ON THE OPERATOR EQUATIONS
 $A B A=A^{2}$ AND $B A B=B^{2}$

Christoph Schmoeger

Communicated by Stevan Pilipović

Abstract

We generalize a result of I. Vidav concerning the operator equations $A B A=A^{2}$ and $B A B=B^{2}$.

1. Introduction

In $[7]$ I. Vidav proved the following result:
Theorem 1.1. Let H be a complex Hilbert space and let A and B be bounded linear operators on H. Then the following assertions are equivalent:
(a) There is a uniquely determined bounded linear operator P on H such that $P^{2}=P$ and $A=P P^{*}$ and $B=P^{*} P$.
(b) A and B are selfadjoint and satisfy the relations $A B A=A^{2}$ and $B A B=$ B^{2}.

Vidav gave two proofs of Theorem 1.1; the first proof is geometrical and the second one is algebraic. In [6] Rakočević gave another proof of Theorem 1.1.

The aim of this paper is to prove a result, which implies Theorem 1.1. Section 2 deals with Drazin invertible elements of rings. In Section 3 we consider bounded linear operators on Banach spaces. Operators on Hilbert spaces are considered in Section 4, where we will give a proof of Theorem 1.1. In the final section we investigate several special classes of operators.

2. Drazin inverses in rings

In this section \mathcal{R} denotes an associative ring. An element $A \in \mathcal{R}$ is said to be Drazin invertible if there exists $C \in \mathcal{R}$ such that
(1) $A^{m}=A^{m+1} C$ for some integer $m \geqslant 0$,
(2) $C=A C^{2}$
(3) $A C=C A$.

[^0]In this case C is called a Drazin inverse of A and the smallest integer $m \geqslant 0$ in (1) is called the index $i(A)$ of A.

If \mathcal{R} has a neutral element I and if we define $A^{0}=I$, then (1), (2) and (3) hold with $m=0$ if and only if A is invertible.

Proposition 2.1. If $A \in \mathcal{R}$ is Drazin invertible, then A has a unique Drazin inverse.

Proof. [4].
Our main result in this section is:
ThEOREM 2.2. (a) If $P, Q \in \mathcal{R}, P^{2}=P, Q^{2}=Q, A=P Q$ and $B=Q P$, then $A B A=A^{2}$ and $B A B=B^{2}$.
(b) Suppose that $A, B \in \mathcal{R}$ are Drazin invertible, $i(A)=i(B)=1, A B A=A^{2}$ and $B A B=B^{2}$. Then there are $P, Q \in \mathcal{R}$ such that $P^{2}=P, Q^{2}=Q, A=P Q$ and $B=Q P$.

Proof. (a) We have $A B A=P Q^{2} P^{2} Q=(P Q)^{2}=A^{2}$ and $B A B=Q P^{2} Q^{2} P=$ $(Q P)^{2}=B^{2}$.
(b) Since $i(A)=i(B)=1$, there are $C, D \in \mathcal{R}$ with

$$
\begin{aligned}
A C A & =A, & C A C=C, & A C=C A \\
B D B & =B, & D B D=D, & B D=D B
\end{aligned}
$$

Let $P:=C A B, Q:=B A C$ and $R:=D B A$. Then

$$
\begin{aligned}
& P^{2}=C A B C A B=C(A B A) C B=C A^{2} C B=A C A C B=A C B=C A B=P \\
& R^{2}=D B A D B A=D(B A B) D A=D B^{2} D A=B D B D A=B D A=D B A=R \\
& Q^{2}=B A C B A C=B C(A B A) C=B C A^{2} C=B C A C A=B C A=B A C=Q
\end{aligned}
$$

Furthermore we have

$$
\begin{aligned}
P Q & =C A B B A C=C A B^{2} A C=C A(B A B) A C=C(A B A) B A C \\
& =C A^{2} B A C=A C A B A C=A B A C=A^{2} C=A C A=A \\
R P & =D B(A C A) B=D B A B=D B^{2}=B D B=B
\end{aligned}
$$

It follows that

$$
\begin{aligned}
Q P & =B A C C A B=B(A C A) C B=B A C B=B C A B \\
& =B P=(R P) P=R P^{2}=R P=B
\end{aligned}
$$

3. Bounded linear operators

In this section X denotes a complex Banach space and $\mathcal{L}(X)$ the Banach algebra of all bounded linear operators on X. If $A \in \mathcal{L}(X)$, then $\sigma(A), \rho(A)$ and $r(A)$ denote the spectrum, the resolvent set and the spectral radius of A, respectively. We write $N(A)$ for the kernel of A and $A(X)$ for the range of A. Define $p(A)$ [resp. $q(A)]$, the ascent [resp. the descent] of A, to be the smallest integer $n \geqslant 0$ such that $N\left(A^{n+1}\right)=N\left(A^{n}\right)\left[\right.$ resp. $\left.A^{n+1}(X)=A^{n}(X)\right]$ or ∞ if no such n exists. It follows
from [5, Satz 72.3] that if $p(A)$ and $q(A)$ are both finite, then they are equal and, if $p=p(A)=q(A)<\infty$, then $X=N\left(A^{p}\right) \oplus A^{p}(X)$.

A Drazin invertible operator $A \in \mathcal{L}(X)$ with $i(A) \leqslant 1$ is called simply polar.
The following proposition tells us exactly which operators are Drazin invertible.
Proposition 3.1. For $A \in \mathcal{L}(X)$ and $n \geqslant 1$ the following assertions are equivalent:
(a) A is Drazin invertible and $i(A)=n$.
(b) $p(A)=q(A)=n$.
(c) The resolvent $(\lambda I-A)^{-1}$ has a pole of order n at $\lambda=0$.

Proof. [2, Theorem 5.2], [5, Satz 101.2].
As an immediate consequence of Proposition 3.1 and Theorem 2.2 we get the main result of this section:

Theorem 3.2. Suppose that $A, B \in \mathcal{L}(X), p(A)=q(A)=1$ and $p(B)=$ $q(B)=1$. Then the following assertions are equivalent:
(a) There are $P, Q \in \mathcal{L}(X)$ such that $P^{2}=P, Q^{2}=Q, A=P Q$ and $B=Q P$.
(b) $A B A=A^{2}$ and $B A B=B^{2}$.

We use $\sigma_{p}(A), \sigma_{a p}(A), \sigma_{r}(A)$ and $\sigma_{c}(A)$ to denote the point, approximate point, residual and continuous spectrum of $A \in \mathcal{L}(X)$, respectively.

Corollary 3.3. Suppose that $A, B \in \mathcal{L}(X), p(A)=q(A)=p(B)=q(B)=1$, $A B A=A^{2}$ and that $B A B=B^{2}$. Then:
(a) $\sigma(A)=\sigma(B)$;
(b) $\sigma_{p}(A)=\sigma_{p}(B)$;
(c) $\sigma_{a p}(A)=\sigma_{a p}(B)$;
(d) $\sigma_{r}(A)=\sigma_{r}(B)$;
(e) $\sigma_{c}(A)=\sigma_{c}(B)$.

Proof. Recall that $\sigma_{p}(A), \sigma_{r}(A)$ and $\sigma_{c}(A)$ are pairwise disjoint and that their union is $\sigma(A)$. Thus (a) follows from (b), (d) and (e).
(b) Since $p(A)=p(B)>0,0 \in \sigma_{p}(A)$ and $0 \in \sigma_{p}(B)$. From [1, Theorem 3] and Theorem 3.2 we get

$$
\sigma_{p}(A) \backslash\{0\}=\sigma_{p}(P Q) \backslash\{0\}=\sigma_{p}(Q P) \backslash\{0\}=\sigma_{p}(B) \backslash\{0\}
$$

hence $\sigma_{p}(A)=\sigma_{p}(B)$.
(c) Because of $\sigma_{p}(A) \subseteq \sigma_{a p}(A)$ and $\sigma_{p}(B) \subseteq \sigma_{a p}(B)$, it follows that $0 \in \sigma_{a p}(A)$ and $0 \in \sigma_{a p}(B)$. As in the proof of (b) we see with Theorem 3 in $[\mathbf{1}]$ that $\sigma_{a p}(A)=$ $\sigma_{a p}(B)$.
(d) Since $0 \in \sigma_{p}(A)$ and $0 \in \sigma_{p}(B), 0 \notin \sigma_{r}(A)$ and $0 \notin \sigma_{r}(A)$. Proceed as in the proof of (b), to obtain $\sigma_{r}(A)=\sigma_{r}(B)$.
(e) Similar.

An operator $A \in \mathcal{L}(X)$ is called a Fredholm operator if $\operatorname{dim} N(A)<\infty$ and $\operatorname{codim} A(X)<\infty$. In this case we set $\operatorname{ind}(A)=\operatorname{dim} N(A)-\operatorname{codim} A(X)$.

By $\mathcal{F}(X)$ we denote the ideal of all finite dimensional operators in $\mathcal{L}(X)$. Let $\widehat{\mathcal{L}}$ denote the quotient algebra $\mathcal{L}(X) / \mathcal{F}(X)$ and write \widehat{A} for the coset $A+\mathcal{F}(X)$ of $A \in \mathcal{L}(X)$ in $\widehat{\mathcal{L}}$. From [5, Satz 81.1] we have

$$
A \text { is a Fredholm operator } \Longleftrightarrow \widehat{A} \text { is invertible in } \widehat{\mathcal{L}} .
$$

Corollary 3.4. Let A and B as in Corollary 3.3 and $\lambda \in \mathbb{C}$. Then:
$\lambda I-A$ is a Fredholm operator $\Longleftrightarrow \lambda I-B$ is a Fredholm operator.
In this case $\operatorname{ind}(\lambda I-A)=\operatorname{ind}(\lambda I-B)$.
Proof. We first consider the case $\lambda=0$. Let A be a Fredholm operator, thus \widehat{A} is invertible in $\widehat{\mathcal{L}}$. From $\widehat{A} \widehat{B} \widehat{A}=\widehat{A}^{2}$ we obtain $\widehat{B}=\widehat{I}$, hence B is a Fredholm operator. Since $\widehat{B} \widehat{A} \widehat{B}=\widehat{B}^{2}$, it follows that $\widehat{A}=\widehat{I}$. Hence there are $F_{1}, F_{2} \in \mathcal{F}(X)$ such that $A=I+F_{1}$ and $B=I+F_{2}$. By [5, Satz 81.3],

$$
\operatorname{ind}(A)=\operatorname{ind}\left(I+F_{1}\right)=\operatorname{ind}(I)=0=\operatorname{ind}\left(I+F_{2}\right)=\operatorname{ind}(B)
$$

Now assume that $\lambda \neq 0$. Our statements follow directly from $[\mathbf{1}$, Theorem 6] and Theorem 3.2.

4. Operators on Hilbert spaces

In this section we will give a proof of Theorem 1.1. H denotes a complex Hilbert space. If $A \in \mathcal{L}(H)$ we write iso $\sigma(A)$ for the set of all isolated points of $\sigma(A)$.

Proposition 4.1. Let $A \in \mathcal{L}(H)$ be normal and $0 \in$ iso $\sigma(A)$.
(a) 0 is simple pole of the resolvent $(\lambda I-A)^{-1}$.
(b) $p(A)=q(A)=1$.
(c) A is Drazin invertible and $i(A)=1$.

Proof. (a) follows from [5, Satz 112.2], (b) and (c) follow from Proposition 3.1.

Theorem 4.2. Let $A, B \in \mathcal{L}(H)$ be selfadjoint, $A B A=A^{2}$ and $B A B=B^{2}$.
(a) $0 \in \rho(A)$ or 0 is a simple pole of $(\lambda I-A)^{-1}$.
(b) $\sigma(A) \subseteq\{0\} \cup[1, \infty)$ (hence $A \geqslant 0$).
(c) A is Drazin invertible and $i(A) \leqslant 1$.
(d) If C is the Drazin inverse of A, then $C=C^{*}$ and $0 \leqslant C \leqslant I$
(e) If $A \neq 0$, then $\|A\| \geqslant 1$.
(f) If $\|A\|=1$, then $A^{2}=A=B$.

Proof. (a) and (b): From

$$
\begin{aligned}
A(B-I)^{2} A & =A\left(B^{2}-2 B+I\right) A=A B^{2} A-2 A B A+A^{2} \\
& =A B A B A-2 A^{2}+A^{2}=A^{2} B A-A^{2} \\
& =A^{3}-A^{2}
\end{aligned}
$$

it follows that $A^{3}-A^{2}=A(B-I)(A(B-I))^{*} \geqslant 0$, therefore $\sigma\left(A^{3}-A^{2}\right) \subseteq[0, \infty)$. Now take $\lambda \in \sigma(A) \backslash\{0\}$. The spectral mapping theorem gives $\lambda^{2}(\lambda-1)=\lambda^{3}-\lambda^{2} \geqslant 0$,
thus $\lambda \geqslant 1$. This shows (b) and $0 \in$ iso $\sigma(A)$ or $0 \in \rho(A)$. Now use Proposition 4.1 to derive (a).
(c) follows from (a), (b) and Proposition 4.1.
(d) Because of $A C A=A, C A C=C$ and $A C=C A$ it follows that $A C^{*} A=A$, $C^{*} A C^{*}=C^{*}$ and $A C^{*}=C^{*} A$, hence C^{*} is a Drazin inverse of A. By Proposition 2.1, $C=C^{*}$. If $0 \in \rho(A)$, then $A=I$, thus $C=I$, hence $\|C\|=1$. Now let $0 \in \sigma(A)$. In [2, page 53] it is shown that $r(C)^{-1}=\operatorname{dist}(0, \sigma(A) \backslash\{0\})$.

Now we see from (b) that $r(C)^{-1} \geqslant 1$, hence, since $C=C^{*},\|C\|=r(C) \leqslant 1$. We denote the inner product on H by $(\cdot \mid \cdot)$. Take $x \in H$ and let $y=C x$. Then

$$
(C x \mid x)=(C A C x \mid x)=(A C x \mid C x)=(A y \mid y) \geqslant 0
$$

since $A \geqslant 0$. Thus $C \geqslant 0$. From $\|C\| \leqslant 1$ we obtain $0 \leqslant C \leqslant I$.
(e) If $A \neq 0$, we have $\|A\|=r(A) \geqslant 1$, by (b).
(f) If $\|A\|=1$, then $r(A)=1$, thus we obtain from (b) that $\sigma(A) \subseteq\{0,1\}$. By the spectral mapping theorem, $\sigma\left(A^{2}-A\right)=\{0\}$, hence $\left\|A^{2}-A\right\|=r\left(A^{2}-A\right)=0$, this gives $A^{2}=A$. Since $\sigma(A)=\sigma(B)$ (Corollary 3.3), we see that $\|B\|=r(B)=$ $r(A)=\|A\|=1$. Hence, by the same arguments as above, $B^{2}=B$. It follows that $A B A=A$ and $B A B=B$, hence $(A B)^{2}=A B$, thus $A B$ is a projection $\neq 0$, therefore $\|A B\| \geqslant 1$. But $\|A B\| \leqslant\|A\|,\|B\| \leqslant 1$. Consequently $\|A B\|=1$. From [8, Satz V.5.9] we derive that $A B=(A B)^{*}$. Hence $A B=B A$. We conclude that $A=A B A=B A^{2}=B A=B^{2} A=B A B=B$.

Proof of Theorem 1.1. Theorem 2.2 (a) shows that (a) implies (b). Now suppose that (b) is valid. If $0 \in \rho(A)$, then $A=B=I$ and we are done. Therefore we can assume that $0 \in \sigma(A)$ and $0 \in \sigma(B)$. By Theorem 4.2, A and B are Drazin invertible and $i(A)=i(B)=1$. Let P and Q as in the proof of Theorem 2.2(b). Hence $P=C A B, Q=B A C, P Q=A, Q P=B$ and C is the Drazin inverse of A. From Theorem 4.2 we get $C=C^{*}$, thus $P^{*}=B A C=Q$.

It remains to show that P is uniquely determined. Suppose that $R^{2}=R$, $P P^{*}=R R^{*}$ and $P^{*} P=R^{*} R$. Then $P^{*} P(I-R)=R^{*} R(I-R)=R^{*} R-R^{*} R=0$, thus $P(I-R)(X) \subseteq N\left(P^{*}\right)=P(X)^{\perp}$, hence $P(I-R)=0$. Therefore we have $P R=P$. A similar argument gives $R^{*} P^{*}=R^{*}$. Taking adjoints we obtain $R=P R=P$.

5. Examples and remarks

In this section we give some examples of operators A which are Drazin invertible with $i(A)=1$. X always denotes a complex Banach space.

An operator $A \in \mathcal{L}(X)$ is called hermitian if $\| \exp ($ itA $A) \|=1$ for all $t \in \mathbb{R}$.
Example 5.1. If $A \in \mathcal{L}(X)$ is hermitian and if $0 \in$ iso $\sigma(A)$, then A is Drazin invertible and $i(A)=1$.

Proof. Let P_{0} be the spectral projection associated with $\{0\}$. Let $M_{0}=$ $P_{0}(X)$ and $A_{0}=A_{\left.\right|_{M_{0}}}$. By [5, Satz 100.1] we have $A\left(M_{0}\right) \subseteq M_{0}$ and $\sigma\left(A_{0}\right)=\{0\}$. Since A_{0} is hermitian operator on $M_{0}\left[\mathbf{3}\right.$, Proposition 4.12], we have $\left\|A_{0}\right\|=r\left(A_{0}\right)=$ 0 [3, Theorem 4.10]. It follows that $A P_{0}=0$. Now $[\mathbf{5},(101.9)]$ shows that 0 is a simple pole of $(\lambda I-A)^{-1}$. Proposition 3.1 completes the proof.

An operator $A \in \mathcal{L}(X)$ is said to be paranormal if $\|A x\|^{2} \leqslant\left\|A^{2} x\right\|\|x\|$ for all $x \in X$.

Example 5.2. If $A \in \mathcal{L}(X)$ is paranormal and if $0 \in$ iso $\sigma(A)$, then A is Drazin invertible and $i(A)=1$.

Proof. Let P_{0}, M_{0} and A_{0} as in the proof of 5.1. From [5, page 500] we get $\left\|A_{0}\right\|=r\left(A_{0}\right)=0$. Now proceed as in the proof of 5.1.

A bounded linear operator A on a Hilbert space H is called hyponormal if $\left\|A^{*} x\right\| \leqslant\|A x\|$ for all $x \in H$. Since hyponormal operators are paranormal, we have by Example 5.2:

Example 5.3. If $A \in \mathcal{L}(H)$ is hyponormal and if $0 \in$ iso $\sigma(A)$, then A is Drazin invertible and $i(A)=1$.

REmARK 5.4. If $A, B \in \mathcal{L}(X), A B A=A^{2}, B A B=B^{2}, A B=B A, p(A) \leqslant 1$ and $p(B) \leqslant 1$, then $A^{2}=A=B$.

Proof. From $A^{2}=A^{2} B=A B A B=A B^{2}=B^{2}$ it follows that $A^{3}=A B^{2}=$ A^{2}, thus $A^{2}(A-I)=0$. Since $p(A) \leqslant 1$, we get $A(A-I)=0$, hence $A^{2}=A$. In the same way we derive $B^{2}=B$. Consequently

$$
B=B^{2}=B(A B)=B\left(A B^{2}\right)=B A^{2}=B A=A B=A^{2} B=A^{2}=A
$$

Remark 5.5. Suppose that $A, B \in \mathcal{L}(X)$ are paranormal, $A B A=A^{2}, B A B=$ B^{2} and $A B=B A$; then $A^{2}=A=B$.

Proof. Since $\|A x\|^{2} \leqslant\left\|A^{2} x\right\|\|x\|$ for $x \in X$, it follows that $p(A) \leqslant 1$. Similarly $p(B) \leqslant 1$. Now use 5.4.

Remark 5.6. Suppose that H is a complex Hilbert space, $A, B \in \mathcal{L}(H)$ are normal, $A B A=A^{2}, B A B=B^{2}$ and $A B=B A$. Then A is selfadjoint and $A^{2}=A=B$.

Proof. Since normal operators are paranormal, it follows from 5.5 that A and B are normal projections, hence they are selfadjoint.

Remark 5.7. If $A \in \mathcal{L}(X)$ is hermitian, then $p(A) \leqslant 1$.
Proof. Let $x \in N\left(A^{2}\right)$ and $\|x\|=1$. Then for $t \in \mathbb{R}$,

$$
\begin{aligned}
1 & =\|x\|=\|\exp (-i t A) \exp (i t A) x\| \leqslant\|\exp (-i t A)\|\|\exp (i t A) x\| \\
& =\|\exp (i t A) x\| \leqslant\|\exp (i t A)\|\|x\|=\|x\|=1
\end{aligned}
$$

thus, since $A^{n} x=0$ for $n \geqslant 2$,

$$
1=\|\exp (i t A) x\|=\|x+i t A x\|
$$

Therefore $|t|\|A x\|-1 \leqslant 1$ for all $t \in \mathbb{R}$. This gives $x \in N(A)$.
REmARK 5.8. Suppose that $A, B \in \mathcal{L}(X)$ are hermitian, $A B A=A^{2}, B A B=$ B^{2} and that $A B=B A$; then $A^{2}=A=B$.

Proof. 5.7 and 5.4.

References

[1] B. A. Barnes, Common operator properties of the linear operators $R S$ and $S R$, Proc. Amer. Math. Soc. 126 (1998), 1055-1061.
[2] S. R. Caradus, Operator theory of the pseudo-inverse, Queen's papers in Pure and Appl. Math. No. 38 (1974).
[3] H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, 1978.
[4] M. P. Drazin, Pseudoinverse in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514.
[5] H. Heuser, Funktionalanalysis, 2nd ed., Teubner, 1986.
[6] V. Rakočević, A note on a theorem of I. Vidav, Publ. Inst. Math. (Beograd) 68(82) (2000), 105-107.
[7] I. Vidav, On idempotent operators in a Hilbert space, Publ. Inst. Math. (Beograd) 4(18) (1964), 157-163.
[8] D. Werner, Funktionalanalysis, Springer-Verlag, 1995.
Mathematisches Institut I
Englerstraße 2
76128 Karlsruhe
Germany
christoph.schmoeger@math.uni-karlsruhe.de

[^0]: 2000 Mathematics Subject Classification: Primary 47A05.
 Key words and phrases: selfadjoint operator, Drazin inverse.

