ON THE OPERATOR EQUATIONS $ABA = A^2$ AND $BAB = B^2$

Christoph Schmoeger

Communicated by Stevan Pilipović

ABSTRACT. We generalize a result of I. Vidav concerning the operator equations $ABA=A^2$ and $BAB=B^2$.

1. Introduction

In [7] I. Vidav proved the following result:

Theorem 1.1. Let H be a complex Hilbert space and let A and B be bounded linear operators on H. Then the following assertions are equivalent:

- (a) There is a uniquely determined bounded linear operator P on H such that $P^2 = P$ and $A = PP^*$ and $B = P^*P$.
- (b) A and B are selfadjoint and satisfy the relations $ABA = A^2$ and $BAB = B^2$.

Vidav gave two proofs of Theorem 1.1; the first proof is geometrical and the second one is algebraic. In [6] Rakočević gave another proof of Theorem 1.1.

The aim of this paper is to prove a result, which implies Theorem 1.1. Section 2 deals with Drazin invertible elements of rings. In Section 3 we consider bounded linear operators on Banach spaces. Operators on Hilbert spaces are considered in Section 4, where we will give a proof of Theorem 1.1. In the final section we investigate several special classes of operators.

2. Drazin inverses in rings

In this section \mathcal{R} denotes an associative ring. An element $A \in \mathcal{R}$ is said to be *Drazin invertible* if there exists $C \in \mathcal{R}$ such that

- (1) $A^m = A^{m+1}C$ for some integer $m \ge 0$,
- (2) $C = AC^2$
- (3) AC = CA.

2000 Mathematics Subject Classification: Primary 47A05. Key words and phrases: selfadjoint operator, Drazin inverse.

128 SCHMOEGER

In this case C is called a *Drazin inverse* of A and the smallest integer $m \ge 0$ in (1) is called the *index* i(A) of A.

If \mathcal{R} has a neutral element I and if we define $A^0 = I$, then (1), (2) and (3) hold with m = 0 if and only if A is invertible.

Proposition 2.1. If $A \in \mathcal{R}$ is Drazin invertible, then A has a unique Drazin inverse.

Proof.
$$[4]$$
.

Our main result in this section is:

THEOREM 2.2. (a) If $P, Q \in \mathcal{R}$, $P^2 = P$, $Q^2 = Q$, A = PQ and B = QP, then $ABA = A^2$ and $BAB = B^2$.

(b) Suppose that $A, B \in \mathcal{R}$ are Drazin invertible, i(A) = i(B) = 1, $ABA = A^2$ and $BAB = B^2$. Then there are $P, Q \in \mathcal{R}$ such that $P^2 = P$, $Q^2 = Q$, A = PQ and B = QP.

PROOF. (a) We have $ABA = PQ^2P^2Q = (PQ)^2 = A^2$ and $BAB = QP^2Q^2P = (QP)^2 = B^2$.

(b) Since
$$i(A)=i(B)=1$$
, there are $C,D\in\mathcal{R}$ with
$$ACA=A,\quad CAC=C,\quad AC=CA$$

$$BDB=B,\quad DBD=D,\quad BD=DB.$$

Let
$$P := CAB$$
, $Q := BAC$ and $R := DBA$. Then

$$P^2 = CABCAB = C(ABA)CB = CA^2CB = ACACB = ACB = CAB = P,$$

 $R^2 = DBADBA = D(BAB)DA = DB^2DA = BDBDA = BDA = DBA = R,$
 $Q^2 = BACBAC = BC(ABA)C = BCA^2C = BCACA = BCA = BAC = Q.$

Furthermore we have

$$PQ = CABBAC = CAB^{2}AC = CA(BAB)AC = C(ABA)BAC$$
$$= CA^{2}BAC = ACABAC = ABAC = A^{2}C = ACA = A,$$
$$RP = DB(ACA)B = DBAB = DB^{2} = BDB = B.$$

It follows that

$$QP = BACCAB = B(ACA)CB = BACB = BCAB$$

= $BP = (RP)P = RP^2 = RP = B$.

3. Bounded linear operators

In this section X denotes a complex Banach space and $\mathcal{L}(X)$ the Banach algebra of all bounded linear operators on X. If $A \in \mathcal{L}(X)$, then $\sigma(A)$, $\rho(A)$ and r(A) denote the spectrum, the resolvent set and the spectral radius of A, respectively. We write N(A) for the kernel of A and A(X) for the range of A. Define p(A) [resp. q(A)], the ascent [resp. the descent] of A, to be the smallest integer $n \geq 0$ such that $N(A^{n+1}) = N(A^n)$ [resp. $A^{n+1}(X) = A^n(X)$] or ∞ if no such n exists. It follows

from [5, Satz 72.3] that if p(A) and q(A) are both finite, then they are equal and, if $p = p(A) = q(A) < \infty$, then $X = N(A^p) \oplus A^p(X)$.

A Drazin invertible operator $A \in \mathcal{L}(X)$ with $i(A) \leq 1$ is called *simply polar*. The following proposition tells us exactly which operators are Drazin invertible.

PROPOSITION 3.1. For $A \in \mathcal{L}(X)$ and $n \geqslant 1$ the following assertions are equivalent:

- (a) A is Drazin invertible and i(A) = n.
- (b) p(A) = q(A) = n.
- (c) The resolvent $(\lambda I A)^{-1}$ has a pole of order n at $\lambda = 0$.

As an immediate consequence of Proposition 3.1 and Theorem 2.2 we get the main result of this section:

THEOREM 3.2. Suppose that $A, B \in \mathcal{L}(X)$, p(A) = q(A) = 1 and p(B) = q(B) = 1. Then the following assertions are equivalent:

- (a) There are $P, Q \in \mathcal{L}(X)$ such that $P^2 = P$, $Q^2 = Q$, A = PQ and B = QP.
- (b) $ABA = A^2$ and $BAB = B^2$.

We use $\sigma_p(A)$, $\sigma_{ap}(A)$, $\sigma_r(A)$ and $\sigma_c(A)$ to denote the point, approximate point, residual and continuous spectrum of $A \in \mathcal{L}(X)$, respectively.

COROLLARY 3.3. Suppose that $A, B \in \mathcal{L}(X)$, p(A) = q(A) = p(B) = q(B) = 1, $ABA = A^2$ and that $BAB = B^2$. Then:

- (a) $\sigma(A) = \sigma(B)$;
- (b) $\sigma_p(A) = \sigma_p(B)$;
- (c) $\sigma_{ap}(A) = \sigma_{ap}(B)$;
- (d) $\sigma_r(A) = \sigma_r(B)$;
- (e) $\sigma_c(A) = \sigma_c(B)$.

PROOF. Recall that $\sigma_p(A)$, $\sigma_r(A)$ and $\sigma_c(A)$ are pairwise disjoint and that their union is $\sigma(A)$. Thus (a) follows from (b), (d) and (e).

(b) Since p(A) = p(B) > 0, $0 \in \sigma_p(A)$ and $0 \in \sigma_p(B)$. From [1, Theorem 3] and Theorem 3.2 we get

$$\sigma_p(A) \setminus \{0\} = \sigma_p(PQ) \setminus \{0\} = \sigma_p(QP) \setminus \{0\} = \sigma_p(B) \setminus \{0\}$$

hence $\sigma_p(A) = \sigma_p(B)$.

- (c) Because of $\sigma_p(A) \subseteq \sigma_{ap}(A)$ and $\sigma_p(B) \subseteq \sigma_{ap}(B)$, it follows that $0 \in \sigma_{ap}(A)$ and $0 \in \sigma_{ap}(B)$. As in the proof of (b) we see with Theorem 3 in [1] that $\sigma_{ap}(A) = \sigma_{ap}(B)$.
- (d) Since $0 \in \sigma_p(A)$ and $0 \in \sigma_p(B)$, $0 \notin \sigma_r(A)$ and $0 \notin \sigma_r(A)$. Proceed as in the proof of (b), to obtain $\sigma_r(A) = \sigma_r(B)$.

(e) Similar.
$$\Box$$

An operator $A \in \mathcal{L}(X)$ is called a *Fredholm operator* if dim $N(A) < \infty$ and codim $A(X) < \infty$. In this case we set ind $(A) = \dim N(A) - \operatorname{codim} A(X)$.

130 SCHMOEGER

By $\mathcal{F}(X)$ we denote the ideal of all finite dimensional operators in $\mathcal{L}(X)$. Let $\widehat{\mathcal{L}}$ denote the quotient algebra $\mathcal{L}(X)/\mathcal{F}(X)$ and write \widehat{A} for the coset $A + \mathcal{F}(X)$ of $A \in \mathcal{L}(X)$ in $\widehat{\mathcal{L}}$. From [5, Satz 81.1] we have

A is a Fredholm operator $\iff \widehat{A}$ is invertible in $\widehat{\mathcal{L}}$.

COROLLARY 3.4. Let A and B as in Corollary 3.3 and $\lambda \in \mathbb{C}$. Then:

 $\lambda I - A$ is a Fredholm operator $\iff \lambda I - B$ is a Fredholm operator.

In this case $\operatorname{ind}(\lambda I - A) = \operatorname{ind}(\lambda I - B)$.

PROOF. We first consider the case $\lambda = 0$. Let A be a Fredholm operator, thus \widehat{A} is invertible in $\widehat{\mathcal{L}}$. From $\widehat{A}\widehat{B}\widehat{A} = \widehat{A}^2$ we obtain $\widehat{B} = \widehat{I}$, hence B is a Fredholm operator. Since $\widehat{B}\widehat{A}\widehat{B} = \widehat{B}^2$, it follows that $\widehat{A} = \widehat{I}$. Hence there are $F_1, F_2 \in \mathcal{F}(X)$ such that $A = I + F_1$ and $B = I + F_2$. By [5, Satz 81.3],

$$ind(A) = ind(I + F_1) = ind(I) = 0 = ind(I + F_2) = ind(B).$$

Now assume that $\lambda \neq 0$. Our statements follow directly from [1, Theorem 6] and Theorem 3.2.

4. Operators on Hilbert spaces

In this section we will give a proof of Theorem 1.1. H denotes a complex Hilbert space. If $A \in \mathcal{L}(H)$ we write iso $\sigma(A)$ for the set of all isolated points of $\sigma(A)$.

PROPOSITION 4.1. Let $A \in \mathcal{L}(H)$ be normal and $0 \in \text{iso } \sigma(A)$.

- (a) 0 is simple pole of the resolvent $(\lambda I A)^{-1}$.
- (b) p(A) = q(A) = 1.
- (c) A is Drazin invertible and i(A) = 1.

Proof. (a) follows from [5, Satz 112.2], (b) and (c) follow from Proposition 3.1. $\hfill\Box$

THEOREM 4.2. Let $A, B \in \mathcal{L}(H)$ be selfadjoint, $ABA = A^2$ and $BAB = B^2$.

- (a) $0 \in \rho(A)$ or 0 is a simple pole of $(\lambda I A)^{-1}$.
- (b) $\sigma(A) \subseteq \{0\} \cup [1, \infty)$ (hence $A \ge 0$).
- (c) A is Drazin invertible and $i(A) \leq 1$.
- (d) If C is the Drazin inverse of A, then $C = C^*$ and $0 \le C \le I$
- (e) If $A \neq 0$, then $||A|| \ge 1$.
- (f) If ||A|| = 1, then $A^2 = A = B$.

PROOF. (a) and (b): From

$$A(B-I)^{2}A = A(B^{2} - 2B + I)A = AB^{2}A - 2ABA + A^{2}$$
$$= ABABA - 2A^{2} + A^{2} = A^{2}BA - A^{2}$$
$$= A^{3} - A^{2}$$

it follows that $A^3 - A^2 = A(B - I)$ $(A(B - I))^* \ge 0$, therefore $\sigma(A^3 - A^2) \subseteq [0, \infty)$. Now take $\lambda \in \sigma(A) \setminus \{0\}$. The spectral mapping theorem gives $\lambda^2(\lambda - 1) = \lambda^3 - \lambda^2 \ge 0$, thus $\lambda \geqslant 1$. This shows (b) and $0 \in \text{iso } \sigma(A)$ or $0 \in \rho(A)$. Now use Proposition 4.1 to derive (a).

- (c) follows from (a), (b) and Proposition 4.1.
- (d) Because of ACA = A, CAC = C and AC = CA it follows that $AC^*A = A$, $C^*AC^* = C^*$ and $AC^* = C^*A$, hence C^* is a Drazin inverse of A. By Proposition 2.1, $C = C^*$. If $0 \in \rho(A)$, then A = I, thus C = I, hence ||C|| = 1. Now let $0 \in \sigma(A)$. In [2, page 53] it is shown that $r(C)^{-1} = \text{dist}(0, \sigma(A) \setminus \{0\})$.

Now we see from (b) that $r(C)^{-1} \ge 1$, hence, since $C = C^*$, $||C|| = r(C) \le 1$. We denote the inner product on H by $(\cdot|\cdot)$. Take $x \in H$ and let y = Cx. Then

$$(Cx|x) = (CACx|x) = (ACx|Cx) = (Ay|y) \geqslant 0,$$

since $A \ge 0$. Thus $C \ge 0$. From $||C|| \le 1$ we obtain $0 \le C \le I$.

- (e) If $A \neq 0$, we have $||A|| = r(A) \ge 1$, by (b).
- (f) If $\|A\| = 1$, then r(A) = 1, thus we obtain from (b) that $\sigma(A) \subseteq \{0, 1\}$. By the spectral mapping theorem, $\sigma(A^2 A) = \{0\}$, hence $\|A^2 A\| = r(A^2 A) = 0$, this gives $A^2 = A$. Since $\sigma(A) = \sigma(B)$ (Corollary 3.3), we see that $\|B\| = r(B) = r(A) = \|A\| = 1$. Hence, by the same arguments as above, $B^2 = B$. It follows that ABA = A and BAB = B, hence $(AB)^2 = AB$, thus AB is a projection $\neq 0$, therefore $\|AB\| \geqslant 1$. But $\|AB\| \leqslant \|A\|$, $\|B\| \leqslant 1$. Consequently $\|AB\| = 1$. From [8, Satz V.5.9] we derive that $AB = (AB)^*$. Hence AB = BA. We conclude that $A = ABA = BA^2 = BA = B^2A = BAB = B$.

PROOF OF THEOREM 1.1. Theorem 2.2 (a) shows that (a) implies (b). Now suppose that (b) is valid. If $0 \in \rho(A)$, then A = B = I and we are done. Therefore we can assume that $0 \in \sigma(A)$ and $0 \in \sigma(B)$. By Theorem 4.2, A and B are Drazin invertible and i(A) = i(B) = 1. Let P and Q as in the proof of Theorem 2.2(b). Hence P = CAB, Q = BAC, PQ = A, QP = B and C is the Drazin inverse of A. From Theorem 4.2 we get $C = C^*$, thus $P^* = BAC = Q$.

It remains to show that P is uniquely determined. Suppose that $R^2=R$, $PP^*=RR^*$ and $P^*P=R^*R$. Then $P^*P(I-R)=R^*R(I-R)=R^*R-R^*R=0$, thus $P(I-R)(X)\subseteq N(P^*)=P(X)^\perp$, hence P(I-R)=0. Therefore we have PR=P. A similar argument gives $R^*P^*=R^*$. Taking adjoints we obtain R=PR=P.

5. Examples and remarks

In this section we give some examples of operators A which are Drazin invertible with i(A) = 1. X always denotes a complex Banach space.

An operator $A \in \mathcal{L}(X)$ is called hermitian if $\|\exp(itA)\| = 1$ for all $t \in \mathbb{R}$.

EXAMPLE 5.1. If $A \in \mathcal{L}(X)$ is hermitian and if $0 \in \text{iso } \sigma(A)$, then A is Drazin invertible and i(A) = 1.

PROOF. Let P_0 be the spectral projection associated with $\{0\}$. Let $M_0 = P_0(X)$ and $A_0 = A_{|M_0}$. By [5, Satz 100.1] we have $A(M_0) \subseteq M_0$ and $\sigma(A_0) = \{0\}$. Since A_0 is hermitian operator on M_0 [3, Proposition 4.12], we have $||A_0|| = r(A_0) = 0$ [3, Theorem 4.10]. It follows that $AP_0 = 0$. Now [5, (101.9)] shows that 0 is a simple pole of $(\lambda I - A)^{-1}$. Proposition 3.1 completes the proof.

132 SCHMOEGER

An operator $A \in \mathcal{L}(X)$ is said to be paranormal if $||Ax||^2 \le ||A^2x|| \, ||x||$ for all $x \in X$.

EXAMPLE 5.2. If $A \in \mathcal{L}(X)$ is paranormal and if $0 \in \text{iso } \sigma(A)$, then A is Drazin invertible and i(A) = 1.

PROOF. Let P_0 , M_0 and A_0 as in the proof of 5.1. From [5, page 500] we get $||A_0|| = r(A_0) = 0$. Now proceed as in the proof of 5.1.

A bounded linear operator A on a Hilbert space H is called *hyponormal* if $||A^*x|| \leq ||Ax||$ for all $x \in H$. Since hyponormal operators are paranormal, we have by Example 5.2:

EXAMPLE 5.3. If $A \in \mathcal{L}(H)$ is hyponormal and if $0 \in \text{iso } \sigma(A)$, then A is Drazin invertible and i(A) = 1.

REMARK 5.4. If $A, B \in \mathcal{L}(X)$, $ABA = A^2$, $BAB = B^2$, AB = BA, $p(A) \leq 1$ and $p(B) \leq 1$, then $A^2 = A = B$.

PROOF. From $A^2=A^2B=ABAB=AB^2=B^2$ it follows that $A^3=AB^2=A^2$, thus $A^2(A-I)=0$. Since $p(A)\leqslant 1$, we get A(A-I)=0, hence $A^2=A$. In the same way we derive $B^2=B$. Consequently

$$B = B^2 = B(AB) = B(AB^2) = BA^2 = BA = AB = A^2B = A^2 = A.$$

REMARK 5.5. Suppose that $A, B \in \mathcal{L}(X)$ are paranormal, $ABA = A^2$, $BAB = B^2$ and AB = BA; then $A^2 = A = B$.

PROOF. Since $||Ax||^2 \le ||A^2x|| \, ||x||$ for $x \in X$, it follows that $p(A) \le 1$. Similarly $p(B) \le 1$. Now use 5.4.

REMARK 5.6. Suppose that H is a complex Hilbert space, $A, B \in \mathcal{L}(H)$ are normal, $ABA = A^2$, $BAB = B^2$ and AB = BA. Then A is selfadjoint and $A^2 = A = B$.

PROOF. Since normal operators are paranormal, it follows from 5.5 that A and B are normal projections, hence they are selfadjoint.

REMARK 5.7. If $A \in \mathcal{L}(X)$ is hermitian, then $p(A) \leq 1$.

PROOF. Let $x \in N(A^2)$ and ||x|| = 1. Then for $t \in \mathbb{R}$,

$$1 = ||x|| = ||\exp(-itA)\exp(itA)x|| \le ||\exp(-itA)|| ||\exp(itA)x||$$
$$= ||\exp(itA)x|| \le ||\exp(itA)|| ||x|| = ||x|| = 1,$$

thus, since $A^n x = 0$ for $n \ge 2$,

$$1 = \|\exp(itA)x\| = \|x + itAx\|.$$

Therefore
$$|t| \|Ax\| - 1 \le 1$$
 for all $t \in \mathbb{R}$. This gives $x \in N(A)$.

REMARK 5.8. Suppose that $A, B \in \mathcal{L}(X)$ are hermitian, $ABA = A^2$, $BAB = B^2$ and that AB = BA; then $A^2 = A = B$.

Proof. 5.7 and 5.4.
$$\Box$$

References

- B. A. Barnes, Common operator properties of the linear operators RS and SR, Proc. Amer. Math. Soc. 126 (1998), 1055–1061.
- [2] S. R. Caradus, Operator theory of the pseudo-inverse, Queen's papers in Pure and Appl. Math. No. 38 (1974).
- [3] H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, 1978.
- [4] M. P. Drazin, Pseudoinverse in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514.
- [5] H. Heuser, Funktionalanalysis, 2nd ed., Teubner, 1986.
- [6] V. Rakočević, A note on a theorem of I. Vidav, Publ. Inst. Math. (Beograd) 68(82) (2000), 105–107.
- [7] I. Vidav, On idempotent operators in a Hilbert space, Publ. Inst. Math. (Beograd) 4(18) (1964), 157–163.
- [8] D. Werner, Funktionalanalysis, Springer-Verlag, 1995.

Mathematisches Institut I Universität Karlsruhe (TH) Englerstraße 2 76128 Karlsruhe Germany

 $\verb|christoph.schmoeger@math.uni-karlsruhe.de|\\$

(Received 16 08 2005)