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ON THE OPERATOR EQUATIONS
ABA = A? AND BAB = B?

Christoph Schmoeger
Communicated by Stevan Pilipovié

ABSTRACT. We generalize a result of I. Vidav concerning the operator equa-
tions ABA = A? and BAB = B2.

1. Introduction

In [7] I. Vidav proved the following result:

THEOREM 1.1. Let H be a complex Hilbert space and let A and B be bounded
linear operators on H. Then the following assertions are equivalent:

(a) There is a uniquely determined bounded linear operator P on H such that
P? =P and A= PP* and B = P*P.
(b) A and B are selfadjoint and satisfy the relations ABA = A% and BAB =
B2,
Vidav gave two proofs of Theorem 1.1; the first proof is geometrical and the
second one is algebraic. In [6] Rakocevié¢ gave another proof of Theorem 1.1.
The aim of this paper is to prove a result, which implies Theorem 1.1. Section
2 deals with Drazin invertible elements of rings. In Section 3 we consider bounded
linear operators on Banach spaces. Operators on Hilbert spaces are considered
in Section 4, where we will give a proof of Theorem 1.1. In the final section we
investigate several special classes of operators.

2. Drazin inverses in rings

In this section R denotes an associative ring. An element A € R is said to be
Drazin invertible if there exists C' € R such that
(1) A™ = AmTLC for some integer m > 0,
(2) C = AC?
(3) AC = CA.
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In this case C' is called a Drazin inverse of A and the smallest integer m > 0 in (1)
is called the index i(A) of A.

If R has a neutral element I and if we define A = I, then (1), (2) and (3) hold
with m = 0 if and only if A is invertible.

ProrosiTION 2.1. If A € R is Drazin invertible, then A has a unique Drazin
nuverse.

PrROOF. [4]. O
Our main result in this section is:

THEOREM 2.2. (a) If P,QER, P2=P, Q> =Q, A= PQ and B = QP, then
ABA = A? and BAB = B2.

(b) Suppose that A, B € R are Drazin invertible, i(A) =i(B) =1, ABA = A?
and BAB = B?. Then there are P,Q € R such that P> = P, Q®> = Q, A = PQ
and B = QP.

PROOF. (a) We have ABA = PQ?*P?Q = (PQ)? = A? and BAB = QP?Q*P =
(QP)? = B2,
(b) Since i(A) = i(B) = 1, there are C, D € R with

ACA=A, CAC=C, AC=CA
BDB=B, DBD=D, BD=DB.
Let P:=CAB, Q := BAC and R := DBA. Then
P?*=CABCAB = C(ABA)CB = CA*CB = ACACB = ACB =CAB = P,
R?>=DBADBA = D(BAB)DA = DB>DA = BDBDA = BDA = DBA = R,
Q* = BACBAC = BC(ABA)C = BCA?C = BCACA = BCA = BAC = Q.
Furthermore we have
PQ = CABBAC = CAB?*AC = CA(BAB)AC = C(ABA)BAC
= CA’BAC = ACABAC = ABAC = A%C = ACA = A,
RP = DB(ACA)B = DBAB = DB* = BDB = B.
It follows that
QP = BACCAB = B(ACA)CB = BACB = BCAB
= BP = (RP)P = RP? = RP = B. O

3. Bounded linear operators

In this section X denotes a complex Banach space and £(X) the Banach algebra
of all bounded linear operators on X. If A € L£(X), then o(4), p(A) and r(A)
denote the spectrum, the resolvent set and the spectral radius of A, respectively.
We write N(A) for the kernel of A and A(X) for the range of A. Define p(A) [resp.
q(A)], the ascent [resp. the descent] of A, to be the smallest integer n > 0 such that
N(A™ 1) = N(A™) [resp. A"T1(X) = A™(X)] or oo if no such n exists. It follows
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from [5, Satz 72.3] that if p(A) and ¢(A) are both finite, then they are equal and,
if p=p(A4) =q(A) < oo, then X = N(AP) ® AP(X).
A Drazin invertible operator A € £(X) with i(A) < 1 is called simply polar.
The following proposition tells us exactly which operators are Drazin invertible.

PROPOSITION 3.1. For A € L(X) and n > 1 the following assertions are
equivalent:

(a) A is Drazin invertible and i(A) = n.

(b) p(A) = q(A) = n.

(¢) The resolvent (A\I — A)~! has a pole of order n at A = 0.

PROOF. [2, Theorem 5.2], [5, Satz 101.2]. O

As an immediate consequence of Proposition 3.1 and Theorem 2.2 we get the
main result of this section:

THEOREM 3.2. Suppose that A,B € L(X), p(A) = q(A) = 1 and p(B) =
q(B) = 1. Then the following assertions are equivalent:

(a) There are P,Q € L(X) such that P> = P, Q> = Q, A= PQ and B = QP.

(b) ABA = A? and BAB = B2.

We use o,(A), 0ap(A), 0,(A) and o.(A) to denote the point, approximate
point, residual and continuous spectrum of A € £(X), respectively.

COROLLARY 3.3. Suppose that A,B € L(X), p(A) =q(A) =p(B) =¢q(B) =1,
ABA = A? and that BAB = B?%. Then:

(a) o(4) = 0o(B);

(b) a(4) = 0,(B);

(€) gap(A) = 04p(B);

(d) or(A) = 0r(B);
(e) 0c(A) =0c(B).

PRrROOF. Recall that 0,(A), 0,.(A4) and o.(A) are pairwise disjoint and that
their union is o(A). Thus (a) follows from (b), (d) and (e).

(b) Since p(A) = p(B) > 0, 0 € 0p(A) and 0 € 0,(B). From [1, Theorem 3]
and Theorem 3.2 we get

op(A) {0} = 0, (PQ) ~ {0} = 0, (QP) ~ {0} = 0,,(B) ~ {0}

hence ¢,(A) = 0,(B).

(c) Because of 0,(A) C 04p(A) and o,(B) C 04p(B), it follows that 0 € o,,(A)
and 0 € 04,(B). As in the proof of (b) we see with Theorem 3 in [1] that 0,,(A4) =
Oap(B).

(d) Since 0 € 0,(A) and 0 € 0,(B), 0 ¢ 0,(A) and 0 ¢ o,.(A). Proceed as in
the proof of (b), to obtain ¢,.(A) = ¢,.(B).

(e) Similar. O

An operator A € L(X) is called a Fredholm operator if dim N(A) < oo and
codim A(X) < oo. In this case we set ind(A4) = dim N(A4) — codim A(X).
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By F(X) we denote the ideal of all finite dimensional operators in £(X). Let
L denote the quotient algebra £(X)/F(X) and write A for the coset A+ F(X) of
A€ £(X) in L. From [5, Satz 81.1] we have

A is a Fredholm operator <= A is invertible in L.
COROLLARY 3.4. Let A and B as in Corollary 3.3 and A € C. Then:
A — A is a Fredholm operator <= A\l — B is a Fredholm operator.
In this case ind(A — A) = ind(AI — B).
R ProoOr. We ﬁrAS’c consideAr AthAe case A=0. Let AA be a Fredholm operator, thus
A is invertible in £. From ABA = A? we obtain B = I, hence B is a Fredholm

operator. Since BAB = B2, it follows that A = I. Hence there are Fy, Fy € F(X)
such that A =1+ Fy and B =1+ F5. By [5, Satz 81.3],

ind(A) = ind(I 4+ Fy) = ind(I) = 0 = ind({ + F3) = ind(B).

Now assume that A # 0. Our statements follow directly from [1, Theorem 6] and
Theorem 3.2. g

4. Operators on Hilbert spaces

In this section we will give a proof of Theorem 1.1. H denotes a complex
Hilbert space. If A € L(H) we write isoo(A) for the set of all isolated points of
o(A).

PROPOSITION 4.1. Let A € L(H) be normal and 0 € isoo(A).

(a) 0 is simple pole of the resolvent (A — A)~!

(b) p(A) = q(4) = 1.

(¢) A is Drazin invertible and i(A) = 1.

PrOOF. (a) follows from [5, Satz 112.2], (b) and (c) follow from Proposition
3.1. ]
THEOREM 4.2. Let A, B € L(H) be selfadjoint, ABA = A% and BAB = B2.
) 0 € p(A) or0 is a simple pole of (AN — A)~*
) 0(A) C {0} U[1,00) (hence A > 0).
) A is Drazin invertible and i(A) < 1.
) If C is the Drazin inverse of A, then C =C* and 0 < C < T
(e) If A#0, then || Al > 1.
(f) If ||A|]| =1, then A2 = A= B.
ProOF. (a) and (b): From
AB—-1)?A=A(B*>-2B+1)A= AB*A - 2ABA + A*
= ABABA —2A% + A> = A’BA - A®
— A3 _ AQ
it follows that A% — A%2 = A(B—1) (A(B—1I))* > 0, therefore o(A? — A?) C [0, 00).
Now take A € 0(A)~{0}. The spectral mapping theorem gives A2(A—1) =\3-\2 >0,

(a

(b
(c
(d
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thus A > 1. This shows (b) and 0 € isoo(A) or 0 € p(A). Now use Proposition 4.1
to derive (a).

(c) follows from (a), (b) and Proposition 4.1.

(d) Because of ACA = A, CAC = C and AC = C'A it follows that AC*A = A,
C*AC* = C* and AC* = C* A, hence C* is a Drazin inverse of A. By Proposi-
tion 2.1, C = C*. If 0 € p(A), then A = I, thus C = I, hence ||C|| = 1. Now let
0 € 0(A). In [2, page 53] it is shown that r(C)~! = dist(0, 0(A) \ {0}).

Now we see from (b) that r(C)~! > 1, hence, since C = C*, ||C|| = r(C) < 1.
We denote the inner product on H by (-|-). Take z € H and let y = Cx. Then

(Cz|z) = (CACx|z) = (ACx|Cx) = (Ayly) > 0,

since A > 0. Thus C' > 0. From ||C|| < 1 we obtain 0 < C' < I.

(e) If A0, we have ||A]| =r(4) > 1, by (b).

(f) If |Al| = 1, then r(A) = 1, thus we obtain from (b) that o(A) C {0,1}. By
the spectral mapping theorem, o(A% — A) = {0}, hence |42 — A|| = r(A%2 - A) = 0,
this gives A2 = A. Since o(A) = o(B) (Corollary 3.3), we see that ||B|| = r(B) =
r(A) = ||A|]| = 1. Hence, by the same arguments as above, B> = B. It follows
that ABA = A and BAB = B, hence (AB)? = AB, thus AB is a projection # 0,
therefore ||AB|| > 1. But ||ABJ| < ||A], || B|| < 1. Consequently [|[AB| = 1. From
[8, Satz V.5.9] we derive that AB = (AB)*. Hence AB = BA. We conclude that
A= ABA=BA?=BA=B?A=BAB = B. (]

PROOF OF THEOREM 1.1. Theorem 2.2 (a) shows that (a) implies (b). Now
suppose that (b) is valid. If 0 € p(A), then A = B = I and we are done. Therefore
we can assume that 0 € 0(A) and 0 € o(B). By Theorem 4.2, A and B are Drazin
invertible and i(A) = i(B) = 1. Let P and @ as in the proof of Theorem 2.2(b).
Hence P = CAB, Q = BAC, PQ = A, QP = B and C' is the Drazin inverse of A.
From Theorem 4.2 we get C = C*, thus P* = BAC = Q.

It remains to show that P is uniquely determined. Suppose that R?> = R,
PP* = RR* and P*P = R*R. Then P*P(I-R) = R*R(I-R)= R*"R—R*R =0,
thus P(I — R)(X) C N(P*) = P(X)*, hence P(I — R) = 0. Therefore we have
PR = P. A similar argument gives R*P* = R*. Taking adjoints we obtain
R=PR=P. O

5. Examples and remarks

In this section we give some examples of operators A which are Drazin invertible
with i(A) = 1. X always denotes a complex Banach space.
An operator A € £L(X) is called hermitian if || exp(itA)|| =1 for all ¢t € R.

EXAMPLE 5.1. If A € £(X) is hermitian and if 0 € isoo(A), then A is Drazin
invertible and i(A) = 1.

PROOF. Let Py be the spectral projection associated with {0}. Let M, =
Py(X) and Ag = 4, . By [5, Satz 100.1] we have A(Mo) C Mo and o(Ao) = {0}.
Since Ay is hermitian operator on My [3, Proposition 4.12], we have || Ag|| = r(A4o) =
0 [3, Theorem 4.10]. It follows that APy = 0. Now [5, (101.9)] shows that 0 is a
simple pole of (AI — A)~!. Proposition 3.1 completes the proof. O
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An operator A € £(X) is said to be paranormal if ||Az||?> < ||A%z|| ||z| for all
rc X.

EXAMPLE 5.2. If A € £(X) is paranormal and if 0 € isoo(A), then A is Drazin
invertible and i(A) = 1.

PRrROOF. Let Py, My and Ag as in the proof of 5.1. From [5, page 500] we get
[[Ao|l = r(Ag) = 0. Now proceed as in the proof of 5.1. O

A bounded linear operator A on a Hilbert space H is called hyponormal if
[|[A*x|| < ||Az|| for all x € H. Since hyponormal operators are paranormal, we have
by Example 5.2:

ExAMPLE 5.3. If A € L(H) is hyponormal and if 0 € isoo(A), then A is Drazin
invertible and i(A) = 1.

REMARK 5.4. If A, B € L(X), ABA = A%, BAB = B?, AB = BA, p(A) <1
and p(B) < 1, then A2 = A= B.

PRrROOF. From A%? = A?B = ABAB = AB? = B? it follows that A% = AB?=
A2 thus A%2(A — 1) = 0. Since p(A4) < 1, we get A(A—1I) =0, hence A2 = A. In
the same way we derive B? = B. Consequently

B =B?=B(AB) = B(AB?) = BA> = BA=AB = A’B = A® = A. O
REMARK 5.5. Suppose that A, B € £(X) are paranormal, ABA = A%, BAB =
B? and AB = BA; then A2= A = B.

PROOF. Since ||Az|? < ||A%z| ||z|| for x € X, it follows that p(A) < 1. Simi-
larly p(B) < 1. Now use 5.4. O

REMARK 5.6. Suppose that H is a complex Hilbert space, A, B € L(H) are
normal, ABA = A%, BAB = B? and AB = BA. Then A is selfadjoint and
A2 = A=B.

PROOF. Since normal operators are paranormal, it follows from 5.5 that A and
B are normal projections, hence they are selfadjoint. O

REMARK 5.7. If A € £(X) is hermitian, then p(A) < 1.
PROOF. Let z € N(A?) and ||z|| = 1. Then for ¢t € R,
1 = Jlaf) = || exp(—itA) exp(itA)z]| < ||exp(—itA)]| || exp(itA)e]
= [lexp(itA)z|| < [|exp(@tA)] |zl = [l«] = 1,
thus, since A"x =0 for n > 2,
1 = ||exp(itA)z| = ||z + it Az]|.
Therefore [t| ||[Az|| — 1 < 1 for all ¢ € R. This gives x € N(A). O

REMARK 5.8. Suppose that A, B € £(X) are hermitian, ABA = A?, BAB =
B? and that AB = BA; then A2 = A= B.

PRrROOF. 5.7 and 5.4. O
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