: LES

Large Eddy Simulation (LES) is an intermediate approach between DNS and
RANS. While in DNS all scales of motion are computed and in RANS all scales
of motion are modelled, in LES some scales are computed and some are mod-
elled. This is possible because the inertial range can be parametrized by just the
energy transfer rate. Estimating that rate and using it to model the effect of the in-
ertial range replaces computing the dissipation scales, and also those scales which
are approximately isotropic and in equilibrium, i.e those scales which lie in the
high-frequency part of the inertial range. This is the principle of LES. The non-
universal large scales are computed directly and the effect of the small scales is
modelled by a sub-grid scale (SGS) model. More information can be found in
books on the subject like Sagaut (2002), which includes an extensive catalog of
SGS models, and Geurts (2003), or in a recent review article (Fröhlich & Rodi,
2002). The LES methodology followed in this thesis is described in detail in
Fröhlich (2005).

The procedure to obtain the LES equations involves also, as in the case of
RANS, a decomposition of the velocity field. In this case it is not obtained by
time-averaging the velocity field. Instead, the velocity field is filtered using a
low-pass filter. The filtered (or resolved) velocity is defined as

ui(x, t) =
∫
G(x,x′)ui(x − x

′, t) dx′. (2.11)

where the filter G(x,x′) must satisfy the normalization condition
∫
G(x,x′) dx′ = 1. (2.12)

Now the decomposition of the velocity field into the sum of the resolved velocity
ui and the residual velocity u′′i is

ui(x, t) = ui(x, t) + u′′i (x, t), (2.13)

which is essentially different from the Reynolds decomposition (2.6) for two rea-
sons. First, ui is a time-dependent random field. Second, the filtered residual
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velocity is, in general, not zero

u′′i (x, t) 6= 0. (2.14)

Applying the low-pass filter to the Navier-Stokes equations, the filtered Navier-
Stokes equations are obtained, for the resolved velocity ui and the resolved pres-
sure divided by the density which is denoted p. These equations read

∂ui

∂xi
= 0 (2.15)

∂ui

∂t
+
∂ui uj

∂xj
= −

∂p

∂xi
+
∂(2νSij)

∂xj
−
∂τij
∂xj

+ fi (2.16)

where Sij = 1

2
(∂ui/∂xj + ∂uj/∂xi) is the filtered strain-rate tensor. The term

τij = uiuj − ui uj results from the unresolved sub-grid scale contributions and
needs to be modelled by a subgrid-scale (SGS) model. A difference with respect
to RANS is that in general

τij = uiuj − ui uj 6= u′′i u
′′
j (2.17)

as a result of (2.14).
In the present work no explicit filter G is used. Instead, implicit filtering is

employed. As discussed in Fröhlich & Rodi (2002), the use of the computational
grid as filter amounts to an implicit filtering, since any scale smaller than the grid
is automatically discarded. In this approach the filter width is proportional to the
mesh size.

One of the main problems of LES appears in wall-bounded flows. In that situ-
ation the separation between large scales and small scales close to the wall is not
clear because all scales are dynamically relevant. Most flows in which walls are
not important, such as jets or mixing layers, can be simulated essentially indepen-
dent of their Reynolds number. As this is mainly the case in the present thesis,
we will not describe the attempts on near-wall modelling. Instead, the reader is
referred to the literature (Piomelli & Balaras, 2002).

In the past 30 years, there has been considerable progress in the development of
LES, which has been facilitated by the substantial increase in computing power.
As pointed out by Pope (2004), advances have been made concerning
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• modelling the unresolved processes

• accurate numerical methods on structured and unstructured grids

• detailed comparison of LES with DNS and experimental data in canonical
flows

• extensions to include additional phenomena, like turbulent combustion

In spite of these advances, there remain fundamental questions about the con-
ceptual foundations of LES, and about the methodologies and protocols used in
its application. For flows in which rate-controlling processes occur below the re-
solved scales (like near-wall flows or combustion) LES is strongly dependent on
the modelling of these processes. In non-reacting free shear flows on the other
hand, there are reasons to expect that LES is successful, primarily because both
the quantities of interest and the rate-controlling processes are determined by the
resolved scales. This is the reason why LES is used in the present work.

2.1.4.1 Sub-grid scale models

In order to close the equations for the filtered velocity, a model for the residual
stress tensor is needed. In recent years a great variety of models have been pro-
posed in the literature (see Sagaut (2002)). In this thesis we will only use two
of the simplest models: the Smagorinsky model (Smagorinsky, 1963) and the
dynamic model (Germano et al., 1991). Both are eddy-viscosity models which
follow the RANS tradition, although some of the features of the dynamic model
like the use of multi-scale decomposition are not present in RANS. Nowadays,
these are well known models so that the description will be very brief.

2.1.4.2 The Smagorinsky model

The Smagorinsky model is the oldest and probably the most widely used SGS
model. It is attractive because it is simple and because it is numerically very
robust. This model approximates the anisotropic part of the SGS term via

τ a
ij = τij −

1

3
δijτkk = −2νtSij, (2.18)
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while the trace τkk is lumped into a modified pressure. The eddy viscosity is given
by

νt = (Cs∆)2 |S| , |S| = (2Sij Sij)
1/2 (2.19)

where ∆ = (∆x∆y∆z)1/3 is a measure of the filter width and ∆x, ∆y and ∆z

are the mesh sizes in x, y and z direction, respectively. In this equation ∆ has
been used as the length scale for the eddy viscosity, and ∆/|S| as a time scale. In
(2.19) the Smagorinsky constant Cs needs to be estimated. This was first done by
Lilly (1967) for the case of homogeneous isotropic turbulence, the value obtained
was Cs = 0.17 (Pope, 2000, p. 588). In shear flows, which is where LES is really
needed, the corrections due to anisotropy are fairly large. This has led to different
estimations of Cs. Values of Cs used in simulations of channel flow vary around
Cs = 0.06− 0.1 (Deardoff, 1970). Studies of shear flows using experimental data
yield similar values (O’Neil & Meneveau, 1997, Cs ' 0.1−0.12 ). In the present
work the value employed is Cs = 0.1, unless stated otherwise.

There is however little reason to believe that (2.18) is generally valid, and in
particular that the tensors τ a

ij and Sij are aligned. As a matter of fact, investi-
gations on real flows show that both tensors are only weakly correlated. Never-
theless, (2.18) works well in many situations. The reason seems to be that all
that is needed by the large scales is to have a mechanism which dissipates the
correct amount of energy at the end of the energy cascade (Jiménez, 2000). Un-
fortunately, the Smagorinsky model has some major shortcomings. For instance,
it does not work properly close to walls and in transitional regions, where the
model is too dissipative. Another potential problem of the Smagorinsky model is
the choice of the constant. As already mentioned, different constants are usually
employed for different kinds of flow. In complex flows, in particular if these are
not well resolved, this is thought to be problematic since the model cannot adjust
to varying flow regimes in different areas of the flow field.

It is interesting to note that, actually, the energy cascade is unidirectional, i.e.
from large to small scales only in the statistical average. Using explicitly filtered
DNS data, it has been shown by Piomelli et al. (1991) that the cascade is only
direct (large to small) in about 60 % of the points and inverse in the rest (the so-
called backscatter). The overall direct energy transfer is the difference between
two large opposing fluxes. This is the reason for the main limitations of eddy
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viscosity models: as long as νt > 0 the cascade is direct everywhere. Locally
negative eddy viscosities are generally forbidden for reasons of numerical stability
of the solution procedure.

2.1.4.3 The dynamic model

The dynamic Smagorinsky subgrid-scale model, first proposed by Germano et al.
(1991), with the modification of Lilly (1992) has also been used in the present
work. This model is an extension of the Smagorinsky model which overcomes
some of the deficiencies described above. The basic idea of the dynamic SGS
model is to make use of the information available from the smallest resolved
scales. To this end, a double filtering procedure leads to a closed expression,
commonly referred to as Germano’s identity, relating filter stresses at different
filter levels to each other. This additional information is then used to adjust the
model parameter Cs locally. The detailed formulation of the model is relatively
technical and lengthy and can be found elsewhere (Germano et al., 1991; Pope,
2000; Sagaut, 2002; Fröhlich, 2005).

As first pointed out by Lilly (1992), the numerical computation of Cs is not
free from problems. Cs can become highly oscillating and in those cases has to
be regularized. When the flow has homogeneous directions, like in the case of
channel flow, averaging in horizontal planes can be performed leading to a quite
stable formulation of the model. Furthermore, the occurrence of negative values
of Cs is possible locally. It was originally suggested that the resulting negative
viscosities can be used to simulate backscatter. However, as mentioned before,
the use of negative eddy viscosities is forbidden due to numerical considerations,
because any small perturbation is amplified. Therefore, it is common practice to
clip the eddy viscosity to avoid negative values.

In the present work, the model parameter Cs is determined using a three-
dimensional explicit box filter of width equal to twice the mesh size. The eddy-
viscosity νt is clipped to avoid negative values and smoothed by temporal relax-
ation (Breuer & Rodi, 1996)

νn+1

t = εν∗t + (1 − ε)νn
t , (2.20)

with the relaxation factor ε = 5 10−4 and ν∗t the value determined by the original
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model.
In the sequel, overbars denoting the resolved quantities will be dropped for

clarity.

2.1.4.4 Analysis and validation of LES data

The solution of the filtered Navier-Stokes equations (2.15),(2.16) provides infor-
mation on the scales which are resolved. Then, the information that is useful for
analysis or validation is what is contained in the scales that are well resolved.
An important issue is the influence of the unresolved motions on the turbulent
statistics. For a discussion on this topic see Sagaut (2002, chapter 8). Calling
the exact statistical values 〈u′ei u

′e
j 〉, and assuming that the statistical average of the

subgrid modes is very small compared with the other terms so that the exact mean
velocity and the mean resolved velocity coincide, the expression for the exact
turbulent statistical values is (Sagaut, 2002, p. 262)

〈u′ei u
′e
j 〉 ' 〈u′′i u

′′
j 〉 + 〈τij〉 (2.21)

where 〈u′′i u
′′
j 〉 results from the resolved motions and 〈τij〉 is the average of the

sub-grid scale model. The term 〈τij〉 is often negligible, in particular in free shear
flows at high Reynolds numbers where the large scales carry most of the kinetic
energy. If the grid is fine enough to resolve the scales up to the inertial sub-range,
the residual energy is negligible.

2.2 Boundary and initial conditions

So far the governing equations have been introduced. To complete the description
of the physical model for LES, initial and boundary conditions are described in
this section.

It is well known that the mass conservation constraint in an incompressible
flow can be used to remove the pressure as a dependent variable from the momen-
tum equations. Boundary conditions are then only required for the velocity field.
Given the velocity field, the pressure field is described to within an unknown con-
stant by a Poisson equation obtained by taking the divergence of the momentum
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equations. For this equation the momentum equations provide natural Neumann
conditions on the boundaries. Thus, in principle, no boundary conditions are re-
quired for the pressure.

The boundary conditions for an LES are determined both by the physics of the
problem and computational necessities. Because of the high computational cost
it is almost always necessary to confine the computational domain closely around
the area of interest in a flow simulation. A realistic specification of the conditions
on the boundaries is often essential for a successful flow prediction.

2.2.1 Inflow conditions

In order to simulate successfully a complex flow using LES it is extremely im-
portant to employ realistic inflow conditions. Turbulent inflow conditions in an
LES have to be prescribed in an instantaneous manner. The three components of
the velocity have to be specified at an inflow boundary, i.e. Dirichlet conditions.
To obtain realistic unsteady inflow conditions is a topic of current research (Lund
et al., 1998; Klein et al., 2003; Druault et al., 2004; Sagaut et al., 2004; Schlüter
et al., 2004). Some authors consider that at the present time it is more important
to improve the strategies for the specification of inflow conditions than to improve
the present SGS-models (which constitutes the basis of an LES!). This gives an
idea of the importance of the issue. Several LES reported in the literature impose
the mean velocity profile and superimpose random fluctuations with a given spa-
tial variation. This is a rather poor approach, because random fluctuations do not
possess spatial nor temporal correlations and therefore decay quickly. In other
cases, it is possible to use the solution of a simpler flow problem, such as channel
or pipe flow, for which periodic conditions can be used. The solution of a simple
flow problem is recorded and these data are used to specify the inflow of the more
complex flow problem. (Instead of recording the data, it is possible to carry out
both simulations simultaneously). This approach is of course more accurate but
also more expensive.

In the present work the specification of the inflow conditions is of paramount
importance and Chapter 4 is entirely dedicated to this issue.
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Chapter 2. LES: equations, boundary conditions and numerical method

2.2.2 Outflow conditions

At the outflow boundary it is important in an LES (also in a DNS) to avoid that
the turbulent flow is disturbed by the boundary, i.e. the condition imposed on the
boundary should allow flow structures to be convected out of the domain, without
spurious reflections. This cannot be achieved by using Dirichlet or Neumann
conditions. In the present work the so-called convective boundary condition has
been employed. At the boundary the following equation is solved

∂ui

∂t
+ uc

∂ui

∂n
= 0, (2.22)

where ∂/∂n is the gradient normal to the boundary and uc is a convective out-
flow velocity normal to the boundary. The selection of uc is not very critical
because both limits uc → 0 and uc → ∞ are numerically possible, equivalent
to a Dirichlet or Neumann condition, respectively (Fröhlich, 2005). The value of
uc is usually taken constant over the whole outflow boundary, and equal to the
averaged outflow velocity over the boundary. It appears that this is a reasonable
approximation and that this condition allows vortical structures to be convected
out of the domain.

2.2.3 Periodic boundary conditions

In geometrically simple flows, like fully developed channel or pipe flow, the dif-
ficulty of having to prescribe instantaneous boundary conditions is avoided by
assuming that the flow is periodic in space. Thus, it is possible to avoid the si-
mulation of extremely long and wide channels. Instead, a ’relatively’ small com-
putational box is employed, and periodic conditions are imposed in the homo-
geneous directions. The box can be only ’relatively’ small because the simulated
domain has to be large enough to contain a representative number of large energy-
containing structures, in order to avoid that the numerical solution is influenced
by the periodicity assumption.
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2.2.4 Wall boundary conditions

If the domain boundary coincides with a solid, impermeable wall a no-slip condi-
tion can generally be used which for a non-moving boundary is

ui(xboundary, t) = 0. (2.23)

However, while the prescription of a no-slip condition is straightforward, the LES
in the vicinity of the wall is not, as pointed out in §2.1.4. The difficulties in
calculating the flow close to a wall result from the fact that the basic assumption
of scale separation between large and small scales does not hold anymore. Hence,
the resolution requirements for an LES close to a wall are often prohibitive for
the high Reynolds numbers occurring in engineering practice. In cases where
the core of the flow, away from the wall, is of main interest, one can attempt
to model the effect of the whole viscous sublayer on the free flow. A number
of such wall-models have been proposed on the literature (Piomelli & Balaras,
2002; Sagaut, 2002). Most of these models make use of the logarithmic law of
the wall describing the mean streamwise velocity profile in the inertial sublayer.
The models therefore assume complete self similarity for the velocity profile, i.e.
the mean velocity profile normalized with inner variables (ν,uτ ) is independent
of the Reynolds number. These models perform relatively well for quasi-parallel
flows without pressure gradients.

In the present work, in most of the calculations reported the inlet duct walls
are included in the computational domain (see Fig. 3.2 below). However, the
region of interest is always far away from walls as described in Chapter 1. Fur-
thermore, strong pressure gradients are present in the flow due to the swirling
motion; curvature effects are important, too. Keeping this in mind, it is likely
that the standard wall models used in most calculations are not going to provide
improvements with respect to a simple no-slip condition. This was confirmed in
preliminary tests using the Werner-Wengle wall model (Werner & Wengle, 1993)
for a swirling flow in a confined configuration. In that case no improvement was
observed. Therefore, in the present work a no-slip condition will be used in all
the cases where a wall boundary condition is needed.
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2.2.5 Free-slip condition

In some occasions, it is convenient to use free-slip conditions to minimize the ef-
fect of the boundary on the predicted flow by allowing the flow to slide along the
boundary. The boundary-normal velocity component is assumed to vanish instan-
taneously while for the other components a homogeneous Neumann condition is
imposed normal to the surface

un = 0 ;
∂ui

∂n
= 0, (2.24)

where un indicates the boundary-normal velocity component.

2.2.6 Initial conditions

The specification of initial conditions is relatively unproblematic in LES. The
reason is that after a sufficiently long integration time the initial conditions do not
have any influence on the numerical solution. Nevertheless, in order to reach a
statistically steady state in the flow in a short time, the initial condition should
be close to the developed solution. Usually an approximation to the mean flow
with some random noise is specified as initial condition. In some cases, this
information is not known in the entire domain, as was the case in the present work.
Therefore the following strategy was used. First, a random field was imposed as
initial condition on a very coarse grid. The simulation was run on this grid for a
long time to obtain a good estimation of the velocity field in the whole domain.
Then, the velocity field was interpolated onto the final grid and the simulation
was run for a few characteristic time units. Only after this start-up period the
collection of statistics was undertaken.

2.3 Numerical method and validation

2.3.1 Numerical method

All the simulations in the present work were performed with the in-house code
LESOCC2 (Large Eddy Simulation On Curvilinear Coordinates). The code has
been developed at the Institute for Hydromechanics. It is the successor of the
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code LESOCC developed by Breuer & Rodi (1996) and is described in its most
recent status in Hinterberger (2004). The code solves equations (2.15),(2.16) on
body-fitted, curvilinear grids using a cell-centered Finite Volume method with
collocated storage for the cartesian velocity components. Second order central
differences are employed for the convection as well as for the diffusive terms.
The time integration is performed with a predictor-corrector scheme, where the
explicit predictor step for the momentum equations is a low-storage 3-step Runge-
Kutta method. The corrector step covers the implicit solution of the Poisson equa-
tion for the pressure correction (SIMPLE). The scheme is of second order accu-
racy in time because the Poisson equation for the pressure correction is not solved
during the sub-steps of the Runge-Kutta algorithm in order to save CPU-time.
The Rhie and Chow momentum interpolation (Rhie & Chow, 1983) is applied to
avoid pressure-velocity decoupling. The Poisson equation for the pressure incre-
ment is solved iteratively by means of the ’strongly implicit procedure’ (Stone,
1968). Parallelization is implemented via domain decomposition, and explicit
message passing is used with two halo cells along the inter-domain boundaries
for intermediate storage. One of the most important features of LESOCC2 is the
possibility to use block-structured grids with an unstructured arrangement of the
blocks, which was not possible with the previous version of the code. This feature
allows the simulation of very complex geometries, like the co-annular burner of
Chapter 7.

2.3.2 Earlier validation of the code LESOCC2

Both versions of the code have been validated for a number of flows. Breuer &
Rodi (1996) computed turbulent flow through a square duct at several Reynolds
numbers, flow through a 180◦ bend, flow around a surface-mounted obstacle and
flow around a circular cylinder. Several flows of engineering interest have been
investigated with this version of the code. An overview of some of the cases
can be found in Fröhlich (2005). A highly resolved LES of flow over a two-
dimensional hill was reported in Fröhlich et al. (2005). LESOCC has also been
used to investigate transitional flow in turbomachinery (Wissink, 2003; Michelassi
et al., 2003; Wissink & Rodi, 2006).

25



Chapter 2. LES: equations, boundary conditions and numerical method

The updated version of the code, LESOCC2, was validated by computing tur-
bulent channel flow at several Reynolds number (Hinterberger, 2004). In this
reference, some other flows have been investigated using LESOCC2, like shallow
flow around circular cylinders or shallow mixing layers. The flow around a ma-
trix of cubes was investigated in Stoesser et al. (2003). Fröhlich & Rodi (2004)
computed the flow around cylinders of finite height and Fröhlich et al. (2004) in-
vestigated the mixing characteristics of a jet in a cross-flow. Encouraging results
for complex three-dimensional flows at very high Reynolds number have been
obtained. For example, the flow around a simplified car, the so-called Ahmed
body, was investigated in Hinterberger et al. (2004) and the flow around a three-
dimensional axisymmetric bump was reported in Rodi et al. (2005). Recently, the
flow around two-dimensional dunes has been successfully computed by Braun
(2005).

2.3.3 Validation of LESOCC2 for swirl flows

The code has been validated for swirling flows in a combustor-like geometry. The
flow in a simplified co-axial swirl combustor has been reported in Garcı́a-Villalba
et al. (2005). Two experimental test cases were chosen from the literature, a
configuration investigated by Roback & Johnson (1983) and one by Sommerfeld
& Qiu (1991). In both cases the configuration consists of coaxial jets which enter
into an expansion duct with the annular jet being swirled, the inner jet unswirled.
One of the differences between these cases and the ones considered in this thesis
is the fact that the domain is confined. The Reynolds number based on the bulk
velocity of the outer jet Ub and the diameter of the outer jet D is Re = 47500 in
the first case and Re = 65000 in the second. The swirl number S is S = 0.41 and
S = 0.45, respectively. The flow is highly unsteady and anisotropic and involvs
high levels of turbulence. Furthermore, these flows are very sensitive to inflow
and outflow conditions which makes them very difficult to simulate. The main
features of the flow are a central recirculation zone and a second recirculation
zone in the corner of the expansion. Both were well predicted in the simulations.
The mean velocities and the turbulent fluctuations were also found to be in good
agreement with the experimental data.
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3 LES of a turbulent unconfined annular
swirling jet.

In this chapter the numerical simulation of the near field of a turbulent uncon-
fined annular swirling jet is presented. This configuration is considered as the
reference configuration in the remaining parts of the thesis. In this chapter, first,
the experimental configuration is introduced. This is followed by the description
of the computational set-up. An overview of the simulations is given in Table
3.1. Several modelling issues are investigated, such as the influence of the grid
or the sub-grid scale model. Then, a thorough comparison with the experimental
data is presented including mean velocity profiles, turbulent intensities and power
spectral densities of velocity fluctuations at selected points. The agreement with
the experiment is excellent. This makes possible the analysis of the instantaneous
flow in physical terms. Large-scale coherent structures rotating at a constant rate
around the symmetry axis are identified in the flow. Furthermore, the connection
between the motion of the structures and the power spectral density of velocity
fluctuations is explored.

3.1 Experimental and numerical configuration

3.1.1 Experimental configuration

The configuration considered in the present chapter was investigated experimen-
tally by Hillemanns (1988) at the University of Karlsruhe. New measurements
of the same configuration have been performed recently by Büchner & Petsch
(2004) as a validation of a new test bench. Both sets of measurements were ob-
tained using Laser Doppler Anemometry (LDA). The configuration consists of an
annular swirling jet flowing into an ambient of the same fluid which is at rest.
A sketch of the burner is shown in Fig. 3.1. The swirl is generated with a mo-
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Figure 3.1: Sketch of the burner taken from Hillemanns (1988)

vable block swirl generator (Leuckel, 1967), in which radial flow is fed into the
swirl generating device and radial and tangential vane angles are altered to adjust
the desired level of swirl. The reported measurements are confined to the near
field of the jet. They include first and second order moments of the velocity at
several axial stations downstream of the jet exit. The second set of experiments
(Büchner & Petsch, 2004) also includes power spectral densities of velocity fluc-
tuations at some points close to the nozzle. The experiments do not provide any
measurements of the flow in the region upstream of the jet outlet. This renders the
specification of the inflow boundary conditions in the simulation somewhat more
difficult.

3.1.2 Computational domain, boundary conditions and grid

The geometry of the computational domain is shown in Fig. 3.2. It features an
annular jet issuing with bulk velocity Ub into a large cylindrical domain. The re-
ference length is R = D/2 where D is the outer diameter of the annular jet. The
inner radius is 0.5R. The computational domain also includes a crude represen-
tation of the inlet duct upstream of the jet exit. A strong idealization is required
because a proper representation of the swirl-generating device is computationally
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Figure 3.2: Geometry of the computational domain and boundary conditions ap-
plied.

too demanding. Instead, the flow is imposed at the circumferential inflow boun-
dary located at the beginning of the inlet duct. The flow enters radially having an
azimuthal component. At this position steady, top-hat profiles for the radial and
azimuthal velocity components are imposed. This is not an ideal approach be-
cause for LES unsteady inflow boundary conditions are usually required. It will
be demonstrated, however, that this procedure does not affect the results because
turbulence readily develops in the duct upstream of the jet exit. The issue of the
specification of inflow conditions will be addressed in detail in Chapter 4. Fig.
3.3 shows the development of the flow in the inlet duct by means of the instan-
taneous axial velocity and the instantaneous turbulent kinetic energy. The inlet
swirl was adjusted such that the computed swirl number at the jet outlet matches
the experimental value. No-slip boundary conditions are applied at the walls. At
the exit boundary, a convective outflow condition is used. Free-slip conditions
are applied at the lateral boundary which is placed far away from the region of
interest at 12R. Note that in the figure the lateral and the downstream boundaries
are not positioned to scale. The fluid to be entrained is fed in by a mild co-flowing
stream, the influence of which will be addressed in §3.2.3.

Two block-structured grids were used for the simulations discussed in this
chapter, C1 and F1 (C Coarse, F Fine). Grid C1 comprises roughly 2.5 million
hexahedral cells and grid F1 comprises about 6 million cells. Various views of
the grid F1 are shown in Fig 3.4. The grids were generated with the commercial
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Figure 3.3: Development of the flow in the inlet duct region. a) Instantaneous
axial velocity. b) Instantaneous fluctuating kinetic energy.

software ICEM-CFD Hexa. In the azimuthal direction 160 grid points are used
in grid F1 while 100 are used in Grid C1. The stretching factor of both grids is
everywhere less than 5%. In grid F1, the minimum axial spacing is located at the
jet outlet and is ∆x = 0.02R. In the vicinity of the walls, the minimum radial
spacing is ∆r = 0.008R. In grid C1, the values of ∆x and ∆r are slightly larger.
As shown in Fig. 3.4d, the region near the symmetry axis consists of a quasi-
square mesh, which eliminates the centreline singularity present in grids which
use cylindrical coordinates.

3.1.3 Parameters

The following reference quantities are used throughout this chapter: the outer
radius of the annulus, R = 50 mm, for lengths, the bulk velocity Ub = 25.5 m/s,
for velocities, and tb = R/Ub for times.

The Reynolds number of the flow based on the bulk velocity Ub and the outer
radius of the jet is Re = 81500. The Swirl number is defined as

S =

∫R
0 ρuxuθr

2 dr

R
∫R
0 ρu2

xr dr
, (3.1)

and is evaluated at a certain axial position x. Table 3.1 assembles the parameters
of the computations discussed in this chapter. Simulation H1 is taken as refe-
rence because it matches the experimental flow conditions. The value of the swirl
number is S = 1.2 at x/R = −2 and S = 0.9 at x/R = 0. This decay in the
Swirl number is caused by a decay of the tangential velocity in the inlet duct and a
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Figure 3.4: Computational grid. a) Axial plane, zoom near the jet exit. Every 4th
grid line is shown. b) Cut in the y− z plane through the entire domain
with all grid lines being shown. c) same as b) but zoomed around the
symmetry axis. d) strong zoom around the axis.

substantial change in the shape of the profiles of both the axial and the tangential
velocity components. The same behaviour has also been observed by Sankaran
& Menon (2002). Since S represents an integrated quantity, two swirling jets
of completely different velocity distributions may have the same swirl number.
Although the swirl number hence only provides an incomplete description of the
properties of a swirling jet, it is commonly used in the literature and therefore also
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employed in the present text.

Simulation Grid SGS model Co-flow Swirl
H1 F1 (∼ 6 mio.) Dynamic 5% 0.9
H2 C1 (∼ 2.5 mio.) Dynamic 5% 0.95
H3 F1 (∼ 6 mio.) Dynamic 5% 0.95
H4 C1 (∼ 2.5 mio.) Smagorinsky 5% 0.95
H5 C1 (∼ 2.5 mio.) Smagorinsky 2% 0.95
H6 C1 (∼ 2.5 mio.) Smagorinsky 10% 0.95

Table 3.1: Overview of the simulations for the Hillemanns burner. Parameters are
explained in the text. H2-H6 have an excess of swirl compared to the
experimental flow conditions for historical reasons as discussed in the
text.

3.2 Time-averaged results and model validation

3.2.1 Averaging procedure

The simulations were run for several time units tb to eliminate the effects of the
initial conditions. After this period, statistical quantities were collected for 150 tb
in H1, which is long enough to obtain well-converged values in the near field of
the jet exit. The averaging time in cases H2-H6 was slightly shorter, in all cases
of the order of 100 tb which is still sufficient. The averaging was performed in
time and also along the azimuthal direction. Average quantities are denoted by
angular brackets and corresponding fluctuations by a double prime.

Far downstream of the jet exit, for x/R ≥ 6, the statistical quantities are not
fully converged in the vicinity of the symmetry axis because the fluid motions are
slower in that region and the impact of azimuthal averaging is low near the axis.
Substantially longer averaging times would be necessary to improve in this re-
spect. However, the focus here is the near field of the jet outlet extending roughly
up to x/R = 3. In this region the averaging period is sufficient. This is sup-
ported not only by the smoothness of the results presented below and their good
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Figure 3.5: Average streamlines in an axial plane obtained from the simulation.

agreement with the experimental data but also by the following reasoning. At
x/R = 3 the characteristic tangential velocity is about 0.5Ub and can be found at
r/R = 1. Hence, an averaging period of 150 time units yields an average over 12
revolutions of the flow, further supplemented by azimuthal averaging.

3.2.2 Regions of the flow

First of all, a general picture is presented by a brief description of the different
regions of the flow.

Fig. 3.5 shows the computed time-averaged two-dimensional streamlines in
an axial plane1 in H1. A long recirculation zone is observed in the central region.
The length of the recirculation zone is about 6R, and its maximum diameter 1.4R.
Note that, as the jet is annular, a recirculation zone is also generated without
swirl because the cylindrical center body acts as a bluff body (see Chapter 5).
A long recirculation zone is typical for flows with a high level of swirl (Gupta
et al., 1984). This phenomenon is related to the presence of a low pressure region
generated by the swirl on the symmetry axis of the flow. Further information
on the average flow is provided by the vector plot in Fig. 3.6a. It shows that
the jet has an outward radial component due to the centrifugal forces and widens
substantially further downstream.

The jet produces two shear layers, an inner one on its border with the recircu-
lating flow and an outer one on its border with the surrounding co-flow. This can

1In this work, an axial plane is an x − r−plane
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be seen better in Fig. 3.14a below which shows the mean axial velocity profile
at x/R = 0.2. The shear layers are not plane shear layers, since they are subject
to curvature effects due to the swirl. It is worth noting that the two shear layers
formed by the jet are spatially very close to each other. The inner one is wider
than the outer one and exhibits a larger change in velocity due to the negative
velocity in the recirculation zone. This issue is addressed further in Fig. 3.19
below.

In the outer region, the jet entrains fluid from the ambient in a very intermittent
manner, which is visible in the instantaneous vector plot of Fig. 3.6b. This is a
complex phenomenon, which is addressed further below. The vanishing slope of
the streamlines remote from the jet at x/R = 0 and r > R in Fig. 3.5 is due to the
co-flow boundary condition. The velocity at this position, however, is only 5 % of
the jet axial velocity, so that the influence on the region of interest is negligible.
This is also visible in Fig. 3.6 and 3.14.

The swirling jet spreads radially outwards much faster than in the case of a
non-swirling jet (Akselvoll & Moin, 1996). In the far field downstream of the
recirculation zone, the relevant motions are much slower than in the near field.
As stated above, the present integration time is not long enough to study this
region which deserves further investigations.

3.2.3 Modelling issues

In this section several modelling choices are validated, namely the effects of the
grid, the sub-grid scale model and the co-flow boundary conditions. This is done
by means of simulations H2-H6 listed in Table 3.1. For historical reasons, these
sensitivity studies were unfortunately performed for a flow condition which did
not match exactly the flow condition in the experiment. When simulations H2-
H6 were performed, the experimental data of Büchner & Petsch (2004) were not
yet available. The swirl level was not adjusted appropriately at the inlet which
yielded an excess of mean tangential velocity at the jet outlet. To get an idea of the
differing flow conditions between H1 and H2-H6, compare Figs. 3.14b and 3.7b
which show the mean tangential velocity profile at x/R = 0.2. In Figs. 3.7 to 3.13
the experimental data are still included for reference, but no direct comparison
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Figure 3.6: Vector plots in an axial plane. a) Average flow. b) Instantaneous flow.
(Values are interpolated to a cartesian grid)
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Figure 3.7: Influence of the grid. Radial profiles of mean velocity components
at x/R = 0.2 and 2.0 (top to bottom as indicated in the rightmost
column). Solid line, H3; dashed line, H2; symbols, experimental data
from Büchner & Petsch (2004). Left, axial velocity, 〈ux〉/Ub. Centre,
tangential velocity, 〈uθ〉/Ub. Right, radial velocity, 〈ur〉/Ub. Observe
that the ranges of the vertical axis have been adjusted individually.

with the experiment is intended. The comparison with the experimental data is
performed in §3.2.4.

3.2.3.1 Grid

In order to check the influence of the grid, simulations H2 and H3 were performed,
using the same parameters except for the grid, as reflected in Table 3.1. Fig. 3.7
shows profiles of the three components of the mean velocity at two axial stations,
at x/R = 0.2 very close to the jet exit and at x/R = 2 close to the position where
the recirculation is strongest. The agreement between both simulations is excel-
lent showing that both grids are good enough for the prediction of the mean flow
in the near field of the jet. Hence, if the coarse grid is adequate, the finer is even
more so, which validates its use. The same applies for the turbulence statistics,
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Figure 3.8: Influence of the grid. Radial profiles of rms velocity fluctuations at
x/R = 0.2 and 2.0 (top to bottom as indicated in the rightmost col-
umn). Solid line, H3; dashed line, H2; symbols, experimental data
from Büchner & Petsch (2004). Left, axial velocity, 〈urms

x 〉/Ub. Cen-
tre, tangential velocity, 〈urms

θ 〉/Ub. Right, radial velocity, 〈urms
r 〉/Ub.

which are shown in Fig. 3.8. As the graph shows, the differences are insignificant.
It is important to note for the subsequent discussion that the simulation with the
coarse grid is cheaper than the simulation with the fine grid. This results from the
smaller number of operations required by fewer grid points but also from the time
step being slightly larger. For example, the time step employed in the simulations
with the fine grid is ∆t/tb = 10−3 while it is ∆t/tb = 2 · 10−3 with the coarse
grid. On the other hand, more scales are resolved in the simulation with the fine
grid, and therefore the physical analysis can be richer.

3.2.3.2 Sub-grid scale model

The sensitivity of the simulations with respect to the sub-grid scale model has
been investigated in H2 and H4 using the coarse grid, because it is expected that
the model will have less impact on the finer-grid solution. Fig. 3.9 shows the

37



Chapter 3. LES of a turbulent unconfined annular swirling jet.

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

r/R r/R r/R

x = 0.2R

x = 2.0R

a) b) c)

d) e) f)

Figure 3.9: Influence of the SGS model. Radial profiles of mean velocity compo-
nents at x/R = 0.2 and 2.0 (top to bottom as indicated in the rightmost
column). Solid line, H2; dashed line, H4; symbols, experimental data
from Büchner & Petsch (2004). Left, axial velocity, 〈ux〉/Ub. Centre,
tangential velocity, 〈uθ〉/Ub. Right, radial velocity, 〈ur〉/Ub. Observe
that the ranges of the vertical axis have been adjusted individually.

mean velocity profiles and Fig. 3.10 the turbulence statistics at the same loca-
tions as in the above grid refinement study. Again the agreement is excellent for
both mean velocity and the turbulent statistics, which shows that the flow is not
very sensitive to the sub-grid scale model. This conclusion was also reached for
turbulent swirling flow in a confined configuration by Tang et al. (2002). They
found that the Smagorinsky model, in spite of its simplicity, gave good results
for this kind of flow. Pope (2004) gives an explanation for this. As discussed in
Chapter 2, it is reasonable to assume that turbulence possesses scale similarity at
high Reynolds numbers, but only over length scales corresponding to the inertial
subrange. In the inertial subrange, the Smagorinsky model is, by construction,
consistent with the known inertial-range scaling laws. In this circumstance there
is, therefore, no substantial need for the dynamic procedure which maintains the
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Figure 3.10: Influence of the SGS model. Radial profiles of rms velocity fluc-
tuations at x/R = 0.2 and 2.0 (top to bottom as indicated in the
rightmost column). Solid line, H2; dashed line, H4; symbols, expe-
rimental data from Büchner & Petsch (2004). Left, axial velocity,
〈urms

x 〉/Ub. Centre, tangential velocity, 〈urms
θ 〉/Ub. Right, radial ve-

locity, 〈urms
r 〉/Ub.

model structure but adds adjustment of the Smagorinsky coefficient. If the grid
is fine enough to resolve the large scale motion, so that the unresolved motions
lie in the inertial sub-range, the Smagorinsky model should be good enough to
obtain satisfactory results. However, it is well known that the dynamic model per-
forms better than the Smagorinsky model in laminar regions, transitional flows
and in the viscous near-wall region. The Smagorinsky model is numerically more
robust than the dynamic model, the latter can become unstable and lead to nume-
rical instabilities especially when there are no homogeneous directions like in the
present investigation. The simulations performed with the Smagorinsky model
are also cheaper for two reasons. First, in the dynamic model the determination
of the model parameter is relatively expensive because it involves explicit filte-
ring of several fields. Second, the smoothing of the model parameter, which is
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Figure 3.11: Radial profiles of eddy viscosity, νt/ν. a) x/R = 0.2. b) x/R = 2.0.
Solid line, H3 with dynamic model on fine grid; dashed line, H4 with
Smagorinsky model on coarse grid; dotted line, H2 with dynamic
model on coarse grid.

performed in this case by temporal relaxation, §2.1.4.3, is also expensive because
it is necessary to discard the initial part of the simulation until the model performs
as desired.

To provide an idea of the amount of modelling involved in the simulations,
Fig. 3.11 shows the mean eddy viscosity from simulations H2, H3 and H4 at
x/R = 0.2 and x/R = 2. Comparison of simulations H2 (coarse grid, dynamic)
and H4 (coarse grid, Smagorinsky) shows that the eddy viscosity in the dynamic
model calculations is much larger than when the Smagorinsky model is used. The
reason for this might be that with the present numerical method, §2.3, the small-
scale motions of the order of the grid spacing are contaminated by numerical
error, and the dynamic model, by construction, is able to damp these unphysical
motions introducing a higher eddy viscosity. Fig. 3.11 shows that even using the
fine grid in H3 the eddy viscosity from the dynamic model is larger than using the
Smagorinsky model on the coarse grid in H4.

Another issue related to the sub-grid scale modelling is the influence of the
unresolved motions on the turbulence statistics, as discussed in Chapter 2. Recall
equation (2.21) which relates the exact turbulence statistics 〈u′ei u

′e
j 〉 to the statistics

resulting from the resolved motions 〈u′′i u
′′
j 〉 and the average of the sub-grid scale
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Figure 3.12: Influence of the co-flow. Radial profiles of mean velocity compo-
nents at x/R = 0.2 and 2.0 (top to bottom as indicated in the right-
most column). Solid line, Sim H4; dashed line, Sim H5; dotted line,
Sim H6; symbols, experimental data from Büchner & Petsch (2004).
Left, axial velocity, 〈ux〉/Ub. Centre, tangential velocity, 〈uθ〉/Ub.
Right, radial velocity, 〈ur〉/Ub. Observe that the ranges of the verti-
cal axis have been adjusted individually.

model 〈τij〉. In Fig. 3.10 only the resolved motions have been included to compute
the turbulence statistics. However, with the high eddy-viscosity of the order of
νt/ν = 50 − 100 which occurs in some of the cases, Fig. 3.11, it could be
expected that the unresolved motions have some impact on the exact turbulence
statistics. The terms 〈τij〉 have been computed and these contributions turned out
to be negligible. In spite of the high ratio of νt/ν, the unresolved motions do
not have an influence on the turbulence statistics. The large scales carry most of
the kinetic energy because the grid is fine enough to resolve the scales up to the
inertial sub-range, and then the residual energy is negligible.
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Figure 3.13: Influence of the co-flow. Radial profiles of rms velocity fluctuations
at x/R = 0.2 and 2.0 (top to bottom as indicated in the rightmost col-
umn). Solid line, Sim H4; dashed line, Sim H5; dotted line, Sim H6;
symbols, experimental data from Büchner & Petsch (2004). Left,
axial velocity, 〈urms

x 〉/Ub. Centre, tangential velocity, 〈urms
θ 〉/Ub.

Right, radial velocity, 〈urms
r 〉/Ub.

3.2.3.3 Co-flow

The sensitivity studies performed in the two previous sections are standard prac-
tice in any thorough investigation using LES. In this section we are concerned
with an issue more particular to the present configuration, i.e. a jet in an uncon-
fined configuration. A weak co-flow is usually introduced in the simulations of
turbulent free jets (see for example Le-Ribault et al. (1999); Stanley et al. (2002)),
in order to feed in the fluid to be entrained. These authors reported that there are
no effects on the jet dynamics if the lateral boundaries were placed sufficiently far
away and the co-flow is small.

In the present work, three simulations were performed, H4, H5 and H6 (Table
3.1) to check the influence of the co-flow velocity on the results. Figs. 3.12 and
3.13 show the profiles of mean velocity and turbulent statistics at x/R = 0.2 and
x/R = 2 for the three cases. The difference between the cases can be observed
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in the profiles of mean axial velocity, Figs. 3.12a and 3.12d, where the velocity
in the outer part is slightly different for each case, 0.02Ub, 0.05Ub and 0.1 Ub,
respectively. In the profiles of mean tangential velocity, Figs. 3.12b and 3.12e,
no difference is observed between the cases, while the difference in the co-flow
velocity has a small impact on the entrainment velocity as can be observed in the
profiles of mean radial velocity, Figs. 3.12c and 3.12f . Finally, the comparison
of the turbulence intensities Fig. 3.13 shows that the influence of the co-flow is
minor for these relatively low values of the co-flow velocity.

3.2.3.4 Conclusions from sensitivity studies

The above studies can be summarized as follows. The prediction of the mean
flow and the turbulence intensities is satisfactory with both grids and both models
showing satisfactory agreement. On the other hand, the simulations with the fine
grid and with the dynamic model are more expensive but they offer the possi-
bility to analyze the flow field in more detail because more scales of motion are
resolved. This information will be used in the following way. The objective of the
rest of this chapter is the detailed analysis of both mean flow and instantaneous
flow. For this purpose H1 (fine grid, dynamic model) is used. In Chapter 5 many
simulations are used to estimate the influence of the swirl parameter. To perform
many simulations is very expensive and therefore these analyses are performed
on the coarse grid using the Smagorinsky model.

Finally, from the study of sensitivity to the co-flow velocity, no major differen-
ces were found for the three values studied. Thus, in the rest of the thesis all the
simulations are performed with a co-flow velocity of 0.05 Ub.

3.2.4 Comparison with experimental data

The remainder of this chapter discusses simulation H1, which uses the fine grid
F1 and the dynamic model. In H1 the boundary conditions match the experimen-
tal conditions. Fig. 3.14 shows mean velocity profiles at four axial measurement
stations in the near field of the jet, ranging from x/R = 0.2 to x/R = 3. Measure-
ments were performed along a radial line on both sides of the axis. All velocity
data are plotted versus the radial coordinate so that points of measurement at op-
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posite sides of the symmetry axis appear together. This provides an estimation
of the experimental uncertainty. The overall agreement between experiment and
simulation is very good at most stations. Particularly good is the agreement at
x/R = 0.2, Fig. 3.14a-c. This suggests that the experimental inflow conditions
are modelled properly. The available experimental data are confined to the range
between x/R = 0.2 and x/R = 3. Therefore, the length of the recirculation zone
cannot be compared, but the mean axial velocity profiles in Fig. 3.14 show that
until x = 3R the shape of the recirculation zone is well predicted. The spreading
of the jet is also in good agreement with the experimental data.

The radial velocity component was the most difficult component to measure in
the experiment (Büchner & Petsch, 2004), reflected by the scatter in these data.
The agreement close to the jet outlet is quite good, as seen in Figs. 3.14c and
3.14f , whereas a fairly significant difference is observed at x/R = 2 and x/R =

3, Figs. 3.14i and 3.14l. In order to investigate this issue, the continuity equation
for the averaged flow

∂〈ux〉

∂x
+

1

r

∂(r〈ur〉)

∂r
= 0, (3.2)

can be used. Defining q1 = −r∂〈ux〉/∂x and q2 = ∂(r〈ur〉)/∂r, it reads q1 = q2.
These terms are estimated from the experimental data. At x = 2R, q1 has been
estimated using central differences and the experimental profiles of 〈ux〉 in Figs.
3.14d and 3.14j. The profile of 〈ur〉 in Fig. 3.14i has been used to estimate q2.
Fig. 3.15 shows the profiles of q1 and q2 at x = 2R. It is clear that these data do
not fulfill continuity. In this figure, q1 obtained from the simulation is also shown
and the agreement with the experiment is remarkable. The analysis therefore hints
to a systematic error in the measurement of the radial velocity component at this
location.

Fig. 3.16 shows the turbulent fluctuations of the three velocity components (for
the LES only the resolved part). The qualitative agreement between experimental
and computational results is good for all three components. As with the mean
velocities, the agreement is better for the axial and azimuthal fluctuations than for
the radial component. Although the qualitative agreement is good, the calculation
tends to slightly under-predict the turbulent intensities. As the eddy viscosity in
the present formulation of the dynamic model is clipped to avoid negative values,
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Figure 3.14: Radial profiles of mean velocity components at x/R = 0.2, 1.0, 2.0

and 3.0 (top to bottom as indicated in the rightmost column). Solid
line, H1; open symbols, experimental data from Büchner & Petsch
(2004); closed symbols, experimental data from Hillemanns (1988).
Left, axial velocity, 〈ux〉/Ub. Centre, tangential velocity, 〈uθ〉/Ub.
Right, radial velocity, 〈ur〉/Ub. To enhance readability the range of
the vertical axis has been adjusted individually.
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Figure 3.15: Radial distribution of the terms in the continuity equation for the
averaged flow eqn. (3.2) at x = 2R. Solid line q1 = −r∂〈ux〉∂x

estimated from the experiment. Dashed line q1 from the simulation.
Symbols q2 = ∂(r〈ur)〉∂r estimated from the experiment.

backscatter is not accounted for, and this results in an excess of dissipation, es-
pecially in the region of the jet where the fluid is entrained. It is well known that
eddy-viscosity models are deficient in such a region because the entrainment is a
very intermittent phenomenon. Nevertheless, this is not the only reason for the
disagreement. It is well known that the experimental technique has also difficul-
ties in the outer region of the flow (Jones, 2005). LDA measurements are based on
the tracking of micro-particles which are seeded, in this case, within the jet. In the
surrounding ambient on the other hand no particles are seeded. When a particle
is detected at the interface between the jet and the ambient, it comes from the jet
and hence it has a high velocity. Patches of fluid which originate in the ambient
flow have a low velocity and are not accounted for in the measurement proccess
because they are void of particles. A bias towards high velocities is produced in
the interface region.

It should be stressed, as in the case of the mean velocities, that the agreement
at x = 0.2R is very good, Figs. 3.16a-c. Hence, in spite of the strong idealiza-
tion applied to the inlet geometry, avoiding the swirl-generating device, and the
specification of steady laminar inflow conditions at the entry of the inlet duct,
this procedure yields the correct turbulent fluctuations at the inlet into the main
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domain, i.e. at the jet exit. The fluctuations induced in the shear layers can be
observed in Fig. 3.16a-c. The inner layer generates substantial fluctuations be-
tween r/R ' 0.5 and r/R ' 0.9, while in the central region of the domain the
level of turbulence is much smaller. The outer layer is much thinner than the in-
ner one, but there is also a peak of turbulence intensity associated with it around
r/R ' 1.1.

3.3 Instantaneous flow

3.3.1 Dominant structures

In this section the instantaneous flow is discussed with special emphasis on co-
herent structures. Fig. 3.6, already discussed above, shows velocity vectors in an
axial plane of the time-averaged flow and a snapshot of the instantaneous flow.
The comparison of these two plots gives an impression of the high level of turbu-
lence, especially in the near field of the jet.

It is well known that coherent structures are associated with local minima of
the pressure field (Jehong & Hussain, 1995; Dubief & Delcayre, 2000). Previ-
ous studies (Fröhlich et al., 2005) have shown that the pressure fluctuation is
more suitable for the visualization of coherent structures than the commonly used
instantaneous pressure. Iso-surfaces of the latter are influenced by the spatially-
variable average pressure field which is unrelated to instantaneous structures. This
is avoided when 〈p〉 is substracted from the instantaneous value. Fig. 3.17a
shows an iso-surface of the instantaneous pressure fluctuation p′′ = p − 〈p〉.
In order to facilitate the interpretation, additional smoothing was applied to p′′

in post-processing. This was achieved through two consecutive applications of
a three-dimensional box filter of size 2∆, which is in fact the test filter used in
the dynamic procedure. Fig. 3.17b displays the smoothed field and shows that
the filtering procedure does not affect the large-scale coherent structures, which
validates this procedure for the present case.

Two families of structures are visible in Fig. 3.17. In the inner region of the
jet, elongated helical vortices are observed (labeled I) while those in the outer
region (labeled O) are also helical but oriented at a substantially larger angle with
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Figure 3.16: Radial profiles of rms velocity fluctuations at x/R = 0.2, 1.0, 2.0

and 3.0 (top to bottom as indicated in the rightmost column). Solid
line, H1; open symbols, experimental data from Büchner & Petsch
(2004); closed symbols, experimental data from Hillemanns (1988).
Left, axial component, urms

x /Ub. Centre, tangential component,
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θ /Ub. Right, radial component, urms
r /Ub.

48



3.3. Instantaneous flow

a) b)
¡

¡ª

O1

@
@I

O2

¡
¡µ

I2

@
@R

I1

Figure 3.17: Isosurface of instantaneous pressure fluctuations, p − 〈p〉 = −0.3.
a) Original field computed in H1. b) Filtered field employed for
visualization.

respect to the x-axis. In this snapshot two structures of each type co-exist. One
of the inner vortices (labeled I1) is more pronounced than the other (labeled I2).
In animations of the flow it has been observed that up to three of these vortices
can co-exist at certain instants in time (see Fig. 3.21 below). Most of the time,
however, a single vortex is dominant as in Fig. 3.17b. Both families of vortices
are rapidly damped further downstream. At x/R ' 2 they are already very weak.
It is worth noting that the inner structures extend considerably upstream of the jet
outlet into the annular pipe. The prescription of inlet conditions at the position
of the jet exit, e.g. by assuming fully developed turbulent annular pipe flow, is
therefore not adequate for the present case. Rather, the inflow conditions need to
be specified substantially upstream of the exit, as will be discussed in Chapter 4.

In order to show the evolution of the vortices in time, Fig. 3.18 displays the
same isosurface as Fig. 3.17b at three different instants. For clarity, views from
two different angles are provided. The structures rotate around the symmetry axis
at a constant rate, clockwise when looking upstream. The pictures in the figure
cover an interval of roughly half a rotation period in time.

The inner and outer vortices in Figs. 3.17 and 3.18 are very close to each
other and it is difficult to distinguish if they are actually two structures, or if it
is just one complex vortex. The computations and analyses performed yield the
following conceptual picture: the annular jet creates two shear layers, one on
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Figure 3.18: Isosurface of instantaneous pressure fluctuations (smoothed), p −

〈p〉 = −0.3 from H1 at three instants in time. The colour is given by:
(∂〈ux〉/∂r) > 0, dark; (∂〈ux〉/∂r) < 0, bright. Swirl is clockwise
when looking upstream in axial direction.
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its border with the recirculation zone and the other one on its border with the
surrounding ambient fluid. Both are prone to the Kelvin-Helmholtz instability.
Fig. 3.14a, above, shows the mean axial velocity at x/R = 0.2. At this axial
station, the inner shear layer extends from r/R ' 0.4 to r/R ' 1. The outer
one from r/R ' 1 to r/R ' 1.2. Both shear layers can be distinguished by the
radial derivative of the mean axial velocity, i.e. ∂〈ux〉/∂r. In the inner shear layer
this quantity is positive and in the outer one it is negative. Therefore, the iso-
surface in Fig. 3.18 has been coloured with the sign of ∂〈ux〉/∂r. The fact that
the inner and outer structures are so close is due to the small separation between
the shear layers. To support this interpretation, an additional simulation has been
performed with a Swirl number of S = 0.85 at x/R = −2, i.e. 30 % below the
value used for the main simulation discussed here. When S is lower, the shear
layers are more separated than in the original case. This can be seen in Fig. 3.19,
which shows the mean axial velocity profile at x/R = 0.2 for both simulations,
together with a rough estimation of the widths of the shear layers and the radial
separation between the inner and the outer one for each case. The two kinds of
vortex structures should therefore be further apart. This is indeed observed in
Fig. 3.20, which shows an instantaneous snapshot of an iso-surface of pressure
fluctuations in a similar way as the previous ones.

3.3.2 Precessing vortex cores

In the literature on the subject, the inner structures, labeled I in Fig. 3.18, are
known as precessing vortex cores (PVC) (Gupta et al., 1984; Coats, 1996). The
motion of the PVC can be decomposed into two components. The swirling motion
of the main flow rotates the vortex core around the symmetry axis, at the same
time the vortex spins around its own axis. An idealized sketch of this motion
is shown in Fig. 3.21d. As the vortex is oriented preferentially in streamwise
direction for this level of swirl (see Fig. 3.18d), its presence generates radial and
tangential velocity fluctuations. In addition to this motion a high level of axial
velocity fluctuations is observed in the interior of the PVC. This is visualized in
Fig. 3.21 which shows contour plots of axial velocity fluctuations and pressure
fluctuations close to the outlet at x = 0.2R. This plane was chosen since plots
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r/R

〈ux〉/Ub

Figure 3.19: Mean axial velocity 〈ux〉/Ub at x/R = 0.2. Dashed line, original
simulation H1. Solid line, simulation with a lower level of swirl,
S = 0.85. The arrows indicate the approximate width of the in-
ner and outer shear layers for both simulations. The patches show
the resulting radial separation between the inner and the outer shear
layer. Light patch, original simulation H1. Dark patch, simulation
with lower swirl.

a) b)

Figure 3.20: Coherent structures from a simulation with a lower level of swirl,
S = 0.85 at x/R = −2, visualized by instantaneous pressure fluctu-
ations (unsmoothed), coloured as in Fig. 3.18. a) Side view. b) View
from downstream.
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like those in Fig. 3.18 show that the inner structures are strongest in this part of
the domain. The PVC can be identified as the region of low pressure fluctuations
in Fig. 3.21b, which is marked with an arrow. At the same position, a region of
positive axial velocity fluctuations can be seen in Fig. 3.21a, while a large region
of negative fluctuations is also present with a phase difference of approximately
180◦. Fig. 3.22 shows time signals of pressure and axial velocity close to the jet
exit and Fig. 3.23 its corresponding cross-correlation. In the signals the minima
of the pressure represents the quasi-periodic passing of the PVC through the point
in which the signal has been recorded. As Fig. 3.21 already suggests, there is a
strong correlation between the minima of the pressure and the maxima of the axial
velocity. Observe the large amplitude of the velocity signal and the occurrence of
negative values. This issue will be discussed further below.

The PVC was detected experimentally some thirty years ago (Syred & Beér,
1974) but the origin of these structures it is still not totally clear. In a series of
experimental studies (Syred et al., 1994; Froud et al., 1995; Syred et al., 1997)
a possible mechanism for the formation of the PVC in a confined configuration
was proposed. However, this cannot explain why the PVC is also observed in
open configurations, and why it is possible that several PVCs coexist at the same
instant. Schlüter (2000), without further support, mentions that the vortex could
develop as a Taylor-Görtler instability, or as a shear layer instability in the cir-
cumferential direction, like in the Kelvin-Helmholtz instability.

To address the issue it should be recalled that in the Taylor-Görtler instability,
the vortex axis is parallel to the mean flow (Schlichting & Gersten, 1996), while
in the Kelvin-Helmholtz instability the vortex axis is perpendicular to the mean
flow. Fig. 3.24 shows the inner coherent structures in the present LES and se-
lected three-dimensional streamlines of the mean flow. The origin of the latter
has been positioned in the inner region of the jet. The streamlines were computed
only downstream. Obviously, the vortex axis is not parallel to the streamlines but
orthogonal to them. This fact supports the interpretation that the precessing vortex
core is generated by a shear-layer instability, i.e. a Kelvin-Helmholtz instability,
of the inner shear layer.
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Figure 3.21: a − c) Contour plots in a transverse plane at x/R = 0.2 and the
same instant in time. The straight arrows point at the dominant PVC
observed at this instant. The curved arrows indicate the sense of
rotation. a) Instantaneous axial velocity fluctuations. b) Instanta-
neous pressure fluctuations. c) Instantaneous axial velocity compo-
nent. The white line is a pressure fluctuation contour p−〈p〉 = −0.7

extracted from the data shown in b). The black line is the boundary
of the recirculation zone ux = 0. d) Idealized sketch of the PVC
motion in the transverse plane.
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Figure 3.22: Time signal at x/R = 0.1, r/R = 0.6. a) Axial velocity. b) Pressure.
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Figure 3.23: Temporal cross-correlation of axial velocity and pressure fluctua-
tions 〈u′′x(t)p

′′(t+ ∆t)〉 at x/R = 0.1, r/R = 0.6.
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Figure 3.24: Coherent structures of the instantaneous flow as in Fig. 3.18 but the
level of the iso-surface is p − 〈p〉 = −0.5. Only the inner region
r < R is shown. The black lines represent stream ribbons of the
averaged flow issued at different positions in the inner region of the
jet around r/R ∼ 0.5.

3.3.3 Fluctuations of axial velocity component

Phase-averaged measurements in a typical swirl-burner configuration have shown
that the distribution of axial velocity was asymmetric (Froud et al., 1995). The
highest forward velocities were measured near the outer edge of the swirling flow
but the forward velocities in the region containing the PVC were up to 50% larger
than the velocities in the diametrically opposite region. The region of reverse
flow was found to be located on the opposite side of the core from this region
of highest forward velocity. Fig. 3.21c shows a contour plot of an instantaneous
axial velocity field together with a white line showing the position of the PVC and
a black line corresponding to ux = 0. This plot confirms the findings of Froud
et al. (1995). However, by comparison of Figs. 3.21a and 3.21c it is observed
that the region of highest forward velocity does not correspond to the region of
highest forward velocity fluctuations u′′x; the highest values of forward velocity
fluctuations in Fig. 3.21a are substantially remote from the outer edge of the
annular jet while the largest values of ux in Fig. 3.21c are observed very close to
the outer edge (see also Figs. 3.14a and 3.16a). The axial velocity fluctuations
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are very large with velocity differences of up to 2.5Ub. A typical time signal is
shown in Fig. 3.22a. In order to see that the region of highest forward velocity
fluctuations is indeed associated with the PVC, Fig. 3.23 shows the temporal
cross-correlation between the axial velocity and the pressure 〈u′′x(t)p

′′(t + ∆t)〉.
The negative correlation shows that the low pressure which is related to the vortex
core is correlated with the high forward velocity. The maximum correlation is not
achieved for ∆t/tb = 0 but for ∆t/tb = 0.16. This is due to the fact that the
pressure is minimum at the vortex core while the velocity fluctuation is maximum
at the outer edge of the PVC and lags somewhat behind it. The time 2∆t/tb =

0.32 gives an estimation of the time it takes for a PVC to pass through a point at
this radial location. (The factor 2 appears in the expression because ∆t accounts
only for the radius of the vortex)

Fig. 3.25 shows spatial two-point auto-correlations of the three velocity com-
ponents with respect to the angular separation ∆θ at x/R = 0.1 r/R = 0.6. The
axial velocity autocorrelation is different with respect to the other two compo-
nents. It does not go to zero when the angular separation increases but saturates
at a negative value of -0.2 for ∆θ = 120◦ to 180◦. This is explained by the two
regions of positive and negative axial fluctuations which were observed in Fig.
3.21a. The radial location where the correlations are computed, r/R = 0.6, is
positioned slightly radially outwards of the center of the PVC (see also Fig. 3.32a
below). Therefore, as illustrated by the sketch in Fig. 3.21d, u′′θ is always posi-
tive and the tangential-velocity autocorrelation does not become negative. On the
other hand, the radial fluctuations decay from positive to zero at ∆θ = 35◦ and
remain negative for larger angles approaching zero. The minimum of the radial-
velocity auto-correlation at ∆θ = 60◦ provides an estimate of the angular size of
the vortex.

3.3.4 Outer structures

The outer structures are not mentioned as often in the literature as the precessing
vortex core. Gupta et al. (1984) described them as ”a large eddy in the radial-axial
direction which is shed in a continuous process behind the passing PVC”. Fig.
3.26 shows the coherent structures and selected three-dimensional streamlines of

57



Chapter 3. LES of a turbulent unconfined annular swirling jet.

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

∆ θ

R11
R22
R33

Figure 3.25: Spatial two-point autocorrelation as a function of angular separation
at x/R = 0.1, r/R = 0.6. R11, axial velocity. R22, radial velocity.
R33, tangential velocity.

the mean flow passing through the outer structures. The origins of the streamlines
are at x/R = 0, r/R = 0.95, i.e. in the outer region of the jet, at four different
angles. It can be seen, as in the case of the inner structures, that the structures
are ortoghonal to the average streamlines. This explains the creation of the outer
structures by a Kelvin-Helmholtz instability of the outer shear layer, as described
above for the inner structures. In Fig. 3.18 and corresponding animations, it is
possible to see that the appearance of the outer structure is indeed ’locked’ to the
presence of the inner one. A possible explanation is that the inner structures are
associated with high axial velocities, and as they pass the high velocity region
triggers the formation of the outer structures.

3.3.5 Secondary structures

To conclude the analysis of the coherent structures, Fig. 3.27 shows an isosur-
face of unfiltered pressure fluctuations. The color in the figure just represents
the radial distance from the symmetry axis and has been included to facilitate
the visibility of the vortices discussed. It can be seen that the large-scale coherent
structures generate secondary instabilities oriented in streamwise direction and lo-
cated at the outer boundary of the outer spirals. Only accidentally, the smoothed
plot in Fig. 3.26 exhibits ”blobs” reminiscent of these, near the crossings of the
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Figure 3.26: Coherent structures of the instantaneous flow as in Fig. 3.18. The
black lines represent stream ribbons of the averaged flow issued at
x/R = 0, r/R = 0.95 and four angular positions with an angular
distance of ∆ϕ = 90o.

average streamlines plotted in this figure. These secondary structures resemble
the structures in a plane shear layer where counter-rotating vortex pairs, oriented
preferentially in streamwise direction and usually known as ”braids”, are formed
between the spanwise primary structures due to the stretching of the flow. In the
present simulation, the secondary vortices observed seem to appear at a relatively
large spacing, but so far quantitative statements cannot be made.

3.4 Analysis of spectra

3.4.1 Computational procedure and general shape

In the experiment (Büchner & Petsch, 2004), time signals of velocity have been
recorded close to the jet exit at x/R = 0.1, r/R = 0, 0.6, 0.8. During the si-
mulation, velocity and pressure signals were recorded at the same positions for a
duration of 115 tb. Furthermore, signals were recorded for each of these positions
at 12 different angular locations over which additional averaging was performed.
Fig. 3.22 shows a small part of a time signal of the axial velocity and the pressure
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Figure 3.27: Unsmoothed iso-surface of pressure fluctuations p′′ = −0.3. It has
been coloured according to the radial coordinate to highlight sec-
ondary structures in streamwise direction which are located at the
outer boundary of the outer spiraling vortices.

at x/R = 0.1, r/R = 0.6. The precessing vortex cores discussed in the previ-
ous section are expected to pass right through this point. Indeed, the presence of
the structures is indicated by the large oscillations observed in the time signals of
both axial velocity and pressure. An analysis of the power spectral density (PSD)
is used to obtain the frequencies of rotation. The analysis was performed using a
windowed Fourier transform with a Hann window (Oppenheim & Schafer, 1989)
and segments of length 211, i.e. spanning a length of 32.8 time units. The full sig-
nal was decomposed into eight such overlapping segments over which averaging
was performed. These parameters were selected so as to obtain the best-possible
compromise between smoothness of the spectra and width of the frequency win-
dows covered.

Fig. 3.28 shows the power spectral density of the axial velocity fluctuations at
x/R = 0.1, r/R = 0.6, i.e. very close to the jet exit and in the region of the
inner shear layer. It exhibits several ranges. At low frequencies several peaks
appear which represent the energetic content of the coherent structures. This is
followed by a region in which a regular decay of slope -5/3 takes place over about
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Figure 3.28: Power spectral density of axial velocity fluctuations at x/R = 0.1,
r/R = 0.6. The straight line has a slope of −5/3.

one decade in frequency. Finally there is a high-frequency region of faster decay
which is related to the effective filter of the LES. In the experiment it was not
possible to measure frequencies in the turbulent inertial subrange. The maximum
resolved frequency was about fR/Ub = 2. In the graphs below the comparison
with the experiment is therefore performed only in this range.

3.4.2 Dominant frequencies

Fig. 3.29 shows a comparison of power spectral densities of velocity fluctuations
between experiment and simulation at x/R = 0.1, r/R = 0.6 (later it will be im-
portant that in the simulation the position actually was r/R = 0.605). The inner
structures are expected to pass through this point, as evidenced by the previous
visualizations. Indeed, they generate a pronounced peak and higher harmonics.
All power spectral densities are normalized with the energy of the signal up to
the frequency which was available in the experiment. As the energy at higher
frequencies in the simulation is not negligible, its inclusion in the normalization
would affect the comparison with the experiment. The agreement is excellent
for the axial and radial velocity components in terms of the dominant frequency,
even with respect to the amplitude of the corresponding peaks. Concerning the
tangential velocity component, the frequency is in good agreement, but the shape
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of the spectrum is different with respect to the amplitude of the peaks. This will
be addressed further below. The precessing frequency of the vortices corresponds
to the first peak, and the higher harmonics correspond to the number of vortices
present in the flow field. In visualizations as displayed in Figs. 3.18 and 3.21
up to three precessing vortex cores of different strengths were observed at certain
instants. Most of the time, however, only one PVC is present and this is why the
first peak is more pronounced. In the spectrum of the radial velocity, Fig. 3.29b,
the first two peaks have similar amplitude. This is due to the following effect. For
the axial fluctuations u′′x, a dominant structure such as seen in Fig. 3.21a yields
a single temporal increase of the signal measured at a point like Q in Fig. 3.21d.
For the radial fluctuations u′′r , a single passage of a vortex first produces negative
then positive radial fluctuations as sketched in Fig. 3.21d, hence a spectrum with
doubled frequency. The simulation predicts very accurately the frequencies of
the principal peak: fpeak = 0.31Ub/R in the LES and fpeak = 0.32Ub/R in the
experiment. In the experiment, the latter corresponds to a dimensional value of
f = 160 Hz.

Fig. 3.30 shows the power-spectrum density of velocity fluctuations at x/R =

0.1 on the symmetry axis. At this position only two spectra are shown because all
directions perpendicular to the centreline are statistically equivalent. Also at this
point the simulation is in very good agreement with the experiment although the
agreement is not as impressive as above. This is due to the fact that on the axis
no azimuthal averaging is possible and therefore a longer time signal would be
needed to provide similar averaging quality. The spectrum of fluctuations ortho-
gonal to the centreline, Figs. 3.29b and 3.29d, exhibits a pronounced peak at the
same frequency as the precessing vortex core. In the spectrum of the axial velo-
city fluctuations at this position no pronounced peak is observed, Figs. 3.29a and
3.29c. At this location, the axial component is blocked by the wall, suppressing
the periodic oscillation.

As mentioned above in relation to Fig. 3.29, the agreement with the experimen-
tal data is excellent for the axial and radial velocity components and less good for
the tangential velocity component. To investigate this issue, time signals have
been recorded at x/R = 0.1 and x/R = 0.4, at several radial positions but each
time only at one azimuthal location for technical reasons. Therefore no azimuthal
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Figure 3.29: Power spectral density of velocity fluctuations at x/R = 0.1, r/R =

0.6 in the experiment. At x/R = 0.1, r/R = 0.605 in H1. a) − c)

Simulation d)− f) Experiment Büchner & Petsch (2004). a) and d)
Axial velocity fluctuations. b) and e) Radial velocity fluctuations. c)
and f) Azimuthal velocity fluctuations.

averaging is possible with these time series and the spectrum is less smooth. Fig.
3.31 shows the PSD of axial and tangential velocity fluctuations at x/R = 0.1

and r/R = 0.594. The PSD of the axial velocity fluctuations is close to the one in
Fig. 3.29a, defined at r/R = 0.605 and with azimuthal averaging. This provides
an impression of the impact of the averaging. The PSD of tangential velocity
fluctuations exhibits a significant difference with respect to Fig. 3.29c. Note that
the change in radial position is only ∆r = 0.01. In fact, the shape of the PSD
of tangential velocity is closer to the experimental spectrum, Fig. 3.29f , than the
spectrum obtained at r/R = 0.605, Fig. 3.29c. For this component the spectrum
is very sensitive to the radial location. This issue is discussed in the following
section
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Figure 3.30: Power spectral density of velocity fluctuations at x/R = 0.1, r/R =

0. a)−b) Simulation c)−d) Experiment Büchner & Petsch (2004). a)
and c) Axial velocity. b) and d) Radial velocity. (Note that all direc-
tions orthogonal to the centreline are statistically equivalent. There-
fore only two spectra are shown in this figure.)

3.4.3 Relation between the spectra and the coherent structures

Fig. 3.32 shows the amplitude of the power spectrum at the fundamental fre-
quency fpeak as a function of the radial position. This figure provides information
on the organized fluctuations while in the statistical data, Fig. 3.16, the orga-
nized fluctuations are mixed with the turbulent fluctuations. It is apparent that the
power spectrum amplitude of the tangential velocity fluctuations changes rapidly
with radial position around r/R = 0.6, explaining the sensitivity to the radial
location observed in Figs. 3.29c and 3.31.

The shape of the curves shown in Fig. 3.32 is different for the three velocity
components. In order to understand the figure it is necessary to consider the
motion of the PVC in the transverse plane x/R = 0.1 by means of the sketch
in Fig. 3.21d. In the ideal case of a vortex core rotating at a regular rate around
the symmetry axis, the spectrum of azimuthal velocity fluctuations u′′

θ at a point
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Figure 3.32: Value of the power spectrum at the fundamental frequency fpeak as a
function of r/R. a) x/R = 0.1, b) x/R = 0.4
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like Q in Fig. 3.21d should not contain any peak, because the center of the vortex
is passing always through this point. Therefore, the minimum in the curve for
uθ observed at r/R = 0.55 in Fig. 3.32a indicates the mean radial location of
the PVC centre. For r/R < 0.5, the axial velocity component is blocked by the
wall while the radial and tangential ones are not. This blocking is reduced further
downstream due to the larger distances from the wall. The radial and tangential
components have a similar behaviour for r/R < 0.5, and they converge in the
centreline as expected due to radial symmetry. For r/R > 0.6, the spectrum
amplitude of the radial fluctuations decays with r . Due to the regions of positive
and negative axial fluctuations observed in Fig. 3.21a, the amplitude of the axial
component is significantly higher than the amplitude of the other components for
r/R > 0.5.

Once the mean radial location of the PVC centre has been established, it is
interesting to note that at x/R = 0.1 and r/R = 0.6 there is an accumulation of
energy in the spectrum of tangential velocity fluctuations at low frequencies, one
order of magnitude lower than the fundamental, precessing frequency, which does
not appear in the other components. It can be observed both in the experiment
and the simulation (see Figs. 3.29c and 3.29f ). This phenomenon is likely to be
related to the unsteady location of the vortex core. In the mean, its radial position
at x/R = 0.1 is revealed by the minimum in Fig. 3.32a, but it is not constrained
in radial direction and can exhibit low frequency oscillations of its position in this
direction. These oscillations are most likely responsible for the accumulation of
energy at low frequencies.

3.4.4 Discussion

There have been several studies concerned with the dynamics of the near field of
non-swirling coaxial jets (Ko & Kwan, 1976; Kwan & Ko, 1977; Dahm et al.,
1992; Akselvoll & Moin, 1996; da Silva et al., 2003). In particular Dahm et al.
(1992) have shown that as soon as the velocity ratio of the two coaxial streams is
large enough, the two layers do not evolve independently but the development of
the layers is locked. Evidence of this effect is provided by the fact that the vortex
passage frequency ratio F = fi/fo between the inner and outer layer differs from
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Figure 3.33: Power spectral density of radial velocity fluctuations. Outer shear
layer, solid line x/R = 1.0, r/R = 1.2. Inner shear layer, dashed
line x/R = 0.1, r/R = 0.6.

the values predicted by assuming that the shear layers evolve independently. In
Dahm et al. (1992) the authors found a value F ' 1 for this ratio when the velo-
city ratio between inner and outer jet was about 4 and F ' 2 when the velocity
ratio was about 1.15. This was confirmed by numerical simulations (Akselvoll &
Moin, 1996; da Silva et al., 2003).

In the present case of an annular swirling jet, instead of a non-swirling coaxial
jet, only a qualitative analysis is possible. Although an annular jet can be con-
sidered as a coaxial jet in which the outer-to-inner-stream velocity ratio tends to
infinity, it is to be stressed that the dynamics of the present case are very different
due to the curvature effects induced by the swirl and the corresponding central
recirculation zone. No experimental time signals in the region of the outer shear
layer are available. This information, on the other hand, can be extracted from
the LES. Fig. 3.33 shows a comparison of the power spectral densities of radial
velocity fluctuations at two different points, one in each shear layer. From the
figure it is clear that the main frequency and the higher harmonics are the same
in both shear layers. This result supports the previous visual impression of Fig.
3.17 that the inner and outer structures are locked. It is also consistent with the
findings of Dahm et al. (1992) mentioned before.
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Finally, as the inner structures rotate at a constant rate, an estimation of the
precessing velocity of the structures can be made using the precessing frequency
of the vortices, to yield uprec = ωprec rc = 2π rc fpeak where ωprec and uprec are
the angular velocity and precessing velocity of the inner structures, respectively,
and rc is the radial position of the vortex center (see Fig. 3.21d). In Gupta et al.
(1984), for a configuration which exhibited similar phenomena as the present one,
it was found that at the radius of the center of the vortex core the precessing
velocity of the PVC was equal to the measured mean tangential velocity at that
radius. However, the present results point into a different direction. In the current
simulation the value uprec = 2π rc fpeak ' 1.15Ub is obtained at x/R = 0.1. This
precessing velocity is higher than the mean tangential velocity at this point, which
is 〈uθ〉 = 0.65Ub. The structures are hence moving faster than the mean flow at the
center of the shear layer. An explanation can be obtained from the mean tangential
velocity profile in Fig. 3.14b. In high velocity regions (at r ∼ R) the area (2π r) is
larger than in low velocity ones (at r ∼ 0.5R), and therefore the center of inertia
of the velocity distribution through the shear layer is displaced towards higher
speed. Another explanation could be related to the previous discussion of the
frequency ratio. As the shear layers interact, the precessing velocity of the PVC
could be the result of such interaction. Furthermore, the curvature of the shear
layer may also play a role. To clarify this issue, stability analyses using the mean
flow as base flow as undertaken by Paschereit et al. (2000a) may be helpful, but
they are beyond the scope of the present thesis.
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4 Inflow boundary conditions

In this chapter the use of approximate inflow boundary conditions is assessed.
First, the general problem of specifying swirling inflow conditions is discussed
and the methods proposed in the literature are described. Then, the results of
three simulations are compared in terms of velocity profiles, visualization and
spectra. It is shown that good agreement of mean and rms velocities is not, in
general, sufficient for a realistic representation of the experimental conditions.
The unsteady large scale structures of the flow must also be taken into account.

In the previous chapter the approach employed for the specification of inflow
conditions has proven to be successful. The geometry of the burner was simple
enough to allow for the inclusion of the inlet ducts up to the swirl-generating
device in the computational domain. However, in a more complex burner this
might not be the case leading to an excessive cost of the inflow region. Therefore,
in this chapter more general approaches are considered which could be used in
such cases.

4.1 Generation of inflow conditions for swirling flows

LES of spatially inhomogeneous flows require unsteady inflow boundary con-
ditions with a proper representation of the turbulent fluctuations, as discussed in
§2.2.1. Such turbulent inflow conditions must therefore reflect the three-dimensio-
nal, unsteady nature of turbulence. The results are often highly sensitive to these
boundary conditions.

In order to obtain the most accurate predictions of the velocity field in the re-
gion of interest, the computational domain should ideally be extended to include
all upstream geometry that may influence flow properties further downstream.
This includes all flow conditioning devices, like tangential jets or swirl vanes in
the case of a swirling flow. This is generally not practical and computationally too
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Figure 4.1: Generation of inflow data.

demanding. Nevertheless, some examples are reported in the literature like Weg-
ner et al. (2004a). In that reference, simulations of flow in a swirl burner were
reported, in which the swirler device was included in the computational domain.
Therefore, a very complex grid was required.

4.1.1 Equilibrium swirling inflow conditions

It is often necessary or desirable to consider approximate inflow conditions. In
many cases, the flow at the inlet is a developing turbulent stream in a duct that can
be approximated as fully developed. The unsteady inflow conditions can then be
generated by simulating a spatially periodic section of a pipe. This approach was
generalized for swirling flows by Pierce & Moin (1998b). As these authors point
out, swirling flows are not self-sustaining and must eventually decay, independent
of the initial forcing that created them. If this relaxation process is sufficiently fast
or if the forcing device is located sufficiently far upstream, then an equilibrium
swirling inflow condition that is easier to model will result. This is also the closest
flow to a fully developed swirling flow. The method for generating swirling flows
numerically is to solve for the flow driven by fictitious axial and azimuthal body
forces in a spatially periodic duct, from which data are fed as the inflow boundary
condition into the main computational domain. This is illustrated in Fig. 4.1.

The axial body force represents the mean pressure gradient that drives the phy-
sical flow and has long been established as a means of driving spatially periodic
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4.1. Generation of inflow conditions for swirling flows

pipe or channel flows (see for example Wille, 1997, chap. 5). On the other hand,
the azimuthal body force used to drive the swirl component is not realistic and
should be thought of as existing only to provide the swirl. The resulting flow
is a stationary approximation to slowly decaying swirl. As the swirling force is
not physically producible, there is some freedom in choosing the forcing pro-
file. Pierce & Moin (1998b) tried several profiles, constant forcing, linear and
quadratic profiles with respect to the radial coordinate, with the same overall
strength of the applied force. They found that the resulting swirl velocity was
rather insensitive to changes in the forcing profile. A spatially constant forcing
appeared to be adequate and for simplicity is the usual choice for this kind of
simulations.

The strength of the applied force still needs to be specified. In a channel flow
configuration, there are two obvious ways of doing this. First, the mean pressure
gradient can be fixed, then the mass flow through the channel has to adjust to
give a wall shear stress corresponding to the mean pressure gradient. (Since in
fully developed turbulent channel flow the mean streamwise pressure gradient
∂〈p〉/∂x has to balance the mean wall shear stress 〈τw〉 (Pope, 2000, p. 267)).
Alternatively, as suggested by Benocci & Pinelli (1990), the mass flow rate can
be fixed by adjusting the forcing term appropriately. Thus, the mean wall shear
stress is allowed to adjust to the specified flow rate. The second approach is used
in the present work. The reason is that the wall shear stress is not always known
a priori and it is usually part of the desired solution. In a similar way, the strength
of the swirl body force is adjusted to achieve the desired level of swirl, i.e. to get
the desired swirl number defined as

S =

∫R
0 ρuxuθr

2dr
R
∫R
0 ρu2

xrdr
. (4.1)

4.1.2 Generalization of the method

When the inflow conditions cannot be approximated as fully developed, their
specification becomes significantly more difficult. Usually, some specified mean
velocity or turbulence statistics profiles are known from an experiment or a RANS
calculation, and it is desired to have the same profiles of statistical quantities ap-
plied to the inflow boundary of the LES. However, as already mentioned, LES
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requires instantaneous data as inflow conditions and not only statistical data. To
overcome this difficulty, the usual approach is the specification of statistically
constrained random numbers superimposed on the desired mean flow (Akselvoll
& Moin, 1995; Le et al., 1997) although more sophisticated approaches are avai-
lable too (Klein et al., 2003).

A more attractive approach, first suggested by Pierce (2001), is to generalize
the ”fully developed” approximation described above to include the larger class
of parallel flows having arbitrarily specified velocity statistics profiles. The de-
sired flow is created by simulating a spatially periodic, parallel duct flow and
constraining it using a corrective body forcing technique. The resulting flow has
the desired statistical properties, and it provides realistic turbulence data which
are in equilibrium with the specified mean statistics. Assume that a desired mean
velocity profile T (r) and fluctuation intensity profile T ′(r) are given (T is used
as an abbreviation for target and it is assumed that the profiles only depend on
the radial coordinate). The forcing technique then proceeds as follows. At each
time step, the streamwise averaged velocity 〈ux〉(r, θ, t) and fluctuation variance
〈u′2x 〉(r, θ, t) are computed

〈ux〉(r, θ, t) = 〈ux(x, r, θ, t)〉x, (4.2)

〈u′2x 〉(r, θ, t) = 〈ux(x, r, θ, t)
2〉x − 〈ux〉(r, θ, t)

2, (4.3)

where 〈·〉x denotes the operation of averaging in streamwise direction. Then, the
following step would be to rescale and shift the instantaneous velocity field so
that it has the specified mean and fluctuating velocity profiles

ux(x, r, θ, t) →
T ′(r)

√
〈u′2x 〉(r, θ, t)

[ux(x, r, θ, t) − 〈ux〉(r, θ, t)] + T (r), (4.4)

where the arrow indicates the operation of rescaling and shifting. However, this
rescaling is not possible because the velocity field obtained in that way will not
in general fulfill continuity. An equivalent approach is to add an appropriately
defined body force fx(x, r, θ, t) to the momentum equation

fx =
T ′(r)

√
〈u′2x 〉(r, θ, t)

[ux(x, r, θ, t) − 〈ux〉(r, θ, t)] + T (r) − ux(x, r, θ, t). (4.5)
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If only the mean velocity profile is constrained, then the body force (4.5) is sim-
plified,

fx = −〈ux〉(r, θ, t) + T (r). (4.6)

This approach, as noted by Pierce (2001), appears to be an attractive alternative
for generating realistic turbulent inflow conditions having specified mean statisti-
cal properties. In the case of swirling flow in a pipe, the method can be used to
impose given profiles of axial and tangential velocity, by adjusting corresponding
body forces in axial fx and azimuthal fθ directions. It is not possible however
to impose a given mean radial velocity profile with the present formulation. In
order to see this, first, imagine that body forces are applied to the momentum
equations in axial, azimuthal and radial direction, fx, fθ and fr, respectively, to
impose given profiles of Ux, Uθ and Ur. In the continuity equation for the mean
flow

∂ux

∂x
+

1

r

∂(rur)

∂r
+

1

r

∂uθ

∂θ
= 0 (4.7)

the first and third term are identically zero due to the periodic boundary conditions
in streamwise and azimuthal directions. Therefore,

∂(rur)

∂r
= 0 (4.8)

and using the boundary conditions at the pipe walls, it is found that ur is identi-
cally zero. Thus, although a body force has been applied in radial direction, the
continuity equation forces the radial velocity to be zero. Numerically, the force in
radial direction must be absorbed by the pressure. This drawback, however is not
very serious because the radial component is usually much smaller than the other
two components for this kind of flows (see for example Fig. 3.14a− c).

4.2 Description of the simulations

It has been common practice in the literature on LES and DNS of jets to locate
the inflow plane at the jet exit (Olsson & Fuchs, 1996; McIlwain & Pollard, 2002;
da Silva et al., 2003). While this is a validated approach for non-swirling jets, its
use in swirling jets is dubious because the dynamically relevant processes occur
closer to the jet exit (e.g. recirculation zone). Nevertheless, the location of the
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Figure 4.2: Description of the three approaches for the specification of inflow con-
ditions considered in the present chapter . The contour plots show the
mean axial velocity component.

inflow plane at the jet exit is the cheapest option from the computational point of
view. Therefore, it is interesting to assess whether this approach is feasible for
the present case. This was done using the method of the previous section, i.e. by
using body forces to impose the profiles of axial and tangential mean flow from
the experiment of Hillemanns (1988) measured very close to the jet exit.

Alternatively, the inlet plane can be located upstream of the jet exit. This ap-
proach maintains the simplicity of the grid while the computational cost is slightly
higher, because the domain to be simulated is larger. In this case, as demonstrated
by Akselvoll & Moin (1995), the resolution close to the expansion is critical. For
the present configuration it is not possible to use the generalized method of the
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4.2. Description of the simulations

Sim. Grid SGS m. Inf. method Inf. boundary
H1 F1 (∼ 6 mio.) Dyn. Inf. geo. −3.75 < x/R < −3

H7 F2 (∼ 6 mio.) Dyn. fixed S x/R = −2

H8 F3 (∼ 6 mio.) Dyn. fixed prof. x/R = 0

Table 4.1: Overview of the simulations to assess the inflow conditions.

previous section, because no measurements are available in the upstream duct.
Therefore, to locate the inflow plane upstream of the jet exit it is necessary to use
equilibrium swirling inflow conditions, with a given value of S such that the swirl
at the jet outlet corresponds to the one in the experiment.

Three simulations are considered in the present chapter which are summarized
in Table 4.1 and represented in Fig. 4.2. The first simulation, H1, is the reference
case of Chapter 3. The computational domain includes a representation of the
inlet duct upstream of the jet exit up to the swirl generating device. At that loca-
tion, the flow is imposed at the circumferential inflow boundary, by using laminar
top-hat profiles for the radial and azimuthal velocity components. In the second
simulation, H7, the inflow plane is located at x/R = −2 and equilibrium swirling
inflow conditions are employed imposing the value of S = 1.2 in the precur-
sor simulation. Finally in the third simulation, H8, the inflow plane is located at
x/R = 0 and the generalized method is employed, using body forces in the axial
and azimuthal directions as described in eq. (4.6) to obtain the desired mean axial
and tangential velocity profiles at the jet exit. It was also planned to perform a
simulation imposing the turbulent statistics using eq. (4.5), but it turned out that
it was not necessary for reasons that will become clear in the following sections.

Downstream of the jet exit, i.e. for x/R > 0, the grids employed in the simula-
tions, F1, F2 and F3, have the same distribution of cells. The difference between
the grids is due to the different inlet geometry in each case. Nevertheless the
number of cells in that region has been kept similar in all cases.
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4.3 Comparison of results

4.3.1 Mean and RMS velocity profiles

A comparison of the results obtained with the different methods is reported in
Figs. 4.3 and 4.4. The present results show good agreement with the experimental
data for the three cases considered. Mean velocity profiles are displayed in Fig.
4.3 at x/R = 0.2, x/R = 1 and x/R = 3. For H8, the flow at x/R = 0.2 can not
influence the flow upstream because the inlet plane is too close. Also for H8 at the
inflow plane, 〈ur〉 is identically zero as explained in the previous section, while
in the experiment (and both H1 and H7) this is not necessarily the case, because
the flow has already started to expand. As a consequence, H8 presents small
discrepancies with respect to the experimental data Figs. 4.3(a1) and 4.3(a2), in
particular the backflow is underpredicted and the tangential velocity component
is underpredicted for r/R < 0.5 and overpredicted for r/R > 0.5. H1 and
H7 at this axial location present excellent agreement with the experiment. Further
downstream, at x/R = 1 and x/R = 3, not only H1 and H7 yield good agreement
but so does H8. This suggests that the three approaches are appropriate to obtain
good predictions of mean velocity profiles.

The RMS axial and tangential velocities are reported in Fig. 4.4 at the same
locations as the mean velocity profiles. Recall that in H8 only the mean velocity
profiles were imposed at the inflow plane. No effort was made to adjust the turbu-
lence statistics. This is the reason why at x/R = 0.2 Figs. 4.4(a1) and 4.4(a2),
the disagreement between H8 and the experiment is large. In that simulation, the
level of turbulence is substantially larger in the outer shear layer and it is smaller
in the inner shear layer. H1 and H7, on the other hand are both in good agreement
with the experiment, with a slight overprediction of the turbulence level in H1 and
underprediction in H7. However, these results do not invalidate H8 because, as
explained in the previous section, in principle it would be possible to modify the
body forces in the precursor simulation to obtain the desired levels of turbulence.
Furthermore, a bit downstream, at x/R = 1, the turbulence statistics are in good
agreement with the experiments for the three cases. The level of turbulence is well
captured in the three simulations, and only in H8 a small bump remains as left-
over of the higher level which was present upstream. At x/R = 3 the differences
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between the cases are almost negligible.

4.3.2 Visualization and Spectra

In the previous section it has been shown that the three methods provide good
predictions of the mean flow and the turbulence statistics in the near field of the
jet beyond x/R = 1. Now, the instantaneous flow is discussed and the analysis
is complemented with the PSD at a monitoring point (x/R = 0.1, r/R = 0.6).
Fig. 4.5 displays iso-surfaces of unsmoothed pressure fluctuations on the left side
and the corresponding PSD of axial velocity fluctuations on the right side. Fol-
lowing the analysis performed in Chapter 3, the structures are colored dark in the
region where ∂〈ux〉/∂r > 0 and colored light in the region where ∂〈ux〉/∂r < 0.
Only one snapshot is provided, but animations were generated and the following
comments are based on these. In H1 Fig. 4.5(a1) two families of structures are
identified (labeled I1 and O1 in the figure) which lie on the inner and outer shear
layers respectively. In the corresponding PSD a pronounced peak is present and
some energy is concentrated in higher harmonics. The frequency of the first peak
has been identified as the precessing frequency of the inner structures in their ro-
tation around the symmetry axis. (For more details see Chapter 3). Likewise in
H7, Fig. 4.5(b1), two families of structures are identified in the flow. The corres-
ponding PSD exhibits peaks at the same frequencies as H1. The energy content
of the second harmonic, however, is substantially larger than in H1. This suggests
that although the flow instability has been captured in H7, some features are diffe-
rent in both simulations. Animations show that one important difference between
H1 and H7 is the fact that in H1 coherent structures extend eventually further
upstream into the inlet duct reaching sometimes the plane x/R = −2 where the
inflow plane is located in H7. Excursions of coherent structures into the inlet duct
also occur in H7, but of course to a more limited extent. This indicates that it
would have been better to locate the inflow plane of H7 even further upstream, in-
creasing therefore the computational cost. Nevertheless, the differences between
H1 and H7 are minor when compared to H8.
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In H8 the structures are more irregular than in H1 and H7, Fig. 4.5(c1). They
cannot enter the inlet duct because the inlet plane is located at the jet exit. This
constrains the formation of large-scale coherent structures in the inner part. In the
present case, the inner structures cannot form in the physically correct manner and
therefore also the outer structures do not form. Instead, as hinted in Fig. 4.5(c1)

and confirmed in animations, only irregular short-living structures are formed in
both shear layers. This is confirmed by the corresponding PSD in Fig. 4.5(c2)

where no peak is observed.

4.4 Discussion

It has been already mentioned several times that LES of spatially inhomogeneous
flows require unsteady inflow boundary conditions with a proper representation
of the turbulent fluctuations. In the validation of the different approaches to the
problem (Klein et al., 2003; Schlüter et al., 2004), it is usual to compare first and
second order moments of the velocity field with the corresponding experimental
data. When the agreement is good, the method is usually considered validated.
In the present chapter it has been shown that in flows containing unsteady (quasi-
periodic) large-scale coherent structures, a good representation of the mean flow
and turbulence statistics does not guarantee a good representation of the cohe-
rent structures. Indeed, the predictions of H8 were in reasonably good agreement
with the experimental data as far as the mean flow and turbulence statistics are
concerned, while no large-scale coherent structures were present in the flow. For
highly swirling flows it is therefore not possible to apply inflow boundary con-
ditions at the jet exit. A similar conclusion was obtained recently by Wegner
et al. (2004b) and by Freitag & Klein (2005). The good agreement with the ex-
periment shown by H7 together with the prediction of the flow instability show
that an elaborate treatment of the flow in the actual swirl-generating device is not
necessarily needed. Less expensive and, what is more important, more universal
strategies can be employed.
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5 Influence of the level of swirl

In this chapter the impact of the swirl on the mean flow and the precessing vortex
structures is analyzed. First, the general features of the flow are discussed in
a qualitative way, including 2D-streamlines in an axial plane, angle of the flow
with respect to the x−axis and fluctuating kinetic energy. Then, the mean and
RMS velocity profiles are studied at several axial locations. Finally, the coherent
structures for each case are studied and complemented by the temporal spectra at
a monitoring point.

5.1 Overview of the simulations

An overview of the simulations performed is shown in Table 1. The flow charac-
teristics correspond to the experiment of Hillemanns (1988) discussed in Chapter
3. The Reynolds number of the flow based on the bulk velocity Ub = 25.5 m/s
and the outer radius of the jet R = 50 mm is Re = 81500. The swirl number is
defined at the inflow plane x/R = −2. The range covered by the simulations is
very wide, including a simulation without swirl, H9, another with a low level of
swirl, H10, and four simulations with a high level of swirl, H12, H13, H14 and
H15. There is also a simulation with an intermediate level of swirl, H11. For
orientation it should be recalled that for a round jet (i.e. not featuring a bluff body
in the centre) recirculation is observed for S ≥ 0.6 with S being measured at the
outlet plane (Gupta et al., 1984).

Fig. 5.1 addresses the inflow conditions for the main simulation imposed at
x/R = −2. It shows the mean axial and azimuthal velocity components of the
unsteady inflow generated by the precursor simulation. In the latter the swirl
number was fixed, i.e. equilibrium swirling conditions were applied (see Chapter
4). Fig. 5.1 shows that the mean azimuthal velocity increases almost proportional
to S with little change in the shape of the profile. The mean axial velocity is
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Sim. Grid SGS S (x = −2R) Line style
H9 C2 (∼ 2.5 mio.) Smag. 0 solid(thin)

H10 C2 (∼ 2.5 mio.) Smag. 0.4 dashed-dotted
H11 C2 (∼ 2.5 mio.) Smag. 0.55 dashed-×
H12 C2 (∼ 2.5 mio.) Smag. 0.7 dotted
H13 C2 (∼ 2.5 mio.) Smag. 0.85
H14 C2 (∼ 2.5 mio.) Smag. 1 dashed
H15 C2 (∼ 2.5 mio.) Smag. 1.2 solid(thick)

Table 5.1: Overview of the simulations performed to investigate the impact of the
swirl number

almost unchanged in all cases.
The grid C2 employed in the simulations has the same distribution of cells for

r/R > 0 as the grid C1 described in Chapter 3. The inflow part is different
because a precursor simulation is used. Nevertheless, the total amount of cells is
similar to grid C1.

5.2 General features of the flow

5.2.1 Streamlines

Fig. 5.2 shows the two-dimensional streamlines of the average flow in an axial
plane for the simulations in Table 5.1. As the jet is annular, the flow characteris-
tics differ from those of a usual round jet. In the non-swirling case, Fig. 5.2a, a
geometry-induced recirculation zone (GRZ) is formed due to the bluff-body ef-
fect of the cylindrical centre body. The length of this GRZ is roughly R and its
maximum width is 0.5R imposed by the geometry. These values agree well with
data from the literature (Rehab et al., 1997). Fig. 5.2b shows the case of low swirl,
S = 0.4. In this case, additional to the GRZ, a very thin central recirculation zone
(CRZ) appears close to the axis. The length of the GRZ decreases with respect to
the non-swirling case to 0.5R . The CRZ extends up to about x/R = 4. For this
level of swirl, S = 0.4, no CRZ is expected in a round jet (Gupta et al 1984), but
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Figure 5.1: Mean velocity deduced from the fluctuating inflow conditions im-
posed at x/R = −2 for different levels of swirl. The line styles are
defined in Table 5.1. a) Mean axial velocity. b) Mean tangential velo-
city.

in the present case the GRZ facilitates the formation of the CRZ. The length and
width of the CRZ for each case is summarized in Table 5.2, together with other
quantities of interest. Increasing S leads to an increase in the size of the CRZ.
For the intermediate swirl case, S = 0.55, which is shown in Fig. 5.2c, the length
of the CRZ is about 7R and the maximum width 0.35R, i.e. substantially wider
and longer than in the case S = 0.4. For these two levels of swirl, S = 0.4 and
0.55, the GRZ is not as simple as in the non-swirling case. This is hardly visible
in Figs. 5.2b and 5.2c, so that a zoom of the region behind the centre body is pre-
sented in Fig. 5.3 for both cases. For S = 0.4, apart from the GRZ, a secondary
recirculation zone is observed at x/R < 0.2 between r/R = 0.15 and r/R = 0.3.
Closer to the axis, at r/R < 0.1 another bubble is visible which is connected to
the CRZ by the line 〈ux〉 = 0. For S = 0.55, this third bubble has disappeared.
The secondary recirculation zone has grown, reaching the symmetry axis. The
CRZ in this case starts at x/R = 0.4.

Some trends can be determined from the streamlines of the high-swirl cases,
Fig. 5.2d-g. First, when increasing S, the CRZ widens and lengthens. The values
for the length of the CRZ with S ≥ 0.85 have to be considered with care: the
CRZ reaches into a part of the domain where the grid is comparatively coarse and
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Sim. H9 H10 H11 H12 H13 H14 H15
S 0 0.4 0.55 0.7 0.85 1 1.2
Length CRZ - 4R 7R 6.5R > 8R > 8R > 8R

Width CRZ - 0.1R 0.35R 0.65R 0.7R 0.8R 0.8R

〈ux〉max/Ub 1.11 1.09 1.11 1.09 1.1 1.25 1.5
〈ux〉min/Ub -0.3 -0.21 -0.25 -0.31 -0.37 -0.34 -0.47
kmax/U

2
b 0.06 0.1 0.14 0.21 0.34 0.35 0.32

Table 5.2: Variation of characteristic quantities with the swirl parameter

where the fluid motion is substantially slower so that the available averaging time
can only provide estimates of the average flow. Hence, only an approximate value
is provided here. On the other hand, the maximum width of the CRZ is always
attained close to the jet exit, and is therefore reliable. With increasing swirl, the
axial location of the maximum width moves upstream. For S = 0.7, 0.85, 1 and
1.2, the maximum width 0.65R, 0.7R, 0.8R and 0.8R, is attained at x/R = 2,
1.5, 1.4 and 1, respectively.

For S = 0.7, 0.85 and 1, the bubble pattern is similar. The recirculation region
encompasses the CRZ and the GRZ exhibiting two ’eyes’ or centres. For the
highest swirl cases the CRZ has reached x/R = 0, and the GRZ has merged into
the CRZ. Fig. 5.2 shows that with increasing swirl number the jet spreads further
outwards in radial direction.

Let us finally address the slope of the streamlines in Fig. 5.2 remote from the
jet, starting at x/R = 0 and r > R. Their shape is due to the co-flow boundary
condition. Note that the velocity at this location is only 5% of the jet axial velo-
city, so that the influence on the region of interest is negligible, as will be seen in
Fig. 5.7. This was also checked with different amounts of co-flow in Chapter 3.

5.2.2 Angle of the flow

Due to the swirl of the jet the average streamlines are highly three-dimensional.
So far, only the two-dimensional streamlines of the flow projected onto the x− r
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Figure 5.2: Streamlines of the average flow, solid lines. 〈ux〉 = 0, dashed line. a)
S = 0. b) S = 0.4. c) S = 0.55. d) S = 0.7. e) S = 0.85. f) S = 1.
g) S = 1.2.

plane were addressed. To complete the picture the angle

α = arc tan

〈uθ〉

〈ux〉


 (5.1)

between the mean flow and the x-axis is displayed in Fig. 5.4 (in the non-swirling
case α = 0 so that the picture is dropped). These plots all exhibit a similar
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Figure 5.3: Streamlines of the average flow, solid lines. 〈ux〉 = 0, dashed line.
Zoom close to the jet exit. a) S = 0.4. b) S = 0.55.

structure, for large radii, α = 0 in the outer flow. At the outer border of the jet
a steep increase is observed with a local maximum. For S = 0.4, the maximum
occurs around x/R = 1 while for the cases with higher swirl the local maximum
occurs further downstream at about x/R = 2. Inward from this zone a local
minimum of α is observed which coincides with the interior of the jet and the
maximum of 〈ux〉 in the high-swirl cases (see Fig. 5.7(a1)). Further towards the
axis the flow angle increases again, now beyond 90◦ which corresponds to the
boundary between forward and backward flow. The value of the local maximum
in the outer part increases with the swirl number and this zone gets broader and
straighter. It in fact identifies the outer border of the jet and its spreading even
clearer than the x− r streamlines.

5.2.3 Fluctuating kinetic energy

To conclude the general description of the flow, Fig. 5.5 displays grayscale con-
tours of the fluctuating kinetic energy. The same scale has been used for all si-
mulations to stress the fact that with increasing swirl the level of fluctuating ki-
netic energy increases dramatically. The maximum kinetic energy for each case is
summarized in Table 5.2. In the case S = 0 it is characterized by kmax = 0.05U 2

b

while kmax = 0.32U 2
b in case S = 1.2. The value of kmax increases monotonically

with S until S = 0.85 where it saturates.
For S = 0, the kinetic energy is concentrated in the recirculation zone (GRZ)

and in the outer shear layer, Fig. 5.5a. The same happens for S = 0.4 but now
the recirculation zone, which is the CRZ in this case, is substantially longer. With
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Figure 5.4: α, angle of the average flow with respect to the x−axis as detailed in
the text. a) S = 0.4. b) S = 0.55. c) S = 0.7. d) S = 0.85. e) S = 1.
f) S = 1.2.

increasing swirl, the kinetic energy concentrates in the two shear layers and close
to the jet outlet, x/R < 2. The concentration of kinetic energy behind the centre
body appears to be connected with the existence of the GRZ. A zoom close to
the jet exit is shown in Fig. 5.6 for the three cases with S ≥ 0.85. The value
at that location is particularly high for S = 0.85 and S = 1, Fig. 5.6a, b, while
it is very low for S = 1.2, Fig. 5.6c. Thus, when the GRZ and the CRZ merge
for S > 1 the fluctuating activity ceases behind the body. The concentration
of kinetic energy is displaced then to the inner shear layer, which is particularly
visible for S = 1 and S = 1.2, and moves upstream entering the inlet duct. The
fluctuating kinetic energy for the high swirl cases decays fast with axial direction,
i.e. for S = 1.2 it decays from k/U 2

b ∼ 0.3 at x/R = 0.5 to k/U 2
b ∼ 0.15 at
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Figure 5.5: Fluctuating kinetic energy. a) S = 0. b) S = 0.4. c) S = 0.55. d)
S = 0.7. e) S = 0.85. f) S = 1. g) S = 1.2.

x/R = 2 and k/U 2
b ∼ 0.05 at x/R = 4.

5.3 Mean Flow and Statistics

Figs. 5.7 and 5.8 show mean velocity and turbulent intensity profiles at three
axial positions: very close to the jet exit at x/R = 0.2, within the CRZ in the
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Figure 5.6: Fluctuating kinetic energy. a) S=0.85 b) S=1 c) S=1.2

simulations with swirl at x/R = 3 and far downstream of the jet exit at x/R =

6. Fig. 5.7(a1 − a2) shows mean velocity profiles very close to the jet exit at
x/R = 0.2. Here, the jet forms two complex three-dimensional shear layers,
the inner one with the recirculation zone, and the outer one with the surrounding
co-flow. At this position, x/R = 0.2, the inner one increases in thickness with
S, reaching 0.5R for S = 1.2. This reflects the growth of the recirculation zone
with S discussed above. The outer shear layer remains thin and is just slightly
displaced radially outwards with increasing S since close to the jet outlet it is
determined by the geometry.

At x/R = 3, Fig. 5.7(b1−b2), a qualitative difference between the simulations
with low swirl and the simulations with high swirl is observed in all data. The
spreading and decay rate is much lower in the former, Fig. 5.7(b1). The profiles
of mean axial velocity in simulations H12-H15 do not present substantial diffe-
rences at this location. As soon as the swirl is high enough to produce a strong
recirculation zone, a kind of saturation of the profiles is reached. It is also appar-
ent that the backflow in the inner region increases with the level of swirl, and the
width of the recirculation region as well. It is interesting to note that the maximum
tangential velocity, Fig. 5.7(b2), is similar for all cases (except the non-swirling
case) despite the difference of swirl at the inlet. The profiles of tangential velocity
are displaced radially outwards with increasing swirl. Thus, although the maxi-
mum tangential velocity is similar for all cases, the angular momentum increases
with increasing swirl.

At x/R = 6, Fig. 5.7(c1 − c2), the characteristics of the profiles are similar
to those at x/R = 3. At x/R = 6, the basic effects of swirl which are descri-
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bed in textbooks (Gupta et al., 1984, chap. 1) are clearly evident. In particular,
jet growth, entrainment and decay are enhanced progressively as the degree of
swirl is increased. To illustrate, for example, the decay, consider that, in the non-
swirling case, the maximum axial velocity at this location is roughly 0.9Ub and
in the highest swirl case the maximum axial velocity is 0.4Ub. Thus, in the non-
swirling case, the mean axial velocity is still comparable to that at the jet exit
while in the highest swirl case the mean axial velocity has decayed by a factor
of 3. Note that the maximum and minimum values of mean axial velocity in
the whole domain are summarized in Table 5.2. The maximum value increases
substantially for the two highest swirl cases as also illustrated by Fig. 5.7(a1).

The axial fluctuations close to the outlet in Fig. 5.8(a1) exhibit a peak in the
region of the inner shear layer. The thicker the shear layer, the more pronounced
and wider is the peak. The outer shear layer does not present these variations, but
with increasing S, the velocity difference is larger, and therefore the turbulence
intensity is also larger. Similar conclusions as for the axial fluctuations hold for
the azimuthal ones in Fig. 5.8(b1). In the inner part, for r/R < 0.5, the fluctua-
tions increase with the swirl until the case S = 1. Further increase of S leads to a
drop of intensity by a factor of 2 for S = 1.2. This is consistent with the previous
discussion of the contours of kinetic energy, Fig. 5.6f − g.

At x/R = 3, the shape of the turbulent intensities is similar for all high-swirl
cases, Fig. 5.8(b1−b2), with a slight increase of intensity with S. At this position,
the distinction between shear layers is not reflected by the profiles of the fluctua-
tions. Only for the low swirl cases it is still possible to distinguish the peaks due
to the fact that these flows develop slower in space than the others. Further down-
stream at x/R = 6, the decay of the jet induced by the swirl is again illustrated by
the RMS values. For S = 1.2 the maximum of the rms axial fluctuations is 0.3Ub

at x/R = 3 and 0.2Ub at x/R = 6. On the other hand, for S = 0 the maximum
of the rms axial fluctuations is 0.2Ub at x/R = 3 and 0.2Ub at x/R = 6. The
enhanced spreading of the jet with the swirl is also evident from these profiles.
In the non-swirling case, the amount of fluctuations at x/R = 6 is negligible
for r/R > 2. For the swirling cases, the radial position where the amount of
fluctuations become negligible increases monotonically with S, reaching beyond
r/R > 4 for S = 1.2.

92



5.3. Mean Flow and Statistics

0 0.5 1 1.5
−0.5

0

0.5

1

1.5

0 0.5 1 1.5

0

0.5

1

1.5

0 1 2 3

−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4
−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

0

0.1

0.2

0.3

0.4

r/R r/R

(a1) (a2)

(b1) (b2)

(c1) (c2)

Figure 5.7: Radial profiles of mean velocity for different swirl numbers. Left,
axial velocity component. Right, tangential velocity component. a)
x/R = 0.2. b) x/R = 3. c) x/R = 6. To enhance readability the
range of both axes has been adjusted individually. The line styles are
defined in Table 5.1
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5.4 Coherent structures

In Chapter 3 large scale coherent structures were identified and their evolution
and interaction described for a high swirl number case, equivalent to H15. It was
shown that two families of structures appear resulting from a Kelvin-Helmholtz
instability in the inner and the outer shear layer. It is now interesting to study how
these structures are modified when varying the swirl number. This is reported in
Fig. 5.9 where the same visualization technique is applied as in Fig. 3.18, except
that no smoothing was applied. Only one snapshot is included but further views
and animations were produced upon which the following comments are based. In
the case of low swirl, precessing vortex cores are not expected. However, as in the
present case a very thin CRZ is produced, a thin elongated structure can be seen
in Fig. 5.9a for S = 0.4. Larger values of p′′ < 0 do not show any large scale
structure in these data.

In the case of strong swirl both structures mentioned above are observed. For
S = 0.7, a single inner and a single outer structure are present. Animations of
the flow show that their rotation is in phase and very regular. Upon increasing S,
Figs. 5.9e and 5.9f , the irregularity of the flow grows in the sense that the PVCs
change in number during their evolution. For S = 1.2, up to three of them can co-
exist at certain instants. Furthermore, with increasing S, the inner structures enter
the inlet duct, slightly for S = 1, and in a more pronounced way for S = 1.2. At
the same time the PVC is displaced off the symmetry axis since the shear layers
are shifted outwards. This is consistent with the previous discussion of the kinetic
energy contours. In cases S = 0.7 and S = 0.85, the inner structure is attached
to the centre body, Fig. 5.6c − d, and its rotation around the symmetry axis is
responsible for the high level of fluctuating kinetic energy observed behind the
body in Fig. 5.6d− e. This is also the case in case S = 1 although it is less clear
in Fig. 5.9e that the inner structure is always attached to the back of the body.
As a consequence, the tangential fluctuations near the axis increase from S = 0

to S = 1 while decreasing for the larger value S = 1.2. The radial fluctuations
behave similarly.
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a) b)

c) d)

e) f)

Figure 5.9: Isosurfaces of pressure fluctuations p′′ = −0.3. a) S=0.4 b) S=0.55 c)
S=0.7 d) S=0.85 e) S=1 f) S=1.2 (f)
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The outer structures consist of a long spiral for S = 0.7 and also become more
irregular with increasing swirl. Another interesting feature is that the separation
between the inner and the outer structures decreases with increasing S, to the
point that in absence of colour it is difficult to distinguish them when S = 1.2.
The reason for this behaviour is that the two shear layers, identified as the origins
and locations of both types of structures, approach each other with increasing S,
as seen in Fig. 5.7a.

The case S = 0.55 constitutes an intermediate situation between the two regimes
of low and high swirl discussed so far. Here, structures are only generated in the
inner shear layer, more precisely two of them, and none in the outer shear layer.
These structures are located closer to the axis than the PVC for S = 0.7 to S = 1.2

and also start further downstream. They precess around the axis in a very regu-
lar manner. The fact that in this simulation only inner structures are observed
suggests that the inner shear layer is more unstable than the outer one, although
the thickness of the latter is substantially smaller (Fig. 5.7). This issue, as well
as the synchronization between both types of structures, furthermore suggest that
the structures in the outer layer are generated by the inner ones. With increasing
swirl number, the scenario would then be the following. For low swirl, the CRZ
is formed and no instability occurs. Further increasing the swirl, the inner shear
layer becomes unstable so that the inner structures are formed. In this case the
two shear layers are far from each other (Fig. 5.7a) and the inner structures are
relatively weak. Hence, their impact on the outer shear layer is small and not
able to generate the large-scale instability there. With S = 0.7 and larger, the
two layers get closer so that the inner structures generate the outer ones with a
synchronized rotation of both.

Comparing the three cases S = 0.7, 1, 1.2 in Fig. 5.9 shows that the outer
spiralling structures form an increasing angle with the plane x =const. when the
swirl increases. By close visual inspection a typical angle of 26◦, 30◦ and 33◦ has
been determined from such pictures for S = 0.7, 1, 1.2, respectively. It is now
interesting to relate these values to the flow angle α displayed in Fig. 5.4. In the
above discussion it was noted that the local minimum of α is located roughly in
the interior of the main jet. The corresponding inner-most level lines are α = 26◦

for S = 0.7 and α = 30◦ for S = 1., respectively, while the same plot for
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S = 1.2 yields α = 33◦ in this point. Hence, the angles of the coherent structures
correspond very well to the local minima of the flow angle. This supports the ob-
servations in Chapter 3 where streamlines of the average flow were inserted into
plots of the coherent structures to show that the latter are perpendicular to the av-
erage flow thus supporting their generation by a Kelvin-Helmholtz instability (see
Figs. 3.24 and 3.26). The present way of investigating this issue complements the
previous approach and yields a precise picture.
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Figure 5.10: PSD of axial velocity fluctuations at x/R = 0.1, r/R = 0.7 for
different swirl numbers. Arbitrary units are used in the vertical axis
and the curves have been shifted vertically for readability. a) Dia-
gram with logarithmic axes. b) The same diagram with linear axes.
The line styles are defined in Table 5.1.

5.5 Spectra

Fig. 5.10 shows the power spectrum density (PSD) of axial velocity fluctuations
at x/R = 0.1, r/R = 0.7, i.e. very close to the jet exit and in the region of the
inner shear layer for the high swirl cases. In the cases of low swirl the spectra
do not show a pronounced peak. When the level of swirl is high, i.e., a domi-
nant peak and its higher harmonics appear in the spectrum. This peak reflects the
precessing structures observed in Fig. 5.9. Its frequency is almost constant with
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increasing swirl number, more precisely fpeak = 0.24Ub/R for S = 0.7 and S = 1

and fpeak = 0.28Ub/R for S = 1.2. This constancy is unexpected at first sight
since the level of swirl is increased by about 70%. Even if the swirl is attenuated
between x/R = −2 and x/R = 0.2 due to friction as can be appreciated by com-
paring Fig. 5.1b and Fig. 5.7b, the variation of swirl and hence circumferential
velocity remains substantial between the three cases.

0 0.5 1 1.5

0

0.5

1

1.5

Figure 5.11: Radial profiles of the mean tangential velocity at x/R = 0.2 for the
cases S = 0.7, 1 and 1.2. Symbols identify the middle of the shear
layer as detailed in the text.

The reason for the observed behaviour of fpeak is presented in Fig. 5.11. The
shape of the profiles of 〈uθ〉 at x/R = 0.2 changes substantially from S = 0.7

to S = 1.2, turning from a top-hat-like shape to a more triangular shape. As dis-
cussed above, the inner structures are generated by an instability of the inner shear
layer. The center of this layer has been marked with a dot in Fig. 5.11 displaying
the azimuthal velocity. This position has been obtained by first adding vectorially
〈ux〉 and 〈uθ〉, then visually determining the velocity values at both boundaries
of the shear layer and choosing their mean value. It turns out that the center of
this shear layer shifts outward with increasing S. At the same time the angular
velocity at this center increases. While it is not possible to apply the theory of
plane shear layers directly, as discussed above, it can be stated that qualitatively
the increased swirl is located further outward in the annular jet so that the cir-
cumference to be covered is larger. With the same number of structures along
the circumference the frequency can then remain constant. If only the azimuthal
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velocity at the location of the symbol would matter constant frequency would re-
quire the symbols to lie on a straight line going through the origin. This indeed is
almost the case. For S = 0.55 precessing structures are also observed, Fig. 5.9b,
and this should be reflected by the PSD. The monitoring point, however, selected
a priori at r/R = 0.7 for all runs is not crossed by the structures in this case.
They occur closer to the axis and further downstream as discussed above. As a
consequence, no peak is observed in the PSD provided in Fig. 5.10 for S = 0.55.
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6 Influence of pulsating inflow

In this chapter the effect of oscillating inflow on an annular swirling jet is studied.
The results are compared to the same configuration with constant inflow. Analysis
of phase-averaged velocity components, vorticity, turbulent kinetic energy and
spectra provides detailed information about the flows considered.

6.1 Motivation

Swirling flows, as discussed in Chapter 1, are prone to instabilities which can
trigger combustion oscillations and degrade the performance of the combustor. In
the case of a thermo-acoustic combustion instability, temporal oscillations of the
pressure in the combustion chamber induce substantial fluctuations of the mass
flow rate into the combustion chamber at the burner outlet. It is therefore of
crucial importance to investigate the effect of a pulsating flow rate in the presence
of swirl. For non-swirling pulsating jets, experiments and simulations (Tang &
Ko, 1994; Wicker & Eaton, 1994) have shown dominant ring vortices.

Only few attempts have been made so far to compute and analyze swirling
flows with pulsating inflow. Düsing et al. (2002) performed LES of a swirling
confined diffusion flame with oscillating inflow. The averaging time, however,
was not long enough to obtain definite conclusions. Wang et al. (2005) studied the
flow evolution of a swirl-stabilized injector and its dynamic response to external
forcing using LES. In this case, the configuration was very complex, however,
involving three radial swirlers, with the flow in one of them counter-rotating with
respect to the others. Furthermore, the forcing was weak with respect to the flow
intensity, and had only a small impact on the flow characteristics.
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Sim. Grid SGS B TUb/R Mass flow S

H7 F2 (∼ 6 mio.) Dyn. – – Fixed Fixed
H16 F2 (∼ 6 mio.) Dyn. 0.4 3.5 Osc. Fixed
H17 F2 (∼ 6 mio.) Dyn. 0.4 3.5 Osc. Osc.

Table 6.1: Overview of the simulations performed to investigate the influence of
pulsating inflow

6.2 Computational Setup

The flow configuration is based on the simulation H7 discussed in Chapter 4.
The pulsating inflow was prescribed by imposing an oscillating flow rate in the
precursor simulation according to

Q = Q0

(
1 +B sin

(
2πt

T

))
, (6.1)

where Q0 is the flow rate without pulsation. The amplitude of the disturbance
is B = 0.4 in the present configuration which corresponds to experimentally
observed values (Koch, 2004). The oscillation period was set to T = 3.5R/Ub

which roughly equals the precessing period of the coherent structures observed
in the non-pulsating simulations and is also motivated by experimental data from
thermo-acoustic instabilities (Büchner, 2005).

Table 6.1 provides an overview of the simulations performed. Two cases were
considered depending on the specification of the inflow conditions. Both corre-
spond to modifications of H7. In H16, the mass flow oscillates periodically while
the swirl number is kept fixed so that both, the axial and the azimuthal velocity
component oscillate periodically (see equations (3.1) and (6.1)). In H17, the body
force in the azimuthal direction is kept constant while only the axial flow rate pul-
sates, Fig.6.1. As a consequence, the swirl number oscillates. Note that different
scenarios of pulsation are realistic since the swirl-generating devices in a burner
can be different. An axial swirl generator with helical vanes maintains the angle
of the flow so that the swirl number will change only little as in H16. With a radial
swirler, on the other hand, the axial component can be influenced independently
of the angular component upon the occurrence of a thermo-acoustic instability
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Figure 6.1: Phase-averaged velocity at the inflow plane x/R = −2 at r/R = 0.75,
i.e. in the middle of the annular duct, as a function of time over one
period. a) Axial component ũx/Ub and phases discussed below. b)
Tangential component ũθ/Ub. H16: circles. H17: squares.

resulting in an oscillating flow angle and an oscillating swirl number. Hence, the
two cases considered here are representative of extreme cases in applications and
allow to assess the sensitivity of the observations with respect to the method of
swirl generation. Fig. 6.1 displays characteristic values of phase-averaged velo-
city generated by the precursor simulation.

6.3 Phase-averaged flow

In order to analyze the flow, each quantity φ is decomposed as

φ = φ̃+ φ′′ , (6.2)

where φ̃ denotes the phase average. The phase itself is defined as

ψ = mod
(
t

T
, 1

)
. (6.3)

With equation (6.1) this implies thatQ(ψ = 0) = Q0 while for ψ = 0.25 and ψ =

0.75 the flow rate is maximal and minimal, respectively. All averaged quantities
given below are the resolved ones.
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After the computation of several periods, the phase-averaged statistics were
gathered during 15 periods of pulsation, and averaging was also performed in
azimuthal direction. Each period was divided into 20 phases and the four phases
indicated by an arrow in Fig.6.1a are selected for discussion here. Figs. 6.2-
6.4 show velocity profiles from the three simulations at two axial stations in the
near field of the jet exit. The influence of the pulsation decreases with distance
from the jet exit. The most important characteristics of the simulation without
pulsation, H7, are a recirculation zone, typical for flows with a high level of swirl,
and two shear layers, an inner one bordering the recirculation zone and an outer
one between the jet and the surrounding co-flow. Due to the swirl, both shear
layers are subject to curvature effects.

The impact of the pulsating inflow on the recirculation zone can be observed in
Fig.6.2c−f displaying phase-averaged axial velocity profiles, ũx(ψ). In H17, the
shape of the recirculation zone is almost unaffected by the pulsation as revealed
by comparison of Fig.6.2b and Fig.6.2f for r/R < 0.5. In H16, the backflow
region widens with the deceleration of the flow indicating that the recirculation
zone is affected by the oscillation of the azimuthal component. The influence of
the pulsation on the shear layers is more difficult to quantify because it involves
both axial and tangential velocity components. The latter is shown in Fig.6.3. As
expected, the tangential profile changes substantially in H16 at x/R = 0.1. This
is not only related to a change in amplitude but also a substantial change in shape
and affects mainly the inner shear layer. Further downstream, the phase-averaged
tangential component also oscillates in the outer part of the jet (Fig.6.3d). With
fixed tangential forcing in H17, the inter-phase changes in the inner part are very
small, but in the outer part, r > R, say, they attain amplitudes comparable to H16.
Comparing results at x/R = 0.1 and x/R = 1, a time lag between the flow at
the inlet and the tangential component downstream of the inlet is observed. When
the flow at the inlet starts to accelerate (shortly after ψ = 0.75) the tangential
component attains its maximum in both H16 and H17, although the effect is better
seen in H16. During the acceleration phase (ψ = 0.75 → 0.25), the tangential
profile spreads radially outwards.

In the simulation without pulsating inflow, the radial velocity component, shown
in Fig.6.4, is very small compared to the other two components. In the pulsating
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Figure 6.2: Radial profiles of axial velocity ux/Ub at x/R = 0.1 (left) and x/R =

1 (right). a− b) Time-averaged velocity in H7. c− d) Phase-averaged
velocity in H16. e − f) Phase-averaged velocity in H17. Phases as
indicated in Fig.6.1. ψ = 0 . ψ = 0.25 . ψ = 0.5 .
ψ = 0.75 .
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(right). a − b) Time-averaged velocity in H7. c − d) Phase-averaged
velocity in H16. e − f) Phase-averaged velocity in H17 Phases as
indicated in Fig.6.1. ψ = 0 . ψ = 0.25 . ψ = 0.5 .
ψ = 0.75 .
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6.3. Phase-averaged flow

cases, however, it exhibits substantial variations. At x/R = 1, it varies between
ũr(0.75) ∼ −0.4 and ũr(0.25) ∼ 0.4 in H16, and similar values occur in H17.
This is related to the roll-up of the outer shear layer, in which a ring vortex is
produced.

Fig.6.5 shows a series of contour plots of phase-averaged tangential vorticity
ω̃θ. Its behaviour is very similar in both simulations. When the flow accelerates
at the inlet (ψ = 0.75 → 0.25) the sheet of negative azimuthal vorticity moves
radially outwards and during the deceleration process (ψ = 0.25 → 0.75) the ring
vortex is shed.

Fig.6.6 reports contour plots of the turbulent kinetic energy k. In the non-
pulsating simulation it is defined by the fluctuations with respect to the time
average. In this case the kinetic energy is concentrated in the two shear layers
of which the inner one extends substantially into the inlet duct. The maximum
is about k/U 2

b = 0.3 and k rapidly decays with distance from the jet exit. At
x/R > 3, the results show that k/U 2

b < 0.1. In the simulations with oscillating
inflow, k is defined by means of the fluctuations with respect to the phase aver-
age. Again, most of this kinetic energy is concentrated in the shear layers. In
both H16 and H17 the turbulent fluctuations in the outer part are observed at the
locations of the vortex ring discussed above, as revealed by comparing corres-
ponding plots in Fig.6.5 and Fig.6.6. During the phases ψ = 0 and ψ = 0.25,
to a smaller extent also for ψ = 0.5, an accumulation of kinetic energy is visible
further downstream, moving towards the axis which results from the vortex ring
shed during the previous period. The main differences between H16 and H17 are
noticed in the inner shear layer. In H16, the kinetic energy in the inner part os-
cillates with the flow. In the acceleration phase (ψ = 0.75 → 0.25) the kinetic
energy is substantially reduced in this region, re-appearing in the inlet duct dur-
ing the deceleration phase (ψ = 0.25 → 0.75). In H17, the overall level of k is
higher. An accumulation of kinetic energy in the region of the inner shear layer
is observed in all phases. It remains at this location and is only little affected by
the pulsation, except for the intensification and elongation during the deceleration
phase, i.e. for ψ = 0.5. These observations are in line with the discussion of the
profiles of phase-averaged velocity components above.
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Figure 6.5: Phased-averaged tangential vorticity ω̃θ in a plane θ = const.

6.4 Instantaneous structures

In order to visualize instantaneous coherent structures, iso-surfaces of the instan-
taneous pressure deviation p′′ = p − p̃ are reproduced in Fig.6.7. To enhance
visibility, the pressure was filtered by applying twice a top hat filter of width
equal to twice the grid spacing. The same visualization technique is applied as in
Fig. Fig. 3.18. In H7 without pulsation large-scale coherent structures rotating at
a constant rate around the symmetry axis can be identified (Fig.6.7a).

The influence of the oscillating inflow on the coherent structures is illustrated
in Fig.6.7b, c. For conciseness, only one snapshot is included here for each simu-
lation. As in the case without pulsation, coherent structures located in both shear
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Figure 6.6: Turbulent kinetic energy k/U 2
b in a plane θ = const. Top : H7 without

pulsation. Left: Four phases from H16, Right: the same phases from
H17.
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layers are visible. In H16, Fig.6.7b, the structures are less organized and persist
over shorter lapses of time than for H7. In H17, Fig.6.7c, the structures resemble
those of H7, both in shape and regularity. Here, the pulsation has more impact
on the outer structures than on the inner ones. Due to the successive processes of
acceleration and deceleration, the outer structures are subject to stretching. Thus,
secondary instabilities oriented in streamwise direction are formed to a larger ex-
tent than in the non-pulsating case. Two of these structures can, e.g., be seen at
the outer boundary of the outer spiral in Fig.6.7c.

The visualization technique used in Fig.6.7 requires some discussion. In previ-
ous studies such as Fröhlich et al. (2005), e.g., it was found advantageous to use
pressure fluctuations instead of the instantaneous pressure itself to identify vor-
tices: subtracting the average pressure helps in assuring that the chosen pressure
level visualizes vortex structures in a wider range of the domain. The average
pressure field is not related to turbulent structures and can hence be subtracted
without problem. Here, in contrast, the phase-averaged pressure is subtracted in
Fig.6.7b − c which by itself may contain dynamic structures. In the present case
these have the form of the rings as discussed above. For validation and compar-
ison, iso-surfaces of the pressure have been generated for the same data sets and
are reported as well (Figs. 6.7d) − e)). Their behaviour is similar, showing that
the vortex rings generated by the pulsation do not overwhelm the swirl-generated
structures in the flows considered. Iso-surfaces of p′′ are not closed here and al-
low better identification of the structures. Application of this technique in general
cases, however, is not warranted without preliminary validation.
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b) c)

d) e)
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Figure 6.7: Instantaneous coherent structures at ψ = 0.25 (arbitrary instant for
H7). a − c) Iso-surface of pressure fluctuations p′′ = −0.3, d − e)
Iso-surface of pressure p = −0.5 for the same data sets. The color
is determined by the sign of the radial gradient of the phase-averaged
axial velocity (in H7 the time-average).
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Figure 6.8: PSD of velocity fluctuations. a) PSD of axial velocity fluctuations
at x/R = 0.1, r/R = 0.6. b) PSD of radial velocity fluctuations at
x/R = 0.9, r/R = 1.2. Solid line: H7, circles: H16, squares: H17.
Arbitrary units are used in the vertical axis.

The previous observations of instantaneous structures are confirmed by anal-
yses of the power spectral density of the velocity fluctuations. To compute the
PSD, the phase-averaged velocities have been removed from the signals. Fig.6.8a
presents a comparison between the three cases at x/R = 0.1, r/R = 0.6, i.e.
in the inner shear layer. The pronounced peaks which are observed in H7, are
also present in H17 while they do not occur in H16. First of all, Fig.6.7b shows
that the inner structures in H16 are substantially weaker and more distorted which
would reduce the intensity of corresponding peaks in the spectrum. Second, the
rotation rate of the structures is not constant in time since the angular velocity
pulsates, so that a pronounced peak cannot be expected. In H17 the tangential
velocity is roughly constant at the inlet. Therefore the coherent structures rotate
at a constant rate as in the case without pulsation, generating pronounced peaks
in the spectrum.

Fig.6.8b presents a comparison of the PSD of radial velocity fluctuations be-
tween the three cases at x/R = 0.9, r/R = 1.2, i.e. in the outer shear layer. In H7,
the regularity of the outer structures in Fig.6.7a generates a peak in the spectrum.
This is not the case for the pulsating simulations. Note that the vortex rings of the
phase-averaged flow do not influence these spectra, because the phase-averaged
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signals have been removed to compute the PSD. This figure demonstrates that the
outer structures in H17 (Fig.6.7c) are substantially less regular than those of H7
without pulsation.

114



7 Influence of a pilot jet

The flow configuration considered in the previous chapters consists of an annular
jet. In this chapter the effect of an additional inner jet is studied. Nowadays, lean
premixed burners in modern gas turbines often make use of a richer pilot flame
typically introduced near the symmetry axis. The purpose of this pilot flame is to
stabilize the main flame. This raises the question of how the additional jet modi-
fies the fluid mechanical behaviour of the system and in particular the occurrence
of coherent structures. Mean flow, turbulence statistics, coherent structures and
spectra are reported.

7.1 Experimental configuration. New burner

In the companion project C1 of the Collaborative Research Centre SFB606 1 a
new co-annular swirl burner was developed (Bender & Büchner, 2005). The ad-
vantage of this burner is its versatility. The burner is composed of two co-annular
jets, a central pilot jet and a concentrically aligned main jet. In both jets the swirl
can be adjusted individually. In the outer jet, the burner is designed to allow two
different ways of generating the swirl:

• Axially, using warped vanes in an annular duct.

• Tangentially, using rectangular channels as illustrated in Fig. 7.1 where
a sketch of the burner is shown in the configuration with tangential swirl
generation.

For the generation of swirl in the central pilot jet, axial swirlers with blades at
various angles of attack may be inserted in the pilot lance. Furthermore, it is
possible to impose different senses of rotation for each jet which leads to co-swirl

1http://www.sfb606.uni-karlsruhe.de/index.pl/projekt ansicht/Teilprojekt+C1
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or counter-swirl configurations. Another possibility is to change the axial location
of the inner jet. A picture of the burner working in a configuration with retraction
of the inner jet was shown in Fig. 1.1.

A large number of experiments were performed with the new burner in several
configurations including isothermal and reactive cases (Bender & Büchner, 2005;
Habisreuther et al., 2005). For the present numerical investigation the most suit-
able ones have been selected. In particular, measurements taken with LDA are
available for the configuration with tangential swirl generation and co-rotating
swirl. Three different axial positions of the inner jet were experimentally inves-
tigated by Bender & Büchner (2005). In the present chapter, only one of this is
studied, namely the one without retraction of the inner jet. The influence of the
location of the inner jet is investigated in Chapter 8.

Figure 7.1: Sketch of the new burner in configuration with tangential swirl gener-
ation (from Bender & Büchner (2005))

7.2 Computational Setup

The computational domain is essentially the same as for the simulation of the
Hillemanns configuration discussed so far. The exit of both inner and outer jets
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is located at x/R = 0. The geometry only differs with respect to the inlet part
which is shown in Fig. 7.2. As in simulation H1 in Chapter 3, the computational
domain includes a crude representation of the inlet duct reaching to the tangen-
tial channels which generate the swirl in the experiment. The flow is prescribed
at the circumferential inflow boundary located at the beginning of the inlet duct.
It comes in radially, having a non-zero azimuthal component. At this position,
where the swirl generating device is located in the experiment, steady top-hat
profiles for the radial and azimuthal velocity components are imposed in the si-
mulations. The flow undergoes a rapid transition as displayed in Fig. 7.2 so
that the kinetic energy in the annular pipe corresponds to the level observed in a
developed annular jet. The coherent structures downstream of the outlet are sub-
stantially more energetic than the ones in the pipe flow so that the levels of kinetic
energy k in this figure were restricted to low values to make this transition visible.
The results of Chapter 4 show that this approach provides an adequate model of
the inflow. With appropriate adjustment of the swirl at the inflow boundary the
experimental profiles of mean flow as well as fluctuations in the main jet near the
outlet are very well reproduced, as displayed in Fig. 7.4 below.

The grid employed for the simulations in the present chapter, C3, was selected
to be very similar to the grid C1 used in the simulations for the Hillemanns con-
figuration in Chapter 3.

In the experiment of Bender & Büchner (2005), a co-annular pilot jet was intro-
duced featuring an axial swirl generator, Fig. 7.1. The end of its nozzle coincides
with the end of the outer tube surrounding the main jet. The annular flow leading
to this jet is modelled with a precursor simulation here, similar to the inflow in
the previous section, which also ends at x = 0, as indicated in Fig. 7.2. The
direction of swirl is co-rotating with the main jet. In this configuration the inner
and outer diameter of the pilot jet are 0.27D and 0.51D, respectively, while the
inner and outer diameter of the main jet are 0.63D and D, respectively. Hence,
the flow conditions are very similar to those of the Hillemanns configuration. The
Reynolds number is Re = 81000 based on the bulk velocity of the main jet alone,
Ub = 22.1 m/s in the experiment, and on the outer radius of the main jet R = 55

mm. To allow comparison with the simulations of Chapter 5, the resulting swirl
number in the main jet at x = −2R, has been determined. Its value is S = 1.05,
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Figure 7.2: Inflow conditions and geometry for the computations assembled in Ta-
ble 7.1. Development of the fluctuating kinetic energy in the inlet duct
for Sim NB3. Only the lower levels of k are considered as discussed
in the text.

almost exactly the same as for H14. The different width of the main jet, however,
precludes direct comparison with the computations of Chapters 3 and 5. The mass
flux of the pilot jet is 10% of the total mass flux (which corresponds to a bulk ve-
locity of U pilot

b = 7.7 m/s) and the swirl number defined at x/R = 0 for the pilot
jet alone is S = 1. The kinetic energy of the flow in the precursor simulation in
Fig. 7.2 is by a factor of about 10 smaller than the kinetic energy in the main pipe.

The purpose of the simulations in this section is to clarify the impact of the inner
jet on the stability of the entire flow. This is investigated by consideration of three
cases which are summarized in Table 7.1: the reference case is again an annular
jet with a slightly different geometry compared to the Hillemanns configuration
studied in Chapters 3 to 6. It is labeled NB1 in the following. A non-swirling inner
jet is introduced in case NB2 and a swirling inner jet in case NB3. Experimental
data are available only for the last case.

7.3 General features of the flow

The streamlines for the three cases investigated are displayed in Fig. 7.3. As
already mentioned, the flow falls into the high-swirl regime and is expected to
be similar to H14 in Chapter 5 due to the similar value of S. The geometry is
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Sim. Grid SGS m. IJ present Swirl in IJ Line
NB1 C3 (∼ 2.5 mio.) Dyn. No – dotted
NB2 C3 (∼ 2.5 mio.) Dyn. Yes No dashed
NB3 C3 (∼ 2.5 mio.) Dyn. Yes Yes solid
Exp – – Yes Yes ◦

Table 7.1: Overview of the simulations performed to investigate the influence of
an inner jet (IJ).

slightly different, however, and this introduces a difference in the flow. While in
H14 the GRZ and the CRZ are not merged yet, Fig. 5.2f , the GRZ and the CRZ
are already merged in NB1, Fig. 7.3(a1), and the pattern is more similar to H15,
Fig. 5.2g. As before, a CRZ starting directly behind the cylindrical centre body
occupies a long region near the symmetry axis.

In NB2, featuring a non-swirling pilot jet, the resulting streamlines in Fig.
7.3(b1) are very similar to the ones without pilot jet. The streamlines issuing
from the pilot duct just enter the inner shear layer without generating substantial
alteration. In the case of the swirling pilot jet, NB3, the shape of the recirculation
zone is slightly modified in the region of its maximum width. Here, the stream-
lines are shifted outward due to the higher total swirl which is also observed for
the dotted line indicating the location where 〈ux〉 = 0. Beyond x/R = 3 the flow
is mostly unchanged.

The right column in Fig. 7.3 shows grayscale contours of fluctuating kinetic
energy. As for the streamlines, the shape of the contour levels for the simulation
without pilot jet, Fig. 7.3(a2), is close to the case with highest swirl of the previ-
ous configuration, Fig. 5.5g. The levels are slightly lower for NB1. As in H15,
the graphs show a concentration of kinetic energy close to the nozzle and a fast
decay in axial direction. The data for k from all three simulations are very much
alike. The differences between the three simulations occur in a small zone close
to the jet outlet (x/R < 2). In this region, NB1 features a higher level of kinetic
energy than NB2 which in turn shows higher k than NB3, especially in the inner
shear layer. For NB1 and NB2, the inner shear layer shows considerable values
of k with kmax = 0.2U 2

b and kmax = 0.18U 2
b , respectively, and is stronger than the
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Figure 7.3: Influence of the pilot jet on the mean flow. Column 1: Streamlines
of the average flow, solid lines. 〈ux〉 = 0, dashed line. Column 2:
Fluctuating kinetic energy. (a) NB1. (b) NB2. (c) NB3.

outer one. The kinetic energy is lower for NB3 with kmax = 0.13U 2
b occurring

in the inner shear layer. The latter also is narrower and located further outward,
in compliance with the above discussion of streamlines. The turbulent kinetic
energy immediately behind the center bluff body is substantially lower than in the
case without pilot jet. The properties observed here originate from the vortical
structures present in the respective cases which will be discussed below.

7.4 Mean and RMS velocity profiles

Fig. 7.4 shows radial profiles of mean velocity and the corresponding fluctua-
tions at three axial positions in the near flow field of the jet for the three cases.
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Note also that only one of the simulations, NB3, corresponds to the experimental
condition. The strength of the pilot jet can be appreciated by the mean axial and
tangential velocity at x/R = 0.1 in Fig. 7.4(a1) and Fig. 7.4(a2). The deviation
with respect to the experimental data in this range results from the model for the
pilot jet. Its inflow condition is imposed at x/R = 0, while in the experiment
the flow at this position can be influenced by the downstream flow. Moreover, the
guide vanes of the axial swirl generator for the pilot jet, 26 in the experiment, are
not represented here since this would render the grid generation very complicated.
A slightly different model of the pilot jet employed in Chapter 8 together with a
somewhat finer grid yields an improvement in this respect. The results in Chap-
ter 8 support the ones in this chapter. Downstream, at x/R = 1, the simulation
overpredicts the backflow while the major part of the profile is very well captured,
Fig. 7.4(b1). The mean tangential component is also in good agreement with the
experiment, Fig. 7.4(b2). At this position the difference between the three cases
is small for the mean profiles, with the tangential velocity profile displaced ra-
dially outwards for the simulation with swirling inner jet, NB3, compared to the
simulation without inner jet, NB1. At x/R = 3, the agreement with the exper-
iment is very good and the difference between the three cases is only marginal,
Fig.7.4(c1 − 4).

Fig. 7.4(a3− 4) shows profiles of the RMS fluctuations of axial and tangential
velocity profiles at x/R = 0.1. It can be appreciated that the region where the
agreement is worst is precisely where the pilot jet is located, between 0.27R and
0.51R. This is again due to the model for the pilot jet. The comparison of these
turbulence intensity profiles for the three simulations shows higher values in the
simulation without pilot jet, as expected from the contour plots of kinetic energy
in Fig. 7.3. The disagreement is constrained to a small region close to the exit
of the pilot jet. In Fig 7.4(b3 − 4) which shows profiles of the RMS fluctuations
at x/R = 1, the fluctuations are already very close to the experimental data. At
this location, it is still possible to appreciate a higher level of fluctuations in the
simulation without inner jet, but the difference is smaller than at x/R = 0.1. In
conclusion, Figs. 7.3 and 7.4 show that the influence of the pilot jet on the average
flow and the second moments is only small.
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Figure 7.4: Radial profiles of mean velocity and corresponding turbulent intensi-
ties. (a) x/R = 0.1. (b) x/R = 1. (c) x/R = 3. Row 1: Mean axial
velocity. Row 2: Mean tangential velocity. Row 3: RMS axial velo-
city. Row 4: RMS tangential velocity. The line styles are defined in
Table 7.1. Symbols represent experimental data of Bender & Büchner
(2005). To enhance readability the range of the vertical axis has been
adjusted individually.

7.5 Flow visualization and Spectra

The instantaneous flow is now visualized in a similar way as in the previous chap-
ters using iso-surfaces of pressure fluctuations, Fig. 7.5. Here, the pressure field
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was additionally smoothed in space by a two-fold application of a box filter of
width twice the step size of the grid. Obviously, there are important differences
between the three cases. Without pilot jet, Fig. 7.5a, the structures have the char-
acteristics described in Chapters 3 and 5. They are very coherent, precess at a
quasi-regular rate and persist over long time intervals. When the non-swirling pi-
lot jet is introduced, Fig. 7.5b, it is still possible to recognize similar structures as
in the case without pilot jet. These are however substantially less coherent, much
thinner, and do not reach downstream that far. In particular, the PVC are smaller
and are more numerous along the circumference. In this case, four or five small
PVC can co-exist at certain instants. Finally, the addition of swirl to the pilot jet
has a dramatic impact on the flow, Fig. 7.5c. The regularity is substantially re-
duced and the appearance of the structures is more random. Here, even the outer
structures are affected and have almost vanished or, when they appear, exhibit
only small coherence. The addition of near-axis swirl hence has a strong influ-
ence on the instantaneous flow characteristics. Recently, in a different context,
the addition of near axis swirl has been proposed as a strategy to control vortex
breakdown (Husain et al., 2003).

The previous analysis of the coherent structures is confirmed by analyzing
the PSD of the radial velocity fluctuations at two points close to the outlet at
x/R = 0.4. Experimental spectra are unfortunately not available for these cases.
Fig. 7.6a shows the PSD of the three cases on the symmetry axis. Note that,
in spite of the difference in geometry with respect to the configuration studied
in Chapter 5, the peak in the spectrum for NB1 also appears at a frequency
fpeak = 0.24Ub/R. The difference in geometry hence does not have much in-
fluence in the precessing rate of the structures. A pronounced peak can also be
observed for NB2. The spectrum of NB3 also shows a peak but at substantially
larger time scales. These are not well resolved with the length of the time seg-
ments employed for the computation of the spectra mentioned above. Also note
that no averaging over angular positions is possible for r/R = 0. Repeating
the analysis with longer segments shows that, indeed, a low frequency contribu-
tion with fpeak ∼ 0.025Ub/R exists. This issue deserves further investigations,
possibly relating it to work of Rehab et al. (1997) who observed low frequency
oscillations with similar Strouhal number of the recirculation bubble created by
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(a) (b)

(c)

Figure 7.5: Instantaneous coherent structures visualized using an iso-surface of
the filtered instantaneous pressure deviation p′ = p−〈p〉 = −0.2. (a)

NB1. (a) NB2. (a) NB3. Colour is given by the sign of the radial
gradient of the mean axial velocity.

an annular free jet without swirl.

Fig. 7.6b displays the PSD at r/R = 0.6, i.e. in the inner shear layer of the
main jet. The spectrum of NB1 shows a pronounced first and second harmonic
(both label A). The spectrum of NB2 also exhibits peaks at these frequencies, but
their energy content is much smaller. Instead, more energy is displaced to the next
harmonic, which shows that the PVC are more irregular in this case. For NB3 the
energy is contained in substantially higher frequencies (the most dominant ones
with label B) and much less in low-frequency modes. The analysis of this section
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Figure 7.6: PSD of radial velocity fluctuations at x/R = 0.4. (a) Location on
the symmetry axis, r/R = 0. (b) Location in the inner shear layer,
r/R = 0.6. Line styles are defined in Table 7.1.

hence explains the different levels of fluctuating kinetic energy encountered close
to the nozzle in Fig. 7.3: the strong coherent structures observed in NB1 are
destroyed by the addition of a non-swirling and even more of a swirling pilot jet.
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8 Influence of the axial location of the pilot jet

In this chapter, the analysis of the previous chapter is complemented by varying
the axial position of the pilot jet. This position is found to have a strong impact
on the formation of coherent structures.

8.1 Physical and Numerical Modelling

In the experiments of Bender & Büchner (2005) three different axial positions of
the pilot jet were studied. For the isothermal flow without external forcing, it was
observed that axial retraction of the central jet into the duct leads to an increased
amplitude of flow oscillations reflected by audible noise. In order to investigate
this phenomenon, two of the cases were selected. The first one corresponds to the
configuration studied in Chapter 7, i.e. both jets exit at the same position. In the
second case, the pilot jet is retracted by 40 mm, i.e. −0.73R. This retraction of
the pilot jet generates a double expansion for the main jet visualized in Fig. 8.1b.
LDA measurements are available for both cases. In particular, radial profiles of
mean and RMS velocities have been measured at four axial stations in the near
field of the burner. Only for the case with retraction, power spectra of velocity
fluctuations were recorded.

The flow conditions are described in the previous chapter. The simulations
discussed in this chapter are summarized in Table 8.1. In § 7.4 discrepancies
between the results of NB3 and the experiment were observed close to the burner
exit at x/R = 0.1. This was mainly due to the model used for the pilot jet. An
attempt to improve the agreement was made by slightly changing the boundary
conditions. Fig. 8.1a displays a zoom of the inflow region for the case NB4. The
case NB3 was displayed in Fig. 7.2. In NB4 the inflow plane for the pilot jet was
shifted upstream to x/R = −0.73, i.e. the annular duct is included in the main
LES. To compensate for the additional relaxation of swirl between x/R = −0.73
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Sim. Grid SGS m. xpilot S in pilot jet
NB3 C3 (∼ 2.5 mio.) Dyn. 0 1 at x/R = 0

NB4 F4 (∼ 8.5 mio.) Dyn. 0 2 at x/R = −0.73

NB5 F4 (∼ 8.5 mio.) Dyn. −0.73R 2 at x/R = −0.73

Table 8.1: Overview of the simulations performed to investigate the influence of
the retraction of the pilot jet.

and x/R = 0 the swirl number has been increased to S = 2 in NB4, while in
NB3 it was S = 1. The same boundary conditions were employed in NB4 and
NB5. Fig. 8.1b displays a zoom of the inflow region for xpilot = −0.73R. In
the case xpilot = 0 the inflow region differs because the wall separating main and
pilot jet and the cylindrical centre body reach until x = 0, with the inflow plane
for the pilot jet still located at the same position x/R = −0.73. This is illustrated
in Fig. 8.3 below.

The same grid F4 was employed in NB4 and NB5. In NB4, the wall separat-
ing the annular ducts for main and pilot jet, and the cylindrical centre body were
introduced by blocking corresponding cells. The distribution of cells is similar
to the grid F1 employed in Chapter 3 for the simulations of the Hillemanns con-
figuration. But the grid stretching is reduced and also the concentration of points
in the rear part of the central recirculation zone is increased. This leads to an
increase in the number of cells of the order of 1.5 with respect to the grid F1. The
grid C3 employed for NB3, as noted in the previous chapter, is similar to the grid
C1 in Chapter 3.
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Figure 8.1: Numerical setup and boundary conditions. Gray scale represents
mean axial velocity a) xpilot = 0. b) xpilot = −0.73R.
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Figure 8.2: Comparison of velocity profiles from simulations NB3 and NB4 at
x/R = 0.1. Dashed line, NB3. Solid line, NB4. Symbols, experi-
ment. a) Mean axial velocity. b) Mean tangential velocity. c) RMS
axial velocity. d) RMS tangential velocity.

Fig. 8.2 shows the improvement of the results at x/R = 0.1 in NB4 compared
to NB3. As a result of the change in boundary conditions and the grid refinement
both mean velocity components and the corresponding turbulent fluctuations are
substantially improved in the region of the pilot jet. In Fig. 8.2a the mean axial
velocity component in the region of the pilot jet is still slightly smaller than the
experimental value. At this stage it should be mentioned that the determination of
the ratio of the mass flux in the main jet and in the pilot jet is subject to measure-
ment uncertainties. It seems to have been slightly smaller than the nominal value
9:1. This issue, however, is unimportant for the following discussion.
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8.2 Average flow

After discarding initial transients, statistics were collected for 100tb.

8.2.1 Streamlines

Fig. 8.3 shows the two-dimensional streamlines of the average flow in an axial
plane for both cases. The influence of the retraction of the inner jet is remarkable.
For xpilot = 0 the recirculation forms immediately behind the cylindrical centre
body and the length of the recirculation zone is about 9R. In the case xpilot =

−0.73R the length of the recirculation zone is only about 5R. The two streams
mix before the final expansion and the recirculation is detached from the burner.
The maximum width of the recirculation bubble is about 0.8R in both cases and
it is attained at x/R = 1.2 for xpilot = 0 and at x/R = 1.5 for xpilot = −0.73R.
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Figure 8.3: Streamlines of the average flow in an axial plane a) xpilot = 0, NB4
b) xpilot = −0.73R, NB5. The dashed line indicate the location where
〈ux〉 = 0.
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8.2.2 Mean and RMS velocity profiles

A comparison of simulations with experiments is reported in Figs. 8.4-8.7, show-
ing radial profiles of mean velocity and turbulent fluctuations at several axial sta-
tions for both cases. The agreement with the experimental data is in general good
for the mean flow. The case xpilot = 0 is well reproduced in the simulation,
Fig. 8.4, which is noteworthy in spite of the strong idealization in setting up the
inflow conditions for the pilot jet. In the case xpilot = −0.73R, Fig. 8.5, a dis-
crepancy is evident at x/R = 0.1; the backflow is overpredicted in the simulation.
This implies that the recirculation zone in Fig. 8.3b does not correspond exactly
to the experimental one, which was measured to be slightly further downstream.
Nevertheless, other characteristics are very well predicted so that this simulation
is still close to the experiment. For example, the spreading of the jet is in good
agreement with the experiment and so are the turbulent fluctuations of the axial
and the tangential velocity components, Fig. 8.7. The agreement is also good for
the turbulent fluctuations in the case xpilot = 0, Fig. 8.6.
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Figure 8.7: Radial profiles of RMS velocity for xpilot = −0.73R, NB5. a) Axial
velocity b) Tangential velocity

Some features are common in both cases, like the presence of a recirculation
zone and the two shear layers. In the case xpilot = 0, the turbulent fluctuations
generated in these layers are clearly visible up to x/R = 1 in the profiles of RMS
fluctuations by corresponding peaks (Fig. 8.6). In the case xpilot = −0.73R this
feature is only observed in the profile of the axial fluctuations very close to the jet
exit 8.7a. Note also that the level of fluctuations at x/R = 0.1 is much higher for
xpilot = −0.73R. In that case the maximum RMS is about 0.5Ub while in the case
xpilot = 0 it does not reach 0.3Ub. Further downstream at x/R = 3 this difference
has vanished and in both cases the maximum RMS fluctuation is close to 0.3Ub,
although the radial spreading of the profiles is larger in the case xpilot = −0.73R.

8.2.3 Fluctuating kinetic energy

To conclude the description of the average flow, Fig. 8.8 displays contours of the
fluctuating kinetic energy, using the same scale for both cases. It is obvious that
the retraction of the pilot jet leads to a large increase in the level of the fluctuating
energy. In the case xpilot = 0 the fluctuating kinetic energy is concentrated in the
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two shear layers mentioned above and the maximum level is kmax/U
2
b ∼ 0.14. In

the case xpilot = −0.73R the kinetic energy is concentrated in three regions, just
behind the inner part of the burner, at the beginning of the recirculation bubble
(compare Fig. 8.8b and Fig. 8.3b) and in the region of the inner shear layer. The
tangential and the radial velocity fluctuations contribute mainly to the concentra-
tion of kinetic energy at the beginning of the recirculation zone while the level of
axial fluctuations at this location is lower. This is evidenced by the RMS profile
of tangential velocity fluctuations, Fig 8.7b at x/R = 0.1, showing a pronounced
local maximum at the symmetry axis. The radial fluctuations are not shown here
but present a similar peak. The features observed here will be discussed below in
connection with the vortical structures present in the respective flows.
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Figure 8.8: Fluctuating kinetic energy a) xpilot/R = 0 b) xpilot = −0.73R.

8.3 Instantaneous flow and spectra

8.3.1 Coherent structures

Fig. 8.9 shows iso-surfaces of pressure fluctuations for both cases visualizing the
coherent structures of the flow. Fig. 8.9a and Fig. 8.9c display two different levels
of p′′ for the case xpilot = 0, namely p′′ = −0.3 and p′′ = −0.15, respectively.
Figs. 8.9b, d show the level p′′ = −0.3 at two different instants in time for the
case xpilot = −0.73. The grey scale is again obtained using the criterion defined
in Chapter 3.

Pronounced large-scale coherent structures are observed in the case of the re-
tracted pilot jet, Fig. 8.9b, d. As in the case without inner jet, two types of struc-
tures can be observed in these pictures. Most of the time only one inner structure
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a)

c)

b)

d)

Figure 8.9: Coherent structures visualized using an iso-surface of pressure fluc-
tuations. Left, xpilot/R = 0. Right, xpilot/R = −0.73R. a, b, d)

p − 〈p〉 = −0.3. c) p − 〈p〉 = −0.15. Grey scale as explained in the
text.

is visible and animations show that its rotation around the symmetry axis is very
regular. At some instances, however, the inner structure branches, leading to two
arms as shown in Fig. 8.9d. The leading one, in the direction of the rotation, is
faster than the second one and takes over in terms of strength. The one behind
disappears at the exit in less than half a rotation period and in the downstream
field during another half period. In the case without retraction, xpilot = 0, the
structures are substantially smaller and more irregular as discussed in the pre-
vious chapter. In fact, if one compares the same level of pressure fluctuations
p′′ = −0.3, hardly any structure is visible in the flow, Fig. 8.9a. Increasing the
pressure level to p′′ = −0.15, small structures are visible, which exhibit small
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coherence. Hence, in the case NB4 xpilot = 0, the pilot jet destroys the large-
scale structures. When the pilot jet is retracted to xpilot = −0.73R this is not
observed. The cylindrical tube enclosing the main jet prevents the recirculation
bubble from moving upstream to the central bluff body containing the exit of the
pilot jet, Fig. 8.3b. This is also illustrated using the instantaneous axial velocity
component displayed in Fig. 8.10 for both cases. The pilot jet therefore only
”hits” the upstream front of the recirculation bubble but cannot penetrate into the
inner shear layer where it would be able to impact on the coherent structures. The
different coherent structures observed in both cases explain the different levels of
fluctuating kinetic energy encountered close to the burner exit in Fig. 8.8.

a) b)

x = 0 x = 0

Figure 8.10: Instantaneous axial velocity in the region close to the jet exit. The
black line is the boundary of the instantaneous recirculation zone
ux = 0. a) NB4, xpilot = 0. b) NB5, xpilot = −0.73R.

8.3.2 Spectra

In the experiment of Bender & Büchner (2005), time signals of velocity have
been recorded at several radial positions close to the burner exit at x/R = 0.1

for the case xpilot = −0.73R. The case xpilot = 0 was not measured because
in preliminary tests no instability was observed. During the simulation, velocity
and pressure signals were recorded at the same positions for a duration of 80tb.
Furthermore, signals were recorded for each of these x− and r−positions at 12
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Figure 8.11: Time signals of axial velocity at r/R = 0.73, x/R = 0.1 recorded
during the simulations. a) xpilot = 0. b) xpilot = −0.73R.

different angular locations over which additional averaging was performed. At the
symmetry axis no angular averaging is possible and only one signal was recorded.
At r/R = 0.1 and r/R = 0.18 only four angular signals were recorded. The
spectra were obtained splitting each signal in three overlapping segments of length
40tb multiplying it by a Hanning window and averaging over the segments.

The difference between the time signals of both cases is evident from Fig. 8.11.
For xpilot = 0, Fig. 8.11a, the signal exhibits the typical irregularity of a turbulent
signal. Fig. 8.11b, on the other hand shows that for xpilot = −0.73R a flow in-
stability has developed which causes a regular oscillation of the signal with large
amplitude. The low frequency oscillations of this signal produce a pronounced
peak in the power spectrum of the axial velocity fluctuations, Fig 8.12. The fre-
quency of the principal peak is fpeak = 0.25Ub/R, which in the dimensional units
of the experiment corresponds to a value of fpeak = 102Hz. The amplitude of
the peak is very large, covering almost two decades in logarithmic scale. The
total fluctuating energy is substantially larger than for xpilot = 0, reflected by
the larger integral under this curve. This is in line with the fluctuating kinetic
energy contours of Fig. 8.8 and the RMS values of Figs. 8.6 and 8.7. In the case
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Figure 8.12: a) Power spectrum of axial velocity fluctuations at x/R = 0.1,
r/R = 0.73 from computations NB4 and NB5. b) the same data
for xpilot = −0.73R from the experiment.

xpilot = 0, no pronounced peak is observed which confirms the preliminary expe-
rimental tests in which no flow instability was detected. The smaller peak which
appears for xpilot = 0 at a frequency 0.16Ub/R cannot be related to the small
coherent structures observed in Fig. 8.9c because these structures have a shorter
time scale which would correspond to higher frequencies. This finding deserves
further investigation.

A comparison of the spectrum from the LES for xpilot = −0.73R, Fig 8.12a,
and the corresponding experimental spectrum in Fig 8.12b serves to further val-
idate the simulations. The agreement for both frequency and amplitude of the
dominant peak is remarkable (label A). Also the second harmonic is well pre-
dicted in the simulations (label B).

The amplitude of the power spectrum at the peak frequency is now considered.
Fig. 8.13 shows this amplitude at the fundamental frequency fpeak as a function
of the radial position at x/R = 0.1. The shape of the curves is different for the
three velocity components. The simulation reproduces quite well the trends of the
experiment. Only for r/R < 0.2 the simulation overpredicts the amplitudes. In
that region the impact of azimuthal averaging is small (even non-existent at the
axis) so that this could have an effect.

In Chapter 3 similar plots were reported for the Hillemanns configuration. Fig.
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Figure 8.13: Amplitude of the power spectrum at the fundamental frequency fpeak

at x/R = 0.1 as a function of the radial position for xpilot = −0.73R.
a) experiment. b) NB5.

3.32a displays this quantity obtained for the simulation H1. No experimental sup-
port was available for those plots. The similarity with the present configuration
is however remarkable. It was shown in Chapter 3 that an important issue is the
location of the minimum of the amplitude of the tangential velocity fluctuations.
This minimum indicates the mean radial location of the centre of the inner struc-
tures. Therefore, it is noteworthy that the minimum is well reproduced in the
simulation. The trends for the radial and axial velocity components are also the
same in both configurations, taking into account that in the Hillemanns case the
cylindrical centre body blocks the axial velocity fluctuations for r/R < 0.5 while
this does not happen in the present configuration for xpilot = −0.73R.
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9 Analysis of coherent structures using
conditional averages

In this chapter the analysis of coherent structures is further pursued by considering
conditional averages. These allow to remove the irregularity of the turbulent mo-
tions and provide insights into the main characteristics of the coherent structures
and the three-dimensional flow field.

9.1 Motivation

It has been shown in the previous chapters that large-scale structures rotating
around the symmetry axis are present in the flow in most cases. Due to the high
level of turbulence, the vortical structures are highly irregular as evidenced by
the difference between Figs. 8.9b and 8.9d for NB5. The pronounced peak in the
power spectrum, Fig. 8.12, indicates that the rotation of the structure is very reg-
ular in that case and allows the calculation of conditional averages. This feature
is shared by many of the cases presented in this thesis, like the reference case H1
and the rest of high-swirl cases in Chapter 5. Two cases are considered in this
chapter, H1 and NB5. The purpose of the conditional averages is to remove the
irregularity induced by the turbulent motions. The method, which is described in
the following section, consists basically in defining a coordinate system y−z with
origin at the symmetry axis which rotates with the structure and in performing the
averaging procedure in this rotating coordinate system.

9.2 Procedure

In order to investigate the main characteristics of the coherent structures, instan-
taneous three-dimensional fields have been recorded. The details are summarized
in Table 9.1, including the number of fields N , the separation in time of the fields



Chapter 9. Analysis of coherent structures using conditional averages

Sim. N ∆t/tb τ/tb

H1 199 0.5 99.5
NB5 180 0.8 144

Table 9.1: Number, separation in time and time span of fields recorded to perform
conditional averages.

∆t and the time span τ covered by the fields for each case. From the values in
Table 9.1 it is seen that, in each period of rotation of the structure, 5 fields have
been recorded in NB5 and 7 in H1.

If the oscillations are truly periodic, the definition of the axes that rotate with
the structure is straightforward, with a fixed angle of rotation in a fixed time. In
the present case, however, the motion of the structure is only quasi-periodic and
therefore the method has to be more elaborate. The centre of the structure has to
be determined for each instantaneous field and a subsequent rotation of the field
is performed, such that the centre of the vortex is always on the y−axis. This is
equivalent to defining a coordinate system y − z which rotates with the structure.
In this case however the rotation rate does not need to be constant.

The method is illustrated in Fig. 9.1 and proceeds as follows. The radial loca-
tion of the dominant inner structures in the transverse plane x/R = 0.1 is known
from the previous discussion of the power spectrum, Figs. 8.13 and 3.32 (mini-
mum of uθ). In the present case r/R = 0.35 is used for NB5 and r/R = 0.57

for H1. The centre of the vortex is identified as the local minimum of the pres-
sure fluctuations at that radial position. In case NB5 the coherent structure is
very regular and the detection is simple. In H1 up to three of these coherent
structures can co-exist at certain instants and in that case the dominant one is se-
lected, Fig. 9.1. Then, the full three-dimensional field is rotated by an angle α,
defined in Fig. 9.1, so that each field has the dominant vortex structure at the same
location and standard averaging is performed. Midgley et al. (2005) used a sim-
ilar method to analyze two-dimensional data from experiments on fuel injectors.
Here, however, three-dimensional fields are available. Note that this procedure
is fundamentally different from phase-averaging. There is no external trigger or
internal frequency which would suggest to divide one rotation period into several
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phases which would reduce therefore the amount of samples in each phase. In-
stead, all angles are statistically equivalent due to the cylindrical symmetry of the
problem.

y

z

Figure 9.1: Illustration of the conditional averaging procedure. Color according
to p − 〈p〉 from H1. The black circle indicates the points where the
minimum of the pressure is looked for.

9.3 Results

In the following, conditionally averaged quantities are indicated with an upper in-
dex c. Fig. 9.2 show iso-surfaces of pressure fluctuations resulting from the con-
ditional averaging procedure. For each case, two different levels are presented.
It is clear that using this procedure the large-scale coherent structures have been
substantially smoothed. In spite of the difference between the cases these plots
show that essentially the same phenomena occur. The criterion which has been
used to obtain the conditional averages involves only the inner structure. Never-
theless, the outer structure does not disappear with the conditional-averaging but
appears at the same angular position demonstrating its link to the inner structure.
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a) b)

c) d)

Figure 9.2: Coherent structures obtained using the conditional average flow field.
Top, H1. Bottom, NB5. a, c) pc − 〈p〉 = −0.1. b) pc − 〈p〉 = −0.2.
d) pc − 〈p〉 = −0.3
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Figs. 9.3 and 9.4 show two-dimensional cuts of the conditionally averaged
flow for NB5 and H1, respectively. Streamlines of the flow field projected onto
two planes are displayed. In Fig. 9.3c the streamlines are based on (uc

x, u
c
r), in

Fig. 9.3d on (uc
r, u

c
θ), and the same in Fig. 9.4. The color represents pc and the

thick line indicates the contour line uc
x = 0. The latter shows in all four graphs

that the recirculation region is displaced off the symmmetry axis. The pressure
minimum generated by the inner vortex structure is well visible in the y−z−plane
together with the vortex motion surrounding it. (Figs. 9.3d and 9.4d)

The inner and outer structure are also visible in Figs. 9.3c and 9.4c. The inner
structure shows up through the pressure minimum around x/R = 0 and z > 0.
The outer structure is reflected by the recirculation regions and the spiralling or
bending streamlines at the top and the bottom of the figure in NB5, but only at the
top in H1. This shows that the outer structure is longer in case NB5. From the
streamlines for x ∼ 0 in both figures (c) it is also clear that the inner structure is
correlated with high forward axial velocity, for z > 0, while the low axial velocity
is located on the opposite side for z < 0. This is indicated also by the asymmetry
of the recirculation region.

The pressure minimum is off the axis at r/R ' 0.35 in NB5 and r/R ' 0.57

in H1 (a posteriori justifying the choice of this radius for the conditioning) and
by definition located on the y−axis. As displayed in Figs. 9.3d and 9.4d the
streamlines spiral around a different point closer to the symmetry axis in case
NB5, compared to case H1. The shape of the recirculation region is also different,
while in NB5 lags behind the inner structure by about 130◦, in H1 it is simply
deformed by the inner structure or lagging by about 180◦.
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Figure 9.3: Two-dimensional cuts of the conditional average flow from NB5.
Thick solid line, uc

x = 0. Left, cut through the plane y/R = 0. Right,
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streamlines calculated using c) uc
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Figure 9.4: Two-dimensional cuts of the conditional average flow from H1. Thick
solid line, uc

x = 0. Left, cut through the plane y/R = 0. Right, cut
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The previous information is contained in a more quantitative way in Figs. 9.5-
9.7, which show mean and conditional-averaged profiles of pressure and velocity
at x/R = 0.1 and x/R = 1 for both cases, together with contour plots of the
same quantities only in case NB5. Conditional-averaged profiles are shown along
two lines. The first coincides with the centre of the structure. The second one is
orthogonal to the first one. At x/R = 0.1 these lines are the y− and z−axes by
definition. At x/R = 1 this is not the case because of the helical shape of the
structure. Hence a coordinate system is chosen such that the pressure minimum
lies on one of its axes as indicated in Figs. 9.6b, d, f and labeled A and B.

In Figs. 9.5a and 9.7a the strength of the pressure minimum related to the cen-
tre of the structure is visible by comparison to the mean pressure. This difference
is larger in H1 which seems to indicate that the structure is stronger in this case.
However, downstream at x/R = 1 the difference is larger in NB5 (compare Figs.
9.6a and 9.7b). This indicates that in H1 the intensity of the structure is concen-
trated in a small region close to the jet exit while in NB5 it spreads over a longer
region. The second minimum located radially outwards in both plots indicate the
outer structure.

The conditionally averaged axial velocity uc
x along the positive y−axis, hence

in the inner structure, is higher than the mean axial velocity (Figs. 9.5c and 9.7c).
This also happens at x/R = 1. The recirculation zone in NB5, as expected from
the two-dimensional plots (Fig. 9.3), is displaced towards the opposite side, while
this effect is not so pronounced in H1. The reason is, perhaps, that the inner
vortex is closer to the symmetry axis in NB5, and this has a larger effect on the
recirculation zone. In general, the profiles in the region indicated by r < 0 in Figs.
9.5-9.7 is closer to the mean flow in case H1 than in case NB5. This suggests that
the perturbation induced by the inner structure is more local in case H1.

The features observed in the profiles of uc
θ (Figs. 9.5e and 9.7e) are also similar

in both cases. In Fig. 9.5e, the radial position at which the conditionally averaged
tangential velocity uc

θ at y = 0 equals the mean velocity, roughly corresponds to
the minimum of the pressure. This is also expected because at the centre of the
structure the fluctuations of the tangential velocity component have to vanish, as
discussed in Chapter 3.
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Figure 9.5: Profiles and contours at x/R = 0.1 from NB5. Top, pressure. Middle,
axial velocity. Bottom, tangential velocity.
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Figure 9.6: Profiles and contours at x/R = 1 from NB5. Top, pressure. Middle,
axial velocity. Bottom, tangential velocity.
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Figure 9.7: Profiles from H1. Top, pressure. Middle, axial velocity. Bottom,
tangential velocity. Left, x/R = 0.1. Right, x/R = 1.

151



Chapter 9. Analysis of coherent structures using conditional averages

Finally, Fig. 9.8 shows the same plane as Fig. 9.3 and 9.4 but the color
and streamlines are given by the equivalent Reynolds-decomposed quantities, i.e.
color by pc − 〈p〉 and streamlines by (uc

r − 〈ur〉, u
c
θ − 〈uθ〉). The thick line again

represents uc
x = 0. In this figure the region of low pressure fluctuations corre-

sponds to the inner structure of Fig. 9.2. Note that it forms outside the boundary
of the recirculation zone.

Yazdabadi et al. (1994) performed phase-averaged measurements in a cyclone
dust separator and obtained similar plots as Figs. 9.5-9.7 for the velocity compo-
nents. Their conclusion was that the reverse flow zone displaces the central vortex
core to create the precessing vortex core. The reverse flow zone would then pro-
vide feedback for the precessing vortex core, and precess around the central axis
behind the precessing vortex core. In the present case, Fig. 9.8 together with
the discussion of Chapter 3 suggest an alternative explanation, although perhaps
compatible with the previous one: The inner structure (precessing vortex core)
is formed as an instability of the shear layer (Kelvin-Helmholtz instability). It is
therefore formed on the boundary of the recirculation zone, Fig. 9.8, and advected
by the mean flow. This structure then constrains the motion of the recirculation
zone which is displaced off the symmetry axis and precesses behind the structure.
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Figure 9.8: Two-dimensional cut through the plane x/R = 0.1 of the conditional
average flow. Top, NB5. Bottom, H1. Thick solid line, uc

x = 0.
Left, Color is given by pc − 〈p〉. Right, streamlines calculated using
uc

r − 〈ur〉 and uc
θ − 〈uθ〉.
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10 Summary, conclusions and
recommendations for future work
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may not be seen by all.
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10.1 Summary

In this thesis the flow in swirl-burner related geometries has been investigated us-
ing LES. The adequacy of the employed LES methodology has been demonstrated
by various comparisons with corresponding experiments (Büchner & Petsch, 2004;
Bender & Büchner, 2005). Very good agreement with the experimental data has
been obtained for mean flow and turbulent fluctuations. Also, the low frequency
range of the power spectral density of velocity fluctuations has been found to
be in good agreement with the experiments. This suggests that the large-scale
organized motions have been well captured in the simulations, allowing a more
detailed physical interpretation of these motions than is possible from the expe-
rimental results. Analyses of the different vortex structures have been performed
by a variety of post-processing techniques. Two- and three-dimensional visuali-
zations, filtering, different types of averaging, spectra, auto-correlation functions,
etc. were employed depending on the specific question to be answered.

Swirl flows constitute a challenging and practically relevant class of flows.
They encompass a large number of phenomena, like recirculation zones, shear
layers, flow instabilities, etc. These features are present in the simulations des-
cribed in this thesis. In particular, the simplest configuration presented here is an
unconfined annular swirling jet, at high Reynolds and Swirl numbers. For this
configuration some of the modelling assumptions have been investigated. The in-
fluence of the sub-grid scale model, the grid and the co-flow boundary condition
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have been assessed. Furthermore, different ways of providing the inflow condi-
tions have been considered.

Using this simple configuration as reference, parametric studies have been per-
formed. The influence of the level of swirl, an imposed oscillation and a pilot jet
have been investigated. The sensitivity to the level of swirl has been performed by
considering seven simulations in Chapter 5 covering a wide range. From no-swirl
until high swirl including intermediate cases. Pulsating inflow has been discussed
in Chapter 6 considering two cases which correspond to different idealized scenar-
ios of pulsation which are realistic since the swirl-generating devices in a burner
can be different. In one case only the axial velocity oscillates at the inflow. In the
second both the axial and the tangential velocity components oscillate. Finally,
the practically-relevant case of the addition of a pilot jet has been considered. Two
cases have been studied. First, main and pilot jet exit at the same location. In the
second one, the pilot jet is retracted into the inlet duct. In this case, the main jet
is subject to a double expansion.

10.2 Conclusions

The simulations reported in the present thesis provide good quality data and im-
portant hints to mechanisms of instability.

For the reference case, large-scale coherent structures rotating around the sym-
metry axis have been identified. Two families of structures appear, an inner one
oriented quasi-streamwise and located in the inner shear layer and an outer one
oriented at a larger angle with respect to the x−axis and situated in the outer
shear layer. The large-scale coherent structures are relevant to the mixing of heat
and species in the near field of swirl burners. The Kelvin-Helmholtz instability
has been identified as the major source for the generation of the coherent vor-
tices. Furthermore, a clear connection between the velocity power spectra and the
coherent structures has been established.

By varying the swirl level, it has been shown that jet growth, entrainment and
decay are enhanced progressively as the degree of swirl is increased. It has been
also shown that, as soon as the swirl is higher than S > 0.7, the characteristics of
the large-scale coherent structures are similar. In the intermediate case S = 0.55,
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however, only inner structures have been found. This suggests that the inner shear
layer is more unstable than the outer one and the structures form first in the inner
shear layer. With increasing swirl, the shear layers approach each other and the
inner structures trigger the formation of the outer ones.

For the pulsating inflow investigations, it has been shown that the recirculation
zone is mainly influenced by the oscillation of azimuthal velocity. In both cases
considered, dominant vortex rings have been observed in the phase-averaged flow.
The rotation rate of the instantaneous coherent structures is dominated by the os-
cillation of the azimuthal component. When the latter is fixed at the inlet, the
structures rotate at a constant rate and pronounced peaks are observed in the spec-
tra. When the flow oscillates azimuthally at the inlet, temporal spectra cannot be
used to assess spatial structures. Analyses of the instantaneous pressure field have
shown that the qualitative nature of the vortex structures is similar to that in the
non-pulsating case. The coherence of the structures, in particular for the inner
ones, is larger when only the axial velocity component oscillates.

Concerning the pilot jet, it has been shown that the mean flow is only little
affected by the introduction of the pilot jet while the fluctuations show moderate
differences near the outlet and close to the inner shear layer. Visualizations and
spectra have shown, however, that although axial and angular momentum of this
jet are small, it has a dramatic effect on the instantaneous vortex structures. When
the pilot jet is retracted, on the other hand, the flow instabilities are substantially
enhanced. The reason is that, in the first case, the pilot jet perturbs the inner
shear layer avoiding the formation of large coherent structures, only short living
structures are formed. In the second case, the perturbation of the inner shear layer
does not occur because the tube enclosing the main jet prevents the recirculation
bubble from moving upstream to the central bluff body.

In conclusion, a comprehensive investigation of isothermal swirling flows has
been performed providing a detailed understanding of the underlying physics.
After validation for one particular case, LES has been shown to be a suitable,
predictive tool for parametric studies.
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10.3 Recommendations for future work

In this thesis a number of different investigations on large eddy simulations of
turbulent incompressible swirling jets have been performed successfully. There
are important issues which have not been addressed in this work. In the following
an overview of these issues is given.

First, it is worth to mention that the validation of the simulations have been
performed in a small region very close to the burner exit due to the lack of ex-
perimental data further downstream. More experiments are needed to validate
thoroughly the simulations, for example with respect to the length of the recircu-
lation zone. Also it would be of interest to evaluate the influence of confinement
by performing several simulations with walls at different locations and comparing
with the unconfined simulations reported here.

From a fundamental point of view, the mechanisms of instability which have
been proposed should be supported by stability analyses. Nowadays, a suitable
approach is the so-called bi-global stability analysis (Theofilis, 2003). In lin-
ear stability research, the flow is decomposed into an steady (or time-periodic)
basic flow upon which small-amplitude three-dimensional disturbances are per-
mitted to develop. The advantage of bi-global analyses is that the basic flow is
two-dimensional unlike more traditional approaches which usually employ the
parallel flow assumption (Drazin & Reid, 1981). For the configurations studied in
the present work, a two-dimensional basic flow is needed because of the spatial
structure of the mean flow, i.e. the parallel flow assumption is not valid. It would
therefore be interesting to consider the mean flow obtained from the LES as basic
flow, with the azimuthal direction being homogeneous, using an additional eddy
viscosity term like in del Álamo & Jiménez (2006). Alternatively, the basic flow
could be obtained by performing a direct numerical simulation of the linearised
two-dimensional equations of motion (see Theofilis (2003)). Two-dimensional in
the sense that the equations only depend on x and r, and not in θ, although the
three-velocity components must be retained in the equations.

In this thesis, the interest has been focused in high Reynolds number flows.
Other investigators have shown that flow instabilities occur also at lower Reynolds
number (Freitag & Klein, 2005). The irregularity induced by the turbulent mo-
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tions decreases at lower Re and the characteristics of the large-scale coherent
structures could be interpreted in an easier manner. Therefore, it would be inter-
esting to perform direct numerical simulations of the present configuration at a
lower Reynolds number.

A natural continuation of the present work is the study of mixing in the near
field of swirl burners. Despite recent development in this direction (Freitag et al.,
2005; Wegner et al., 2005), there is still a need of a deeper understanding of
this phenomenon. In particular, it would be instructive to study the impact of
the large-scale coherent structures on the mixing of a passive scalar by using the
configurations of Chapter 8. This would allow the comparison of the mixing in a
case with strong coherent structures and a case with weak coherent structures.

As mentioned in the introduction of the thesis, this work is part of a long-term
research effort focused on unsteady combustion. It is therefore logical that the
next step has to be related to the investigation of reactive flows, first, by using
the G-equation as combustion model combined with simple models for the tur-
bulent flame speed (Poinsot & Veynante, 2001). The configurations discussed in
the present thesis are available for comparison, in particular, to evaluate how the
combustion affects the formation of coherent structures and to study the unsteady
heat release. In the long term, the objective of the project is to perform large
eddy simulations of flow in model combustors using realistic Reynolds number
(Re ∼ 105) and high-quality combustion models in order to predict combustion
instabilities and to clarify mechanisms of instability.
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