H. J. Blaß P. Fellmoser

Druckrohrleitungen aus Holz

H. J. Blaß, P. Fellmoser

Druckrohrleitungen aus Holz

Titelbild: Druckrohrleitung aus Holz (Ansicht)

Band 3 der Reihe Karlsruher Berichte zum Ingenieurholzbau

Herausgeber Universität Karlsruhe (TH) Lehrstuhl für Ingenieurholzbau und Baukonstruktionen Univ.-Prof. Dr.-Ing. H. J. Blaß

Druckrohrleitungen aus Holz

BMBF-Verbundprojekt Erschließung und Bewirtschaftung unterirdischer Karstfließgewässer in Mitteljava, Indonesien

Das diesem Bericht zugrunde liegende Vorhaben wurde mit Mitteln des Bundesministeriums für Bildung und Forschung unter dem Förderkennzeichen 02WT0428 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autoren.

VON H. J. Blaß P. Fellmoser Lehrstuhl für Ingenieurholzbau und Baukonstruktionen Universität Karlsruhe (TH)

universitätsverlag karlsruhe

Impressum

Universitätsverlag Karlsruhe c/o Universitätsbibliothek Straße am Forum 2 D-76131 Karlsruhe www.uvka.de

Dieses Werk ist unter folgender Creative Commons-Lizenz lizenziert: http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Universitätsverlag Karlsruhe 2006 Print on Demand

ISSN 1860-093X ISBN 3-86644-025-1

Vorwort

In diesem Forschungsbericht werden auf der Grundlage umfangreicher Versuche und Simulationsrechnungen Bemessungsvorschläge für Druckrohrleitungen aus Holz, welche auf Sätteln aufgelagert sind, gemacht. Zusätzlich wird der Einfluss der Holzfeuchte auf relevante Festigkeits- und Steifigkeitseigenschaften von Holz dargestellt.

Die Untersuchungen wurden im Rahmen des Teilprojektes "Druckrohrleitungen aus Holz" an der Versuchsanstalt für Stahl, Holz und Steine, Abteilung Ingenieurholzbau und Baukonstruktionen, Universität Karlsruhe (TH) durchgeführt. Das Teilprojekt ist Bestandteil des Verbundprojektes "Erschließung und Bewirtschaftung unterirdischer Karstfließgewässer in Mitteljava, Indonesien", welches federführend vom Institut für Wasser und Gewässerentwicklung, Bereich Wasserwirtschaft und Kulturtechnik der Universität Karlsruhe (TH) durchgeführt wurde.

Das diesem Bericht zugrunde liegende Vorhaben wurde mit Mitteln des Bundesministeriums für Bildung und Forschung unter dem Förderkennzeichen 02WT0428 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autoren.

Karlsruhe, im Frühjahr 2006

Die Verfasser

Inhalt

1	Ziel	Ziel des Forschungsvorhabens						
2	Aus	uswahl geeigneter Holzarten						
	2.1	Auswahlkriterien						
	2.2	Akasia						
	2.3	Jati						
	2.4	Keruing	9					
	2.5	Puspa	10					
	2.6	Lärche	10					
3	Quellverhalten von Holz							
	3.1	Feuchtetransport im Holz 12						
	3.2	Freie Quellung	13					
		3.2.1 Allgemeines	13					
		3.2.2 Experimentelle Untersuchungen	14					
	3.3	Behinderte Quellung	20					
		3.3.1 Allgemeines	20					
		3.3.2 Experimentelle Untersuchungen	22					
4	Einfl	uss der Holzfeuchte auf mechanische Eigenschaften	28					
	4.1	Abhängigkeit des Elastizitäts- und Schubmoduls von der Holzfeuchte						
		4.1.1 Allgemeines	28					
		4.1.2 Experimentelle Untersuchungen	31					
	4.2	Abhängigkeit der Biegefestigkeit von der Holzfeuchte	38					
		4.2.1 Allgemeines	38					
		4.2.2 Experimentelle Untersuchungen	39					
	4.3	Abhängigkeit der Querdruckfestigkeit von der Holzfeuchte	41					
		4.3.1 Allgemeines	41					
		4.3.2 Experimentelle Untersuchungen	42					
		4.3.2.1 Querdruckbeanspruchung unter Vollbelastung	44					
		4.3.2.2 Querdruckbeanspruchung unter Teilflächenbelastung	47					
	4.4	Abhängigkeit der Scherfestigkeit von der Holzfeuchte	51					
		4.4.1 Allgemeines	51					
		4.4.2 Experimentelle Untersuchungen	51					
	4.5	Abhängigkeit der Haftung und Reibung von der Holzfeuchte						
		4.5.1 Allgemeines	55					
		4.5.2 Experimentelle Untersuchungen	55					
5	Eins	atz von Druckrohrleitungen aus Holz	60					
6	Hydı	draulik von Rohrleitungssystemen						
	6.1	Strömungswiderstand und Rohrleitungsverluste 6						
	6.2	Kleinwasserkraftanlagen 6						
	6.3	Vordimensionierung von Druckrohrleitungen aus Holz 69						
	6.4	Instationärer Betrieb von Druckrohrleitungen (Druckstoß) 71						

7	Experimentelle Untersuchungen von Druckrohrleitungen aus Holz				
	7.1	Quellve	erhalten	75	
		7.1.1	Versuchsaufbau und -durchführung	75	
		7.1.2	Beanspruchung der Spannringe infolge Quellen	76	
	7.2	Trag-ι	und Verformungsverhalten	78	
		7.2.1	Versuchsaufbau und -durchführung	78	
		7.2.2	Beanspruchung der Spannringe	80	
		7.2.3	Verformungen in Längsrichtung und Querschnittsverformun	gen 87	
		7.2.4	Einfluss des Auflagerabstandes	89	
8	The	oretische	er Berechnungsansatz für die Lastfälle Quellen und Vorspanr	nung 91	
	8.1	Lastfal	I Quellen	91	
	8.2	Lastfal	I Vorspannung	96	
	8.3	Lastfal	I Quellen und Vorspannung	97	
	8.4	Verglei	ich mit Versuchsergebnissen	99	
9	Finit	e-Eleme	ente-Modell für Druckrohrleitungen aus Holz	102	
	9.1	Geome	etrie	102	
	9.2	Materia	alien	104	
	9.3	Einwirk	kungen	105	
		9.3.1	Lastfall Eigengewicht	105	
		9.3.2	Lastfall Vorspannung	105	
		9.3.3	Lastfall Quellen	106	
		9.3.4	Lastfall Wasserinnendruck	107	
	9.4	Modell	ierung	108	
	9.5	Verglei	ich mit experimentellen Untersuchungen	112	
		9.5.1	Querschnittsverformungen und Verformungen in Längsricht	ung113	
		9.5.2	Beanspruchung der Spannringe	116	
		9.5.3	Querdruckspannung der Holzdauben in Umfangsrichtung	117	
		9.5.4	Querdruckspannung der Holzdauben in radialer Richtung	119	
		9.5.5	Biegespannung der Holzdauben in Längsrichtung	120	
		9.5.6	Schubspannung der Holzdauben	123	
		9.5.7	Schubspannung in der Nut- und Federverbindung in		
	_		Längsrichtung der Holzdauben	123	
10	Berr	nessung	skonzept	124	
	10.1	Nachw	eise in den Grenzzuständen der Tragfähigkeit	124	
	10.2	Bemes	sungstabellen	128	
	10.3	Empte	hlungen für die Praxis	153	
11	Son	derelem	ente und Anschlusse	154	
12	Bes	onderhe		157	
13	Zusammenfassung und Ausblick				
14	Bez	eicnnung	gen	161	
15	Liter	atur		165	

16 Zitierte No	rmen	171
Anhang A	Anlagen zu Kapitel 2	172
Anhang B	Anlagen zu Kapitel 3.2	177
Anhang C	Anlagen zu Kapitel 3.3	187
Anhang D	Anlagen zu Kapitel 4.1	199
Anhang E	Anlagen zu Kapitel 4.2	219
Anhang F	Anlagen zu Kapitel 4.3	226
Anhang G	Anlagen zu Kapitel 4.4	238
Anhang H	Anlagen zu Kapitel 4.5	250
Anhang I	Anlagen zu Kapitel 6	258
Anhang J	Anlagen zu Kapitel 7.1	260
Anhang K	Anlagen zu Kapitel 7.2	262

1 Ziel des Forschungsvorhabens

Im Rahmen des BMBF-Verbundprojektes "Erschließung und Bewirtschaftung unterirdischer Karstfließgewässer in Mitteljava, Indonesien" war geplant, die Höhle Gua Bribin (80 km östlich von Yogyakarta) zu einer Labor- und Demonstrationshöhle auszubauen und hierdurch die physikalischen Randbedingungen zur Bewirtschaftung unterirdischer Wasserressourcen in Karstgebieten eingehend zu analysieren sowie die technologischen Grundlagen zu entwickeln und zu optimieren.

Grundlage für das Verbundprojekt war die Machbarkeitsuntersuchung "Erkundung der Möglichkeiten und Grenzen der Wasser- und Energiebewirtschaftung großer unterirdischer Wasservorräte in Wonosari, Yogyakarta, Java, Indonesien" (Nestmann et al. (2002)) vom Institut für Wasser und Gewässerentwicklung, Bereich Wasser- wirtschaft und Kulturtechnik der Universität Karlsruhe (TH).

Das Untersuchungsgebiet, die Gunung Sewu, eine ca. 1400 km² große Karstlandschaft an der Südküste Javas, setzt sich aus einem dichten und harten Kalkstein zusammen (Bild 1-1). Der Karstkörper ist von Hunderten miteinander vernetzter Höhlen durchzogen; daraus resultiert der komplette Abfluss jeglichen Oberflächenwassers durch ein weit verzweigtes System im Untergrund. Das Wasser dieser unterirdischen Flüsse tritt fast vollständig erst wieder in Quellen an der Küste zutage. Durch die schnelle Versickerung des Niederschlags in den Karstaquifer und das Fehlen geeigneter Wasserspeicher leiden die Bewohner der Gunung Sewu in der Trockenzeit unter dem dadurch entstehenden Wassermangel. Die derzeitige Nutzung der Wasservorräte mittels über Dieselgeneratoren versorgter Pumpsysteme kann den momentanen Wasserbedarf nicht decken. Ebenso ist das bisherige Konzept der Wasserförderung aus wirtschaftlicher und ökologischer Sicht langfristig nicht zu verantworten.

Bild 1-1 Untersuchungsgebiet Gunung Sewu an der Südküste Javas (aus Oberle et al. (2005))

Im Rahmen des Verbundprojektes wurden drei Lösungskonzepte vorgesehen mit dem Ziel, die Trink- und Brauchwasserversorgung während der Trockenzeit für ca. 75.000 Menschen unter Nutzung regenerativer Energiequellen und den Bedingungen vor Ort angepasster Technologien sicherzustellen. Ein Konzept für den Ausbau der Höhle Gua Bribin (Bild 1-2) zur Labor- und Demonstrationshöhle war der Einsatz von Druckrohrleitungssystemen aus Holz zur Nutzung unterirdischer Wasserressourcen.

Bild 1-2 Demonstrationshöhle Gua Bribin

Zur Bewirtschaftung der unterirdischen Wasservorräte war der Bau einer Wehranlage, die als Pumpensumpf dient, und die Energiegewinnung zur Wasserförderung über eine Druckrohrleitung aus Holz vorgesehen (Bild 1-3). Weitere Konzepte sahen den partiellen Einstau des Fließgewässersystems durch ein Stahlbetonbauwerk mit integrierter Kleinwasserkraftanlage sowie die Energiegewinnung zur Wasserförderung über eine Kaskade von Wehranlagen vor.

Bild 1-3 Variante zum Ausbau der Höhle Gua Bribin mit Druckrohrleitungen aus Holz zur Nutzung der unterirdischen Wasserressourcen (aus Nestmann et al. (2002))

Der Zugang zu den Höhlen ist in vielen Fällen nur über einen steilen Schacht bzw. Dolineneinbruch oder über einen engen Stollen möglich. Da Druckrohrleitungen aus Stahl oder Beton wegen des großen Gewichtes der Rohrschüsse in Zusammenhang mit der Enge und Unwegsamkeit in der Höhle und den sich daraus ergebenden Schwierigkeiten beim Bau ausscheiden, bietet sich Holz als geeigneter Baustoff für die Druckrohrleitung an. Druckrohrleitungen aus Holz (Bild 1-4) werden seit dem 19. Jahrhundert überwiegend in Nordamerika als Zuleitung für Wasserkraftanlagen eingesetzt. Nach einem deutlichen Rückgang Mitte des 20. Jahrhunderts erhielt der Einsatz von Druckrohrleitungen aus Holz durch die zunehmende Bedeutung regenerativer Ressourcen in den letzten Jahren neue Impulse.

Bild 1-4 Druckrohrleitung aus Holz (a) auf Sättel und (b) im Graben verlegt (von Canbar Inc., Zwick Holzbau GmbH)

Blaß und Fellmoser (2005) geben einen Überblick über den Einsatz von Druckrohrleitungen aus Holz. Druckrohrleitungen aus Holz bestehen aus einzelnen Bohlen oder Kanthölzern, die gegeneinander versetzt und mit Stahlringen zusammengehalten werden (Bild 1-5). Durch den Versatz der Längsstöße der Dauben entsteht ein leichtes Rohr ohne durchgehende Stöße. Die Dauben weisen an den Längsseiten wie auch an den Stirnseiten Nut- und Federverbindungen auf. Die Dichtigkeit der Rohrleitung wird durch das Quellen des Holzes gewährleistet und die stetige Wassersättigung des Holzes verhindert zuverlässig einen Pilzbefall. Die Herstellung der Druckrohrleitungen kann in offener Bauweise entweder durch eine Verlegung im Graben mit anschließender Verfüllung oder, wie in den Karsthöhlen geplant, auf Sätteln als Auflager erfolgen.

Bild 1-5 Detail Holzdaube mit Nut- und Federverbindung und Spannschloss

Um Druckrohrleitungen aus Holz in unterirdischen Karstfließgewässern in Mitteljava bauen zu können, sind zwei Themenbereiche zu untersuchen: der erste betrifft den Baustoff Holz, da in Südostasien und speziell in Indonesien völlig andere Holzarten verfügbar sind als in Europa, zum zweiten sind Probleme im Zusammenhang mit der Rohrkonstruktion in der Höhle zu lösen.

Ziel des Teilprojektes "Druckrohrleitungen aus Holz" war zunächst das Finden geeigneter Holzarten, die in Indonesien lokal verfügbar sind und sich als Baustoff für Holzdaubenrohre eignen. Anhand eingehender Untersuchungen wurde der Einfluss der Holzfeuchte auf physikalische und elasto-mechanische Eigenschaften ausgewählter Holzarten ermittelt:

- elasto-mechanische Eigenschaften im Hinblick auf Festigkeit und Steifigkeit (insbesondere Biegefestigkeit, Schubfestigkeit und Querdruckfestigkeit);
- Schwind- und Quellverhalten im Hinblick auf die Beanspruchung der Spannringe aus Stahl nach dem Füllen der Druckrohrleitung;

- Haftungs- und Reibungskoeffizienten zur Bestimmung der Schubtragfähigkeit in der Nut- und Federverbindung in Längsrichtung der Holzdauben.

Die Ergebnisse dieser Untersuchungen dienten zur Planung, Dimensionierung und Konstruktion einer Druckrohrleitung aus Holz und wurden als Eingangsgrößen für ein Finite-Elemente-Modell verwendet. Mit Hilfe des FE-Modells wurde das Biegetragverhalten von Holzdaubenrohren untersucht. Die Ergebnisse der FE-Untersuchungen wurden experimentell an einer Druckrohrleitung verifiziert. Zusammenfassend wurden Bemessungsvorschläge für Druckrohrleitungen aus Holz ausgearbeitet.

Das Konzept zur Umsetzung der Wasser- und Energiebewirtschaftung der Höhle Gua Bribin wurde in Zusammenarbeit mit dem Institut für Wasser und Gewässerentwicklung, Bereich Wasserwirtschaft und Kulturtechnik der Universität Karlsruhe (TH) erstellt. Mit dem Einsatz von Druckrohrleitungssystemen aus Holz ist eine Wasser- und Energiebewirtschaftung von Karstfließgewässern in Höhlen realisierbar, in denen der partielle Einstau der Höhle aufgrund von Wasserverlusten oder geostatischen Problemen nicht möglich ist. Da in Indonesien und speziell auf Java eine Vielzahl von Höhlen existieren, kann das Konzept problemlos auf weitere Höhlen zur nachhaltigen Wassergewinnung angewendet werden.

Das Verbundprojekt ist gemäß den Förderrichtlinien des BMBF als "2+2-Projekt" gegliedert, in dem sich neben wissenschaftlichen Einrichtungen auch Industriepartner aus Deutschland und Indonesien am Wissenstransfer und Kompetenzaufbau vor Ort beteiligen. Die Versuchsanstalt für Stahl, Holz und Steine, Abteilung Ingenieurholzbau und Baukonstruktionen, Universität Karlsruhe (TH) kooperiert im Rahmen des Verbundprojektes mit dem Civil Engineering Department der Gadjah Mada University in Yogyakarta. Mit den Ergebnissen aus dem Forschungsvorhaben soll eine weltweite Lösung für kleine und mittlere Wasserkraftwerke mit lokal aufzubauenden Kenntnissen und Fertigkeiten sowie lokal verfügbaren Hölzern zur Verfügung stehen.

Zusätzlich soll durch das Projekt infolge der Vermittlung von Wert und Nutzen einer nachhaltigen Waldbewirtschaftung ein wertvoller Beitrag zum "sustainable development" in Indonesien geleistet werden.

2 Auswahl geeigneter Holzarten

2.1 Auswahlkriterien

Vorgabe im Rahmen des Teilprojektes war die Verwendung von lokal verfügbaren indonesischen Holzarten (Bild 2-1). Wird Holz als regenerativer, umweltfreundlich produzierter Baustoff eingesetzt, werden damit nachhaltig bewirtschaftete und ökologisch wertvolle Wälder auch in den Tropen gefördert. Die Forstwirtschaft in den Tropen kann nur nachhaltig werden, wenn der Wert und Nutzen der Waldbewirtschaftung auch lokal erkannt und umgesetzt wird. Dadurch wird das Bewusstsein für den Wert des Waldes und des Holzes gefördert und ein Beitrag zum "sustainable development" in der Region geleistet.

Bild 2-1 Waldbewirtschaftung und Sägewerk auf Java / Indonesien

Kriterien für die Auswahl geeigneter Holzarten sind:

- elasto-mechanische Eigenschaften im Hinblick auf Festigkeit und Steifigkeit (insbesondere Biegefestigkeit, Schubfestigkeit und Querdruckfestigkeit bei vollständiger Wassersättigung);
- Rohdichte als Maß für die Qualität des fehlerfreien Holzes;
- Schwind- und Quellverhalten im Hinblick auf die Beanspruchung der Spannringe aus Stahl nach dem Befüllen des Rohres;
- Neigung zur Rissbildung bei künstlicher Trocknung sowie die Geschwindigkeit der Trocknung, da die Holzdauben zunächst auf eine Holzfeuchte von ca. 18 % zu bringen sind, um ein anschließendes Quellen zum Abdichten der Nut- und Federverbindung zu ermöglichen;
- Bearbeitbarkeit im Hinblick auf die Abnutzung der Werkzeuge bei der Herstellung der Holzdauben;

- Dauerhaftigkeit;
- Ästigkeit im Hinblick auf die Dichtigkeit der Rohrleitung;
- Verfügbarkeit und Preis.

Ein Termitenbefall von Druckrohrleitungen aus Holz in indonesischen Karsthöhlen kann ausgeschlossen werden. Wassergesättigtes Holz wird von Termiten nicht befallen. Außerdem sind die Lebensbedingungen in den Karsthöhlen für Termiten ungünstig.

In Deutschland werden für Holzdaubenrohre bevorzugt die Nadelholzarten Kiefer, Lärche und Douglasie eingesetzt. Die in Indonesien verfügbaren Hölzer sind im Gegensatz zu den in Deutschland für Holzdaubenrohre verwendeten Holzarten sämtlich Laubhölzer. Ausgehend von einer gründlichen Literaturrecherche und lokalen Gegebenheiten wurden die in Tabelle 2-1 angegebenen indonesischen Holzarten für den Einsatz als Holzdaubenrohre näher untersucht. Zusätzlich wurde zum Vergleich die in Deutschland heimische Holzart Lärche einbezogen.

Holzart	Botanische Benennung	Botanische Familie	
Akasia	Acacia leucophloea	Mimosaceae	
Jati	Tectona grandis L.f.	Verbenaceae	
Keruing	Dipterocarpus alatus Roxb.	Dipterocarpaceae	
Puspa	Schima wallichii Korth.	Theaceae	
Lärche	Larix decidua Mill.	Pinaceae	

Tabelle 2-1 ι	untersuchte	Holzarten
---------------	-------------	-----------

Die untersuchten Hölzer wurden zu Beginn des Jahres 2004 eingekauft. Die indonesischen Holzarten wurden über den Holzhandel in Yogyakarta besorgt, die heimische Holzart Lärche wurde von einem Sägewerk in Donaueschingen geliefert.

Zur näheren Untersuchung der fünf Holzarten wurden Mikrofotografien mit Hilfe eines Lichtmikroskops in den drei anatomischen Schnittrichtungen nach Bild 2-2 durchgeführt. In Anhang A ist eine Auswahl der Aufnahmen zusammengestellt. Die Bestimmung erfolgte mit Hilfe von Beschreibungen und Mikrofotografien nach Prayitno (2003), Begemann (1981), Wagenführ (1996) und Schweingruber (1990).

Bild 2-2 holzanatomische Schnittrichtungen (aus Wagenführ (1989)) (A) Querschnitt, (B) Tangentialschnitt, (C) Radialschnitt, (1) Tracheiden, (2) Markstrahlen

2.2 Akasia

Akasia, das auch unter dem Handelsnamen Pilang bekannt ist, ist ein mittelgroßer, laubabwerfender Baum. Durchschnittlich erreicht er Höhen bis ca. 25 m und Durchmesser zwischen 60 cm und 100 cm. Splint- und Kernholz sind nach dem Einschnitt nur schwer zu unterscheiden. Das Kernholz ist hellrötlich bis oliv braun (Bild 2-3). Nach Begemann (1981) schwindet das Holz stark, ist jedoch dauerhaft und sehr schwer, fest und hart. Trocknung und Bearbeitung sind sehr sorgfältig durchzuführen und erfordern teilweise einen erhöhten Aufwand.

Bild 2-3 Akasia: Oberfläche und Querschnitt

2.3 Jati

Jati ist ebenfalls ein laubabwerfender Baum und besser bekannt unter dem Handelsnamen Teak (Begemann (1981)). Jati erreicht Höhen bis zu 40 m und Durchmesser bis zu 150 cm. Der Schaft ist bis zu 25 m astfrei. Durch regelmäßige Bewirtschaftung und forstwirtschaftliche Maßnahmen werden jedoch nur selten Stammlängen von 18 m und Durchmesser von 80 cm erreicht. Das Splintholz ist hellgelblich-grau, während das Kernholz eine goldbraune Farbe aufweist (Bild 2-4). Jati, welches kaum schwindet, besitzt ein gutes Stehvermögen und lässt sich daher auch leicht trocknen. Zudem ist es witterungsfest und gegen Insekten resistent. Das mittelschwere, feste und harte Holz lässt sich gut bearbeiten.

Bild 2-4 Jati: Oberfläche und Querschnitt

2.4 Keruing

Keruing ist nach Wagenführ (1996) eines der wichtigsten Konstruktionshölzer Südostasiens. Die Stammform ist ausgeprägt zylindrisch, geradschaftig und meist fehlerfrei. Keruing erreicht Baumhöhen zwischen 30 m und 40 m mit einer astfreien Länge von 15 m bis 25 m und Durchmesser zwischen 70 cm und 150 cm. Der 4 cm bis 10 cm breite Splint ist rötlichgrau bis blassbraun, während das Kernholz graurosa bis rotbraun ist (Bild 2-5). Keruing ist ein sehr schweres Holz und erfordert eine langsame Trocknung. Das Stehvermögen und die Widerstandsfähigkeit gegen Pilzbefall sind nur mäßig. Die Bearbeitung von Keruing wird durch den hohen Harzgehalt erschwert.

Bild 2-5 Keruing: Oberfläche und Querschnitt

2.5 Puspa

Puspa erreicht durchschnittlich Höhen bis über 30 m und Durchmesser von durchschnittlich 100 cm (Begemann (1981)). Der gerade gewachsene Schaft ist bis ca. 2/3 seiner Länge astfrei. Der schmale Splint geht farblich in das Kernholz über, welches von gelblichbraun bis dunkelrot variiert (Bild 2-6). Die zahlreichen Poren sind sehr klein und enthalten einen Harzstoff. Das Holz ist schwer, mittelhart und spröde. Es schwindet stark und ist deshalb auch schwierig zu trocknen. Das dauerhafte Holz lässt sich leicht bearbeiten.

Bild 2-6 Puspa: Oberfläche und Querschnitt

2.6 Lärche

Lärche ist ein Nadelholz und erreicht Höhen bis zu 45 m und Durchmesser bis zu 120 cm (Begemann (1981)). Die geraden und zylindrischen Bäume sind im Schaft bis zu 2/3 ihrer Länge astfrei. Der schmale Splint ist hell gelblich-braun und gut vom dunkel rötlich-braunen Kernholz getrennt (Bild 2-7). Die Jahrringe sind durch die breiten und dunklen Spätholzzonen sehr gut erkennbar. Das stark harzhaltige Holz

ist nur mäßig witterungsfest. Die Bearbeitung des weichen und leichten Holzes ist problemlos. Das Kernholz besitzt eine genügende bis gute Widerstandsfähigkeit gegen Pilzbefall.

Bild 2-7 Lärche: Oberfläche und Querschnitt

3 Quellverhalten von Holz

Die Dichtigkeit von Druckrohrleitungen aus Holz wird durch das Quellen der einzelnen Holzdauben gewährleistet. Die Holzdauben werden mit einer Holzfeuchte von ca. 16 % bis 18 % eingebaut. Aufgrund des entstehenden Quellungsdruckes nach dem Füllen des Rohres mit Wasser werden die Spannringe aus Stahl auf Zug beansprucht. Die Größe des Quellungsdruckes ist neben dem Wasserinnendruck somit entscheidend für die Bemessung der Spannringe. Zu diesem Zweck wurden für die ausgewählten Holzarten Akasia, Jati, Keruing, Puspa und Lärche die maximalen Quellmaße sowie der maximale Quellungsdruck bestimmt.

3.1 Feuchtetransport im Holz

Holz besitzt hygroskopische Eigenschaften, d.h. sein Feuchtegehalt ändert sich in Abhängigkeit vom jeweiligen Umgebungsklima. Die Aufnahme von Feuchtigkeit erfolgt dabei über die Luft oder durch direkte Befeuchtung mit einer Flüssigkeit. Holz ist ein kapillarporöser Stoff, dessen Porenanteil je nach Rohdichte des Holzes zwischen 10 % und 80 % beträgt. Je nach Wasseranteil im Holz werden drei Grenzzustände (Darrtrocken, Fasersättigung und Wassersättigung) unterschieden. Der Wasseranteil des Holzes wird in gebundenes Wasser (Anteil des Wassers unterhalb des Fasersättigungsbereiches) und freies Wasser (zusätzlicher Anteil des Wassers oberhalb des Fasersättigungsbereiches) unterteilt.

Die Aufnahme von Feuchtigkeit aus der Luft wird durch das Mikrosystem reguliert, die direkte Aufnahme in flüssigem Medium (z.B. Wasser) findet über das Makrosystem statt. Der Feuchtetransport innerhalb des Makrosystems erfolgt dabei in Faserlängsrichtung durch die vorhandenen Hohlräume der Zellelemente. Über Tüpfel und zum Teil über Holzstrahlen kann Feuchte auch quer zur Faserrichtung transportiert werden. Die Eindringgeschwindigkeit in Faserlängsrichtung ist jedoch um ein Vielfaches höher. Die intermizellaren Hohlräume im Mikrosystem sind für Wasser zugänglich und in ihnen wird Wasser auch über kurze Strecken geleitet. Die Wasserleitfähigkeit selbst wird durch Merkmale wie Tüpfelverklebungen und Einlagerung von Kernstoffen bestimmt, welche das hygroskopische Potential verringern. Bei Wassersättigung ist das Mikro- und das Makrosystem des Holzes, d.h. die Hohlräume in den Zellwänden und Tracheiden sowie die Gefäße, maximal mit Wasser gefüllt.

Bei der Sorption, der Wasseraufnahme von Holz in flüssigem oder gasförmigem Zustand, treten bis zum Fasersättigungsbereich verschiedene Vorgänge auf: Chemisorption, Absorption und Kapillarkondensation. Bei diesen Vorgängen stellt sich ein Gleichgewichtsfeuchtegehalt ein, der u.a. von der relativen Luftfeuchte, der Temperatur, dem Luftdruck und dem Aufbau des Holzes abhängig ist und als

hygroskopisches Verhalten des Holzes bezeichnet wird. Die dabei auftretenden Sorptionsisothermen zeigen einen typischen S-förmigen Verlauf. Aufgrund des Hystereseeffektes ist der sich bei der Feuchteabgabe (Desorption) einstellende Feuchtegehalt des Holzes um ca. 1 % bis 2 % höher als bei der Feuchteaufnahme (Absorption), was Kollmann (1982) mit der Trägheit der Moleküle begründet.

Der Fasersättigungsbereich kennzeichnet den höchstmöglichen Gehalt an gebundenem Wasser und wird erreicht, wenn das Holz mit wasserdampfgesättigter Luft umgeben ist. Der konkrete Feuchtegehalt bei Fasersättigung schwankt bei den in Deutschland heimischen Holzarten in einem Bereich zwischen 22 % und 35 % und liegt im Durchschnitt bei 28 % (Trendelenburg (1939)). Stevens (1938), Trendelenburg und Mayer-Wegelin (1955) sowie Kollmann (1982) geben sogar einen Bereich für die Fasersättigungsfeuchte von bis zu 60 % an. Die Unterschiede durch werden zwischen den einzelnen Holzarten Differenzierungen im Zellwandfeinbau und im chemischen Aufbau hervorgerufen. Oberhalb des Fasersättigungsbereiches wird freies Wasser in das Makrosystem eingelagert. Die praktische Bedeutung der Fasersättigungsfeuchte liegt in der Abhängigkeit der Festigkeits- und Steifigkeitseigenschaften: oberhalb des Fasersättigungsbereiches sind die Festigkeiten und Steifigkeiten unabhängig vom Feuchtegehalt, unterhalb weisen sie eine signifikante und stetige Abhängigkeit davon auf.

3.2 Freie Quellung

3.2.1 Allgemeines

Holz quillt unterhalb des Fasersättigungsbereiches durch Einlagerung von Wassermolekülen in die Zellwände und bewirkt somit ein Ausdehnen der Zellwände. Deshalb erreicht Holz seinen maximalen Quellungszustand, sobald die Zellwände gesättigt sind. Dieser Vorgang ist bei Erreichen des Fasersättigungsbereiches weitgehend beendet. Das Quellverhalten von Holz wird überwiegend durch die Rohdichte, den Spätholzanteil, den anatomischen Aufbau und den Ligninanteil bestimmt. Der umgekehrte Vorgang der Quellung wird als Schwindung bezeichnet.

Im Durchschnitt liegt das Längsquellmaß europäischer Hölzer nach Knigge und Schulz (1966) bei 0,4 %, das Radialquellmaß bei 4,3 % und das Tangentialquellmaß bei 8,3 %. Die geringe Längsquellung wird mit der Orientierung der Fibrillen in Faserlängsrichtung und dem relativ geringen Anteil quer zur Faserrichtung liegender Zellwände erklärt. Die Mikrofibrillen in der S₂-Schicht der Sekundärwand der Holzzelle sind in der Regel nur unter einem kleinen Winkel zur Faserlängsrichtung geneigt. Deshalb treten feuchtebedingte Verformungen hauptsächlich in Querrichtung (radial und tangential) auf. Die Unterschiede in Radial- und Tangential-richtung können durch die größeren Durchmesser der radial verlaufenden quell-

fähigen Mittellamellen, die Unterschiede im Fibrillenaufbau von Radial- und Tangentialwand sowie durch die in radialer Richtung bessere Verankerung der Zellwände durch die Holzstrahlen erklärt werden.

Der Zellwandaufbau mit S₁-, S₂- und S₃-Schicht ist auch der Grund dafür, dass eigentlich nicht von einer "freien" Quellung gesprochen werden kann. Die einzelnen Schichten behindern durch die jeweilige Anordnung der Fibrillen unter verschiedenen Winkeln zueinander mehr oder weniger die Quellung. Durch die gegenseitige Absperrwirkung entstehen somit bereits im submikroskopischen Bereich primäre Spannungen (Keylwerth (1962a)).

In Bereichen kleinster Feuchte beginnt die Quellung zunächst konkav (Kollmann (1982)). Im Holzfeuchtebereich von etwa 5 % bis 20 % steigt die Quellung nahezu linear mit der Holzfeuchte an. In diesem Bereich kann deshalb die Steigung der Quellungskurve als prozentuales Quellmaß je 1 % Holzfeuchteänderung angegeben werden (differentielles Quellmaß). Mit Erreichen der Fasersättigung werden zugleich die Quellvorgänge abgeschlossen. Oberhalb der Fasersättigung gibt es einen weiteren Gleichgewichtszustand, der sich nach geraumer Zeit unter Wasserlagerung einstellt. Die maximale Holzfeuchte wird bei vollständiger Wassersättigung der Zellwände und der restlosen Füllung der Poren mit Kapillarwasser (freies Wasser) erreicht.

3.2.2 Experimentelle Untersuchungen

Im Rahmen des Forschungsvorhabens wurde das Quellverhalten der Holzarten Akasia, Jati, Keruing, Puspa und Lärche untersucht. Hierzu wurden die maximalen Quellmaße nach DIN 52 184 (1979) bestimmt.

Zur Ermittlung des Einflusses der Holzfeuchte auf das Quellverhalten und im Hinblick auf die praktische Herstellung von Druckrohrleitungen aus Holz wurden je Holzart drei Versuchsreihen mit unterschiedlichen Holzfeuchten zu Versuchsbeginn (u = 0 %, 12 % und 18 %) durchgeführt. Tabelle 3-1 enthält einen Überblick zum Versuchsprogramm zur Ermittlung der maximalen Quellmaße bei freier Quellung. Für das Versuchsprogramm wurden aus jeweils 30 Brettern der oben genannten Holzarten jeweils 3 Prüfkörper zugeschnitten, die in Brettlängsrichtung direkt hintereinander lagen. Die drei Prüfkörper pro Brett wurden in die Versuchsreihen 1 bis 3 eingeteilt.

Versuchsreihe	maximales Quellmaß α	Ausgangs- holzfeuchte u ₀	Versuche je Holzart	Prüfkörpernummer
1	radial,	0 %	30	X1-1 X30-1
2	tangential,	12 %	30	X1-2 X30-2
3	longitudinal	18 %	30	X1-3 X30-3

 Tabelle 3-1
 Versuchsprogramm zur freien Quellung

Unter Berücksichtigung der Schwindvorgänge wurden die Versuchskörper zunächst grob vorgeschnitten und bis auf Versuchsreihe 3 im Normalklima 20 / 65 nach DIN 50 014 (1985) bis zur Gewichtskonstanz gelagert. Anschließend wurden zur Ermittlung der radialen und tangentialen Quellmaße die Proben mit quadratischem Querschnitt von 20 mm Kantenlänge und einer Länge in Faserrichtung von 10 mm hergestellt (Bild 3-1). Versuchsreihe 1 wurde im Wärmeschrank bis zum darrtrockenen Zustand getrocknet.

Abweichend von DIN 52 184 (1979) wurde an diesen Proben zusätzlich das longitudinale Quellmaß bestimmt.

Die Maße der Prüfkörper wurden mit Hilfe eines Mikrometers auf 1/100 mm bestimmt. Als Messpunkte dienten hierbei die gegenüberliegenden Mittel der jeweiligen Seitenflächen. Die Prüfkörper wurden nach Erreichen der vorgegebenen Ausgangsholzfeuchte zu Versuchsbeginn in ein Wasserbad mit einer Temperatur von ca. 20° C gelegt und so lange unter Wasser gelagert, bis der maximale Quellungszustand erreicht wurde. Unter Normalbedingungen ist hierfür eine Dauer der Wasserlagerung von mindestens 2 Wochen vorgesehen. Während der Wasserlagerung wurden die Maße in radialer, tangentialer und longitudinaler Richtung sowie die Masse fortlaufend bestimmt.

Das lineare Quellmaß α in einer bestimmten holzanatomischen Richtung beinhaltet die Maßänderung bei einer Zunahme der Holzfeuchte von u₁ auf u₂, bezogen auf das Maß des Holzes zu Versuchsbeginn. Nach DIN 52 184 (1979) wurde das lineare Quellmaß mit Gleichung (1) bestimmt:

$$\alpha = \frac{\ell_2 - \ell_1}{\ell_0} \cdot 100 \quad [\%] \tag{1}$$

Hierin bedeuten ℓ_0 , ℓ_1 und ℓ_2 die Maße des Holzes in einer bestimmten Richtung bei den Holzfeuchten u_0 , u_1 und u_2 .

Das maximale lineare Quellmaß α_{max} in radialer, tangentialer und longitudinaler Richtung wurde nach DIN 52 184 (1979) mit der folgenden Gleichung (2) ermittelt:

$$\alpha_{\max} = \frac{\ell_w - \ell_0}{\ell_0} \cdot 100 \quad [\%]$$
(2)

Dabei ist ℓ_w das Maß des nassen Holzes in einer bestimmten holzanatomischen Richtung, dessen Feuchte über dem Fasersättigungsbereich liegt, und ℓ_o das Maß des Holzes zu Versuchsbeginn bei 0 %, 12 % und 18 % Holzfeuchte.

Das Volumenquellmaß α_V ergibt sich aus den linearen Quellmaßen der drei Hauptrichtungen des Holzes und kann näherungsweise nach folgender Gleichung (3) berechnet werden:

$$\alpha_{\rm V} = \alpha_{\rm t} + \alpha_{\rm r} + \alpha_{\ell} \tag{3}$$

Wie bereits erläutert, steigt im Holzfeuchtebereich von 5 % bis 20 % die Quellung nahezu linear mit dem Feuchtegehalt an. Bei der Versuchsauswertung wurde in diesem Bereich die Steigung der Quellungskurve als prozentuales Quellmaß je 1 % Holzfeuchteänderung (differentielles Quellmaß) angegeben.

Exemplarisch werden die Versuchsergebnisse zur freien Quellung anhand der Holzart Puspa dargestellt. Weitere Diagramme für Akasia, Jati, Keruing und Lärche enthält Anhang B. In Bild 3-2 ist das Quellverhalten von Puspa dargestellt. Die Quellungskurven sind die Ergebnisse (Mittelwerte) der Versuchsreihe 1 mit einer Holzfeuchte zu Versuchsbeginn von 0 %. Das maximale Quellmaß in radialer Richtung beträgt 3,85 %, in tangentialer Richtung 7,94 %. Das Anisotropieverhältnis der maximalen Quellungswerte in radialer und tangentialer Richtung ist somit 2,06. Jedoch kann nach Keylwerth (1962a) vom Anisotropieverhältnis der maximalen Quellungswerte nicht auf dieselbe Anisotropie der Quellung im Bereich geringerer Holzfeuchten geschlossen werden.

In Bild 3-3 ist das Quellmaß von Puspa in Abhängigkeit von der Holzfeuchte dargestellt. Deutlich ist im Bereich geringer Holzfeuchte das Anwachsen der differentiellen Quellung zu erkennen, die annähernde Konstanz dieser Quellung im Bereich praktischer Holzfeuchten und schließlich der Abfall der Quellung zur Fasersättigungsfeuchte hin.

Bild 3-3 Quellmaß in Abhängigkeit der Holzfeuchte (Holzart: Puspa; Holzfeuchte zu Versuchsbeginn: 0 %)

Wie bereits erläutert, findet oberhalb der Fasersättigung kein Quellvorgang mehr statt. Die Masse nimmt aufgrund des in die Kapillaren des Zellkörpers eingedrungenen Wassers jedoch weiter zu. Das Volumen hingegen bleibt konstant, da kein Wasser mehr in der Zellwand gebunden werden kann. Die Rohdichte, welche als Quotient aus der Masse und dem Volumen definiert ist, weist oberhalb der Fasersättigungsfeuchte somit einen größeren Anstieg in Abhängigkeit von der Holz-feuchte auf als unterhalb der Fasersättigungspunkt. Tatsächlich findet der Übergang jedoch nicht abrupt statt; es handelt sich vielmehr um einen Übergangsbereich. Die Größe dieses Fasersättigungsbereiches ist abhängig von der Darrrohdichte des Holzes. Zum Vergleich mit den Versuchsergebnissen ist in Bild 3-4 die Rohdichte in Abhängigkeit von der Holzfeuchte nach Kollmann (1982) aufgetragen.

Bild 3-4 Rohdichte in Abhängigkeit der Holzfeuchte (Holzart: Puspa; Holzfeuchte zu Versuchsbeginn: 0 %)

In Tabelle 3-2 und Tabelle 3-3 sind die Ergebnisse aus den Versuchen zur freien Quellung zusammengefasst. Eine Auflistung der Versuchsergebnisse für alle Holzarten sowie die zugehörigen Diagramme der Quellungskurven (Mittelwerte) befinden sich in Anhang B. Tabelle 3-2 enthält die maximalen Quellmaße bei unterschiedlichen Holzfeuchten zu Versuchsbeginn. Die untersuchten Holzarten können in zwei Gruppen eingeteilt werden: zum einen die schwach quellenden Holzarten Akasia und Jati, zum anderen die stark quellenden Holzarten Keruing, Puspa und Lärche. Der Unterschied zwischen schwach und stark quellenden Holzarten kann nach Keylwerth (1962a) auf die Sorptionskontraktion des Wassers und des Holzes bei den schwach quellenden Holzarten zurückgeführt werden. Die maximalen Quellmaße werden bei einer Holzfeuchte zu Versuchsbeginn von 0 % erreicht. Die Quellmaße bei einer Anfangsholzfeuchte von 12 % bzw. 18 % sind, da bereits Wasser in den intermizellaren und interfibrillaren Holräume der Zellwand vorhanden ist, dementsprechend kleiner.

Holzart	Holzfeuchte		maximales Quellmaß			
TIOIZart	beginn [%]		α _{tan} [%]	α _{rad} [%]	α _{long} [%]	α _{Vol} [%]
		min	4,39	1,96	0,30	7,00
	0	mittel	5,01	2,33	0,50	7,85
		max	5,92	2,66	0,61	8,97
		min	2,56	1,44	0,20	4,35
Akasia	12	mittel	3,02	1,72	0,36	5,09
		max	3,47	2,10	0,69	6,02
		min	1,26	0,75	0,17	2,25
	18	mittel	1,86	0,96	0,35	3,17
		max	2,41	1,25	0,55	3,90
		min	3,32	1,96	0,30	5,84
	0	mittel	4,66	2,60	0,43	7,69
		max	6,55	3,25	0,69	10,19
		min	1,93	1,09	0,22	3,52
Jati	12	mittel	2,45	1,34	0,42	4,21
		max	3,10	1,79	0,67	5,18
		min	0,89	0,64	0,19	1,81
	18	mittel	1,18	0,76	0,33	2,27
		max	1,44	0,90	0,41	2,70
		min	6,27	2,89	0,97	10,52
	0	mittel	7,72	3,87	1,18	12,77
		max	9,01	5,08	1,47	15,18
		min	3,94	2,28	0,54	7,39
Keruing	12	mittel	4,99	2,73	0,74	8,46
		max	5,94	3,28	0,97	9,79
		min	2,91	0,99	0,39	4,75
	18	mittel	3,31	1,43	0,58	5,32
		max	3,99	1,91	0,81	6,35
		min	7,28	3,54	0,45	11,58
	0	mittel	7,94	3,85	0,64	12,43
		max	8,63	4,10	0,81	13,10
		min	5,03	2,56	0,34	8,13
Puspa	12	mittel	5,39	2,80	0,54	8,72
		max	5,76	3,01	0,75	9,22
		min	3,48	1,53	0,32	5,64
	18	mittel	4,13	1,80	0,51	6,44
		max	4,85	2,09	0,75	7,32
		min	7,79	2,87	0,20	11,00
	0	mittel	8,74	3,67	0,35	12,76
		max	9,81	4,58	0,60	14,54
		min	5,79	1,87	0,19	8,23
Lärche	12	mittel	6,52	2,44	0,31	9,27
		max	7,13	3,04	0,50	10,26
		min	3,66	1,31	0,10	5,21
	18	mittel	4,09	1,68	0,24	6,02
		max	4,47	2,08	0,38	6,69

Tabelle 3-2 maximales Quellmaß bei freier Quellung

Tabelle 3-3 enthält eine Zusammenstellung der differentiellen Quellmaße und der Quellungsanisotropie (Mittelwerte) aus der Versuchsreihe 1 mit einer Holzfeuchte zu Versuchsbeginn von 0 %.

Holzart	differentielle	Anisotropie	
	q _{tan} [%/%]	q _{rad} [%/%]	q _{tan} / q _{rad} [-]
Akasia	0,27	0,15	1,80
Jati	0,27 0,16		1,69
Keruing	0,34	0,21	1,62
Puspa	0,31	0,17	1,82
Lärche	0,29	0,17	1,71

Tabelle 3-3 differentielles Quellmaß und Quellungsanisotropie bei freier Quellung

3.3 Behinderte Quellung

3.3.1 Allgemeines

Von behinderter Quellung wird dann gesprochen, wenn die Quellung durch äußere Krafteinwirkung behindert wird. Perkitny (1958) definiert den dabei entstehenden Quellungsdruck des Holzes als eine ansteigende und nach Überschreitung eines Höchstwertes wieder absinkende Druckspannung, die auf eine trockene Holzprobe in einer Richtung ausgeübt werden muss, um ihre ursprüngliche in Druckrichtung gemessene Höhe bei gleichzeitiger Befeuchtung der Probe konstant zu halten. Der Quellungsdruck steigt zu Beginn der Befeuchtung proportional mit der Holzfeuchte an. Bei Erreichen des Höchstwertes führen plastische Formänderungen bzw. Veränderungen des Zellgefüges bei weiterer Befeuchtung zu einem Absinken des Quellungsdruckes (Kollmann (1982)). Der spätere Abfall der Spannungen entspricht dem rheologischen Verhalten des Holzes mit Plastifizierung und Relaxation.

Der Quellungsdruck ist von folgenden Einflussgrößen abhängig:

- Holzart;
- Druckrichtung (tangential, radial, longitudinal);
- Anfangs- und Endfeuchte des Holzes;
- Vorbehandlung des Holzes;
- Befeuchtung des Holzes (Wasserlagerung bzw. wassergesättigte Luft);
- Vorspannungsgrad, der auf die noch trockene Probe vor der Befeuchtung aufgebracht wird.

Perkitny und Helińska (1963) untersuchten den Quellungsdruck von Holz in Wasser und wassergesättigter Luft in Abhängigkeit unterschiedlicher Vorspannungsgrade. Maximalwerte des Quellungsdruckes – je nach Holzart bis zu 4 N/mm² – wurden bei Befeuchtung in wassergesättigter Luft in tangentialer Richtung gemessen. Der Einfluss des Vorspannungsgrades war bei Befeuchtung in Wasser am größten: tangential und radial gerichtete Vorspannungen von 2,0 N/mm² und 1,0 N/mm² waren ausreichend, um einen durch die Quellung hervorgerufenen Anstieg der Druckspannungen nicht nur auszuschalten, sondern im Gegenteil in einen stetigen Druckabfall umzugestalten.

Keylwerth (1962b) erstellte einen elastischen Modellansatz zu Untersuchungen über die behinderte Quellung. Seine Versuche belegen, dass Holz von höherer Anfangsfeuchte im Vergleich zu sehr trockenem Holz nach einem kürzeren Anstieg auf ein niedrigeres Spannungsmaximum einen geringeren Spannungsabfall nach weiterer Befeuchtung aufweist. Dies deutet darauf hin, dass das weichere feuchte Holz die einmal entwickelte Quellungsspannung nachhaltiger trägt als trockenes Holz.

Kingston und Perkitny (1972) geben in ihrer Veröffentlichung eine Zusammenstellung der Ergebnisse von unterschiedlichen Untersuchungen über den maximalen Quellungsdruck verschiedener Holzarten bei Befeuchtung mit Wasser an. Maximale Werte des Quellungsdruckes von bis zu 6 N/mm² wurden im Labor gemessen. Mit steigender Rohdichte nimmt auch der Quellungsdruck zu. Es zeigt sich, dass der radiale Quellungsdruck teils größer, teils kleiner als der tangentiale Quellungsdruck sein kann und dass im Allgemeinen ein ausgeprägtes Druckspannungsmaximum nach verhältnismäßig kurzer Zeit ausgebildet wird. Bei Laubhölzern ist der Quellungsdruck in der Regel in radialer Richtung größer als in tangentialer. Diese Tatsache ist darin begründet, dass die Proportionalitätsgrenze bei Druckbeanspruchung quer zur Faserrichtung in radialer Richtung größer ist als in tangentialer. Bei Nadelhölzern sind die Verhältnisse genau umgekehrt. Jedoch gibt es auf der Grundlage der bisher durchgeführten Untersuchungen auch Überschneidungen beider Bereiche.

Keylwerth (1962c) untersuchte die parallel zur Faserrichtung behinderte Quellung. In diesem Fall wird zwar nur die sehr viel geringere Längsquellung des Holzes wirksam, jedoch ist der Elastizitätsmodul in Faserrichtung etwa um den Faktor 20 größer als rechtwinklig zur Faserrichtung. In sehr trockenem Holz mit hohem Elastizitätsmodul wurden messbare Quelldruckspannungen nachgewiesen. Im Bereich üblicher Gebrauchsfeuchtigkeiten sind jedoch in der Praxis diese Spannungen meist vernachlässigbar klein.

3.3.2 Experimentelle Untersuchungen

Im Rahmen des Forschungsvorhabens wurde das Quellverhalten der Holzarten Akasia, Jati, Keruing, Puspa und Lärche bei behinderter Quellung untersucht. Ziel der Versuche war die Bestimmung des radialen und tangentialen Quellungsdruckes der verschiedenen Holzarten in Abhängigkeit vom Vorspannungsgrad und der Holzfeuchte zu Versuchsbeginn. Die Versuchsreihen wurden bei einer Holzfeuchte zu Versuchsbeginn von 12 % und 18 % durchgeführt, um den Einfluss der Holzfeuchte auf den Quellungsdruck zu untersuchen. Bei behinderter Quellung beeinflusst auch der Grad der Vorspannung den Verlauf des Quellungsdruckes. Deshalb wurde unmittelbar vor Versuchsbeginn in tangentialer bzw. radialer Richtung ein Vorspannungsgrad von 0 N/mm², 0,5 N/mm² und 1,5 N/mm² aufgebracht. Die Versuche wurden mit Wasserlagerung bei einer Temperatur von ca. 20° C durchgeführt.

Tabelle 3-4 enthält eine Zusammenfassung des Versuchsprogramms zur behinderten Quellung. Die Prüfkörper wurden in Anlehnung an die Versuche zur freien Quellung nach DIN 52 184 (1979) ebenfalls als quadratische Proben mit 20 mm Kantenlänge und einer Länge in Faserrichtung von 10 mm hergestellt. Zur Probenentnahme wurden die gleichen Bretter verwendet wie bei den Untersuchungen zur freien Quellung. Somit ist ein direkter Vergleich der Ergebnisse aus den Versuchen zur behinderten mit denen der freien Quellung möglich.

Versuchs- reihe	Quellungs- druck	Holzfeuchte zu Versuchsbeginn u ₀ [%]	Vorspannungs- grad [N/mm ²]	Versuche je Holzart	Prüfkörper- nummer	
1	radial		0	8	X1-1X8-1	
2		12	0,5	8	X1-2X8-2	
3			1,5	8	X1-3X8-3	
4		Taulai		0	8	X1-4X8-4
5		18	0,5	8	X1-5X8-5	
6			1,5	8	X1-6X8-6	
7	tangential		0	8	X1-7X8-7	
8		12	0,5	8	X1-8X8-8	
9			1,5	8	X1-9X8-9	
10			0	8	X1-10X8-10	
11		18	0,5	8	X1-11X8-11	
12			1,5	8	X1-12X8-12	

Tabelle 3-4 Versuchsprogramm zur behinderten Quellung

Zur Bestimmung des Quellungsdruckes bei behinderter Quellung wurde ein Versuchsaufbau konzipiert, bei dem der entstehende Quellungsdruck in radialer bzw. tangentialer Richtung mit Hilfe von Dehnmessstreifen bestimmt werden kann (Bild 3-5). Durch Wasserlagerung wird eine Quellung der Holzproben erzeugt. Diese Quellung bewirkt eine Dehnung der Stahlschrauben. Die Dehnungen werden mittels Dehnmessstreifen, die in einer mittigen Bohrung in den Schrauben eingeklebt sind, gemessen und somit der Quellungsdruck bestimmt. Die Steifigkeit der Schrauben mit eingeklebten Dehnmessstreifen wurde vorab in einem Zugversuch ermittelt.

Bild 3-5 Versuchsaufbau zur Bestimmung des Quellungsdruckes bei behinderter Quellung

Mit Hilfe eines Vielstellenmessgerätes konnte eine Versuchsreihe mit 8 Prüfkörpern gleichzeitig geprüft werden. Die Dehnungen der Schrauben wurden automatisch in einem Zyklus von 5 Minuten aufgezeichnet. Die Vorspannung von 0,5 N/mm² bzw. 1,5 N/mm² wurde vor der Wasserlagerung über die Schrauben aufgebracht.

Im Folgenden werden die Ergebnisse der Untersuchungen zur behinderten Quellung zusammengefasst. Die Holzarten Keruing, Puspa und Lärche zeigten einen ähnlichen Verlauf der Quelldruckspannungen, welcher – im Gegensatz zu dem Verlauf bei den Holzarten Akasia und Jati – durch einen Spannungsabfall nach Erreichen eines Maximums gekennzeichnet ist. Bemerkenswert ist, dass bei den Holzarten Akasia und Jati, welche bei der freien Quellung als schwach quellende Holzarten eingestuft wurden (Keruing, Puspa und Lärche: stark quellende Holzarten), der Spannungsabfall des Quellungsdruckes nach Erreichen eines Maximalwertes vernachlässigbar gering ist. In allen Fällen war jedoch der tangentiale Quellungsdruck größer als der radiale.

Bei den Holzarten Keruing, Puspa und Lärche wird nach einem Anstieg der Druckspannung relativ schnell ein Maximalwert erreicht. Danach fällt der Quellungsdruck auf ein konstantes Maß ab. Der Spannungsverlust beträgt je nach Holzart, Anfangsfeuchte und Vorspannungsgrad bis zu 40 %. Bild 3-6 zeigt exemplarisch den radialen Quellungsdruck von Keruing bei einer Holzfeuchte zu Versuchsbeginn von 12 % und unterschiedlichen Vorspannungsgraden. Dargestellt ist der Mittelwert der jeweiligen Versuchsreihe.

Bild 3-6 radialer Quellungsdruck bei unterschiedlichen Vorspannungsgraden (Holzart: Keruing; Holzfeuchte zu Versuchsbeginn: 12 %, Vorspannung: 0 - 1,5 N/mm²)

Die Versuchsergebnisse bestätigen, dass der Vorspannungsgrad einen bedeutenden Einfluss auf den Verlauf des Quellungsdruckes besitzt. Der Wert des maximalen Quellungsdruckes nimmt mit dem Grad der Vorspannung zu. Jedoch ist bei hoher Vorspannung der spätere Abfall des Quellungsdruckes bei den Holzarten Keruing, Puspa und Lärche größer. Teilweise sinkt der Quellungsdruck nach dem Erreichen eines Maximums aufgrund einer zu hohen Vorspannung und der damit verbundenen plastischen Verformung und Relaxation auf einen Wert ab, der unterhalb des Quellungsdruckes der Proben mit einem geringeren Vorspannungsgrad liegt.

Im Gegensatz zu den Holzarten Keruing, Puspa und Lärche zeigen Akasia und Jati einen anderen Verlauf des Quellungsdruckes bei behinderter Quellung. Nach Erreichen eines Maximalwertes bleibt der Quellungsdruck fast konstant erhalten; der Spannungsabfall ist mit maximal 4 % vernachlässigbar gering. Bild 3-7 zeigt den tangentialen Quellungsdruck von Jati bei unterschiedlichen Vorspannungsgraden.

Bild 3-7 tangentialer Quellungsdruck bei unterschiedlichen Vorspannungsgraden (Holzart: Jati; Holzfeuchte zu Versuchsbeginn: 12 %, Vorspannung: 0 - 1,5 N/mm²)

Neben dem Vorspannungsgrad hat auch die Holzfeuchte zu Versuchsbeginn einen bedeutenden Einfluss auf den Quellungsdruck. In Bild 3-8 ist der radiale Quellungsdruck von Puspa dargestellt. In dieser Versuchsreihe betrug die Holzfeuchte zu Versuchsbeginn 12 % bzw. 18 %, der Vorspannungsgrad 0,5 N/mm².

Bild 3-8 radialer Quellungsdruck bei unterschiedlichen Holzfeuchten zu Versuchsbeginn

(Holzart: Puspa; Holzfeuchte zu Versuchsbeginn: 12 / 18 %; Vorspannung 0,5 N/mm²)

Der maximale Quellungsdruck ist bei einer geringeren Holzfeuchte zu Versuchsbeginn größer. Jedoch ist auch der Spannungsabfall nach dem Erreichen des Maximalwertes bei einer geringeren Anfangsfeuchte größer. Die richtige Wahl der Anfangsfeuchte ist deshalb bei der Herstellung von Druckrohrleitungen aus Holz von besonderer Bedeutung, da in diesem Fall der Quellungsdruck als praktische Gebrauchseigenschaft benötigt wird. Die verhältnismäßig hohe Verarbeitungsfeuchte von Holzdauben mit 16 % bis 18 % hat neben den oben genannten technologischen Gründen zudem auch einen wirtschaftlichen Vorteil.

In Tabelle 3-5 sind die maximalen Quelldruckspannungen (in radialer und tangentialer Richtung) sowie die Spannungsverluste nach Erreichen des Maximalwertes für die Holzarten Akasia, Jati, Keruing, Puspa und Lärche in Abhängigkeit von der Holzfeuchte zu Versuchsbeginn und dem Vorspannungsgrad angegeben. Eine Auflistung der Versuchsergebnisse für alle Holzarten sowie die zugehörigen Diagramme mit dem Verlauf des Quellungsdruckes (Mittelwert) befinden sich in Anhang C.

Die Versuchsergebnisse zeigen, dass die Einteilung der untersuchten Holzarten bei freier Quellung in schwach quellende (Akasia, Jati) und stark quellende Holzarten (Keruing, Puspa, Lärche) sich auch auf die behinderte Quellung übertragen lässt. Die stark quellenden Holzarten weisen bei behinderter Quellung nach Erreichen eines Maximalwertes der Quelldruckspannung einen Spannungsabfall auf ein konstantes Maß auf. Bei den schwach quellenden Holzarten hingegen ist der Spannungsabfall vernachlässigbar klein.

Jedoch sind die aus der freien Quellung ermittelten Quellmaße einer Holzart ein eher unzureichendes Kriterium, um Rückschlüsse auf die Größe des Quellungsdruckes bei behinderter Quellung zu schließen. Die Quelldruckspannungen bei behinderter Quellung werden vom rheologischen Verhalten des Holzes bestimmt. Die Größe des Quellungsdruckes wird maßgeblich von mechanischen Eigenschaften des Holzes (Verformungsmodul, elastischer Anteil der Quellungsdeformation) bestimmt. Plastische Verformungen und Relaxation vermindern die Quellspannungen.

				ŭ	aximaler Qu	nullungsdru	сk			mittlere	r Quellung:	sdruck nach	ו 25 h		Abfa	all	Anisot	ropie
Holtart	Holzfeuchte	Vorspannung		max σ _{tan}			max σ _{rad}			σ _{tan}			Grad		red $\Delta\sigma_{\text{tan}}$	red $\Delta\sigma_{\text{rad}}$	maximaler	mittlerer
וומלמור	beginn [%]	[N/mm ²]		[N/mm ²]			[N/mm²]			[N/mm ²]			[N/mm²]		[%]	[%]	druck [-]	druck [-]
			min	mittel	max	min	mittel	max	min	mittel	тах	min	mittel	тах	mittel	mittel	mittel	mittel
		0,0	2,23	2,55	2,92	1,76	1,95	2,18	2,23	2,51	2,80	1,65	1,89	2,14	%0'66	96,9%	1,31	1,33
	12	0,5	3,22	3,54	3,93	1,96	2,34	2,51	3,15	3,47	3,83	1,95	2,32	2,50	98,0%	99,1%	1,51	1,50
Akacia		1,5	3,44	3,78	4,09	2,21	2,48	2,70	3,33	3,66	3,92	2,19	2,45	2,62	96,8%	99,0%	1,52	1,49
		0'0	2,20	2,42	2,61	1,57	1,78	2,03	2,10	2,35	2,54	1,54	1,74	1,99	97,1%	97,8%	1,36	1,35
	18	0,5	3,20	3,42	3,72	1,95	2,19	2,47	3,08	3,31	3,63	1,89	2,12	2,41	96,8%	96,8%	1,56	1,56
		1,5	3,37	3,64	3,98	2,02	2,41	2,69	3,27	3,51	3,81	1,94	2,34	2,61	96,4%	97,1%	1,51	1,50
		0'0	2,23	2,46	2,73	1,90	2,22	2,50	2,14	2,38	2,70	1,87	2,18	2,49	96,7%	98,2%	1,11	1,09
	12	0,5	2,90	3,23	3,46	2,34	2,59	2,86	2,89	3,19	3,36	2,24	2,52	2,82	98,8%	97,3%	1,25	1,27
;		1,5	3,14	3,39	3,67	2,52	2,79	3,01	3,09	3,37	3,66	2,51	2,71	2,88	%0 [°] 66	97,0%	1,22	1,24
Jau		0,0	2,06	2,34	2,54	1,69	2,03	2,25	2,02	2,25	2,41	1,62	1,96	2,14	96,2%	96,6%	1,15	1,15
	18	0,5	2,85	3,10	3,31	2,15	2,44	2,72	2,77	2,99	3,15	2,09	2,34	2,60	96,5%	95,9%	1,27	1,28
		1,5	2,98	3,29	3,54	2,35	2,64	2,94	2,82	3,11	3,42	2,32	2,55	2,87	94,5%	96,6%	1,25	1,22
		0'0	2,12	2,32	2,56	1,64	1,90	2,09	1,49	1,76	2,01	1,14	1,34	1,56	76,0%	70,5%	1,22	1,31
	12	0,5	2,43	2,69	2,97	1,97	2,34	2,67	1,67	1,95	2,16	1,32	1,61	1,89	72,0%	68,8%	1,15	1,21
Kariina		1,5	2,61	2,84	3,12	2,13	2,38	2,56	1,66	1,92	2,24	1,14	1,41	1,77	67,0%	59,0%	1,19	1,36
Alimia		0'0	1,88	2,13	2,38	1,41	1,65	1,86	1,53	1,78	2,01	1,09	1,27	1,44	83,0%	77,0%	1,29	1,40
	18	0,5	2,41	2,54	2,71	1,85	2,06	2,28	1,76	2,02	2,20	1,35	1,54	1,82	79,5%	74,8%	1,23	1,31
		1,5	2,54	2,74	3,00	1,84	2,21	2,41	1,95	2,08	2,28	1,04	1,34	1,52	76,0%	60,6%	1,24	1,55
		0,0	2,26	2,52	2,71	1,84	2,18	2,47	1,82	2,05	2,36	1,52	1,74	2,05	81,0%	80,0%	1,16	1,18
	12	0,5	3,08	3,39	3,76	2,29	2,60	2,93	2,40	2,61	2,93	1,72	2,09	2,47	77,0%	80,0%	1,30	1,25
Diena		1,5	3,23	3,60	3,96	2,56	2,81	3,07	2,19	2,56	2,96	1,67	2,06	2,39	71,0%	73,0%	1,28	1,24
n sha		0,0	2,00	2,36	2,72	1,67	1,94	2,22	1,78	1,98	2,24	1,30	1,55	1,83	84,0%	80,0%	1,22	1,28
	18	0,5	2,99	3,24	3,55	2,02	2,38	2,71	2,33	2,61	2,85	1,69	1,89	2,15	81,0%	79,0%	1,36	1,38
		1,5	3,04	3,43	3,92	2,34	2,64	2,87	2,25	2,58	2,86	1,77	2,02	2,25	75,0%	77,0%	1,30	1,28
		0,0	1,27	1,65	1,94	1,25	1,43	1,60	0,94	1,31	1,59	0,85	1,09	1,26	79,0%	76,0%	1,15	1,20
	12	0,5	1,83	2,13	2,38	1,59	1,74	1,99	1,37	1,61	1,93	1,12	1,29	1,41	75,0%	74,0%	1,22	1,25
edanë		1,5	2,04	2,33	2,65	1,71	1,93	2,21	1,33	1,53	1,85	0,95	1,10	1,28	66,0%	58,0%	1,21	1,39
		0,0	1,27	1,45	1,60	1,03	1,24	1,43	1,08	1,20	1,39	0,89	1,00	1,14	83,0%	80,0%	1,17	1,20
	18	0,5	1,81	2,00	2,22	1,41	1,56	1,79	1,27	1,58	1,81	1,10	1,20	1,28	79,0%	77,0%	1,28	1,32
		1,5	1,83	2,11	2,31	1,54	1,67	1,81	1,25	1,43	1,72	0,83	1,08	1,30	68,0%	64,0%	1,26	1,32

Tabelle 3-5	Quellungsdruck und S	pannungsverlust	bei behinderter	Quellung

4 Einfluss der Holzfeuchte auf mechanische Eigenschaften

Der Einfluss der Holzfeuchte auf die mechanischen Eigenschaften des Holzes wurde bereits in vielen Studien untersucht. Die klimatischen Bedingungen (Temperatur, relative Luftfeuchte), die in direktem Zusammenhang mit der Holzfeuchte stehen, bewirken unabhängig von strukturellen Einflüssen Eigenschaftsänderungen. Im Allgemeinen nehmen die elasto-mechanischen Eigenschaften von Holz mit zunehmendem Feuchtegehalt im hygroskopischen Bereich ab. Dieser Prozess wird bei Erreichen des Fasersättigungsbereiches jedoch beendet; eine weitere Feuchteaufnahme bewirkt im kapillaren Bereich (oberhalb der Fasersättigung) keine Änderung der elasto-mechanischen Eigenschaften mehr (Bild 4-1). Die Festigkeiten werden von der Holzfeuchte stärker beeinflusst als der Elastizitätsmodul. Zusätzlich ist der Einfluss der Holzfeuchte auf die Festigkeit abhängig von der Beanspruchungsart (Biegung, Zug, Druck).

Bild 4-1 Einfluss der Holzfeuchte auf Holzeigenschaften nach Kufner (1978) (Ausgleichskurven für Elastizitätsmodul und Zugfestigkeit)

4.1 Abhängigkeit des Elastizitäts- und Schubmoduls von der Holzfeuchte

4.1.1 Allgemeines

Ein wesentlicher Einflussfaktor für die Größe des Elastizitätsmoduls ist neben der Beanspruchungsart vor allem die Holzfeuchte. Grund hierfür ist der Aufbau der Zellstruktur: mit zunehmender Holzfeuchte steigt die Formänderung des Holzes bei mechanischer Beanspruchung stärker an. Im Folgenden wird bei der Untersuchung des Einflusses der Holzfeuchte auf den Elastizitätsmodul nicht nach der Art der Beanspruchung unterschieden (Toratti (1992), Hanhijärvi (1995), Hoffmeyer (1995)). Wilson (1932) stellte für die Abhängigkeit des Elastizitätsmoduls von der Holzfeuchte einen linearen Zusammenhang fest. Aufgrund einer Vielzahl an Untersuchungen mit verschiedenen Holzarten wurde im hygroskopischen Bereich eine Abnahme des Elastizitätsmoduls von 2 %/% du ermittelt (Gleichung (4)).

$$E_{2} = E_{1} \cdot [1 - 0,02 \cdot (u_{2} - u_{1})]$$
(4)

Kollmann (1982) gibt für den Bereich 6 % < u < 20 % ebenfalls einen linearen Zusammenhang von Elastizitätsmodul und Feuchtegehalt an (Gleichung (5)).

$$\mathsf{E}_{2} = \mathsf{E}_{1} \cdot \frac{48 - \mathsf{u}_{2}}{48 - \mathsf{u}_{1}} \tag{5}$$

In einigen Beiträgen wird eine nichtlineare Beziehung zwischen Elastizitätsmodul und Feuchtegehalt im hygroskopischen Bereich angegeben.

Kufner (1978) untersuchte den Zusammenhang zwischen Elastizitätsmodul bzw. Zugfestigkeit verschiedener Holzarten und dem Feuchtegehalt mittels Biegeschwingungsmessung und Zugversuchen. Die Auswertung ergab einen Anstieg des Elastizitätsmoduls im Bereich von 0 % auf 4 % Holzfeuchte und einen anschließenden Abfall bis zum Fasersättigungsbereich bei ca. 30 % Holzfeuchte (Bild 4-2).

Bild 4-2 prozentuale Änderung des Elastizitätsmoduls in Abhängigkeit der Holzfeuchte aus Schwingungsmessung (nach Kufner (1978))

Glos (1981) stellt in seinem Modell die Abhängigkeit der Festigkeit bzw. des Elastizitätsmoduls und ihrer charakteristischen Werte von der Feuchte, der Temperatur, der Probengröße, der Belastungsart und -dauer sowie einer chemischen Schutzbehandlung dar. Eine Änderung der Holzfeuchte beeinflusst hierbei die Festigkeit von Holz in zweierlei Hinsicht. Die Festigkeit nimmt einerseits mit zunehmender Holzfeuchte ab, andererseits wirkt das Quell- und Schwindverhalten von Holz und die damit verbundene Querschnittsänderung diesem Einfluss entgegen. Der verbleibende, die Tragfähigkeit verändernde Einfluss der Holzfeuchte ist von der Holzqualität abhängig. Dieser Einfluss ist bei Holz geringer Qualität kleiner als bei fehlerfreiem Holz mit höherer Festigkeit. Deshalb schlägt Glos (1981) vor, den Einfluss der Feuchte auf den Elastizitätsmodul im Bereich zwischen 5 % und 25 % Holzfeuchte folgendermaßen zu berücksichtigen:

5%-Quantil:	0 %/%∆u
Mittelwert:	1 %/%∆u
95%-Quantil:	1,5 %/%∆u

Der Elastizitätsmodul rechtwinklig zur Faserrichtung wird wesentlich stärker von der Holzfeuchte beeinflusst als der Elastizitätsmodul parallel zur Faserrichtung. Nach Neuhaus (1981) kann für Fichtenholz bei einer Holzfeuchte von 12 % ein Verhältnis der Elastizitätszahlen von s₁₁ / s₂₂ = 28,6 definiert werden; bei einer Holzfeuchte von 28 % steigt das Verhältnis von s₁₁ / s₂₂ auf einen Wert von 44,1.

Der Einfluss von Dimensionsänderungen infolge Quellen und Schwinden auf den Elastizitätsmodul wird in vielen Beiträgen nicht näher betrachtet. Becker (2002) gibt die Änderung der Querschnittsfläche mit 0,5 %/% du und die Änderung des Flächenträgheitsmomentes mit 1,0 %/% du an. Machek et al. (2001) untersuchten den Einfluss der Dimensionsänderungen auf den Elastizitätsmodul mit Hilfe von dynamischen und statischen Messverfahren. Wie erwartet, veränderte sich der Elastizitätsmodul bei sich ändernden Holzfeuchten sowohl bei statischen als auch dynamischen Messungen mit vergleichbaren Trends. Für praktische Messungen war jedoch die Beobachtung wichtig, dass bei einer Vernachlässigung der Einbeziehung der sich durch Holzfeuchteänderung verursachten Dimensionsänderungen der dynamische Elastizitätsmodul in geringerem Maße von der Holzfeuchteänderung beeinflusst wird als der statische Elastizitätsmodul.

Becker (2002) gibt in seiner Dissertation eine Zusammenfassung von Angaben zur Änderung des Elastizitätsmoduls bei Holzfeuchteänderung aus unterschiedlichen Beiträgen an (Tabelle 4-1). Becker arbeitet mit einer Änderung des Elastizitätsmoduls von 1,5 %/%∆u und berücksichtigt dabei die Querschnittsänderungen aufgrund von Quellen und Schwinden rechtwinklig zur Faserrichtung.

In DIN EN 384 (05/2004) wird zur Bestimmung charakteristischer Werte für mechanische Eigenschaften eine Änderung des Elastizitätsmoduls von 2,0 $\%/\%\Delta u$ angegeben.

	∆E [%/%∆u]
Kollmann (1961)	1,5
Keith (1972)	1,5
Kufner (1978)	1,7
Glos (1978)	1,4 – 2,1
Heimeshoff / Glos (1980)	ca. 1,0
Neuhaus (1981)	0,7 - 0,8
Toratti (1992)	1,2
Fridley et al. (1992)	1,6
Carstensen (1993)	ca. 1,0
Hoffmeyer (1995)	1,5
Hanhijärvi (1995)	1,1
Dinwoodie (2000)	1,1
Zhou et al. (2000)	ca. 1,5

Tabelle 4-1 Änderung des Elastizitätsmoduls bei Holzfeuchteänderung (aus Becker (2002))

4.1.2 Experimentelle Untersuchungen

Im Rahmen des Forschungsvorhabens wurde der Einfluss der Holzfeuchte auf den Elastizitätsmodul mittels Schwingungsmessungen an den Holzarten Akasia, Jati, Keruing, Puspa und Lärche untersucht.

Grundsätzlich sind zur Bestimmung des Elastizitätsmoduls zwei Methoden geeignet: der statische Biegeversuch und die dynamische Schwingungsmessung. Zur Bestimmung des dynamischen Elastizitätsmoduls eignen sich sowohl Längsschwingung (Longitudinalschwingung) als auch Biegeschwingung (Quer- oder Transversalschwingung). Die theoretischen Grundlagen für die Messung der Eigenfrequenz wurden ausführlich von Rayleigh (1929) beschrieben.

Der Elastizitätsmodul kann aus einer Longitudinalschwingung mit Hilfe der Gleichung (6) ermittelt werden. Dabei treten nur Längenänderungen im Stab auf, eine Querbewegung erfolgt nicht.

$$E = \frac{4 \cdot \ell^2 \cdot f_0^2 \cdot \rho}{n} \qquad \text{mit } n = 1 \tag{6}$$

Bei einer Biegeschwingung (Bild 4-3), bei der sich die Masseteilchen rechtwinklig zur Stabachse bewegen, verdreht sich gleichzeitig die Querschnittsfläche, wodurch Schubverformungen entstehen. Mit Hilfe der Schwingungsgleichung (7) nach Görlacher (1984) kann der Elastizitätsmodul aus einer Biegeschwingung ermittelt werden:

$$\mathsf{E} = \frac{4 \cdot \pi^2 \cdot \ell^4 \cdot f_0^2 \cdot \rho}{\mathsf{m}_n^4 \cdot \mathsf{i}^2} \cdot \left(1 + \frac{\mathsf{i}^2}{\ell^2} \cdot \left(\mathsf{K}_1 + \mathsf{K}_2 \cdot \mathsf{s} \cdot \frac{\mathsf{E}}{\mathsf{G}}\right) - \frac{4 \cdot \pi^2 \cdot \mathsf{s} \cdot \mathsf{i}^2 \cdot \rho \cdot \mathsf{f}_0^2}{\mathsf{G}}\right)$$
(7)

mit

- E₀ = Elastizitätsmodul [10⁻¹² N/mm²]
- G = Schubmodul [N/mm²]
- ρ = Rohdichte [kg/m³]
- ℓ = Stablänge [mm]
- i = Trägheitsradius in Richtung der Biegeschwingung [mm]
- f_0 = Frequenz [1/s]
- s = Formfaktor (s = 1,06 für Holz nach Hearmon (1958))

K₁, K₂, m_n = Konstanten in Abhängigkeit der Ordnung der Schwingung

Bild 4-3 Bestimmung des Elastizitätsmoduls mittels Schwingungsmessung (aus Görlacher (1984))

Über den Zusammenhang von statischem und dynamischem Elastizitätsmodul liegen Ergebnisse mehrerer Untersuchungen vor. Im Vergleich stellten Kollmann und Krech (1960) fest, dass die dynamischen Elastizitätsmoduln aus Längsschwingung und Biegeschwingung nach einer durchgeführten Korrektur des Schubeinflusses nahezu übereinstimmen, der korrigierte statische Elastizitätsmodul jedoch ca. 4 % geringer ist. Machek (2001) gibt für den dynamisch ermittelten Elastizitätsmodul 5 % bis 15 %

höhere Werte an als für den statisch ermittelten Elastizitätsmodul. Nach Görlacher (1984) liegt der dynamische Elastizitätsmodul im Mittel um 9 % höher als der statisch bestimmte Elastizitätsmodul. Diese Unterschiede können teilweise durch Schubverformungseinflüsse erklärt werden. Dieser Einfluss ist umso größer, je geringer die Spannweite zwischen den Auflagerpunkten ist und muss bei Verhältnissen von ℓ / h < 15 berücksichtigt werden.

Im Rahmen des Forschungsvorhabens wurde an jeweils 36 Proben der Holzarten Akasia, Jati, Keruing, Puspa und Lärche mit den Abmessungen von ca. b / h / L = 100 / 50 / 1000 mm der Einfluss der Holzfeuchte auf den Elastizitätsmodul mittels Schwingungsmessung untersucht. Die Proben wurden zuerst mit einer Holzfeuchte von ca. 12 % geprüft sowie nach mehreren Wochen Wasserlagerung mit einer Holzfeuchte über dem Fasersättigungsbereich. Die Eigenfrequenz wurde mit Hilfe des Messgerätes GrindoSonic Mk 5 der Fa. Lemmens-Elektronika bestimmt. Neben dem Elastizitätsmodul parallel zur Faserrichtung (E_0) wurde der Elastizitätsmodul rechtwinklig zur Faserrichtung (E_{90}) und der Schubmodul (G) durch Schwingungsmessungen unterschiedlicher Ordnung ermittelt.

Der Elastizitätsmodul parallel zur Faserrichtung wurde mit Hilfe von Longitudinalschwingungen sowohl flachkant als auch hochkant ermittelt. Die Ergebnisse der Prüfungen flachkant und hochkant zeigten wie erwartet sehr gute Übereinstimmungen. In Bild 4-4 und Bild 4-5 wird der Einfluss der Holzfeuchte auf den Elastizitätsmodul parallel zur Faserrichtung am Beispiel der Holzart Akasia dargestellt.

Bild 4-4 Einfluss der Holzfeuchte auf den Elastizitätsmodul E₀ (Holzart: Akasia)

Bild 4-5 Elastizitätsmodul E₀ in Abhängigkeit von der Rohdichte (Holzart: Akasia)

Tabelle 4-2 enthält eine Zusammenfassung der Ergebnisse aus den Schwingungsmessungen zur Ermittlung des Einflusses der Holzfeuchte auf den Elastizitätsmodul parallel zur Faserrichtung. Eine Auflistung der Versuchsergebnisse für alle Holzarten sowie die zugehörigen Diagramme sind im Anhang D dargestellt.

Holzart			u = 12%			u > FS		Abfall
HUIZAIT		ρ [kg/m³]	u [%]	E ₀ [N/mm ²]	ρ [kg/m³]	u [%]	E ₀ [N/mm²]	red E_0 [%]
	min	635	11,1	10581	838	43,2	9542	88,0%
Akasia	mittel	735	12,5	13959	962	58,8	12759	91,5%
Лказіа	max	847	14,1	16719	1079	82,6	15082	94,9%
	S	-	-	1775	-	-	1588	-
	min	566	11,4	9861	818	48,6	9105	89,6%
lati	mittel	668	12,3	13285	935	67,1	12241	92,2%
Jali	max	782	13,5	16303	1038	84,6	14933	94,7%
	S	-	-	1920	-	-	1768	-
	min	572	11,5	12114	885	51,4	10327	81,5%
Koruina	mittel	708	12,5	15630	1020	77,9	13148	84,2%
rteruing	max	833	13,9	19334	1201	107,5	16447	87,1%
	S	-	-	2059	-	-	1686	-
	min	590	11,4	11543	942	58,4	10530	85,1%
Pusna	mittel	703	12,4	14349	1063	83,5	12651	88,2%
гизра	max	798	13,6	17706	1162	98,6	15472	91,4%
	S	-	-	1647	-	-	1407	-
	min	553	11,2	10413	633	41,5	9371	81,9%
Lärcho	mittel	621	12,5	13684	702	48,3	11761	86,1%
	max	673	14,1	16459	767	58,3	13953	92,5%
	S	_	_	1666	_	_	1318	_

Tabelle 4-2 Einfluss der Holzfeuchte auf den Elastizitätsmodul E₀

Mit den gleichen Prüfkörpern, an denen der Elastizitätsmodul parallel zur Faserrichtung mittels Längsschwingung ermittelt wurde, wurden Biegeschwingungen 1., 2. und 3. Ordnung bei ca. 12 % Holzfeuchte sowie nach Wasserlagerung durchgeführt. Mit den aus den Biegeschwingungen gemessenen Eigenfrequenzen konnte für jede Schwingungsordnung (n = 1, 2 und 3) ein zugehöriger Elastizitätsmodul (E₁, E₂ und E₃) ermittelt werden. Zur Bestimmung des Schubmoduls wurde der Elastizitätsmodul aus der Längsschwingung (ohne Schubeinfluss) in Gleichung (7) eingesetzt und der Schubmodul variiert, bis der berechnete Elastizitätsmodul aus der Biegeschwingung mit dem Elastizitätsmodul aus der Längsschwingung übereinstimmte. Zuverlässige Werte für den Schubmodul konnten somit aus der Biegeschwingung 2. und 3. Ordnung berechnet werden. Bild 4-6 und Bild 4-7 zeigen den Einfluss der Holzfeuchte auf den Schubmodul am Beispiel der Holzart Keruing.

Bild 4-6 Einfluss der Holzfeuchte auf den Schubmodul (Holzart: Keruing)

Bild 4-7 Schubmodul in Abhängigkeit der Rohdichte (Holzart: Keruing)

Tabelle 4-3 enthält eine Zusammenfassung der Ergebnisse der Schwingungsmessungen zur Ermittlung des Einflusses der Holzfeuchte auf den Schubmodul. Eine Auflistung der einzelnen Versuchsergebnisse für alle Holzarten sowie die zugehörigen Diagramme sind im Anhang D dargestellt.

Holzart			u = 12%			u > FS		Abfall
TIOIZAIT		ρ [kg/m³]	u [%]	G [N/mm ²]	ρ [kg/m³]	u [%]	G [N/mm ²]	red G [%]
	min	635	11,1	631	838	43,2	536	70,6%
Akasia	mittel	735	12,5	872	962	58,8	702	81,3%
Arasia	max	847	14,1	1111	1079	82,6	871	94,0%
	S	-	-	141	-	-	85	-
	min	566	11,4	611	818	48,6	511	73,7%
lati	mittel	668	12,3	814	935	67,1	672	82,7%
Jali	max	782	13,5	1046	1038	84,6	866	91,6%
	S	-	-	106	-	-	89	-
	min	572	11,5	656	885	51,4	486	68,3%
Koruina	mittel	708	12,5	884	1020	77,9	662	75,3%
rteruing	max	833	13,9	1176	1201	107,5	851	85,7%
	S	-	-	153	-	-	97	-
	min	590	11,4	621	942	58,4	476	70,5%
Puena	mittel	703	12,4	815	1063	83,5	636	78,3%
і цэра	max	798	13,6	1051	1162	98,6	826	90,1%
	S	-	-	125	-	-	90	-
	min	553	11,2	538	633	41,5	398	69,0%
lärcho	mittel	621	12,5	730	702	48,3	562	77,1%
Laicile	max	673	14,1	886	767	58,3	679	87,7%
	S	-	-	96	-	_	72	-

 Tabelle 4-3
 Einfluss der Holzfeuchte auf den Schubmodul

Der Einfluss der Holzfeuchte auf den Elastizitätsmodul rechtwinklig zur Faserrichtung wurde an Proben der Größe b / h / L = 100 / 50 / 10 mm mittels Biegeschwingung 1. Ordnung bestimmt. Die Proben wurden zuerst mit einer Holzfeuchte von ca. 12 % geprüft sowie nach mehreren Wochen Wasserlagerung mit einer Holzfeuchte über dem Fasersättigungsbereich. Bei der Biegeschwingung in Faserrichtung hat der Schubmodul einen relativ geringen Einfluss auf den Elastizitätsmodul (Blaß und Fellmoser (2002)). Somit kann in Gleichung (7) ein Schubmodul von 500 N/mm² als Annahme eingesetzt und der Elastizitätsmodul rechtwinklig zur Faserrichtung mit Hilfe der gemessenen Eigenfrequenz der Biegeschwingung 1. Ordnung berechnet werden. In Bild 4-8 und Bild 4-9 wird der Einfluss der Holzfeuchte auf den Elastizitätsmodul rechtwinklig zur Faserrichtung auf den Elastizitätsmodul rechtwinklig zur Fuspa dargestellt.

Bild 4-8 Einfluss der Holzfeuchte auf den Elastizitätsmodul E₉₀ (Holzart: Puspa)

Bild 4-9 Elastizitätsmodul E₉₀ in Abhängigkeit der Rohdichte (Holzart: Puspa)

Tabelle 4-4 enthält eine Zusammenfassung der Ergebnisse der Schwingungsmessungen zur Ermittlung des Einflusses der Holzfeuchte auf den Elastizitätsmodul rechtwinklig zur Faserrichtung. Eine Auflistung der einzelnen Versuchsergebnisse für alle Holzarten sowie die zugehörigen Diagramme sind im Anhang D dargestellt.

Holzort			u = 12%			u > FS		Abfall
ΠΟΙΖαΓι		ρ [kg/m³]	u [%]	E ₉₀ [N/mm ²]	ρ [kg/m³]	u [%]	E ₉₀ [N/mm ²]	red E ₉₀ [%]
	min	606	10,3	916	1050	86,7	685	66,4%
Akasia	mittel	710	11,8	1183	1170	107,5	882	75,0%
Arasia	max	815	13,7	1445	1250	128,3	1023	84,3%
	s	1	-	160	-	-	96	-
	min	554	11,0	828	1029	82,5	629	70,3%
lati	mittel	662	12,1	1142	1134	100,9	875	76,8%
Jali	max	741	13,3	1389	1200	114,9	1116	86,1%
	s	1	-	195	-	-	147	-
	min	588	11,5	841	1009	75,7	545	58,8%
Keruina	mittel	710	12,2	1097	1130	93,3	720	65,8%
iteruing	max	815	12,9	1242	1191	104,9	860	75,0%
	s	1	-	125	-	-	78	-
	min	631	11,1	795	1044	87,6	525	59,0%
Pusna	mittel	708	12,3	1083	1160	102,1	715	66,2%
гизра	max	793	13,3	1329	1217	110,8	888	73,1%
	s	1	-	157	-	-	104	-
	min	544	10,3	288	959	91,5	187	57,6%
Lärcho	mittel	622	11,9	395	1022	106,7	254	64,6%
	max	682	13,2	529	1108	119,6	333	72,9%
	s	-	-	75	-	-	43	-

Tabelle 4-4 Einfluss der Holzfeuchte auf den Elastizitätsmodul E₉₀

4.2 Abhängigkeit der Biegefestigkeit von der Holzfeuchte

4.2.1 Allgemeines

Wie bereits erläutert, werden die Festigkeiten von der Holzfeuchte deutlicher beeinflusst als der Elastizitätsmodul. Die Festigkeitswerte nehmen im hygroskopischen Bereich mit zunehmender Holzfeuchte ab. Im kapillaren Bereich oberhalb der Fasersättigung ist der Einfluss der Holzfeuchte gering; die Festigkeitswerte bleiben hier nahezu konstant.

Nach Küch (in Kollmann (1982)) besitzt die Biegefestigkeit ähnlich wie die Zugfestigkeit bei etwa 3 % bis 5 % Holzfeuchte ein Maximum, darüber fällt die Biegefestigkeit im hygroskopischen Bereich wieder ab. Im Bereich zwischen 8 % und 15 % Holzfeuchte kann annähernd eine lineare Beziehung zwischen Biegefestigkeit und Feuchtegehalt angenommen werden. Nach Kollmann (1982) kann die Biegefestigkeit in Abhängigkeit von der Holzfeuchte nach folgender Gleichung (8) berechnet werden.

$$f_{m,1} = f_{m,2} \cdot \frac{k_b - u_1}{k_b - u_2}$$
(8)

mit k_b = Faktor in Abhängigkeit von der Holzart (Mittelwert: k_b = 42)

Glos (1981) gibt zur Berücksichtigung des Feuchteeinflusses auf die Biegefestigkeit bei verschiedenen Holzqualitäten im Bereich von 5 % bis 25 % Holzfeuchte die folgende Empfehlung:

5%-Quantil:	0 %/%∆u
Mittelwert:	2 %/%∆u
95%-Quantil:	3,5 %/%∆u

Sowohl das U.S. Forest Products Laboratory (1974) als auch Niemz (1993) geben im linearen Bereich bei Zunahme des Feuchtegehaltes um jeweils 1 % eine Abnahme der Biegefestigkeit um 4 % an.

In DIN EN 384 (05/2004) wird zur Bestimmung von charakteristischen Werten für mechanische Eigenschaften keine Änderung der Biegefestigkeit angegeben, falls die Proben nicht bei einer Bezugsholzfeuchte von 12 % geprüft wurden.

4.2.2 Experimentelle Untersuchungen

Im Rahmen des Forschungsvorhabens wurde der Einfluss der Holzfeuchte auf die Biegefestigkeit an den Holzarten Akasia, Jati, Keruing, Puspa und Lärche untersucht. Die Biegefestigkeit wurde nach DIN EN 408 (2003) im Vierpunkt-Biegeversuch (Bild 4-10) an Prüfkörpern mit einer Holzfeuchte von 12 % bzw. nach Wasserlagerung mit einer Holzfeuchte über dem Fasersättigungsbereich ermittelt. Zur Verfügung standen jeweils 36 Prüfkörper mit den Abmessungen b / h / L = 110 / 50 / 950 mm. Die Spannweite betrug das 18-fache der Prüfkörperhöhe, die Lasteinleitung erfolgte in den Drittelspunkten.

Bild 4-10 Biegeversuch nach DIN EN 408 (2003)

Die Bestimmung der Biegefestigkeit erfolgte nach DIN EN 408 (2003) mit Gleichung (9):

$$f_{\rm m} = \frac{\mathbf{a} \cdot \mathbf{F}_{\rm max}}{2 \cdot \mathbf{W}} \tag{9}$$

Zusätzlich zu der Biegefestigkeit der geprüften Bretter wurde vorab der Elastizitätsmodul parallel zur Faserrichtung mit Hilfe von Schwingungsmessungen (longitudinal) nach Gleichung (6) ermittelt.

In Bild 4-11 wird der Einfluss der Holzfeuchte auf das Last-Verformungsverhalten von Puspa dargestellt. Die wassergesättigten Prüfkörper zeigen ein deutlich duktileres Verhalten. Mit zunehmender Holzfeuchte steigt die Formänderung von Holz bei mechanischer Beanspruchung an: sehr feuchtes Holz zeigt im Vergleich zu trockenem Holz wesentlich stärkere nichtlineare Formänderungen.

Bild 4-11 Einfluss der Holzfeuchte auf das Last-Verformungsverhalten (Holzart: Puspa)

Die Abhängigkeit der Biegefestigkeit von der Rohdichte der Holzart Puspa wird in Bild 4-12 dargestellt. Der Mittelwert der Biegefestigkeit der Prüfkörper mit einer Holzfeuchte von 12 % liegt bei 83,4 N/mm², der Mittelwert der Biegefestigkeit der wassergesättigten Proben bei 66,6 N/mm². Dies entspricht im Mittel einer Reduzierung der Biegefestigkeit infolge Wassersättigung von ca. 20 %. Die zugehörigen Elastizitätsmoduln, welche mit Hilfe der Schwingungsmessung vor der Biegeprüfung im trockenen und wassergesättigten Zustand ermittelt wurden, weisen mit ca. 12 % eine deutlich geringere Abnahme infolge Wassersättigung auf.

Tabelle 4-5 enthält eine Zusammenfassung der Ergebnisse aus den Biegeversuchen zur Ermittlung des Einflusses der Holzfeuchte auf die Biegefestigkeit. Eine Auflistung der einzelnen Versuchsergebnisse für alle Holzarten sowie die zugehörigen Diagramme sind im Anhang E dargestellt.

Bild 4-12 Biegefestigkeit in Abhängigkeit der Rohdichte (Holzart: Puspa)

			u =	= 12%			u >	FS		Abfall	Abfall
Holzart		ρ [kg/m³]	u [%]	E ₀ [N/mm ²]	f _m [N/mm ²]	ρ [kg/m³]	u [%]	E ₀ [N/mm ²]	f _m [N/mm ²]	red E ₀ [%]	red f _m [%]
	min	647	11,4	10934	45,9	838	43,2	9542	44,0	-	-
Akonin	mittel	739	12,6	14053	80,6	962	58,8	12759	67,3	90,8%	83,5%
Arasia	max	834	13,6	16409	111,9	1079	82,6	15082	85,4	-	-
	s	-	-	1634	16,9	-	-	1588	11,1	-	-
	min	542	11,4	9318	28,9	818	48,6	9105	26,9	-	-
lati	mittel	656	12,2	13043	74,7	935	67,1	12241	64,2	93,9%	85,9%
Jau	max	767	13,7	16273	104,3	1038	84,6	14933	83,1	-	-
	s	-	-	1791	18,6	-	-	1768	12,6	-	-
	min	547	11,4	12164	53,8	885	51,4	10327	39,0	-	-
Koruina	mittel	721	12,8	15844	89,2	1020	77,9	13148	68,6	83,0%	76,9%
r s	max	851	13,9	19487	112,3	1201	107,5	16447	94,2	-	-
	s	-	-	2138	15,6	-	-	1686	12,6	-	-
	min	616	11,9	11655	52,2	942	58,4	10530	42,7	-	-
Duena	mittel	704	12,8	14421	83,4	1063	83,5	12651	66,6	87,7%	79,9%
ruspa	max	768	13,4	17187	115,6	1162	98,6	15472	85,2	-	-
	s	-	-	1459	18,1	-	-	1407	9,7	-	-
	min	546	11,0	10984	26,3	633	41,5	9371	22,5	-	-
Lärcho	mittel	620	12,6	13322	61,9	702	48,3	11761	46,2	88,3%	74,6%
Laiche	max	710	13,6	16355	87,4	767	58,3	13953	59,3	-	-
	s	-	-	1447	14,9	-	-	1318	10,4	-	_

Tabelle 4-5 Einfluss der Holzfeuchte auf die Biegefestigkeit

4.3 Abhängigkeit der Querdruckfestigkeit von der Holzfeuchte

4.3.1 Allgemeines

Die Abhängigkeit der Druckfestigkeit von der Holzfeuchte ist außerordentlich ausgeprägt. Während nach Wilson (1932) für die Druckfestigkeit parallel zur Faserrichtung eine Abnahme der Druckfestigkeit von 4 % bis 6 % pro Prozent Holzfeuchteänderung im hygroskopischen Bereich angenommen werden kann, ist die Querdruckfestigkeit in geringerem Maße von der Holzfeuchte abhängig.

In beiden Fällen ist jedoch die Druckfestigkeit in wesentlich größerem Maße von der Holzfeuchte abhängig als der zugehörige Elastizitätsmodul.

Erste Untersuchungen über den Einfluss der Holzfeuchte auf die Querdruckfestigkeit wurden von Stamer (1920) durchgeführt. Die Ergebnisse wurden von Kollmann (1982) bestätigt. Kollmann gibt für den hygroskopischen Bereich folgende lineare Abhängigkeit der Querdruckfestigkeit von der Holzfeuchte an (Gleichung (10)):

$$f_{c,90,1} = f_{c,90,2} \cdot \frac{40 - u_1}{40 - u_2}$$
(10)

Neben der Holzfeuchte haben auch die Beanspruchung (Voll- oder Teilbelastung) und die Lage der Jahrringe einen Einfluss auf die Querdruckfestigkeit.

Bei Querdruckanschlüssen führen kleine Lastaufstandsflächen und ausreichende Überstände beidseits der Aufstandsflächen (z.B. bei Schwellen, Auflager) zu einer bezogen auf die Aufstandsfläche höheren Tragfähigkeit. Blaß und Görlacher (2004) haben hierzu umfangreiche Untersuchungen durchgeführt und Querdruckbeiwerte ermittelt, welche im Fall Schwellendruck zu erhöhten Querdruckfestigkeiten beim Tragfähigkeitsnachweis führen. Weitere Untersuchungen wurden von Thelandersson und Mårtensson (1997), Gehri (1997) und Madsen (2000) durchgeführt.

Der Einfluss der Jahrringlage auf die Querdruckfestigkeit wurde u.a. von Damkilde et al. (1997) untersucht. Die nach EN 1193 (1998) ermittelten Querdruckfestigkeiten von Fichtenholz lagen hierbei zwischen 2 N/mm² und 4 N/mm² (5%-Quantil: 2,3 N/mm² bis 2,4 N/mm²; mittlerer Elastizitätsmodul: 300 N/mm²). Die in radialer Richtung ermittelten Querdruckfestigkeiten waren größer als in tangentialer Richtung und erreichten bei einer Jahrringlage von etwa 45° ein Minimum.

4.3.2 Experimentelle Untersuchungen

Im Rahmen des Forschungsvorhabens wurde der Einfluss der Holzfeuchte auf die Querdruckfestigkeit und den Elastizitätsmodul rechtwinklig zur Faserrichtung an den Holzarten Akasia, Jati, Keruing, Puspa und Lärche untersucht. Die Versuche wurden an Prüfkörpern mit einer Holzfeuchte von 12 % und nach Wasserlagerung mit einer Holzfeuchte über dem Fasersättigungsbereich durchgeführt.

Grundsätzlich sind zwei Fälle von Druckbeanspruchung rechtwinklig zur Faserrichtung zu unterscheiden: Vollbelastung und Teilflächenbelastung (Schwellendruck). Das Verhalten des Holzes ist in beiden Fällen unterschiedlich. Die Querdruckfestigkeit und der zugehörige Elastizitätsmodul wurden sowohl durch Querdruckversuche nach DIN EN 408 (2003) mit Vollbelastung (Fall 1) als auch durch Versuche mit Teilflächenbelastung (Schwellendruck) (Fall 2) ermittelt (Bild 4-13). Zur Verfügung standen für jede Holzart jeweils 36 Prüfkörper pro Versuchsreihe. Die Prüfkörper wurden in Brettlängsrichtung genau hintereinander entnommen, so dass ein direkter Vergleich der Ergebnisse aus Fall 1 und Fall 2 möglich ist.

Bild 4-13 Querdruckbeanspruchung unter Vollbelastung (Fall 1) und Teilflächenbelastung (Schwellendruck) (Fall 2)

Im Fall 1 bei Vollbelastung liegt eine gleichmäßige Beanspruchung des Prüfkörpers vor. Das Versagen erfolgt an der schwächsten Stelle und besteht in einem übermäßigen Zusammendrücken mit seitlichem Ausweichen des Holzes unter der Voraussetzung, dass kein Stabilitätsversagen durch zu große Schlankheit des Prüfkörpers auftritt. Im Fall 2 bei Teilflächenbelastung tritt ein lokales Versagen in der Kontaktfläche unabhängig von der Lastausbreitung auf. Durch Mitwirken des Überstandes werden im Vergleich zu Fall 1 höhere Querdruckfestigkeiten erreicht, wobei auch nach dem lokalen Versagen aufgrund übermäßiger Eindrückungen auf der Holzoberfläche weitere Laststeigerungen möglich sind.

Die Maße der Prüfkörper wurden im Fall 1 in Anlehnung an DIN EN 408 (2003) gewählt (b / h / $\ell \approx 45$ / 60 / 70 mm), im Fall 2 entsprach der Querschnitt des Prüfkörpers den in der Praxis üblichen Abmessungen einer Holzdaube für eine Druckrohrleitung aus Holz (b / h / $\ell \approx 115$ / 60 / 200 mm) (Bild 4-14). Die Lasteinleitung erfolgte über Stahlplatten, welche im Fall 2 genau den Abmessungen eines Stahlringes einer Druckrohrleitung (Breite 60 mm) entsprach.

Bild 4-14 Versuchsaufbau Querdruckbeanspruchung: Fall 1 und Fall 2

4.3.2.1 Querdruckbeanspruchung unter Vollbelastung

Die Bestimmung der Querdruckfestigkeit im Fall 1 erfolgte durch Auswertung von Querdruckversuchen mit Gleichung (11). Die maximale Druckkraft $F_{c,90,max}$ wurde dabei mit dem iterativen Verfahren nach DIN EN 408 (2003) ermittelt.

$$f_{c,90} = \frac{F_{c,90,max}}{b \cdot \ell}$$
(11)

Zur Ermittlung des Elastizitätsmoduls rechtwinklig zur Faserrichtung wurde die Dehnung über die gesamte Prüfkörperhöhe bestimmt (Maschinenweg), wobei die Auswertung unter Berücksichtigung der Verformungen aus Versuchseinrichtung durch Kalibrierung erfolgte (Gleichung (12)).

$$\mathsf{E}_{c,90} = \frac{(\mathsf{F}_{40} - \mathsf{F}_{10}) \cdot \mathsf{h}}{(\mathsf{w}_{40} - \mathsf{w}_{10}) \cdot \mathsf{b} \cdot \ell} \tag{12}$$

Bei den wassergelagerten Proben erfolgte die Auswertung der Laststeigerung und der Verformungszunahme aufgrund großer Anfangsverformungen abweichend von Gleichung (12) im linearen Bereich der Last-Verformungskurve zwischen 20 % und 40 % von $F_{c,90,max}$.

In Bild 4-15 wird das Last-Verformungsverhalten von Akasia im Fall 1 bei einer Holzfeuchte der Prüfkörper von ca. 12 % dargestellt. Die Spannungen und Dehnungen im σ / ϵ – Diagramm sind im Fall 1 über die Prüfkörperhöhe konstant.

Bild 4-15 Spannungs-Dehnungsdiagramm Fall 1 (Holzart: Akasia; Holzfeuchte: 12 %)

Bild 4-16 und Bild 4-17 zeigen exemplarisch den Einfluss der Holzfeuchte auf die Querdruckfestigkeit im Fall 1 für die Holzart Akasia. Der Mittelwert der Querdruck-festigkeit der Prüfkörper mit einer Holzfeuchte von 12 % liegt bei 10,8 N/mm², der Mittelwert der Querdruckfestigkeit der wassergesättigten Proben bei 7,9 N/mm². Dies entspricht einer mittleren Reduzierung der Querdruckfestigkeit infolge Wassersättigung von ca. 27 %.

Bild 4-16 Einfluss der Holzfeuchte auf die Querdruckfestigkeit (Querdruckbeanspruchung: Fall 1; Holzart: Akasia)

Bild 4-17 Querdruckfestigkeit in Abhängigkeit der Rohdichte (Querdruckbeanspruchung: Fall 1; Holzart: Akasia)

Die zugehörigen Elastizitätsmoduln rechtwinklig zur Faserrichtung weisen bei Akasia mit ca. 19 % (Mittelwert) eine geringere Abnahme infolge Wassersättigung auf. In Bild 4-18 ist der Einfluss der Holzfeuchte auf den Elastizitätsmodul rechtwinklig zur Faserrichtung bei Querdruckbeanspruchung im Fall 1 dargestellt.

Bild 4-18 Einfluss der Holzfeuchte auf den Elastizitätsmodul rechtwinklig zur Faserrichtung (Querdruckbeanspruchung: Fall 1; Holzart: Akasia)

Tabelle 4-6 enthält eine Zusammenfassung der Ergebnisse aus den Querdruckversuchen nach DIN EN 408 (2003) zur Ermittlung des Einflusses der Holzfeuchte auf die Querdruckfestigkeit. Eine Auflistung der Versuchsergebnisse für alle Holzarten sowie die zugehörigen Diagramme sind im Anhang F dargestellt.

		r – –	u =	= 12%			u >	FS		Abfall	Abfall
Holzart		ρ [kg/m³]	u [%]	E _{c,90} [N/mm ²]	f _{c,90} [N/mm ²]	ρ [kg/m³]	u [%]	E _{c,90} [N/mm ²]	f _{c,90} [N/mm ²]	red E _{c,90} [%]	red f _{c,90} [%]
	min	620	10,8	962	9,2	981	50,5	772	6,5	73,0%	64,6%
Akacia	mittel	730	12,1	1177	10,8	1093	71,8	953	7,9	81,2%	73,0%
Anasia	max	820	13,9	1387	12,5	1185	97,5	1142	9,6	91,6%	81,1%
	s	-	-	124	1,1	-	-	98	0,9	-	-
	min	517	10,4	828	8,3	939	61,1	658	5,3	70,8%	62,3%
lati	mittel	648	11,9	1172	10,2	1040	89,6	965	7,2	81,9%	70,7%
Jali	max	781	13,8	1393	12,2	1154	122,5	1329	9,0	96,9%	79,8%
	s	-	-	173	1,2	-	-	189	1,0	-	-
	min	625	12,0	874	8,1	914	47,6	556	4,5	59,9%	52,4%
Konuina	mittel	710	12,7	1043	9,2	998	70,8	700	5,2	67,2%	56,7%
Keruing r r s	max	811	13,6	1292	11,1	1093	91,8	865	6,3	77,7%	64,3%
	s	-	-	109	0,8	-	-	81	0,5	-	-
	min	583	11,4	878	8,5	968	66,9	628	5,1	61,0%	57,8%
Buena	mittel	690	12,3	1052	10,0	1041	82,7	743	6,3	70,8%	63,6%
ruspa	max	800	13,4	1275	11,8	1125	101,1	861	7,7	77,7%	70,8%
	s	-	-	103	0,9	-	-	69	0,7	-	-
	min	565	10,6	277	2,6	799	63,3	200	1,4	61,8%	52,6%
Läraha	mittel	622	11,9	358	3,1	871	80,5	249	2,0	69,9%	63,3%
Laiche	max	672	12,8	468	3,6	929	107,7	306	2,5	81,5%	76,9%
	s	-	-	42	0,3	-	-	29	0,3	-	-

Tabelle 4-6Einfluss der Holzfeuchte auf die Querdruckfestigkeit und den
Elastizitätsmodul rechtwinklig zur Faserrichtung (Fall 1)

4.3.2.2 Querdruckbeanspruchung unter Teilflächenbelastung

Die Querdruckfestigkeit im Fall 2 wurde durch Schwellendruckversuche bestimmt. Wird die Belastung auf die Lasteinleitungsfläche bezogen und die Dehnungen über die gesamte Höhe betrachtet (Fall 2a), ergibt sich zwischen Fall 1 und Fall 2a ein deutlich unterschiedliches Tragverhalten. Bild 4-19 zeigt anhand der Versuche mit Lärche das Spannungs-Dehnungs-Diagramm für Fall 1 und Fall 2a.

Bild 4-19 Spannungs-Dehnungs-Diagramm: Fall 1 und Fall 2a (Holzart: Lärche; Holzfeuchte: 12 %)

Blaß und Görlacher (2004) untersuchten den Einfluss der Spannungsausbreitung und das Mitwirken der Überstände beidseits der Lasteinleitungsfläche bei Querdruckbeanspruchung (Fall 2b). Mit der Annahme einer Spannungsausbreitung unter 45° ergibt sich folgendes Bild 4-20:

Bild 4-20 Spannungsausbreitung bei Querdruckbeanspruchung im Fall 2b

Wegen des Mitwirkens der Überstände beidseits der Lasteinleitungsfläche sind die Spannungen und Dehnungen über die Prüfkörperhöhe veränderlich. Die Spannung $\sigma(x)$ und die Gesamtverformung Δh können mit Hilfe der Gleichungen (13) und (14) berechnet werden:

$$\sigma(\mathbf{x}) = \frac{\mathsf{F}}{\ell \cdot \mathsf{b} + 2 \cdot \mathsf{x} \cdot \mathsf{b}} \tag{13}$$

$$\Delta h_{(Fall2)} = \int_{0}^{h} \frac{\sigma(x)}{E_{90}} dx$$
(14)

Durch einsetzen und umformen folgt Gleichung (15):

$$\Delta h_{(Fall2)} = \frac{F}{2 \cdot b \cdot E_{90}} \cdot \ln\left(2 \cdot \frac{h}{\ell} + 1\right) = \frac{F \cdot h}{\ell \cdot b \cdot E_{90}} \cdot \left(\frac{\ell}{2 \cdot h} \cdot \ln\left(2 \cdot \frac{h}{\ell} + 1\right)\right) = \Delta h_{(Fall1)} \cdot \xi$$
(15)

Der Faktor ξ < 1 berücksichtigt somit im Fall 2b den Einfluss der Spannungsausbreitung und demzufolge die über die Prüfkörperhöhe veränderlichen Spannungen und Dehnungen. Für den Vergleich der Versuchsergebnisse aus Fall 1 und Fall 2b wurden zur Darstellung in einem σ / ε – Diagramm die gemessenen Verformungen im Schwellendruckversuch durch ξ dividiert. Bei einer Prüfkörperhöhe von h = 60 mm und einer Lasteinleitungslänge von ℓ = 60 mm ergibt sich nach Gleichung (15) ein Wert für ξ von 0,549. Für die Ermittlung der wirksamen Querdruckfläche im Fall 2b wurde das Maß der tatsächlichen Lasteinleitungslänge ℓ nach DIN 1052 (2004) beidseits um jeweils 30 mm verlängert. Exemplarisch wird mit den o.a. Annahmen das Spannungs-Dehnungs-Diagramm für die im Fall 1 und Fall 2b durchgeführten Versuche mit Lärche in Bild 4-21 dargestellt. Aufgrund der Berücksichtigung des Mitwirkens der Überstände und der Spannungsausbreitung im Fall 2b ergeben sich ähnliche Spannungs-Dehnungs-Verläufe wie in Fall 1.

Bild 4-21 Spannungs-Dehnungs-Diagramm: Fall 1 und Fall 2b (Holzart: Lärche; Holzfeuchte: 12 %)

In Tabelle 4-7 und Tabelle 4-8 sind die Ergebnisse aus den Schwellendruckversuchen zur Ermittlung des Einflusses der Holzfeuchte auf die Schwellendruckfestigkeit zusammengefasst. In Tabelle 4-7 ist die Belastung auf die Lasteinleitungsfläche bezogen (Fall 2a). Im Vergleich dazu ist in Tabelle 4-8 der Einfluss der Spannungsausbreitung sowie das Mitwirken der Überstände beidseits der Lasteinleitungsfläche berücksichtigt (Fall 2b). Eine Auflistung der einzelnen Versuchsergebnisse für alle Holzarten sowie die zugehörigen Diagramme sind im Anhang F dargestellt. Tabelle 4-7 Einfluss der Holzfeuchte auf die Querdruckfestigkeit und den Elastizitätsmodul rechtwinklig zur Faserrichtung (Fall 2a: Belastung auf Lasteinleitungsfläche bezogen)

Holzort			u =	= 12%			u >	FS		Abfall	Abfall
HOIZAIT		ρ [kg/m³]	u [%]	E _{c,90} [N/mm ²]	f _{c,90} [N/mm ²]	ρ [kg/m³]	u [%]	E _{c,90} [N/mm ²]	f _{c,90} [N/mm ²]	red E _{c,90} [%]	red $f_{c,90}$ [%]
	min	617	11,1	3755	19,5	968	54,6	3173	15,6	81,6%	77,2%
Akasia	mittel	746	12,3	4350	22,3	1045	72,2	3805	18,2	87,6%	81,7%
лказіа	max	843	14,1	4944	25,2	1156	98,5	4335	20,3	97,2%	88,7%
	s	-	-	358	1,8	-	-	304	1,4	-	-
	min	550	11,1	3019	17,0	848	54,6	2791	13,1	75,4%	64,7%
lati	mittel	648	12,1	4461	20,9	954	72,7	3851	15,7	86,7%	75,3%
Jali	max	763	12,9	5282	24,6	1105	100,2	4624	19,1	97,0%	84,4%
	s	-	-	642	2,2	-	-	536	1,4	-	-
	min	585	11,4	3249	16,4	816	46,6	2198	9,8	61,3%	56,0%
Koruina	mittel	707	12,2	3783	18,7	950	62,8	2676	11,4	70,8%	61,2%
Refulling	max	845	13,4	4484	22,1	1076	95,5	3519	13,5	87,7%	72,3%
	s	-	-	349	1,6	-	-	315	1,1	-	-
	min	596	11,4	3438	18,1	914	54,4	2716	12,2	71,4%	59,5%
Duena	mittel	697	12,6	4103	21,3	990	73,3	3216	14,1	78,5%	66,2%
ruspa	max	793	13,4	4862	24,9	1062	90,1	3845	16,4	86,0%	73,1%
	s	-	-	332	1,8	-	-	273	1,1	-	-
	min	572	11,0	1150	5,6	749	49,6	867	3,8	66,9%	61,6%
lärcho	mittel	618	12,8	1429	6,7	799	62,4	1110	4,6	77,7%	67,9%
Laiche	max	656	14,8	1817	7,9	863	75,4	1419	5,4	90,0%	75,5%
	s	-	-	154	0,6	-	-	132	0,4	-	-

Tabelle 4-8 Einfluss der Holzfeuchte auf die Querdruckfestigkeit und den Elastizitätsmodul rechtwinklig zur Faserrichtung (Fall 2b: Spannungsausbreitung und Mitwirken der Überstände berücksichtigt)

Holzort			u =	= 12%			u >	FS		Abfall	Abfall
HOIZAIL		ρ [kg/m³]	u [%]	E _{c,90} [N/mm ²]	f _{c,90} [N/mm²]	ρ [kg/m³]	u [%]	E _{c,90} [N/mm²]	f _{c,90} [N/mm²]	red E _{c,90} [%]	red $f_{c,90}$ [%]
	min	617	11,1	1081	9,8	968	54,6	909	7,8	81,1%	77,2%
Akacia	mittel	746	12,3	1252	11,1	1045	72,2	1089	9,1	87,1%	81,7%
лказіа	max	843	14,1	1431	12,6	1156	98,5	1241	10,2	96,8%	88,7%
	s	-	-	103	0,9	-	-	87	0,7	-	-
	min	550	11,1	839	8,5	848	54,6	771	6,6	75,1%	64,7%
lati	mittel	648	12,1	1241	10,5	954	72,7	1064	7,8	86,1%	75,3%
Jali	max	763	12,9	1470	12,3	1105	100,2	1280	9,6	96,3%	84,4%
	s	-	-	179	1,1	-	-	149	0,7	-	-
	min	585	11,4	944	8,2	816	46,6	620	4,9	59,6%	56,0%
Konuina	mittel	707	12,2	1100	9,4	950	62,8	760	5,7	69,2%	61,2%
Refulling	max	845	13,4	1302	11,1	1076	95,5	1005	6,8	85,8%	72,3%
	s	-	-	101	0,8	-	-	90	0,6	-	-
	min	596	11,4	983	9,1	914	54,4	771	6,1	70,4%	59,5%
Duene	mittel	697	12,6	1174	10,6	990	73,3	907	7,0	77,3%	66,2%
гизра	max	793	13,4	1391	12,5	1062	90,1	1083	8,2	84,8%	73,1%
	s	-	-	95	0,9	-	-	78	0,6	-	-
	min	572	11,0	309	2,8	749	49,6	232	1,9	66,3%	61,6%
Läraha	mittel	618	12,8	385	3,4	799	62,4	296	2,3	77,1%	67,9%
Laiche	max	656	14,8	490	4,0	863	75,4	376	2,7	89,1%	75,5%
	s	-	-	41	0,3	-	-	35	0,2	-	-

4.4 Abhängigkeit der Scherfestigkeit von der Holzfeuchte

4.4.1 Allgemeines

Die Scherfestigkeit von Holz wird überwiegend von der Schnitt- und Faserrichtung, der Rohdichte sowie dem Feuchtegehalt beeinflusst.

Die Scherfestigkeit steigt bis zu einem Feuchtegehalt von etwa 5 % bis 8 % an und fällt danach bis zum Erreichen des Fasersättigungsbereiches ab. Nach Wilson (1932) beträgt die Änderung der Scherfestigkeit im hygroskopischen Bereich 3 %/%∆u. Untersuchungen von Schlyter und Winberg (in Kollmann (1982)) ergaben einen noch geringeren Einfluss der Holzfeuchte auf die Scherfestigkeit.

Bei Scherbeanspruchung parallel zur Faserrichtung ist zwischen dem Verlauf der Scherebene in Radial- und Tangentialfläche zu unterscheiden: bei Lärche ist die Scherfestigkeit in der Radialfläche größer als in der Tangentialfläche (Bild 4-22). In der Praxis muss jedoch der ungünstigere Wert verwendet werden.

Bild 4-22 Scherebene in (a) Radialfläche und (b) Tangentialfläche

Beim Scherversuch ist zu berücksichtigen, dass neben Schubspannungen auch Nebenspannungen durch Druck, Schwellenpressung und Biegung infolge der Versuchsanordnung auftreten können. Schwindrisse und der Verlauf der Bruchfläche beeinflussen ebenfalls das Ergebnis.

4.4.2 Experimentelle Untersuchungen

Im Rahmen des Forschungsvorhabens wurde der Einfluss der Holzfeuchte auf die Scherfestigkeit parallel zur Faserrichtung an den Holzarten Akasia, Jati, Keruing, Puspa und Lärche untersucht. Die Versuche wurden an Prüfkörpern mit einer Holzfeuchte von 12 % und nach Wasserlagerung mit einer Holzfeuchte über dem Fasersättigungsbereich durchgeführt.

Die Maße der Prüfkörper betrugen in Anlehnung an ASTM Standard D 143-83 (1993) b / h / ℓ = 50 / 40 / 45 mm mit einer Scherfläche von b / h* = 50 / 40 mm (Bild 4-23). Zur Berücksichtigung des Einflusses der Schnittrichtung auf die Scherfestigkeit parallel zur Faserrichtung wurden Prüfkörper mit tangentialem und radialem Verlauf geprüft. Zur Verfügung standen für jede Holzart jeweils 36 Prüfkörper pro Versuchsreihe. Die Prüfkörper wurden in Brettlängsrichtung genau hintereinander entnommen, so dass ein direkter Vergleich der Ergebnisse möglich ist.

Bild 4-23 Ermittlung der Scherfestigkeit: Versuchsaufbau und Prüfkörper

Die Scherfestigkeit wurde mit Gleichung (16) bestimmt:

$$f_{v} = \frac{F_{max}}{b \cdot h^{*}}$$
(16)

In Bild 4-24 ist der Einfluss der Holzfeuchte auf die Scherfestigkeit der Holzart Jati dargestellt. Der Mittelwert der Scherfestigkeit parallel zur Faserrichtung der Prüfkörper mit einer Holzfeuchte von etwa 12 % und Scherebene in der Radialfläche (Tangentialfläche) liegt bei 10,9 N/mm² (10,0 N/mm²), der Mittelwert der Scherfestigkeit der wassergesättigten Proben bei 8,8 N/mm² (8,1 N/mm²).

Bild 4-24 Einfluss der Holzfeuchte auf die Scherfestigkeit (Holzart: Jati)

Tabelle 4-9 enthält eine Zusammenfassung der Ergebnisse aus den Scherversuchen zur Ermittlung des Einflusses der Holzfeuchte auf die Scherfestigkeit. Eine Auflistung der einzelnen Versuchsergebnisse für alle Holzarten sowie die zugehörigen Diagramme sind im Anhang G dargestellt.

Holzart	Scher-		u = 12%				Abfall		
HUIZAIL	ebene		ρ [kg/m³]	u [%]	f _v [N/mm²]	ρ [kg/m³]	u [%]	f _v [N/mm²]	red f_v [%]
Akasia		min	659	11,3	10,4	1023	56,0	8,8	72,3%
	Radial-	mittel	751	13,6	13,2	1088	74,5	10,9	82,6%
	fläche	max	833	15,6	15,8	1158	121,3	12,9	87,5%
		s	-	-	1,6	-	-	1,2	-
		min	651	11,7	8,6	976	54,0	7,4	74,2%
	Tangen-	mittel	743	13,4	11,9	1076	74,5	9,8	82,5%
	tialfläche	max	850	15,3	16,0	1149	99,5	12,0	89,3%
		S	-	-	1,8	-	-	1,3	-
		min	548	11,5	8,3	957	67,4	6,1	72,4%
	Radial-	mittel	659	12,4	10,9	1057	87,0	8,8	80,4%
	fläche	max	775	13,2	14,1	1150	113,8	11,7	87,7%
lati		S	-	-	1,7	-	-	1,3	-
Jau		min	550	11,4	7,4	938	59,7	5,4	69,5%
	Tangen-	mittel	642	12,2	10,0	1032	87,4	8,1	80,6%
	tialfläche	max	771	13,0	13,3	1104	115,2	10,9	88,8%
		S	-	-	1,6	-	-	1,3	-
		min	575	13,0	10,4	1005	54,9	6,9	55,3%
	Radial-	mittel	704	13,5	13,2	1055	80,4	8,2	62,4%
	fläche	max	815	14,0	15,8	1106	114,3	9,5	69,8%
Keruina		S	-	-	1,4	-	-	0,7	-
i toi airig		min	597	11,6	9,5	1001	50,2	5,8	53,5%
	Tangen-	mittel	709	11,9	12,1	1063	81,0	7,2	59,8%
	tialfläche	max	825	12,4	14,3	1137	110,2	8,5	68,1%
		s	-	-	1,3	-	-	0,7	-
		min	604	12,7	10,1	1066	77,1	6,8	55,4%
	Radial-	mittel	692	13,1	13,4	1119	96,1	8,4	63,2%
	fläche	max	788	13,7	16,4	1177	129,3	9,7	69,8%
Pusna		S	-	-	1,7	-	-	0,9	-
l dopa	Tangen- tialfläche	min	606	12,8	9,7	1063	77,9	6,1	57,7%
		mittel	695	13,2	11,9	1116	95,5	7,7	64,9%
		max	800	13,6	14,8	1170	116,9	9,6	70,9%
		S	-	-	1,3	-	-	0,9	-
Lärche	Radial- fläche	min	550	11,1	9,2	840	65,4	5,9	60,9%
		mittel	620	12,1	10,5	890	83,8	6,8	65,0%
		max	693	13,7	12,2	962	108,7	7,8	69,4%
		s	-	-	0,7	-	-	0,4	-
	Tangen- tialfläche	min	574	11,0	8,4	869	65,9	5,6	60,2%
		mittel	638	12,5	9,8	919	85,9	6,5	66,4%
		max	724	14,3	11,2	964	107,7	7,2	71,9%
		s	-	-	0,7	-	-	0,4	-

Tabelle 4-9 Einfluss der Holzfeuchte auf die Scherfestigkeit parallel zur Faserrichtung

4.5 Abhängigkeit der Haftung und Reibung von der Holzfeuchte

4.5.1 Allgemeines

Eine Druckrohrleitung aus Holz kann als Träger mit kreisförmigem Querschnitt aus vielen Einzelquerschnittsteilen betrachtet werden. Die einzelnen Querschnittsteile wirken über Haftung in der Nut- und Federverbindung zwischen den einzelnen Holzdauben als Gesamtquerschnitt. Hierzu wurden für die ausgewählten Holzarten die Haftungs- und Reibungskoeffizienten experimentell ermittelt. Aus den Ergebnissen dieser Versuche kann die Schubtragfähigkeit in der Nut- und Federverbindung in Längsrichtung der Holzdauben ermittelt werden.

Als Kenngröße dient der Haftungs- (μ_H) bzw. Reibungskoeffizient (μ_G). Dieser wird als Widerstand zweier sich berührender Körperflächen gegen ihre Verschiebung definiert. Wird die Haftung überschritten, tritt Bewegung ein; deshalb wird zwischen Haftungs- und Reibungskoeffizient unterschieden. Der Widerstand ist umso größer, je weicher, rauer und nasser die Körperflächen sind.

Möhler und Maier (1969) untersuchten die Haftung von Fichtenholz in Abhängigkeit von der Flächenpressung. Bei trockenem und halbtrockenem Fichtenholz in sägerauem Zustand ermittelten sie Haftungskoeffizienten von 0,4 bis 0,7, im nassen Zustand von 0,9 bis 1,0. Bei gehobelten Flächen ergaben sich bei trockenem und halbtrockenem Fichtenholz Haftungskoeffizienten von 0,25 bis 0,35, im nassen Zustand von 0,7 bis 0,9. Die Flächenpressung hatte nur bei Werten unter 0,2 N/mm² einen günstigen Einfluss auf die Haftungskoeffizienten; darüber konnte kein Einfluss festgestellt werden.

In weiterführenden Versuchen von Möhler und Herröder (1979) wurden für die Kombinationen Holz / Holz, Holz / Stahl und Holz / Beton obere und untere Haftungsbeiwerte von Fichtenholz ermittelt.

4.5.2 Experimentelle Untersuchungen

Im Rahmen des Forschungsvorhabens wurde der Einfluss der Holzfeuchte auf die Haftungs- und Reibungskoeffizienten an den Holzarten Akasia, Jati, Keruing, Puspa und Lärche untersucht. Die Versuche wurden an Prüfkörpern mit einer Holzfeuchte von 12 % und nach Wasserlagerung mit einer Holzfeuchte über dem Fasersättigungsbereich durchgeführt. Zusätzlich wurde der Querdruck variiert (0,1 N/mm², 0,5 N/mm², 1,0 N/mm²), um den Einfluss der Flächenpressung bzw. Vorspannung auf die Haftungs- und Reibungskoeffizienten zu berücksichtigen.

Die Prüfkörper wurden dreiteilig hergestellt, so dass jeweils zwei Reibungsflächen vorhanden waren. Die Maße der Prüfkörper betrugen b / h / ℓ = 60 / 50 / 200 mm (Bild 4-25). Die beiden äußeren Prüfkörperteile wurden während des Versuchs

unverschieblich gehalten, das mittlere, länger ausgeführte Teil mit zunehmender Horizontalkraft H belastet. Die Vertikalkraft F_v wurde konstant über den Kolben einer Prüfmaschine aufgebracht.

Bild 4-25 Versuchsaufbau zur Ermittlung der Haftungs- und Reibungskoeffizienten

Zur Verfügung standen für jede Holzart pro Versuchsreihe 12 Prüfkörper mit gehobelten Oberflächen. Bei der Holzart Lärche wurden zusätzlich die Haftungs- und Reibungskoeffizienten einer Nut- und Federverbindung bestimmt (Bild 4-26).

Bild 4-26 Prüfkörper zur Ermittlung der Haftungs- und Reibungskoeffizienten mit (a) gehobelten Oberflächen und (b) Nut- und Federverbindung (Holzart: Lärche)

Die Haftungskoeffizienten μ_{H} und die Reibungskoeffizienten μ_{G} wurden mit den Coulombschen Reibungsgesetzen nach Gleichung (17) und (18) bestimmt.

$$\mu_{\rm H} = \frac{\max \, \rm H}{2 \cdot F_{\rm v}} \tag{17}$$

$$\mu_{\rm G} = \frac{\rm H_{\rm G}}{\rm 2 \cdot F_{\rm v}} \tag{18}$$

mit

- max H = größte aufgebrachte Horizontalkraft, bei der im Versuch der Gleitvorgang einsetzte [N]
- H_G = Horizontalkraft, die im Versuch gleich bleibend ein Gleiten des Mittelteils ergab (Mittelwert) [N]
- F_v = Vertikalkraft für Flächenpressung [N]

In Bild 4-27 sind zwei typische Kraft-Weg-Diagramme dargestellt. Typ A zeigt einen relativ steilen Anstieg bis zum Erreichen der maximalen Horizontalkraft. Bei Überschreiten der Haftung setzt das Gleiten des Mittelholzes ein. Beim kontinuierlichen Gleitvorgang fällt die Horizontalkraft parabelförmig ab. Im Gegensatz dazu verläuft der Gleitvorgang bei Typ B nicht mehr kontinuierlich, sondern stoßweise. Nach Überschreiten der Haftung und einsetzendem Gleitvorgang fängt sich der Prüfkörper wieder und die Horizontalkraft steigt an bis zu einem erneuten Gleiten, wobei die Werte der Horizontalkraft unterhalb des Maximums zu Versuchsbeginn liegen.

Bild 4-27 typische Kraft-Weg-Diagramme aus Reibungsversuchen (Holzart: Jati; Vorspannung: 0,5 N/mm²; Holzfeuchte > FS)

Bild 4-28 zeigt den Einfluss der Holzfeuchte und der Vorspannung auf den Haftungskoeffizienten am Beispiel der Holzart Keruing. Die Versuche bestätigen die Angaben von Möhler und Maier (1969), dass nur sehr geringe Vorspannungen die Haftungs- und Reibungskoeffizienten günstig beeinflussen. Für Keruing wurde im trockenen Zustand bei einer Holzfeuchte von ca. 12 % im Mittel ein Haftungskoeffizient von 0,360 und ein Reibungskoeffizient von 0,297 ermittelt (Mittelwerte aus den Versuchsreihen mit einer Vorspannung von 0,5 N/mm² und 1,0 N/mm²). Bei Prüfkörpern mit Holzfeuchten über dem Fasersättigungsbereich stieg der Haftungskoeffizient auf einen Wert von 0,507, der Reibungskoeffizient auf 0,308.

Bild 4-28 Einfluss von Holzfeuchte und Vorspannung auf Haftungskoeffizient (Holzart: Keruing)

Tabelle 4-10 enthält eine Zusammenfassung der Ergebnisse aus den Versuchen zur Ermittlung des Einflusses der Holzfeuchte und der Vorspannung auf den Haftungsund Reibungskoeffizienten. Für Jati wurden die geringsten Haftungs- und Reibungskoeffizienten ermittelt, für Keruing die größten. Bei einer Flächenpressung von 0,5 N/mm² und 1,0 N/mm² wurden annähernd gleiche Koeffizienten bestimmt, während bei einer geringeren Flächenpressung von 0,1 N/mm² deutlich höhere Werte ermittelt wurden. Die Nut- und Federverbindung wirkt sich im Vergleich zur glatten, gehobelten Oberfläche positiv auf die Koeffizienten aus. Eine Auflistung der einzelnen Versuchsergebnisse für alle Holzarten sowie die zugehörigen Diagramme sind im Anhang H dargestellt. Tabelle 4-10 Einfluss von Holzfeuchte und Vorspannung auf Haftungs- und Reibungskoeffizienten

	Holz-	Flächen-	chen- Haftungskoeffizient			Reibungskoeffizient					
Holzart	feuchte	pressung	μ _H		μ _G			μ _G / μ _H			
	[%]	[N/mm²]	min	mittel	max	min	mittel	max	min	mittel	max
Akasia	12	0,1	0,275	0,332	0,387	0,250	0,297	0,357	0,803	0,897	0,963
		0,5	0,231	0,308	0,376	0,219	0,278	0,348	0,832	0,907	0,976
		1,0	0,253	0,300	0,363	0,228	0,264	0,303	0,780	0,884	0,959
	> FS	0,1	0,449	0,519	0,598	0,373	0,425	0,502	0,766	0,820	0,854
		0,5	0,414	0,454	0,484	0,327	0,369	0,402	0,716	0,814	0,913
		1,0	0,410	0,441	0,480	0,318	0,342	0,381	0,716	0,778	0,857
Jati	12	0,1	0,180	0,268	0,362	0,165	0,231	0,329	0,734	0,858	0,929
		0,5	0,158	0,216	0,264	0,143	0,189	0,225	0,799	0,877	0,970
		1,0	0,161	0,211	0,247	0,143	0,189	0,230	0,852	0,900	0,958
		0,1	0,411	0,482	0,549	0,339	0,398	0,461	0,760	0,826	0,902
	> FS	0,5	0,306	0,356	0,410	0,266	0,290	0,317	0,699	0,822	0,923
		1,0	0,303	0,344	0,388	0,238	0,260	0,301	0,656	0,761	0,927
Keruing	12	0,1	0,346	0,433	0,498	0,300	0,353	0,387	0,733	0,821	0,960
		0,5	0,322	0,365	0,406	0,277	0,300	0,317	0,743	0,825	0,943
		1,0	0,307	0,355	0,408	0,267	0,293	0,321	0,731	0,828	0,922
	> FS	0,1	0,579	0,635	0,682	0,371	0,430	0,472	0,641	0,676	0,712
		0,5	0,435	0,509	0,571	0,276	0,319	0,366	0,523	0,630	0,737
		1,0	0,434	0,505	0,569	0,245	0,296	0,341	0,518	0,590	0,768
Puspa	12	0,1	0,332	0,405	0,485	0,263	0,305	0,356	0,643	0,757	0,849
		0,5	0,237	0,318	0,381	0,171	0,248	0,317	0,680	0,779	0,840
		1,0	0,233	0,313	0,376	0,178	0,240	0,285	0,655	0,766	0,875
	> FS	0,1	0,555	0,613	0,679	0,331	0,403	0,481	0,575	0,656	0,714
		0,5	0,379	0,436	0,482	0,220	0,283	0,358	0,491	0,650	0,777
		1,0	0,363	0,414	0,465	0,211	0,276	0,358	0,525	0,670	0,838
Lärche	12	0,1	0,285	0,386	0,438	0,205	0,296	0,354	0,688	0,764	0,852
		0,5	0,210	0,318	0,397	0,164	0,251	0,324	0,643	0,786	0,871
		1,0	0,232	0,316	0,372	0,182	0,227	0,337	0,617	0,719	0,905
	> FS	0,1	0,623	0,707	0,787	0,368	0,449	0,539	0,545	0,635	0,694
		0,5	0,455	0,530	0,587	0,240	0,293	0,353	0,469	0,555	0,671
		1,0	0,441	0,514	0,565	0,244	0,314	0,369	0,452	0,613	0,725
Lärche mit Nut- und Federver- bindung	12	0,1	0,427	0,503	0,578	0,346	0,418	0,506	0,716	0,830	0,932
		0,5	0,336	0,415	0,503	0,263	0,355	0,442	0,722	0,853	0,924
		1,0	0,340	0,404	0,511	0,269	0,343	0,431	0,710	0,847	0,904
	> FS	0,1	0,749	0,836	0,934	0,503	0,585	0,663	0,648	0,700	0,744
		0,5	0,554	0,618	0,698	0,341	0,405	0,485	0,614	0,654	0,754
		1,0	0,534	0,612	0,691	0,313	0,401	0,477	0,528	0,660	0,804

5 Einsatz von Druckrohrleitungen aus Holz

Druckrohrleitungen aus Holz bestehen aus einzelnen Bohlen oder Kanthölzern, die gegeneinander versetzt und mit Stahlringen zusammengehalten werden (Bild 5-1). Die Stahlringe bestehen in der Regel aus feuerverzinkten Flachstahlbändern.

Bild 5-1 Druckrohrleitung aus Holz (von Zwick Holzbau GmbH)

Druckrohrleitungen aus Holz werden i.a. mit einem Durchmesser von 0,50 m bis 4,0 m hergestellt und für eine Bruttofallhöhe von bis zu 60 m (= 6,0 bar) ausgelegt. Durch den Versatz der Längsstöße der Dauben entsteht ein leichtes Rohr ohne durchgehende Stöße. Die Rohrlänge kann mehrere Kilometer betragen, ohne dass Dehnvorrichtungen eingebaut werden müssen. Die vorgefertigten Dauben weisen an den Längsseiten wie auch an den Stirnseiten Nut- und Federverbindungen auf (Stirnseite: Fremdfeder aus Sperrholz, Metall oder Kunststoff) (Bild 5-2).

Bild 5-2 Detail Nut- und Federverbindung
In Deutschland werden für Holzdaubenrohre bevorzugt die Nadelholzarten Kiefer, Lärche und Douglasie eingesetzt. Die indonesischen Holzarten Akasia, Jati, Keruing und Puspa sind grundsätzlich für den Einsatz als Holzdaubenrohre geeignet; entscheidende Kriterien für die Auswahl sind sowohl der Preis als auch die Verfügbarkeit.

Die einzelnen Holzdauben haben einen trapezförmigen Querschnitt (Dicke d_D = 50 mm bis 90 mm) und eine Länge ℓ_D von ca. 4,0 m. Der trapezförmige Querschnitt und die Nut- und Federverbindung werden mit einer Fräsmaschine hergestellt (Bild 5-3). Die Fa. Zwick Holzbau GmbH setzt beispielsweise für die Herstellung von Holzdauben verschiedene Fräsköpfe mit unterschiedlicher Neigung ß ein (ß ≈ 4° bis 6°). Die mittlere Breite der Holzdauben b_D sollte zwischen 10 cm und 15 cm betragen. Die Anzahl der Holzdauben, die zu einem Kreisquerschnitt zusammengesetzt werden, ergibt sich aus dem Rohrumfang und der mittleren Breite der Holzdauben.

Bild 5-3 Querschnitt einer Holzdaube

Die Anordnung der Spannschlösser der einzelnen Spannringe sollte spiralförmig in Längsrichtung der Rohrleitung erfolgen, damit eine gleichmäßige Verteilung der Vorspannkraft gewährleistet ist (Bild 5-4).

Bild 5-4 Anordnung der Spannringe

Bei sehr großen Rohrdurchmessern können die Spannringe in verschiedene Segmente aufgeteilt werden.

Die Feuchte der Holzdauben sollte beim Einbau ca. 16 % bis 18 % betragen. Die richtige Wahl der Holzfeuchte beim Einbau der Holzdauben ist bei der Herstellung von Druckrohrleitungen aus Holz deshalb von besonderer Bedeutung, da in diesem Fall der entstehende Quellungsdruck bei Wasserfüllung des Rohres als praktische Gebrauchseigenschaft benötigt wird. Die Dichtigkeit der Rohrleitung wird durch das Quellen des Holzes gewährleistet und die stetige Wassersättigung des Holzes verhindert zuverlässig einen Pilzbefall.

Der Zusammenbau der einzelnen Holzdauben und Spannringe zu einer Druckrohrleitung erfolgt mit Hilfe von Innen- und Außenlehren (Bild 5-5). Der Abstand der Spannringe wird entsprechend dem hydrostatischen Druckverlauf angepasst.

Bild 5-5 Montage einer Druckrohrleitung aus Holz (von Zwick Holzbau GmbH)

Die Herstellung der Druckrohrleitung kann in offener Bauweise entweder durch eine Verlegung im Graben auf kiesigem Untergrund mit anschließender Verfüllung oder, wie in den Karsthöhlen in Indonesien geplant, auf Sättel als Auflager erfolgen (Bild 5-6). Der Abstand der Sättel wurde bisher in der Praxis mit 2,0 m gewählt und entspricht somit der 0,5-fachen Daubenlänge. Der Sattel sollte die Druckrohrleitung im unteren Bereich mit einem Winkel zwischen 90° und 120° umschließen.

Wird dieses System aus Dauben und Stahlringen in regelmäßigen Abständen auf Sattelkonstruktionen aufgelagert, so stellt sich unter den Beanspruchungen Eigengewicht und Wasserlast mit Innendruck ein komplexer Spannungs- und Verformungszustand ein. Das Trag- und Verformungsverhalten wird dabei maßgeblich von der Ovalisierung des Kreisquerschnittes bestimmt: kreisförmige Querschnitte neigen dazu, sich unter Biegebeanspruchung oval zu verformen, um sich der Belastung zu entziehen.

Bild 5-6 Druckrohrleitung aus Holz (a) im Graben und (b) auf Sätteln (von Boxholm Produktion AB)

Der Einsatz von Druckrohrleitungen aus Holz bietet gegenüber konventionellen Rohrleitungen aus Stahl oder Beton Vorteile. Die Lebensdauer von Druckrohrleitungen aus Holz beträgt zwischen 60 und 100 Jahren. Äußere Witterungseinflüsse (z.B. Sonneneinstrahlung) und eine Entleerung des Rohres über einen längeren Zeitraum beeinträchtigen die Lebensdauer. Mit zunehmender Betriebsdauer minimieren sich die Reibungsverluste bei Druckrohrleitungen aus Holz im Gegensatz zu Stahl- oder Betonrohren.

Durch unterschiedliche Daubenlängen und aufgrund der Flexibilität der Rohrleitung kann die Trassenführung dem Gelände optimal angepasst werden (Bild 5-7). Rohrkrümmungen mit Radien bis zum 30-fachen des Rohrdurchmessers können somit problemlos hergestellt werden; kleinere Radien verlangen den Einsatz von Sonderbauteilen (vgl. Kapitel 11: Krümmer). Durch die Elastizität der Rohrleitung können zudem Setzungen des Baugrundes bis zu einem bestimmten Maß ausgeglichen werden.

Bild 5-7 Krümmung einer Druckrohrleitung aus Holz (von Canbar Inc. und Boxholm Produktion AB)

Durch das geringe Gewicht der einzelnen Holzdauben und Spannringe kann eine Verlegung auch in unwegsamem Gelände erfolgen. Zusätzlich entstehen durch kompakte Holzpakete nur geringe Transportkosten. Aufgrund der geringen Baukosten sind Druckrohrleitungen aus Holz somit eine kostengünstige Alternative im Vergleich zu Stahl- oder Betonrohren.

6 Hydraulik von Rohrleitungssystemen

6.1 Strömungswiderstand und Rohrleitungsverluste

Die Reynoldszahl Re ist eine dimensionslose Strömungszahl. Für Rohre mit Kreisquerschnitt gilt Gleichung (19):

$$Re = \frac{v \cdot d}{v_{w}}$$
(19)

mit

v = mittlere Strömungsgeschwindigkeit [m/s]

d = Rohrinnendurchmesser [m]

 v_W = kinematische Viskosität von Wasser: 1,004·10⁻⁶ [m²/s] (bei T = 20°C)

Die Leitung einer Flüssigkeit durch eine Rohrleitung hat erfahrungsgemäß einen Druckhöhenverlust zur Folge (Bild 6-1). Die Grundlage zur Berechnung von kontinuierlichen Energieverlusten im geraden Kreisrohr bildet die Darcy-Weisbach-Gleichung (20):

$$h_{v} = I_{e} \cdot L = \left(\lambda \cdot \frac{1}{d} \cdot \frac{v^{2}}{2 \cdot g}\right) \cdot L$$
(20)

mit

- h_v = Energiehöhenverlust [m]
- I_e = Neigung der Energielinie: I_e = h_v / L [-]
- λ = Rohrreibungsbeiwert [-]
- L = Rohrlänge [m]
- d = Rohrinnendurchmesser [m]
- v = mittlere Strömungsgeschwindigkeit [m/s]
- g = Erdbeschleunigung: 9,81 [m/s²]

Bild 6-1 Prinzipskizze von Energie- und Drucklinie

Der Rohrreibungsbeiwert λ ist eine dimensionslose Kennzahl. Zur Berechnung von λ erfolgt eine Unterteilung in verschiedene Strömungsbereiche nach Tabelle 6-1. Die von den in Tabelle 6-1 angegebenen Gleichungen für λ beschriebenen Gesetzmäßigkeiten werden im Moody-Diagramm graphisch dargestellt (vgl. Anhang I). Bei laminarer Strömung strömt eine Flüssigkeit mit sehr geringer Geschwindigkeit durch eine Rohrleitung. In zur Rohrachse konzentrischen, zylindrischen Schichten herrschen gleiche Geschwindigkeiten. Laminare Strömungen sind in der Praxis nur selten anzutreffen, da sie mit Sicherheit nur bei Reynoldszahlen Re \leq 2320 auftreten. Wird der kritische Wert Re = 2320 überschritten, überlagert sich der geordneten Schichtströmung eine unregelmäßig wirbelnde Nebenbewegung. Es entstehen Geschwindigkeitsschwankungen und Querbewegungen (turbulente Strömung).

Strömung	Rohrreibungsbeiwert λ	
laminar (Re < 2320)	$\frac{1}{\sqrt{\lambda}} = \frac{\text{Re} \cdot \sqrt{\lambda}}{64} \text{oder} \lambda = \frac{64}{\text{Re}}$	$\lambda = \lambda$ (Re)
	$\frac{1}{\sqrt{\lambda}} = 2,0 \cdot \lg \left(\operatorname{Re} \cdot \sqrt{\lambda} \right) - 0,8$	hydraulisch glatt (k \rightarrow 0) $\lambda = \lambda$ (Re)
turbulent (Re > 2320)	$\frac{1}{\sqrt{\lambda}} = -2,0 \cdot Ig\left(\frac{2,51}{\text{Re} \cdot \sqrt{\lambda}} + \frac{k_s/d}{3,71}\right)$	Übergangsbereich $\lambda = \lambda$ (Re, k _s / d)
	$\frac{1}{\sqrt{\lambda}} = -2,0 \cdot \lg\left(\frac{k_s}{d}\right) + 1,14$	vollkommen rau (Re $\rightarrow \infty$) $\lambda = \lambda (k_s / d)$
Grenze zwischen Übergangsbereich und vollkommen rauen Bereich	$\frac{1}{\sqrt{\lambda}} = \frac{\text{Re}}{200} \cdot \frac{\text{k}_{s}}{\text{d}}$	

Tabelle 6-1	Berechnung des	Rohrreibungsbeiwertes λ
	<u> </u>	

Die äquivalente Sandrauigkeit k_s zur Ermittlung des Rohrreibungsbeiwertes λ beträgt für gehobeltes Holz 0,30 mm (Dracos (1990)). Während die äquivalente Sandrauigkeit bei Stahlrohren von 0,04 bis 0,10 mm im neuen Zustand auf 0,50 bis 2,50 mm im gebrauchten Zustand und bei Betonrohren von 0,10 bis 0,15 mm auf 0,20 bis 0,30 mm ansteigt, verringert sich diese bei Holzrohren mit zunehmender Betriebsdauer. Durch Ausbildung einer natürlichen Schicht an der Rohrwandung werden die Reibungsverluste minimiert.

Zusätzlich zu den kontinuierlichen Energieverlusten im geraden Kreisrohr können örtliche Energieverluste nach Gleichung (21) auftreten:

$$h_{v} = \zeta_{e} \cdot \frac{v^{2}}{2 \cdot g}$$
(21)

mit

- h_v = Energiehöhenverlust [m]
- ζ_e = Energieverlustbeiwert [-]
- v = Strömungsgeschwindigkeit [m/s]
- g = Erdbeschleunigung: 9,81 [m/s²]

Der Energieverlustbeiwert ζ_e beträgt nach Idelchik (1986) und Miller (1990):

- Energieverlust bei einem Rechen vor dem Einlauf: zusätzliche örtliche Verlusthöhe von 0,10 m für selten gereinigte Rechen zusätzliche örtliche Verlusthöhe von 0,05 m für häufig gereinigte Rechen
- Energieverlust am Rohreinlauf: bei nicht erweitertem Einlauf mit rechtwinkligen Kanten: $\zeta_e = 0,50$
- Energieverlust bei Richtungsänderung:
Krümmungsradius / Rohrdurchmesser = 2; Umlenkwinkel = 15°:
Krümmungsradius / Rohrdurchmesser = 10; Umlenkwinkel = 15°:
 $\zeta_e = 0,030$
Krümmungsradius / Rohrdurchmesser = 2; Umlenkwinkel = 90°:
 $\zeta_e = 0,140$
Krümmungsradius / Rohrdurchmesser = 10; Umlenkwinkel = 90°:
 $\zeta_e = 0,110$
- Energieverlust bei Querschnittsänderung:

Erweiterung: $\zeta_e = (1 - A_1 / A_2)^2$ Verengung: $\zeta_v = 0.5 \cdot (1 - A_2 / A_1)^{3/4}$

- Energieverlust infolge vorhandener Armaturen, Verschlussorgane usw.

6.2 Kleinwasserkraftanlagen

Die elektrische Leistung, die mit Hilfe einer Druckrohrleitung aus Holz und einer Kleinwasserkraftanlage erzeugt wird, kann mittels der Fallhöhe unter Berücksichtigung der Energieverluste nach Gleichung (22) berechnet werden. In Bild 6-2 ist schematisch die Wirkungsweise eines Kleinwasserkraftwerkes dargestellt. Bild 6-3 zeigt Details (a bis f) einer Kleinwasserkraftanlage in Island, die mit Hilfe einer 300 m langen Druckrohrleitung aus Holz (Durchmesser 1,10 m) über eine Bruttofallhöhe H von 22 m eine Leistung von ca. 250 kW erzeugt. Die Details a bis f sind zusätzlich in Bild 6-2 gekennzeichnet.

$$\mathbf{P}_{\mathrm{T}} = \eta_{\mathrm{T}} \cdot \eta_{\mathrm{G}} \cdot \eta_{\mathrm{Tr}} \cdot \eta_{\mathrm{K}} \cdot \rho_{\mathrm{W}} \cdot \mathbf{g} \cdot \mathbf{Q} \cdot \mathbf{H}_{\mathrm{n}}$$
(22)

mit

 P_T = Turbinenleistung (ab Transformator) [kW]

- $\eta_{\rm T}$ = Wirkungsgrad Turbine ($\eta_{\rm T} \approx 0.70 0.90$)
- $\eta_{\rm G}$ = Wirkungsgrad Generator ($\eta_{\rm G} \approx 0.85 0.95$)
- η_{Tr} = Wirkungsgrad Transformator ($\eta_{Tr} \approx 0.99$)

- $\eta_{\rm K}$ = Wirkungsgrad Kupplung ($\eta_{\rm K} \approx 0.97 0.99$)
- ρ_W = Dichte Wasser: 0,998 [t/m³] (bei T = 20°C)
- g = Erdbeschleunigung: 9,81 [m/s²]
- Q = Turbinendurchfluss [m³/s]
- H_n = Nettofallhöhe: H_n = $H \Sigma h_v v^2/2g$ [m]

Bild 6-2 Prinzipskizze eines Kleinwasserkraftwerkes

Bild 6-3 Details (a bis f) eines Kleinwasserkraftwerkes in Island

6.3 Vordimensionierung von Druckrohrleitungen aus Holz

Der optimale Rohrinnendurchmesser d ist abhängig von der Fallhöhe H, der Wassermenge Q und der Leitungslänge L. Mit zunehmender Strömungsgeschwindigkeit v steigen auch die Reibungsverluste. Aufgrund der in der Praxis ausgeführten relativ großen Rohrdurchmesser treten nur geringe Strömungsgeschwindigkeiten auf. Nach Rabovsky (1926) ist in Bild 6-4 eine graphische Darstellung der Scobey'schen Formel (23) zur Vordimensionierung für Druckrohrleitungen aus Holz angegeben.

$$I_{e} = 0,000885 \cdot \frac{v^{1,8}}{d^{1,17}}$$

(23)

mit

- I_e = Neigung der Energielinie [-]
- v = Strömungsgeschwindigkeit [m/s]
- d = Rohrinnendurchmesser [m]

Mit Hilfe der gegebenen Wassermenge Q kann aus Bild 6-4 näherungsweise die Strömungsgeschwindigkeit v und die Neigung der Energielinie I_e in Abhängigkeit des Rohrdurchmessers bestimmt werden. Die Neigung der Energielinie multipliziert mit der Länge der Druckrohrleitung ergibt den Energiehöhenverlust h_v infolge Reibung, welcher bei der Berechnung der elektrischen Leistung einer Wasserkraftanlage berücksichtigt werden muss.

I. W. mm 4500	∪ m/s	5,50	5,00	4,50	4,00		3,50	3 00	20	2,50		200	2,00	1,80	1,60		1,40	_	1,20	~ 0	1,00	0,90	000	0,00	0,70		0,60	0 ED	0.00		U,4U	0,35	0.30	0,25	4,000	I. W. mm 4500
4000	80,000		, }	D	ť	Ũ	1	Ł	K	2	Y	\sum	D	\downarrow	Ľ	$\left[\right]$	K	$\overline{)}$	51						00	X	ł	X	R	Į.	Ľ				3,500	4000
3500	10,000	35	100	13	L F		100	14	12	6			P			5		ní l		32	12°		0		5					66				620	2,500	3500
	60,5	Per	P	P	X	X	F			$\overline{)}$	R	1-1	M	X	[-]	·}	$\overline{\gamma}$	$\overline{)}$	\mathbf{r}	ł	P	A	Ţ	K		X	I	X	H	R	R	A	R	$\langle \cdot \rangle$	2,000	
3000	50. 000	+ je	3	\square	H	Ŧ	¥	Ê	K	-	- 1	- + · -	M	ł	X		X	X	X	X	$\frac{1}{1}$	H	¥	K	7	1	X	R	X	K	K	H	H	<u> </u>	1,600	3000
2500	-00		3Č	X	M	X				~		╧	Ň	Ł	X	J	X	X	X	X	ᡟ	Ď	ł	£	7		P	\mathbf{P}	K		Ď	X	$\left\{ \cdot \right\}$	- 1/- 1	1,200	2500
	30,00	- KG	\mathbf{x}	X	N	1	K	[-]	× ²	$\sum_{i=1}^{n}$		$\overline{\langle}$	R	R	R	7	J	X	T	R	X	R	T	P	J	Y	Ľ	X	\mathbb{R}	K	7.	1	<u>}</u> }	1.	1,000	
2000	20,000	Ko (¥-	Í	M	7	<u></u>	Ń	X	X		\sum		P	R	D	uŗ	cl	<u>nn</u>	١Ç		se	r I	K	X				7-1		K	X	1/	X	0,800	2000
1800	18,000	100	1		A	Þ	Þ	8	X	X				P	Ø	Ż	ŧ	Ť	Ł	Ţ		\mathbf{P}	P	Ø	Ł	X			۲ <u>۲</u>		K	X	X	X	2 0;10	1800
1600	14,000	60	Ň	X	X	¥	B	Å	\Rightarrow	A	Ŷ	3	¥	k	Þ	₹	Ø		es	9		ł	Þ		$\langle $	Í.				X	R	P	A	Jef	₹0,500	1600
1500	12,0	69	A	X	X	X		X	X	X	X	\square	7		X	ŝ	e\	Ĭ		ľ		$\langle \uparrow \rangle$	$\langle \rangle$		Ţ	X	0	K		X	K	X	Å		0,400	1500
1300	9,000	10	Ĥ	T	R	Ď	Ŕ	Å	X	X	X	X	T	1		7	ł	ᠿ	\mathbf{x}	K	Ĩ	Ń			X	X	<u>ک</u> ر	5		4		P	X		\$ 0,3°	1300
1200	8,000		X	R	Å	A	0	A	Y	\downarrow	\mathcal{P}	4	Ŧ	R		. /	~	1	<u>}</u>	Y	M	X	B	X	X	X	R	jo Jo	K	₹ <u></u>		P	A		10,250	1200
1100	6,000	0.	Ŋ	X	\mathcal{F}	X	Å	X	X	Æ	\mathbf{x}	4		Ĥ	4		- [\ .\[ł,	$\mathbf{\lambda}$	A	X	X	X	¥	X	₽	F	X	ē.		÷,		:*{		0200	1100
1000	4,500				¥	A	X	Å	X			X		- 1	£			F		k	X	K	Å	X	X	¥	₽	Ø		¢√	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1.95	0,60	1000
900	3,500	0,0	汁			\mathbf{A}	X	Ę	XI.	Ύ.		$\overline{\mathbf{A}}$	Ú	X	\downarrow	È	Ł	Ľ	1	Ê	X	t	X	P	Ł	R	R	X		X	Y.				0,120	900
800	3,000	X			1		X	Ž	$\langle \rangle$	$\langle \uparrow \rangle$	Ť	\checkmark	\mathbb{Z}	1	X	7	Ľ	k	Ĺ	È		P	Ø	Å	ľ	Þ	(X	$\langle \rangle$	Ż		1		-1:0A		800
700 650	2,500	00	Ľ,		1-		\mathcal{X}	A		X	X	¥	A	1		ť	A	Ľ	ł	K	K	X	Ð	₭	A	A	5	¥.	5		-7	ħ		1040	0,080	700
600	2,00	Í.	~ \	K	1	Í	X	X		X	T	\mathbf{A}	A	X	X	P	K	ß	K		X	Ň	Ž	\wedge	D	X	X	<u>}</u>	Ϋ́́	, V	<u> </u>	X	X	100	₹ 0,010	600
550	1,400		*	₽	ł	R	A		<u>e</u>	X	$\mathbf{\Phi}$	ł	Ð	X	X	k	\square	$\left \right $	K		X		X	Ł	A	A	\sum	$\frac{1}{1}$	Ľ.	X	X		\oint	100	it 0,050	550
500	1,200	X	¥	K	X	ħ	1	1		X	A	X	Ħ	X	X	K	A	P	Ħ	X	ł		- \ *\ .		K	N	Y			X	<u><u>x</u></u>		X	100	0,040	500
450	1,000	A P	¥	ł	X	M	X			X	Ħ	\mathbf{x}	K	≯	X	K	X	R	F.	1	Ľ.			1		H	Ð	A	X	£'	₹.5	K	X		0,030	450
400	0,800 0,700	Kot	¥		\mathbb{P}	Ð	ŧ			\mathbf{k}	\square	✻	K.	X	k	K	1	Ś	M			Ű	ł			Ð	7	J.	X		22	X	¥		0,025	400
350	0,600	3	X	₿	X	Ŕ	₽	₹Ş	<u>א</u> ני גע	Ł	$\left \right\rangle$	X	K	Ł		À.	M	$\left(\right)$	K	X	X	H	ł	F	K		4	X	Ð			3	¥		020	350
300	0,500	8	X	\mathbf{V}	A	X	X	K	י ר	1			A		<u>}</u>	Í	X	X	R	2	T	H	Ď	K	[]			X	P	1	Č		X		0,010	300
	0,400	10	ł	\square	A	V	\downarrow	¥.	1				M	R	Ð	2	A	Y	Ð	Í	A		Ł	A	X	7		T	ł	X	X	Ľ	¥1;		0,014	
250	0,300	10	A	\mathbb{A}	A	X	Ą	15	イ	بنهلا		¥	P	X	K	Å	Å	$\overline{\mathbf{x}}$	¥	$\left\{ \right\}$	Å	3	₽	\square	Y				4	ł	1	[-]; [-];			5 010	250
225	0,250	100	A]-\	<u> </u>	(ľ.	Ð.		8	ł		Ì	Ł	$\left\{ \right\}$	È	$\left\{ \right\}$	Ì	€	Þ	Ð	X	X	-1	J	¥	-				۲ - ۲ - اب	ĘŽ			800 I	225
200	0,200	15	j.	<u>}</u> -	A	<u> </u>	Þ	\downarrow	X	£.	ź	Þ	X	Ľ	ß	A	Å	A	4	\downarrow	H	X		2 n	ge	}	Æ			1	<u>, </u>	Æ	X	E S	¥	200
175	0,10	6	ł	X	K	Ł	Ŕ	K	K	\mathbf{k}	2	Y	1	Ľ		2	Ţ	Z	\mathcal{X}			er!	Ľ,		S	1					1		X		0,000	175
450	0,120		X	X	R	P	ť	P	K	Ð	Ð	Z	Ţ,	·		7		┦	N	3	Ŋ	-	Ł	K)	$\langle \rangle$	ΣĮ`	Y	X		K		Ż	R	18	2004	450
150	0,00	0	ľ	X	D	t	Þ	Ď	X	Ð	Ŕ			Ņ	7	1	Ì	Ż	1	X	X-	Ĭ.	Ň	M	Í	A	P	P	T.		1	~	X	23		150
125	0,000	10	Ľ	Ŀ	X	Ð	K	K	K	Ŕ	17	X	X		Ì			1	[]	ľ	M	ſ.	X	X	ł	A	Å	Ľ	X	J.			P	1 30	0,005	125
	0,060	0	1		1	A	K	K	K	$\left\{ \right\}$	\mathbb{N}	X		Ś		Ĵ	> r/	(h					r	T	Ð	\square	X	Ľ	X.	X		1	Ľ	1519	002	
100	0,050	12		ľ		K	A	K	$\left(\right)$	Þ	Ľ,	X	N	Ĵ	Í		, ir A	4	 		33 		Ń		ſ	A	X	¥,		\mathbb{Z}	Z				0,00	100
	0,040	13	H	Ũ	$\frac{1}{1}$	ſ	Δ	R.	55	-]		M	$\langle \rangle$	X		Ŧ	X	ł	Ţ	ľ		X	$\left(\right)$	Å	2	P	X	H	Ŕ	Ď		$\langle \rangle$		- 00 1 2		
	0,030	0.0	$\left(\right)$	Û	À	X	- 1	<u> </u>	$\left\{ \cdot \right\}$	1-1-	Ń	M	N	X	X	Ť	ł	T	ł	Ľ		P	K	X	X	K	A	T)	K		À	1		100	1 001	
75	0,025	ξÐ			- 	- 	τ́ -		-}	X	P	P	Ð	X	X	X	Ľ	$\left \right $	X	Ď		F	ł	Ð	X	F	\mathbf{k}	1.	£7	{-}		<u></u>	- 4 - 4	100	0,00	75
	0,020	Ę.	L	N	-1	K		1		A	ħ		\mathbb{P}	Ť	$\left\{ \right\}$	X	Ł	Å	Ľ	X	J.	H		X	K	X	Ł	1-15	Ar)			$\langle \cdot \rangle$		00		
	0,016	[] -] 		K1) }	K		50	0	J	20	101	A	ð	1	Ł	J.	ł.	1	1	to	0	010	, in	K	1/1	Į,	61		d d	à	ð le	$\frac{1}{2}$	6		
50	0,012		BI	5)	je V	5	P		1		Jel's		12	100	1º	5	A C	A	100	B			200	ON A	0.1		5		100						 m ³	50
I. W.	0,010	Ħ		Å	Ţ	Ŗ						X	۶.	\$	Į	k	Ľ	ķ	Ķ	1	Υ. 5	Ŋ	2		1		Ŕ	K,	Ŕ	P	2	Ķ	X	22	Ţ	- I. W.
mm	l⊃″	i.	4 0	4	5		3,0		2,5		2,0	1.8(-	14		1 21	1	1.0		0,9	0,8	i v), U, /	0.61	2	0	0,4,0	0.4(0,3	0,3(0,2	1	mm

Bild 6-4 Vordimensionierung von Druckrohrleitungen aus Holz (nach Rabovsky (1926): Scobey sche Formel für Druckrohrleitungen aus Holz)

6.4 Instationärer Betrieb von Druckrohrleitungen (Druckstoß)

Bei Inbetriebnahme und Abschalten von Anlagen, bei Steuervorgängen oder bei plötzlichen Pumpenausfällen ändern sich die Strömungsgrößen schnell. Die sich in der Rohrleitung bewegende Wassersäule bewirkt bei plötzlichem Abbremsen durch ihre kinetische Energie vor der Armatur einen sehr raschen Druckanstieg. Neben der Massenträgheit beeinflusst auch die Kompressibilität der Flüssigkeit und die Elastizität der Rohrwandung die Größe des Druckstoßes: diese Druckstöße werden umso höher, je weniger kompressibel die Strömungsflüssigkeit und je steifer das Rohrmaterial ist. Die Druckwelle Δp breitet sich mit sehr großer Fortpflanzungsgeschwindigkeit c aus. Hinter der Armatur entsteht zunächst eine vakuumähnliche Dampfblase, während sich die Wassersäule weiter bewegt. Ähnliche Verhältnisse liegen auch bei einem zu schnellen Öffnen der Armatur vor. Ein Druckstoß tritt dann auf, wenn der Abfluss in einer Rohrleitung verändert wird. Durch Überlagerung einer vektoriellen Geschwindigkeit ($\vec{c} - \vec{v}_0$) kann der instationäre Vorgang der Druckwellenausbreitung als stationär betrachtet werden (Bild 6-5).

Bild 6-5 Druckwellenausbreitung bei Druckstoß (aus Lang et al. (2004))

Die Beanspruchung der Rohrleitung aus instationärer Strömung kann wesentlich größer als bei ruhenden Lasten und stationärem Fließen sein. Mit Hilfe des Impulssatzes (24) und der Massenerhaltung (25) kann die bei schneller Abflussänderung ausgelöste Druckänderung unter Vernachlässigung von Reibungsverlusten nach Gleichung (26) (Joukowsky-Stoß = Hauptgleichung der Druckstoßtheorie) abgeschätzt werden.

$$\Sigma F = (\rho_{W} \cdot Q \cdot v)_{aus} - (\rho_{W} \cdot Q \cdot v)_{ein}$$
(24)

$$\rho_{\rm W} \cdot {\rm Q} = {\rm konstant}$$
 (25)

$$\rightarrow \Delta \mathbf{p} = \rho_{\mathsf{W}} \cdot \mathbf{c} \cdot \Delta \mathbf{v} \tag{26}$$

mit

- Δp = Druckerhöhung infolge Druckstoß [10⁻⁵ bar]
- ρ_W = Dichte Wasser: 0,998 · 10³ [kg/m³] (bei T = 20°C)
- c = Druckwellengeschwindigkeit [m/s]
- ∆v = Änderung der Strömungsgeschwindigkeit [m/s]

Die Druckwelle erreicht bei sehr steifen Rohrleitungen (Stahl- oder Betonleitungen) eine Geschwindigkeit von c > 1000 m/s, bei weichem Rohrmaterial (PVC) sinkt die Druckwellengeschwindigkeit auf Werte von c \approx 200 m/s. Wird beispielsweise eine Druckwellengeschwindigkeit c = 200 m/s, eine Änderung der Strömungsgeschwindigkeit $\Delta v = 1,0$ m/s und eine Dichte $\rho_W = 1000$ kg/m³ angenommen, so folgt eine Drucksteigerung von $\Delta p = 2$ bar bzw. $\Delta h = 20$ m WS.

Dabei wird eine Schließzeit von $T_S = 0$ sec vorausgesetzt. Dies bedeutet, dass das Regelorgan verschlossen ist, wenn die Druckwelle infolge des in der Rohrleitung herrschenden Druckes ihre Bewegungsrichtung ändert und zurückkehrt (Totalreflektion). Die Armatur und die anschließende Rohrleitung können bei diesem Vorgang zerstört werden. Die Höhe der Druckänderung wird jedoch durch allmähliches Schließen des Schiebers, Teilreflektion (z.B. durch abrupte Richtungsänderung der Trassenführung) und Rohrreibung teilweise abgebaut.

Bei dünnwandigen Rohren mit der Wandstärke s und dem Innendurchmesser d kann nach Alliévi (1909) für die Ausbreitungsgeschwindigkeit der Druckwelle in einer Rohrleitung, die in Längsrichtung unverschieblich gelagert ist, folgende Gleichung (27) angewendet werden. Bei dünnwandigen Rohren ist das Verhältnis von Wandstärke zu Außendurchmesser kleiner als 0,1.

$$\mathbf{C} = \sqrt{\frac{1}{\rho_{W}} \cdot \left(\frac{1}{E_{W}} + \frac{1}{E_{R}} \cdot \frac{d}{s} \cdot \left(1 - \nu^{2}\right)\right)}}$$
(27)

mit

c = Druckwellengeschwindigkeit [m/s]

- ρ_W = Dichte Wasser: 0,998 · 10³ [kg/m³] (bei T = 20°C)
- E_W = Elastizitätsmodul Wasser: 2,255 · 10⁹ [N/m²] (bei T = 20°C)
- E_R = Elastizitätsmodul Rohrleitung in Querrichtung [N/m²]
- v = Querdehnungsfaktor [-]
- d = Innendurchmesser Rohrleitung [m]
- s = Wandstärke Rohrleitung [m]

Im Gegensatz zu dünnwandigen Rohren verteilen sich die Spannungen in dickwandigen Rohren nicht gleichmäßig in der Rohrwand. Bei dickwandigen elastischen Rohrleitungen kann die Druckwellengeschwindigkeit nach Alliévi (1909) mit folgender Gleichung (28) berechnet werden, wobei d der Innen- und D der Außendurchmesser der Rohrleitung ist:

$$\mathbf{c} = \sqrt{\frac{1}{\rho_{W} \cdot \left(\frac{1}{\mathsf{E}_{W}} + \frac{2}{\mathsf{E}_{\mathsf{R}}} \cdot \frac{(1+\nu) \cdot \mathsf{D}^{2} + (1-2 \cdot \nu) \cdot \mathsf{d}^{2}}{\mathsf{D}^{2} - \mathsf{d}^{2}}\right)}$$
(28)

In Anhang I ist die Druckwellengeschwindigkeit c für dünnwandige und dickwandige Rohrleitungen in Abhängigkeit der Rohrleitungsparameter graphisch dargestellt.

In Bild 6-6 ist schematisch der zeitliche Verlauf eines Druckstoßes für eine Rohrleitung der Länge L bei allmählichem Schließen des Schiebers am Rohrende (Zeitpunkt t = 0) dargestellt. Die Druckwelle erreicht nach der Zeit t = L / c den Wasserspeicher, wo sie als Expansionswelle reflektiert wird (negative Reflexion). Nach der Zeit t = $2 \cdot L$ / c erreicht sie den Schieber, wo eine positive Reflexion erfolgt. Erfolgt das Schließen des Schiebers nicht plötzlich, so tritt die Druckerhöhung je nach Schließfunktion mehr oder weniger allmählich ein: es bilden sich aufeinander folgende Wellen kleiner Amplitude. Für den Fall, dass die Schließzeit T_S größer ist als die Reflexionszeit T_R = $2 \cdot L$ / c, trifft am Abschlussorgan bereits die erste Entlastungswelle ein, bevor der Schieber ganz geschlossen ist (d.h. bevor sich der volle Druckanstieg Δp nach Gleichung (26) einstellen kann). Unter Berücksichtigung von Dämpfung infolge Zähigkeitseinfluss und Reibungsverlusten klingt dieser Vorgang ab.

Bild 6-6 zeitlicher Druckstoßverlauf bei allmählichem Schließen des Schiebers

Bei einem langsamen Schließen des Schiebers ($T_S > T_R$) tritt eine Überlagerung des sich wegen des andauernden Schließvorganges noch aufbauenden Drucks mit der reflektierten Druckwelle ein, so dass der maximale mögliche Druckstoß nicht mehr erreicht werden kann. Die Schließzeit und -funktion des Schiebers beeinflussen somit maßgebend die Druckerhöhung infolge instationärer Strömung. In Bild 6-7 sind unterschiedliche Schließvorgänge dargestellt. Der Schließungsgrad τ_S ist abhängig von der Ventilstellung. Die Ventilstellung selbst ist eine Funktion der Zeit ($\tau_S = f(t)$; $0 \le \tau_S \le 1$).

Bild 6-7 unterschiedliche Schließvorgänge

Druckstöße sind in Rohrleitungen mit großer Nennweite nur schwer zu beherrschen, wenn die Armaturenschließzeiten z.B. aus Sicherheitsgründen kurz sein müssen. Damit nicht die gesamte Rohrlänge zwischen Wasserspeicher und Schieber entsprechend der Belastung durch den Druckstoß dimensioniert werden muss, wird in der Regel zwischen Speicher und Schieber ein Wasserschloss eingebaut, in dem die Wassersäule frei auspendeln kann (Bild 6-8). Das Wasserschloss sollte dabei möglichst nahe am Abschlussorgan (Schieber) angeordnet werden.

Bild 6-8 Anordnung Wasserschloss

7 Experimentelle Untersuchungen von Druckrohrleitungen aus Holz

7.1 Quellverhalten

7.1.1 Versuchsaufbau und -durchführung

Zur Untersuchung des Quellverhaltens von Druckrohrleitungen aus Holz wurden zwei stehende Rohrabschnitte aufgebaut (Bild 7-1). Die 2,0 m hohen Rohrabschnitte mit einem Innendurchmesser von 1,40 m wurden aus jeweils 36 Holzdauben (Lärchenholz) der Festigkeitsklasse C24 mit dem Querschnitt $b_D / d_D = 128 / 68$ mm zusammengesetzt (Bild 7-2). Die Holzdauben wurden mit einer Holzfeuchte von ungefähr 16 % eingebaut. Der Abstand der Spannringe aus S235 mit einem Querschnitt von $b_R / d_R = 60 / 6$ mm und Spannschloss (aufgeschweißter Gewindebolzen M27 aus S235) betrug 50 cm. Jeweils zwei Spannringe pro Rohrabschnitt (zweiter und dritter Spannring von oben) wurden in den Viertelspunkten mit Dehnmessstreifen bestückt. Die durch das Quellen der Holzdauben entstehende Beanspruchung der Spannringe wurde mittels der Dehnmessstreifen bestimmt.

Bild 7-1 stehende Rohrabschnitte zur Untersuchung des Quellverhaltens von Druckrohrleitungen aus Holz

Die Spannringe wurden zunächst leicht vorgespannt, um den Zusammenbau zu ermöglichen und die einzelnen Holzdauben hinreichend dicht zusammenzupressen. Zur Ermittlung des Einflusses des Vorspannungsgrades der Spannringe auf das Quellverhalten von Holzrohren wurde der erste stehende Rohrabschnitt 1 im Mittel mit einer Vorspannkraft von 5 kN pro Spannring, der zweite Rohrabschnitt 2 mit 20 kN pro Spannring vorgespannt.

Bild 7-2 Dimensionen der stehenden Rohrabschnitte

7.1.2 Beanspruchung der Spannringe infolge Quellen

Im Folgenden wird die Beanspruchung der Spannringe, die durch das Quellen der Holzdauben bei Wasserfüllung der Rohrabschnitte entsteht, näher erläutert. In Bild 7-3 ist der Verlauf der Zugkraft in den Spannringen infolge Quellen der Holzdauben dargestellt. Die einzelnen Kurven sind Mittelwerte der Zugkräfte in den Spannringen von Rohrabschnitt 1 (Vorspannung 5 kN) bzw. Rohrabschnitt 2 (Vorspannung 20 kN).

Bild 7-3 Verlauf der Zugkraft in den Spannringen infolge Quellen (Rohrabschnitt 1: Vorspannung 5 kN; Rohrabschnitt 2: Vorspannung 20 kN)

Die Zugkräfte in den Spannringen wurden mit Hilfe der gemessenen Dehnungen der Dehnmessstreifen und einem Elastizitätsmodul der Spannringe von E = 210.000 N/mm² ermittelt (Querschnittsfläche eines Spannringes: 6 x 60 mm). Bei der Auswertung der Daten wurde die vor Versuchsbeginn aufgebrachte Beanspruchung infolge Vorspannung der Spannringe sowie die aus dem hydrostatischen Wasserdruck resultierende Beanspruchung der Spannringe abgezogen, so dass in Bild 7-3 die alleinige Beanspruchung der Spannringe infolge des Quellvorgangs dargestellt ist. Der Wasserspiegel wurde mittels Pumpen von Versuchsbeginn an konstant auf H = 2,0 m gehalten. Die maximale Zugkraft max Z_R wurde ca. 4 bis 6 Wochen nach Versuchsbeginn erreicht.

In Tabelle 7-1 sind die Beanspruchungen der Spannringe infolge des Quellvorgangs für den in Kapitel 7.1.1 beschriebenen Versuchsaufbau zusammengefasst. Die zugehörigen Diagramme sind im Anhang J dargestellt

			max Z _R [kN]	Z _R [kN]	red Z _R [%]
		DMS 1	10,16	9,21	90,6%
	1 1	DMS 2	10,09	9,53	94,4%
7	nnrir	DMS 3	9,95	9,06	91,1%
litt 1: J 5 kľ	Spa	DMS 4	9,48	8,46	89,2%
schni		MW	9,92	9,07	91,3%
rabs oanr		DMS 5	11,31	10,21	90,3%
Roh 'orsp	ng 2	DMS 6	10,39	9,83	94,6%
>	nnri	DMS 7	10,59	10,14	95,8%
	Spa	DMS 8	10,59	9,83	92,8%
		MW	10,72	10,00	93,4%
		DMS 9	12,39	10,60	85,6%
	ng 1	DMS 10	12,29	10,06	81,9%
z	nnri	DMS 11	13,27	11,13	83,9%
itt 2: 20 k	Spa	DMS 12	12,62	11,10	88,0%
schn ung		MW	12,64	10,72	84,8%
rabs ann		DMS 13	11,16	9,59	85,9%
Roh orsp	ng 2	DMS 14	11,65	9,16	78,6%
Š	nnri	DMS 15	11,44	9,43	82,4%
	Spa	DMS 16	12,14	9,57	78,8%
		MW	11,60	9,44	81,5%

Tabelle 7-1	Beanspruchung der Spannringe infolge Quellvorgang	
	(may 7 - mayimala Zugkraft; 7 - mittlara Zugkraft pach 2	N

(max Z_R = maximale Zugkraft; Z_R = mittlere Zugkraft nach 3 Monaten; red Z_R = prozentualer Abfall der Zugkraft)

Bei Rohrabschnitt 1 (Vorspannung 5 kN) wurde im Mittel eine maximale Zugkraft infolge des Quellvorgangs von 10,32 kN bestimmt, bei Rohrabschnitt 2 (Vorspannung 20 kN) ein maximaler Wert von 12,12 kN. Anschließend trat eine Reduzierung der Zugkraft in den Spannringen durch Relaxation des Holzes auf. Nach ca. 2 bis 3 Monaten erreichte die Zugkraft ein konstantes Niveau, dessen Wert in Tabelle 7-1 mit Z_R angegeben ist.

Das Quellverhalten von Holz bei Wasseraufnahme wurde bereits in Kapitel 3.3 an kleinen Proben bei behinderter Quellung untersucht. Bei diesen Versuchen wurde bei Lärchenholz infolge Relaxation eine Reduzierung des Quellungsdruckes auf einen Wert zwischen 58 % und 83 % des vorher erreichten Maximalwertes bestimmt (je nach Vorspannungsgrad, Holzfeuchte zu Versuchsbeginn und radialer / tangentialer Ausrichtung der Prüfkörper). Bei den Versuchen mit Rohrabschnitten trat eine wesentlich geringere Abnahme der Spannkraft bzw. des Quellungsdruckes auf. Die Auswertung der Messdaten von Rohrabschnitt 1 mit einer Vorspannung von 5 kN ergab im Mittel eine Reduzierung der Zugkraft in den Spannringen infolge Relaxation des Holzes auf 92,4 % der zuvor erreichten maximalen Zugkraft. Bei Rohrabschnitt 2 mit einer höheren Vorspannung von 20 kN wurde im Mittel eine Abnahme der Spannkraft auf 83,1 % des Maximalwertes bestimmt. Die geringere Reduzierung der Zugkraft bei den Versuchen mit Rohrabschnitten im Vergleich zu den Vorversuchen in Kapitel 3.3 kann mit der Anordnung der Spannringe sowie der Nut- und Federverbindung der Holzdauben begründet werden: hier liegt im Gegensatz zu den Vorversuchen keine 100%-ige Einspannung vor. Jedoch zeigte sich tendenziell auch bei den Versuchen mit Rohrabschnitten, dass ein zu hoher Vorspannungsgrad negative Auswirkungen hat.

7.2 Trag- und Verformungsverhalten

7.2.1 Versuchsaufbau und -durchführung

Zur Bestimmung des Trag- und Verformungsverhaltens von Druckrohrleitungen aus Holz, die auf Sättel aufgelagert sind, wurden experimentelle Untersuchungen durchgeführt. Hierzu wurde ein 10 m langer Abschnitt einer Druckrohrleitung aus Holz mit einem Innendurchmesser von 1,40 m in einem Versuchsstand aufgebaut (Bild 7-4). In einem Querschnitt wurden 36 Holzdauben aus Lärchenholz der Festigkeitsklasse C24 mit dem Querschnitt b_D / d_D = 128 / 68 mm angeordnet. Die 4,0 m langen Holzdauben wurden jeweils um die Hälfte ihrer Länge gegeneinander versetzt. Der Abstand der Spannringe aus S235 mit einem Querschnitt von b_R / d_R = 60 / 6 mm und Spannschloss (aufgeschweißter Gewindebolzen M27 aus S235) betrug 0,50 m. Der Abstand der Sättel aus Beton mit einer Breite von 20 cm entsprach mit 2,0 m der halben Daubenlänge. Die Holzdauben wurden mit einer Feuchte von ungefähr 16 % eingebaut. Die Spannringe wurden mit einer Vorspannkraft von 5 kN pro Spannring vorgespannt, um den Zusammenbau zu ermöglichen und die Holzdauben hinreichend dicht zusammenzupressen.

Bild 7-4 Versuchsstand: Draufsicht und Querschnitt (Messrahmen)

Insgesamt fünf Spannringe im mittleren Feld des Versuchsstandes wurden jeweils in den Viertelspunkten mit Dehnmessstreifen bestückt (Bild 7-5). Der Wasserinnendruck entsprach mit 1,5 bar in etwa der geplanten eingestauten Druckhöhe des Wasserspeichers in der Karsthöhle Gua Bribin (15 mWS). Die Dimensionen des Versuchsstandes wurden so gewählt, dass die Anforderungen an eine Druckrohrleitung aus Holz zur Wasserbewirtschaftung der Höhle Gua Bribin erfüllt werden können.

Bild 7-5 Versuchsstand zur Untersuchung des Biegetragverhaltens von Druckrohrleitungen aus Holz

Mit Hilfe der Dehnmessstreifen und einem Vielstellenmessgerät wurde über einen Zeitraum von mehreren Monaten die Beanspruchung der Spannringe aufgezeichnet. Mittels fünf Messrahmen, die im mittleren Feld des Versuchsstandes aufgebaut wurden, konnten die Verformungen in Längsrichtung sowie die Querschnittsverformungen bestimmt werden. Die Position der Messrahmen orientierte sich an der Lage der Spannringe (Abstand 0,50 m).

7.2.2 Beanspruchung der Spannringe

In Bild 7-6 ist exemplarisch die vorhandene Zugkraft an vier Messstellen von Spannring 5 sowie der Wasserdruck über die gesamte Versuchsdauer dargestellt. Der Verlauf der Zugkraft wird anhand der Auswertung der Versuchsergebnisse des Dehnmessstreifens DMS 20 (Bild 7-7) erläutert.

Bild 7-6 Zugkraft [kN] in Spannring 5 (DMS 17 - 20) und Wasserdruck [mWS]

Der Verlauf der Zugkraft in den Spannringen 1 bis 5 über die gesamte Versuchsdauer ist in Anhang K dargestellt.

In Bild 7-7 sind in dem Verlauf der Zugkraft von DMS 20 die Punkte A bis F markiert. Diese Punkte dienen zur genauen Erläuterung der Versuchsdurchführung:

Zeitpunkt A:	Vorspannung
Zeitpunkt B:	Wasserfüllung der Rohrleitung (ohne Innendruck)
Zeitpunkt C:	Wasserinnendruck = 1,1 bar
Zeitpunkt D:	Erreichen der maximalen Zugkraft im Spannring während des
	Quellvorgangs
Zeitpunkt E:	Relaxation auf ein konstantes Niveau der Zugkraft im Spannring
Zeitpunkt F:	Wasserinnendruck = 1,5 bar

Ursprünglich war ein Wasserinnendruck von 1,5 bar zum Zeitpunkt C geplant. Aufgrund von Undichtigkeiten am Anschluss der Druckrohrleitung aus Holz an die Endauflager aus Beton konnte zu Versuchsbeginn mit den vorhandenen Pumpen lediglich ein Wasserinnendruck von 1,1 bar erreicht werden. Zur genauen Erfassung der während des Quellvorgangs entstehenden Zugkräfte in den Spannringen wurden die Undichtigkeiten erst nach Abschluss von Quellen und Relaxation der Holzdauben (Zeitpunkt E) ausgebessert. Für diesen Zeitpunkt wurde eine prozentuale Änderung der Zugkraft in den Spannringen kleiner als 0,1 % / Tag definiert und somit ein relativ konstantes Niveau der Zugkraft gewährleistet. Für die Verbesserungsmaßnahmen am Anschluss von Endauflager an Rohrleitung musste die Druckrohrleitung entleert werden; deshalb wurde die Datenaufnahme im Zeitraum vom 14.01.05 bis 28.01.05 unterbrochen. Die Holzdauben wurden auch während der Entleerung der Rohrleitung durchgehend befeuchtet. Anschließend konnte ein Wasserinnendruck von 1,5 bar aufgebracht werden. Die Undichtigkeiten am Übergang von Holzrohr zu Beton waren Anlass zu einem weiteren Versuch, bei dem ein optimierter Anschluss geprüft wurde (vgl. Kapitel 11).

In Tabelle 7-2 sind die Beanspruchungen der Spannringe zu den Zeitpunkten A bis F zusammengefasst. Bei einem Wasserinnendruck von 1,1 bar wurde ca. 5 Wochen nach Versuchsbeginn (Zeitpunkt D) ein Maximum der Zugkraft erreicht. Anschließend trat eine Reduzierung der Zugkraft in den Spannringen durch Relaxation des Holzes auf. Nach ca. 2 Monaten (Zeitpunkt E) erreichte die Zugkraft ein konstantes Niveau. Die Zugkraft bei einem Wasserinnendruck von 1,5 bar war für den Zeitraum ab 3 Monaten nach Versuchsbeginn bis Versuchsende konstant.

In Tabelle 7-2 kennzeichnet der Winkel ß die Lage des Spannschlosses (ausgehend von der obersten Holzdaube im mathematisch negativen Drehsinn) und der Winkel α die Anordnung der vier Dehnmessstreifen pro Spannring (ausgehend vom Spannschloss im mathematisch negativen Drehsinn).

				Zugkraf	t Z _R [kN]				Änderung	der Zugkraft	ΔZ _R [kN]	
Zeitpun	kt	A	в	U		ш	ш	B - A	C - B	D-C	E - D	Ш- Ч
Zeit na	ch Versuchsbeginn	0,5 h	6,9 h	7,0 h	~ 5 Wochen	~ 2 Monate	> 3 Monate		-			
Innendi	.uck p [bar]	0 bar (Vorspannung)	0 bar (Wasserfüllung)	1,1 bar	1,1 bar (Quellvorgang)	1,1 bar (Relaxation)	1,5 bar	infolge Wasserfüllung	infolge p=0 -1,1 bar	infolge Quellvorgang	infolge Relaxation	infolge p=1,1-1,5 bar
1	DMS 1 (a=+45°)	7,09	8,93	42,58	51,56	50,97	62,32	1,83	33,66	8,98	-0,60	11,36
11103 102°)	DMS 2 (a=+95°)	4,92	6,63	40,03	49,28	48,93	59,50	1,71	33,40	9,25	-0,35	10,58
นทธ(: = ย)	DMS 3 (a=+180°)	2,63	4,67	36,80	47,76	47,22	58,21	2,03	32,14	10,95	-0,54	10,99
qS	DMS 4 (a=-70°)	5,18	7,39	40,30	50,13	49,51	61,22	2,21	32,91	9,83	-0,62	11,71
2	DMS 5 (a=45°)	7,80	9,62	43,35	52,37	51,63	63,41	1,83	33,73	9,02	-0,75	11,79
s5°) 55°)	DMS 6 (a=+75°)	6,10	8,62	41,99	51,30	51,01	62,19	2,51	33,37	9,31	-0,29	11,18
ากธ(= ฦ)	DMS 7 (a=+175°)	2,65	5,02	39,24	48,28	47,56	59,59	2,37	34,23	9,04	-0,72	12,03
qS	DMS 8 (a=-100°)	4,34	6,32	39,80	49,87	49,19	61,16	1,98	33,47	10,08	-0,69	11,98
٤١	DMS 9 (a=50°)	7,32	9'95	44,38	53,69	52,93	65,91	2,63	34,43	9,31	-0,76	12,98
gning (°0∂r	DMS 10 (a=+80°)	5,39	8,16	42,03	50,99	50,25	62,71	2,78	33,87	8,96	-0,73	12,46
ากธ(= ย)	DMS 11 (a=+165°)	3,28	5,45	40,80	50,70	50,12	62,34	2,16	35,36	9,89	-0,58	12,22
qS	DMS 12 (a=-105°)	5,46	7,73	42,47	51,56	50,82	63,26	2,27	34,74	9,08	-0,74	12,44
14	DMS 13 (a=+55°)	7,18	9,38	42,82	52,77	52,27	63,67	2,21	33,44	9,95	-0,50	11,40
220°) 220°)	DMS 14 (α=+90°)	5,01	7,00	40,55	50,26	49,70	61,78	1,99	33,55	9,71	-0,56	12,09
า กธ (: = ย)	DMS 15 (α=+175°)	2,69	4,77	37,63	47,44	47,00	59,20	2,08	32,86	9,81	-0,44	12,20
β	DMS 16 (α=-95°)	5,37	7,90	41,54	51,56	50,96	62,03	2,53	33,64	10,02	-0,60	11,07
g f	DMS 17 (α =+50°)	7,18	8,91	41,87	51,46	50,77	61,69	1,73	32,96	9,58	-0,69	10,92
200°) (°008	DMS 18 (α=+100°)	4,46	6,34	39,05	47,96	47,50	58,15	1,88	32,71	8,91	-0,46	10,64
ากธด = ย)	DMS 19 (α=+175°)	2,22	4,40	38,36	47,52	47,06	58,63	2,18	33,96	9,17	-0,46	11,57
β	DMS 20 (0=-65°)	6,25	8,34	41,45	51,63	51,04	62,98	2,09	33,11	10,18	-0,58	11,93

Tabelle 7-2 experimentell ermittelte Beanspruchung der Spannringe zu den Zeitpunkten A bis F

In den folgenden Abschnitten werden Versuchsdurchführung und Auswertung der Messdaten erläutert.

Die aufgebrachte Vorspannung zum Zeitpunkt A wurde aufgrund der Versuchsergebnisse aus Kapitel 7.1 mit 5,0 kN pro Spannring (Mittelwert) gewählt. Infolge Haftung ist die Vorspannung nicht konstant über den Spannring verteilt. Die Zugkraft im Spannring ist am Spannschloss ($\alpha = 0^{\circ}$) maximal und nimmt ausgehend vom Spannschloss mit zunehmendem Winkel α ab (Bild 7-8). Bei einem Winkel von $\alpha = 180^{\circ}$ ist die Zugkraft im Spannring infolge Vorspannung minimal. Theoretisch kann dieser Effekt mit der Formel für Seilhaftung nach Euler und Eytelwein beschrieben werden (29):

Bild 7-8 Verlauf der Zugkraft im Spannring infolge Vorspannung

Die experimentell ermittelten Werte der Zugkraft in den Spannringen infolge Vorspannung (Zeitpunkt A) sind in Tabelle 7-2 angegeben und liegen zwischen 2,22 und 7,80 kN (Mittelwert 5,13 kN). In Bild 7-9 werden diese Werte den nach Gleichung (29) ermittelten theoretischen Werten der Zugkraft in den Spannringen infolge Vorspannung in Abhängigkeit vom Winkel α gegenübergestellt. Dabei wurde ein Haftungskoeffizient $\mu_{\rm H}$ = 0,5 für die Baustoffkombination Stahl / Holz nach Möhler und Herröder (1979) eingesetzt. Die experimentell ermittelten Werte zeigen eine gute Übereinstimmung mit den theoretisch bestimmten Werten.

Bild 7-9 experimentell und theoretisch ermittelte Werte der Zugkraft im Spannring infolge Vorspannung

Die Zunahme der Zugkraft in den Spannringen infolge Wasserfüllung der Rohrleitung zum Zeitpunkt B beträgt nach Tabelle 7-2 zwischen 1,71 und 2,78 kN (Mittelwert 2,15 kN) und ist aufgrund der hydrostatischen Druckverteilung im oberen Bereich der Druckrohrleitung geringer als im unteren Bereich.

Bei einem Wasserinnendruck von 1,1 bar zum Zeitpunkt C wurde die Zugkraft in den Spannringen zwischen 32,14 und 35,36 kN erhöht (Mittelwert 33,58 kN) (vgl. Tabelle 7-2). Die maximale Beanspruchung der Spannringe tritt in Feldmitte (Ring 3) zwischen zwei Auflagern auf. Theoretisch berechnet sich die Ringzugkraft infolge Wasserinnendruck im Rohr nach Gleichung (30) (Kesselformel):

$$Z_{\rm R} = \frac{p \cdot d}{2} \cdot \mathbf{e}_{\rm R} \tag{30}$$

mit

 Z_R = Ringzugkraft [kN]

- p = Wasserinnendruck: p = $\rho_W \cdot g \cdot H_0 [kN/m^2]$
- ρ_W = Dichte Wasser: 0,998 [t/m³] (bei T = 20°C)
- g = Erdbeschleunigung: 9,81 [m/s²]
- H₀ = hydrostatische Druckhöhe [m]
- d = Rohrinnendurchmesser [m]
- e_R = Abstand Spannringe [m]

Nach Gleichung (30) ergibt sich eine Ringzugkraft von 37,77 kN bei einem Wasserinnendruck von 1,1 bar. Dieser Wert liegt geringfügig über den aus dem Versuchsstand bestimmten Werten zwischen 32,14 und 35,36 kN.

Während des Quellvorgangs erreichte die Zugkraft in den Spannringen ca. 5 Wochen nach Versuchsbeginn zum Zeitpunkt D ein Maximum. Nach Tabelle 7-2 beträgt die Änderung der Zugkraft in den Spannringen infolge des Quellvorgangs zwischen 8,91 und 10,95 kN (Mittelwert 9,55 kN). Im Vergleich hierzu wurden bei den Versuchen in Kapitel 7.1 bei Rohrabschnitt 1 mit einer Vorspannung von 5 kN Werte zwischen 9,48 und 11,31 kN (Mittelwert 10,32 kN) bestimmt. Die in Tabelle 7-2 angegebenen Werte sind geringer, da zum Zeitpunkt D ein Wasserinnendruck von 1,1 bar in der Rohrleitung aufgebracht war und somit eine Aufweitung des Rohrquerschnittes eine geringere Zunahme der Zugkraft in den Spannringen infolge des Quellvorgangs zur Folge hatte als bei den Versuchen in Kapitel 7.1 ohne Wasserinnendruck.

Während des Quellvorgangs der einzelnen Holzdauben wurden die anfangs auftretenden Wasserverluste (Bild 7-10) zunehmend minimiert. Die Rohrleitung war ca. 2 bis 4 Wochen nach Versuchsbeginn relativ dicht.

Bild 7-10 Versuchsstand zwei Wochen nach Versuchsbeginn

Nach Erreichen eines Maximums trat anschließend eine Reduzierung der Zugkraft in den Spannringen bei einem Wasserinnendruck von 1,1 bar durch Relaxation des Holzes auf. Die Abminderung der Zugkraft in den Spannringen infolge Relaxation beträgt nach Tabelle 7-2 zwischen 0,29 und 0,76 kN (Mittelwert 0,58 kN). Nach ca. 2 Monaten erreichte die Zugkraft zum Zeitpunkt E ein konstantes Niveau. Die nach der Relaxation vorhandene Zugkraft in den Spannringen wurde im Mittel mit 93,9 % der

infolge des Quellvorgangs aufgetretenen maximalen Zugkraft bestimmt. Dies entspricht ungefähr der Auswertung der Messdaten von Rohrabschnitt 1 mit einer Vorspannung von 5 kN in Kapitel 7.1 mit einer Reduzierung der Zugkraft in den Spannringen infolge Relaxation des Holzes auf 92,4 % der zuvor erreichten maximalen Zugkraft.

Eine Druckerhöhung auf 1,5 bar zum Zeitpunkt F hatte eine Änderung der Zugkraft in den Spannringen zwischen 10,58 und 12,98 kN (Mittelwert 11,68 kN) zur Folge (Tabelle 7-2). Das Niveau der Zugkraft war bis zur Beendigung der Messdatenerfassung ungefähr konstant.

7.2.3 Verformungen in Längsrichtung und Querschnittsverformungen

Neben der Bestimmung der Zugkraft in den Spannringen wurde mit Hilfe von fünf Messrahmen, die im mittleren Feld des Versuchsstandes aufgebaut wurden (Bild 7-4), die Verformungen in Längsrichtung sowie die Querschnittsverformungen bestimmt. Die Position der Messrahmen orientierte sich an der Lage der Spannringe. Die Verformungen wurden mit einem Wegaufnehmer bestimmt (Bild 7-11).

Bild 7-11 Versuchsstand: Messrahmen und Wegaufnehmer zur Bestimmung von Verformungen in Längsrichtung und Querschnittsverformungen

In Tabelle 7-3 sind die Verformungen am Auflager (Mittelwerte von Ring 1 und Ring 5) sowie in Feldmitte (Ring 3) zusammengefasst. Die Werte in der Tabelle beziehen sich auf Verformungen bei Wasserfüllung (Zeitpunkt B) sowie bei einem Wasserinnendruck von 1,1 bar (Zeitpunkt E) und 1,5 bar (Zeitpunkt F). Die Position der Punkte a bis c ist in Bild 7-12 angegeben.

Verfo	mungen [cm]	Pur	ıkt a	Pur	nkt b	Punkt c		
veno		u _x	u _y	u _x	u _y	u _x	u _y	
Wasserfüllung Zeitpunkt B	Auflager (MW Ring 1,5)	-	-2,41	0,80	-0,43	-	0,00	
	Feldmitte (Ring 3)	-	-2,34	0,73	-0,44	-	-0,28	
1,1 bar Zeitpunkt E	Auflager (MW Ring 1,5)	-	-2,18	0,99	-0,42	-	0,00	
	Feldmitte (Ring 3)	-	-2,14	0,94	-0,43	-	-0,34	
1,5 bar	Auflager (MW Ring 1,5)	-	-1,99	1,06	-0,40	-	0,00	
Zeitpunkt F	Feldmitte (Ring 3)	-	-1,95	1,02	-0,41	_	-0,36	

Tabelle 7-3 experimentell bestimmte Querschnittsverformungen und Verformungen in Längsrichtung

Unter den Beanspruchungen Eigengewicht und Wasserlast mit Innendruck wird das Verformungsverhalten des Querschnittes maßgeblich von der Ovalisierung bestimmt, da kreisförmige Querschnitte dazu neigen, sich unter Biegebeanspruchung oval zu verformen. In Bild 7-12 sind überhöht die Querschnittsverformungen am Auflager (Mittelwerte von Ring 1 und Ring 5) und in Feldmitte (Ring 3) dargestellt. Die linke Hälfte des Querschnittes entspricht jeweils der Verformung bei einem Wasserinnendruck von 1,1 bar, die rechte Hälfte des Querschnittes zeigt zum Vergleich die Verformung bei einem Wasserinnendruck von 1,5 bar.

Bild 7-12 Querschnittsverformungen (4-fach überhöht) am Auflager und in Feldmitte bei unterschiedlichem Wasserinnendruck

Die Durchbiegung der Rohrleitung im Punkt c nimmt in Feldmitte mit steigendem Wasserinnendruck zu, da infolge der Aufweitung des Rohrquerschnittes die Querdruckspannung der Holzdauben in Umfangsrichtung und somit die Steifigkeit des Rohres reduziert wird. Aufgrund der Rohraufweitung nehmen die Verformungen der mittleren Holzdaube im Punkt b in x-Richtung mit steigendem Wasserinnendruck zu. Die Durchbiegung der Rohrleitung in Punkt a nimmt mit steigendem Wasserinnendruck ab. Die Differenz der Durchbiegung zwischen Auflager und Feldmitte ist für einen bestimmten Wasserinnendruck im Punkt a deutlich kleiner als im Punkt c.

7.2.4 Einfluss des Auflagerabstandes

Nach Abschluss der oben beschriebenen Messungen wurde am gleichen Versuchsstand in einem weiteren Versuch der Einfluss des Auflagerabstandes auf das Trag- und Verformungsverhalten von Druckrohrleitungen aus Holz untersucht. Dazu wurde durch Entfernen jedes zweiten Auflagers der ursprüngliche Auflagerabstand von 2,0 m auf 4,0 m verdoppelt. Der Auflagerabstand von 4,0 m entsprach somit der Daubenlänge im Versuchsstand. Neben der Zugkraft in den Spannringen wurden auch die Verformungen in Längsrichtung sowie die Querschnittsverformungen ermittelt.

In Tabelle 7-4 ist die Beanspruchung der Spannringe bei einem Auflagerabstand von 2,0 m bzw. 4,0 m zusammengefasst. Der Wasserinnendruck war mit 1,5 bar bei beiden Messungen identisch. Bei einem vergrößerten Auflagerabstand nehmen die Verformungen in Längsrichtung sowie die Querschnittsverformungen zu. Demzufolge steigt auch die Zugbeanspruchung der Spannringe leicht an. Die maximale Änderung der Zugkraft in den Spannringen beträgt nach Tabelle 7-4 ca. 4 %.

In Tabelle 7-5 sind die Verformungen am Auflager (Mittelwerte von Ring 1 und Ring 5) sowie in Feldmitte (Ring 3) bei einem Auflagerabstand von 2,0 m bzw. 4,0 m zusammengefasst. Die Werte in der Tabelle beziehen sich auf Verformungen bei einem Wasserinnendruck von 1,5 bar. Die Verformung der obersten Holzdaube steigt bei einem Auflagerabstand von 4,0 m um maximal 38 % im Auflagerquerschnitt, während die Verformung der untersten Holzdaube in Feldmitte um maximal 25 % zunimmt.

Tabelle 7-4 experimentell ermittelte Zugkraft in den Spannringen bei einem Auflagerabstand von $e_s = 2,0$ m bzw. 4,0 m

		Zugkraf	t Z _R [kN]	
Aufla (Wass	gerabstand e _s [m] erinnendruck 1,5 bar)	2,0 m	4,0 m	$\label{eq:constraint} \begin{array}{c} Vergleich \\ Z_R\left(e_s = 4,0m\right) / Z_R\left(e_s = 2,0m\right) \end{array}$
1	DMS 1 (α=+45°)	62,32	61,08	98%
nrinc ^{305°)}	DMS 2 (α=+95°)	59,50	60,81	102%
anr (ß = :	DMS 3 (α=+180°)	58,21	59,96	103%
Sp	DMS 4 (α=-70°)	61,22	63,67	104%
j 2	DMS 5 (α=-45°)	63,41	64,05	101%
ırinç ^{55°)}	DMS 6 (α=+75°)	62,19	64,06	103%
anr (ß =	DMS 7 (α=+175°)	59,59	61,38	103%
Sp	DMS 8 (α=-100°)	61,16	62,57	102%
annring 3 ^(ß = 150°)	DMS 9 (α=-50°)	65,91	66,57	101%
	DMS 10 (α=+80°)	62,71	63,97	102%
	DMS 11 (α=+165°)	62,34	64,21	103%
ъ	DMS 12 (α=-105°)	63,26	64,58	102%
4 t	DMS 13 (α=+55°)	63,67	65,71	103%
(°220°)	DMS 14 (α=+90°)	61,78	63,02	102%
anr (ß = :)	DMS 15 (α=+175°)	59,20	60,79	103%
Sp	DMS 16 (α=-95°)	62,03	62,65	101%
J 5	DMS 17 (α=+50°)	61,69	61,32	99%
300°) (DMS 18 (α=+100°)	58,15	58,90	101%
anr (ß = :	DMS 19 (α=+175°)	58,63	59,80	102%
Sp	DMS 20 (α=-65°)	62,98	64,43	102%

Tabelle 7-5experimentell ermittelte Querschnittsverformungen und Verformungen
in Längsrichtung bei einem Auflagerabstand von $e_s = 2,0 \text{ m bzw. } 4,0 \text{ m}$

Verformu	ungen [cm]	Pur	nkt a	Pur	ıkt b	Punkt c		
(Wasserinne	ndruck 1,5 bar)	u _x	u _y	u _x	u _y	u _x	u _y	
Auflagerabstand	Auflager (MW Ring 1,5)	-	-1,99	1,06	-0,40	-	0,00	
e _s = 2,0 m	Feldmitte (Ring 3)	-	-1,95	1,02	-0,41	I	-0,36	
Auflagerabstand e _s = 4,0 m	Auflager (MW Ring 1,5)	-	-2,75	1,38	-0,48	-	0,00	
	Feldmitte (Ring 3)	-	-2,68	1,24	-0,48	-	-0,45	
Vergleich	Auflager (MW Ring 1,5)	-	138%	130%	119%	-	100%	
u(e _s =4,0m) / u(e _s =2,0m)	Feldmitte (Ring 3)	-	137%	121%	115%	-	125%	

8 Theoretischer Berechnungsansatz für die Lastfälle Quellen und Vorspannung

8.1 Lastfall Quellen

Mit dem theoretischen Berechnungsansatz soll die Modellierung des Lastfalls Quellen für das Finite-Elemente-Modell überprüft werden. Die Größe der Temperaturbelastung, die erforderlich ist, um den gewünschten Quellungsdruck im FE-Modell zu erzeugen, kann mit Hilfe des theoretischen Berechnungsansatzes auf einfache Weise abgeschätzt werden. Die für den Lastfall Quellen mittels der Differentialgleichung der Biegelinie berechnete Querdruckspannung der Holzdauben in Umfangsrichtung kann für verschiedene geometrische Vorgaben (Spannringabstand, Daubengeometrie, Rohrinnendurchmesser etc.) bestimmt werden. Dabei werden folgende Annahmen getroffen:

- Spannung in den Stahlringen ist über die Querschnittsfläche konstant;
- Spannung in den Holzdauben ist über die Daubendicke konstant;
- Verformungsberechnungen erfolgen jeweils in den Mittelflächen der Holzdauben und der Spannringe (Bild 8-1);
- Eigengewicht und Wasserinnendruck werden nicht berücksichtigt;
- beim theoretischen Berechnungsansatz des Lastfalls Quellen wird lediglich das Quellen in Umfangsrichtung berücksichtigt;
- gleichmäßige Feuchtigkeitsverteilung in den Holzdauben.

Bild 8-1 mittlere Radien r_H und r_S

Für die Herleitung der Differentialgleichung der Biegelinie für den Lastfall Quellen werden folgende Kenngrößen verwendet:

geometrische Vorgaben: rini

- r_{innen} Innenradius des Holzrohres [mm]
 - n_D Anzahl der Holzdauben [-]
 - d_D Dicke der Holzdauben [mm]
 - d_R Dicke der Spannringe [mm]
 - b_R Breite der Spannringe [mm]
 - e_R Abstand der Spannringe [mm]

materielle Vorgaben:

Е _{Н,90}	E-Modul Holz rechtwinklig zur Faserrichtung
	(in Umfangsrichtung des Rohres) [N/mm ²]
$E_{H,0}$	E-Modul Holz in Faserrichtung
	(in Längsrichtung des Rohres) [N/mm ²]
Es	E-Modul Stahl [N/mm ²]

Für den theoretischen Berechnungsansatz werden die Dehnungen der Materialien in Umfangsrichtung über die Änderung der Radien nach Gleichung (31) formuliert.

$$\varepsilon_{\rm U} = \frac{\Delta U}{U_1} = \frac{U_2 - U_1}{U_1} = \frac{2 \cdot \pi \cdot r_2 - 2 \cdot \pi \cdot r_1}{2 \cdot \pi \cdot r_1} = \frac{r_2 - r_1}{r_1} = \frac{\Delta r}{r_1} = \varepsilon_{\rm r}$$
(31)

Für die Verformungsberechnungen wird das Flächenträgheitsmoment der einzelnen Holzdauben um die zum Rohrquerschnitt tangential verlaufende Achse benötigt. Näherungsweise wird das Flächenträgheitsmoment nicht am trapezförmigen Daubenquerschnitt ermittelt, sondern vereinfacht an einem Rechteckquerschnitt gleicher Höhe und gleichen Flächeninhalts.

Zunächst wird der Rohrquerschnitt an der Stelle eines Spannringes betrachtet und ein spannungsfreier Ausgangszustand angenommen. Dieser Zustand wird durch die beiden Radien r_H und r_S beschrieben. Durch die Quellung der Holzdauben erfolgt sowohl eine Dehnung der Dauben als auch der Spannringe. Zur Bestimmung der Verformungen zwischen den Spannringen werden die einzelnen Holzdauben als Mehrfeldträger mit den Spannringen als Auflager betrachtet. Da bei dem theoretischen Berechnungsansatz Wasserinnendruck und Eigengewicht nicht berücksichtigt werden, stellt die Querdruckbeanspruchung der Holzdauben in Umfangsrichtung die einzige Belastung der Dauben dar. Für die einzelnen Holzdauben werden die tangential wirkenden Anteile dieser Druckspannungen nach Bild 8-2 zu einer radialen Streckenlast q(x) zusammengefasst (Gleichung (32)).

Bild 8-2 Querdruckbeanspruchung der Holzdauben infolge Quellen

$$q(\mathbf{x}) = -2 \cdot \sigma_{\mathrm{H}}(\mathbf{x}) \cdot \sin\beta \cdot d_{\mathrm{D}}$$
(32)

Durch den Lastfall Quellen ergibt sich das in Bild 8-3 dargestellte Verformungsverhalten der Rohrleitung. Die Stahlringe weiten sich um Δr_s auf; dies entspricht bei der Betrachtung des Mehrfeldträgers einer Auflagersenkung. Die größere Aufweitung des Holzrohres zwischen den Spannringen kann als Durchbiegung w(x) des Mehrfeldträgers zwischen den Auflagern betrachtet werden.

Bild 8-3 Verformungsverhalten infolge Lastfall Quellen

Die Zugspannung im Stahlring steht im Gleichgewicht mit der über die Wanddicke konstanten Querdruckspannung der Holzdauben in Umfangsrichtung. Mit Hilfe des Elastizitätsgesetzes kann die Dehnung und somit die Aufweitung der Stahlringe bestimmt werden.

$$\sigma_{\rm S} \cdot b_{\rm R} \cdot d_{\rm R} + d_{\rm D} \cdot \int_{x=0}^{e_{\rm R}} \sigma_{\rm H}(x) \, dx = 0$$
(33)

$$\rightarrow \sigma_{\rm S} = -\frac{\rm d_{\rm D}}{\rm b_{\rm R} \cdot \rm d_{\rm R}} \cdot \int_{\rm x=0}^{\rm e_{\rm R}} \sigma_{\rm H}({\rm x}) \, \rm d{\rm x}$$
(34)

$$\rightarrow \varepsilon_{\rm S} = \frac{\sigma_{\rm S}}{{\sf E}_{\rm S}} = -\frac{{\sf d}_{\rm D}}{{\sf b}_{\rm R} \cdot {\sf d}_{\rm R} \cdot {\sf E}_{\rm S}} \cdot \int_{{\sf x}=0}^{{\sf e}_{\rm R}} \sigma_{\rm H}({\sf x}) \, {\sf d}{\sf x}$$
(35)

$$\rightarrow \Delta \mathbf{r}_{\mathrm{S}} = \varepsilon_{\mathrm{S}} \cdot \mathbf{r}_{\mathrm{S}} = -\frac{\mathbf{d}_{\mathrm{D}} \cdot \mathbf{r}_{\mathrm{S}}}{\mathbf{b}_{\mathrm{R}} \cdot \mathbf{d}_{\mathrm{R}} \cdot \mathbf{E}_{\mathrm{S}}} \cdot \int_{\mathbf{x}=0}^{\mathbf{e}_{\mathrm{R}}} \sigma_{\mathrm{H}}(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$
(36)

Unter Vernachlässigung etwaiger Querverformungen der Holzdauben bzw. der Spannringe ist die Aufweitung des Holzrohres an der Stelle eines Spannringes und die Aufweitung des Spannringes gleich groß (Gleichung (37)).

$$\Delta \mathbf{r}_{H}(\mathbf{x}=\mathbf{0}) = \Delta \mathbf{r}_{S} = -\frac{\mathbf{d}_{D} \cdot \mathbf{r}_{S}}{\mathbf{b}_{R} \cdot \mathbf{d}_{R} \cdot \mathbf{E}_{S}} \cdot \int_{\mathbf{x}=\mathbf{0}}^{\mathbf{e}_{R}} \sigma_{H}(\mathbf{x}) \, d\mathbf{x}$$
(37)

Die Dehnung des Holzrohres an der Stelle x kann über zwei unterschiedliche Ansätze formuliert werden. Für den geometrischen Ansatz werden die Aufweitung des Holzrohres an der Stelle eines Spannringes (= Auflagersenkung) Δr_{H} (x=0) und die Durchbiegung der Holzdaube zwischen den Spannringen w(x) verwendet (Gleichung (38)).

$$\varepsilon_{\rm H}(\mathbf{x}) = \frac{\Delta \mathbf{r}_{\rm H}(\mathbf{x}=\mathbf{0}) + \mathbf{w}(\mathbf{x})}{\mathbf{r}_{\rm H}}$$
(38)

Beim Ansatz mit Hilfe des Stoffgesetzes wird die Dehnung des Holzrohres in Abhängigkeit von der Quelldehnung ε_Q , der Querdruckspannung der Holzdauben in Umfangsrichtung $\sigma_H(x)$ und des Elastizitätsmoduls der Holzdauben rechtwinklig zur Faserrichtung (in Umfangsrichtung) E_{H,90} bestimmt (Gleichung (39)).

$$\varepsilon_{\rm H}({\bf x}) = \varepsilon_{\rm Q} + \frac{\sigma_{\rm H}({\bf x})}{{\sf E}_{{\rm H},90}}$$
(39)

Aus Gleichung (38) und (39) kann die Querdruckspannung der Holzdauben in Umfangsrichtung $\sigma_{H}(x)$ bestimmt werden (Gleichung (40)).

$$\sigma_{\rm H}(\mathbf{x}) = \left(\frac{\Delta \mathbf{r}_{\rm H}(\mathbf{x}=\mathbf{0}) + \mathbf{w}(\mathbf{x})}{\mathbf{r}_{\rm H}} - \mathcal{E}_{\rm Q}\right) \cdot \mathbf{E}_{\rm H,90}$$
(40)

Durch Einsetzen der Aufweitung des Holzrohres an der Stelle eines Spannringes Δr_H (x=0) in Gleichung (40) ergibt sich:

$$\sigma_{H}(\mathbf{x}) = -\frac{\mathbf{d}_{D}}{\mathbf{b}_{R} \cdot \mathbf{d}_{R}} \cdot \frac{\mathbf{r}_{S}}{\mathbf{r}_{H}} \cdot \frac{\mathbf{E}_{H,90}}{\mathbf{E}_{S}} \cdot \int_{\mathbf{x}=0}^{\mathbf{e}_{R}} \sigma_{H}(\mathbf{x}) \, \mathbf{d}\mathbf{x} - \varepsilon_{Q} \cdot \mathbf{E}_{H,90} + \frac{\mathbf{w}(\mathbf{x})}{\mathbf{r}_{H}} \cdot \mathbf{E}_{H,90}$$
(41)

Die Differentialgleichung der Biegelinie für den Lastfall Quellen lautet somit:

$$w^{IV}(x) = \frac{1}{EI} \cdot q(x)$$
(42)

$$= -\frac{2}{EI} \cdot \sin\beta \cdot \sigma_{\rm H}(\mathbf{x}) \cdot \mathbf{d}_{\rm D}$$
(43)

$$= \frac{2}{\mathsf{EI}} \cdot \mathsf{sin}\, \mathbb{S} \cdot \mathsf{d}_{\mathsf{D}} \cdot \left(\frac{\mathsf{d}_{\mathsf{D}}}{\mathsf{b}_{\mathsf{R}} \cdot \mathsf{d}_{\mathsf{R}}} \cdot \frac{\mathsf{r}_{\mathsf{S}}}{\mathsf{r}_{\mathsf{H}}} \cdot \frac{\mathsf{E}_{\mathsf{H},90}}{\mathsf{E}_{\mathsf{S}}} \cdot \int_{\mathsf{x}=0}^{\mathsf{e}_{\mathsf{R}}} \sigma_{\mathsf{H}}(\mathsf{x}) \, \mathsf{d}\mathsf{x} + \varepsilon_{\mathsf{Q}} \cdot \mathsf{E}_{\mathsf{H},90} - \frac{\mathsf{w}(\mathsf{x})}{\mathsf{r}_{\mathsf{H}}} \cdot \mathsf{E}_{\mathsf{H},90} \right)$$
(44)

Das in Gleichung (44) enthaltene Integral kann mit Hilfe von Gleichung (43) wie folgt vereinfacht werden:

$$\sigma_{\rm H}({\rm x}) = -\frac{{\rm EI}}{2 \cdot {\rm sin} {\rm B} \cdot {\rm d}_{\rm D}} \cdot {\rm w}^{\rm IV}({\rm x}) \tag{45}$$

$$\rightarrow \int_{x=0}^{e_{R}} \sigma_{H}(x) \, dx = -\frac{EI}{2 \cdot \sin\beta \cdot d_{D}} \cdot \int_{x=0}^{e_{R}} w^{IV}(x) \, dx$$
(46)

$$= -\frac{\mathsf{EI}}{2 \cdot \mathsf{sin} \mathfrak{K} \cdot \mathsf{d}_{\mathsf{D}}} \cdot \mathsf{w}^{\mathsf{III}}(\mathsf{x})\Big|_{\mathsf{x}=0}^{\mathsf{e}_{\mathsf{R}}}$$
(47)

$$= -\frac{\mathsf{EI}}{2 \cdot \mathsf{sin} \mathscr{G} \cdot \mathsf{d}_{\mathsf{D}}} \cdot \left(\mathsf{w}^{\mathsf{III}}(\mathsf{e}_{\mathsf{R}}) - \mathsf{w}^{\mathsf{III}}(\mathsf{0})\right)$$
(48)

Aufgrund der Symmetrie der Biegelinie zur Achse $x = e_R / 2$ gilt:

$$w^{III}(e_R) = -w^{III}(0)$$
 (49)

Aus Gleichung (49) folgt:

$$\int_{x=0}^{e_{R}} \sigma_{H}(x) \, dx = -\frac{EI}{2 \cdot \sin\beta \cdot d_{D}} \cdot \left(-w^{III}(0) - w^{III}(0)\right)$$
(50)

$$= -\frac{\mathrm{EI}}{\mathrm{sin}\,\mathrm{B}\cdot\mathrm{d}_{\mathrm{D}}}\cdot\mathrm{w}^{\mathrm{III}}(0) \tag{51}$$

Schließlich ergibt sich folgende Differentialgleichung der Biegelinie für den Lastfall Quellen:

$$w^{\text{IV}}(x) + \frac{2 \cdot \sin\beta \cdot d_{\text{D}} \cdot E_{\text{H},90}}{\text{EI} \cdot r_{\text{H}}} \cdot w(x) = \frac{2 \cdot d_{\text{D}} \cdot r_{\text{S}} \cdot E_{\text{H},90}}{b_{\text{R}} \cdot d_{\text{R}} \cdot r_{\text{H}} \cdot E_{\text{S}}} \cdot w^{\text{III}}(0) + \frac{2 \cdot \sin\beta \cdot d_{\text{D}} \cdot E_{\text{H},90}}{\text{EI}} \cdot \varepsilon_{\text{Q}} \quad (52)$$

Die vier Randbedingungen zur Lösung der Differentialgleichung folgen aus der Forderung, dass sowohl die Durchbiegung w(x) der Holzdauben an den Stellen der Spannringen als auch die Steigung der Biegelinie w^l(x) an diesen Stellen gleich Null sein muss:

- Randbedingung RB 1: w(0) = 0
- Randbedingung RB 2: $w(e_R) = 0$
- Randbedingung RB 3: $w^{I}(0) = 0$
- Randbedingung RB 4: $w^{l}(e_{R}) = 0$

Die allgemeine Lösung dieser inhomogenen Differentialgleichung setzt sich aus der allgemeinen Lösung der zugehörigen homogenen Differentialgleichung und einer partikulären Lösung der inhomogenen Differentialgleichung zusammen. Mit Hilfe von Substitutionen und der Mathematik-Software MAPLE kann die Biegelinie w(x) der Holzdaube berechnet werden. Daraus lassen sich folgende Gleichungen für den Lastfall Quellen ableiten:

Querdruckspannung der Holzdauben in Umfangsrichtung:

$$\sigma_{\rm H}({\bf x}) = -\frac{{\sf E}{\sf I}}{2 \cdot {\sf sin} {\sf B} \cdot {\sf d}_{\rm D}} \cdot {\sf w}^{\rm IV}({\bf x})$$
(53)

Dehnung der Holzdauben:

$$\varepsilon_{\rm H}(\mathbf{x}) = \varepsilon_{\rm Q} + \frac{\sigma_{\rm H}(\mathbf{x})}{\mathsf{E}_{\rm H,90}} = \varepsilon_{\rm Q} - \frac{\mathsf{EI}}{2 \cdot \mathsf{sin} \, \$ \cdot \mathsf{d}_{\rm D} \cdot \mathsf{E}_{\rm H,90}} \cdot \mathsf{w}^{\rm IV}(\mathbf{x}) \tag{54}$$

Aufweitung des Holzrohres:

$$\Delta \mathbf{r}_{H}(\mathbf{x}) = \varepsilon_{H}(\mathbf{x}) \cdot \mathbf{r}_{H} = \left(\varepsilon_{Q} - \frac{\mathsf{EI}}{2 \cdot \mathsf{sin} \, \mathsf{B} \cdot \mathsf{d}_{D} \cdot \mathsf{E}_{H,90}} \cdot \mathsf{w}^{\mathsf{IV}}(\mathbf{x})\right) \cdot \mathbf{r}_{H}$$
(55)

Zugspannung im Stahlring:

$$\sigma_{\rm S} = -\frac{d_{\rm D}}{b_{\rm R} \cdot d_{\rm R}} \cdot \int_{x=0}^{e_{\rm R}} \sigma_{\rm H}(x) \, dx = \frac{{\sf EI}}{2 \cdot {\sf sin} {\sf B} \cdot b_{\rm R} \cdot d_{\rm R}} \cdot \int_{x=0}^{e_{\rm R}} w^{\rm IV}(x) \, dx \tag{56}$$

Zugkraft im Stahlring:

$$F_{s} = -d_{D} \cdot \int_{x=0}^{e_{R}} \sigma_{H}(x) dx = \frac{EI}{2 \cdot \sin\beta} \cdot \int_{x=0}^{e_{R}} w^{IV}(x) dx$$
(57)

8.2 Lastfall Vorspannung

Die Untersuchung des Lastfalls Vorspannung erfolgt analog zum Lastfall Quellen in Kapitel 8.1. Während beim Quellen eine Volumenausdehnung der Holzdauben stattfindet, führt beim Lastfall Vorspannung eine "Verkürzung" der Stahlringe zu Verformungen in der Rohrkonstruktion. Dabei muss die negative Vorspanndehnung ϵ_{VS} berücksichtigt werden. Beim theoretischen Berechnungsansatz wird die Verteilung der Vorspannkraft über den Spannring als konstant angenommen.

Bei der Betrachtung der einzelnen Holzdauben als Biegeträger beim Lastfall Vorspannung ändert sich im Vergleich zum Lastfall Quellen nur die Richtung der Auflagerverschiebung (Bild 8-4).

Bild 8-4 Verformungsverhalten infolge Lastfall Vorspannung

Analog zu Kapitel 8.1 können die Differentialgleichung der Biegelinie und somit auch die weiteren Ergebnisse abgeleitet werden. Für den Lastfall Vorspannung ergibt sich für die Biegelinie folgende Differentialgleichung:

$$w^{\text{IV}}(x) + \frac{2 \cdot \sin\beta \cdot d_{\text{D}} \cdot E_{\text{H},90}}{\text{EI} \cdot r_{\text{H}}} \cdot w(x) = \frac{2 \cdot d_{\text{D}} \cdot r_{\text{S}} \cdot E_{\text{H},90}}{b_{\text{R}} \cdot d_{\text{R}} \cdot r_{\text{H}} \cdot E_{\text{S}}} \cdot w^{\text{III}}(0) - \frac{2 \cdot \sin\beta \cdot d_{\text{D}} \cdot r_{\text{S}} \cdot E_{\text{H},90}}{r_{\text{H}} \cdot \text{EI}} \cdot \varepsilon_{\text{VS}}$$
(58)

Zur Lösung der Differentialgleichung werden die gleichen Randbedingungen wie beim Lastfall Quellen verwendet.

8.3 Lastfall Quellen und Vorspannung

Nachdem in den Kapiteln 8.1 und 8.2 die Differentialgleichung der Biegelinie für die Lastfälle Quellen und Vorspannung getrennt voneinander hergeleitet wurden, wird hier die Kombination aus beiden Lastfällen betrachtet.

Die Quelldehnung der Holzdauben wird analog zu Kapitel 8.1 mit Hilfe des Stoffgesetzes formuliert:

$$\varepsilon_{\rm H}({\bf x}) = \varepsilon_{\rm Q} + \frac{\sigma_{\rm H}({\bf x})}{{\sf E}_{{\rm H},90}}$$
(59)

Die Dehnung der Stahlringe infolge Vorspannung wird analog zu Kapitel 8.2 über die Stahldehnung und die Kompatibilität der Aufweitung des Holzrohres an der Stelle eines Spannringes berücksichtigt:

$$\Delta \mathbf{r}_{H}(\mathbf{x}=\mathbf{0}) = \varepsilon_{VS} \cdot \mathbf{r}_{S} - \frac{\mathbf{d}_{D} \cdot \mathbf{r}_{S}}{\mathbf{b}_{R} \cdot \mathbf{d}_{R} \cdot \mathbf{E}_{S}} \cdot \int_{\mathbf{x}=0}^{\mathbf{e}_{R}} \sigma_{H}(\mathbf{x}) \, d\mathbf{x}$$
(60)

Der geometrische Dehnungsansatz lautet:

$$\mathcal{E}_{H}(\mathbf{x}) = \frac{\Delta \mathbf{r}_{H}(\mathbf{x}=0) + \mathbf{w}(\mathbf{x})}{\mathbf{r}_{H}} = \mathcal{E}_{VS} \cdot \frac{\mathbf{r}_{S}}{\mathbf{r}_{H}} - \frac{\mathbf{d}_{D} \cdot \mathbf{r}_{S}}{\mathbf{b}_{R} \cdot \mathbf{d}_{R} \cdot \mathbf{r}_{H} \cdot \mathbf{E}_{S}} \cdot \int_{\mathbf{x}=0}^{\mathbf{e}_{R}} \sigma_{H}(\mathbf{x}) \, d\mathbf{x} + \frac{\mathbf{w}(\mathbf{x})}{\mathbf{r}_{H}}$$
(61)

Der Verlauf der Querdruckspannung der Holzdauben in Umfangsrichtung ergibt sich aus den beiden Gleichungen (59) und (61):

$$\sigma_{H}(\mathbf{x}) = \varepsilon_{VS} \cdot \frac{\mathbf{r}_{S}}{\mathbf{r}_{H}} \cdot \mathbf{E}_{H,90} - \varepsilon_{Q} \cdot \mathbf{E}_{H,90} - \frac{\mathbf{d}_{D}}{\mathbf{b}_{R} \cdot \mathbf{d}_{R}} \cdot \frac{\mathbf{r}_{S}}{\mathbf{r}_{H}} \cdot \frac{\mathbf{E}_{H,90}}{\mathbf{E}_{S}} \cdot \int_{\mathbf{x}=0}^{\mathbf{e}_{R}} \sigma_{H}(\mathbf{x}) \, \mathbf{dx} + \frac{\mathbf{w}(\mathbf{x})}{\mathbf{r}_{H}} \cdot \mathbf{E}_{H,90}$$
(62)

Die Differentialgleichung der Biegelinie für den Lastfall Vorspannung und Quellen lautet:

$$w^{IV}(x) = \frac{1}{EI} \cdot q(x)$$
(63)

$$= -\frac{2}{\mathsf{EI}} \cdot \mathsf{sin} \, \mathbb{S} \cdot \sigma_{\mathsf{H}}(\mathsf{x}) \cdot \mathsf{d}_{\mathsf{D}} \tag{64}$$

$$= \frac{2}{\mathrm{EI}} \cdot \mathrm{sin} \, \mathbb{S} \cdot \mathrm{d}_{\mathrm{D}} \cdot \left(-\varepsilon_{\mathrm{VS}} \cdot \frac{\mathrm{r}_{\mathrm{S}}}{\mathrm{r}_{\mathrm{H}}} \cdot \mathrm{E}_{\mathrm{H},90} + \varepsilon_{\mathrm{Q}} \cdot \mathrm{E}_{\mathrm{H},90} + \frac{\mathrm{d}_{\mathrm{D}}}{\mathrm{b}_{\mathrm{R}} \cdot \mathrm{d}_{\mathrm{R}}} \cdot \frac{\mathrm{r}_{\mathrm{S}}}{\mathrm{r}_{\mathrm{H}}} \cdot \frac{\mathrm{E}_{\mathrm{H},90}}{\mathrm{E}_{\mathrm{S}}} \cdot \int_{\mathrm{x=0}}^{\mathrm{e}_{\mathrm{R}}} \sigma_{\mathrm{H}}(\mathrm{x}) \, \mathrm{dx} - \frac{\mathrm{w}(\mathrm{x})}{\mathrm{r}_{\mathrm{H}}} \cdot \mathrm{E}_{\mathrm{H},90} \right)$$
(65)

Durch Umformung des Integrals entsteht folgende Differentialgleichung (66). Diese Gleichung unterscheidet sich von denen in Kapitel 8.1 und 8.2 nur durch den konstanten Ausdruck auf der rechten Seite.

$$w^{\text{IV}}(\mathbf{x}) + \frac{2 \cdot \sin\beta \cdot d_{\text{D}} \cdot E_{\text{H},90}}{\text{EI} \cdot r_{\text{H}}} \cdot w(\mathbf{x}) = \frac{2 \cdot d_{\text{D}} \cdot r_{\text{S}} \cdot E_{\text{H},90}}{b_{\text{R}} \cdot d_{\text{R}} \cdot r_{\text{H}} \cdot E_{\text{S}}} \cdot w^{\text{III}}(\mathbf{0})$$
$$- \frac{2 \cdot \sin\beta \cdot d_{\text{D}} \cdot r_{\text{S}} \cdot E_{\text{H},90}}{r_{\text{H}} \cdot \text{EI}} \cdot \varepsilon_{\text{VS}}$$
$$+ \frac{2 \cdot \sin\beta \cdot d_{\text{D}} \cdot E_{\text{H},90}}{\text{EI}} \cdot \varepsilon_{\text{Q}}$$
(66)

8.4 Vergleich mit Versuchsergebnissen

Die theoretische Berechnung des Lastfalls Vorspannung und Quellen wird in diesem Kapitel mit Ergebnissen aus experimentellen Untersuchungen an Druckrohrleitungen aus Holz (vgl. Kapitel 7.1) verglichen.

In Tabelle 8-1 sind die Ergebnisse der experimentellen Untersuchungen aus Kapitel 7.1.2 zusammengefasst (Mittelwerte von Rohrabschnitt 1 mit einer Vorspannung von 5 kN und ohne Wasserinnendruck). Die maximale Beanspruchung der Spannringe wurde ca. 4 bis 6 Wochen nach Versuchsbeginn erreicht; anschließend trat eine Reduzierung der Zugkraft in den Spannringen durch Relaxation des Holzes auf. Nach ca. 2 bis 3 Monaten erreichte die Zugkraft ein konstantes Niveau.

Tabelle 8-1Beanspruchung der Spannringe aus experimentellen Untersuchungen
(vgl. Kapitel 7.1.2: Mittelwerte von Rohrabschnitt 1 mit einer Vorspannung von 5 kN)

Lastfall	Zeitpunkt	Zugkraft im Spannring Z_R [kN]	
Vorspannung	t=0	5,314	
Quellen	t = 4 - 6 Wochen (max Z _R)	10,320	
Quellen	t > 3 Monate (Z _R)	9,534	
Vorspannung + Quellen	t = 4 - 6 Wochen (max Z _R)	15,634	
Vorspannung + Quellen	t > 3 Monate (Z _R)	14,849	

Für die theoretische Berechnung des Lastfalls Vorspannung und Quellen nach Kapitel 8.3 werden als Eingangsgrößen experimentell ermittelte Werte für den Elastizitätsmodul von Holz (Lärche) (vgl. Kapitel 4.1.2) sowie die geometrischen Vorgaben des Versuchsstandes (vgl. Kapitel 7.1.1) verwendet:

geometrische Vorgaben:

r _{innen}	= 700 mm	Innenradius des Holzrohres
n _D	= 36	Anzahl der Holzdauben
d _D	= 68 mm	Dicke der Holzdauben
d _R	= 6 mm	Dicke der Spannringe
b _R	= 60 mm	Breite der Spannringe
e _R	= 500 mm	Abstand der Spannringe

materielle Vorgaben:

E _{H,90} = 255 N/mm ²	E-Modul Holz rechtwinklig zur Faserrichtung bei
	einer Holzfeuchte u > FS

E _{H,90}	= 363 N/mm ²	E-Modul Holz rechtwinklig zur Faserrichtung bei
		einer Holzfeuchte u = 16 %
E _{H,0}	= 11760 N/mm ²	E-Modul Holz in Faserrichtung bei einer
		Holzfeuchte u > FS
E _{H,0}	= 12585 N/mm ²	E-Modul Holz in Faserrichtung bei einer
		Holzfeuchte u = 16 %
E_S	= 210000 N/mm ²	E-Modul Stahl

Der Elastizitätsmodul in bzw. rechtwinklig zur Faserrichtung von Lärche bei einer Holzfeuchte von 16 % wurde mit Hilfe der Ergebnissen aus Kapitel 4.1.2 (Elastizitätsmodul bei einer Holzfeuchte von 12 %) und der Abminderung von 2 %/%∆u nach DIN EN 384 (05/2004) bestimmt.

Für die Quelldehnung ϵ_{Q} und die Vorspanndehnung ϵ_{VS} werden folgende Werte gewählt:

Zeitpunkt t = 0:	EQ	= 0
	€∨S	= -0,000485
Zeitpunkt t = 4 - 6 Wochen:	EQ	= 0,001526
	£∨S	= -0,000485
Zeitpunkt t > 3 Monate:	EQ	= 0,001425
	£√S	= -0,000485

In Tabelle 8-2 sind die Ergebnisse des theoretischen Berechnungsansatzes zusammengefasst. Es wurden drei unterschiedliche Berechnungen durchgeführt. In der ersten Berechnung zum Zeitpunkt t = 0 tritt nur der Lastfall Vorspannung auf und die Holzfeuchte beträgt zu diesem Zeitpunkt ca. 16 %. In der zweiten Berechnung zum Zeitpunkt t = 4 - 6 Wochen wird sowohl der Lastfall Vorspannung als auch Quellen berücksichtigt. Für die Holzfeuchte wird die Annahme getroffen, dass diese über dem Fasersättigungsbereich liegt. Zur Berücksichtigung der Relaxation des Holzes (Zeitpunkt t > 3 Monate) wird in der dritten Berechnung eine geringere Quell-dehnung ϵ_Q eingesetzt.

In Tabelle 8-2 ist die Zugkraft Z_R in den Spannringen und die Querdruckspannung der Holzdauben in Umfangsrichtung $\sigma_{c,90,U}$ angegeben. Die Zugkraft ist beim theoretischen Berechnungsansatz konstant über den Spannring verteilt und kann mit dem Mittelwert der Zugkraft aus den experimentellen Untersuchungen (Kapitel 7.1.2) verglichen werden. Die Querdruckspannung der Holzdauben in Umfangsrichtung ist maximal an der Stelle eines Spannringes (x = 0 bzw. x = e_R) und minimal zwischen zwei Spannringen (x = e_R/2). Bild 8-5 zeigt den Verlauf der Querdruckspannung in Umfangsrichtung nach dem theoretischen Berechnungsansatz für den Lastfall Vorspannung und Quellen zum Zeitpunkt t = 4 - 6 Wochen.

Tabelle 8-2Auswertung des theoretischen Berechnungsansatzes und Vergleich mit
experimentellen Untersuchungen (vgl. Kapitel 7.1.2)

Berechnung	Lastfall	Zeitpunkt	Eingabewerte	E-Modul (Lärche)		E-Modul (Lärche)		σ _{c,90,U} [N/mm²] theoretisch	Z _R [kN] theoretisch	Z _R [kN] experimentell
1	Vorspannung	t = 0	ε _{VS} = -0,000485	u = 16%	E _{H,0} = 12585	0 158	5 313	5 314		
•	vorspanning	. 0	ε _Q = 0	u 1070	E _{H,90} = 363	0,100	0,010	0,011		
2	Vorspannung	t = 4 - 6 Wochen	ε _{VS} = -0,000485	u > 30%	E _{H,0} = 11760	0.464	15 625	15 634		
2 Que	Quellen	$\epsilon_{Q} = 0,001526$	u × 5070	E _{H,90} = 255	0,404	10,020	10,004			
2	Vorspannung	t > 2 Monata	ε _{VS} = -0,000485	11 > 20%	E _{H,0} = 11760	0.441	14 940	14 940		
5	Quellen		ε _Q = 0,001425	u - 30%	E _{H,90} = 255	0,441	14,049	14,049		

Bild 8-5 Verlauf der Querdruckspannung der Holzdauben in Umfangsrichtung nach theoretischem Berechnungsansatz (Lastfall Vorspannung und Quellen; t = 4 - 6 Wochen)

Die mit Hilfe des theoretischen Ansatzes berechneten Werte der Zugkraft in den Spannringen stimmen mit den experimentell ermittelten Werten sehr gut überein (Tabelle 8-2).

Sowohl beim theoretischen Ansatz als auch bei der experimentellen Untersuchung des stehenden Rohrabschnittes ist kein Wasserinnendruck vorhanden. Wird dieser berücksichtigt (vgl. Kapitel 9), steigt bei zunehmendem Wasserinnendruck die Zugkraft in den Spannringen und die Querdruckspannung der Holzdauben in Umfangsrichtung nimmt infolge der Rohraufweitung ab. Zusätzlich werden diese Werte von geometrischen Vorgaben (Dicke der Holzdauben, Spannringabstand, Rohrinnendurchmesser, etc.) beeinflusst.

Mit dem theoretischen Berechnungsansatz und den ermittelten Eingabewerten ϵ_{VS} und ϵ_{Q} kann die Modellierung der Lastfälle Vorspannung und Quellen für das Finite-Elemente-Modell überprüft werden.

9 Finite-Elemente-Modell für Druckrohrleitungen aus Holz

9.1 Geometrie

Zur Verifizierung der Ergebnisse der experimentellen Untersuchungen des Trag- und Verformungsverhaltens von Druckrohrleitungen aus Holz, die auf Sätteln aufgelagert sind (vgl. Kapitel 7.2), wird nachfolgend ein Finite-Elemente-Modell vorgestellt. Mit Hilfe des Tabellenkalkulationsprogramms Microsoft Excel und der darin implementierten Programmiersprache Visual Basic wurde eine automatische Generierung der Eingabebefehle für die FE-Modellierung erarbeitet. Damit können neben den Parametern aus den Bereichen Material und Belastung auch geometrische Vorgaben variiert und eine Vielzahl unterschiedlicher Modelle bei vergleichbar geringem Zeitaufwand modelliert werden. Die Berechnungen erfolgten mit dem FE-Programm ANSYS Version 5.7. Nachfolgend wird von einer geraden, horizontal verlaufenden Druckrohrleitung ausgegangen; der Einfluss von Neigungen, Krümmungen und Rohranschlüssen wird nicht berücksichtigt.

Zur allgemeinen Untersuchung von Druckrohrleitungen aus Holz wurde die Anzahl der möglichen Geometrien durch einige Vorgaben begrenzt:

- einheitliche Länge und Querschnitt der Holzdauben;
- gerade Anzahl von Holzdauben im Querschnitt;
- jeweils die Hälfte der Holzdauben wird in einem Querschnitt gestoßen;
- konstanter Abstand der Auflager (Sättel) und der Spannringe;
- über dem Auflager befindet sich jeweils ein Spannring.

Bild 9-1 zeigt einen Abschnitt einer Druckrohrleitung, welcher die oben angegebenen Anforderungen erfüllt.

Bild 9-1 Abschnitt einer Druckrohrleitung

Zur vollständigen Beschreibung der Geometrie der Druckrohrleitung sind folgende Parameter erforderlich:

- Innendurchmesser der Druckrohrleitung d;
- Abstand der Auflager e_S;

- Breite der Auflager b_S;
- Anzahl der Holzdauben im Querschnitt n_D;
- Länge der Holzdauben ℓ_D ;
- Dicke der Holzdauben d_D;
- Anzahl der Spannringe n_R;
- Dicke der Spannringe d_R ;
- Breite der Spannringe b_R.

Der Abstand der Spannringe ergibt sich somit bei vorgegebenem Abstand der Auflager nach Gleichung (67).

$$\mathbf{e}_{\mathrm{R}} = \frac{\mathbf{e}_{\mathrm{S}}}{\mathsf{n}_{\mathrm{R}}} \tag{67}$$

mit

e_R = Abstand der Spannringe [m]

e_S = Abstand der Auflager [m]

n_R = Anzahl der Spannringe zwischen zwei Auflager [-]

Aus den oben genannten Vorgaben lässt sich anhand Bild 9-2 die exakte Geometrie einer einzelnen Holzdaube bestimmen.

Bild 9-2 Geometrie einer Holzdaube

Durch Ausnutzung der Symmetrieeigenschaften der Druckrohrleitung kann der Umfang der Modellierung und die erforderliche Rechenzeit reduziert werden. Aus diesem Grund wird durch zwei vertikale, rechtwinklig zur Rohrachse geführte Schnitte jeweils in Feldmitte zwischen den Auflagern ein Rohrabschnitt herausgeschnitten. Die Betrachtung eines Rohrabschnittes der Länge ℓ ist ausreichend, da sich die Schnittgrößen und Verformungen in den einzelnen Feldern wiederholen. Der Umfang der Modellierung lässt sich durch eine zweite Ausnutzung der Symmetrie weiter reduzieren. Hierzu wird ein vertikaler Schnitt in Längsrichtung der Druckrohrleitung durchgeführt. Die zu modellierende Halbschale ist in Bild 9-3 dargestellt. Die beiden Schnitte rechtwinklig zur Rohrachse führen je nach Anordnung der

Spannringe entweder nur durch Holzdauben oder durch Holzdauben und Spannring. Beim Schnitt parallel zur Rohrachse wird davon ausgegangen, dass die oberste und unterste Holzdaube in Längsrichtung jeweils halbiert wird.

9.2 Materialien

Das Trag- und Verformungsverhalten von Druckrohrleitungen aus Holz kann als Zusammenwirken von Stahl- und Holzbauteilen betrachtet werden. Wie bereits in Kapitel 4 beschrieben, nehmen im Allgemeinen die elasto-mechanischen Eigenschaften von Holz mit zunehmendem Feuchtegehalt im hygroskopischen Bereich ab. Dieser Einfluss der Holzfeuchte auf die Steifigkeiten von Holz sowie die streuenden Materialeigenschaften des natürlichen Rohstoffes müssen bei der Modellierung berücksichtigt werden. Bei den folgenden Berechnungen wird linear elastisches Materialverhalten zugrunde gelegt

Für die Modellierung der Struktur werden insgesamt vier Materialien verwendet. Neben den zwei realen Materialien "Holz" und "Stahl" werden zusätzlich die zwei fiktiven Materialien "Haftung Holz - Holz" und "Haftung Stahl - Holz" definiert. Die beiden fiktiven Materialien beschreiben den Kontakt zwischen einzelnen Holzdauben (Nut- und Federverbindung an den Längsseiten der Holzdauben) bzw. zwischen Holzdaube und Spannring. Für Holz wird rhombisch anisotropes Materialverhalten vorausgesetzt. Da in einem Rohrquerschnitt sowohl Holzdauben mit liegenden Jahrringen als auch stehenden vorhanden sind, werden für die radiale und tangentiale Richtung Mittelwerte der Holzeigenschaften (Querdehnungsfaktoren, Steifigkeiten, etc.) eingesetzt.

9.3 Einwirkungen

Die Beanspruchung einer Druckrohrleitung aus Holz, die auf Sätteln aufgelagert ist, setzt sich aus den Lastfällen Eigengewicht, Vorspannung, Quellen und Wasserinnendruck zusammen. Belastungen in Rohrlängsrichtungen infolge Rohrneigung etc. werden nicht berücksichtigt.

9.3.1 Lastfall Eigengewicht

Der Lastfall Eigengewicht beinhaltet das Eigengewicht der gesamten Rohrkonstruktion (Holzdauben und Spannringe). Das Eigengewicht des Wassers wird über den Lastfall Wasserinnendruck abgebildet.

9.3.2 Lastfall Vorspannung

In der Praxis werden die Spannringe leicht vorgespannt, um den Zusammenbau zu ermöglichen und die Holzdauben hinreichend dicht zusammenzupressen. Durch die Vorspannung der Stahlringe entstehen Zwängungsspannungen in Form von Druckspannungen rechtwinklig zur Faserrichtung in den Holzdauben und Zugspannungen in den Stahlringen. Die Größe dieser im Gleichgewicht stehenden Spannungen ist vor allem von dem Verhältnis der Steifigkeiten und dem Abstand der Spannringe abhängig.

Im FE-Modell wird der Lastfall Vorspannung über eine Temperaturbelastung der Stahlringe berücksichtigt. Der Koeffizient der Temperaturausdehnung in Umfangsrichtung der Spannringe wird mit $\alpha_T = 1$ [1/K] definiert. Die Verkürzung der Spannringe wird durch eine negative Endtemperatur T₂ < 0 K erzeugt. Zur Steuerung dieses Lastfalls muss eine negative Dehnung der Spannringe bei der automatischen Generierung eingegeben werden, welche betragsmäßig der Endtemperatur T₂ entspricht. Diese negative Dehnung kann mit Hilfe des theoretischen Berechnungsansatzes bestimmt werden (vgl. Kapitel 8.4: $\epsilon_{VS} = -0,000485$ für die dort vorgegebenen Angaben).

In der Realität ist die Vorspannung infolge Haftung nicht konstant über den Spannring verteilt. Die Zugkraft im Spannring ist am Spannschloss maximal und nimmt ausgehend vom Spannschloss mit zunehmendem Winkel ab. Beim FE-Modell wird dieser Effekt durch unterschiedliche Temperaturbelastung der einzelnen Volumenelemente, aus welchen ein Spannring zusammengesetzt wird, abgebildet. Die Größe der exponentiell verteilten Temperaturbelastung eines Spannringes ist abhängig vom gewählten Vorspannungsgrad und wird in der automatischen Generierung als Mittelwert eingegeben. Die exponentielle Verteilung selbst ist in Kapitel 7.2.2 beschrieben. In der Praxis sollte die Anordnung der Spannschlösser der einzelnen Spannringe spiralförmig in Längsrichtung der Rohrleitung erfolgen, damit eine gleichmäßige Verteilung der Vorspannkraft gewährleistet ist. Die maximale Zugbeanspruchung in einem Spannring tritt beim Spannring in Feldmitte zwischen zwei Auflagern auf, wenn das Spannschloss in Höhe der Rohrmittellinie angeordnet ist. Ursache hierzu ist das Biegetragverhalten der Rohrleitung und die Ovalisierung des Kreisquerschnittes. Beim FE-Modell wird deshalb der Spannring in Feldmitte mit einer maximalen negativen Temperaturbelastung in Höhe der Rohrmittellinie belastet, die Spannschlösser der folgenden Spannringe jeweils spiralförmig um 90° versetzt.

9.3.3 Lastfall Quellen

Die einzelnen Holzdauben werden bei der Herstellung einer Druckrohrleitung mit einer Holzfeuchte von ungefähr 16 % eingebaut. Durch das Quellen des Holzes wird die Dichtigkeit der Rohrleitung gewährleistet. Aufgrund des entstehenden Quellungsdruckes werden die Spannringe aus Stahl auf Zug beansprucht. Der Quellungsdruck ist somit neben dem Wasserinnendruck entscheidend für die Bemessung der Spannringe. Ähnlich wie beim Lastfall Vorspannung entstehen durch das Quellen der einzelnen Holzdauben Zwängungsspannungen in Form von Druckspannungen rechtwinklig zur Faserrichtung in den Holzdauben und Zugspannungen in den Stahlringen. Im Bereich zwischen den Spannringen kann sich die Rohrwandung durch Verformung der Belastung teilweise entziehen.

Bei der Modellierung des Lastfalls Quellen wird eine gleichmäßige Feuchtigkeitsverteilung in den Holzdauben angenommen. Im FE-Modell wird das Quellen über eine Temperaturbelastung der Holzdauben als Wärmeausdehnung berücksichtigt. Der Koeffizient der Temperaturausdehnung α_T wird für die tangentiale und radiale Holzrichtung mit 1 [1/K], für die longitudinale Richtung mit 0 [1/K] definiert. Die zugehörige Temperaturbelastung wird in Abhängigkeit vom vorgegebenen Quellmaß des Holzes bestimmt. Bei der Modellierung wird ein aus radialem und tangentialem Quellmaß gemittelter Wert rechtwinklig zur Faserrichtung angegeben. Das in Relation hierzu sehr geringe longitudinale Quellmaß wird nicht berücksichtigt. Zusätzlich muss bei der Eingabe die Holzfeuchte beim Einbau der Holzdauben definiert werden, um die entsprechende Beanspruchung infolge Quellen zu ermitteln:

α	[%/%∆u]	
U ₁	[%]	
U ₂	[%]	
$\Delta u = u_2 - u_1$	[%]	
$\varepsilon_{\rm Q} = \Delta {\bf U} \cdot \alpha$	[-]	(68)
	α u_1 u_2 $\Delta u = u_2 - u_1$ $\varepsilon_Q = \Delta u \cdot \alpha$	$\alpha \qquad [\%/\%\Delta u]$ $u_1 \qquad [\%]$ $u_2 \qquad [\%]$ $\Delta u = u_2 - u_1 \qquad [\%]$ $\varepsilon_Q = \Delta u \cdot \alpha \qquad [-]$

Wärmeausdehnungskoeffizient:	α_{T}	[1/K]	
Ausgangstemperatur:	T ₁	[K]	
Endtemperatur:	T ₂	[K]	
Temperaturänderung:	$\Delta T = T_2 - T_1$	[K]	
→ Wärmedehnung:	$\varepsilon_{\rm T} = \Delta {\sf T} \cdot \alpha_{\rm T}$	[-]	(69)

Aus Gleichung (68) und (69) folgt die erforderliche Temperaturänderung:

$$\Delta \mathsf{T} = (\mathsf{T}_2 - \mathsf{T}_1) = \Delta \mathsf{u} \cdot \frac{\alpha}{\alpha_{\mathsf{T}}} = (\mathsf{u}_2 - \mathsf{u}_1) \cdot \frac{\alpha}{\alpha_{\mathsf{T}}}$$
(70)

Bei der Verwendung des gewählten Wärmeausdehnungskoeffizienten $\alpha_T = 1$ [1/K] und der in ANSYS standardmäßig vorgegebenen Ausgangstemperatur von T₁ = 0 K beträgt die Endtemperatur somit:

$$\mathsf{T}_2 = (\mathsf{u}_2 - \mathsf{u}_1) \cdot \alpha \tag{71}$$

Zur Berücksichtigung der Relaxation des Holzes werden für jede FE-Modellierung zwei Berechnungen mit unterschiedlichen Quelldehnungen durchgeführt. Die beiden Werte der Quelldehnung wurden experimentell ermittelt (vgl. Kapitel 8.4). Im ersten Berechnungsschritt wird die maximale Zugkraft in den Spannringen sowie die Spannungen in den Holzdauben während des Quellvorgangs bestimmt ($\epsilon_Q = 0,001526$). Im zweiten Berechnungsschritt zur Bestimmung der maximalen Verformungen wird aufgrund der Relaxation des Holzes eine geringere Quelldehnung eingesetzt ($\epsilon_Q = 0,001425$).

Beispiel für Eingabe:

Quellmaß:	α = 0,0109 %/%Δu
Holzfeuchte beim Einbau:	u ₁ = 16 %
Holzfeuchte im Endzustand:	u ₂ = 30 % (entspricht der Fasersättigungsfeuchte)
\rightarrow Quelldehnung:	ε _Q = 0,0109 · [(30 - 16) / 100] = 0,001526 [-]
\rightarrow Endtemperatur:	T ₂ = 0,0109 · [(30 - 16) / 100] = 0,001526 [K]

9.3.4 Lastfall Wasserinnendruck

Der in der Druckrohrleitung herrschende Wasserinnendruck wird als Wassersäule mit der Höhe h_{WS} [m] über der Rohrachse angegeben. Aufgrund der hydrostatischen Druckverteilung ergibt sich somit für die Sohle der Rohrleitung eine Druckhöhe von h_{WS} + r_{innen} , für den Rohrscheitel h_{WS} – r_{innen} (Bild 9-4). Dieser Druckunterschied entspricht dem Eigengewicht des im Rohr enthaltenen Wassers. Für jeden Punkt an der Rohrinnenseite kann nach Gleichung (72) eine Flächenlast $p(\varphi)$ angegeben werden.

$$p(\varphi) = h_{WS}(\varphi) \cdot \rho_{W} \cdot g$$
(72)

mit

 $p(\varphi)$ = Flächenlast infolge Wasserinnendruck [kN/m²] $h_{WS}(\varphi)$ = Höhe der Wassersäule [m]

 ρ_{W} = Dichte Wasser: 0,998 [t/m³] (bei T = 20°C)

g = Erdbeschleunigung: 9,81 [m/s²]

Bild 9-4 hydrostatische Druckverteilung

Im Gegensatz zu den Lastfällen Quellen und Vorspannung, welche über äquivalente Belastungen abgebildet werden, wird der Wasserinnendruck direkt als Flächenlast auf der Innenseite der Rohrwandung aufgebracht.

9.4 Modellierung

Die Modellierung erfolgt über eine direkte Generierung, bei der die Struktur über eine geometrische Beschreibung aus Knoten und Elementen aufgebaut wird. Der Aufbau des Modells erfolgt aus den Holzdauben, um welche passgenau die Spannringe angeordnet werden. Vor dem Aufbringen der Lastfälle berühren sich somit zwar alle Teile der Konstruktion, sind jedoch vollständig spannungsfrei. Bei den folgenden Berechnungen wird linear elastisches Materialverhalten zugrunde gelegt.

Bei der Modellerzeugung wird zunächst ein Netz aus Knoten generiert. Die Eingabe der Knoten erfolgt automatisch in globalen zylindrischen Koordinaten. Die einzelnen Bauteile der Struktur (Holzdauben und Spannringe) werden anschließend aus Volumenelementen aufgebaut. Die Bauteile entstehen hierbei jedoch nicht in einem Schritt, sondern es werden kleinere Elemente erzeugt, aus welchen durch entsprechende Kopplungen an den Stoßflächen die Bauteile zusammengefügt werden. Diese Zerlegung in Substrukturen ermöglicht erst die Programmierung der automatisierten Generierung. Zusätzlich werden bei der Generierung mit Hilfe einer Kodierung den Knoten und Elementen automatisch Nummern zugeordnet.

Als Volumenelemente werden SOLID64-Elemente verwendet. Dieser Elementtyp mit acht Knoten bildet eine dreidimensionale massive Struktur. Die Halbschale des Modells besteht aus einzelnen Holzdauben. Dabei ist in der Regel jede zweite Holzdaube über dem Auflager gestoßen angeordnet. Die einzelnen Dauben sind in ihrer Längsrichtung aus mehreren Daubenabschnitten aufgebaut (Bild 9-5).

Bild 9-5 Holzrohr: Modellierung und Aufbau

Bemerkenswert an der Konstruktion eines Holzdaubenrohres ist die Tatsache, dass zwischen den einzelnen Bauteilen keine feste Verbindung besteht. Bei der FE-Modellierung wurden für eine realistische Abbildung der Struktur Kontaktelemente gewählt. Diese Elemente, bestehend aus Kontakt- und Zielelement (CONTA173 und TARGE170), werden auf der Oberfläche der Volumenelemente angeordnet. Der Elementtyp CONTA173 ist ein vierknotiges, dreidimensionales Kontaktelement zur Modellierung von Kontaktverbindungen zwischen zwei Oberflächen. Das zugehörige Element TARGE170 ist ein dreidimensionales Zielelement. Definiert wird ein solches Kontaktpaar durch die Zuweisung eines gemeinsamen Real Constant Sets. Die Kontaktpaare bei der vorliegenden Modellierung lassen sich in drei unterschiedliche Gruppen einteilen:

- Kontakt zwischen den Längsseiten der Holzdauben (Flanken);
- Kontakt zwischen den Hirnholzflächen der Holzdauben an den Längsstoßen;
- Kontakt zwischen der Außenseite der Holzdauben und der Innenseite der Stahlringe.

Bei der Verwendung von Kontaktelementen wird die Berechnung nichtlinear; die Belastung des Systems wird schrittweise aufgebracht und die Verformung der Struktur wird für jeden dieser Zwischenschritte durch eine Reihe von Gleichgewichtsiterationen bestimmt.

In der Praxis werden die einzelnen Holzdauben an den Längsseiten mit Nut- und Federverbindungen hergestellt, um eine verbesserte Dichtigkeit der Fuge beim Quellvorgang zu erreichen. Im vorliegenden FE-Modell wurde diese Nut- und Federverbindung geometrisch nicht berücksichtigt. Die Abbildung der Nut- und Federverbindung erfolgt im Modell über die Eingabe eines Haftungskoeffizienten. Angaben zur Größe des Haftungskoeffizienten einer Nut- und Federverbindung können Kapitel 4.5.2 entnommen werden.

Die Verbindung der Holzdauben an den Stirnseiten (Fremdfeder aus Sperrholz, Metall oder Kunststoff) wurde im FE-Modell als Stumpfstoß der einzelnen Holzdauben an den Stirnseiten ausgeführt. Somit können Druckkräfte in Längsrichtung einer Holzdaube durch Kontaktelemente übertragen werden. Zugkräfte werden bei dieser Verbindung nicht übertragen.

Die einzelnen Dauben- und Ringabschnitte, welche durch die Definition der Knoten und Volumenelemente entstanden sind, werden über Kopplung an ihren Kontaktflächen zu Bauteilen zusammengefügt. Der Haftungskoeffizient zwischen Stahl und Holz kann nach Möhler und Herröder (1979) mit 0,5 angenommen werden.

Die Abbildung der Lagerung des Rohrabschnittes auf dem Sattel erfolgt über die Definition der Freiheitsgrade: Knoten in den Bauteiloberflächen, die in Kontakt mit dem Auflager sind, werden orthogonal zu dieser Kontaktfläche unverschieblich gehalten.

Wie bereits in Kapitel 9.1 erwähnt, wird das Modell über eine automatische Eingabegenerierung erzeugt. Die Eingabe von Geometrie, Materialien, Elementstruktur und Einwirkungen erfolgt über ein Microsoft Excel Datenblatt (Tabelle 9-1).

Tabelle 9-1 Eingabedatei für die automatische Generierung

Finite-Elemente-Modell für Druckrohrleitungen aus Holz

111

Über die Eingabe der Elementstruktur kann die Anzahl der Volumenelemente und somit auch die Diskretisierung gesteuert werden. Die automatische Generierung wird über die Schaltfläche "Generierung" gestartet. Der Anwender kann über das Formular "Abfrage" die gewünschte Modellierung wählen (Bild 9-6).

bfrage	<u>×</u>
System:	Belastung:
🔽 Materialien	🗍 Eigengewicht
🔽 Element-Typen	🕅 Vorspannung
🔽 Real Constants	🗖 Quellen
🔽 Knoten Dauben	Innendruck
Knoten Ringe Volumenelemente Dauben Volumenelemente Ringe	🖵 alles (Belastung)
🗖 Oberlaechenelemente Dauben / Flanke	
C Oberflaechenelemente Ringe	
Oberflaechenelemente Dauben / Aussenseite	
C Oberflaechenelemente Dauben / Hirnholz	
🗖 Kopplungen Dauben	
🗖 Kopplungen Ringe	
🗖 Lagerung Symmetrie	[]
🗖 Lagerung Sattel	ОК
	Abbruch

Bild 9-6 Formular "Abfrage" für automatische Generierung

9.5 Vergleich mit experimentellen Untersuchungen

Zur Verifizierung des FE-Modells wurde der in Kapitel 7.2.1 beschriebene Versuchsstand modelliert (Rohrinnendurchmesser 1,4 m, Auflagerabstand 2,0 m, Spannringabstand 0,5 m) und die theoretischen Ergebnisse mit experimentell ermittelten Werten verglichen.

Die in den Vorversuchen in Kapitel 4 ermittelten Eigenschaften von Lärche (Mittelwerte) wurden als Eingangsgrößen in das FE-Modell eingesetzt. Die Steifigkeiten bei einer Holzfeuchte über dem Fasersättigungsbereich wurden direkt aus Kapitel 4.1.2 übernommen. Der Elastizitätsmodul in bzw. rechtwinklig zur Faserrichtung bei einer Holzfeuchte von 16 % wurde mit Hilfe der Ergebnisse aus Kapitel 4.1.2 (Elastizitätsmodul bei einer Holzfeuchte von 16 % und der Abminderung von 2 %/%∆u nach DIN EN 384 (05/2004) bestimmt. Analog wurde der Schubmodul bei einer Holzfeuchte von 16 % ermittelt. Der zugehörige Rollschubmodul wurde mit 10 % des Schubmoduls nach DIN 1052 (08/2004) angenommen.

Die Querdehnungsfaktoren wurden in Abhängigkeit der Holzfeuchtigkeit nach Neuhaus (1981) eingesetzt. Die Berechnung von Mittelwerten aus Querdehnungsfaktoren berücksichtigt, dass in einem Rohrquerschnitt sowohl Holzdauben mit liegenden als auch stehenden Jahrringen angeordnet sind.

Für die Quelldehnung ϵ_Q und die Vorspanndehnung ϵ_{VS} wurden die in Kapitel 8.4 ermittelten Werte eingesetzt.

Die folgenden Ergebnisse werden für das modellierte Holzrohr (Rohrinnendurchmesser d = 1,40 m), wie es in Bild 9-7 dargestellt ist, angegeben. Der aus Symmetriegründen gewählte Darstellungsbereich entspricht dem Auflagerabstand von 2,0 m. Das Auflager befindet sich in der Mitte des dargestellten Rohrabschnittes. Der Abstand der Spannringe beträgt 50 cm. Die Belastung wurde schrittweise aufgebracht und entspricht dem Wasserinnendruck zu den in Kapitel 7.2.2 jeweils angegebenen Zeitpunkten.

Bild 9-7 FE-Modell eines Holzrohres (Abmessungen vgl. Versuchsstand in Kapitel 7.2.1)

9.5.1 Querschnittsverformungen und Verformungen in Längsrichtung

Zur Untersuchung der Verformungen in Längsrichtung der Rohrleitung werden die Knoten der obersten und untersten Holzdaube sowie die der Holzdaube in Höhe der Rohrachse betrachtet. Die Querschnittsverformungen werden in Feldmitte zwischen zwei Auflagern sowie über dem Auflager untersucht. Exemplarisch sind in Bild 9-8 überhöht die Querschnittsverformungen der FE-Modellierung über dem Auflager sowie in Feldmitte zum Zeitpunkt F bei einem Wasserinnendruck von 1,5 bar dargestellt. Bild 9-9 zeigt die Verformungen der obersten und untersten Holzdaube in Längsrichtung der Rohrleitung. In Tabelle 9-2 sind die Verformungen der FE-Modellierung bei einem Wasserinnendruck von 1,5 bar zusammengefasst. Tabelle 9-3 vergleicht die im Versuch gemessenen Verformungen (vgl. Kapitel 7.2.3) mit den mittels dem FE-Modell bestimmten Verformungen. Die Ergebnisse, die mit Hilfe des FE-Modells berechnet wurden, stimmen sehr gut mit den experimentell ermittelten Werten überein. Die Ergebnisse der FE-Modellierung weichen maximal 10 % von den experimentell ermittelten Werten ab.

Bild 9-8 Querschnittsverformung (2-fach überhöht) am Auflager und in Feldmitte (Wasserinnendruck: p = 1,5 bar; Zeitpunkt F)

Bild 9-9 Verformung der obersten und untersten Holzdaube in Längsrichtung (Wasserinnendruck: p = 1,5 bar; Zeitpunkt F)

Tabelle 9-2Querschnittsverformungen und Verformungen in Längsrichtung: Ergeb-
nisse der FE-Modellierung

ANSYS: Verformungen [cm]		Punkt a		Punkt b		Punkt c	
		u _x	u _y	u _x	u _y	u _x	u _y
Wasserfüllung	Auflager (MW Ring 1,5)	-	-2,62	0,85	-0,45	-	0,00
Zeitpunkt B	Feldmitte (Ring 3)	-	-2,60	0,80	-0,47	-	-0,31
1,1 bar Zeitpunkt E	Auflager (MW Ring 1,5)	-	-2,34	1,04	-0,45	-	0,00
	Feldmitte (Ring 3)	-	-2,33	1,00	-0,47	-	-0,36
1,5 bar Zeitpunkt F	Auflager (MW Ring 1,5)	-	-2,19	1,13	-0,43	-	0,00
	Feldmitte (Ring 3)	-	-2,17	1,09	-0,44	-	-0,38

Tabelle 9-3Querschnittsverformungen und Verformungen in Längsrichtung: Ver-
gleich der Versuchsergebnisse (Kapitel 7.2.3) mit FE-Modellierung

Vergleich der Verformungen: Versuch / ANSYS [%]		Punkt a		Punkt b		Punkt c	
		u _x	u _y	u _x	u _y	u _x	u _y
Wasserfüllung	Auflager (MW Ring 1,5)	-	92%	94%	94%	-	100%
Zeitpunkt B	Feldmitte (Ring 3)	-	90%	92%	93%	-	91%
1,1 bar Zeitpunkt E	Auflager (MW Ring 1,5)	-	93%	95%	94%	-	100%
	Feldmitte (Ring 3)	-	92%	94%	93%	-	93%
1,5 bar Zeitpunkt F	Auflager (MW Ring 1,5)	-	91%	94%	95%	-	100%
	Feldmitte (Ring 3)	-	90%	93%	94%	-	95%

9.5.2 Beanspruchung der Spannringe

Die maximale Beanspruchung der Spannringe tritt während des Quellvorgangs auf. Maßgebend ist aufgrund der maximalen Rohraufweitung im Feldquerschnitt infolge Wasserinnendruck der Spannring in Feldmitte zwischen zwei Auflagern. In Bild 9-10 ist der Verlauf der Zugkraft im Spannring bei einem Wasserinnendruck von 1,1 bar zum Zeitpunkt D dargestellt. Die Abwicklung des Spannringes bezieht sich auf die Hälfte des Rohrquerschnittes. Aufgrund der Anordnung des Spannschlosses und der Ovalisierung des Kreisquerschnittes tritt die maximale Zugkraft im Spannring in Höhe der Rohrmittellinie auf. Zum Vergleich sind in Bild 9-10 die experimentell ermittelten Werte der Zugkraft in Spannring 3 in Feldmitte (vgl. Kapitel 7.2.2) dargestellt.

Bild 9-10 Abwicklung der Zugkraft im Spannring im Feldquerschnitt (Wasserinnendruck: p = 1,1 bar; Zeitpunkt D; x = 0 m: oben)

Tabelle 9-4 vergleicht die im Versuch gemessene maximale Zugkraft in den Spannringen (vgl. Kapitel 7.2.2) bei einem Wasserinnendruck von 1,1 bar (Zeitpunkt D) mit den mittels dem FE-Modell bestimmten Werten. Die Ergebnisse, die mit Hilfe des FE-Modells berechnet wurden, liegen maximal 9 % über den experimentell ermittelten Werten.

Tabelle 9-4 maximale Zugkraft in den Spannringen bei einem Wasserinnendruck von 1,1 bar (Zeitpunkt D): Vergleich der Versuchsergebnisse (Kapitel 7.2.2) mit FE-Modellierung

Zugkraft	in den Spannringen	Versuch: max Z _R [kN]	ANSYS: max Z _R [kN]	Vergleich Versuch / ANSYS [%]	
ick t D)	Ring 1 (Auflager)	51,56	55,78	92%	
Wasserinnendru 1,1 bar (Zeitpunki	Ring 2	52,37	57,29	91%	
	Ring 3 (Feldmitte)	53,69	58,04	93%	
	Ring 4	52,77	57,29	92%	
	Ring 5 (Auflager)	51,63	55,78	93%	

In der Praxis tritt nach Erreichen eines Maximums anschließend eine Reduzierung der Zugkraft in den Spannringen durch Relaxation des Holzes auf. In einem zweiten Berechnungsschritt wurde im FE-Modell eine Abminderung der Zugkraft in den Spannringen infolge Relaxation auf 91,7 % (Mittelwert) der zuvor erreichten maximalen Zugkraft bestimmt. Dieser Wert stimmt mit dem experimentell ermittelten Wert von 93,9 % (vgl. Kapitel 7.2.2) sehr gut überein.

9.5.3 Querdruckspannung der Holzdauben in Umfangsrichtung

Die Querdruckspannung der Holzdauben in Umfangsrichtung wird maßgebend von Vorspannungsgrad, Wasserinnendruck und Quellungsdruck bestimmt. Die maximale Querdruckspannung tritt zum Zeitpunkt D während des Quellvorgangs auf. Mit steigendem Wasserinnendruck nehmen die Beträge der Querdruckspannung durch Aufweitung des Rohrquerschnittes ab. Die Querdruckspannung in Umfangsrichtung ist über die Breite der Holzdaube annähernd konstant verteilt.

Bild 9-11 Abwicklung der Querdruckspannung der Holzdauben in Umfangsrichtung am Auflager (Wasserinnendruck: p = 1,1 bar; Zeitpunkt D; x = 0 m: oben)

Bild 9-12 Holzdaube in Höhe der Rohrmittellinie: Verlauf der Querdruckspannung in Umfangsrichtung entlang der Rohrachse (Wasserinnendruck: p = 1,1 bar; Zeitpunkt D)

Die maximale Rohraufweitung infolge Wasserinnendruck tritt im Feldquerschnitt auf. Dementsprechend ist die maximale Querdruckspannung in Umfangsrichtung im Auflagerquerschnitt vorhanden. Für die Bemessung ist aufgrund der Ovalisierung des Kreisquerschnittes und der Anordnung des Spannschlosses (ungünstigster Fall) die Holzdaube in Höhe der Rohrmittellinie maßgebend (Bild 9-11). Die Darstellung in Bild 9-11 bezieht sich auf die Abwicklung der Hälfte des Rohrquerschnittes am Auflager. Für die Holzdaube in Höhe der Rohrmittellinie ist der Verlauf der Querdruckspannung in Umfangsrichtung entlang der Rohrachse bei einem Wasserinnendruck von 1,1 bar in Bild 9-12 dargestellt. Der Maximalwert der Querdruckspannung in Umfangsrichtung tritt an der Stelle des Spannringes am Auflager auf.

Nach dem theoretischen Berechnungsansatz würde ohne Wasserinnendruck eine maximale Querdruckspannung in Umfangsrichtung von 0,46 N/mm² für den oben untersuchten Rohrquerschnitt auftreten (vgl. Kapitel 8.4). Dieser Wert stimmt sehr gut mit dem berechneten Wert der FE-Modellierung (ohne Wasserinnendruck) überein. Bei einem Wasserinnendruck von 1,1 bar wurde mittels der FE-Berechnung eine Abnahme der maximalen Querdruckspannung in Umfangsrichtung infolge Rohraufweitung auf 0,38 N/mm² ermittelt (Bild 9-11 und Bild 9-12).

9.5.4 Querdruckspannung der Holzdauben in radialer Richtung

Die Querdruckspannung der Holzdauben in radialer Richtung wird in erster Linie von Wasserinnendruck und Abstand der Spannringe bestimmt. Die maximale Querdruckspannung in radialer Richtung ist an der Außenseite der untersten Holzdaube an der Stelle des Auflagers vorhanden. Bei einem Wasserinnendruck von 1,1 bar ist die Verteilung der Querdruckspannung in radialer Richtung an der Außenseite der Holzdauben im Auflagerquerschnitt aus der FE-Berechnung wie folgt:

- oberste Holzdaube: $\sigma_{c,90,rad} = 0,82 \text{ N/mm}^2$
- unterste Holzdaube: σ_{c,90,rad} = 1,17 N/mm²

Theoretisch kann die Querdruckspannung in radialer Richtung an der Außenseite der obersten Holzdaube mit Gleichung (73) berechnet werden:

$$\sigma_{\rm c,90,rad} = p \cdot \frac{e_{\rm R}}{b_{\rm R}}$$
(73)

mit

$\sigma_{c,90,rad}$	= Querdruckspannung an der Außenseite der Holzdaube in radialer
	Richtung [N/mm ²]
р	= Flächenlast infolge Wasserinnendruck [N/mm ²]
e _R	= Abstand der Spannringe [mm]
b _R	= Breite der Spannringe [mm]

Nach Gleichung (73) kann für die in diesem Kapitel angegebene Modellierung (Wasserinnendruck 1,1 bar, Spannringabstand 500 mm, Spannringbreite 60 mm) für die oberste Holzdaube an der Außenseite eine Querdruckspannung in radialer

Richtung von 0,84 N/mm² ermittelt werden. Dieser Wert stimmt sehr gut mit dem oben angegebenen Wert von 0,82 N/mm² aus der FE-Berechnung überein.

Für die Berechnung der Querdruckspannung in radialer Richtung an der Außenseite der untersten Holzdaube kann Gleichung (73) nicht verwendet werden, da hierbei die Verformung der untersten Holzdaube nicht berücksichtigt wird. Das Trag- und Verformungsverhalten der untersten Holzdaube gleicht einem Durchlaufträger, dessen Auflager an der Stelle der Sättel starr und an den Stellen der Spannringe zwischen den Sätteln nachgiebig gelagert sind. Deshalb ist bei der untersten Holzdaube die maximale Querdruckspannung am Auflager vorhanden, während bei der obersten Holzdaube die Querdruckspannung bei allen Spannringen annähernd gleich groß ist.

9.5.5 Biegespannung der Holzdauben in Längsrichtung

Im Folgenden wird der Verlauf der Biegerandspannung der obersten und untersten Holzdaube erläutert. In Bild 9-13 ist die Biegerandspannung sowohl an der Innenseite als auch an der Außenseite der obersten Holzdaube sowie die Schwerpunktspannung dargestellt.

Bild 9-13 Biegerandspannung und Schwerpunktspannung der obersten Holzdaube (Wasserinnendruck: p = 1,5 bar; Zeitpunkt F)

Aufgrund von Vorspannung und Wasserinnendruck verformt sich die oberste Holzdaube gleichmäßig in Wellenform (vgl. Kapitel 9.5.1). Analog dazu ist auch der Verlauf der Biegerandspannung in Daubenlängsrichtung relativ gleichmäßig. Die maximale Beanspruchung der obersten Holzdaube infolge Wasserinnendruck tritt an den Stellen der Spannringe auf: die Holzdaube wird an der Innenseite auf Zug und an der Außenseite auf Druck beansprucht. Zwischen den Spannringen sind die Verhältnisse genau umgekehrt. Der Einfluss des Auflagers auf den Verlauf der Biegerandspannung der obersten Holzdaube ist vernachlässigbar gering. Die maximale Biegerandspannung in Feldmitte beträgt 3,78 N/mm², am Auflager 3,87 N/mm². Diese Werte entsprechen ungefähr der Biegerandspannung eines Durchlaufträgers über dem Auflager mit 3,79 N/mm² bei einer Stützweite von 0,50 m (= Abstand der Spannringe) und unter gleicher Belastung (= Wasserinnendruck). Die Schwerpunktspannung der obersten Holzdaube ist mit Werten zwischen 0,01 N/mm² (Druck) und 0,02 N/mm² (Zug) vernachlässigbar gering.

In Bild 9-14 ist die Biegerandspannung und Schwerpunktspannung der untersten Holzdaube dargestellt. Gegenüber dem Tragverhalten der obersten Holzdaube ist hier der Einfluss des Auflagers deutlich zu erkennen. Die maximale Biegerandspannung der untersten Holzdaube beträgt an der Stelle des Auflagers 6,08 N/mm² (Druck an der Außenseite der untersten Holzdaube) und ist somit maßgebend für die Bemessung. Die Biegerandspannung im Feld ist wesentlich geringer. Die Schwerpunktspannung der untersten Holzdaube beträgt in Feldmitte 0,29 N/mm² (Zug) und am Auflager 0,62 N/mm² (Druck).

Bild 9-14 Biegerandspannung und Schwerpunktspannung der untersten Holzdaube (Wasserinnendruck: p = 1,5 bar; Zeitpunkt F)

Bei Druckrohrleitungen aus Holz, welche auf Sätteln aufgelagert sind, ist die Querschnittsverformung am Auflager größer als im Feldbereich. Aufgrund der Ovalisierung des Kreisquerschnittes wird eine Balkenwirkung unter Längsbeanspruchung nicht erreicht. Vielmehr kann das Tragverhalten über einen wirksamen Bereich der Schale beschrieben werden. Dieses Verhalten wird anhand der Schwerpunktspannung in den Holzdauben beschrieben.

Bild 9-15 Abwicklung der Schwerpunktspannung der Holzdauben im Auflagerquerschnitt (Wasserinnendruck: p = 1,5 bar; Zeitpunkt F; x = 0 m: oben)

Bild 9-16 Abwicklung der Schwerpunktspannung der Holzdauben im Feldquerschnitt (Wasserinnendruck: p = 1,5 bar; Zeitpunkt F; x = 0 m: oben)

Bild 9-15 und Bild 9-16 zeigen die Abwicklung der Schwerpunktspannung der Holzdauben am Auflager bzw. in Feldmitte. Die Darstellung bezieht sich auf die Abwicklung der Hälfte des Rohrquerschnittes. Im oberen Bereich der Rohrleitung sind die Schwerpunktspannungen sowohl im Auflagerquerschnitt als auch im Feldbereich sehr gering. Im unteren Teil des Rohrquerschnittes bildet sich ein wirksamer Bereich mit einer Druckzone im Auflagerbereich und einer Zugzone im Feldbereich. Die Größe des wirksamen Bereiches wird überwiegend vom Wasserinnendruck, dem Abstand der Spannringe und der Auflager bestimmt.

9.5.6 Schubspannung der Holzdauben

Die maximale Schubspannung infolge Wasserinnendruck im Rohrquerschnitt rechtwinklig zur Rohrachse ist an der untersten Holzdaube an der Stelle des Sattels vorhanden. Bei einem Wasserinnendruck von 1,1 bar wurde eine maximale Schubspannung von τ = 0,78 N/mm² ermittelt.

Wie bereits in Kapitel 9.5.4 beschrieben, gleicht das Trag- und Verformungsverhalten der untersten Holzdaube einem Durchlaufträger, dessen Auflager an der Stelle der Sättel starr und an den Stellen der Spannringe zwischen den Sätteln nachgiebig gelagert sind. Deshalb ist die maximale Schubspannung an der untersten Holzdaube am Sattel vorhanden.

9.5.7 Schubspannung in der Nut- und Federverbindung in Längsrichtung der Holzdauben

Die einzelnen Querschnittsteile wirken über Haftung in der Nut- und Federverbindung zwischen den einzelnen Holzdauben als Gesamtquerschnitt. Die Schubtragfähigkeit in der Nut- und Federverbindung in Längsrichtung der Holzdauben wird durch den Haftungskoeffizienten bestimmt. Bei der Auswertung der FE-Modellierung wird die Haftbedingung kontrolliert; d.h. der Bemessungswert der vorhandenen Schubspannung in der Nut- und Federverbindung in Längsrichtung der Holzdauben muss kleiner sein als der Bemessungswert der Spannung, die nötig wäre für das Gleiten zweier Holzdauben. Der Fall der Grenzhaftung wird mit dem Produkt aus Haftungskoeffizient und Querdruckspannung der Holzdauben in Umfangsrichtung berechnet. Mit dieser Kontrolle wird gewährleistet, dass ein Gleiten zweier Holzdauben nicht auftritt und somit die Dichtigkeit der Druckrohrleitung sichergestellt ist.

10 Bemessungskonzept

10.1 Nachweise in den Grenzzuständen der Tragfähigkeit

Für die Bemessung von Druckrohrleitungen aus Holz, welche auf Sättel aufgelagert sind, wurde mit Hilfe des FE-Modells eine Parameterstudie durchgeführt. Folgende Parameter wurden zur Bestimmung des Trag- und Verformungsverhaltens variiert:

- Rohrinnendurchmesser d_i;
- Wasserinnendruck p;
- Abstand der Spannringe e_R;
- Abmessungen der Holzdauben (b_D/d_D) und der Spannringe (b_R/d_R) .

Der Abstand der Auflager wurde bisher in der Praxis mit einem Verhältnis von Daubenlänge zu Auflagerabstand von $\ell_D/e_S \ge 2$ gewählt. Bei einer üblichen Daubenlänge von 4,0 m ergibt sich somit ein maximaler Auflagerabstand von 2,0 m. Im Rahmen der FE-Modellierung wurde auch der Einfluss des Auflagerabstandes auf das Trag- und Verformungsverhalten von Druckrohrleitungen aus Holz untersucht. Die Parameterstudien ergaben, dass wirtschaftliche Konstruktionen bis zu einem Verhältnis von Daubenlänge zu Auflagerabstand von $\ell_D/e_S \ge 1$ möglich sind, wobei der Auflagerabstand auf maximal 4,0 m begrenzt wurde.

Die Eingangsgrößen für die Modellierung von Druckrohrleitungen aus Holz können aus Kapitel 9 entnommen werden. Für das Bemessungskonzept wurden die Steifigkeitskennwerte des Elastizitätsmoduls und Schubmoduls aus DIN 1052 (08/2004) für Nadelholz der Festigkeitsklasse C24 entnommen. Für den Einbauzustand (Holzdauben mit einer Holzfeuchte von ca. 16 %) wurden diese Steifigkeitskennwerte nach DIN EN 384 (05/2004) mit 2 %/%∆u abgemindert. Der Einfluss der Holzfeuchte über dem Fasersättigungsbereich wurde durch Abminderung der Steifigkeitskennwerte nach DIN 1052 (08/2004) um den Faktor 1/4 (vgl. Kapitel 4.1) berücksichtigt.

Für die Nachweise in den Grenzzuständen der Tragfähigkeit müssen die Lastfälle Eigengewicht, Vorspannung, Quellen und Wasserinnendruck (hydrostatisch bzw. instationär) angesetzt werden. Zur Bestimmung der Bemessungswerte der Einwirkungen wurden beim Bemessungskonzept für Druckrohrleitungen aus Holz die Teilsicherheitsbeiwerte γ_F nach Tabelle 10-1 angesetzt. Die Ermittlung der Bemessungswerte der Einwirkungen erfolgte nach Gleichung (74)).

$$\mathbf{F}_{d} = \gamma_{\mathsf{F}} \cdot \mathbf{F}_{\mathsf{k}} \tag{74}$$

mit

 F_d = Bemessungswert der Einwirkung

F_k = charakteristischer Wert der Einwirkung

 γ_{F} = Teilsicherheitsbeiwert (nach Tabelle 10-1)

Einwirkung	Teilsicherheitsbeiwert γ_F
Eigengewicht Holzdauben	1,35
hydrostatischer Wasserinnendruck	1,0
Vorspannung	1,5
Quellen	1,5
Druckstoß	1,5

Tabelle 10-1 Teilsicherheitsbeiwerte γ_F

Der Bemessungswert der Einwirkung für den Lastfall Eigengewicht der Holzdauben kann mit einer charakteristischen Rohdichte des wassergesättigten Holzes von ρ_k = 1000 kg/m³ und einem Teilsicherheitsbeiwert γ_F = 1,35 nach Tabelle 10-1 ermittelt werden.

Die Bemessungswerte der Festigkeitseigenschaften der Holzdauben werden nach Gleichung (75) bestimmt. Für die Rechenwerte der charakteristischen Festigkeitskennwerte werden die Angaben der Festigkeitsklasse C24 aus DIN 1052 (08/2004) eingesetzt.

$$X_{d} = \frac{k_{mod} \cdot X_{k}}{\gamma_{M}}$$
(75)

mit

X_d = Bemessungswert der Festigkeitseigenschaft

X_k = charakteristischer Wert der Festigkeitseigenschaft

k_{mod} = Modifikationsbeiwert

γ_M = Teilsicherheitsbeiwert

Bauteile mit dauernder Durchfeuchtung werden nach DIN 1052 (08/2004) der Nutzungsklasse 3 zugewiesen. Die Klasse der Lasteinwirkungsdauer unterscheidet sich je nach Beanspruchung:

- Klasse der Lasteinwirkungsdauer "ständig" für Beanspruchung aus Lastfallkombination Eigengewicht und hydrostatischem Druck (p);
- Klasse der Lasteinwirkungsdauer "sehr kurz" für Beanspruchung aus Lastfallkombination Eigengewicht und Druckstoß (p + ∆p).

Der Einfluss der Nutzungsklasse und der Klasse der Lasteinwirkungsdauer auf die Festigkeitseigenschaften wird in Gleichung (75) durch den Modifikationsbeiwert k_{mod} berücksichtigt. Für die Lastfallkombination Eigengewicht und hydrostatischer Druck ergibt sich nach DIN 1052 (08/2004) ein Modifikationsbeiwert von 0,50, für die Lastfallkombination Eigengewicht und Druckstoß von 0,90.

Für die Bemessung der Holzdauben im Grenzzustand der Tragfähigkeit ist somit die Lastfallkombination Eigengewicht und hydrostatischer Druck maßgebend, da der Einfluss des Modifikationsbeiwertes beim Nachweis weitaus größer ist als der Einfluss des Druckstoßes.

Für die Bemessung der Spannringe aus Stahl ist jedoch die Lastfallkombination Eigengewicht und Druckstoß maßgebend, da im Stahlbau keine Modifikationsbeiwerte beim Nachweis angesetzt werden.

Für die Bemessung von Druckrohrleitungen aus Holz, welche auf Sättel aufgelagert sind, sind die im Folgenden aufgeführten Nachweise in den Grenzzuständen der Tragfähigkeit zu führen.

Der Nachweis der Normalspannung im Spannring erfolgt nach DIN 18 800 Teil 1 (11/1990), Ab. (747). Die maximale Beanspruchung der Spannringe tritt während des Quellvorgangs auf. Maßgebend ist aufgrund der maximalen Rohraufweitung im Feldquerschnitt infolge Wasserinnendruck der Spannring in Feldmitte zwischen zwei Auflagern. Beim Nachweis der Normalspannung im Spannring muss die Beanspruchung aus instationärer Strömung (p + Δ p) berücksichtigt werden.

$$\sigma_{\rm R,d} = \frac{Z_{\rm R,d}}{A} \le f_{\rm y,d} = \frac{f_{\rm y,k}}{\gamma_{\rm M}}$$
(76)

mit

 $\begin{aligned} \sigma_{R,d} &= \text{Bemessungswert der Normalspannung im Spannring [N/mm^2]} \\ Z_{R,d} &= \text{Bemessungswert der Zugkraft im Spannring [N]} \\ A &= \text{Querschnittsfläche des Spannringes: A = b_R \cdot d_R [mm^2]} \\ f_{y,d} &= \text{Bemessungswert der Streckgrenze von Stahl [N/mm^2]} \\ f_{y,k} &= \text{charakteristischer Wert der Streckgrenze von Stahl: 240 [N/mm^2] für S235} \\ bzw. 360 [N/mm^2] für S355 \\ \end{aligned}$

Der Nachweis der Zugkraft im Spannschloss (aufgeschweißter Gewindebolzen) erfolgt nach DIN 18 800 Teil 1 (11/1990), Ab. (809). Ein gesonderter Nachweis der Schweißnaht ist erforderlich.

$$F_{\rm S,d} \le N_{\rm R,d} = A_{\rm Sp} \cdot \sigma_{\rm 1,R,d} \tag{77}$$

mit

F_{S,d} = Bemessungswert der Zugkraft im Spannschloss [N]

N_{R,d} = Bemessungswert der Grenzzugkraft [N]

A_{Sp} = Spannungsquerschnittsfläche: 459 [mm²] für M27 bzw. 561 [mm²] für M30

 $\sigma_{1,R,d}$ = Bemessungswert der Grenzspannung: $\sigma_{1,R,d}$ = f_{y,b,k} / (1,1 · γ_M) [N/mm²]

- f_{y,b,k} = charakteristischer Wert der Streckgrenze für Gewindebolzen: 240
 [N/mm²] für S235 bzw. 360 [N/mm²] für S355
- γ_{M} = Teilsicherheitsbeiwert: 1,1

Die maximale Querdruckspannung der Holzdauben in Umfangsrichtung tritt während des Quellvorgangs im Auflagerquerschnitt auf. Der Nachweis erfolgt nach Gleichung (78):

$$\sigma_{c,90,U,d} \leq f_{c,90,d} = \frac{k_{mod} \cdot f_{c,90,k}}{\gamma_{M}}$$
(78)

mit

 $\sigma_{c,90,U,d}$ = Bemessungswert der Querdruckspannung in Umfangsrichtung [N/mm²]

 $f_{c,90,d}$ = Bemessungswert der Querdruckfestigkeit [N/mm²]

f_{c,90,k} = charakteristischer Wert der Querdruckfestigkeit [N/mm²]

k_{mod} = Modifikationsbeiwert: 0,5

 γ_{M} = Teilsicherheitsbeiwert: 1,3

Die maximale Querdruckspannung der Holzdauben in radialer Richtung tritt an der Außenseite der untersten Holzdaube am Auflager auf. Der Nachweis erfolgt nach Gleichung (79). Für die Ermittlung der wirksamen Querdruckfläche A_{ef} wurde das Maß der tatsächlichen Aufstandslänge (= Breite des Spannringes) in Faserrichtung des Holzes nach DIN 1052 (08/2004) Ab. 10.2.4 an jedem Rand um 30 mm verlängert. Der Querdruckbeiwert $k_{c,90}$ wurde für Vollholz bei Schwellendruck mit 1,25 angesetzt.

$$\sigma_{c,90,rad,d} = \frac{F_{c,90,d}}{A_{ef}} \le k_{c,90} \cdot f_{c,90,d} = k_{c,90} \cdot \frac{k_{mod} \cdot f_{c,90,k}}{\gamma_{M}}$$
(79)

mit

	- Democratic second des Ouerdaueles ensures in redictors Distances [Nt/mar21]
$\sigma_{ m c,90,rad,d}$	= Bemessungswert der Querdruckspannung in radiaier Richtung [N/mm ²]
F _{c,90,d}	= Bemessungswert der Druckkraft [N]
A _{ef}	= wirksame Querdruckfläche [mm ²]
k _{c,90}	= Querdruckbeiwert [-]
f _{c,90,d}	= Bemessungswert der Querdruckfestigkeit [N/mm ²]
f _{c,90,k}	= charakteristischer Wert der Querdruckfestigkeit [N/mm ²]
k _{mod}	= Modifikationsbeiwert: 0,5
γм	= Teilsicherheitsbeiwert: 1,3

Der kombinierte Nachweis auf Biegung und Druck der untersten Holzdaube im Auflagerquerschnitt erfolgt nach Gleichung (80).

$$\left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,d}}{f_{m,d}} \le 1$$
(80)

mit

 $\sigma_{c,0,d}$ = Bemessungswert der Druckspannung in Faserrichtung [N/mm²]

f_{c,0,d} = Bemessungswert der Druckfestigkeit in Faserrichtung [N/mm²]

 $\sigma_{m,d}$ = Bemessungswert der Biegespannung [N/mm²]

 $f_{m,d}$ = Bemessungswert der Biegefestigkeit [N/mm²]

Der Nachweis der Schubspannung der Holzdauben infolge Wasserinnendruck im Rohrquerschnitt rechtwinklig zur Rohrachse wird nach Gleichung (81) geführt. Die maximale Schubspannung tritt an der untersten Holzdaube im Auflagerquerschnitt auf. Die maßgebende Querkraft wurde im Abstand d_D (= Daubendicke) vom Auflagerrand (= Spannringrand) nach DIN 1052 (08/2004) Ab. 10.2.9 bestimmt.

$$\tau_{d} = 1,5 \cdot \frac{V_{d}}{A} \le f_{v,d} = \frac{k_{mod} \cdot f_{v,k}}{\gamma_{M}}$$
(81)

mit

 $\begin{array}{ll} \tau_{d} & = Bemessungswert \, der \, Schubspannung \, [N/mm^{2}] \\ V_{d} & = Bemessungswert \, der \, maßgebenden \, Querkraft \, [N] \\ A & = Querschnittsfläche einer \, Holzdaube \, [mm^{2}] \\ f_{v,d} & = Bemessungswert \, der \, Schubfestigkeit \, [N/mm^{2}] \\ f_{v,k} & = charakteristischer \, Wert \, der \, Schubfestigkeit \, [N/mm^{2}] \\ f_{mod} & = Modifikationsbeiwert: \, 0,5 \\ \gamma_{M} & = Teilsicherheitsbeiwert: \, 1,3 \end{array}$

Der Bemessungswert der Schubspannung in der Nut- und Federverbindung in Längsrichtung der Holzdauben wurde bei der FE-Modellierung durch Kontrolle der Haftbedingung nachgewiesen: der Bemessungswert der vorhandenen Schubspannung muss kleiner sein als der Bemessungswert der Spannung, die nötig wäre für das Gleiten zweier Holzdauben.

10.2 Bemessungstabellen

Mit Hilfe der Bemessungstabellen kann eine schnelle Bemessung von Druckrohrleitungen aus Holz, welche auf Sättel aufgelagert sind, durchgeführt werden. Nach Kapitel 6.3 kann mittels der gegebenen Wassermenge, der Fallhöhe und der Leitungslänge der optimale Rohrinnendurchmesser bestimmt werden. In Abhängigkeit vom Wasserinnendruck kann der maximale Spannringabstand für eine Druckrohrleitung aus Holz mit einem bestimmten Innendurchmesser mit Hilfe der Bemessungstabellen ermittelt werden. Der Abstand der Spannringe kann über die Leitungslänge dem Verlauf des hydrostatischen Wasserinnendruckes angepasst werden.

Voraussetzungen für die Anwendung der Bemessungstabellen (Tabelle 10-2 bis Tabelle 10-22) sind:

- Berücksichtigung der Angaben der jeweiligen Bemessungstabelle bezüglich Holzdaube, Spannring und Spannschloss;
- Länge der Holzdauben beträgt mindestens 4,0 m;
- Abstand der Auflager beträgt maximal 4,0 m;
- Verhältnis von Daubenlänge zu Auflagerabstand ist mindestens 1,0;
- jeweils die Hälfte der Holzdauben wird in einem Querschnitt gestoßen;
- mittlere Breite der Holzdauben sollte zwischen 10 cm und 15 cm betragen;
- Festigkeits- und Steifigkeitskennwerte der Holzdauben entsprechen den Anforderungen der Festigkeitsklasse C24 f
 ür Nadelholz nach DIN 1052 (08/2004);
- Winkel am Auflager, der die Druckrohrleitung im unteren Bereich umschließt, beträgt mindestens 90°;
- über dem Auflager befindet sich jeweils ein Spannring;
- Verwendung von feuerverzinkten Flachstahlbändern für die Stahlringe (S235 bzw. S355).

Beim Nachweis der Spannringe und der Spannschlösser in den Grenzzuständen der Tragfähigkeit muss die Druckhöhe p + Δp , welche aufgrund des Druckstoßes entsteht, angesetzt werden. Der Nachweis der Holzdauben muss mit der hydrostatischen Druckhöhe p geführt werden. Für die folgenden Nachweise in den Grenzzuständen der Tragfähigkeit ist der Ausnutzungsgrad in den Bemessungstabellen (Tabelle 10-2 bis Tabelle 10-22) angegeben:

- Spannring: Normalspannung im Spannring (σ_R)
 - Zugkraft im Spannschloss (F_S)

Holzdauben: - Querdruckspannung in Umfangsrichtung ($\sigma_{c,90,U}$)

- Querdruckspannung in radialer Richtung ($\sigma_{c,90,\text{rad}})$
- Biegung und Druck (σ) (Interaktion)
- Schubspannung (τ)

Innerhalb einer Bemessungstabelle dürfen die Werte für den jeweiligen Spannringabstand zwischen den Druckhöhen linear interpoliert werden.

Tabelle 10-2 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit d_i = 1,00 m

Holzdaube d_D = 70mm, C24; Spannring b_R/d_R = 60/6mm, S235; Spannschloss M27, S235

p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	n											
σ_R	21%	23%	26%	29%	32%	34%	37%	40%	43%	45%	48%	51%
Fs	18%	20%	23%	25%	27%	30%	32%	34%	37%	39%	41%	44%
σ _{c.90.U}	71%	71%	71%	70%	70%	70%	70%	70%	69%	69%	69%	69%
$\sigma_{c.90,rad}$	16%	24%	31%	38%	45%	52%	60%	67%	74%	81%	88%	95%
σ	11%	17%	23%	29%	35%	41%	47%	53%	59%	65%	71%	77%
τ	15%	23%	30%	37%	44%	52%	59%	66%	74%	81%	88%	95%
e _R = 20 cr	n						•		•			•
σ_R	30%	35%	41%	47%	52%	58%	64%	69%	75%			
Fs	26%	31%	35%	40%	45%	50%	55%	60%	65%			
σ _{с 90 U}	69%	69%	68%	68%	67%	67%	66%	66%	65%			
σ _c 90 rad	18%	27%	37%	46%	55%	64%	73%	83%	92%			
σ	13%	21%	29%	37%	45%	53%	61%	69%	77%			
τ	18%	28%	38%	48%	58%	68%	78%	88%	98%			
$e_{R} = 30 \text{ cm}$	n											
σ	38%	47%	56%	64%	73%	81%	90%					
Fs	33%	41%	48%	55%	63%	70%	78%					
σοιι	67%	67%	66%	65%	64%	64%	63%					
σ ₀ 00 rod	20%	32%	43%	54%	65%	77%	88%					
σ.	17%	27%	38%	48%	59%	69%	79%					
τ	22%	35%	48%	61%	74%	87%	100%					
e _P = 40 cr	n <u>– / (</u>	0070	.070	0.70	/ 0	0.70	,					
σ _Γ	47%	58%	70%	81%	93%							
Fe	40%	50%	60%	70%	80%							
σ	66%	65%	64%	63%	62%							
σ	22%	36%	50%	64%	77%							
σ _{c,90,rad}	21%	35%	48%	62%	76%							
τ	27%	44%	60%	77%	94%							
$e_{\rm p} = 50 {\rm cr}$	n <u>- 178</u>	1170	0070	1170	0170							
σ _R σσ σ.	55%	69%	84%	98%								
F _e	47%	60%	72%	85%								
σ	64%	63%	62%	60%								
σ	25%	42%	58%	75%								
σ _{c,90,rad}	27%	44%	62%	79%								
τ	32%	54%	75%	97%								
$e_{\rm p} = 60 {\rm cm}$	n 0270	0-170	1070	0170								
σ _R σσ σ.	63%	80%	97%									
E _o	54%	69%	84%									
· 5 σ. 00 · · ·	63%	61%	60%									
σ	29%	49%	69%									
oc,90,rad	33%	56%	79%									
τ	39%	66%	93%									
е _в = 70 сг	n <u>3070</u>	5070	5070	1		1	1	1	1	1	1	1
σ _D	69%	90%				[[
F	60%	77%				1				1		l
· δ	61%	60%		p [mWS]		Spannring	g b _R /d _R			S	Schnitt A - /	4
<u>σ</u> c,90,0	33%	57%		H ∔		/			ΓA			F
ос,90,rad	41%	71%		┢┤			zdaube b _D	/ d _D				F
τ	47%	82%		┥	⊐⊬	—(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)			╡┓⊢╶	,		
$e_{\rm p} = 80 {\rm cm}$	n	02/0	1	니	ľ						. //	
			1	⊢ ⊥	- — #-	- #- #			<u> </u>	d _i a	^I R ∦ / (∕ d, ∦ ^a ⊳⊢
E _n	65%			H							\mathbb{N}	` <i>]</i> -
- S	60%		<u> </u>	H		╤╟╤═╟╴			╪╝╧╴╛	d _D		
ο _{c,90,U}	38%			H		I I	e _{R L}	Ø				F
ο _{c,90,rad}	52%			┢┤			Â		⊢A			-
υ τ	57%			H		J	σs					F
L	51/0	1	1			1				1	1	

Tabelle 10-3 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit d_i = 1,10 m

Holzdaube d_D = 70mm, C24; Spannring b_R/d_R = 60/6mm, S235; Spannschloss M27, S235

									. –			
p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	n							:	·			
σ_R	21%	24%	27%	30%	33%	36%	39%	42%	45%	48%	51%	55%
Fs	18%	21%	23%	26%	29%	31%	34%	37%	39%	42%	44%	47%
$\sigma_{c,90,U}$	71%	71%	71%	70%	70%	70%	69%	69%	69%	69%	68%	68%
$\sigma_{\text{c},90,\text{rad}}$	17%	24%	32%	39%	46%	54%	61%	68%	75%	83%	90%	97%
σ	12%	18%	24%	30%	36%	42%	48%	54%	60%	66%	72%	78%
τ	16%	23%	31%	38%	45%	53%	60%	68%	75%	82%	90%	97%
e _R = 20 cr	n											
σ_{R}	31%	37%	43%	49%	56%	62%	68%	74%	81%			
Fs	26%	32%	37%	43%	48%	53%	59%	64%	69%			
$\sigma_{c,90,U}$	69%	69%	68%	67%	67%	66%	66%	65%	65%			
$\sigma_{c,90,rad}$	19%	28%	38%	47%	56%	66%	75%	84%	94%			
σ	14%	22%	30%	38%	46%	54%	62%	70%	78%			
τ	18%	29%	39%	49%	59%	69%	79%	89%	100%			
e _R = 30 cr	n			I								
σ	40%	49%	59%	68%	78%	87%						
Fe	34%	42%	51%	59%	67%	75%						
σ	67%	66%	66%	65%	64%	63%						
σ _{c,90,0}	21%	32%	11%	55%	67%	78%						
Cc,90,rad	1.0%	28%	30%	10%	60%	70%						
0	220/	2070	100/	4970 620/	760/	0.00/						
τ = 40 or	23%	30%	49%	03%	70%	09%						
e _R – 40 ci	100/	040/	740/	070/	000/			1				
σ _R	49%	61%	74%	87%	99%							
FS	42%	53%	64%	75%	86%							
$\sigma_{c,90,U}$	66%	64%	63%	62%	61%							
$\sigma_{c,90,rad}$	23%	37%	51%	65%	79%							
σ	22%	36%	50%	63%	77%							
τ	28%	45%	62%	79%	96%							
e _R = 50 cr	n											
σ_{R}	57%	73%	89%									
Fs	49%	63%	77%									
$\sigma_{c,90,U}$	64%	62%	61%									
$\sigma_{c,90,rad}$	26%	43%	60%									
σ	28%	45%	63%									
τ	33%	55%	77%									
e _R = 60 cr	n		•					•				
σ_R	65%	84%										
Fs	56%	73%										
	62%	61%										
σ ₀ 00 rod	30%	50%										
σ σ	35%	58%										
τ	40%	68%										
$e_{\rm p} = 70 {\rm cm}$	n	0070										
σ-	73%	05%										
GR F-	63%	90%										L
T _S	610/	02 /0 500/		p [mWS]		Spannring	b_/d_			S	chnitt A - A	۹ H
0 _{c,90,U}	01%	59%				/	J R R		- A			_
$\sigma_{c,90,rad}$	34%	59%				/ Hol	$zdaube b_{D}$	/ d _D	^			_
σ	43%	13%		H I	_n/							, H
τ	49%	84%		Ц	Ił.							\rightarrow
e _R = 80 cr	n		1	⊣ ⊥	#_	. #_ #				d, d	R .	d⊳_
σ _R	79%			Ц								י <i>∦</i> ∐
Fs	69%			Ц					╧╢╴┥	h ·	- K	
$\sigma_{c,90,U}$	60%			Ц			U	- Ø		, u D		
$\sigma_{c,90,rad}$	39%			Ц			CR J		A			
σ	53%					<u> </u>	es					
τ	59%					,						

Tabelle 10-4 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit d_i = 1,20 m

Holzdaube d_D = 70mm, C24; Spannring b_R/d_R = 60/6mm, S235; Spannschloss M27, S235

p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	n											
σ_R	21%	25%	28%	32%	35%	38%	42%	45%	48%	52%	55%	58%
Fs	19%	21%	24%	27%	30%	33%	36%	39%	42%	44%	47%	50%
$\sigma_{c,90,U}$	71%	71%	70%	70%	70%	70%	69%	69%	69%	68%	68%	68%
σ _{c.90.rad}	18%	25%	33%	40%	48%	55%	63%	70%	77%	85%	92%	100%
σ	12%	19%	25%	31%	37%	43%	49%	56%	62%	68%	74%	81%
τ	16%	24%	32%	39%	47%	55%	62%	70%	77%	85%	92%	100%
e _R = 20 cr	n					-						
σ_R	31%	38%	45%	52%	59%	66%	72%	79%				
Fs	27%	33%	39%	45%	51%	57%	62%	68%				
σ _{c.90.U}	69%	68%	68%	67%	67%	66%	65%	65%				
$\sigma_{c.90,rad}$	20%	29%	39%	49%	58%	68%	77%	87%				
σ	14%	23%	31%	39%	47%	56%	64%	72%				
τ	19%	30%	40%	51%	61%	71%	82%	92%				
e _R = 30 cr	n					<u>.</u>	•					
σ _R	41%	51%	62%	72%	82%	93%						
Fs	35%	44%	53%	62%	71%	80%						
σ _{с 90} μ	67%	66%	65%	64%	64%	63%		1		1		
σ _{c 90 rad}	22%	34%	45%	57%	69%	81%	1	1		1		
σ	19%	29%	40%	51%	62%	73%						
τ	24%	37%	51%	65%	78%	92%						
$e_{R} = 40 \text{ cr}$	n											
σ	50%	64%	78%	92%								
Fs	43%	55%	67%	79%								
σοοιι	65%	64%	63%	62%								
σ ₀ 00 rod	24%	39%	53%	67%								
σ σ	23%	37%	51%	66%								
τ	29%	46%	64%	82%								
e _P = 50 cr	n <u>– 070</u>	.070	0.70	01/0								
σ _P	59%	77%	94%									
F	51%	66%	81%									
σ	64%	62%	61%									
0,90,0	27%	45%	62%									
σ σ	29%	47%	66%									
τ	35%	57%	80%									
e _P = 60 cr	n 0070	0170	0070									
σ _Γ	68%	89%										
F	59%	77%										
σ	62%	60%										
σ _{c,90,0}	31%	52%										
~c,90,rad	36%	60%				<u> </u>		1	-	1		
τ	42%	71%										
e _P = 70 cr	n . <u> </u>	, .	I									
<u>σ</u> ⊳	76%											
F _e	65%											
. 3 Πο 00 μ	61%			p [mWS]		Spannring	g b _R /d _R			S	chnitt A - A	ъ H
<u>σ</u> _{c,90,0}	36%			H ∳		/			ΓA			-
∽c,90,rad	45%			H I			zdaube b _□	/ d _D				H
τ	51%			H I	=r⊭				÷n⊢ →	.		I H
e _P = 80 cr	n <u></u>	1	l	닉	ľ							/\\\ . H
	83%		1	ਜ ⊥	- — #	- # #		$-\parallel -\parallel$	-∔	d _i a		, ∦a⊳⊢
E _n	72%			H								' <i>) </i> H
т <u>s</u>	60%			H		╼┟╤═╟╴		╶╢╤╴╢	╪╝╧╴╛	d _D		
O _{c,90,U}	41%			H		L L	e _R	Ø				H
ο _{c,90,rad}	56%			H			, e		Α			H
υ τ	62%			H		J	es	/				H
L	02 /0	1	1			-		1	-	1	-	
Tabelle 10-5 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit d_i = 1,30 m

p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	n											
σ_R	22%	26%	29%	33%	36%	40%	44%	47%	51%	55%	58%	
Fs	19%	22%	25%	28%	31%	35%	38%	41%	44%	47%	50%	
σ _{c.90.U}	71%	71%	70%	70%	70%	69%	69%	69%	68%	68%	68%	
$\sigma_{c.90,rad}$	19%	26%	34%	42%	50%	58%	65%	73%	81%	89%	96%	
σ	13%	19%	26%	32%	39%	45%	51%	58%	64%	71%	77%	
τ	17%	25%	33%	41%	49%	57%	65%	73%	80%	88%	96%	
$e_R = 20 \text{ cm}$	n	1		· · · · · ·								
σ _R	32%	40%	47%	54%	62%	69%	77%	84%				
Fs	28%	34%	41%	47%	53%	60%	66%	73%				
	69%	68%	68%	67%	66%	66%	65%	64%				
σ _c 90 rad	21%	31%	41%	51%	61%	71%	80%	90%				
σ	15%	24%	32%	41%	49%	58%	67%	75%				
τ	20%	31%	42%	53%	64%	74%	85%	96%				
e _P = 30 cr	n <u></u> ,	01/0	/0	0070	0.70	/ 0	00/0	00/0				1
σ _D	42%	53%	65%	76%	87%	98%						
F _e	36%	46%	56%	66%	75%	85%						
. 3 σ. οο.υ	67%	66%	65%	64%	63%	62%						
<u>σ</u> c,90,0	23%	35%	48%	60%	72%	84%						
о _{с,90,rad}	20%	31%	42%	53%	65%	76%						
0 7	20%	30%	53%	68%	82%	96%						
$e_{-} = 40 \text{ cm}$	2070 n	3370	5570	0070	0270	3070						
с _R – т о сі	52%	67%	82%	07%								1
G _R	JZ /0	58%	71%	9170 940/								
ΓS	45%	640/	620/	610/								
O _{c,90,U}	260/	04 % 110/	55%	70%								
O _{c,90,rad}	20%	4170	55%	70%								
σ	24%	39%	04%	00%								
τ = 50 or	31% n	49%	07%	00%								
$e_{\rm R} = 50 {\rm cm}$	610/	900/	0.00/				1	1	1	1	1	1
σ _R	61% 50%	80%	99%									
г _S	53%	69% 00%	80%									
σ _{c,90,U}	03%	02%	60% CE0/									
$\sigma_{c,90,rad}$	29%	47%	05%									
σ	31%	50%	69%									
τ	37%	60%	83%									
$e_R = 60 \text{ cr}$	TI 700/	000/						1		1	r	1
σ _R	70%	93%										
FS	61%	80%										
$\sigma_{c,90,U}$	62%	60%										
$\sigma_{\rm c,90,rad}$	33%	54%						 		 	 	
σ	38%	63%										
τ 70 -	45%	74%										
$e_R = 70 \text{ cm}$	n Teaí	1	1	-		1	1	1	1	1	1	1
σ _R	79%											
⊦s	68%			n [m\\/Q]		Spapprin	ab/d			0	chnitt A	^
$\sigma_{c,90,U}$	60%			h [iiiw3]		/ Spanning	$J D_R / U_R$			3	Schnitt A - 7	`
$\sigma_{\rm c,90,rad}$	38%			H ↑		/ Hol	zdaube b _D	/ d _D	ΓA			H
σ	48%			Li I	_n/	<u></u> /	 					
τ	54%			Ц						r		\rightarrow
e _R = 80 cr	n	1	1	⊣ ⊥	#	. # #				d, d		_ ∭d₀
σ _R	87%			Ц —						- I		□, //
Fs	75%			Ц					╧╧┥╴╸	b	- K	
$\sigma_{\rm c,90,U}$	59%			Ц		Ø	U	- Ø		u _D		-
$\sigma_{\rm c,90,rad}$	43%			Ц					A			
σ	59%			Ľ			es					
τ	65%					·		·		1		

Tabelle 10-6 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit d_i = 1,40 m

p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	n											
σ_R	22%	26%	30%	34%	38%	42%	46%	50%	54%	58%		
Fs	19%	23%	26%	29%	33%	36%	40%	43%	46%	50%		
σ _{c.90.U}	71%	70%	70%	70%	69%	69%	69%	68%	68%	68%		
$\sigma_{c.90,rad}$	20%	28%	36%	44%	53%	61%	69%	77%	85%	93%		
σ	14%	21%	27%	34%	41%	48%	54%	61%	68%	75%		
τ	19%	27%	35%	43%	52%	60%	68%	76%	85%	93%		
e _R = 20 cr	n		•									
σ_R	33%	41%	49%	57%	65%	73%	81%					
Fs	28%	35%	42%	49%	56%	63%	70%					
σ _{c 90 U}	69%	68%	67%	67%	66%	65%	65%					
σ _{c 90 rad}	22%	33%	43%	54%	64%	74%	85%					
σ	16%	25%	34%	43%	52%	61%	70%					
τ	22%	33%	44%	56%	67%	78%	90%					
$e_{R} = 30 \text{ cm}$	n											
σΡ	43%	56%	68%	80%	92%	[
Fs	37%	48%	58%	69%	79%	1				1		
σοιι	67%	66%	65%	64%	63%	1				1		
σ _c an rod	25%	38%	50%	63%	76%							
σ σ	21%	33%	44%	56%	68%							
τ	27%	42%	57%	71%	86%							
e _P = 40 cr	n <u>- </u>	.=/0	0.70		0070						<u>.</u>	L
σ	53%	69%	85%									1
Fe	45%	59%	73%									
σοομ	65%	64%	62%									
0,90,0	28%	43%	59%									
σ σ	26%	42%	57%									
τ	33%	52%	71%									
e _P = 50 cr	n 0070	0270	1170	1					1			<u> </u>
σ _Γ ,	63%	83%										
Fe	54%	72%										
- <u>σ</u>	63%	61%										
<u>σ</u> c,90,0	31%	50%										
σ σ	33%	53%										
τ	40%	64%										
e _P = 60 cr	n 1070	0170									<u> </u>	
σ _D	73%	97%										
F	63%	84%										
σοομ	62%	59%										
C,90,0	35%	58%										
ο _{c,90,rad}	41%	67%										
τ	48%	79%										
e _P = 70 cr	n 1070	1070										
σ _R . σ σ.	82%											
E _o	71%											
т <u>з</u>	60%			p [mWS]		Spannrin	g b _R /d _R			S	schnitt A - A	_Α Η
<u>σ</u>	40%			H .		/			ΓA			H
C,90,rad	51%			┞┤			zdaube b _D	/ d _D				H
τ	58%			┢┤	⊐⊭				⊨=	1		
$e_{\rm p} = 80 {\rm cm}$	n 0070	1		버	ľ					-	. //	H
	90%			⊢ ⊥	- — #	- # #				d _i c	'R∦ /(d, ∦a⊳⊢
E _n	78%			┢┤								·/// H
т <u>s</u> Ф. н. н.	50%			 		╶╢╤╌╟			╘╪╧╟╧╶╛	d D		// H
ο _{c,90,U}	46%			H		ι	e _{R 1}	Ø				H
⊂c,90,rad	63%			H			Á		Α			H
0 7	70%			H		<u>ــــــــــــــــــــــــــــــــــــ</u>	es	/				H
L	10/0	1	1			-	1			-		

Tabelle 10-7 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit d_i = 1,50 m

p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	m											
σ_R	17%	21%	24%	27%	30%	33%	36%	40%	43%	46%	49%	52%
Fs	16%	19%	22%	25%	28%	31%	34%	37%	40%	43%	46%	49%
σ _{c.90.U}	71%	71%	70%	70%	70%	69%	69%	69%	68%	68%	67%	67%
$\sigma_{c.90,rad}$	18%	25%	32%	39%	45%	52%	59%	66%	72%	79%	86%	93%
σ	12%	18%	24%	29%	35%	41%	46%	52%	58%	64%	69%	75%
τ	16%	24%	31%	39%	46%	53%	60%	68%	75%	82%	89%	97%
e _R = 20 cr	m		•					•	•		•	
σ _R	26%	32%	39%	45%	52%	58%	65%	71%	78%			
Fs	24%	31%	37%	43%	49%	55%	61%	67%	73%			
σ _{с 90 U}	69%	69%	68%	67%	66%	66%	65%	64%	63%			
σ _{c 90 rad}	20%	29%	38%	47%	56%	65%	74%	83%	92%			
σ	14%	22%	29%	37%	45%	53%	61%	68%	76%			
τ	19%	29%	39%	49%	59%	69%	79%	89%	98%			
$e_{R} = 30 \text{ cm}$	m				/-							
σρ	34%	44%	54%	64%	74%	83%	93%					
Fs	32%	42%	51%	60%	69%	78%	88%					
σοοιι	68%	67%	65%	64%	63%	62%	61%					
σ. 00 rod	23%	34%	46%	57%	68%	79%	91%					
σ σ	18%	29%	39%	49%	59%	69%	79%					
τ	24%	36%	49%	62%	74%	87%	100%					
e _P = 40 cr	m	00/0		0270	/ 0	0.70						
σ _R . σ σ.	43%	56%	69%	82%	95%							
F _e	40%	53%	65%	77%	89%							
· 5 σ	66%	65%	63%	62%	60%							
σ _{c,90,0}	26%	40%	54%	68%	82%							
ο _{c,90,rad}	23%	36%	49%	62%	76%							
τ	29%	45%	61%	77%	93%							
$e_{\rm p} = 50 {\rm cm}$	m <u>2070</u>	4070	0170	1170	0070							
0 K 00 0.	51%	67%	84%	100%								
E _e	48%	63%	79%	94%								
σ	65%	63%	61%	59%								
O 00,0	29%	46%	63%	80%								
0c,90,rad	28%	45%	62%	78%								
τ.	34%	54%	75%	95%								
$e_{\rm p} = 60 {\rm cm}$	m	0470	1070	0070								
0R 00 01	59%	78%	98%			1				1		
E _n	55%	74%	92%									
τ <u>ς</u>	63%	61%	59%									
<u>σ</u> ,90,0	33%	54%	74%									
о _{с,90,rad}	34%	56%	77%									
τ	41%	67%	92%									
$e_{\rm p} = 70 {\rm cm}$	m - 170	0770	5270									
	66%	80%				1				1		
G _R	62%	84%										
т <u>s</u>	62%	50%		p [mWS]		Spannring	g b _₽ /d _₽			S	chnitt A - /	۹ -
0 _{c,90,0}	37%	63%		H i		/			ΓA			_
0c,90,rad	<u>41%</u>	60%		Ħ !			zdaube b _D	/ d _D	1			-
τ	40%	82%		Ħ ∣	⊐r⊭				╡┲╴┑	•		
ь ep = 80 cr	m	02/0	1	버	ľ							/\\\. H
	73%			᠇ ⊥	- — ‖				<u> </u>	d _i d	^R € (∕ d, ∦ ^d ⊳⊢
E E	60%			H								' <i>]]</i>
- S	60%			H		╼╢╤═╟			╪╝╧╴╛	d _D		
0 _{c,90,U}	42%			H		Γı	e _R					H
0c,90,rad	520/			₽			~		⊢A			H
0	500/			H		J	ε _s	/				H
ι	JJ 70	1	1	l – – – – – – – – – – – – – – – – – – –		1	1	r		1		

Tabelle 10-8 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit d_i = 1,60 m

p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	n								•			
σ_R	18%	21%	24%	28%	31%	35%	38%	41%	45%	48%	52%	55%
Fs	17%	20%	23%	26%	29%	33%	36%	39%	42%	45%	49%	52%
$\sigma_{c,90,U}$	71%	71%	70%	70%	69%	69%	69%	68%	68%	67%	67%	67%
$\sigma_{c,90,rad}$	19%	26%	33%	39%	46%	53%	60%	67%	74%	81%	87%	94%
σ	13%	18%	24%	30%	36%	41%	47%	53%	59%	65%	70%	76%
τ	17%	24%	32%	39%	47%	54%	61%	69%	76%	84%	91%	98%
e _R = 20 cr	n											
σ_{R}	27%	34%	40%	47%	54%	61%	68%	75%	82%			
Fs	25%	32%	38%	45%	51%	58%	64%	71%	77%			
$\sigma_{c,90,U}$	69%	68%	68%	67%	66%	65%	64%	64%	63%			
$\sigma_{\text{c},90,\text{rad}}$	21%	30%	39%	48%	57%	66%	75%	84%	93%			
σ	14%	22%	30%	38%	46%	54%	62%	70%	78%			
τ	20%	30%	40%	50%	60%	70%	80%	90%	100%			
e _R = 30 cr	n	r						1		1		1
σ _R	35%	46%	56%	67%	77%	88%						
⊦s	33%	43%	53%	63%	73%	82%						
σ _{c,90,U}	68%	66%	65%	64%	63%	62%	ļ				ļ	
$\sigma_{c,90,rad}$	24%	35%	47%	58%	70%	81%						
σ	19%	29%	39%	50%	60%	70%						
τ	24%	37%	50%	63%	76%	89%						
e _R = 40 cr	n					1	1	1	1	1	1	1
σ _R	44%	58%	72%	86%	100%							
⊦s	41%	55%	68%	81%	94%							
$\sigma_{c,90,U}$	66%	64%	63%	61%	59%							
$\sigma_{\rm c,90,rad}$	27%	41%	55%	69%	83%							
σ	24%	37%	50%	64%	77%							
$\tau = 50 \text{ er}$	30%	46%	62%	78%	95%							
$e_R = 50 \text{ cr}$	11 500/	700/	070/	1				<u> </u>				
σ _R	52%	70%	87%									
г _S	49%	00%	82%									
σ _{c,90,U}	04%	02%	65%									
O _{c,90,rad}	20%	47 70	620/									
0	29%	40%	76%									
$\tau = 60 \text{ cm}$	35% n	50%	70%									
e _R - 00 ci	61%	820/										
O _R	57%	77%										
T S	63%	60%										
σ _{c,90,U}	34%	55%										
ο _{c,90,rad}	35%	57%										
τ.	42%	68%										
$e_{\rm p} = 70 {\rm cm}$	n 12 70	0070										
	68%	93%	1				1	[1	
E E	64%	88%		 								l
. з С. со. и	61%	59%		p [mWS]		Spannring	g b _R /d _R			S	Schnitt A - /	4
<u>σ_{c,90,0}</u>	38%	64%		t +		/			ΓA			-
ο σ	43%	71%		Ħ !		/ Hol	zdaube b _D	/ d _D	I			F
τ	51%	84%		Ħ !	⊐r∕	^			╡╢╴┑	ι.		
e _R = 80 cr	n		1	4	1						. //	/ \\\ +
σ _R	76%			⊓ ⊥	- — #-	- # #			+	d _i C	R	d, ∦™⊓⊓
Fs	72%		1	Ħ							\mathbb{N}	
σοιμ	60%		1	Ħ		╶┟			_ <u>+</u> _↓L= ⊐	а d _D		
σ _{c 90 rad}	43%	1		Ħ			e _{R↓}					F
σ	54%		1	Ħ		1	es		- A			F
τ	61%		1	ť				/			-	F

Tabelle 10-9 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit d_i = 1,70 m

p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	n					-						
σ_R	18%	22%	25%	29%	32%	36%	40%	43%	47%	51%	54%	
Fs	17%	20%	24%	27%	31%	34%	37%	41%	44%	48%	51%	
$\sigma_{c,90,U}$	71%	71%	70%	70%	69%	69%	68%	68%	68%	67%	67%	
$\sigma_{c,90,rad}$	19%	27%	34%	41%	48%	55%	62%	69%	76%	83%	90%	
σ	13%	19%	25%	31%	37%	43%	49%	54%	60%	66%	72%	
τ	18%	25%	33%	40%	48%	56%	63%	71%	78%	86%	93%	
e _R = 20 cr	n											
σ_R	27%	35%	42%	49%	57%	64%	71%	79%				
Fs	26%	33%	39%	46%	53%	60%	67%	74%				
$\sigma_{c,90,U}$	69%	68%	67%	67%	66%	65%	64%	63%				
$\sigma_{c,90,rad}$	22%	31%	41%	50%	59%	68%	77%	87%				
σ	15%	23%	31%	39%	47%	55%	63%	72%				
τ	21%	31%	41%	52%	62%	72%	82%	93%				
e _R = 30 cr	n	1				r			-	1	1	
σ_R	36%	47%	59%	70%	81%	92%						
⊦s	34%	45%	55%	66%	76%	86%						
σ _{c,90,U}	67%	66%	65%	64%	62%	61%						
$\sigma_{\rm c,90,rad}$	25%	36%	48%	60%	72%	83%				-		
σ	20%	30%	41%	51%	62%	72%						
τ	25%	39%	52%	65%	78%	91%						
$e_R = 40 \text{ cr}$	n 450(000/	750/	000/		1	1	1		1		
σ _R	45%	60%	75%	90%								
FS	43%	57%	6.0%	85%		1						
σ _{c,90,U}	00%	04%	62%	710/								
o _{c,90,rad}	28%	43%	57%	71%								
σ	20%	J970 100/	5270 640/	00%								
$e_{\rm r} = 50 {\rm cm}$	3170 m	40 %	04 %	0170								
C _R = 50 Cl	54%	73%	01%									
E _o	51%	68%	86%									
σ	64%	62%	60%									
<u>σ</u> e 00 red	31%	49%	67%									
σ σ	30%	48%	65%									
τ	37%	58%	79%									
$e_{R} = 60 \text{ cr}$	n											
σ _R	62%	85%										
Fs	59%	80%										
σ _{c,90.U}	63%	60%										
σ _{c,90.rad}	35%	57%										
σ	37%	59%										
τ	44%	71%										
e _R = 70 cr	n											
σ _R	71%	97%										
Fs	67%	91%				·				-	· · · ·	
$\sigma_{c,90,U}$	61%	58%		p [mWS]		Spannring	g b _R /d _R			S	schnitt A - A	4
$\sigma_{c,90,rad}$	40%	66%		I ↑		/ Hol	zdaube b.	/ d_	ΓA			
σ	45%	74%		<u> </u>	/		O				_	_ [
τ	53%	87%		ЦI	76				╤╢╴╴	r.		\gg
e _R = 80 cr	n	1	•	┥	_					d d	I _R // /	∫∭d₀
σ _R	79%			Ц _						-1		[,] //
Fs	74%			H					╧╝╧╶╡	d_	K	
$\sigma_{\rm c,90,U}$	60%			H			e			. ~ D		-
$\sigma_{\rm c,90,rad}$	45%		ļ	H			- K J		A			
σ	56%		ļ	H		J	es)				Ļ
τ	63%	1	I			r						

Tabelle 10-10 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit di = 1,80 m

p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	n	•										
σ_R	18%	22%	26%	30%	34%	37%	41%	45%	49%	53%	57%	
Fs	17%	21%	24%	28%	32%	35%	39%	42%	46%	50%	53%	
$\sigma_{c,90,U}$	71%	70%	70%	70%	69%	69%	68%	68%	67%	67%	66%	
$\sigma_{\rm c,90,rad}$	20%	28%	35%	42%	50%	57%	64%	71%	79%	86%	93%	
σ	14%	20%	26%	32%	38%	44%	50%	57%	63%	69%	75%	
τ	19%	26%	34%	42%	50%	58%	66%	73%	81%	89%	97%	
e _R = 20 cr	n		•			•	•	•		•		
σ _R	28%	36%	43%	51%	59%	67%	75%	82%				
Fs	26%	34%	41%	48%	56%	63%	70%	78%				
$\sigma_{c,90,U}$	69%	68%	67%	66%	65%	65%	64%	63%				
$\sigma_{c,90,rad}$	23%	33%	42%	52%	61%	71%	80%	90%				
σ	16%	24%	32%	41%	49%	58%	66%	74%				
τ	22%	33%	43%	54%	64%	75%	86%	96%				
$e_R = 30 \text{ cr}$	n 070/	400/	040/	700/	0.40/	0.00/	r	r		r		<u> </u>
σ _R	37%	49%	61%	73%	84%	96%						
г _s	30%	40%	5/%	00%	19%	90%						
0 _{c,90,U}	01% 26%	00% 320/	00%	03% 62%	0∠% 74%	01% 97%						
σ _{c,90,rad}	20%	30%	50% 420/	02% 52%	64%	01 %						
σ	21%	32%	43%	53% 68%	04% 91%	75% 05%						
$e_{-} = 40 \text{ cm}$	21/0 n	40 /0	J 4 /0	0070	0170	9370						<u> </u>
0 _R – 40 0	46%	62%	78%	94%		1		1		1		1
E _R	44%	59%	73%	88%								
- S - σ. 00 μ	66%	64%	62%	60%								
σ _{0,90,0}	29%	44%	59%	74%								
σ.,90,120	26%	40%	54%	68%								
τ	32%	50%	67%	84%								
e _R = 50 cr	n											
σ _R	56%	75%	95%									
Fs	52%	71%	89%									
$\sigma_{c,90,U}$	64%	62%	59%									
σ _{c,90,rad}	33%	51%	70%									
σ	32%	50%	68%									
τ	38%	60%	82%									
e _R = 60 cr	n											
σ_R	64%	88%										
Fs	61%	83%										
$\sigma_{c,90,U}$	62%	60%										
$\sigma_{\text{c},90,\text{rad}}$	37%	60%										
σ	39%	62%	ļ					ļ	ļ	ļ		ļ
τ	46%	74%										
$e_R = 70 \text{ cr}$	n Taal		-			1	-	1		1		
σ _R	73%											
FS	69%	-		n [mWS]		Snannrin	ab/d			S	chnitt A - A	Δ
σ _{c,90,U}	61%					/	$\mathbf{g} \mathbf{b}_{R}, \mathbf{u}_{R}$		- A		, , , , , , , , , , , , , , , , , , ,	`
$\sigma_{c,90,rad}$	42%			-		/ Hol	zdaube b _D	/ d _D	1			-
σ	41%			H	=⊓⁄	/				,		
τ $P_{\rm r} = 80 {\rm or}$	00% n	l		니 ㅣ	ľ						. //	X . H
c _R – 00 Cl	81%			⊢ ⊥	- — #-	- # #	+	$-\parallel -\parallel$		d _i d		∕ d, }} ^d ₀ ⊢
E _R	76%			H								' <i>) </i> H
· δ	60%			H		═┟══╟			╪╢╧╶╡	d _D		
<u>σ</u> c,90,0	48%			H			e _R					H
ο σ	59%			Ħ		· · ·	e		⊢A			H
τ	67%			Ħ			~5	/ /				

Tabelle 10-11 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit di = 1,90) m
---	-----

		1										
p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	n											
σ_R	19%	23%	27%	31%	35%	39%	43%	47%	51%	55%		
Fs	17%	21%	25%	29%	33%	37%	40%	44%	48%	52%		
σ _{c.90.U}	71%	70%	70%	69%	69%	68%	68%	68%	67%	67%		
σ _{c 90 rad}	22%	29%	37%	45%	52%	60%	67%	75%	82%	90%		
σ	15%	21%	27%	34%	40%	47%	53%	59%	66%	72%		
τ	20%	28%	36%	44%	53%	61%	69%	77%	85%	93%		
e _P = 20 cr	n <u>_070</u>	2070	0070		0070	0.70	0070	,.	0070	0070		
σ _D	28%	37%	45%	53%	61%	70%	78%					
^o κ Fα	27%	35%	42%	50%	58%	66%	73%					
σ	69%	68%	67%	66%	65%	64%	63%					
σ	25%	35%	45%	55%	65%	75%	84%					
0c,90,rad	17%	26%	3/1%	/3%	52%	61%	60%					
0 7	230/	2070	46%	57%	68%	70%	00%					
a = 30 cr	2370 n	J4 /0	40 /0	51 /0	00 /0	1970	9070					
$e_R = 50$ cl	200/	510 /	620/	750/	000/							
	260/	J170 400/	500/	73/0	00 /0				-			
ГS	670/	40%	59%	7170	610/							
σ _{c,90,U}	01%	400%	04% 50%	03%	700/							
σ _{c,90,rad}	28%	40%	53%	66%	/ 8%							
σ	22%	34%	45%	56%	68%							
τ 10	29%	43%	57%	/1%	86%							
e _R = 40 cr	n							1		1	1	1
σ _R	48%	64%	81%	98%								
⊦s	45%	61%	76%	92%								
$\sigma_{c,90,U}$	66%	64%	62%	60%								
$\sigma_{\text{c,90,rad}}$	31%	47%	63%	78%								
σ	28%	43%	57%	72%								
τ	35%	53%	71%	89%								
e _R = 50 cr	n											
σ_R	57%	78%	99%									
Fs	54%	73%	93%									
$\sigma_{c,90,U}$	64%	61%	59%									
$\sigma_{c,90,rad}$	35%	54%	74%									
σ	34%	53%	72%									
τ	41%	64%	87%									
e _R = 60 cr	n											
σ_R	66%	91%										
Fs	62%	86%										
σ _{c.90.U}	62%	59%										
σ _{c.90.rad}	40%	63%										
σ	41%	65%										
τ	49%	78%										
e _R = 70 cr	n											
σ _R	75%											
Fs	71%											
σ	61%			p [mWS]		Spannring	g b _R /d _R			S	chnitt A - /	۹.
- 0,00,00	45%			Η +		/	ا تابيداد -	/ -I	ΓA			F
ο σ	50%			H I	,		zdaube b _D	/ 0 _D				F
τ	60%			H	⊐⊭	─ <u>∏</u> ─∕⊨			r ⊣⊫∔			
e _P = 80 cr	n 0070	1	1	4	1					ام		
	84%			ਰ ⊥	#-			$-\parallel -\parallel$	<u>∔</u>	d _i d	'R ∰ /	, d, ∄ ^u ⊳⊢
F _e	79%			H								` <i>]</i>
<u>σ</u>	50%			H		═╢╤═╟			╪╝╧╴╛	• d _D		
C,90,U	51%			H		II.	e _{r j}	Ø				-
о _{с,90,rad}	63%			Н			Â		⊢A			-
0	710/			Η			σs					H
τ	1170	1	1	· · · · · · · · · · · · · · · · · · ·				r		r	r	

Tabelle 10-12 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit di = 2,00 m

p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	n							-				
σ_R	17%	21%	25%	28%	32%	36%	40%	44%	47%	51%	55%	
Fs	16%	19%	23%	26%	30%	33%	37%	40%	44%	48%	51%	
σ _{c.90.U}	70%	70%	69%	69%	68%	68%	67%	67%	66%	66%	65%	
σ _{c.90.rad}	21%	28%	36%	43%	51%	58%	65%	73%	80%	87%	95%	
σ	15%	21%	27%	33%	39%	46%	52%	58%	64%	70%	77%	
τ	18%	25%	33%	41%	48%	55%	63%	70%	78%	85%	93%	
e _R = 20 cr	n											
σ _R	26%	34%	42%	49%	57%	65%	73%	80%				
Fs	24%	31%	39%	46%	53%	60%	67%	74%				
	68%	67%	66%	65%	64%	63%	62%	61%				
σ _c 90 rad	24%	34%	43%	53%	63%	72%	82%	91%				
σ	17%	25%	33%	41%	49%	57%	65%	73%				
τ	21%	31%	41%	51%	60%	70%	80%	90%				
e _P = 30 cr	n <u> </u>	0170	,.	0.70	0070		0070	0070				
σ _P	35%	47%	58%	70%	82%	93%						
Fe	33%	43%	54%	65%	76%	87%						
 σ	66%	64%	63%	61%	60%	58%	1					
- 0,90,0 - σ ₀ 00	27%	39%	51%	63%	76%	88%	1	<u> </u>		1	1	
ο σ	21%	31%	41%	51%	61%	71%	1	<u> </u>				
τ	25%	38%	51%	63%	76%	88%	1	<u> </u>				
$e_{\rm p} = 40 {\rm cm}$	n 2070	0070	5170	0070	1070	0070						
σ _R 40 0	11%	60%	75%	01%			1			1	1	
GR Fa	/1%	55%	70%	8/%								
τς σ	63%	61%	59%	57%								
0 _{c,90,0}	30%	45%	60%	75%								
Cc,90,rad	25%	38%	50%	63%								
0 7	2370	17%	62%	78%								
$e_{-} = 50 \text{ cm}$	51/0 n	47/0	0270	1070								
e _R = 50 ci	53%	72%	0.2%				<u>г</u>	[
OR E	40%	67%	92 %									
Γ _S	61%	50%	56%									
O _{c,90,U}	220/	53%	60%									
O _{c,90,rad}	200/	JZ 70	62%									
σ	30%	40%	750/									
τ = 60 cr	30% n	50%	75%									
e _R - 00 ci	610/	0/0/					r –	<u> </u>		1	r	
	57%	04 % 700/										
	57 %	70% E60/										
0 _{c,90,U}	37%	50%					1	<u> </u>		}	}	
Oc,90,rad	36%	57%										
σ	420/	600/										
τ = 70 cr	43% n	00%										
e _R – 70 Cr	60%	070/					1			1	1	
	64%	91%										L
ГS	64%	90%		n [mWS]		Spannrin	ab/d_			ç	Schnitt A - /	⊾ H
σ _{c,90,U}	20%	54%		⊣		/	G - R, GR		- A	C		H
$\sigma_{c,90,rad}$	42%	08%		ΗĪ		/ Ho	lzdaube b	/ d _D	A			H
σ	43%	70%		H	_n/	<u></u>						N H
τ	51%	83%		Ц	If .							\rightarrow
$e_R = 80 \text{ cr}$	11	1	1	⊢ ⊥	#_	- # #			_ <u>+</u>	d _i c		, ∭d∘
σ _R	11%			Ц								" // H
⊦s	/2%			H		┛			╧╝╧╶╛	d	K.	
σ _{c,90,U}	56%			Ц			e⊳		l	. 0		
$\sigma_{c,90,rad}$	46%			Ц					A			H
σ	52%			Ц		J	es					
τ	61%											

						-		-		-		
p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	n											
σ_R	17%	21%	25%	29%	33%	37%	41%	45%	49%	53%	57%	
Fs	16%	20%	23%	27%	31%	35%	38%	42%	46%	49%	53%	
σ _{с 90 U}	70%	70%	69%	69%	68%	68%	67%	66%	66%	65%	65%	
σ. 00, rod	21%	29%	37%	44%	51%	59%	66%	74%	81%	89%	96%	
σ σ	15%	21%	28%	34%	40%	46%	53%	59%	65%	71%	78%	
τ	18%	26%	34%	41%	49%	56%	64%	72%	79%	87%	94%	
$e_{-} = 20 \text{ cm}$	n 1070	2070	0470	- 170	4070	0070	0470	12/0	1070	0770	5470	
c _R – 20 ci	270/	250/	120/	51 0/	50%	670/	750/	0/0/				
	21 70	30%	43%	470/	59%	620/	75%	04 % 700/				
ГS	23%	32%	40%	47%	0.40/	02%	70%	70%				
σ _{c,90,U}	68%	67%	66%	65%	64%	62%	61%	60%				
$\sigma_{c,90,rad}$	24%	34%	44%	54%	64%	73%	83%	93%				
σ	18%	26%	34%	42%	50%	58%	66%	74%				
τ	21%	32%	42%	52%	62%	72%	81%	91%				
e _R = 30 cr	n											
σ_R	36%	48%	61%	73%	85%	97%						
Fs	33%	45%	56%	67%	79%	90%						
$\sigma_{c,90,U}$	65%	64%	62%	61%	59%	58%						
$\sigma_{c,90,rad}$	28%	40%	52%	65%	77%	89%						
σ	21%	31%	42%	52%	62%	72%						
τ	26%	39%	52%	64%	77%	90%						
e _R = 40 cr	n											
σ_{R}	45%	61%	78%	94%								
Fs	42%	57%	72%	87%								
σ _{6.90} μ	63%	61%	59%	57%								
σ _c 90 rad	31%	46%	61%	76%								
σ	26%	39%	51%	64%								
τ	32%	48%	63%	79%								
$e_{\rm p} = 50 {\rm cr}$	n <u>0_70</u>	.070	0070									I
σ _Γ	54%	74%	95%									
E _n	50%	69%	88%									
т <u>з</u>	61%	50%	56%									
Oc,90,0	35%	53%	71%									
oc,90,rad	31%	47%	63%									
0	270/	47 /0 570/	770/									
n = 60 cm	0770 n	51 /0	11/0									
$e_R = 00 \text{ cm}$	620/	070/										
σ _R	500/	01%										
ГS	50%	01%										
σ _{c,90,U}	59%	50%										
$\sigma_{c,90,rad}$	38%	60%										
σ	3/%	58%										
τ	44%	69%										
$e_R = 70 \text{ cm}$	11	10551							1			
σ _R	/1%	100%										
⊦s	66%	93%				Cnonnring	- 				obaitt A	_
$\sigma_{c,90,U}$	57%	54%		p [mws]		spanning /	D_R/Q_R			3	chnill A - A	`
$\sigma_{c,90,rad}$	43%	69%		L Ť		/ Hol	zdaube b _n	/ d _p	ΓA			_
σ	45%	72%		Ц I	/	<u></u>			 			
τ	53%	85%		Li i						с		\gg
e _R = 80 cr	n									d. d	I _R [[/	. ∭d _□
σ_{R}	79%			Ц —						~		ז, ∦ַ
Fs	74%			Ľ						. d	- M	
σ _{c,90,U}	56%			Ц	U	Ö.	UU	- Å	⊐ 	u _D		
σ _{c,90,rad}	48%								Δ			Π
σ	54%					L_	es	ł	А			Π
τ	62%											

Tabelle 10-14 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit di = 2,20 m

p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	n											
σ_R	18%	22%	26%	30%	34%	39%	43%	47%	51%	55%	60%	
Fs	16%	20%	24%	28%	32%	36%	40%	44%	47%	51%	55%	
$\sigma_{c,90,U}$	70%	70%	69%	68%	68%	67%	67%	66%	66%	65%	65%	
σ _{c.90.rad}	22%	30%	38%	45%	53%	60%	68%	75%	83%	91%	98%	
σ	16%	22%	28%	35%	41%	48%	54%	60%	67%	73%	80%	
τ	19%	27%	35%	42%	50%	58%	66%	73%	81%	89%	96%	
e _R = 20 cr	n										•	
σ_R	27%	36%	44%	53%	61%	70%	78%	87%				
Fs	25%	33%	41%	49%	57%	65%	73%	81%				
σ _{с 90 U}	68%	67%	65%	64%	63%	62%	61%	60%				
σ _{c.90 rad}	25%	36%	45%	55%	65%	75%	85%	95%				
σ	18%	27%	35%	43%	51%	59%	67%	76%				
τ	22%	33%	43%	53%	63%	73%	83%	94%				
e _R = 30 cr	n									1		
σ _R	37%	50%	63%	75%	88%							
Fs	34%	46%	58%	70%	82%	1						
σ	65%	64%	62%	60%	59%							
- 0,90,0 σ ₀ 90 rod	29%	41%	54%	66%	79%							
ο σ	22%	32%	43%	53%	63%							
τ	27%	40%	53%	66%	79%							
e _P = 40 cr	n <u>– 170</u>	.070	00/0	0070								
σ _R	46%	63%	81%	98%								
F _e	43%	59%	75%	91%								
σ	63%	61%	59%	56%								
σ _{c,90,0}	32%	48%	63%	78%								
σ _{c,90,rad}	27%	40%	53%	66%								
τ	33%	40%	65%	81%								
$e_{\rm p} = 50 {\rm cm}$	n 0070	4070	0070	0170								·
0R 00 0I	55%	77%	98%			[1				
E _n	51%	71%	91%									
т <u>s</u>	61%	58%	55%									
Ο _{C,90,0}	36%	54%	73%									
oc,90,rad	32%	18%	65%									
0 7	38%	-1070 50%	79%									
$e_{\rm p} = 60 {\rm cm}$	n 0070	0070	1070									
σ-	64%	00%	1				1	1				
G _R	60%	84%										
τ _S	50%	56%										
C,90,U	40%	62%										
ο _{c,90,rad}	20%	60%										
τ	46%	72%										
$e_{\rm p} = 70 {\rm cm}$	-+070 n	12/0										
	73%											
G _R	68%											
TS C	57%			p [mWS]		Spannrin	q b₀/d₀			S	chnitt A - A	4
о _{с,90,U}	45%			H 🗼					ΓA			H
0c,90,rad	47%			H I			zdaube b _D	/ d _D				H
0	550/			H I	⊐r≠	/	T	n	╡┓╴┑			
$e_{\rm p} = 80 {\rm cm}$	n 5570	1	1	Ц	ľ						. //	/\\\ . H
σ-	 81%			⊢ ⊥	#-	- # #			<u>+</u>	d _i d	R	j, ∦d₀
E _R	75%			H								' <i>) </i> H
т <u>s</u> Ф.	55%			H		╼╠═╾╟			╡╝╧	d _D		
0 _{c,90,U}	50%			H		L L	e _{R l}	Ø	l			H
0c,90,rad	56%			H					⊢A			H
0	650%			H		J	εs	/				H
ι	0.07/0	1	1			1	1	1		1		

Tabelle 10-15 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit di = 2,30	m
---	---

i												
p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	n											
σ_R	18%	22%	27%	31%	35%	40%	44%	49%	53%	57%		
Fs	17%	21%	25%	29%	33%	37%	41%	45%	49%	53%		
σ _{c.90.U}	70%	69%	69%	68%	68%	67%	67%	66%	65%	65%		
$\sigma_{c.90,rad}$	23%	31%	39%	47%	55%	63%	70%	78%	86%	94%		
σ	17%	23%	30%	36%	43%	49%	56%	62%	69%	76%		
τ	20%	28%	36%	44%	52%	60%	68%	76%	84%	92%		
e _R = 20 cr	n					<u>.</u>	•		•		•	
σ_{R}	28%	37%	46%	55%	64%	72%	81%	90%				
Fs	26%	34%	42%	51%	59%	67%	75%	84%				
	68%	66%	65%	64%	63%	62%	61%	59%				
σ _c 90 rad	27%	37%	47%	58%	68%	78%	88%	98%				
σ	19%	28%	36%	44%	53%	61%	70%	78%				
τ	23%	34%	44%	55%	65%	76%	86%	97%				1
e _P = 30 cr	n			/-	/-			.,.				<u>. </u>
σ	38%	51%	65%	78%	91%							1
Fs	35%	47%	60%	72%	85%							† – – †
σ	65%	64%	62%	60%	58%							
	30%	43%	56%	69%	82%							<u> </u>
∽c,90,rad	23%	34%	44%	55%	66%	<u> </u>						<u> </u>
τ	20%	42%	55%	69%	82%							
$e_{\rm p} = 40 {\rm cm}$	2070 n	72 /0	0070	0070	0270							<u> </u>
с _R – т о сі	17%	65%	83%									1
G _R	47 /0	61%	77%									
τς σ	63%	61%	58%									
Ο _{c,90,U}	34%	50%	66%									-
O _{c,90,rad}	34 %	400%	550/									
σ	20%	42% 510/	55% 690/									
τ = 50 cr	33% n	51%	00%									<u> </u>
$e_{\rm R} = 50$ Cl	E70/	700/				1		1		1		<u> </u>
σ _R	57 %	79%										
ГS	03%	73%										
σ _{c,90,U}	01%	58%										
$\sigma_{c,90,rad}$	38%	57%										-
σ	33%	50%										
τ	40%	61%										
$e_R = 60 \text{ cr}$	11 0.00/	000/				r		1		1		
σ _R	66%	93%										
FS	61%	86%										
$\sigma_{c,90,U}$	59%	55%										<u> </u>
$\sigma_{c,90,rad}$	42%	65%										<u> </u>
σ	41%	63%										
τ =	48%	75%										
e _R = 70 cr	n 			,		r	1	r	1	r	1	
σ _R	75%			L								<u> </u>
⊦s	70%					Cooperin	a ha / d				obaitt A	
$\sigma_{\rm c,90,U}$	57%			h [iiiwə]		/ Spanning	y D _R / U _R			5	ornnit A - J	י L
$\sigma_{\rm c,90,rad}$	47%			Ц ↑		/ Hol	zdaube b _n	/ d _D	⊢ A			
σ	49%			Ц	n/	//_						
τ	58%			Li i						r.		\rightarrow
e _R = 80 cr	n	T.		┛]					d d	I _R (/ /	∕ ∭d _□
σ _R	84%			Ц	- 1					-1		a, //
Fs	78%			Ц					╧╢╴╺	h	\mathbb{K}	
$\sigma_{\rm c,90,U}$	55%			Ľ	U		U	Ū.		u D		- [
$\sigma_{c,90,rad}$	52%			Ľ					μ			
σ	59%			Ľ		<u> </u>	es					
τ	68%					,						

Tabelle 10-16 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit di = 2,40 m

p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	n											
σ_R	18%	23%	27%	32%	36%	41%	46%	50%	55%	60%		
Fs	17%	21%	25%	30%	34%	38%	42%	47%	51%	55%		
$\sigma_{c,90,U}$	70%	69%	69%	68%	68%	67%	66%	66%	65%	65%		
$\sigma_{c.90,rad}$	25%	33%	41%	49%	57%	66%	74%	82%	90%	98%		
σ	18%	24%	31%	38%	45%	52%	59%	65%	72%	79%		
τ	21%	30%	38%	46%	54%	63%	71%	79%	88%	96%		
e _R = 20 cr	n											
σ_{R}	28%	38%	47%	56%	66%	75%	84%					
Fs	26%	35%	44%	52%	61%	70%	78%					
$\sigma_{c,90,U}$	68%	66%	65%	64%	63%	61%	60%					
$\sigma_{c,90,rad}$	28%	39%	50%	60%	71%	82%	92%					
σ	20%	29%	38%	47%	55%	64%	73%					
τ	25%	36%	47%	58%	69%	80%	91%					
e _R = 30 cr	n											
σ_{R}	38%	52%	66%	80%	94%							
Fs	36%	49%	61%	74%	87%							
σ _{c,90,U}	65%	63%	62%	60%	58%							
$\sigma_{c,90,rad}$	32%	46%	59%	72%	86%							
σ	25%	36%	47%	58%	69%							
τ	31%	44%	58%	72%	86%							
e _R = 40 cr	n											
σ_{R}	48%	67%	86%									
Fs	45%	62%	80%									
$\sigma_{c,90,U}$	63%	60%	58%									
$\sigma_{\text{c},90,\text{rad}}$	36%	53%	69%									
σ	30%	44%	58%									
τ	37%	54%	71%									
$e_R = 50 \text{ cr}$	n = = = = = (0.001	1	-		1	1	1	1	1	1	
σ _R	58%	82%										
FS	54%	76%										
$\sigma_{c,90,U}$	61%	58%										
$\sigma_{c,90,rad}$	40%	60%										
σ	36%	53%										
τ = 60 or	43%	65%										
$e_{\rm R} = 00 {\rm cm}$	690/	06%	1			1	1	1		1		
OR F	63%	90%										
σ	50%	55%										
0 _{c,90,U}	J9 /0	68%										
ο _{c,90,rad}	43%	66%										
τ	51%	79%										
e _p = 70 cr	n 5170	1070										
	77%		[[
E E	71%											
. <u>з</u>	57%			p [mWS]		Spannring	g b _R /d _R			S	chnitt A - A	۹ H
<u>σ</u> c,90,0	50%			H ₊		/	4. 1. 1		ΓA			F
ο σ	52%			H I		/ Hol	zdaube b _c	/ d _D				F
τ	62%			H I	⊐r∕	_ <u>_</u>			╡┲╴┙	N N		
e _R = 80 cr	n	1			1						, // .	∕ ∭'
σ _R	86%			⊓ ⊥	- — #	╴╫╴╫			+	a, o	R C	ı,∦™⊓
Fs	80%			Π							\mathbb{N}	
σ _{c,90.U}	55%			Π						e d _D		
$\sigma_{c,90,rad}$	55%						e _R	\square	L A			F
σ	62%					L	es	L.	л			Γ
τ	73%										1	

Tabelle 10-17 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit di = 2,50) m
---	-----

p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	m					-		-				
σ _R	14%	18%	21%	25%	28%	32%	36%	39%	43%			
Fs	13%	17%	20%	23%	27%	30%	33%	37%	40%			
σ _{c 90 U}	70%	70%	69%	68%	68%	67%	67%	66%	65%			
σ _c 90 rad	25%	33%	42%	51%	59%	68%	76%	85%	93%			
σ.	13%	18%	23%	29%	34%	39%	44%	49%	54%			
τ	20%	28%	36%	44%	52%	60%	68%	76%	84%			
e _P = 20 cr	m <u>= 0 / 0</u>	2070	00/0	,.	0270	0070	0070		0.70			ļ
σP	22%	29%	37%	44%	51%	59%	66%					
Fe	21%	28%	35%	41%	48%	55%	62%					
<u>σ</u>	68%	67%	66%	64%	63%	62%	61%					
σ _{c,90,0}	27%	38%	49%	60%	71%	81%	92%					
ο _{c,90,1ad}	16%	23%	30%	37%	43%	50%	57%					
τ	23%	33%	43%	53%	63%	74%	84%					
e _p = 30 ci	m <u>2070</u>	0070	1070	0070	0070	1170	01/0					<u> </u>
	30%	41%	52%	63%	74%	85%		[1	[
Fe	28%	39%	49%	59%	70%	80%		<u> </u>				
<u>σ</u>	66%	64%	62%	60%	50%	57%				<u> </u>		
0c,90,0	30%	44%	57%	70%	83%	96%						
ο σ	10%	28%	37%	46%	55%	64%	ļ					
0 7	28%	20%	53%	65%	78%	04 /0						
$e_{-} = 40 c_{-}$	<u> </u>	4070	5570	0370	1070	3070						ļ
e _R - +0 ci	38%	53%	67%	82%	07%	<u> </u>		<u> </u>				
OR F	36%	50%	63%	02% 77%	97%							
ι _s	649/	620/	50%	570/	51%							
0 _{c,90,U}	24%	02% 50%	09% 66%	010/	07%							
Oc,90,rad	04 %	30%	470/	0170 E00/	97% 70%							
σ	24%	35%	47%	30% 70%	70%							
τ = 50 c	33% m	40%	04 %	79%	94%							
$e_{\rm R} = 50 {\rm cm}$	460/	640/	0.00/			1		1	1	1	1	
	40%	60%	02%									
Гs	43%	50%	70%									
O _{C,90,U}	02%	59%	30% 76%									
σ _{c,90,rad}	30%	37 %	70% E0%									
σ	29%	43% 570/	58% 75%									
τ	37%	57%	75%									
$e_{\rm R} = 00 {\rm cm}$	E20/	750/	070/					<u> </u>		1		1
σ _R	53%	75%	97%									
ГS	50%	71%	92%									
σ _{c,90,U}	00%	5/%	53%									
σ _{c,90,rad}	42%	03% E 40/	01%									
σ	30%	04%	13%									
τ = 70 or	44 %	00%	91%									
$e_{\rm R} = 70$ Ci	010/	070/						<u> </u>		1		
σ _R	01% 570/	ð/%										L
ГS	57%	82%		n [mWS]		Spannring	n b/d₌			ç	Schnitt A - A	Δ
σ _{c,90,U}	59%	54%				/	$\mathbf{U}_{\mathrm{R}}, \mathbf{U}_{\mathrm{R}}$		- ^		,011111117777	`
$\sigma_{c,90,rad}$	47%	74%		ΗĪ		/ Hol	zdaube b _c	/ d _D	A			H
σ	46%	70%		₽	=n≠	/r/r=	n					
τ	52%	82%		Ц	ľ							\rightarrow
e _R = 80 CI	0001	000/		┥ ⊥	#_	- # #				d, 0	I _R	, ∭d°
σ _R	68%	98%		H								* // H
FS	64%	92%		H		╺┛╋			╘╧╝┻╴╕	d	×.	
$\sigma_{c,90,U}$	5/%	52%		₽			e _{R (}			0		H
$\sigma_{\rm c,90,rad}$	52%	85%		H			_· ` _}	ĭZJ	⊢ A			H
σ	56%	87%		H		J	es	<i>}</i>				H
τ	61%	99%				r		ı	ı ——	ı ——	1	

Tabelle 10-18 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit di = 2,60 m

p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	n											
σ_R	14%	18%	22%	25%	29%	33%	37%	40%	44%			
Fs	13%	17%	20%	24%	27%	31%	35%	38%	42%			
$\sigma_{c,90,U}$	70%	70%	69%	68%	68%	67%	66%	66%	65%			
σ _{c,90,rad}	25%	34%	43%	51%	60%	69%	77%	86%	95%			
σ	13%	19%	24%	29%	34%	39%	45%	50%	55%			
τ	20%	28%	36%	45%	53%	61%	69%	77%	85%			
e _R = 20 cr	n							-				
σ_R	23%	30%	38%	45%	53%	60%	68%					
Fs	21%	28%	35%	43%	50%	57%	64%					
σ _{c.90.U}	68%	67%	66%	64%	63%	62%	60%					
σ _{c.90.rad}	28%	39%	50%	61%	72%	82%	93%					
σ	16%	23%	30%	37%	44%	51%	58%					
τ	23%	34%	44%	54%	64%	75%	85%					
e _R = 30 cr	n											
σ _R	31%	42%	54%	65%	76%	88%						
Fs	29%	40%	50%	61%	72%	83%						
σοοιι	66%	64%	62%	60%	58%	56%						
$\overline{\sigma}_{c,00,rad}$	31%	45%	58%	71%	84%	97%						
σ	20%	29%	38%	47%	56%	65%						
τ	28%	41%	54%	66%	79%	91%						
e _P = 40 cr	n <u></u> n	,	01/0	0070		0.70						
σ	39%	54%	69%	85%	100%							
Fe	37%	51%	65%	80%	94%							
. <u>ς</u>	64%	61%	59%	56%	53%							
0c,90,0	35%	51%	67%	82%	98%							
о _{с,90,гао}	24%	36%	47%	59%	71%							
τ	34%	49%	65%	80%	95%							
$e_{\rm p} = 50 {\rm cr}$	n 0470	4070	0070	0070	0070							
σ _R 000	47%	66%	85%				1	[[1	
E _n	44%	62%	80%									
<u>σ</u>	62%	59%	55%									
σ _{c,90,0}	39%	58%	77%									
0c,90,rad	29%	44%	59%									
τ	30%	58%	77%	-								
$e_{\rm p} = 60 {\rm cr}$	n 0070	0070	1170									
σ _R 00 0.	55%	78%					1	[1		
E _n	51%	73%										
т <u>s</u>	60%	56%										
<u>σc,90,0</u>	43%	66%										
C,90,rad	37%	55%										
τ	45%	69%					<u> </u>					
$e_{\rm p} = 70 {\rm cr}$		0070										
	62%	80%										
E _n	50%	84%										L
σ	59%	54%		p [mWS]		Spannrin	g b_/d			S	Schnitt A - A	۹ H
С,90,U	48%	76%		H 🗼		/	- 13 13		ΓA			H
0 _{c,90,rad}	40%	70%		H			zdaube b	/ d _D				H
0	F / 0/	Q / 0/		H	=⊓≠		n	n	╡┓┍╴┥			M H
$r_{\rm e_{-}} = 80 \rm cm$	04% n	04%	1	4	ľ						. //	/\\\ . H
c _R – 00 Cl	700/			⊢ ⊢	#-	┈╫╴╶╫			<u>+</u>	d _i c	¹ R ∰ / /	d. ∦d₀
GR F	66%			H								⁻' <i>∭</i> H
σ	57%			H		╶╢╤╴╟			╧╢╴╕	d		/ H
Ο _{C,90,U}	51%			Η			e _{R L}	Ø				H
Oc,90,rad	590/			H					⊢A			H
σ	20%			H		J	es	/				H
τ	63%							1		1		

Tabelle 10-19 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit di = 2,70 m

p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _P = 10 cr	n			•								
σp	14%	18%	22%	26%	30%	34%	38%	42%	46%			
Fe	14%	17%	21%	25%	28%	32%	36%	39%	43%			
σωιι	70%	70%	69%	68%	68%	67%	66%	66%	65%			
σ _{c,90,0}	26%	35%	44%	53%	61%	70%	79%	88%	97%			<u> </u>
ο _{c,90,rad}	14%	19%	25%	30%	35%	40%	46%	51%	56%			1
τ	21%	29%	37%	46%	54%	62%	70%	78%	87%			1
$e_{\rm p} = 20 {\rm cm}$	n <u>2170</u>	2070	0770	4070	0470	0270	1070	1070	0170			<u> </u>
σ _R _0 0.	23%	31%	39%	47%	54%	62%	70%					
F _o	22%	29%	36%	44%	51%	59%	66%					
σ	68%	67%	65%	64%	63%	61%	60%					
σ _{c,90,0}	29%	40%	51%	62%	73%	84%	95%					
oc,90,rad	17%	24%	31%	38%	15%	52%	50%					
0 7	2/%	27/0	45%	55%	66%	76%	87%					
$e_{\rm p} = 30 {\rm cm}$	n 2770	0070	4070	0070	0070	7070	0170					<u> </u>
G-	31%	13%	55%	67%	70%	01%		1		1	1	1
GR Fa	30%	40%	52%	63%	74%	85%						
σ	66%	64%	62%	60%	58%	56%						
0 _{c,90,U}	320%	46%	50%	730/	86%	10.0%					<u> </u>	<u> </u>
O _{c,90,rad}	02 /0 010/	40 /0	200/	10/	57%	67%						<u> </u>
0	2170	40%	59%	4070	0/0/	07 %						-
$\tau = 40 \text{ cm}$	2970 n	4270	55%	0070	0070	93%						
e _R - +0 ci	400/	560/	710/	070/				r	r	r	r	
O _R	270/	50%	670/	07.70								·
I _S	640/	52% 610/	500/	0270 EC0/								
O _{c,90,U}	26%	520/	600/	950%								
O _{c,90,rad}	250%	32%	400/	60%								
σ	20%	51%	49%	00%								
τ = 50 cm	30% n	51%	00%	02%								<u> </u>
$e_{\rm R} = 50$ cl	100/	690/	000/					1	1	1	1	r
σ _R	40%	64%	00%									
I _S	40%	04% 500/	0Z 70									
O _{c,90,U}	02.70	50% 60%	70%									
O _{c,90,rad}	4170 210/	460/	60%									
σ	31%	40%	70%									
τ = 60 cm	40 %	59%	79%									
$e_R = 00 \text{ cm}$	EC0/	0.00/					1	1	1	1	1	
σ _R	50%	00% 75%										
гs	53% 60%	75%										
σ _{c,90,U}	60%	50%										
Oc,90,rad	40%	57%										
0	30%	57% 710/										
τ $P_{\rm p} = 70 \rm cm$	4170 n	/ 170					l				l	<u> </u>
e _R - 70 Cl	640/	0.20/						1	1	1	1	
σ _R	60%	92%										<u> </u>
ГS	60% 50%	60% 520/		p [mWS]		Spannring	a b _a /d _a			S	Schnitt A -	A H
σ _{c,90,U}	58%	53% 700/		¢		/	9 • R, • R		- Δ			`
σ _{c,90,rad}	30%	740/		H Ī		/ Hol	zdaube b _D	/ d _D				H
σ	49%	14%		H I	=n⊭		î			•		
τ = 20 =	00%	80%		Ц	ľ							\rightarrow
e _R – ou cr	700/			⊢ ⊥	#_	- # #			⊢ ⊢ ∣	d, ⁰		d ∭d₀∟
σ _R	12%			H								~ <i>//</i>
ГS	6/%			H		╺┛┝═─┤┝			╘╧╧┻╴╛	d	×.	
σ _{c,90,U}	50%			H			e _{R 1}	Ø	ł	-		μ
σ _{c,90,rad}	%0C			H			/		Α			H
σ	00%			H		<u>ا</u>	es	/				-
τ	65%	1	1				· · · · · ·	r				I

Tabelle 10-20 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit di = 2,80 m

-												
p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	n											
σ_R	15%	19%	23%	27%	31%	35%	39%	43%	47%			
Fs	14%	18%	21%	25%	29%	33%	37%	40%	44%			
$\sigma_{c,90,U}$	70%	70%	69%	68%	67%	67%	66%	65%	65%			
σ _{c.90.rad}	27%	36%	46%	55%	64%	73%	82%	91%	100%			
σ	15%	20%	25%	31%	36%	42%	47%	53%	58%			
τ	22%	30%	39%	47%	56%	64%	73%	81%	89%			
e _R = 20 cr	n											
σ_R	23%	32%	40%	48%	56%	64%	72%					
Fs	22%	30%	37%	45%	53%	60%	68%					
σ _{c.90.U}	68%	67%	65%	64%	62%	61%	60%					
$\sigma_{c.90,rad}$	30%	42%	53%	65%	76%	87%	98%					
σ	18%	25%	32%	39%	47%	54%	61%					
τ	25%	36%	47%	57%	68%	79%	89%					
e _R = 30 cr	n						•					
σ _R	32%	44%	57%	69%	81%							
Fs	30%	42%	53%	65%	76%							
	66%	64%	62%	59%	57%							
σ _{c 90 rad}	34%	48%	62%	75%	89%	1	1	1				
σ	22%	31%	40%	50%	59%							
τ	31%	44%	57%	70%	83%							
$e_{R} = 40 \text{ cr}$	n											
σ	40%	57%	73%	90%								
Fs	38%	54%	69%	85%								
σοοιι	64%	61%	58%	55%								
σ ₀ 00 rod	38%	54%	71%	87%								
σ σ	26%	38%	50%	63%								
τ	37%	53%	69%	85%								
e _P = 50 cr	n <u>0.70</u>	0070	0070	0070						I		
σ _P	49%	69%	90%									
F	46%	65%	85%									
σ	62%	58%	55%									
0,90,0	42%	62%	82%									
σ σ	32%	47%	63%									
τ	42%	62%	82%									
e _P = 60 cr	n - <u>-</u> /0	0270	0270									
σ _Γ	57%	82%										
F	54%	77%										
. 5	60%	56%										
σ _{c,90,0}	47%	71%										
~c,90,rad	40%	59%				1						
τ	49%	74%										
e _P = 70 cr	n	, .	I									
<u>σ</u> ⊳	65%	94%										
Fe	61%	89%										L
· 3 σ	58%	53%		p [mWS]		Spannring	g b _R /d _R			S	chnitt A - A	1
<u>σ</u> c,90,0	53%	81%		H ₊		/			ΓA			H
ο σ	52%	77%		┞┤			zdaube b _D	/ d _D				H
τ	59%	90%		┢┤	⊐r⊭				r ⊣⊫∔			M H
e _P = 80 cr	n <u>5575</u>	0070	1	┺┥ │	1							
	73%		[⊢ ⊢		- #- #		$-\parallel -\parallel$	<u> </u>	d _i o		ı, ∦a₀⊢
E _n	69%			H								ʻ <i>) </i> H
	56%			H		╤┟╤╴╟			╪╝╘╴╡	d _D		// H
<u>σ_{c,90,U}</u>	58%			H			e _R					H
о _{с,90,rad}	63%			┢┤			Â		⊢A			H
υ τ	68%			H		J	σs					H
L	0070	1	1	l		1	1	1	r	1		

Tabelle 10-21 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit di = 2,90 m

p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 ci	n		-			-		-			-	
σ_R	15%	19%	23%	27%	32%	36%	40%	44%				
Fs	14%	18%	22%	26%	30%	34%	38%	42%				
$\sigma_{c,90,U}$	70%	69%	69%	68%	67%	67%	66%	65%				
$\sigma_{c,90,rad}$	29%	38%	48%	57%	66%	76%	85%	95%				
σ	15%	21%	27%	32%	38%	44%	49%	55%				
τ	23%	32%	41%	49%	58%	67%	76%	84%				
e _R = 20 ci	n											
σ_{R}	24%	32%	41%	49%	58%	66%						
Fs	22%	30%	38%	46%	54%	62%						
$\sigma_{c,90,U}$	68%	66%	65%	63%	62%	60%						
$\sigma_{\rm c,90,rad}$	32%	44%	56%	68%	79%	91%						
σ	19%	26%	34%	41%	49%	56%						
τ	27%	38%	49%	60%	71%	82%						
e _R = 30 ci	n	1	-			-	•	-	•		-	-
σ_R	33%	45%	58%	71%	84%							
Fs	31%	43%	55%	67%	79%							
$\sigma_{c,90,U}$	66%	64%	61%	59%	57%							
$\sigma_{\rm c,90,rad}$	36%	50%	65%	79%	93%							
σ	23%	33%	42%	52%	62%							
τ	33%	46%	60%	73%	87%							
e _R = 40 ci	n					r	1	r	1	1	r	
σ _R	41%	58%	75%	92%								
Fs	39%	55%	/1%	87%								
$\sigma_{c,90,U}$	64%	61%	58%	55%								
$\sigma_{\rm c,90,rad}$	40%	57%	74%	92%								
σ	28%	40%	53%	65%								
τ = 50 or	39%	56%	12%	89%								ļ
$e_{\rm R} = 50 {\rm Cm}$	II 500/	710/	0.20/				1	1	1	1	1	<u> </u>
σ _R	30%	67%	93%									
гs	47%	500/	0170 540/									-
O _{c,90,U}	02%	00% 65%	04%									
Oc,90,rad	40%	50%	66%									-
0	34%	50%	86%									
$\tau = 60 c$	44 %	05%	00 %									<u> </u>
e _R = 00 ci	58%	Q1%	r –			[<u> </u>		Г	r – –	
OR Fa	55%	79%										
T S	60%	55%										
0 _{c,90,0}	50%	74%										
C,90,rad	42%	62%										
τ	52%	78%										
e _p = 70 cr	n 0270	1070								l		<u> </u>
σ _R . σ σ.		97%	<u> </u>					[1	r	
Fe	63%	91%						1				ا ا
. s С. со. и	58%	52%		p [mWS]		Spannring	g b _R /d _R			S	Schnitt A - A	۹ H
<u>σ</u> c,90,0	56%	85%		ti +		/			ΓA			H
- σ,90,rad	55%	81%	1	Ħ │		/ Hol	zdaube b _D	/ d _D	l			H
τ	62%	95%		Ħ	⊐r∕				╡┓╴╴	1		
e _R = 80 cr	n <u> </u>			4	1						, //	╱╢╻Н
σ _R	75%			TI –	- — #	- # #				d' c	*R 👖 🔶 (d, ∦™⊓⊓
Fs	71%		1	Ħ							\mathbb{N}	/// H
σ _{с 90 11}	56%			Ħ						t d _D		
σ _{c.90 rad}	62%		1	Ħ			e _{R↓}					H
σ	67%		1	Ħ		I	es	I	- A			H
τ	73%		1	tL		· · · · · ·		<i>*</i>	-			

Tabelle 10-22 Ausnutzungsgrad für Druckrohrleitung auf Sättel mit di = 3,00 m

·							_			_		
p [mWS]	5	10	15	20	25	30	35	40	45	50	55	60
e _R = 10 cr	n											
σ_R	15%	19%	24%	28%	32%	37%	41%	45%				
Fs	14%	18%	22%	26%	30%	35%	39%	43%				
σ _{c.90.U}	70%	69%	69%	68%	67%	66%	66%	65%				
σ _c 90 rad	31%	41%	51%	60%	70%	80%	90%	100%				
σ	17%	22%	28%	34%	40%	46%	52%	58%				
τ	25%	34%	43%	52%	61%	71%	80%	89%				
e _P = 20 cr	n											
σ	24%	33%	42%	50%	59%	68%						
Fe	23%	31%	39%	48%	56%	64%						
σωι	68%	66%	65%	63%	62%	60%						
σ,90,0	35%	47%	59%	71%	84%	96%						
ο _{c,90,rad}	20%	28%	36%	44%	51%	59%						
τ	20%	40%	52%	63%	75%	87%						
$e_{-} = 30 \text{ cm}$	n 2070	4070	5270	0070	1070	0770				l		
GR 000	33%	46%	60%	73%	86%							
GR F-	31%	40 /0	56%	60%	81%							
T _S	669/	44 /0 620/	610/	0970 509/	670/							
O _{C,90,U}	200%	03% 520/	01%	020/	000/							
σ _{c,90,rad}	30%	00%	00%	03%	90%							
σ	25%	35%	45%	55%	00%							
τ = 40 er	35%	49%	63%	18%	92%							
$e_R = 40 \text{ cr}$	10	000/	770/	0.50/						1	r	
σ _R	42%	60%	77%	95%								
FS	40%	56%	73%	89%								
$\sigma_{c,90,U}$	64%	61%	57%	54%								
$\sigma_{c,90,rad}$	43%	61%	79%	97%								
σ	30%	43%	56%	69%								
τ	42%	59%	76%	94%								
e _R = 50 cr	n					1		1		T		1
σ _R	51%	73%	95%									
⊦s	48%	69%	89%									
$\sigma_{c,90,U}$	62%	58%	54%									
$\sigma_{\text{c,90,rad}}$	48%	70%	91%									
σ	36%	53%	70%									
τ	48%	69%	91%									
e _R = 60 cr	n					1		1			-	1
σ_R	60%	86%										
Fs	56%	81%										
$\sigma_{c,90,U}$	60%	55%										
$\sigma_{\rm c,90,rad}$	54%	79%										
σ	45%	66%										
τ	56%	83%										
e _R = 70 cr	n											
σ _R	68%	99%										
Fs	64%	93%								i		
$\sigma_{c,90,U}$	58%	52%		p [mWS]		Spannring	g b _R /d _R			S	Schnitt A - A	۹ –
$\sigma_{c.90,rad}$	60%	91%		1 1			zdauba b	/ d	ΓA			
σ	59%	86%			/	/ /		, u _D				
τ	67%	100%			∃⊭				╤╢╴╶	1		
e _R = 80 cr	n		•	7	[]					a (ı. // .	_ ∭
σ _R	77%			┓ ⊥	- — #	- # #						d,∦∭™"
Fs	72%			Π					i		\mathbb{N}	
σ _{с 90} μ	56%			Π					╡	t d _D		
σ _{c.90 rad}	66%			Π			e _{R↓}					F
σ	72%			Η			es	-	-A			F
τ	78%			۲			3	/				

Exemplarisch ist in Bild 10-1 bis Bild 10-6 der Ausnutzungsgrad für die in den Bemessungstabellen geführten Nachweise in Abhängigkeit von Spannringabstand und Wasserinnendruck für eine Druckrohrleitung mit einem Innendurchmesser von 1,0 m dargestellt (vgl. Tabelle 10-2) (Holzdaube $d_D = 70$ mm, C24; Spannring $b_R/d_R = 60/6$ mm, S235; Spannschloss M27, S235).

Bild 10-1 Nachweis der Normalspannung im Spannring (σ_R)

Bild 10-2 Nachweis der Zugkraft im Spannschloss (F_S)

Bild 10-4 Nachweis der Querdruckspannung in radialer Richtung ($\sigma_{c,90,rad}$)

Bild 10-5 Nachweis von Biegung und Druck (σ) (Interaktion)

Bild 10-6 Nachweis der Schubspannung (τ)

10.3 Empfehlungen für die Praxis

Maßgebend für den optimalen Einsatz und die Lebensdauer einer Druckrohrleitung aus Holz ist ein sorgfältiger Herstellungsprozess. Der Einbau der Holzdauben sollte mit einer Holzfeuchte von ca. 16 % bis 18 % erfolgen. Die richtige Wahl der Holzfeuchte beim Einbau der Holzdauben ist deshalb von besonderer Bedeutung, da in diesem Fall der entstehende Quellungsdruck bei Wasserfüllung des Rohres als praktische Gebrauchseigenschaft benötigt wird. Bei der Herstellung von Druckrohrleitungen aus Holz werden die Spannringe leicht vorgespannt (Mittelwert 5,0 kN pro Spannring), um den Zusammenbau zu ermöglichen und die einzelnen Holzdauben hinreichend dicht zusammenzupressen. Setzsicherungen können zur Sicherung der Muttern am Spannschloss eingesetzt werden. Die Anordnung der Spannschlösser der einzelnen Spannringe sollte spiralförmig in Längsrichtung der Rohrleitung erfolgen, damit eine gleichmäßige Verteilung der Vorspannkraft gewährleistet ist. Bei sehr großen Rohrdurchmessern können die Spannringe in verschiedene Segmente aufgeteilt werden. Die Stahlteile müssen gegen Korrosion geschützt werden. Eine Druckrohrleitung aus Holz ist nur dann ausreichend beständig, wenn die Rohrleitung nicht über einen längeren Zeitraum entleert wird und somit die Gefahr des Austrocknens der Holzdauben besteht. Eine regelmäßige Kontrolle des Zustandes der Druckrohrleitung wird empfohlen.

11 Sonderelemente und Anschlüsse

Ein Vorteil von Druckrohrleitungen aus Holz gegenüber Stahl- oder Betonrohren ist die optimale Anpassung an die Geländeform. Durch unterschiedliche Daubenlängen und aufgrund der Flexibilität der Rohrleitung kann die Trassenführung dem Gelände angepasst werden. Krümmungsradien können bei Druckrohrleitungen aus Holz bis zum 30-fachen des Rohrdurchmessers hergestellt werden; kleinere Radien verlangen den Einsatz von Sonderbauteilen (Krümmer). Bislang wurden Krümmer meist aus gebogenen Stahlrohrschüssen ausgeführt. Schwachpunkt dieser Lösung ist die Undichtigkeit am Übergang von Holz- zu Stahlrohr. Ähnliche Probleme treten am Flanschanschluss von Holzrohr am Einlauf bzw. Auslauf der Rohrleitung auf (Bild 11-1).

Bild 11-1 Anschluss Druckrohrleitung aus Holz an Turbinenhaus mittels Stahlflansch

Die Undichtigkeiten am Übergang von Holzrohr zu Beton waren Anlass zu einem Versuch, bei dem ein optimierter Anschluss geprüft wurde. In dem Versuch wurde ein 1,0 m langer Rohrabschnitt mit dem Innendurchmesser von 1,4 m an zwei Stahlbetonplatten angeschlossen. Am Rohrabschnitt wurden Spannringe im Abstand von 20 cm angeordnet (Bild 11-2). Der Versuchsstand wurde mit einem Wasserinnendruck von 1,8 bar beansprucht.

Bild 11-2 Versuch: optimierter Anschluss Holz - Beton

Die Herstellung des Anschlusses ist in Bild 11-3 dargestellt. Die Holzdauben werden zunächst 5 cm tief eingeschlitzt. Anschließend müssen die Fugen zwischen den einzelnen Holzdauben abgeklebt werden. Das Klebeband verhindert später beim Betonieren ein Eindringen von Betonschlemme in die Fugen. Dies würde das Schließen der Fugen zwischen den einzelnen Holzdauben beim Quellen behindern und somit zu Undichtigkeiten des Anschlusses führen. Zur Einleitung von Zugkräften aus den Holzdauben in die Stahlbetonplatten infolge Wasserinnendruck werden Vollgewindeschrauben (8 x 200 mm) verwendet. Die Vollgewindeschrauben werden wird ein 10 cm breites Stahlblech (Dicke t = 1 mm) in den eingeschlitzten Holzdauben angeordnet. Das Stahlblech, welches 5 cm übersteht, wird später zur Hälfte einbetoniert und sorgt für die Dichtigkeit des Anschlusses.

Neben dem Anschluss des Holzrohres am Einlauf bzw. Auslauf der Rohrleitung können auf die gleiche Art Rohrkrümmungen hergestellt werden (Bild 11-4). Der Krümmer aus Stahlbeton muss entsprechend dem vorhandenen Wasserinnendruck bewehrt werden.

Bild 11-3 Herstellung des optimierten Anschlusses

Detail Anschluss:

Bild 11-4 Betonkrümmer und Anschlussdetail

12 Besonderheiten im Rahmen des BMBF-Projekts

Ein Konzept für den Ausbau der Höhle Gua Bribin (Bild 12-1) zur Labor- und Demonstrationshöhle war der Einsatz einer Druckrohrleitung aus Holz zur Nutzung unterirdischer Wasserressourcen.

Bild 12-1 Lageplan Gua Bribin (verändert nach MacDonald (1984))

Die geodätische Detailvermessung der Höhle Gua Bribin zur Planung der Trassenführung der Druckrohrleitung aus Holz und zur Erschließung der Höhle erfolgte durch das Geodätische Institut der Universität Karlsruhe (TH). Mit dem Programm AutoCAD wurde ein dreidimensionales Modell der Höhle erstellt (Bild 12-2). Mit Hilfe dieses Modells wurde die Trassenführung geplant. Die Gesamtlänge der Rohrleitung beträgt 2140 m, wobei an drei Stellen Rohrkrümmer eingefügt werden müssen.

Bild 12-2 Modell der Höhle Gua Bribin zur Planung der Trassenführung

Messungen des Instituts für Wasser und Gewässerentwicklung, Bereich Wasserwirtschaft und Kulturtechnik der Universität Karlsruhe (TH) ergaben für Gua Bribin eine Abflussrate von ca. 1,5 m³/s in der Trockenzeit. Die Vordimensionierung nach Kapitel 6.3 ergibt somit einen Innendurchmesser der Druckrohrleitung aus Holz von 1,40 m. Unter Berücksichtigung der Energieverluste (Verlusthöhe $h_V = 1,3$ m) kann bei einer hydrostatischen Druckhöhe von 15 m eine Leistung von ca. 140 kW in der Trockenzeit erzeugt werden.

Die Bemessung der Druckrohrleitung aus Holz kann nach Kapitel 10 durchgeführt werden. Der Spannringabstand kann gemäß den Bemessungstafeln dem Verlauf des hydrostatischen Wasserinnendruckes angepasst werden.

Für die Bemessung bei instationärer Strömung ist die Schließfunktion des Schiebers so zu dimensionieren, dass eine wirtschaftliche Bemessung der Druckrohrleitung aus Holz gewährleistet werden kann. Hierzu ist beispielsweise eine lineare, zweistufige Schließfunktion (vgl. Kapitel 6.4) geeignet.

13 Zusammenfassung und Ausblick

Im Rahmen des BMBF-Verbundprojektes "Erschließung und Bewirtschaftung unterirdischer Karstfließgewässer in Mitteljava, Indonesien" war geplant, die Trinkund Brauchwasserversorgung während der Trockenzeit im Distrikt Gunung Kidul zu verbessern. An der Südküste Javas ist aufgrund der Verkarstung des Untergrundes eine natürliche Speicherung des Niederschlags kaum möglich. Deshalb ist besonders in der Trockenzeit ein Wassermangel vorhanden. Es existieren im Karstaquifer jedoch große unterirdische Wasserressourcen, die bislang weitgehend ungenutzt über ein weitverzweigtes Höhlensystem in den Indischen Ozean abfließen. Aufgrund der Speicher- und Pufferkapazität des Karstaquifers führen diese unterirdischen Flüsse auch in der Trockenzeit beachtliche Abflussmengen. Seit Jahrzehnten werden von der indonesischen Regierung Anstrengungen unternommen, diese Wasserressourcen zu nutzen. Eine nachhaltige Lösung wurde bisher jedoch nicht gefunden.

Ein Konzept für die Nutzung der unterirdischen Wasservorkommen ist der Einsatz von Druckrohrleitungssystemen aus Holz. Über eine Wasserfassung am oberen Ende der Druckrohrleitung wird dieser das strömende Wasser zugeführt. Zur Erzeugung der zum Antrieb von Förderpumpen erforderlichen Druckhöhe wird entsprechend dem geodätischen Verlauf der Höhle eine Druckrohrleitung aus Holz verlegt. Mit dem Einsatz von Druckrohrleitungssystemen aus Holz ist eine Wasserund Energiebewirtschaftung von Karstfließgewässern in Höhlen realisierbar, in denen der partielle Einstau der Höhle aufgrund von Wasserverlusten oder geostatischen Problemen nicht möglich ist. Da in Indonesien und speziell auf Java eine Vielzahl von Höhlen existieren, kann das Konzept problemlos auf weitere Höhlen zur nachhaltigen Wassergewinnung angewendet werden.

Holz bietet sich als geeigneter Baustoff für die Druckrohrleitung an, da Stahl oder Beton wegen des großen Gewichtes der Rohrschüsse in Zusammenhang mit der Enge und Unwegsamkeit in der Höhle und den sich daraus ergebenden Schwierigkeiten beim Bau ausscheiden.

Im Rahmen des Verbundprojektes wurden zwei Themenbereiche untersucht, um Druckrohrleitungen aus Holz in unterirdischen Karstfließgewässern in Mitteljava bauen zu können. Der erste Bereich betrifft den Baustoff Holz, da in Südostasien und speziell in Indonesien völlig andere Holzarten verfügbar sind als in Europa. Im zweiten Bereich wurden Probleme im Zusammenhang mit der Rohrkonstruktion in der Höhle gelöst.

Anhand eingehender Untersuchungen wurde der Einfluss der Holzfeuchte auf physikalische und elasto-mechanische Eigenschaften ausgewählter Holzarten ermittelt, welche in Indonesien lokal verfügbar sind und sich als Baustoff für Holzdaubenrohre eignen. Zusätzlich wurde zum Vergleich die in Deutschland heimische Holzart Lärche einbezogen, da in Deutschland bevorzugt die Nadelholzarten Kiefer, Lärche und Douglasie für den Bau von Holzdaubenrohren eingesetzt werden.

Die Ergebnisse dieser Untersuchungen dienten zur Planung, Dimensionierung und Konstruktion einer Druckrohrleitung aus Holz und wurden als Eingangsgrößen für ein Finite-Elemente-Modell verwendet. Mit Hilfe des FE-Modells wurde das Biegetragverhalten von Holzdaubenrohren, die auf Sättel aufgelagert sind, untersucht. Die Ergebnisse der FE-Untersuchungen wurden experimentell an einer Druckrohrleitung verifiziert. Zusammenfassend wurden Bemessungsvorschläge für Druckrohrleitungen aus Holz ausgearbeitet. Mit Hilfe von Bemessungstabellen kann eine schnelle Bemessung von Druckrohrleitungen aus Nadelholz der Festigkeitsklasse C24, welche auf Sättel aufgelagert sind, durchgeführt werden.

14 Bezeichnungen

A	Querschnittsfläche [mm²]
A _{Sp}	Spannungsquerschnittsfläche [mm²]
A _{ef}	wirksame Querdruckfläche [mm ²]
а	Abstand zwischen einer Laststelle und dem nächsten Auflager beim Biegeversuch [mm]
α	lineares Quellmaß [%] bzw. Winkel [°]
α_{max}	maximales lineares Quellmaß [%]
α_{T}	Wärmeausdehnungskoeffizient [1/K]
b	Breite des Prüfkörpers [mm]
b _D	Breite der Holzdaube [mm]
b _R	Breite des Spannrings [mm]
b _S	Breite des Auflagers (Sattel) bei einer Druckrohrleitung [cm]
ß	Winkel [°]
С	Druckwellengeschwindigkeit [m/s]
D	Rohraußendurchmesser [mm]
DL	Drucklinie
DMS	Dehnmessstreifen
d _i	Rohrinnendurchmesser [mm]
d _D	Dicke der Holzdaube [mm]
d _R	Dicke des Spannrings [mm]
ΔE	Änderung des Elastizitätsmoduls pro Prozent Holzfeuchteänderung [%/% Δu]
Eo	Elastizitätsmodul in Faserrichtung [N/mm²]
E ₉₀	Elastizitätsmodul rechtwinklig zur Faserrichtung [N/mm ²]
E _{c,0}	Druck-Elastizitätsmodul in Faserrichtung [N/mm ²]
E _{c,90}	Druck-Elastizitätsmodul rechtwinklig zur Faserrichtung [N/mm ²]
E _{dyn}	dynamischer Elastizitätsmodul ermittelt aus Schwingungs- messungen [N/mm ²]
EL	Energielinie
e _R	Abstand der Spannringe [m]
es	Abstand der Auflager (Sättel) bei einer Druckrohrleitung [m]
8Q	Quelldehnung der Holzdauben [-]
£VS	Vorspanndehnung der Stahlringe [-]

F _{c,90}	Drucklast rechtwinklig zur Faserrichtung [N]
F _{c,90,max}	maximale Drucklast rechtwinklig zur Faserrichtung [N]
F _{c,90,max,est}	geschätzte maximale Drucklast rechtwinklig zur Faserrichtung [N]
F _{max}	Höchstlast [N]
Fs	Zugkraft im Spannschloss [kN]
FS	Fasersättigungsbereich [%]
Δf	Änderung der Festigkeit pro Prozent Holzfeuchteänderung [%/% Δu]
f ₀	Eigenfrequenz bei Schwingungsmessung [Hz]
f _{c,0}	Druckfestigkeit in Faserrichtung [N/mm ²]
f _{c,90}	Druckfestigkeit rechtwinklig zur Faserrichtung [N/mm ²]
f _m	Biegefestigkeit [N/mm²]
f _v	Scher- bzw. Schubfestigkeit [N/mm²]
f _y	Streckgrenze Stahl [N/mm ²]
φ	Winkel beim Auflager, welcher die Druckrohrleitung im unteren Bereich umschließt [°]
ΔG	Änderung des Schubmoduls pro Prozent Holzfeuchteänderung [%/% Δu]
G	Schubmodul [N/mm ²]
g	Erdbeschleunigung: g = 9,81 [m/s²]
γf	Teilsicherheitsbeiwert [-]
γм	Teilsicherheitsbeiwert [-]
H ₀	hydrostatische Druckhöhe [m]
H _n	Nettofallhöhe [m]
Н	Bruttofallhöhe [m]
h	Höhe des Prüfkörpers [mm]
h ₀	Messlänge des Prüfkörpers bei Prüfung rechtwinklig zur Faser- richtung [mm]
h _v	Energiehöhenverlust [m]
h _{WS}	Wassersäulenhöhe über der Rohrachse [m]
η _G	Wirkungsgrad Generator [-]
ηκ	Wirkungsgrad Kupplung [-]
ητ	Wirkungsgrad Turbine [-]

η_{Tr}	Wirkungsgrad Transformator [-]
I	Flächenmoment 2. Grades [mm ⁴]
l _e	Neigung der Energielinie [-]
i	Trägheitsradius [mm²]
k _b	Faktor zur Bestimmung der Biegefestigkeit in Abhängigkeit von der Holzfeuchte für verschiedene Holzarten [-]
k _{c,90}	Querdruckbeiwert [-]
k _{mod}	Modifikationsbeiwert [-]
k _s	äquivalente Sandrauigkeit [mm]
L	Rohrleitungslänge [m]
l	Stützweite (bzw. bei Querdruckversuch Länge des Prüfkörpers zwischen den Einspannvorrichtungen) [mm]
ℓ_{D}	Länge der Holzdauben [m]
λ	Rohrreibungsbeiwert [-]
long	longitudinal
max	größter Wert
min	kleinster Wert
mittel (MW)	Mittelwert (=mean)
μ _G	Reibungskoeffizient [-]
μ _H	Haftungskoeffizient [-]
Ν	elektrische Leistung [kW/h]
N _{R,d}	Bemessungswert der Grenzzugkraft [N]
n _D	Anzahl der Holzdauben im Querschnitt [-]
n _R	Anzahl der Spannringe zwischen zwei Auflager [-]
ν	Querdehnungsfaktor [-]
ν_W	kinematische Viskosität von Wasser [m²/s]
P _T	Turbinenleistung [kW]
Δp	Druckanstieg [bar] bzw. [m WS] bzw. [kN/m²]
р	Druck [bar] bzw. [m WS] bzw. [kN/m²]
Q	Durchfluß [m³/s]
q	differentielles Quellmaß [%/%]
Re	Reynoldszahl [-]
r	Korrelationskoeffizient [-]
r _{innen}	Innenradius der Druckrohrleitung [m]

rad	radial
ρ	Darr-Rohdichte von Holz [kg/m³]
ρ	Rohdichte von Holz bzw. Dichte von Wasser [kg/m³]
S	Standardabweichung
σ	Ausnutzungsgrad der Holzdauben für Nachweis auf Biegung und Druck [-]
$\sigma_{c,0}$	Druckspannung in Faserrichtung [N/mm ²]
$\sigma_{c,90,rad}$	Querdruckspannung in radialer Richtung [N/mm ²]
σ _{c,90,U}	Querdruckspannung in Umfangsrichtung [N/mm ²]
σ _i	Schwerpunktspannung [N/mm ²]
σ_{m}	Biegespannung [N/mm²]
$\sigma_{m,Rand}$	Biegerandspannung [N/mm²]
σ _R	Normalspannung im Spannring [N/mm ²]
σγ	Vorspannungsgrad bzw. Flächenpressung [N/mm ²]
σ _{1,R,d}	Bemessungswert der Grenzspannung [N/mm²]
Т	Temperatur [K]
Ts	Schließzeit des Schiebers [sec]
tan	tangential
τ	Schubspannung [N/mm²]
τ _S	Schließungsgrad des Schiebers [-]
u	Holzfeuchte [%]
U ₀	Holzfeuchte zu Versuchsbeginn [%]
V	maßgebende Querkraft [N]
Vol	Volumen
V	mittlere Strömungsgeschwindigkeit [m/s]
W	Widerstandsmoment [mm ³]
w	Durchbiegung [mm]
Z _R	Zugkraft im Spannring [kN]
ζe	Energieverlustbeiwert [-]

15 Literatur

Alliévi, L., Dubs, R., Bataillard, V. (1909). Allgemeine Theorie über die veränderliche Bewegung des Wassers in Leitungen. Springer Verlag, Berlin.

Autorenkollektiv (1988). Holz-Lexikon. 3. Auflage. DRW-Verlag Weinbrenner, Leinfelden-Echterdingen.

Becker, P. (2002). Modellierung des zeit- und feuchteabhängigen Materialverhaltens zur Untersuchung des Langzeittragverhaltens von Druckstäben aus Holz. Dissertation. Bauhaus Universität Weimar.

Begemann, H. F. (1981). Das große Lexikon der Nutzhölzer. Deutsche Betriebswirte-Verlag, Gernsbach.

Blaß, H.J., Fellmoser, P. (2002). Erstellung eines Rechenverfahrens zur Ermittlung von Festigkeitskennwerten von Mehrschichtplatten. Versuchsanstalt für Stahl, Holz und Steine, Abteilung Lehrstuhl für Ingenieurholzbau und Baukonstruktionen. Universität Karlsruhe (TH).

Blaß, H.J., Fellmoser, P. (2005). Druckrohrleitungen aus Holz. In: Bauen mit Holz. Band Nr. 107, S. 34 - 38. Bruderverlag, Karlsruhe.

Blaß, H.J., Görlacher, R. (2004). Compression perpendicular to the grain. In: Proceedings of the 8th World Conference on Timber Engineering, Volume II. Lahti, Finland.

Boxholm Produktion AB. Homepage: <u>www.boxprod.com</u>. Boxholm, Schweden.

Canbar Inc.. Homepage: <u>www.canbar.com</u>. Ontario, Kanada.

Carstensen, J. (1993). Beiträge zum Biegekriechverhalten von Holzbauteilen unter baupraktischen Beanspruchungen. Dissertation. Universität Hannover.

Damkilde, L., Hoffmeyer, P., Pedersen, T.N. (1998). Compression strength perpendicular to the grain of structural timber and glulam. In: Proceedings of the CIB-W-18. Paper 31-6-4.

Dinwoodie, J.M. (2000). Timber: It's nature and behaviour. 2nd ed. E & FN Spon. London, UK.

Dracos, T. (1990). Hydraulik. 3., überarbeitete Auflage. Zürich.

Fridley, K.J., Tang, R.C., Soltis, L.A. (1992). Hygrothermal effects on mechanical properties of lumber. In: Journal of Structural Engineering. Band Nr. 118(2), S. 567 – 581.

Gehri, E. (1997). Timber in compression perpendicular to the grain. International Conference of IUFRO S 5.02 Timber Engineering. Copenhagen, Denmark.

Glos, P. (1978). Zur Bestimmung des Festigkeitsverhaltens von Brettschichtholz bei Druckbeanspruchung aus Werkstoff- und Einwirkungskenngrößen. Berichte zur Zuverlässigkeitstheorie der Bauwerke. Heft 35/78. Laboratorium für den konstruktiven Ingenieurbau. Technische Universität München.

Glos, P. (1981). Zur Modellierung des Festigkeitsverhaltens von Bauholz bei Druck-, Zug- und Biegebeanspruchung. Berichte zur Zuverlässigkeitstheorie der Bauwerke. Sonderforschungsbereich 96. Heft 61. Technische Universität München.

Goens, E. (1931). Über die Bestimmung des Elastizitätsmoduls von Stäben mit Hilfe von Biegeschwingungen. In: Analen der Physik. 5. Folge, Band 11, Heft 6, S. 649 - 678.

Görlacher, R. (1984). Ein neues Messverfahren zur Bestimmung des Elastizitätsmoduls von Holz. In: Holz als Roh- und Werkstoff. Band Nr. 42, S. 219 - 222. Springer Verlag, Berlin.

Görlacher, R. (1990). Klassifizierung von Brettschichtholzlamellen durch Messung von Longitudinalschwingungen. Dissertation. Versuchsanstalt für Stahl, Holz und Steine, Abteilung Lehrstuhl für Ingenieurholzbau und Baukonstruktionen. Universität Karlsruhe (TH).

Hanhijärvi, A. (1995). Modelling of creep deformation mechanisms in wood. VTT Publication 231. Technical Research Centre of Finland, Espoo.

Hearmon, R.F.S. (1958). The influence of shear and rotary inertia on the free flexural vibration of wooden beams. In: British Journal of Applied Physics. 10/1958. S. 381 - 388.

Heimeshoff, B., Glos, P. (1980). Zugfestigkeit und Biege-E-Modul von Fichten-Brettlamellen. In: Holz als Roh- und Werkstoff. Band Nr. 38, S. 51 - 59. Springer Verlag, Berlin.

Hoffmeyer, P. (1995). Holz als Baustoff. In: Blaß, H.J., Görlacher, R., Steck, G. (Hrsg.) Step 1 – Holzbauwerke nach Eurocode 5. Fachverlag Holz, Düsseldorf.

Idelchik, I.E. (1986). Handbook of hydraulic resistance. Hemisphere Publication. Washington, DC.

Keith, C.T. (1972). The mechanical behaviour of wood in longitudinal compression. In: Wood Science. Band Nr. 4, S. 235 - 245.

Keylwerth, R. (1962a). Untersuchungen über freie und behinderte Quellung von Holz. Erste Mitteilung: Freie Quellung. In: Holz als Roh- und Werkstoff. Band Nr. 20, S. 252 - 259. Springer Verlag, Berlin.

Keylwerth, R. (1962b). Untersuchungen über freie und behinderte Quellung von Holz. Zweite Mitteilung: Behinderte Quellung. In: Holz als Roh- und Werkstoff. Band Nr. 20, S. 292 - 303. Springer Verlag, Berlin.

Keylwerth, R. (1962c). Untersuchungen über freie und behinderte Quellung von Holz. Fünfte Mitteilung: Parallel zur Faserrichtung behinderte Quellung. In: Holz als Rohund Werkstoff. Band Nr. 22, S. 295 - 296. Springer Verlag, Berlin.

Kingston, R.S.T., Perkitny, T. (1972). Zusammenhänge zwischen aktivem Quellungsdruck und passiver Zusammendruckbarkeit von Holz durch äußere Kräfte. In: Holz als Roh- und Werkstoff. Band Nr. 30, S. 18 - 28. Springer Verlag, Berlin.

Knigge, W., Schulz, H. (1966). Grundriss der Forstnutzung. Parey, Hamburg.

Kollmann, F. (1961). Rheologie und Strukturfestigkeit von Holz. In: Holz als Roh- und Werkstoff. Band Nr. 19, S. 73 - 80. Springer Verlag, Berlin.

Kollmann, F. (1982). Technologie des Holzes und der Holzwerkstoffe. 2. Auflage, 1. Band. Springer-Verlag, Berlin.

Kollmann, F., Krech, H. (1960). Dynamische Messung der elastischen Holzeigenschaften und der Dämpfung. In: Holz als Roh- und Werkstoff. Band Nr. 18, S. 41 - 54. Springer Verlag, Berlin.

Kufner, M. (1978). Elastizitätsmodul und Zugfestigkeit von Holz verschiedener Rohdichte in Abhängigkeit vom Feuchtegehalt. In: Holz als Roh- und Werkstoff. Band Nr. 36, S. 435 - 439. Springer Verlag, Berlin.

Lang, C., Detert, M. (2004). Hydraulik von Rohrsystemen. Institut für Hydromechanik. Universität Karlsruhe (TH).

Lawniczak, M. (1964). Über die Formänderung von Holz nach aufgehobener Quellungsbehinderung. In: Holz als Roh- und Werkstoff. Band Nr. 22, S. 89 - 94. Springer Verlag, Berlin.

Machek, L., Militz, H., Sierra-Alvarez, R. (2001). The influence of wood moisture content on dynamic modulus of elasticity measurements in durability testing. In: Holzforschung - Holzverwertung. Band Nr. 05/2001, S. 97 - 99. Mitteilungen der österreichischen Gesellschaft für Holzforschung. Österreichischer Agrarverlag, Leopoldsdorf.

Madsen, B. (2000). Behaviour of timber connections. Timber Engineering Ltd. Vancouver, Canada.

MacDonald & Partners (1984). Greater Yogyakarta Groundwater Resources Study. Volume 1 – 3.

Miller, D.S. (1990). Internal flow systems. BHRA Fluid Engineering. Cranfield.

Möhler, K., Maier, G. (1969). Der Reibbeiwert bei Fichtenholz im Hinblick auf die Wirksamkeit reibschlüssiger Holzverbindungen. In: Holz als Roh- und Werkstoff. Band Nr. 27, S. 303 - 307. Springer Verlag, Berlin.

Möhler, K., Herröder, W. (1979). Obere und untere Reibbeiwerte von sägerauhem Fichtenholz. In: Holz als Roh- und Werkstoff. Band Nr. 37, S. 27 - 32. Springer Verlag, Berlin.

Nestmann, F., Oberle, P. (2002). Machbarkeitsuntersuchung: Erkundung und Grenzen der Wasser- und Energiebewirtschaftung großer unterirdischer Wasservorräte in Wonosari, Yogyakarta, Java, Indonesien. Institut für Wasser und Gewässerentwicklung, Bereich Wasserwirtschaft und Kulturtechnik. Universität Karlsruhe (TH).

Neuhaus, F.-H. (1981). Elastizitätszahlen von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit. Mitteilung Nr. 81-8. Institut für konstruktiven Ingenieurbau. Ruhr-Universität Bochum.

Niemz, P. (1993). Physik des Holzes und der Holzwerkstoffe. DRW-Verlag Weinbrenner, Leinfelden-Echterdingen.

Oberle, P., Kappler, J., Unger, B. (2005). Abschlussbericht Ideenwettbewerb: Integriertes Wasserressourcen-Management in Gunung Kidul, Java, Indonesien.
Institut für Wasser und Gewässerentwicklung, Bereich Wasserwirtschaft und Kulturtechnik. Universität Karlsruhe (TH).

Perkitny, T. (1958). Untersuchungen über den Quellungsdruck des Holzes. In: Holz als Roh- und Werkstoff. Band Nr. 16, S. 241 - 242. Springer Verlag, Berlin.

Perkitny, T., Helińska, L. (1963). Der Quellungsdruck des Holzes in Wasser und wassergesättigter Luft. In: Holz als Roh- und Werkstoff. Band Nr. 21, S. 19 - 22. Springer Verlag, Berlin.

Prayitno, T.A. (2003). Wood Description. Institute for Wood Science and Technology. Gadjah Mada University. Indonesien.

Rabovsky, H. (1926). Holzdaubenrohre – Ein Beitrag zur Baustoffkunde und Hydraulik von Rohrleitungen für Wasserkraft-, Wasserversorgungsanlagen usw. VDI-Verlag, Berlin.

Rayleigh, S.J.W. (1929). Theory of sound. 2nd Edition. Macmillan and Co. London.

Raczkowski, J. (1962). Über den durch Teile eines Probekörpers ausgeübten Quellungsdruck – Erste Mitteilung: Der Schwellen-Quellungsdruck. In: Holz als Rohund Werkstoff. Band Nr. 20, S. 185 - 188. Springer Verlag, Berlin.

Schweingruber, F. H. (1990). Anatomie europäischer Hölzer. Herausgeber: Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, Birmensdorf. Haupt, Bern und Stuttgart.

Stamer, J. (1920). Druckversuche mit Holz in der Richtung quer zur Faser. Mitt. Materialprüfungsamt. Heft 1, S. 28. Berlin. In: Kollmann, F. (1982). Technologie des Holzes und der Holzwerkstoffe. 2. Auflage, 1. Band. Springer-Verlag, Berlin.

Stevens, W.C. (1938). Forestry (Great Britain). 12.38.

Thelandersson, S., Mårtensson, A. (1997). Design Principles for timber in compression perpendicular to grain. In: Proceedings of the CIB-W-18. Paper 30-20-1.

Toratti, T. (1992). Creep in timber beams in a variable environment. Dissertation. University of Technology Helsinki.

Trendelenburg, R. (1939). Das Holz als Rohstoff. München.

Trendelenburg, R., Mayer-Wegelin, H. (1955). Das Holz als Rohstoff. 2. Auflage. München.

U.S. Forest Products Laboratory (1974). Wood Handbook: Wood as an engineering material. Government Printing Office Washington.

Wagenführ, R. (1989). Anatomie des Holzes. 4. Auflage, VEB Fachbuchverlag Leipzig.

Wagenführ, R. (1996). Holzatlas. 4. Auflage, VEB Fachbuchverlag Leipzig.

Wilson, T.R.C. (1932). Strength-moisture relations for wood. US. Dept. Agric. Bull. Nr. 282. Washington. In: Kollmann, F. (1982). Technologie des Holzes und der Holzwerkstoffe. 2. Auflage, 1. Band. Springer-Verlag, Berlin.

Zhou, Y., Fushitani, M., Kubo, T. (2000). Effect of stress level on bending creep behaviour of wood during cyclic moisture changes. In: Wood and Fiber Science. Band Nr. 32(1), S. 20 – 28.

Zwick Holzbau GmbH. Homepage: <u>www.zwick-holzbau.de</u>. Donaueschingen-Wolterdingen.

16 Zitierte Normen

ASTM Standard D 143-83. Ausgabe 1993. Standard methods of testing small clear specimens of timber.

DIN 1052, Ausgabe August 2004. Entwurf, Berechnung und Bemessung von Holzbauwerken – Allgemeine Bemessungsregeln und Bemessungsregeln für den Hochbau.

DIN 18 800 Teil 1, Ausgabe November 1990. Stahlbauten – Bemessung und Konstruktion.

DIN 50 014, Ausgabe Juli 1985. Klimate und ihre technische Anwendung – Normalklimate.

DIN 52 182, Ausgabe September 1976. Prüfung von Holz – Bestimmung der Rohdichte.

DIN 52 184, Ausgabe Mai 1979. Prüfung von Holz – Bestimmung der Quellung und Schwindung.

DIN EN 384, Ausgabe Mai 2004. Bauholz für tragende Zwecke – Bestimmung charakteristischer Werte für mechanische Eigenschaften und Rohdichte.

DIN EN 408, Ausgabe August 2003. Holzbauwerke – Bauholz für tragende Zwecke und Brettschichtholz – Bestimmung einiger physikalischer und mechanischer Eigenschaften.

EN 1193, Ausgabe Juni 1998. Bauholz für tragende Zwecke und Brettschichtholz – Bestimmung der Scherfestigkeit und der mechanischen Eigenschaften rechtwinklig zur Faserrichtung.

Anhang A Anlagen zu Kapitel 2

Bild A-1 Akasia: Querschnitt (10x und 40x)

Bild A-2 Akasia: Tangentialschnitt (10x und 40x)

Bild A-3 Akasia: Radialschnitt (10x und 40x)

Bild A-4 Jati: Querschnitt (10x und 40x)

Bild A-5 Jati: Tangentialschnitt (10x und 40x)

Bild A-6 Jati: Radialschnitt (10x und 40x)

Bild A-7 Keruing: Querschnitt (10x und 40x)

Bild A-8 Keruing: Tangentialschnitt (10x und 40x)

Bild A-9 Keruing: Radialschnitt (10x und 40x)

Bild A-10 Puspa: Querschnitt (10x und 40x)

Bild A-11 Puspa: Tangentialschnitt (10x und 40x)

Bild A-12 Puspa: Radialschnitt (10x und 40x)

Bild A-13 Lärche: Querschnitt (10x und 40x)

Bild A-14 Lärche: Tangentialschnitt (10x und 40x)

Bild A-15 Lärche: Radialschnitt (10x und 40x)

Anhang B Anlagen zu Kapitel 3.2

	Ausgangsholzfeuchte $u_0 = 0 \%$		₀ = 0 %		Ausgan	gsholzfe	euchte u	o = 12 %		Ausgan	gsholzfe	uchte uc) = 18 %	
Nr.	α _{tan} [%]	α _{rad} [%]	α _{long} [%]	α _{Vol} [%]	Nr.	α _{tan} [%]	α _{rad} [%]	α _{long} [%]	α _{Vol} [%]	Nr.	α _{tan} [%]	α _{rad} [%]	α _{long} [%]	α _{Vol} [%]
1-1	5,26	2,66	0,50	8,43	1-2	2,84	1,70	0,37	4,91	1-3	1,96	1,25	0,55	3,76
2-1	5,15	2,17	0,50	7,83	2-2	2,81	1,66	0,57	5,04	2-3	2,18	1,03	0,35	3,56
3-1	5,28	2,25	0,51	8,04	3-2	3,05	1,83	0,30	5,18	3-3	1,85	0,98	0,30	3,13
4-1	5,00	2,58	0,39	7,97	4-2	3,41	1,89	0,28	5,57	4-3	2,25	1,00	0,39	3,64
5-1	4,86	2,28	0,60	7,74	5-2	2,66	1,66	0,26	4,59	5-3	1,53	1,02	0,42	2,98
6-1	4,79	2,11	0,48	7,38	6-2	2,66	1,60	0,29	4,55	6-3	1,70	0,78	0,39	2,86
7-1	4,39	2,12	0,50	7,02	7-2	2,81	1,58	0,40	4,79	7-3	1,47	0,80	0,30	2,57
8-1	5,03	2,29	0,60	7,93	8-2	2,83	1,50	0,50	4,83	8-3	2,03	0,89	0,51	3,43
9-1	4,69	2,43	0,52	7,64	9-2	2,85	1,54	0,22	4,61	9-3	1,36	0,90	0,29	2,54
10-1	4,60	2,05	0,41	7,06	10-2	2,60	1,52	0,23	4,35	10-3	1,60	0,77	0,20	2,57
11-1	4,90	2,03	0,47	7,40	11-2	3,32	1,63	0,25	5,20	11-3	2,18	1,00	0,33	3,51
12-1	4,60	2,39	0,50	7,49	12-2	3,04	1,44	0,38	4,87	12-3	1,33	0,77	0,45	2,55
13-1	4,56	2,35	0,46	7,37	13-2	3,41	1,97	0,44	5,82	13-3	2,24	1,22	0,29	3,75
14-1	5,00	2,28	0,50	7,78	14-2	2,93	1,81	0,26	5,00	14-3	1,80	0,98	0,20	2,98
15-1	4,79	2,09	0,40	7,28	15-2	2,66	1,57	0,24	4,47	15-3	1,59	0,75	0,29	2,64
16-1	5,43	2,36	0,41	8,20	16-2	3,06	1,91	0,23	5,20	16-3	1,73	1,13	0,42	3,28
17-1	5,15	2,54	0,60	8,30	17-2	3,29	1,89	0,26	5,44	17-3	2,17	0,98	0,40	3,55
18-1	4,51	2,29	0,40	7,21	18-2	2,75	1,88	0,26	4,89	18-3	1,51	0,83	0,17	2,51
19-1	5,36	2,60	0,50	8,46	19-2	3,47	2,04	0,50	6,02	19-3	2,09	1,19	0,40	3,69
20-1	5,87	2,49	0,60	8,97	20-2	3,28	2,00	0,69	5,97	20-3	2,41	1,20	0,30	3,90
21-1	5,92	2,21	0,60	8,74	21-2	3,21	1,77	0,45	5,43	21-3	2,36	0,88	0,43	3,68
22-1	5,15	2,51	0,60	8,27	22-2	3,21	1,69	0,60	5,50	22-3	2,25	1,10	0,46	3,81
23-1	5,59	2,39	0,60	8,58	23-2	3,42	1,66	0,34	5,42	23-3	2,17	1,01	0,49	3,68
24-1	4,64	1,96	0,40	7,00	24-2	2,71	1,56	0,20	4,48	24-3	1,46	0,82	0,24	2,52
25-1	4,73	2,40	0,51	7,64	25-2	2,80	1,47	0,35	4,62	25-3	1,57	0,75	0,28	2,60
26-1	4,72	2,61	0,61	7,93	26-2	3,39	1,79	0,28	5,46	26-3	1,82	1,00	0,32	3,13
27-1	4,80	1,99	0,61	7,39	27-2	2,71	1,55	0,22	4,48	27-3	1,26	0,80	0,19	2,25
28-1	5,11	2,60	0,51	8,22	28-2	3,42	2,10	0,24	5,76	28-3	2,22	1,14	0,33	3,69
29-1	4,95	2,39	0,50	7,84	29-2	2,56	1,57	0,59	4,72	29-3	1,85	0,92	0,32	3,09
30-1	5,56	2,50	0,30	8,35	30-2	3,32	1,78	0,51	5,61	30-3	1,86	1,03	0,50	3,40
min	4,39	1,96	0,30	7,00	min	2,56	1,44	0,20	4,35	min	1,26	0,75	0,17	2,25
mittel	5,01	2,33	0,50	7,85	mittel	3,02	1,72	0,36	5,09	mittel	1,86	0,96	0,35	3,17
max	5,92	2,66	0,61	8,97	max	3,47	2,10	0,69	6,02	max	2,41	1,25	0,55	3,90

Tabelle B-1 Akasia: Quellmaße bei freier Quellung

	Ausgar	ngsholzfe	euchte u	₀ = 0 %		Ausgan	gsholzfe	uchte u _c	₀ = 12 %		Ausgan	gsholzfe	uchte u _c) = 18 %
Nr.	α _{tan} [%]	α _{rad} [%]	α _{long} [%]	α _{Vol} [%]	Nr.	α _{tan} [%]	α _{rad} [%]	α _{long} [%]	α _{Vol} [%]	Nr.	α _{tan} [%]	α _{rad} [%]	α _{long} [%]	α _{Vol} [%]
1-1	3,91	2,37	0,51	6,79	1-2	2,93	1,27	0,60	4,79	1-3	1,34	0,78	0,30	2,42
2-1	3,69	1,96	0,40	6,05	2-2	2,01	1,11	0,50	3,62	2-3	1,04	0,65	0,31	2,00
3-1	4,26	2,28	0,42	6,97	3-2	2,31	1,27	0,35	3,93	3-3	1,19	0,73	0,30	2,22
4-1	6,29	3,09	0,51	9,89	4-2	3,04	1,66	0,37	5,08	4-3	1,43	0,89	0,32	2,64
5-1	3,53	2,31	0,69	6,53	5-2	1,99	1,18	0,45	3,62	5-3	0,99	0,74	0,40	2,13
6-1	4,07	2,78	0,42	7,26	6-2	2,30	1,34	0,33	3,97	6-3	1,14	0,74	0,19	2,08
7-1	4,90	2,57	0,46	7,94	7-2	2,66	1,28	0,34	4,27	7-3	1,19	0,75	0,30	2,24
8-1	4,07	2,51	0,62	7,20	8-2	2,19	1,28	0,30	3,77	8-3	1,09	0,80	0,29	2,18
9-1	3,37	2,60	0,47	6,43	9-2	1,97	1,29	0,67	3,93	9-3	1,05	0,69	0,36	2,11
10-1	3,89	2,17	0,48	6,54	10-2	2,04	1,09	0,44	3,56	10-3	1,15	0,65	0,40	2,20
11-1	5,56	2,97	0,40	8,93	11-2	2,50	1,59	0,45	4,55	11-3	1,40	0,90	0,40	2,70
12-1	4,13	2,32	0,52	6,96	12-2	2,37	1,23	0,40	4,01	12-3	1,00	0,65	0,21	1,86
13-1	4,75	2,24	0,45	7,43	13-2	2,28	1,12	0,49	3,88	13-3	1,01	0,67	0,40	2,09
14-1	6,08	3,02	0,34	9,45	14-2	2,80	1,52	0,32	4,64	14-3	1,39	0,89	0,30	2,58
15-1	3,77	2,66	0,38	6,81	15-2	2,24	1,30	0,64	4,18	15-3	1,04	0,79	0,41	2,25
16-1	6,01	3,23	0,32	9,55	16-2	3,10	1,47	0,35	4,92	16-3	1,39	0,79	0,39	2,57
17-1	5,38	2,89	0,42	8,69	17-2	2,49	1,43	0,45	4,37	17-3	0,94	0,74	0,28	1,96
18-1	4,87	2,69	0,52	8,08	18-2	2,64	1,34	0,54	4,51	18-3	1,38	0,75	0,40	2,53
19-1	6,40	3,00	0,38	9,78	19-2	2,78	1,40	0,22	4,41	19-3	1,36	0,88	0,21	2,45
20-1	4,18	2,55	0,39	7,12	20-2	2,18	1,23	0,47	3,88	20-3	1,03	0,69	0,40	2,12
21-1	5,15	2,97	0,41	8,53	21-2	3,05	1,73	0,39	5,18	21-3	1,38	0,89	0,40	2,68
22-1	3,32	2,02	0,49	5,84	22-2	1,95	1,14	0,46	3,55	22-3	0,89	0,64	0,28	1,81
23-1	5,61	2,70	0,30	8,61	23-2	2,90	1,22	0,39	4,51	23-3	1,32	0,84	0,35	2,52
24-1	3,63	2,31	0,40	6,34	24-2	2,07	1,17	0,47	3,72	24-3	0,98	0,69	0,31	1,99
25-1	6,55	3,25	0,39	10,19	25-2	2,95	1,79	0,30	5,05	25-3	1,44	0,76	0,29	2,49
26-1	5,88	2,93	0,32	9,12	26-2	2,59	1,40	0,26	4,26	26-3	1,30	0,85	0,29	2,44
27-1	3,35	2,13	0,40	5,88	27-2	1,93	1,20	0,39	3,52	27-3	0,99	0,70	0,31	1,99
28-1	3,46	2,23	0,38	6,08	28-2	2,15	1,30	0,39	3,84	28-3	1,18	0,74	0,39	2,31
29-1	4,88	2,62	0,40	7,90	29-2	2,79	1,36	0,34	4,49	29-3	1,27	0,80	0,29	2,36
30-1	4,81	2,71	0,39	7,91	30-2	2,25	1,47	0,49	4,21	30-3	1,06	0,80	0,41	2,27
min	3,32	1,96	0,30	5,84	min	1,93	1,09	0,22	3,52	min	0,89	0,64	0,19	1,81
mittel	4,66	2,60	0,43	7,69	mittel	2,45	1,34	0,42	4,21	mittel	1,18	0,76	0,33	2,27
max	6,55	3,25	0,69	10,19	max	3,10	1,79	0,67	5,18	max	1,44	0,90	0,41	2,70

Tabelle B-2 Jati: Quellmaße bei freier Quellung

	Ausgar	ngsholzfe	euchte u	₀ = 0 %		Ausgan	gsholzfe	uchte u _c	₀ = 12 %		Ausgan	gsholzfe	uchte u _c	₀ = 18 %
Nr.	α _{tan} [%]	α _{rad} [%]	α _{long} [%]	α _{Vol} [%]	Nr.	α _{tan} [%]	α _{rad} [%]	α _{long} [%]	α _{Vol} [%]	Nr.	α _{tan} [%]	α _{rad} [%]	α _{long} [%]	α _{Vol} [%]
1-1	6,62	4,28	1,16	12,06	1-2	4,48	3,21	0,69	8,38	1-3	3,10	1,49	0,40	4,99
2-1	8,88	2,99	1,12	13,00	2-2	5,74	2,74	0,68	9,16	2-3	3,32	1,35	0,55	5,22
3-1	7,52	4,10	1,27	12,89	3-2	5,29	2,45	0,80	8,54	3-3	3,53	1,05	0,60	5,17
4-1	6,80	2,89	1,17	10,86	4-2	5,01	2,44	0,78	8,23	4-3	3,23	1,09	0,50	4,83
5-1	6,40	2,97	1,15	10,52	5-2	5,08	2,42	0,72	8,22	5-3	3,08	1,59	0,71	5,38
6-1	7,92	3,72	1,22	12,86	6-2	5,79	3,10	0,70	9,59	6-3	3,99	1,58	0,50	6,06
7-1	8,51	3,32	1,19	13,03	7-2	4,77	2,30	0,60	7,67	7-3	3,13	1,24	0,56	4,92
8-1	8,11	3,33	1,21	12,65	8-2	4,70	2,38	0,81	7,90	8-3	3,27	1,29	0,54	5,10
9-1	8,66	4,99	1,31	14,96	9-2	5,42	2,97	0,93	9,32	9-3	3,28	1,35	0,60	5,23
10-1	8,35	3,65	1,09	13,09	10-2	4,55	2,51	0,59	7,64	10-3	3,67	1,29	0,79	5,75
11-1	8,00	4,38	1,10	13,48	11-2	4,37	2,95	0,71	8,02	11-3	3,08	1,81	0,39	5,28
12-1	8,26	3,41	1,20	12,88	12-2	4,79	2,89	0,69	8,36	12-3	3,33	1,35	0,40	5,08
13-1	6,84	4,31	1,38	12,53	13-2	5,34	2,77	0,71	8,82	13-3	3,15	1,65	0,59	5,39
14-1	8,77	4,66	1,08	14,51	14-2	5,94	3,28	0,54	9,77	14-3	3,42	1,83	0,40	5,65
15-1	9,01	4,88	1,14	15,02	15-2	4,92	3,09	0,68	8,69	15-3	3,67	1,73	0,50	5,91
16-1	7,52	4,57	0,97	13,06	16-2	4,83	2,32	0,58	7,73	16-3	2,96	1,86	0,50	5,32
17-1	6,53	3,87	1,20	11,59	17-2	4,95	3,10	0,75	8,80	17-3	3,08	1,91	0,50	5,50
18-1	7,63	3,16	1,11	11,90	18-2	4,35	2,86	0,86	8,08	18-3	2,99	1,14	0,70	4,84
19-1	7,24	3,36	1,07	11,67	19-2	3,94	2,55	0,90	7,39	19-3	2,91	1,79	0,50	5,20
20-1	6,27	3,85	1,13	11,25	20-2	4,48	2,28	0,84	7,61	20-3	3,11	1,13	0,70	4,94
21-1	7,57	3,88	1,16	12,61	21-2	5,16	2,92	0,84	8,92	21-3	3,50	1,31	0,50	5,31
22-1	8,00	4,05	1,24	13,29	22-2	4,57	2,31	0,79	7,66	22-3	3,53	1,60	0,70	5,83
23-1	6,33	3,26	1,20	10,79	23-2	5,29	2,90	0,62	8,82	23-3	3,25	1,29	0,60	5,15
24-1	7,04	3,22	1,19	11,46	24-2	5,42	2,37	0,74	8,54	24-3	2,99	1,19	0,60	4,79
25-1	7,68	4,24	1,31	13,24	25-2	5,44	3,20	0,73	9,37	25-3	3,84	1,71	0,80	6,35
26-1	6,74	3,35	1,23	11,32	26-2	5,47	2,47	0,78	8,72	26-3	3,04	1,12	0,60	4,75
27-1	8,92	5,08	1,18	15,18	27-2	4,81	2,65	0,64	8,09	27-3	3,96	0,99	0,60	5,56
28-1	8,30	4,47	1,47	14,23	28-2	5,37	2,94	0,88	9,19	28-3	3,46	1,70	0,60	5,77
29-1	8,97	3,06	1,19	13,22	29-2	4,13	2,95	0,97	8,05	29-3	3,32	1,17	0,51	5,00
30-1	8,20	4,67	1,05	13,92	30-2	5,29	2,56	0,68	8,53	30-3	3,22	1,31	0,81	5,34
min	6,27	2,89	0,97	10,52	min	3,94	2,28	0,54	7,39	min	2,91	0,99	0,39	4,75
mittel	7,72	3,87	1,18	12,77	mittel	4,99	2,73	0,74	8,46	mittel	3,31	1,43	0,58	5,32
max	9,01	5,08	1,47	15,18	max	5,94	3,28	0,97	9,77	max	3,99	1,91	0,81	6,35

Tabelle B-3 Keruing: Quellmaße bei freier Quellung

	Ausgangsholzfeuchte $u_0 = 0 \%$		Ausgan	gsholzfe	euchte u	₀ = 12 %		Ausgan	gsholzfe	uchte u _c) = 18 %			
Nr.	α _{tan} [%]	α _{rad} [%]	α _{long} [%]	α _{Vol} [%]	Nr.	α _{tan} [%]	α _{rad} [%]	α _{long} [%]	α _{Vol} [%]	Nr.	α _{tan} [%]	α _{rad} [%]	α _{long} [%]	α _{Vol} [%]
1-1	7,94	3,86	0,58	12,38	1-2	5,64	2,78	0,51	8,92	1-3	4,30	1,76	0,47	6,52
2-1	8,13	4,10	0,65	12,88	2-2	5,12	2,88	0,62	8,62	2-3	4,55	2,01	0,58	7,14
3-1	8,29	3,83	0,62	12,74	3-2	5,43	2,86	0,47	8,77	3-3	4,77	1,93	0,62	7,32
4-1	7,91	3,54	0,58	12,03	4-2	5,68	2,61	0,67	8,97	4-3	4,55	2,09	0,65	7,28
5-1	8,63	3,90	0,56	13,10	5-2	5,68	2,78	0,57	9,03	5-3	3,80	2,01	0,71	6,52
6-1	8,11	3,75	0,64	12,49	6-2	5,34	2,75	0,61	8,70	6-3	4,19	1,89	0,53	6,61
7-1	8,22	3,93	0,62	12,77	7-2	5,25	2,92	0,34	8,51	7-3	4,53	1,71	0,42	6,65
8-1	7,28	3,63	0,67	11,58	8-2	5,03	2,85	0,62	8,50	8-3	3,77	1,92	0,67	6,36
9-1	8,26	3,87	0,74	12,87	9-2	5,69	2,62	0,42	8,73	9-3	4,41	1,74	0,55	6,69
10-1	7,51	3,97	0,65	12,13	10-2	5,07	2,87	0,47	8,41	10-3	3,80	1,53	0,75	6,08
11-1	8,09	3,88	0,79	12,77	11-2	5,22	2,76	0,61	8,59	11-3	4,36	1,80	0,62	6,78
12-1	7,85	4,06	0,66	12,57	12-2	5,38	2,80	0,48	8,66	12-3	3,63	1,56	0,61	5,80
13-1	7,88	4,03	0,62	12,52	13-2	5,35	2,81	0,49	8,66	13-3	3,92	1,62	0,47	6,01
14-1	8,08	3,77	0,57	12,43	14-2	5,60	2,73	0,45	8,79	14-3	4,37	1,65	0,42	6,44
15-1	7,74	3,57	0,55	11,86	15-2	5,21	2,78	0,50	8,49	15-3	4,06	1,88	0,52	6,46
16-1	8,38	3,74	0,54	12,66	16-2	5,46	2,97	0,56	8,98	16-3	4,74	1,93	0,53	7,20
17-1	8,07	3,85	0,75	12,67	17-2	5,46	2,93	0,58	8,96	17-3	4,85	1,87	0,34	7,06
18-1	7,88	3,82	0,66	12,36	18-2	5,12	2,72	0,75	8,60	18-3	3,65	1,92	0,55	6,12
19-1	7,65	3,84	0,45	11,94	19-2	5,31	2,60	0,48	8,39	19-3	3,49	1,78	0,44	5,72
20-1	7,42	3,98	0,63	12,03	20-2	5,12	2,56	0,45	8,13	20-3	3,48	1,63	0,53	5,64
21-1	8,55	3,60	0,81	12,96	21-2	5,49	2,98	0,41	8,88	21-3	4,01	1,82	0,45	6,28
22-1	8,32	3,87	0,66	12,85	22-2	5,38	2,89	0,60	8,87	22-3	4,80	1,93	0,41	7,13
23-1	7,72	3,95	0,52	12,19	23-2	5,21	2,62	0,45	8,28	23-3	3,72	1,62	0,43	5,77
24-1	7,83	3,97	0,73	12,53	24-2	5,29	2,78	0,61	8,68	24-3	3,92	1,65	0,46	6,02
25-1	7,93	4,04	0,64	12,61	25-2	5,35	2,94	0,59	8,88	25-3	3,88	1,87	0,48	6,23
26-1	7,67	3,88	0,75	12,30	26-2	5,28	2,88	0,47	8,63	26-3	3,94	1,72	0,35	6,01
27-1	7,80	3,97	0,65	12,42	27-2	5,64	2,73	0,47	8,85	27-3	3,95	1,69	0,53	6,16
28-1	7,84	3,77	0,72	12,32	28-2	5,54	3,01	0,56	9,12	28-3	4,32	1,91	0,47	6,70
29-1	7,63	3,72	0,54	11,88	29-2	5,53	2,73	0,69	8,95	29-3	3,84	1,72	0,32	5,88
30-1	7,49	3,92	0,65	12,06	30-2	5,76	2,84	0,62	9,22	30-3	4,31	1,80	0,41	6,52
min	7,28	3,54	0,45	11,58	min	5,03	2,56	0,34	8,13	min	3,48	1,53	0,32	5,64
mittel	7,94	3,85	0,64	12,43	mittel	5,39	2,80	0,54	8,73	mittel	4,13	1,80	0,51	6,44
max	8,63	4,10	0,81	13,10	max	5,76	3,01	0,75	9,22	max	4,85	2,09	0,75	7,32

Tabelle B-4 Puspa: Quellmaße bei freier Quellung

	Ausgangsholzfeuchte $u_0 = 0 \%$		Ausgangsholzfeuchte $u_0 = 12 \%$					Ausgan	gsholzfe	uchte u _c) = 18 %			
Nr.	α _{tan} [%]	α _{rad} [%]	α _{long} [%]	α _{vol} [%]	Nr.	α _{tan} [%]	α _{rad} [%]	α _{long} [%]	α _{Vol} [%]	Nr.	α _{tan} [%]	α _{rad} [%]	α _{long} [%]	α _{Vol} [%]
1-1	8,89	3,94	0,60	13,43	1-2	6,54	2,62	0,22	9,39	1-3	4,03	1,98	0,20	6,22
2-1	8,36	3,49	0,60	12,45	2-2	5,89	2,35	0,32	8,57	2-3	3,81	1,74	0,20	5,75
3-1	9,03	3,30	0,40	12,73	3-2	6,96	2,32	0,30	9,58	3-3	4,31	1,80	0,26	6,37
4-1	9,37	3,59	0,40	13,37	4-2	7,10	2,87	0,30	10,26	4-3	4,05	2,08	0,36	6,48
5-1	8,73	3,81	0,50	13,05	5-2	6,55	2,61	0,20	9,36	5-3	4,32	1,75	0,26	6,32
6-1	8,66	4,19	0,50	13,35	6-2	6,85	2,96	0,30	10,11	6-3	4,12	1,81	0,20	6,12
7-1	8,80	3,86	0,40	13,06	7-2	6,83	2,51	0,30	9,64	7-3	3,69	1,79	0,38	5,86
8-1	8,85	3,97	0,50	13,32	8-2	7,02	2,65	0,40	10,07	8-3	3,98	1,95	0,25	6,19
9-1	9,37	3,90	0,50	13,78	9-2	7,02	2,55	0,40	9,97	9-3	4,02	1,95	0,29	6,26
10-1	9,03	3,24	0,40	12,67	10-2	6,85	2,29	0,30	9,45	10-3	4,44	1,47	0,35	6,26
11-1	7,97	3,66	0,20	11,82	11-2	5,99	1,95	0,30	8,23	11-3	3,83	1,36	0,25	5,44
12-1	9,10	3,01	0,21	12,33	12-2	6,51	2,15	0,40	9,06	12-3	4,38	1,34	0,26	5,97
13-1	9,81	3,70	0,40	13,90	13-2	6,04	2,84	0,30	9,18	13-3	4,47	1,56	0,26	6,30
14-1	9,52	3,25	0,39	13,15	14-2	6,82	2,15	0,40	9,37	14-3	4,23	1,53	0,26	6,02
15-1	7,98	3,35	0,21	11,54	15-2	6,33	2,52	0,40	9,25	15-3	4,01	1,84	0,36	6,21
16-1	7,93	2,87	0,20	11,00	16-2	6,25	1,87	0,20	8,33	16-3	4,28	1,31	0,20	5,79
17-1	8,83	3,68	0,48	12,98	17-2	7,03	2,15	0,29	9,47	17-3	4,41	1,56	0,25	6,22
18-1	8,14	3,59	0,50	12,23	18-2	6,44	2,48	0,30	9,22	18-3	4,15	1,63	0,30	6,08
19-1	7,79	3,80	0,22	11,81	19-2	6,39	2,71	0,30	9,40	19-3	3,75	1,76	0,22	5,74
20-1	8,23	4,07	0,30	12,59	20-2	6,08	3,04	0,30	9,42	20-3	4,19	1,82	0,20	6,21
21-1	8,38	2,92	0,32	11,63	21-2	6,48	1,96	0,20	8,64	21-3	4,05	1,60	0,19	5,84
22-1	8,55	4,27	0,20	13,02	22-2	6,40	2,65	0,40	9,45	22-3	4,37	2,03	0,28	6,69
23-1	9,64	4,58	0,32	14,54	23-2	6,65	2,50	0,40	9,56	23-3	3,95	1,75	0,10	5,80
24-1	9,41	4,43	0,32	14,16	24-2	6,60	2,58	0,30	9,48	24-3	4,12	1,73	0,10	5,95
25-1	8,52	4,10	0,20	12,83	25-2	7,13	2,41	0,19	9,74	25-3	3,95	1,62	0,27	5,84
26-1	8,27	3,21	0,30	11,79	26-2	5,84	2,23	0,30	8,37	26-3	3,79	1,67	0,23	5,69
27-1	9,51	4,13	0,30	13,94	27-2	6,96	2,40	0,50	9,86	27-3	4,05	1,84	0,20	6,08
28-1	8,48	3,75	0,22	12,45	28-2	5,79	2,54	0,28	8,61	28-3	4,03	1,43	0,27	5,73
29-1	8,54	3,24	0,20	11,98	29-2	6,08	2,12	0,29	8,49	29-3	3,66	1,35	0,20	5,21
30-1	8,51	3,11	0,20	11,81	30-2	6,29	2,09	0,26	8,64	30-3	4,31	1,45	0,20	5,96
min	7,79	2,87	0,20	11,00	min	5,79	1,87	0,19	8,23	min	3,66	1,31	0,10	5,21
mittel	8,74	3,67	0,35	12,76	mittel	6,52	2,44	0,31	9,27	mittel	4,09	1,68	0,24	6,02
max	9,81	4,58	0,60	14,54	max	7,13	3,04	0,50	10,26	max	4,47	2,08	0,38	6,69

Tabelle B-5 Lärche: Quellmaße bei freier Quellung

Bild B-1 Quellungskurven von Akasia (Mittelwerte; Holzfeuchte zu Versuchsbeginn: 0 %)

Bild B-2 Quellungskurven von Akasia (Mittelwerte; Holzfeuchte zu Versuchsbeginn: 12 %)

Bild B-3 Quellungskurven von Akasia (Mittelwerte; Holzfeuchte zu Versuchsbeginn: 18 %)

Bild B-4 Quellungskurven von Jati (Mittelwerte; Holzfeuchte zu Versuchsbeginn: 0 %)

Bild B-5 Quellungskurven von Jati (Mittelwerte; Holzfeuchte zu Versuchsbeginn: 12 %)

Bild B-6 Quellungskurven von Jati (Mittelwerte; Holzfeuchte zu Versuchsbeginn: 18 %)

Bild B-7 Quellungskurven von Keruing (Mittelwerte; Holzfeuchte zu Versuchsbeginn: 0 %)

Bild B-8 Quellungskurven von Keruing (Mittelwerte; Holzfeuchte zu Versuchsbeginn: 12 %)

Bild B-9 Quellungskurven von Keruing (Mittelwerte; Holzfeuchte zu Versuchsbeginn: 18 %)

Bild B-10 Quellungskurven von Puspa (Mittelwerte; Holzfeuchte zu Versuchsbeginn: 0 %)

Bild B-11 Quellungskurven von Puspa (Mittelwerte; Holzfeuchte zu Versuchsbeginn: 12 %)

Bild B-12 Quellungskurven von Puspa (Mittelwerte; Holzfeuchte zu Versuchsbeginn: 18 %)

Bild B-13 Quellungskurven von Lärche (Mittelwerte; Holzfeuchte zu Versuchsbeginn: 0 %)

Bild B-14 Quellungskurven von Lärche (Mittelwerte; Holzfeuchte zu Versuchsbeginn: 12 %)

Bild B-15 Quellungskurven von Lärche (Mittelwerte; Holzfeuchte zu Versuchsbeginn: 18 %)

Anhang C Anlagen zu Kapitel 3.3

Holz- feuchte zu	Vor- spannung	Nr.	$\text{max} \ \sigma_{\text{rad}}$	σ_{rad}	$\text{red}\; \Delta\sigma_{\text{rad}}$	Nr.	$\text{max}~\sigma_{\text{tan}}$	σ_{tan}	red $\Delta\sigma_{\text{tan}}$
Versuchs- beginn [%]	σ _V [N/mm²]		[N/mm²]	[N/mm²]	[%]		[N/mm²]	[N/mm²]	[%]
		1-1	1,86	1,79	96,0%	1-7	2,32	2,26	97,6%
		2-1	2,10	2,04	97,4%	2-7	2,92	2,80	96,0%
		3-1	2,18	2,14	98,1%	3-7	2,88	2,80	97,5%
12	0	4-1	1,97	1,91	97,1%	4-7	2,60	2,59	99,4%
12	U	5-1	1,86	1,83	98,3%	5-7	2,53	2,53	99,8%
		6-1	1,94	1,91	98,7%	6-7	2,32	2,31	99,7%
		7-1	1,91	1,86	97,7%	7-7	2,58	2,57	99,8%
		8-1	1,76	1,65	93,7%	8-7	2,23	2,23	99,8%
		1-2	1,96	1,95	99,6%	1-8	3,22	3,15	97,6%
		2-2	2,46	2,45	99,6%	2-8	3,93	3,78	96,2%
		3-2	2,51	2,50	99,6%	3-8	3,89	3,83	98,6%
12	0.5	4-2	2,49	2,48	99,5%	4-8	3,58	3,47	96,9%
12	0,5	5-2	2,42	2,41	99,6%	5-8	3,39	3,35	98,7%
		6-2	2,37	2,34	98,7%	6-8	3,54	3,50	98,8%
		7-2	2,13	2,12	99,4%	7-8	3,53	3,52	99,7%
		8-2	2,33	2,32	99,4%	8-8	3,23	3,16	97,7%
		1-3	2,28	2,25	98,6%	1-9	3,44	3,33	96,7%
		2-3	2,62	2,60	99,5%	2-9	4,09	3,92	95,9%
	1,5	3-3	2,70	2,62	97,2%	3-9	4,08	3,85	94,4%
10		4-3	2,63	2,57	97,8%	4-9	3,90	3,71	95,2%
12		5-3	2,32	2,32	99,8%	5-9	3,56	3,51	98,6%
		6-3	2,60	2,59	99,5%	6-9	3,85	3,76	97,6%
		7-3	2,52	2,48	98,1%	7-9	3,80	3,77	99,3%
		8-3	2,21	2,19	99,1%	8-9	3,49	3,42	98,1%
		1-4	1,60	1,57	98,0%	1-10	2,21	2,10	95,0%
		2-4	1,93	1,86	96,5%	2-10	2,49	2,41	96,8%
		3-4	2,03	1,99	98,4%	3-10	2,61	2,54	97,3%
10	0	4-4	1,82	1,76	96,7%	4-10	2,53	2,41	95,1%
10	0	5-4	1,68	1,66	98,6%	5-10	2,37	2,30	97,3%
		6-4	1,79	1,77	98,9%	6-10	2,46	2,44	99,1%
		7-4	1,78	1,77	99,1%	7-10	2,45	2,41	98,3%
		8-4	1,57	1,54	97,9%	8-10	2,20	2,17	98,5%
		1-5	1,99	1,90	95,7%	1-11	3,22	3,08	95,5%
		2-5	2,39	2,32	97,2%	2-11	3,72	3,63	97,6%
		3-5	2,47	2,41	97,6%	3-11	3,62	3,53	97,5%
10	0.5	4-5	2,23	2,13	95,7%	4-11	3,47	3,40	98,0%
10	0,5	5-5	2,15	2,09	97,3%	5-11	3,32	3,22	96,8%
		6-5	2,20	2,17	98,5%	6-11	3,46	3,39	97,8%
		7-5	2,12	2,08	98,0%	7-11	3,32	3,19	96,2%
		8-5	1,95	1,89	96,9%	8-11	3,20	3,08	96,1%
		1-6	2,02	1,94	96,1%	1-12	3,47	3,34	96,4%
		2-6	2,59	2,49	96,1%	2-12	3,87	3,67	95,0%
		3-6	2,69	2,61	97,0%	3-12	3,98	3,81	95,6%
10	15	4-6	2,52	2,42	95,9%	4-12	3,69	3,54	95,9%
10	1,0	5-6	2,36	2,30	97,5%	5-12	3,56	3,49	98,0%
		6-6	2,47	2,40	97,2%	6-12	3,67	3,52	95,8%
		7-6	2,41	2,36	97,7%	7-12	3,54	3,43	96,8%
	-	8-6	2,20	2,17	98,4%	8-12	3,37	3,27	97,2%

Tabelle C-1 Akasia: Quellungsdruck bei behinderter Quellung

Holz- feuchte zu	Vor- spannung	Nr.	$\text{max} \ \sigma_{\text{rad}}$	σ_{rad}	$\text{red}\Delta\sigma_{\text{rad}}$	Nr.	$\text{max}~\sigma_{\text{tan}}$	σ_{tan}	$\text{red}\Delta\sigma_{\text{tan}}$
Versuchs- beginn [%]	σ _v [N/mm²]		[N/mm²]	[N/mm²]	[%]		[N/mm²]	[N/mm²]	[%]
		1-1	2,24	2,23	99,5%	1-7	2,57	2,55	99,3%
		2-1	2,34	2,33	99,3%	2-7	2,48	2,44	98,4%
		3-1	2,43	2,42	99,5%	3-7	2,57	2,48	96,5%
10	0	4-1	1,94	1,92	99,1%	4-7	2,23	2,22	99,4%
12	0	5-1	2,50	2,49	99,4%	5-7	2,73	2,70	99,1%
		6-1	2,06	1,98	96,4%	6-7	2,27	2,15	95,0%
		7-1	1,90	1,87	98,5%	7-7	2,28	2,14	94,0%
		8-1	2,32	2,23	96,2%	8-7	2,52	2,32	92,2%
		1-2	2,54	2,49	97,8%	1-8	3,30	3,26	98,9%
		2-2	2,64	2,60	98,7%	2-8	3,11	3,10	99,7%
		3-2	2,82	2,70	95,8%	3-8	3,46	3,29	95,0%
10	0.5	4-2	2,41	2,40	99,3%	4-8	2,90	2,89	99,7%
12	0,5	5-2	2,86	2,82	98,7%	5-8	3,30	3,29	99,7%
		6-2	2,46	2,36	96,2%	6-8	3,31	3,25	98,3%
		7-2	2,34	2,24	95,8%	7-8	3,08	3,07	99,5%
		8-2	2,67	2,53	94,7%	8-8	3,41	3,36	98,8%
		1-3	2,72	2,68	98,4%	1-9	3,14	3,09	98,3%
		2-3	2.79	2.77	99.4%	2-9	3.54	3.52	99.4%
	1,5	3-3	3.01	2.85	94.7%	3-9	3.50	3.49	99.5%
		4-3	2.52	2.51	99.7%	4-9	3.25	3.24	99.5%
12		5-3	2.98	2 88	96.8%	5-9	3 60	3.58	99.4%
		6-3	2,77	2.58	93.1%	6-9	3,29	3.27	99.6%
		7-3	2.61	2.58	99.1%	7-9	3.14	3.12	99.4%
		8-3	2.96	2 83	95.7%	8-9	3.67	3.66	99.7%
		1-4	2.08	2.02	96.9%	1-10	2.43	2.32	95.5%
		2-4	1.97	1.93	97,9%	2-10	2.26	2.18	96.6%
		3-4	2 19	2 12	97.0%	3-10	2 54	2 35	92.6%
		4-4	1.83	1.81	98.9%	4-10	2.06	2.02	98.0%
18	0	5-4	2 18	2.08	95.6%	5-10	2 49	2 41	96.9%
		6-4	2.07	1 99	95.8%	6-10	2,32	2 27	97.5%
		7-4	1 69	1,60	95.8%	7-10	2,02	2.09	96.4%
		8-4	2 25	2 14	94.8%	8-10	2.42	2,00	97.1%
		1-5	2,20	2.28	95.7%	1-11	3.08	2,00	96.3%
		2-5	2,50	2,20	97.9%	2-11	3 25	3 15	97.0%
		3-5	2.58	2,10	94.3%	3-11	3 31	3.08	93.2%
		4-5	2,00	2.23	98.6%	4-11	3.04	2 99	98.5%
18	0,5	5-5	2,20	2,20	95.5%	5-11	3 19	3.09	96.7%
		6-5	2 37	2,00	95.1%	6-11	2.85	2 77	97.2%
		7-5	2,07	2,20	97.5%	7_11	2,00	2.80	94 5%
		8-5	2,10	2,00	94 7%	8-11	2,00	2,00	97.5%
		0-5 1_6	2,00	2,72	06.3%	0-11 1_12	3 18	2.08	03.7%
		1-0 2_6	2,77	2,00	90,370 97 1%	1-1∠ 2_12	3,10	2,30	Q1 20/
		2-0 2_6	2,13	2,07	Q7 7%	2-12 3_10	3,23	3,07	97 <u>0%</u>
		16	2,34	2,07	91,170 QR 50/	/ 10	3,00	3, 4 2 3.00	07 10/
18	1,5	4-0 5.6	2,00	2,32	90,0% 05 5%	-+-12 E 10	3,09	2 11	97,170 06 20/
		0-C	2,01	2,14	90,5% 05.7%	6 10	3,54	১,41 2.10	90,2% 05.6%
		0-0	2,40	2,34	90,1%	7 10	<u>ა,ა∠</u>	১, IÖ ১ ০০	90,0%
		/-0	2,40	2,34	97,4%	1-1Z	2,98	2,82	94,5%
		8-6	2,87	2,76	90,2%	8-12	১, ১৪	2,99	88,4%

Tabelle C-2 Jati: Quellungsdruck bei behinderter Quellung

Holz- feuchte zu	Vor- spannung	Nr.	$\text{max} \ \sigma_{\text{rad}}$	σ_{rad}	$\text{red}\ \Delta\sigma_{\text{rad}}$	Nr.	$\text{max} \ \sigma_{\text{tan}}$	σ_{tan}	$\text{red } \Delta \sigma_{\text{tan}}$
Versuchs- beginn [%]	σ _v [N/mm²]		[N/mm²]	[N/mm²]	[%]		[N/mm²]	[N/mm²]	[%]
		1-1	1,64	1,15	70,2%	1-7	2,12	1,49	70,5%
		2-1	1,77	1,30	73,7%	2-7	2,34	1,85	79,1%
		3-1	2,08	1,56	74,9%	3-7	2,23	1,69	75,9%
12	0	4-1	2,09	1,50	71,5%	4-7	2,55	1,93	75,8%
12	0	5-1	1,70	1,14	66,9%	5-7	2,19	1,60	73,3%
		6-1	1,97	1,34	68,0%	6-7	2,15	1,61	75,1%
		7-1	2,02	1,30	64,2%	7-7	2,40	1,83	76,3%
		8-1	1,90	1,39	73,2%	8-7	2,56	2,01	78,7%
		1-2	2,22	1,32	59,3%	1-8	2,60	2,05	78,8%
		2-2	2,67	1,72	64,4%	2-8	2,95	2,04	69,0%
		3-2	2,64	1,89	71,5%	3-8	2,71	1,97	72,5%
12	0.5	4-2	1,97	1,37	69,5%	4-8	2,68	1,97	73,5%
12	0,5	5-2	2,23	1,57	70,6%	5-8	2,43	1,93	79,5%
		6-2	2,36	1,68	71,2%	6-8	2,52	1,77	70,1%
		7-2	2,35	1,78	75,6%	7-8	2,64	1,67	63,3%
		8-2	2,28	1,59	69,7%	8-8	2,97	2,16	72,5%
		1-3	2,15	1,18	55,0%	1-9	3,05	1,85	60,6%
		2-3	2,33	1,49	63,9%	2-9	2,93	1,71	58,2%
		3-3	2,47	1,29	52,3%	3-9	2,75	1,97	71,7%
10	1,5	4-3	2,50	1,77	71,0%	4-9	3,00	2,07	68,8%
12		5-3	2,13	1,14	53,6%	5-9	2,61	1,66	63,7%
		6-3	2,56	1,53	59,8%	6-9	3,12	2,24	71,8%
		7-3	2,52	1,29	51,1%	7-9	2,68	2,01	74,9%
		8-3	2,41	1,55	64,3%	8-9	2,62	1,83	69,9%
		1-4	1,41	1,09	77,1%	1-10	2,16	1,79	83,1%
			2-4	1,57	1,13	72,2%	2-10	2,38	2,01
		3-4	1,86	1,35	72,5%	3-10	2,16	1,83	85,1%
10	0	4-4	1,71	1,39	81,0%	4-10	2,04	1,63	80,0%
18	0	5-4	1,47	1,26	86,0%	5-10	1,88	1,53	81,5%
		6-4	1,70	1,35	79,7%	6-10	2,18	1,94	89,0%
		7-4	1,81	1,44	79,7%	7-10	2,31	1,82	78,9%
		8-4	1,67	1,13	67,9%	8-10	1,96	1,67	84,9%
		1-5	1,85	1,47	79,6%	1-11	2,55	2,05	80,2%
		2-5	2,04	1,59	78,0%	2-11	2,41	1,76	72,9%
		3-5	2,28	1,64	71,9%	3-11	2,71	2,06	76,0%
10	0.5	4-5	2,16	1,82	84,3%	4-11	2,63	1,87	71,2%
18	0,5	5-5	2,12	1,36	64,1%	5-11	2,43	2,01	82,6%
		6-5	1,87	1,35	72,3%	6-11	2,60	2,11	81,2%
		7-5	2,09	1,48	70,7%	7-11	2,49	2,14	86,1%
		8-5	2,08	1,60	76,8%	8-11	2,48	2,20	88,5%
		1-6	1,84	1,23	66,5%	1-12	2,54	1,99	78,4%
		2-6	2,09	1,30	62,2%	2-12	3,00	2,28	76,0%
		3-6	2,27	1,41	62,4%	3-12	2,54	2,03	80,1%
10	4 -	4-6	2,41	1,52	63,2%	4-12	2,81	1,95	69,3%
18	1,5	5-6	2,15	1,04	48,2%	5-12	2,89	2,04	70,5%
		6-6	2,15	1,36	63,3%	6-12	2,59	2,12	81,8%
		7-6	2,37	1,38	58,0%	7-12	2,62	2,09	79,6%
	_	8-6	2,36	1,44	61,1%	8-12	2,88	2,17	75,2%

Tabelle C-3 Keruing: Quellungsdruck bei behinderter Quellung

Holz- feuchte zu	Vor- spannung	Nr.	$\text{max} \ \sigma_{\text{rad}}$	σ_{rad}	$\text{red } \Delta \sigma_{\text{rad}}$	Nr.	$\text{max}\sigma_{\text{tan}}$	σ_{tan}	red $\Delta\sigma_{\text{tan}}$
Versuchs- beginn [%]	σ _v [N/mm²]		[N/mm²]	[N/mm²]	[%]		[N/mm²]	[N/mm²]	[%]
		1-1	2,38	2,05	86,2%	1-7	2,56	1,99	77,9%
		2-1	2,43	1,91	78,8%	2-7	2,66	2,05	77,1%
		3-1	2,13	1,71	80,2%	3-7	2,71	2,36	87,4%
10	0	4-1	1,84	1,52	82,4%	4-7	2,31	2,09	90,2%
12	0	5-1	2,18	1,64	75,6%	5-7	2,38	1,82	76,4%
		6-1	2,47	2,04	82,5%	6-7	2,65	2,23	84,3%
		7-1	2,10	1,52	72,4%	7-7	2,66	1,96	73,7%
		8-1	1,89	1,56	82,2%	8-7	2,26	1,86	82,3%
		1-2	2,35	1,72	73,1%	1-8	3,08	2,54	82,8%
		2-2	2,56	1,88	73,4%	2-8	3,43	2,82	82,2%
		3-2	2,32	1,92	82,9%	3-8	3,27	2,55	77,9%
10	0.5	4-2	2,80	2,25	80,6%	4-8	3,32	2,40	72,3%
12	0,5	5-2	2,29	1,84	80,5%	5-8	3,76	2,93	77,8%
		6-2	2,77	2,32	84,0%	6-8	3,39	2,68	79,0%
		7-2	2,93	2,47	84,5%	7-8	3,33	2,43	72,8%
		8-2	2,79	2,30	82,4%	8-8	3,55	2,50	70,3%
		1-3	2,57	1,87	72,9%	1-9	3,46	2,49	72,1%
		2-3	2,95	1,92	64,9%	2-9	3,23	2,19	67,7%
		3-3	2,78	2,08	74,8%	3-9	3,48	2,42	69,7%
10		4-3	2.56	1.67	65.3%	4-9	3.96	2.47	62.4%
12	1,5	5-3	3.01	2,19	72.8%	5-9	3.73	2.96	79.4%
		6-3	2.61	2.16	82.8%	6-9	3.52	2.41	68.5%
		7-3	3.07	2.20	71.7%	7-9	3.76	2.78	73.9%
		8-3	2.91	2.39	81.9%	8-9	3.64	2.76	75.8%
		1-4	1,74	1,33	76,6%	1-10	2,29	1,84	80,4%
		2-4	2,02	1,54	76,2%	2-10	2,00	1,78	88,9%
		3-4	2.07	1.83	88.3%	3-10	2.24	2.00	89.6%
10		4-4	2.22	1.75	78.8%	4-10	2.72	2.19	80.5%
18	0	5-4	2.03	1.57	77.1%	5-10	2.58	2.24	86.6%
		6-4	1.67	1.46	87.1%	6-10	2.48	2.15	86.5%
		7-4	2.05	1.63	79.5%	7-10	2.31	1.82	78.5%
		8-4	1.75	1.30	74.3%	8-10	2.31	1.80	78.1%
		1-5	2,14	1,73	80,5%	1-11	2,99	2,44	81,9%
		2-5	2,02	1,69	83,5%	2-11	3,02	2,61	86,5%
		3-5	2,13	1,78	83,3%	3-11	3,34	2,74	82,0%
10	0.5	4-5	2,71	2,12	78,1%	4-11	3,16	2,33	73,8%
18	0,5	5-5	2,51	1,99	79,4%	5-11	3,40	2,85	83,7%
		6-5	2,67	2,15	80,7%	6-11	3,21	2,68	83,7%
		7-5	2,54	1,92	75,7%	7-11	3,55	2,63	74,1%
		8-5	2,34	1,74	74,4%	8-11	3,28	2,56	78,1%
		1-6	2,70	2,11	78,1%	1-12	3,16	2,33	73,8%
		2-6	2,34	1,93	82,3%	2-12	3,04	2,42	79,7%
		3-6	2,87	2,25	78,2%	3-12	3,60	2,86	79,5%
10	4 -	4-6	2,66	1,86	70,0%	4-12	3,76	2,82	75,1%
٦ð	1,5	5-6	2,60	1,85	70,9%	5-12	3,92	2,85	72,7%
		6-6	2,81	2,20	78,4%	6-12	3,39	2,71	79,9%
		7-6	2,64	1,77	66,9%	7-12	3,18	2,25	70,8%
		8-6	2,52	2,17	85,9%	8-12	3,43	2,43	70,9%

Tabelle C-4 Puspa: Quellungsdruck bei behinderter Quellung

Holz- feuchte zu	Vor- spannung	Nr.	$\text{max} \ \sigma_{\text{rad}}$	σ_{rad}	$\text{red } \Delta \sigma_{\text{rad}}$	Nr.	$\text{max} \ \sigma_{\text{tan}}$	σ_{tan}	$\text{red } \Delta \sigma_{\text{tan}}$			
Versuchs- beginn [%]	σ _v [N/mm²]		[N/mm²]	[N/mm²]	[%]		[N/mm²]	[N/mm²]	[%]			
		1-1	1,35	1,16	85,9%	1-7	1,67	1,42	84,8%			
		2-1	1,60	1,21	76,0%	2-7	1,53	1,27	83,5%			
		3-1	1,54	1,14	73,8%	3-7	1,69	1,24	73,6%			
10	0	4-1	1,42	1,11	78,6%	4-7	1,39	0,94	67,3%			
12	0	5-1	1,26	0,85	67,8%	5-7	1,27	0,99	78,0%			
		6-1	1,25	0,93	74,0%	6-7	1,94	1,59	81,7%			
		7-1	1,53	1,03	67,4%	7-7	1,90	1,47	77,6%			
		8-1	1,53	1,26	82,2%	8-7	1,85	1,58	85,7%			
		1-2	1,69	1,36	80,6%	1-8	2,22	1,67	75,3%			
		2-2	1,60	1,33	82,6%	2-8	2,27	1,58	69,6%			
		3-2	1,59	1,22	76,7%	3-8	1,83	1,37	74,7%			
10	0.5	4-2	1,61	1,41	87,5%	4-8	2,19	1,61	73,5%			
12	0,5	5-2	1,66	1,12	67,5%	5-8	1,98	1,47	74,1%			
		6-2	1,95	1,23	63,3%	6-8	2,08	1,51	72,6%			
		7-2	1,84	1,24	67,5%	7-8	2,13	1,70	80,0%			
		8-2	1,99	1,38	69,3%	8-8	2,38	1,93	81,2%			
		1-3	1,92	1,06	55.0%	1-9	2,08	1,33	63,8%			
		2-3	2,13	1,12	52,3%	2-9	2,21	1,37	61,8%			
		3-3	1,89	1,01	53,6%	3-9	2,50	1,85	74,1%			
10		4-3	2.21	1.07	48.1%	4-9	2.21	1.35	61.4%			
12	1,5	5-3	2.04	0.95	46.5%	5-9	2,42	1.78	73.6%			
		6-3	1.73	1.28	73.8%	6-9	2.04	1.43	69.8%			
		7-3	1.71	1.26	73.7%	7-9	2.55	1.75	68.7%			
		8-3	1.76	1.08	61.4%	8-9	2.65	1.39	52.4%			
		1-4	1.03	0.89	86.5%	1-10	1.27	1.10	85.9%			
		2-4	1.35	1.12	83.0%	2-10	1.60	1.39	86.8%			
		3-4	1.24	0.97	78.2%	3-10	1.36	1.12	82.2%			
10		4-4	1.30	1.01	78.2%	4-10	1.38	1.08	78.5%			
18	0	5-4	1.14	0.91	79.8%	5-10	1.57	1.25	79.5%			
		6-4	1.43	1.14	79.7%	6-10	1.34	1.17	87.6%			
		7-4	1.33	1.03	77.9%	7-10	1.47	1.31	89.5%			
		8-4	1.15	0.89	77.5%	8-10	1.58	1.22	76.8%			
		1-5	1.71	1.19	69.9%	1-11	2.10	1.69	80.5%			
		2-5	1.45	1.16	79.9%	2-11	1.88	1.40	74.6%			
		3-5	1.57	1.21	77.0%	3-11	2.22	1.81	81.5%			
10		4-5	1.79	1.24	69.1%	4-11	1.81	1.56	86.3%			
18	0,5	5-5	1.41	1.10	78.1%	5-11	1.92	1.51	78.6%			
		6-5	1.50	1.20	79.8%	6-11	2.04	1.27	62.3%			
		7-5	1.42	1.19	83.4%	7-11	2.06	1.67	81.3%			
		8-5	1.60	1.28	80.5%	8-11	1.93	1.71	88.4%			
		1-6	1.81	0.83	46.1%	1-12	2.21	1.25	56.7%			
		2-6	1.69	0.96	56.6%	2-12	2.27	1.53	67.2%			
		3-6	1,67	1.30	77.9%	3-12	2.31	1.72	74.3%			
		4-6	1.68	1.30	77.3%	4-12	2.00	1.36	67.8%			
18	1,5	5-6	1.54	0.96	62.2%	5-12	2.12	1.32	62.3%			
		6-6	1.67	1.26	75.5%	6-12	2.15	1.36	63.3%			
		7-6	1.58	0.88	55.4%	7-12	1.83	1.38	75.3%			
				ŀ	8-6	1,72	1,12	64,9%	8-12	1,98	1,50	75,6%

Tabelle C-5 Lärche: Quellungsdruck bei behinderter Quellung

Bild C-1 Akasia: tangentialer Quellungsdruck (Mittelwerte; $u_0 = 12$ %; $\sigma_V = 0 - 1.5$ N/mm²)

Bild C-2 Akasia: radialer Quellungsdruck (Mittelwerte; $u_0 = 12$ %; $\sigma_V = 0 - 1.5$ N/mm²)

Bild C-3 Akasia: tangentialer Quellungsdruck (Mittelwerte; $u_0 = 18$ %; $\sigma_V = 0 - 1.5$ N/mm²)

Bild C-5 Jati: tangentialer Quellungsdruck (Mittelwerte; $u_0 = 12$ %; $\sigma_V = 0 - 1,5$ N/mm²)

Bild C-6 Jati: radialer Quellungsdruck (Mittelwerte; $u_0 = 12$ %; $\sigma_V = 0 - 1,5$ N/mm²)

Bild C-7 Jati: tangentialer Quellungsdruck (Mittelwerte; $u_0 = 18$ %; $\sigma_V = 0 - 1.5$ N/mm²)

Bild C-8 Jati: radialer Quellungsdruck (Mittelwerte; $u_0 = 18$ %; $\sigma_V = 0 - 1,5$ N/mm²)

Bild C-9 Keruing: tangentialer Quellungsdruck (Mittelwerte; $u_0 = 12 \%$; $\sigma_V = 0 - 1,5 \text{ N/mm}^2$)

Bild C-10 Keruing: radialer Quellungsdruck (Mittelwerte; $u_0 = 12$ %; $\sigma_V = 0 - 1.5$ N/mm²)

Bild C-11 Keruing: tangentialer Quellungsdruck (Mittelwerte; $u_0 = 18$ %; $\sigma_V = 0 - 1.5$ N/mm²)

Bild C-12 Keruing: radialer Quellungsdruck (Mittelwerte; $u_0 = 18$ %; $\sigma_V = 0 - 1.5$ N/mm²)

Bild C-13 Puspa: tangentialer Quellungsdruck (Mittelwerte; $u_0 = 12$ %; $\sigma_V = 0 - 1,5$ N/mm²)

Bild C-14 Puspa: radialer Quellungsdruck (Mittelwerte; $u_0 = 12$ %; $\sigma_V = 0 - 1,5$ N/mm²)

Bild C-15 Puspa: tangentialer Quellungsdruck (Mittelwerte; $u_0 = 18$ %; $\sigma_V = 0 - 1,5$ N/mm²)

Bild C-16 Puspa: radialer Quellungsdruck (Mittelwerte; $u_0 = 18$ %; $\sigma_V = 0 - 1.5$ N/mm²)

Bild C-17 Lärche: tangentialer Quellungsdruck (Mittelwerte; $u_0 = 12 \%$; $\sigma_V = 0 - 1.5 \text{ N/mm}^2$)

Bild C-18 Lärche: radialer Quellungsdruck (Mittelwerte; $u_0 = 12 \%$; $\sigma_V = 0 - 1.5 \text{ N/mm}^2$)

Bild C-19 Lärche: tangentialer Quellungsdruck (Mittelwerte; u_0 = 18 %; σ_V = 0 - 1,5 N/mm²)

Bild C-20 Lärche: radialer Quellungsdruck (Mittelwerte; $u_0 = 18$ %; $\sigma_V = 0 - 1,5$ N/mm²)

Anhang D Anlagen zu Kapitel 4.1

	u = 12 %					Abfall	
Nr.	E ₀ [N/mm²]	ρ [kg/m³]	u [%]	E ₀ [N/mm²]	ρ [kg/m³]	u [%]	red E ₀ [%]
1	12508	692	14,1	11447	865	45,3	91,5%
2	11917	693	13,8	10951	936	54,2	91,9%
3	14497	703	11,8	13288	916	47,5	91,7%
4	14537	792	11,7	13317	1006	65,9	91,6%
5	14011	707	11,5	12779	876	43,2	91,2%
6	15344	750	12,0	14042	1044	74,3	91,5%
7	14243	749	12,2	13044	926	52,1	91,6%
8	11140	668	12,1	10236	838	45,9	91,9%
9	15552	751	11,1	14401	954	58,3	92,6%
10	15983	747	12,5	14519	948	52,0	90,8%
11	10581	635	13,0	9971	862	44,3	94,2%
12	12847	740	13,5	11735	1026	70,3	91,3%
13	11214	643	12,4	10318	858	48,3	92,0%
14	13280	728	12,1	12265	956	55,9	92,4%
15	13082	763	13,7	12047	965	55,6	92,1%
16	13004	751	13,4	11626	936	53,8	89,4%
17	15068	719	12,5	13583	931	52,3	90,1%
18	16334	781	11,9	14912	1075	80,5	91,3%
19	14774	679	12,2	13393	891	43,2	90,7%
20	15048	769	11,8	13466	923	51,3	89,5%
21	14849	796	12,6	13206	947	54,2	88,9%
22	16719	830	12,1	15082	1055	72,6	90,2%
23	16164	786	12,3	14231	976	60,4	88,0%
24	15588	811	11,9	14412	1013	68,4	92,5%
25	14610	798	12,8	13544	1079	82,6	92,7%
26	10701	647	13,2	9542	844	48,6	89,2%
27	15716	847	13,2	14485	1034	72,1	92,2%
28	11248	700	13,4	10678	1000	62,3	94,9%
29	12063	723	12,5	11056	1000	64,3	91,6%
30	13994	702	12,6	12741	1020	68,0	91,0%
31	15868	751	11,8	14891	1011	65,3	93,8%
32	14252	737	11,8	12824	1066	68,7	90,0%
33	12712	721	12,9	11693	897	46,3	92,0%
34	15385	709	12,7	14135	989	62,3	91,9%
35	15763	706	12,9	14534	982	64,5	92,2%
36	11910	746	11,8	10921	982	60,3	91,7%
min	10581	635	11,1	9542	838	43,2	88,0%
mittel	13959	735	12,5	12759	962	58,8	91,5%
max	16719	847	14,1	15082	1079	82,6	94,9%

Tabelle D-1 Akasia: Einfluss der Holzfeuchte auf den Elastizitätsmodul E_0

		u = 12 %			u > FS		Abfall
Nr.	G [N/mm²]	ր [kg/m³]	u [%]	G [N/mm²]	ր [kg/m³]	u [%]	red G [%]
1	801	692	14,1	691	865	45,3	86,3%
2	781	693	13,8	686	936	54,2	87,8%
3	1041	703	11,8	831	916	47,5	79,8%
4	946	792	11,7	696	1006	65,9	73,6%
5	1081	707	11,5	776	876	43,2	71,8%
6	1026	750	12,0	726	1044	74,3	70,8%
7	911	749	12,2	671	926	52,1	73,7%
8	666	668	12,1	626	838	45,9	94,0%
9	806	751	11,1	721	954	58,3	89,5%
10	1111	747	12,5	871	948	52,0	78,4%
11	726	635	13,0	601	862	44,3	82,8%
12	731	740	13,5	651	1026	70,3	89,1%
13	656	643	12,4	616	858	48,3	93,9%
14	786	728	12,1	596	956	55,9	75,8%
15	861	763	13,7	671	965	55,6	77,9%
16	761	751	13,4	646	936	53,8	84,9%
17	871	719	12,5	741	931	52,3	85,1%
18	1006	781	11,9	846	1075	80,5	84,1%
19	906	679	12,2	751	891	43,2	82,9%
20	1036	769	11,8	731	923	51,3	70,6%
21	951	796	12,6	711	947	54,2	74,8%
22	1081	830	12,1	856	1055	72,6	79,2%
23	1036	786	12,3	796	976	60,4	76,8%
24	1021	811	11,9	776	1013	68,4	76,0%
25	931	798	12,8	716	1079	82,6	76,9%
26	651	647	13,2	566	844	48,6	86,9%
27	921	847	13,2	676	1034	72,1	73,4%
28	631	700	13,4	536	1000	62,3	84,9%
29	676	723	12,5	601	1000	64,3	88,9%
30	751	702	12,6	676	1020	68,0	90,0%
31	951	751	11,8	741	1011	65,3	77,9%
32	796	737	11,8	586	1066	68,7	73,6%
33	741	721	12,9	651	897	46,3	87,9%
34	1011	709	12,7	821	989	62,3	81,2%
35	921	706	12,9	756	982	64,5	82,1%
36	811	746	11,8	666	982	60,3	82,1%
min	631	635	11,1	536	838	43,2	70,6%
mittel	872	735	12,5	702	962	58,8	81,3%
max	1111	847	14,1	871	1079	82,6	94,0%

Tabelle D-2 Akasia: Einfluss der Holzfeuchte auf den Schubmodul G

Nr.	u = 12 %			u > FS			Abfall
	E ₉₀ [N/mm²]	0 [kg/m³]	u [%]	E ₉₀ [N/mm²]	ր [kg/m³]	u [%]	red E ₉₀ [%]
1	1131	620	12,1	875	1156	91,9	77,4%
2	1044	697	13,6	880	1149	108,8	84,3%
3	934	699	13,5	738	1103	96,2	79,0%
4	1138	663	10,6	907	1166	98,2	79,6%
5	1041	654	11,4	811	1150	95,2	77,8%
6	1438	761	10,3	977	1186	109,8	67,9%
7	1087	631	11,3	730	1131	99,3	67,1%
8	976	636	11,7	685	1058	91,2	70,2%
9	1065	702	10,6	858	1176	113,8	80,5%
10	1217	702	11,5	845	1182	118,8	69,4%
11	916	649	12,1	688	1050	86,7	75,1%
12	1169	674	10,9	862	1165	103,0	73,7%
13	1354	693	11,3	898	1163	106,0	66,4%
14	917	646	13,1	768	1165	110,0	83,8%
15	1162	691	11,2	945	1160	111,3	81,4%
16	1067	642	12,2	804	1160	104,7	75,3%
17	1338	757	10,9	999	1182	108,6	74,7%
18	1356	810	10,9	987	1243	118,3	72,7%
19	1113	682	11,7	770	1090	98,9	69,2%
20	1063	718	12,9	869	1191	115,1	81,8%
21	1281	695	13,3	872	1154	103,4	68,1%
22	1088	746	11,9	889	1164	89,8	81,7%
23	1336	795	11,5	1013	1203	122,3	75,8%
24	1445	762	11,7	1000	1202	121,8	69,2%
25	1377	815	11,4	960	1241	116,9	69,7%
26	945	606	12,4	791	1144	103,4	83,7%
27	1335	803	11,6	1023	1225	118,8	76,6%
28	1325	742	12,1	1014	1205	128,3	76,5%
29	1126	746	11,7	867	1198	103,8	77,0%
30	1254	716	12,5	987	1156	99,9	78,7%
31	1143	748	13,7	848	1196	112,8	74,2%
32	1388	800	12,1	1022	1250	124,0	73,6%
33	1095	684	10,4	841	1163	110,7	76,8%
34	1362	807	10,6	944	1203	109,2	69,3%
35	1429	727	13,1	951	1196	105,8	66,6%
36	1128	643	11,0	853	1142	114,8	75,6%
min	916	606	10,3	685	1050	86,7	66,4%
mittel	1183	710	11,8	882	1169	107,5	75,0%
max	1445	815	13,7	1023	1250	128,3	84,3%

Tabelle D-3 Akasia: Einfluss der Holzfeuchte auf den Elastizitätsmodul E₉₀

Bild D-1 Akasia: Einfluss der Holzfeuchte auf den Elastizitätsmodul E₀

Bild D-2 Akasia: Einfluss der Holzfeuchte auf den Schubmodul G

Bild D-3 Akasia: Einfluss der Holzfeuchte auf den Elastizitätsmodul E₉₀

	u = 12 %			u > FS			Abfall
Nr.	Eo	ρ	u	Eo	ρ	u	red E ₀
	[N/mm²]	[kg/m³]	[%]	[N/mm²]	[kg/m³]	[%]	[%]
1	16055	746	12,9	14783	965	69,3	92,1%
2	13616	645	11,4	12412	968	65,3	91,2%
3	12779	640	12,1	11744	966	60,3	91,9%
4	15770	747	12,6	14536	1038	84,3	92,2%
5	16303	742	12,6	14933	980	73,6	91,6%
6	11274	621	11,4	10332	859	58,6	91,7%
7	10513	606	13,2	9856	891	62,3	93,8%
8	12527	672	11,9	11468	899	60,5	91,5%
9	13178	660	12,5	12449	1002	78,6	94,5%
10	9912	566	13,0	9105	857	74,2	91,9%
11	14192	678	13,2	13188	922	60,5	92,9%
12	12604	664	13,1	11815	902	60,9	93,7%
13	15489	731	11,4	14393	1027	84,6	92,9%
14	14353	669	11,7	12892	974	72,6	89,8%
15	16016	782	12,0	14890	1031	82,9	93,0%
16	15863	766	11,5	14486	919	59,8	91,3%
17	12976	681	12,5	11631	952	72,6	89,6%
18	9861	567	13,5	9247	818	48,6	93,8%
19	14652	730	11,8	13367	994	78,9	91,2%
20	11820	666	12,8	10706	926	62,3	90,6%
21	12572	624	12,5	11524	908	63,8	91,7%
22	13135	666	11,7	12247	935	61,3	93,2%
23	11689	596	12,6	10788	902	59,7	92,3%
24	15713	698	11,5	14851	974	72,6	94,5%
25	15000	751	12,6	13646	1020	82,5	91,0%
26	12540	599	12,4	11521	861	58,6	91,9%
27	11732	600	12,9	10656	877	65,3	90,8%
28	12933	676	12,4	11901	923	63,8	92,0%
29	14534	648	11,6	13342	910	54,8	91,8%
30	14946	774	12,1	13867	1010	81,4	92,8%
31	10941	595	12,1	9977	892	62,9	91,2%
32	14033	743	13,2	13294	949	69,8	94,7%
33	10609	577	12,8	9957	875	64,5	93,9%
34	15132	667	11,4	13707	908	54,2	90,6%
35	10394	575	11,9	9688	891	65,3	93,2%
36	12588	675	13,4	11469	923	65,0	91,1%
min	9861	566	11,4	9105	818	48,6	89,6%
mittel	13285	668	12,3	12241	935	67,1	92,2%
max	16303	782	13,5	14933	1038	84,6	94,7%

Tabelle D-4 Jati: Einfluss der Holzfeuchte auf den Elastizitätsmodul E0

Nr.	u = 12 %			u > FS			Abfall
	G [N/mm²]	ρ [kg/m³]	u [%]	G [N/mm²]	0 [kg/m³]	u [%]	red G [%]
1	1046	746	12,9	851	965	69,3	81,4%
2	881	645	11,4	706	968	65,3	80,1%
3	721	640	12,1	586	966	60,3	81,3%
4	961	747	12,6	776	1038	84,3	80,7%
5	956	742	12,6	806	980	73,6	84,3%
6	731	621	11,4	611	859	58,6	83,6%
7	706	606	13,2	591	891	62,3	83,7%
8	761	672	11,9	646	899	60,5	84,9%
9	761	660	12,5	686	1002	78,6	90,1%
10	611	566	13,0	511	857	74,2	83,6%
11	836	678	13,2	681	922	60,5	81,5%
12	681	664	13,1	596	902	60,9	87,5%
13	941	731	11,4	811	1027	84,6	86,2%
14	771	669	11,7	661	974	72,6	85,7%
15	1011	782	12,0	866	1031	82,9	85,7%
16	876	766	11,5	756	919	59,8	86,3%
17	806	681	12,5	691	952	72,6	85,7%
18	686	567	13,5	576	818	48,6	84,0%
19	966	730	11,8	781	994	78,9	80,8%
20	706	666	12,8	616	926	62,3	87,3%
21	776	624	12,5	591	908	63,8	76,2%
22	851	666	11,7	681	935	61,3	80,0%
23	661	596	12,6	561	902	59,7	84,9%
24	806	698	11,5	626	974	72,6	77,7%
25	836	751	12,6	696	1020	82,5	83,3%
26	821	599	12,4	656	861	58,6	79,9%
27	766	600	12,9	616	877	65,3	80,4%
28	796	676	12,4	641	923	63,8	80,5%
29	921	648	11,6	686	910	54,8	74,5%
30	951	774	12,1	701	1010	81,4	73,7%
31	831	595	12,1	756	892	62,9	91,0%
32	791	743	13,2	611	949	69,8	77,2%
33	711	577	12,8	651	875	64,5	91,6%
34	736	667	11,4	551	908	54,2	74,9%
35	751	575	11,9	581	891	65,3	77,4%
36	891	675	13,4	786	923	65,0	88,2%
min	611	566	11,4	511	818	48,6	73,7%
mittel	814	668	12,3	672	935	67,1	82,7%
max	1046	782	13,5	866	1038	84,6	91,6%
		u = 12 %			u > FS		Abfall
--------	----------------------------	--------------	----------	----------------------------	--------------	----------	----------------------------
Nr.	E ₉₀ [N/mm²]	၀ [kg/m³]	u [%]	E ₉₀ [N/mm²]	0 [kg/m³]	u [%]	red E ₉₀ [%]
1	1388	735	12,6	1116	1198	113,8	80,4%
2	1031	653	12,9	766	1107	101,5	74,3%
3	967	633	11,5	706	1120	95,4	73,0%
4	1199	711	11,1	873	1179	100,6	72,8%
5	1389	718	11,4	1062	1180	104,5	76,5%
6	872	624	12,6	683	1048	90,1	78,3%
7	855	577	12,8	723	1093	99,6	84,7%
8	1370	679	11,5	1086	1157	101,8	79,3%
9	1170	667	13,3	918	1174	112,0	78,5%
10	883	589	11,2	749	1132	108,4	84,8%
11	942	630	12,1	750	1142	107,3	79,6%
12	1363	660	11,8	1004	1152	103,6	73,7%
13	1380	704	11,9	1101	1163	97,4	79,8%
14	1123	695	12,1	842	1113	90,2	74,9%
15	1377	719	11,8	968	1182	108,3	70,3%
16	1008	681	12,6	723	1061	85,1	71,8%
17	1086	646	12,6	829	1144	111,0	76,3%
18	828	554	11,3	713	1101	98,2	86,1%
19	1336	724	11,7	1007	1176	94,2	75,4%
20	1241	675	12,1	886	1166	103,5	71,4%
21	878	592	11,1	629	1030	82,5	71,6%
22	1227	696	12,2	922	1122	94,0	75,2%
23	1194	621	12,8	913	1161	106,2	76,5%
24	1386	734	11,8	1082	1174	106,5	78,1%
25	1297	704	12,3	1005	1155	106,7	77,5%
26	1225	628	12,8	941	1150	112,3	76,8%
27	962	601	13,2	758	1148	100,4	78,8%
28	1096	671	12,0	824	1153	106,9	75,1%
29	991	656	12,8	765	1055	88,8	77,2%
30	1305	738	11,6	943	1198	104,6	72,3%
31	971	591	12,6	790	1077	90,4	81,3%
32	1347	741	11,7	1075	1182	114,9	79,8%
33	917	584	11,0	653	1029	94,7	71,2%
34	1363	655	11,7	1015	1161	106,6	74,5%
35	873	605	12,8	674	1041	91,2	77,1%
36	1288	737	12,1	1015	1200	101,0	78,8%
min	828	554	11,0	629	1029	82,5	70,3%
mittel	1142	662	12,1	875	1134	100,9	76,8%
max	1389	741	13,3	1116	1200	114,9	86,1%

Tabelle D-6 Jati: Einfluss der Holzfeuchte auf den Elastizitätsmodul E₉₀

Bild D-4 Jati: Einfluss der Holzfeuchte auf den Elastizitätsmodul E₀

Bild D-6 Jati: Einfluss der Holzfeuchte auf den Elastizitätsmodul E₉₀

		u = 12 %			u > FS		Abfall	
Nr.	E ₀ [N/mm²]	റ [kg/m³]	u [%]	E ₀ [N/mm²]	റ [kg/m³]	u [%]	red E ₀ [%]	
1	12233	634	13,4	10377	983	68,3	84,8%	
2	12733	619	12,4	10820	910	52,3	85,0%	
3	17024	756	13,1	14003	1069	85,5	82,3%	
4	12892	640	12,1	10809	904	54,6	83,8%	
5	12114	572	12,0	10327	950	82,7	85,3%	
6	18458	797	12,4	15265	1079	94,1	82,7%	
7	15012	706	12,0	12747	988	73,0	84,9%	
8	14036	644	13,2	11927	965	65,3	85,0%	
9	16835	742	11,8	14230	1042	78,2	84,5%	
10	17613	758	11,7	14616	997	73,5	83,0%	
11	19334	832	12,0	16252	1172	104,9	84,1%	
12	17788	758	12,2	14751	1016	75,4	82,9%	
13	14930	636	13,2	12315	1089	105,7	82,5%	
14	13685	709	13,6	11461	991	68,2	83,8%	
15	19184	813	11,7	16447	1095	89,9	85,7%	
16	19084	796	12,6	15905	1101	93,6	83,3%	
17	15343	746	13,6	12991	946	65,2	84,7%	
18	17617	826	13,9	14947	1046	82,0	84,8%	
19	13825	658	13,0	11449	957	65,4	82,8%	
20	14861	661	13,2	12369	949	63,7	83,2%	
21	16929	747	12,0	14247	1082	93,7	84,2%	
22	13363	641	12,0	11507	1059	104,2	86,1%	
23	15278	665	12,2	12493	905	51,4	81,8%	
24	13851	668	12,6	11722	954	57,8	84,6%	
25	15864	750	11,8	13404	1085	88,4	84,5%	
26	13127	602	13,6	11292	885	51,8	86,0%	
27	16109	710	12,6	13603	1107	90,5	84,4%	
28	17873	833	11,5	14995	1201	107,5	83,9%	
29	16635	716	11,9	13825	1150	97,8	83,1%	
30	16657	769	13,3	14417	1050	77,4	86,6%	
31	13339	595	12,0	11278	1009	82,3	84,6%	
32	14930	647	12,6	12388	966	68,5	83,0%	
33	15698	709	11,8	13595	1043	82,7	86,6%	
34	14675	704	11,7	12777	1012	71,5	87,1%	
35	17786	745	12,0	14503	1014	72,5	81,5%	
36	15968	674	11,9	13269	952	63,5	83,1%	
min	12114	572	11,5	10327	885	51,4	81,5%	
mittel	15630	708	12,5	13148	1020	77,9	84,2%	
max	19334	833	13,9	16447	1201	107,5	87,1%	

Tabelle D-7 Keruing: Einfluss der Holzfeuchte auf den Elastizitätsmodul E₀

		-					
		u = 12 %	-		u > FS		Abfall
Nr.	G [N/mm²]	ր [kg/m³]	u [%]	G [N/mm²]	ր [kg/m³]	u [%]	red G [%]
1	701	634	13,4	601	983	68,3	85,7%
2	851	619	12,4	581	910	52,3	68,3%
3	981	756	13,1	726	1069	85,5	74,0%
4	736	640	12,1	541	904	54,6	73,5%
5	656	572	12,0	486	950	82,7	74,1%
6	1031	797	12,4	756	1079	94,1	73,3%
7	886	706	12,0	671	988	73,0	75,7%
8	751	644	13,2	546	965	65,3	72,7%
9	1086	742	11,8	751	1042	78,2	69,2%
10	976	758	11,7	701	997	73,5	71,8%
11	1176	832	12,0	806	1172	104,9	68,5%
12	1021	758	12,2	721	1016	75,4	70,6%
13	746	636	13,2	616	1089	105,7	82,6%
14	876	709	13,6	671	991	68,2	76,6%
15	1171	813	11,7	851	1095	89,9	72,7%
16	1146	796	12,6	821	1101	93,6	71,6%
17	931	746	13,6	696	946	65,2	74,8%
18	1081	826	13,9	781	1046	82,0	72,2%
19	781	658	13,0	621	957	65,4	79,5%
20	791	661	13,2	551	949	63,7	69,7%
21	841	747	12,0	671	1082	93,7	79,8%
22	761	641	12,0	591	1059	104,2	77,7%
23	886	665	12,2	666	905	51,4	75,2%
24	791	668	12,6	611	954	57,8	77,2%
25	881	750	11,8	626	1085	88,4	71,1%
26	666	602	13,6	501	885	51,8	75,2%
27	756	710	12,6	621	1107	90,5	82,1%
28	1091	833	11,5	776	1201	107,5	71,1%
29	786	716	11,9	656	1150	97,8	83,5%
30	1066	769	13,3	806	1050	77,4	75,6%
31	676	595	12,0	561	1009	82,3	83,0%
32	711	647	12,6	546	966	68,5	76,8%
33	871	709	11,8	676	1043	82,7	77,6%
34	931	704	11,7	721	1012	71,5	77,4%
35	971	745	12,0	756	1014	72,5	77,9%
36	746	674	11,9	546	952	63,5	73,2%
min	656	572	11,5	486	885	51,4	68,3%
mittel	884	708	12,5	662	1020	77,9	75,3%
max	1176	833	13,9	851	1201	107,5	85,7%

Tabelle D-8 Keruing: Einfluss der Holzfeuchte auf den Schubmodul G

		u = 12 %			u > FS		Abfall
Nr.	E ₉₀	ρ	u	E ₉₀	ρ	u	red E ₉₀
	[N/mm ²]	[kg/m³]	[%]	[N/mm ²]	[kg/m³]	[%]	[%]
1	977	630	12,8	659	1128	92,9	67,5%
2	1008	603	11,6	719	1112	91,3	71,3%
3	1156	745	12,2	699	1158	99,4	60,5%
4	1127	661	12,6	790	1159	97,7	70,1%
5	866	588	12,9	613	1112	84,7	70,8%
6	1123	761	12,7	697	1171	91,5	62,1%
7	1174	705	12,0	821	1158	99,3	70,0%
8	887	647	11,9	573	1029	76,7	64,6%
9	1193	754	12,1	730	1166	99,6	61,2%
10	1199	750	11,8	763	1146	95,8	63,7%
11	1193	799	12,4	738	1182	91,9	61,8%
12	1196	762	12,4	777	1158	93,4	65,0%
13	1031	629	11,7	727	1179	100,5	70,5%
14	1234	712	11,9	860	1149	104,9	69,7%
15	1194	792	12,9	777	1156	99,5	65,1%
16	1155	780	12,4	732	1142	95,5	63,4%
17	1201	752	11,9	794	1166	92,5	66,1%
18	1238	815	11,9	833	1191	94,1	67,3%
19	902	676	12,7	668	1046	75,7	74,1%
20	912	675	12,7	684	1070	80,9	75,0%
21	1204	760	11,8	725	1156	96,9	60,2%
22	891	664	11,5	592	1009	78,7	66,5%
23	1178	666	12,7	797	1143	94,9	67,7%
24	1039	658	12,6	708	1165	104,3	68,2%
25	1171	753	11,9	758	1136	93,1	64,7%
26	841	626	12,1	545	1016	77,9	64,8%
27	1240	719	11,8	844	1150	101,2	68,1%
28	1234	813	12,8	803	1173	99,6	65,1%
29	1085	730	12,2	700	1165	100,4	64,5%
30	1145	770	12,1	737	1144	95,2	64,4%
31	915	604	12,9	619	1081	86,2	67,6%
32	1083	657	12,4	723	1155	99,1	66,8%
33	1058	724	11,9	624	1051	85,6	59,0%
34	1039	695	12,2	625	1056	93,1	60,1%
35	1242	799	11,8	765	1166	96,1	61,6%
36	1158	680	11,7	681	1153	99,2	58,8%
min	841	588	11,5	545	1009	75,7	58,8%
mittel	1097	710	12,2	720	1130	93,3	65,8%
max	1242	815	12,9	860	1191	104,9	75,0%

Tabelle D-9 Keruing: Einfluss der Holzfeuchte auf den Elastizitätsmodul E₉₀

Bild D-7 Keruing: Einfluss der Holzfeuchte auf den Elastizitätsmodul E₀

Bild D-8 Keruing: Einfluss der Holzfeuchte auf den Schubmodul G

Bild D-9 Keruing: Einfluss der Holzfeuchte auf den Elastizitätsmodul E₉₀

		u = 12 %			u > FS		Abfall
Nr.	E.			F.			red F.
	[N/mm²]	p [kg/m³]	[%]	[N/mm ²]	p [kg/m³]	[%]	[%]
1	15237	739	12,0	13626	1140	98,6	89,4%
2	12098	634	13,6	10876	984	65,4	89,9%
3	13930	702	12,0	12443	1113	95,6	89,3%
4	17441	798	12,2	15246	1146	88,6	87,4%
5	14165	735	12,3	12360	1039	74,6	87,3%
6	14660	688	12,5	12656	1053	86,3	86,3%
7	13741	681	11,8	12402	1072	88,9	90,3%
8	14420	749	11,9	12517	1058	91,2	86,8%
9	11993	633	13,5	10765	1002	77,8	89,8%
10	12398	661	13,3	10546	999	74,2	85,1%
11	15690	742	11,4	13562	1134	84,2	86,4%
12	15397	725	11,8	13490	1046	81,2	87,6%
13	13367	676	12,8	11846	1013	77,4	88,6%
14	17706	797	12,6	15472	1151	98,6	87,4%
15	14554	736	12,6	13029	1055	89,1	89,5%
16	11543	615	12,9	10554	1024	74,3	91,4%
17	14186	718	11,9	12260	1060	77,8	86,4%
18	12803	621	13,2	11578	1001	78,5	90,4%
19	15403	723	12,4	13334	1023	79,6	86,6%
20	12072	649	12,8	10719	1071	92,4	88,8%
21	14523	728	11,7	12968	1033	80,3	89,3%
22	14326	701	12,8	12835	1006	74,0	89,6%
23	16305	740	12,6	14671	1108	91,6	90,0%
24	15783	711	13,2	14182	1088	88,7	89,9%
25	13906	669	11,5	12300	1138	92,3	88,5%
26	12404	622	11,9	11136	1043	89,6	89,8%
27	15192	719	12,0	13068	1030	78,4	86,0%
28	16454	759	11,8	14828	1162	88,9	90,1%
29	14116	705	12,5	12353	1105	95,6	87,5%
30	12458	685	11,6	11146	1068	98,6	89,5%
31	16068	789	12,8	14418	1118	78,1	89,7%
32	13361	706	12,6	11489	1039	80,7	86,0%
33	11917	590	13,3	10530	942	58,4	88,4%
34	13977	719	13,6	11972	1035	80,6	85,7%
35	16391	721	12,4	14147	1097	80,7	86,3%
36	16562	725	12,2	14125	1061	74,5	85,3%
min	11543	590	11,4	10530	942	58,4	85,1%
mittel	14349	703	12,4	12651	1063	83,5	88,2%
max	17706	798	13,6	15472	1162	98,6	91,4%

Tabelle D-10 Puspa: Einfluss der Holzfeuchte auf den Elastizitätsmodul E_0

		u = 12 %			u > FS		Abfall
Nr.	G [N/mm²]	ր [kg/m³]	u [%]	G [N/mm²]	ր [kg/m³]	u [%]	red G [%]
1	921	739	12,0	766	1140	98,6	83,2%
2	641	634	13,6	476	984	65,4	74,3%
3	746	702	12,0	551	1113	95,6	73,9%
4	946	798	12,2	696	1146	88,6	73,6%
5	941	735	12,3	691	1039	74,6	73,4%
6	826	688	12,5	686	1053	86,3	83,1%
7	896	681	11,8	706	1072	88,9	78,8%
8	996	749	11,9	746	1058	91,2	74,9%
9	636	633	13,5	511	1002	77,8	80,3%
10	781	661	13,3	566	999	74,2	72,5%
11	911	742	11,4	736	1134	84,2	80,8%
12	926	725	11,8	681	1046	81,2	73,5%
13	656	676	12,8	486	1013	77,4	74,1%
14	971	797	12,6	816	1151	98,6	84,0%
15	776	736	12,6	621	1055	89,1	80,0%
16	621	615	12,9	551	1024	74,3	88,7%
17	791	718	11,9	616	1060	77,8	77,9%
18	676	621	13,2	521	1001	78,5	77,1%
19	936	723	12,4	701	1023	79,6	74,9%
20	676	649	12,8	541	1071	92,4	80,0%
21	886	728	11,7	701	1033	80,3	79,1%
22	851	701	12,8	666	1006	74,0	78,3%
23	916	740	12,6	726	1108	91,6	79,3%
24	831	711	13,2	666	1088	88,7	80,1%
25	656	669	11,5	591	1138	92,3	90,1%
26	621	622	11,9	536	1043	89,6	86,3%
27	911	719	12,0	646	1030	78,4	70,9%
28	1051	759	11,8	826	1162	88,9	78,6%
29	716	705	12,5	606	1105	95,6	84,6%
30	691	685	11,6	536	1068	98,6	77,6%
31	966	789	12,8	681	1118	78,1	70,5%
32	831	706	12,6	591	1039	80,7	71,1%
33	641	590	13,3	546	942	58,4	85,2%
34	756	719	13,6	636	1035	80,6	84,1%
35	856	721	12,4	611	1097	80,7	71,4%
36	881	725	12,2	651	1061	74,5	73,9%
min	621	590	11,4	476	942	58,4	70,5%
mittel	815	703	12,4	636	1063	83,5	78,3%
max	1051	798	13,6	826	1162	98,6	90,1%

Tabelle D-11 Puspa: Einfluss der Holzfeuchte auf den Schubmodul G

	T	u = 12 %		1	11 > FS		Abfall
Nr		u = 12 /0					
INI.	E ₉₀ [N/mm²]	ρ [kg/m³]	u [%]	E ₉₀ [N/mm²]	ρ [kg/m³]	u [%]	red E ₉₀ [%]
1	1230	721	13,0	855	1189	96,1	69,5%
2	911	638	12,0	578	1060	93,3	63,5%
3	1065	734	12,5	740	1195	99,0	69,5%
4	1292	786	12,6	815	1217	108,5	63,1%
5	1126	754	12,5	682	1113	89,5	60,6%
6	961	673	12,6	655	1158	96,5	68,2%
7	930	657	12,7	626	1161	97,5	67,4%
8	1217	769	11,4	752	1210	105,6	61,8%
9	971	640	12,8	618	1160	98,5	63,6%
10	1055	666	11,4	683	1154	93,0	64,7%
11	1277	771	13,3	851	1179	98,5	66,6%
12	1053	728	11,6	621	1080	91,2	59,0%
13	1142	725	12,8	812	1200	102,4	71,1%
14	1233	746	12,8	811	1208	104,6	65,7%
15	1282	717	12,0	860	1177	107,7	67,1%
16	873	631	11,9	574	1124	108,7	65,8%
17	1088	714	12,4	740 1193 107		107,8	68,0%
18	959	643	11,1	577	1104	102,4	60,2%
19	1129	755	13,1	780	1191	107,0	69,1%
20	862	660	12,1	619	1073	98,9	71,8%
21	1288	728	11,3	809	809 1200		62,8%
22	1085	741	12,3	683	1193	108,2	63,0%
23	1329	793	12,8	888	1217	110,8	66,8%
24	815	653	13,1	596	1092	102,7	73,1%
25	865	664	11,3	525	1044	87,6	60,7%
26	833	636	12,1	579	1093	95,1	69,5%
27	1143	739	13,0	809	1200	103,0	70,8%
28	1325	743	11,4	827	1200	103,8	62,4%
29	1066	689	13,2	768	1165	103,3	72,1%
30	1113	703	12,0	739	1199	108,9	66,4%
31	1269	761	13,3	851	1208	108,8	67,1%
32	1179	698	12,2	804	1179	110,4	68,2%
33	795	651	12,5	564	1130	105,0	71,0%
34	1112	743	12,0	675	1181	105,4	60,8%
35	1005	713	12,7	673	1179	109,1	67,0%
36	1113	699	11,8	716	1146	104,0	64,4%
min	795	631	11,1	525	1044	87,6	59,0%
mittel	1083	708	12,3	715	1160	102,1	66,2%
max	1329	793	13,3	888	1217	110,8	73,1%

Tabelle D-12 Puspa: Einfluss der Holzfeuchte auf den Elastizitätsmodul E₉₀

Bild D-10 Puspa: Einfluss der Holzfeuchte auf den Elastizitätsmodul E0

Bild D-11 Puspa: Einfluss der Holzfeuchte auf den Schubmodul G

Bild D-12 Puspa: Einfluss der Holzfeuchte auf den Elastizitätsmodul E₉₀

		u = 12 %			u > FS		Abfall
Nr.	E ₀	ρ	u	E ₀	ρ	u	red E ₀
	[N/mm ²]	[kg/m³]	[%]	[N/mm²]	[kg/m³]	[%]	[%]
1	15213	614	12,8	13286	688	42,5	87,3%
2	12427	630	12,7	10318	711	47,7	83,0%
3	10755	575	13,0	9371	659	42,1	87,1%
4	14993	607	12,7	12847	673	44,3	85,7%
5	10413	568	12,5	9457	670	44,6	90,8%
6	12488	590	12,8	10353	676	42,4	82,9%
7	10947	581	13,5	10121	679	44,5	92,5%
8	14792	611	12,6	12273	692	48,5	83,0%
9	16146	635	12,6	13782	767	55,6	85,4%
10	11713	595	11,2	10070	662	41,5	86,0%
11	12570	627	12,1	11059	703	46,8	88,0%
12	12650	641	14,1	10937	719	51,1	86,5%
13	15759	644	11,5	12900	736	53,6	81,9%
14	14616	597	13,5	12638	678	42,8	86,5%
15	14065	665	11,9	11984	724	55,6	85,2%
16	14701	657	11,2	12440	719	51,8	84,6%
17	15856	671	12,3	13114	730	54,8	82,7%
18	14169	637	13,8	12045	714	49,0	85,0%
19	14116	621	13,7	12536	681	45,7	88,8%
20	13104	643	12,2	11787	726	47,5	89,9%
21	14985	621	13,2	13504	687	42,6	90,1%
22	16459	624	11,5	13953	758	58,3	84,8%
23	16034	661	13,1	13166	756	56,3	82,1%
24	14884	641	12,7	12396	725	50,8	83,3%
25	13532	646	13,6	12183	745	54,8	90,0%
26	14537	597	11,2	12990	679	44,6	89,4%
27	13742	656	11,8	11589	742	56,9	84,3%
28	13276	640	12,0	11362	723	52,6	85,6%
29	12063	622	12,9	10540	698	44,8	87,4%
30	11962	639	12,0	10633	704	48,2	88,9%
31	11457	563	12,2	9839	660	41,9	85,9%
32	11143	553	13,3	9622	633	42,3	86,3%
33	13192	673	12,1	10831	717	55,5	82,1%
34	14061	585	11,7	12383	673	44,8	88,1%
35	14480	607	11,9	12121	675	44,7	83,7%
36	15318	616	11,6	12981	689	46,5	84,7%
min	10413	553	11,2	9371	633	41,5	81,9%
mittel	13684	621	12,5	11761	702	48,3	86,1%
max	16459	673	14,1	13953	767	58,3	92,5%

Tabelle D-13 Lärche: Einfluss der Holzfeuchte auf den Elastizitätsmodul E0

	1	40.0/					
		u = 12 %	1		u > FS		Abfall
Nr.	G [N/mm²]	ρ [kg/m³]	u [%]	G [N/mm²]	ρ [kg/m³]	u [%]	red G [%]
1	810	614	12,8	595	688	42,5	73,5%
2	655	630	12,7	493	711	47,7	75,3%
3	538	575	13,0	472	659	42,1	87,7%
4	865	607	12,7	655	673	44,3	75,7%
5	595	568	12,5	418	670	44,6	70,3%
6	558	590	12,8	398	676	42,4	71,3%
7	657	581	13,5	543	679	44,5	82,6%
8	812	611	12,6	584	692	48,5	71,9%
9	822	635	12,6	633	767	55,6	77,0%
10	698	595	11,2	580	662	41,5	83,1%
11	659	627	12,1	528	703	46,8	80,1%
12	664	641	14,1	560	719	51,1	84,3%
13	808	644	11,5	575	736	53,6	71,2%
14	668	597	13,5	551	678	42,8	82,5%
15	769	665	11,9	538	724	55,6	70,0%
16	690	657	11,2	527	719	51,8	76,4%
17	867	671	12,3	648	730	54,8	74,7%
18	684	637	13,8	542	714	49,0	79,2%
19	756	621	13,7	522	681	45,7	69,0%
20	787	643	12,2	626	726	47,5	79,5%
21	737	621	13,2	552	687	42,6	74,9%
22	872	624	11,5	667	758	58,3	76,5%
23	761	661	13,1	591	756	56,3	77,7%
24	699	641	12,7	568	725	50,8	81,3%
25	823	646	13,6	635	745	54,8	77,2%
26	776	597	11,2	607	679	44,6	78,2%
27	741	656	11,8	576	742	56,9	77,7%
28	620	640	12,0	459	723	52,6	74,0%
29	617	622	12,9	467	698	44,8	75,7%
30	735	639	12,0	594	704	48,2	80,8%
31	669	563	12,2	550	660	41,9	82,2%
32	550	553	13,3	424	633	42,3	77,1%
33	778	673	12,1	580	717	55,5	74,6%
34	800	585	11,7	628	673	44,8	78,5%
35	854	607	11,9	663	675	44,7	77,6%
36	886	616	11,6	679	689	46,5	76,6%
min	538	553	11,2	398	633	41,5	69,0%
mittel	730	621	12,5	562	702	48,3	77,1%
max	886	673	14,1	679	767	58,3	87,7%

Tabelle D-14 Lärche: Einfluss der Holzfeuchte auf den Schubmodul G

_							
		u = 12 %			u > FS		Abfall
Nr.	E ₉₀ [N/mm²]	၀ [kg/m³]	u [%]	E ₉₀ [N/mm²]	0 [kg/m³]	u [%]	red E ₉₀ [%]
1	334	620	11,2 215 1041 114,3 10,7 215 1081 115,3		114,2	64,2%	
2	476	635	10,7	315	1081	115,6	66,1%
3	288	603	12,5	188	969	97,9	65,2%
4	304	600	12,4	218	971	100,2	71,8%
5	406	664	13,0	258	1044	110,2	63,5%
6	344	573	11,1	225	1019	105,6	65,4%
7	375	557	12,6	253	1010	97,8	67,5%
8	303	604	13,1	220	959	91,5	72,9%
9	393	645	11,8	242	1024	110,2	61,4%
10	437	597	10,8	288	1050	113,2	65,8%
11	292	608	11,1	187	961	99,6	64,0%
12	331	641	13,2	235	1024	112,0	71,2%
13	338	618	11,4	227	985	95,6	67,0%
14	331	612	12,8	215	1005	105,5	64,8%
15	352	652	11,8	225	1047	108,5	63,7%
16	513	655	12,5	324	1063	111,8	63,1%
17	528	681	10,8	318	1046	110,5	60,2%
18	383	644	12,0	248	1020	100,7	64,8%
19	443	639	12,5	277	1085	115,9	62,6%
20	392	666	12,7	244	1039	116,5	62,2%
21	519	647	10,5	320	1089	119,6	61,6%
22	327	639	12,2	206	1030	100,6	63,0%
23	516	682	13,2	329	1038	115,6	63,8%
24	529	644	11,2	305	1108	117,6	57,6%
25	364	552	10,5	238	981	105,2	65,3%
26	392	603	10,3	243	995	98,7	62,0%
27	372	664	12,2	233	1018	103,6	62,7%
28	523	643	12,5	333	1041	112,7	63,7%
29	372	582	12,7	255	1028	101,8	68,6%
30	450	616	12,5	317	1044	117,3	70,6%
31	411	591	11,5	247	993	105,9	60,1%
32	313	544	11,6	198	984	98,2	63,3%
33	463	622	12,2	302	1027	114,0	65,2%
34	306	604	12,8	203	981	102,2	66,4%
35	398	632	11,5	245	993	97,7	61,7%
36	404	626	12,3	246	995	98,7	60,9%
min	288	544	10,3	187	959	91,5	57,6%
mittel	395	622	11,9	254	1022	106,7	64,6%
max	529	682	13,2	333	1108	119,6	72,9%

Tabelle D-15 Lärche: Einfluss der Holzfeuchte auf den Elastizitätsmodul E90

Bild D-13 Lärche: Einfluss der Holzfeuchte auf den Elastizitätsmodul E0

Bild D-14 Lärche: Einfluss der Holzfeuchte auf den Schubmodul G

Bild D-15 Lärche: Einfluss der Holzfeuchte auf den Elastizitätsmodul E90

Anhang E Anlagen zu Kapitel 4.2

		u = 1	2 %				u >	FS	
Nr.	f _m	E ₀	ρ	u	Nr.	f _m	E ₀	ρ	u
	[N/mm²]	[N/mm²]	[kg/m³]	[%]		[N/mm²]	[N/mm²]	[kg/m³]	[%]
1-1	78,1	15313	785	12,9	2-1	64,7	11447	865	45,3
1-2	95,3	16225	793	13,5	2-2	51,2	10951	936	54,2
1-3	108,3	14689	815	12,1	2-3	50,2	13288	916	47,5
1-4	53,6	14402	698	13,6	2-4	80,8	13317	1006	65,9
1-5	72,7	11679	687	12,9	2-5	61,7	12779	876	43,2
1-6	77,8	15447	752	12,5	2-6	47,5	14042	1044	74,3
1-7	89,5	15774	770	12,5	2-7	69,2	13044	926	52,1
1-8	76,7	12333	727	12,6	2-8	62,5	10236	838	45,9
1-9	45,9	10934	649	12,1	2-9	75,9	14401	954	58,3
1-10	54,1	11791	684	12,6	2-10	67,1	14519	948	52,0
1-11	67,5	12570	647	12,7	2-11	48,8	9971	862	44,3
1-12	71,4	13275	686	12,4	2-12	72,5	11735	1026	70,3
1-13	105,1	15556	789	12,1	2-13	62,1	10318	858	48,3
1-14	79,9	15079	728	12,8	2-14	68,6	12265	956	55,9
1-15	71,8	11863	704	12,2	2-15	66,1	12047	965	55,6
1-16	95,3	16399	812	12,6	2-16	66,5	11626	936	53,8
1-17	62,4	13344	717	11,9	2-17	57,9	13583	931	52,3
1-18	90,9	14528	710	11,4	2-18	85,4	14912	1075	80,5
1-19	76,1	12664	718	12,4	2-19	64,9	13393	891	43,2
1-20	88,0	15181	802	11,8	2-20	73,2	13466	923	51,3
1-21	89,0	14979	771	13,1	2-21	73,8	13206	947	54,2
1-22	79,4	13937	723	13,4	2-22	82,1	15082	1055	72,6
1-23	74,7	12925	718	11,7	2-23	78,0	14231	976	60,4
1-24	103,9	16409	834	13,2	2-24	72,9	14412	1013	68,4
1-25	75,5	12704	693	13,4	2-25	74,5	13544	1079	82,6
1-26	111,9	15368	788	11,7	2-26	44,0	9542	844	48,6
					2-27	70,1	14485	1034	72,1
					2-28	62,0	10678	1000	62,3
					2-29	68,4	11056	1000	64,3
					2-30	48,4	12741	1020	68,0
					2-31	81,2	14891	1011	65,3
					2-32	82,5	12824	1066	68,7
					2-33	60,3	11693	897	46,3
					2-34	76,6	14135	989	62,3
					2-35	82,9	14534	982	64,5
					2-36	67,5	10921	982	60,3
min	45,9	10934	647	11,4	min	44,0	9542	838	43,2
mittel	80,6	14053	739	12,5	mittel	67,3	12759	962	58,8
max	111,9	16409	834	13,6	max	85,4	15082	1079	82,6

Tabelle E-1 Akasia: Einfluss der Holzfeuchte auf die Biegefestigkeit $f_{\rm m}$

		u = 1	2 %				u >	FS	
Nr.	f _m	Eo	ρ	u	Nr.	f _m	Εo	ρ	u
	[N/mm²]	[N/mm²]	[kg/m³]	[%]		[N/mm²]	[N/mm²]	[kg/m³]	[%]
1-1	68,4	13224	660	12,6	2-1	66,4	14783	965	69,3
1-2	104,3	15553	745	11,6	2-2	76,2	12412	968	65,3
1-3	78,6	14268	667	13,3	2-3	60,9	11744	966	60,3
1-4	89,3	12897	687	13,7	2-4	38,1	14536	1038	84,3
1-5	75,6	14345	699	11,9	2-5	83,1	14933	980	73,6
1-6	67,1	12582	608	12,3	2-6	71,3	10332	859	58,6
1-7	89,7	14527	710	12,0	2-7	64,4	9856	891	62,3
1-8	93,5	16273	767	12,8	2-8	72,3	11468	899	60,5
1-9	94,1	13851	663	12,1	2-9	37,6	12449	1002	78,6
1-10	94,2	14262	740	12,1	2-10	62,7	9105	857	74,2
1-11	67,3	13176	650	12,3	2-11	26,9	13188	922	60,5
1-12	48,8	11917	608	12,9	2-12	66,1	11815	902	60,9
1-13	78,0	11216	595	11,8	2-13	67,4	14393	1027	84,6
1-14	47,5	10545	562	11,6	2-14	77,8	12892	974	72,6
1-15	80,1	15628	707	12,2	2-15	71,0	14890	1031	82,9
1-16	42,8	11976	591	12,9	2-16	67,9	14486	919	59,8
1-17	48,7	9318	556	11,8	2-17	72,4	11631	952	72,6
1-18	78,0	11508	627	11,8	2-18	60,1	9247	818	48,6
1-19	76,5	10857	613	11,6	2-19	75,5	13367	994	78,9
1-20	92,6	13426	703	12,4	2-20	61,2	10706	926	62,3
1-21	28,9	10187	588	11,9	2-21	67,0	11524	908	63,8
1-22	89,2	14308	718	11,7	2-22	52,3	12247	935	61,3
1-23	86,0	12621	666	12,1	2-23	68,7	10788	902	59,7
1-24	94,5	13676	680	11,6	2-24	79,0	14851	974	72,6
1-25	64,7	14890	668	12,0	2-25	75,9	13646	1020	82,5
1-26	85,5	13673	689	11,7	2-26	65,5	11521	861	58,6
1-27	62,9	10403	542	11,4	2-27	54,2	10656	877	65,3
1-28	64,5	14085	655	12,0	2-28	68,9	11901	923	63,8
					2-29	63,5	13342	910	54,8
					2-30	67,5	13867	1010	81,4
					2-31	60,0	9977	892	62,9
					2-32	78,9	13294	949	69,8
					2-33	58,5	9957	875	64,5
					2-34	77,3	13707	908	54,2
					2-35	42,5	9688	891	65,3
					2-36	53,6	11469	923	65,0
min	28,9	9318	542	11,4	min	26,9	9105	818	48,6
mittel	74,7	13043	656	12,2	mittel	64,2	12241	935	67,1
max	104,3	16273	767	13,7	max	83,1	14933	1038	84,6

Tabelle E-2 Jati: Einfluss der Holzfeuchte auf die Biegefestigkeit fm

		u = 1	2 %			u > FS				
Nr.	f _m	E ₀	ρ	u	Nr.	f _m	E ₀	ρ	u	
	[N/mm²]	[N/mm²]	[kg/m³]	[%]		[N/mm²]	[N/mm²]	[kg/m³]	[%]	
1-1	81,3	18006	778	13,2	2-1	59,7	10377	983	68,3	
1-2	94,5	14920	716	13,0	2-2	61,6	10820	910	52,3	
1-3	92,3	13706	655	12,4	2-3	66,2	14003	1069	85,5	
1-4	91,9	18015	787	13,0	2-4	58,3	10809	904	54,6	
1-5	102,0	17881	851	13,9	2-5	55,6	10327	950	82,7	
1-6	90,1	13960	723	12,9	2-6	85,2	15265	1079	94,1	
1-7	112,3	18081	797	11,4	2-7	79,6	12747	988	73,0	
1-8	74,2	14800	642	11,8	2-8	72,1	11927	965	65,3	
1-9	110,8	17130	797	13,2	2-9	74,1	14230	1042	78,2	
1-10	89,8	16642	745	11,8	2-10	78,2	14616	997	73,5	
1-11	108,1	16180	768	13,3	2-11	81,7	16252	1172	104,9	
1-12	94,1	15663	677	12,7	2-12	68,1	14751	1016	75,4	
1-13	92,7	17690	732	12,8	2-13	39,2	12315	1089	105,7	
1-14	86,8	14420	648	12,4	2-14	63,0	11461	991	68,2	
1-15	110,9	18216	819	13,8	2-15	92,0	16447	1095	89,9	
1-16	81,7	12211	627	13,7	2-16	76,1	15905	1101	93,6	
1-17	86,9	19487	845	13,9	2-17	70,9	12991	946	65,2	
1-18	101,4	18818	788	13,8	2-18	81,6	14947	1046	82,0	
1-19	76,3	14675	709	12,9	2-19	72,7	11449	957	65,4	
1-20	79,5	12772	626	11,5	2-20	39,0	12369	949	63,7	
1-21	85,5	15033	718	12,2	2-21	70,0	14247	1082	93,7	
1-22	87,3	13070	671	12,7	2-22	44,2	11507	1059	104,2	
1-23	103,8	16854	784	12,9	2-23	63,8	12493	905	51,4	
1-24	70,2	16953	758	13,3	2-24	64,4	11722	954	57,8	
1-25	104,9	16376	713	13,3	2-25	83,3	13404	1085	88,4	
1-26	53,8	12164	547	11,5	2-26	69,4	11292	885	51,8	
1-27	59,5	13191	571	12,0	2-27	68,6	13603	1107	90,5	
1-28	58,8	13235	634	11,5	2-28	94,2	14995	1201	107,5	
1-29	107,1	17616	764	13,3	2-29	80,0	13825	1150	97,8	
1-30	87,1	17562	753	12,5	2-30	71,6	14417	1050	77,4	
					2-31	54,0	11278	1009	82,3	
					2-32	66,2	12388	966	68,5	
					2-33	68,4	13595	1043	82,7	
					2-34	66,2	12777	1012	71,5	
					2-35	62,7	14503	1014	72,5	
					2-36	67,4	13269	952	63,5	
min	53,8	12164	547	11,4	min	39,0	10327	885	51,4	
mittel	89,2	15844	721	12,8	mittel	68,6	13148	1020	77,9	
max	112,3	19487	851	13,9	max	94,2	16447	1201	107,5	

Tabelle E-3 Keruing: Einfluss der Holzfeuchte auf die Biegefestigkeit fm

		u = 1	2 %				u >	FS	
Nr.	f _m	E	0	u	Nr.	f _m	E	0	u
	[N/mm²]	[N/mm²]	[kg/m³]	[%]		[N/mm²]	[N/mm²]	[kg/m³]	[%]
1-1	89,0	13832	662	13,3	2-1	42,7	13626	1140	98,6
1-2	81,9	14317	691	12,9	2-2	62,8	10876	984	65,4
1-3	62,6	12894	687	13,1	2-3	65,0	12443	1113	95,6
1-4	82,7	14378	672	12,3	2-4	83,5	15246	1146	88,6
1-5	93,0	15511	710	12,7	2-5	75,0	12360	1039	74,6
1-6	82,7	13954	727	12,8	2-6	50,1	12656	1053	86,3
1-7	84,5	14027	672	12,9	2-7	68,8	12402	1072	88,9
1-8	98,8	15282	760	12,6	2-8	75,0	12517	1058	91,2
1-9	115,6	16607	748	13,0	2-9	51,7	10765	1002	77,8
1-10	71,2	14463	701	12,4	2-10	65,4	10546	999	74,2
1-11	59,4	11655	616	12,8	2-11	67,3	13562	1134	84,2
1-12	108,1	15741	741	13,2	2-12	69,4	13490	1046	81,2
1-13	103,1	15918	726	12,7	2-13	63,0	11846	1013	77,4
1-14	72,0	12266	623	13,1	2-14	79,2	15472	1151	98,6
1-15	60,4	13555	655	12,3	2-15	71,1	13029	1055	89,1
1-16	113,2	17187	765	13,2	2-16	54,0	10554	1024	74,3
1-17	61,4	13368	711	13,2	2-17	66,8	12260	1060	77,8
1-18	52,2	12514	664	12,6	2-18	55,6	11578	1001	78,5
1-19	70,7	13511	684	11,9	2-19	69,5	13334	1023	79,6
1-20	72,8	12742	679	13,1	2-20	66,9	10719	1071	92,4
1-21	82,0	13853	680	13,1	2-21	68,2	12968	1033	80,3
1-22	78,7	16585	753	13,4	2-22	72,7	12835	1006	74,0
1-23	92,9	15035	700	12,4	2-23	74,3	14671	1108	91,6
1-24	53,9	12298	673	13,4	2-24	63,2	14182	1088	88,7
1-25	80,1	14564	746	12,1	2-25	68,8	12300	1138	92,3
1-26	99,5	15244	758	12,4	2-26	58,3	11136	1043	89,6
1-27	114,1	15455	749	12,7	2-27	74,5	13068	1030	78,4
1-28	86,4	14822	698	12,4	2-28	85,2	14828	1162	88,9
1-29	94,9	16642	768	13,1	2-29	67,5	12353	1105	95,6
					2-30	44,6	11146	1068	98,6
					2-31	75,2	14418	1118	78,1
					2-32	70,9	11489	1039	80,7
					2-33	62,8	10530	942	58,4
					2-34	63,7	11972	1035	80,6
					2-35	76,1	14147	1097	80,7
					2-36	70,4	14125	1061	74,5
min	52,2	11655	616	11,9	min	42,7	10530	942	58,4
mittel	83,4	14421	704	12,8	mittel	66,6	12651	1063	83,5
max	115,6	17187	768	13,4	max	85,2	15472	1162	98,6

Tabelle E-4 Puspa: Einfluss der Holzfeuchte auf die Biegefestigkeit fm

		u = 1	2 %				u >	FS		
Nr.	f _m	E ₀	ρ	u	Nr.	f _m	E ₀	ρ	u	
	[N/mm²]	[N/mm ²]	[kg/m³]	[%]		[N/mm²]	[N/mm ²]	[kg/m³]	[%]	
1-1	63,4	13604	615	12,6	2-1	55,3	13286	688	42,5	
1-2	69,6	14027	624	12,7	2-2	32,6	10318	711	47,7	
1-3	51,6	10984	563	13,1	2-3	38,9	9371	659	42,1	
1-4	66,9	14771	668	12,8	2-4	50,9	12847	673	44,3	
1-5	64,2	12226	565	11,0	2-5	33,6	9457	670	44,6	
1-6	47,7	13222	588	12,2	2-6	45,7	10353	676	42,4	
1-7	53,9	11737	546	11,9	2-7	37,4	10121	679	44,5	
1-8	53,0	12014	603	12,7	2-8	45,3	12273	692	48,5	
1-9	69,8	15255	633	11,9	2-9	59,3	13782	767	55,6	
1-10	51,0	13889	597	13,5	2-10	28,0	10070	662	41,5	
1-11	37,2	12104	589	12,1	2-11	46,9	11059	703	46,8	
1-12	58,4	13118	635	13,2	2-12	35,3	10937	719	51,1	
1-13	66,9	13570	614	12,3	2-13	51,1	12900	736	53,6	
1-14	64,9	12823	594	11,5	2-14	49,4	12638	678	42,8	
1-15	80,3	15654	653	12,3	2-15	47,1	11984	724	55,6	
1-16	73,8	14481	630	12,3	2-16	50,5	12440	719	51,8	
1-17	74,4	16355	697	12,6	2-17	52,8	13114	730	54,8	
1-18	73,4	13316	655	11,9	2-18	54,0	12045	714	49,0	
1-19	76,5	14459	636	12,9	2-19	58,2	12536	681	45,7	
1-20	74,8	14830	693	13,3	2-20	58,4	11787	726	47,5	
1-21	87,4	15605	710	12,2	2-21	52,1	13504	687	42,6	
1-22	85,1	13838	636	13,3	2-22	55,7	13953	758	58,3	
1-23	79,5	15801	681	12,4	2-23	47,3	13166	756	56,3	
1-24	49,4	14716	614	12,9	2-24	56,5	12396	725	50,8	
1-25	55,3	12374	631	12,5	2-25	53,4	12183	745	54,8	
1-26	72,2	12397	593	12,6	2-26	53,4	12990	679	44,6	
1-27	26,3	12936	645	13,6	2-27	46,9	11589	742	56,9	
1-28	65,7	12875	560	12,1	2-28	32,3	11362	723	52,6	
1-29	43,4	11452	603	12,6	2-29	45,1	10540	698	44,8	
1-30	48,0	11994	631	12,1	2-30	31,3	10633	704	48,2	
1-31	40,8	11799	568	12,5	2-31	25,9	9839	660	41,9	
1-32	44,1	11531	551	12,7	2-32	22,5	9622	633	42,3	
1-33	45,1	11425	612	13,6	2-33	40,5	10831	717	55,5	
1-34	85,7	13973	665	12,6	2-34	54,6	12383	673	44,8	
1-35	67,5	11410	599	12,9	2-35	57,0	12121	675	44,7	
1-36	63,0	13009	616	13,3	2-36	58,8	12981	689	46,5	
min	26,3	10984	546	11,0	min	22,5	9371	633	41,5	
mittel	61,9	13322	620	12,6	mittel	46,2	11761	702	48,3	
max	87,4	16355	710	13,6	max	59,3	13953	767	58,3	

Tabelle E-5 Lärche: Einfluss der Holzfeuchte auf die Biegefestigkeit f_m

Bild E-1 Akasia: Einfluss der Holzfeuchte auf die Biegefestigkeit fm

Bild E-2 Jati: Einfluss der Holzfeuchte auf die Biegefestigkeit fm

Bild E-3 Keruing: Einfluss der Holzfeuchte auf die Biegefestigkeit fm

Bild E-4 Puspa: Einfluss der Holzfeuchte auf die Biegefestigkeit f_m

Bild E-5 Lärche: Einfluss der Holzfeuchte auf die Biegefestigkeit fm

Anhang F Anlagen zu Kapitel 4.3

Tabelle F-1	Akasia: Einfluss der Holzfeuchte auf die Querdruckfestigkeit fc,90
	(Fall 1: Querdruckbeanspruchung unter Vollbelastung)

		u = 1	2 %			u > FS			
Nr.	f _{c,90}	E _{c,90}	ρ	u	Nr.	f _{c,90}	E _{c,90}	ρ	u
	[N/mm²]	[N/mm²]	[kg/m³]	[%]		[N/mm²]	[N/mm²]	[kg/m³]	[%]
1-1	12,3	1305	717	11,3	2-1	9,6	1142	1097	67,8
1-2	12,4	1369	745	11,6	2-2	8,6	1085	1095	72,2
1-3	10,1	1196	766	11,5	2-3	7,7	975	1170	67,0
1-4	11,7	1319	690	11,2	2-4	8,3	1042	1027	67,9
1-5	9,4	1117	694	11,9	2-5	6,6	871	1079	80,0
1-6	10,5	1230	667	11,5	2-6	7,6	954	1037	80,2
1-7	11,8	1256	819	12,3	2-7	8,3	916	1183	65,1
1-8	9,6	1088	736	13,4	2-8	7,3	949	1104	69,5
1-9	10,3	1108	688	12,1	2-9	7,4	847	1012	74,0
1-10	12,5	1318	792	11,3	2-10	9,2	1050	1149	59,2
1-11	11,3	1231	695	11,4	2-11	8,2	947	1021	72,2
1-12	10,1	1098	705	11,3	2-12	7,8	973	1030	67,6
1-13	9,3	985	723	13,8	2-13	6,8	772	1054	53,0
1-14	12,1	1324	786	13,0	2-14	8,8	1100	1105	67,9
1-15	12,5	1387	807	12,1	2-15	8,7	1045	1145	50,5
1-16	9,7	1024	708	11,0	2-16	7,8	865	1135	69,8
1-17	10,7	1151	769	12,1	2-17	8,0	890	1180	72,9
1-18	11,8	1236	791	13,1	2-18	8,4	953	1144	59,8
1-19	10,0	1088	620	11,5	2-19	7,9	912	992	77,8
1-20	10,8	1219	645	12,1	2-20	7,1	931	1021	71,9
1-21	9,5	1014	666	11,7	2-21	6,6	863	1026	85,2
1-22	12,3	1260	820	12,1	2-22	9,0	1071	1159	56,4
1-23	12,1	1315	818	12,7	2-23	8,2	1051	1185	78,0
1-24	9,2	1026	684	12,5	2-24	7,1	893	1096	79,0
1-25	11,1	1118	781	12,9	2-25	7,8	939	1180	69,1
1-26	9,2	968	664	12,1	2-26	6,8	835	1066	85,3
1-27	11,3	1253	779	11,6	2-27	8,5	1044	1172	56,7
1-28	11,0	1167	786	12,3	2-28	8,6	956	1173	72,1
1-29	12,4	1361	796	13,4	2-29	8,8	1087	1155	70,3
1-30	9,9	982	626	12,1	2-30	6,9	815	1013	90,2
1-31	11,1	1246	712	11,4	2-31	7,8	959	1103	72,5
1-32	10,6	1136	684	12,2	2-32	6,8	832	981	97,5
1-33	9,2	962	714	13,9	2-33	6,6	836	1052	93,4
1-34	11,9	1190	780	10,8	2-34	9,4	1091	1100	73,8
1-35	9,4	1061	694	11,9	2-35	6,5	799	1011	74,8
1-36	10,9	1260	708	11,9	2-36	8,5	1032	1084	64,3
min	9,2	962	620	10,8	min	6,5	772	981	50,5
mittel	10,8	1177	730	12,1	mittel	7,9	953	1093	71,8
max	12,5	1387	820	13,9	max	9,6	1142	1185	97,5

Tabelle F-2	Akasia: Einfluss der Holzfeuchte auf die Querdruckfestigkeit f _{c,90}
	(Querdruckbeanspruchung unter Teilflächenbelastung; Fall 2a: Belastung au
	Lasteinleitungsfläche bezogen; Fall 2b: Spannungsausbreitung und Mitwirken der
	Überstände berücksichtigt)

	u = 12 %							u > FS					
Nir	Fa	ll 2a	Fa	ll 2b			Nir	Fa	ll 2a	Fa	ll 2b	_	
INF.	f _{c.90}	E _{c.90}	f _{c.90}	E _{c.90}	ρ [N1/mmm2]	U ro/ 1	INF.	f _{c.90}	E _{c.90}	f _{c.90}	E _{c.90}	ρ [N1/mmm2]	u 10/1
	[N/mm²]	[N/mm²]	[N/mm²]	[N/mm ²]	[N/mm-]	[70]		[N/mm²]	[N/mm²]	[N/mm²]	[N/mm²]	[IN/IIIII-]	[70]
3-1	24,6	4731	12,3	1362	739	12,5	4-1	19,1	3935	9,5	1126	1005	63,7
3-2	25,2	4849	12,6	1396	726	11,4	4-2	19,5	4247	9,7	1215	1023	72,3
3-3	20,1	4472	10,1	1286	693	11,4	4-3	16,7	3838	8,3	1101	1093	72,4
3-4	22,9	4535	11,4	1306	715	13,8	4-4	19,1	3747	9,6	1073	998	60,4
3-5	20,4	4173	10,2	1201	688	12,5	4-5	16,1	3768	8,0	1078	1066	91,8
3-6	20,1	4330	10,1	1251	662	11,4	4-6	17,3	4209	8,7	1206	1037	75,7
3-7	24,5	4709	12,3	1355	827	11,1	4-7	20,3	4335	10,1	1241	1100	67,2
3-8	20,2	3951	10,1	1138	775	12,5	4-8	16,1	3262	8,1	933	1055	63,9
3-9	20,7	3773	10,3	1084	687	12,5	4-9	16,6	3233	8,3	925	1033	89,6
3-10	25,0	4569	12,5	1315	821	11,7	4-10	19,7	3863	9,8	1106	1072	62,4
3-11	23,2	4543	11,6	1308	667	11,1	4-11	19,5	4222	9,7	1208	1004	61,8
3-12	22,2	4247	11,1	1221	733	13,8	4-12	18,8	3867	9,4	1099	969	70,4
3-13	20,6	3978	10,3	1147	749	11,9	4-13	16,7	3533	8,3	1013	1080	72,6
3-14	24,8	4596	12,4	1325	794	14,1	4-14	19,5	3751	9,7	1074	1035	64,3
3-15	23,8	4763	11,9	1371	833	12,9	4-15	20,3	4067	10,2	1165	1101	75,1
3-16	20,5	3791	10,2	1091	744	11,6	4-16	18,0	3676	9,0	1052	1053	69,0
3-17	22,6	4200	11,3	1209	810	11,1	4-17	19,3	3903	9,7	1116	1076	71,7
3-18	23,2	4422	11,6	1274	825	12,0	4-18	18,8	3840	9,4	1099	1045	64,5
3-19	20,6	3979	10,3	1145	638	12,7	4-19	18,3	3867	9,2	1108	980	73,6
3-20	20,1	3983	10,1	1146	694	13,2	4-20	17,0	3658	8,5	1045	1077	74,0
3-21	20,7	3870	10,3	1114	677	12,3	4-21	17,9	3733	8,9	1068	1007	60,1
3-22	23,2	4397	11,6	1265	826	12,0	4-22	19,5	3873	9,7	1107	1054	74,1
3-23	23,3	4742	11,6	1364	843	12,3	4-23	19,6	4328	9,8	1239	1128	78,3
3-24	20,0	3940	10,0	1135	742	13,0	4-24	16,0	3272	8,0	937	1046	67,2
3-25	23,6	4445	11,8	1279	818	11,8	4-25	18,8	3757	9,4	1076	1076	72,9
3-26	19,5	3949	9,8	1136	732	13,0	4-26	15,6	3399	7,8	971	1009	67,8
3-27	22,6	4639	11,3	1334	828	12,0	4-27	18,5	3852	9,2	1102	1125	98,5
3-28	23,9	4554	11,9	1311	812	11,1	4-28	18,8	3882	9,4	1103	1044	68,4
3-29	24,1	4914	12,1	1412	829	11,9	4-29	19,1	4170	9,6	1191	1156	85,5
3-30	21,2	3838	10,6	1106	617	13,5	4-30	18,0	3466	9,0	991	989	75,7
3-31	23,5	4944	11,8	1431	742	11,4	4-31	18,7	4160	9,3	1191	1002	61,5
3-32	21,2	4302	10,6	1238	618	12,6	4-32	16,6	3597	8,3	1030	974	93,3
3-33	20,1	3755	10,1	1081	737	13,7	4-33	15,7	3173	7,9	909	1013	54,6
3-34	25,1	4511	12,6	1298	827	11,8	4-34	19,6	3744	9,8	1072	1097	74,7
3-35	20,3	4515	10,2	1300	652	13,3	4-35	16,1	3904	8,1	1117	968	90,2
3-36	23,4	4690	11,7	1351	744	11,6	4-36	19,1	3837	9,5	1098	1021	59,0
min	19,5	3755	9,8	1081	617	11,1	min	15,6	3173	7,8	909	968	54,6
mittel	22,3	4350	11,1	1252	746	12,3	mittel	18,2	3805	9,1	1089	1045	72,2
max	25,2	4944	12,6	1431	843	14,1	max	20,3	4335	10,2	1241	1156	98,5

		u = 1	2 %		u > FS				
Nr.	f_ 00	E			Nr.	f_ 00	E		
	[N/mm ²]	[N/mm²]	[ka/m³]	[%]		[N/mm ²]	[N/mm²]	[ka/m³]	[%]
1-1	11.3	1226	670	13.8	2-1	8.1	1007	1106	96.9
1-2	11,2	1254	620	11.0	2-2	8.0	1122	985	79,7
1-3	9,1	1168	699	12,1	2-3	6.0	959	1077	85,3
1-4	12,1	1315	695	13,2	2-4	8,2	1077	1082	76,3
1-5	8,8	997	559	10,5	2-5	5,5	709	968	96,3
1-6	11,5	1393	749	13,4	2-6	8,2	1203	1095	70,9
1-7	8,5	903	591	11,0	2-7	5,6	667	1017	95,4
1-8	10,9	1203	698	11,6	2-8	6,8	879	1097	87,4
1-9	10,9	1266	603	11,1	2-9	7,2	1065	1025	98,7
1-10	8,3	951	606	11,4	2-10	5,3	758	950	96,5
1-11	9,0	1150	630	12,2	2-11	6,0	814	1028	85,3
1-12	9,3	983	619	11,0	2-12	6,7	785	1005	90,9
1-13	10,1	1255	757	13,1	2-13	7,6	1151	1154	77,4
1-14	10,5	1290	678	13,7	2-14	7,9	1166	1027	79,7
1-15	11,6	1264	660	11,2	2-15	7,6	903	1082	92,3
1-16	9,0	907	638	11,2	2-16	6,4	658	1031	86,9
1-17	11,4	1235	652	11,5	2-17	7,6	911	1042	96,9
1-18	12,2	1347	647	12,0	2-18	8,6	1160	1036	116,0
1-19	8,8	841	623	10,7	2-19	6,7	672	1020	85,6
1-20	11,3	1296	628	11,2	2-20	7,7	1016	1051	93,3
1-21	11,7	1362	650	12,0	2-21	8,9	1261	1049	90,3
1-22	8,6	1133	571	10,8	2-22	5,7	819	947	96,8
1-23	8,6	828	517	10,4	2-23	6,1	687	939	114,0
1-24	9,3	904	570	11,3	2-24	7,4	807	1078	122,5
1-25	10,7	1385	781	13,0	2-25	8,1	1126	1058	86,3
1-26	9,3	1172	630	10,8	2-26	6,8	1068	1063	88,3
1-27	9,6	1184	655	11,9	2-27	6,5	864	981	77,4
1-28	8,9	870	586	10,8	2-28	6,6	744	1057	114,4
1-29	11,0	1317	633	10,6	2-29	7,2	1050	986	84,8
1-30	10,7	1353	692	13,6	2-30	7,6	1167	969	61,1
1-31	9,8	1161	676	13,1	2-31	7,0	952	1011	90,6
1-32	11,0	1371	686	13,5	2-32	8,6	1329	1069	84,6
1-33	12,0	1346	717	13,0	2-33	9,0	1135	1126	77,7
1-34	9,6	1207	594	10,7	2-34	7,2	1013	1101	85,0
1-35	10,2	1071	700	13,6	2-35	7,8	833	1077	80,8
1-36	10,2	1288	628	11,6	2-36	7,8	1187	1059	83,3
min	8,3	828	517	10,4	min	5,3	658	939	61,1
mittel	10,2	1172	648	11,9	mittel	7,2	965	1040	89,6
max	12,2	1393	781	13,8	max	9,0	1329	1154	122,5

Tabelle F-3Jati: Einfluss der Holzfeuchte auf die Querdruckfestigkeit fc,90(Fall 1: Querdruckbeanspruchung unter Vollbelastung)

Tabelle F-4	Jati: Einfluss der Holzfeuchte auf die Querdruckfestigkeit f _{c,90}
	(Querdruckbeanspruchung unter Teilflächenbelastung; Fall 2a: Belastung auf
	Lasteinleitungsfläche bezogen; Fall 2b: Spannungsausbreitung und Mitwirken der
	Überstände berücksichtigt)

			u =	12 %				u > FS					
Nim	Fa	ll 2a	Fa	ll 2b			Nim	Fa	ll 2a	Fa	ll 2b		
INF.	f _{c,90}	E _{c,90}	f _{c,90}	E _{c,90}	ρ [NI/mm²]	u 10/1	INF.	f _{c,90}	E _{c,90}	f _{c,90}	E _{c,90}	ρ [NI/mm²]	u 10/21
	[N/mm²]	[N/mm²]	[N/mm²]	[N/mm²]	[18/11111]	[/0]		[N/mm²]	[N/mm²]	[N/mm²]	[N/mm²]	[18/11111]	[/0]
3-1	22,2	4357	11,1	1227	688	12,7	4-1	16,9	3930	8,5	1094	1056	85,5
3-2	22,7	4852	11,3	1349	614	11,8	4-2	16,3	4624	8,1	1280	900	72,7
3-3	19,8	5078	9,9	1410	702	11,7	4-3	15,2	4084	7,6	1128	1007	71,4
3-4	24,6	5282	12,3	1470	727	11,9	4-4	19,1	4444	9,6	1229	1042	63,0
3-5	18,1	3737	9,1	1040	575	12,7	4-5	14,4	3383	7,2	935	897	81,7
3-6	23,6	4813	11,8	1337	754	12,4	4-6	17,3	4482	8,6	1240	1063	63,4
3-7	17,0	3455	8,5	961	602	12,7	4-7	14,3	3351	7,2	925	901	73,6
3-8	22,3	4301	11,2	1195	676	11,6	4-8	14,4	3253	7,2	897	1000	71,6
3-9	22,3	4629	11,1	1285	597	12,4	4-9	18,0	4368	9,0	1204	902	76,4
3-10	18,0	3781	9,0	1052	588	12,1	4-10	14,2	3221	7,1	889	861	76,1
3-11	18,1	4520	9,0	1259	663	11,9	4-11	13,8	3636	6,9	1000	931	80,8
3-12	19,5	3929	9,7	1093	614	11,9	4-12	16,0	3414	8,0	943	894	75,4
3-13	21,5	4888	10,7	1358	763	11,7	4-13	16,3	4508	8,2	1246	1105	68,3
3-14	21,9	5077	10,9	1413	699	12,9	4-14	16,6	4170	8,3	1150	946	57,9
3-15	23,2	4948	11,6	1378	642	12,0	4-15	17,2	4191	8,6	1158	931	66,6
3-16	19,1	3375	9,5	939	657	11,7	4-16	15,0	3009	7,5	830	1007	72,8
3-17	22,7	4824	11,4	1341	623	12,0	4-17	16,2	3766	8,1	1039	932	70,9
3-18	24,6	5246	12,3	1457	636	12,0	4-18	17,0	3957	8,5	1096	916	78,0
3-19	18,5	3019	9,3	839	636	11,9	4-19	13,2	2791	6,6	771	887	62,7
3-20	23,2	4834	11,6	1344	660	11,2	4-20	16,9	4309	8,4	1192	1001	76,5
3-21	23,8	4837	11,9	1348	642	11,2	4-21	18,1	4567	9,0	1259	952	70,9
3-22	18,3	4201	9,1	1168	607	12,4	4-22	15,2	3525	7,6	975	931	66,7
3-23	17,8	3310	8,9	919	550	11,7	4-23	13,1	3137	6,6	864	884	90,1
3-24	19,2	3649	9,6	1013	552	12,6	4-24	14,6	3359	7,3	928	958	100,2
3-25	21,2	4969	10,6	1381	706	12,4	4-25	15,7	4215	7,8	1165	1013	62,7
3-26	19,0	4958	9,5	1378	657	12,7	4-26	15,4	4601	7,7	1273	1003	70,8
3-27	19,2	4615	9,6	1283	676	12,5	4-27	14,4	3651	7,2	1009	1003	64,6
3-28	18,7	3497	9,3	973	570	12,3	4-28	15,1	3225	7,6	890	915	88,6
3-29	22,1	4939	11,0	1376	663	12,0	4-29	16,6	4588	8,3	1269	959	64,5
3-30	22,1	5091	11,1	1417	694	12,5	4-30	16,5	4014	8,3	1110	903	54,6
3-31	20,7	4476	10,4	1244	651	12,8	4-31	15,2	3599	7,6	994	909	65,3
3-32	22,2	4837	11,1	1346	663	12,3	4-32	16,0	4307	8,0	1189	958	72,0
3-33	23,9	4578	12,0	1276	694	11,1	4-33	17,4	4129	8,7	1143	1067	78,0
3-34	19,4	4752	9,7	1321	600	12,4	4-34	13,8	3623	6,9	998	848	80,8
3-35	21,1	3668	10,5	1019	658	11,5	4-35	14,5	3053	7,2	841	913	64,0
3-36	21,1	5260	10,5	1463	643	11,7	4-36	15,1	4156	7,5	1145	966	79,5
min	17,0	3019	8,5	839	550	11,1	min	13,1	2791	6,6	771	848	54,6
mittel	20,9	4461	10,5	1241	648	12,1	mittel	15,7	3851	7,8	1064	954	72,7
max	24,6	5282	12,3	1470	763	12,9	max	19,1	4624	9,6	1280	1105	100,2

		u = 1	2 %		u > FS					
Nr.	f _{c 90}	E _{c.90}	ρ	u	Nr.	f _{c 90}	E _{c.90}	ρ	u	
	[N/mm²]	[N/mm ²]	[kg/m³]	[%]		[N/mm²]	[N/mm²]	[kg/m³]	[%]	
1-1	10,4	1246	728	12,1	2-1	5,7	843	962	74,2	
1-2	8,2	995	625	12,8	2-2	4,5	681	935	81,6	
1-3	8,9	951	731	12,4	2-3	5,0	591	1000	64,6	
1-4	9,2	1000	653	13,5	2-4	5,2	637	1051	89,9	
1-5	8,3	935	642	13,0	2-5	4,7	628	937	91,8	
1-6	8,2	901	722	12,7	2-6	4,8	556	1047	59,1	
1-7	9,0	967	714	13,2	2-7	4,8	579	990	72,0	
1-8	8,5	911	642	12,6	2-8	4,9	638	975	79,6	
1-9	9,4	1038	729	12,6	2-9	5,1	649	997	65,0	
1-10	9,8	1156	781	13,4	2-10	5,3	749	1032	61,5	
1-11	10,4	1198	811	12,5	2-11	5,9	823	1093	67,1	
1-12	10,9	1160	764	12,4	2-12	6,3	759	1060	64,1	
1-13	9,9	997	664	12,5	2-13	5,2	683	973	83,0	
1-14	8,3	1052	728	13,6	2-14	4,5	684	973	63,3	
1-15	11,1	1271	798	12,7	2-15	6,1	865	1014	47,6	
1-16	8,1	1081	727	12,5	2-16	4,5	673	1035	53,7	
1-17	9,3	1033	736	13,4	2-17	6,0	677	1007	58,6	
1-18	8,3	874	683	12,6	2-18	4,9	561	992	51,1	
1-19	8,4	918	653	12,6	2-19	4,6	667	944	75,1	
1-20	8,3	1076	656	13,1	2-20	5,0	774	1006	75,3	
1-21	9,5	1183	773	12,8	2-21	5,3	763	1012	62,6	
1-22	8,7	1079	648	13,2	2-22	4,9	732	1031	88,2	
1-23	9,1	926	678	12,6	2-23	5,1	653	978	74,0	
1-24	10,1	1292	730	12,1	2-24	5,7	854	1041	77,3	
1-25	10,0	1111	780	12,5	2-25	5,6	760	975	61,7	
1-26	10,1	1057	711	12,3	2-26	5,3	666	932	86,9	
1-27	9,3	939	730	12,6	2-27	5,2	653	987	64,8	
1-28	9,9	1091	759	12,3	2-28	5,5	685	1070	65,8	
1-29	8,8	978	724	12,9	2-29	4,8	686	1012	74,9	
1-30	9,5	1064	789	12,7	2-30	5,6	690	1060	73,1	
1-31	8,3	984	645	13,1	2-31	4,5	622	940	75,2	
1-32	9,2	1070	660	13,2	2-32	5,5	790	943	81,1	
1-33	9,5	971	717	12,0	2-33	5,6	732	1029	69,2	
1-34	8,1	946	650	12,1	2-34	4,9	735	1006	82,2	
1-35	9,1	1129	702	12,9	2-35	5,7	816	914	54,6	
1-36	8,7	961	674	12,7	2-36	5,3	658	985	79,6	
min	8,1	874	625	12,0	min	4,5	556	914	47,6	
mittel	9,2	1043	710	12,7	mittel	5,2	700	998	70,8	
max	11,1	1292	811	13,6	max	6,3	865	1093	91,8	

 Tabelle F-5
 Keruing: Einfluss der Holzfeuchte auf die Querdruckfestigkeit f_{c,90}

 (Fall 1: Querdruckbeanspruchung unter Vollbelastung)

Tabelle F-6	Keruing: Einfluss der Holzfeuchte auf die Querdruckfestigkeit f _{c,90}
	(Querdruckbeanspruchung unter Teilflächenbelastung; Fall 2a: Belastung auf
	Lasteinleitungsfläche bezogen; Fall 2b: Spannungsausbreitung und Mitwirken der
	Überstände berücksichtigt)

			u =	12 %						u >	• FS		
Nir	Fa	ll 2a	Fa	ll 2b			Nie	Fa	ll 2a	Fa	ll 2b	_	
INF.	f _{c.90}	E _{c.90}	f _{c.90}	E _{c.90}	ρ [NI/mm2]	U 10/ 1	INF.	f _{c,90}	E _{c,90}	f _{c,90}	E _{c.90}	ρ [NI/mm2]	u 10/1
	[N/mm²]	[N/mm²]	[N/mm²]	[N/mm ²]	[IN/IIIII-]	[70]		[N/mm²]	[N/mm²]	[N/mm²]	[N/mm ²]	[IN/IIIII-]	[70]
3-1	20,6	4484	10,3	1302	702	12,3	4-1	12,8	3408	6,4	970	1009	93,5
3-2	16,9	3765	8,4	1100	591	11,8	4-2	10,9	2705	5,5	764	816	63,3
3-3	18,0	3773	9,0	1096	752	11,8	4-3	11,0	2650	5,5	747	958	59,9
3-4	18,7	3632	9,4	1054	660	13,0	4-4	11,4	2643	5,7	755	973	69,6
3-5	16,4	3352	8,2	973	585	12,2	4-5	10,3	2584	5,2	734	932	95,5
3-6	17,6	3422	8,8	994	753	11,4	4-6	10,7	2474	5,4	700	978	55,5
3-7	18,2	3672	9,1	1066	700	12,4	4-7	11,0	2477	5,5	701	912	59,4
3-8	17,9	3415	9,0	992	631	11,6	4-8	10,7	2402	5,3	688	886	65,5
3-9	20,4	3904	10,2	1134	722	12,3	4-9	13,4	2952	6,7	837	954	59,6
3-10	20,7	4377	10,4	1271	775	12,9	4-10	11,6	2848	5,8	813	943	51,3
3-11	21,2	4280	10,6	1243	806	11,9	4-11	13,1	3064	6,5	869	1052	63,6
3-12	21,8	4097	10,9	1189	747	11,8	4-12	13,3	2654	6,6	759	950	51,3
3-13	19,5	3483	9,7	1012	631	11,8	4-13	11,2	2423	5,6	694	885	66,9
3-14	16,6	3655	8,3	1061	715	12,9	4-14	10,2	2563	5,1	729	933	58,5
3-15	22,1	4335	11,1	1259	845	12,1	4-15	12,5	2778	6,2	787	1002	46,6
3-16	16,7	3953	8,3	1149	769	11,6	4-16	12,1	3171	6,0	894	1051	49,3
3-17	18,7	3890	9,3	1130	752	12,3	4-17	12,6	3089	6,3	881	931	49,6
3-18	16,6	3249	8,3	944	716	12,3	4-18	10,3	2357	5,2	665	961	49,5
3-19	17,1	3321	8,5	965	621	12,0	4-19	10,2	2257	5,1	646	947	84,1
3-20	16,9	3783	8,4	1099	662	12,8	4-20	10,0	2772	5,0	793	916	63,9
3-21	19,7	4359	9,8	1266	772	12,4	4-21	11,5	2673	5,8	755	963	59,4
3-22	18,0	3883	9,0	1128	667	11,5	4-22	10,1	2572	5,1	732	1003	77,7
3-23	18,7	3409	9,3	992	664	13,4	4-23	13,1	2990	6,6	851	903	61,3
3-24	20,5	4468	10,2	1297	755	12,4	4-24	13,5	3519	6,8	1005	989	51,7
3-25	20,4	3940	10,2	1145	753	12,3	4-25	13,3	3012	6,6	850	940	54,7
3-26	20,4	3730	10,2	1084	670	11,9	4-26	11,8	2465	5,9	707	828	65,9
3-27	18,9	3401	9,4	995	719	12,9	4-27	12,4	2423	6,2	683	958	59,4
3-28	20,2	3902	10,1	1139	817	12,2	4-28	12,1	2622	6,0	737	1052	59,5
3-29	17,4	3643	8,7	1058	713	12,3	4-29	10,8	2455	5,4	702	1010	58,8
3-30	19,2	3780	9,6	1099	774	12,3	4-30	10,7	2337	5,4	660	967	56,6
3-31	16,8	3597	8,4	1045	623	12,6	4-31	10,2	2533	5,1	721	918	74,6
3-32	18,6	3732	9,3	1089	637	12,4	4-32	10,8	2608	5,4	741	883	63,2
3-33	19,3	3505	9,6	1019	710	11,5	4-33	11,0	2495	5,5	713	1076	81,9
3-34	16,6	3420	8,3	1000	673	11,7	4-34	9,8	2252	4,9	640	938	62,9
3-35	18,8	4132	9,4	1201	702	12,4	4-35	11,3	2914	5,7	835	905	52,1
3-36	17,6	3462	8,8	1006	659	12,0	4-36	10,3	2198	5,2	620	890	64,6
min	16,4	3249	8,2	944	585	11,4	min	9,8	2198	4,9	620	816	46,6
mittel	18,7	3783	9,4	1100	707	12,2	mittel	11,4	2676	5,7	760	950	62,8
max	22,1	4484	11,1	1302	845	13,4	max	13,5	3519	6,8	1005	1076	95,5

		u = 1	2 %				u >	FS	
Nr.	f _{c.90}	E _{c.90}	ρ	u	Nr.	f _{c.90}	E _{c.90}	ρ	u
	[N/mm²]	[N/mm ²]	[kg/m³]	[%]		[N/mm²]	[N/mm²]	[kg/m³]	[%]
1-1	9,0	1006	668	12,1	2-1	5,3	710	1030	95,8
1-2	11,2	1206	800	12,3	2-2	6,5	765	1102	77,8
1-3	11,6	1275	742	12,1	2-3	7,3	839	1057	74,7
1-4	9,5	1005	643	11,8	2-4	6,1	770	1034	98,8
1-5	9,2	1076	705	12,0	2-5	6,1	790	1025	79,9
1-6	11,7	1199	780	13,0	2-6	7,2	794	1104	69,6
1-7	11,8	1261	731	12,2	2-7	7,6	861	1026	70,5
1-8	10,5	1132	704	12,2	2-8	7,1	840	1104	88,8
1-9	9,2	890	693	13,4	2-9	5,6	628	1066	82,6
1-10	8,7	900	666	12,0	2-10	5,6	650	974	78,9
1-11	10,0	926	670	12,8	2-11	6,5	660	1053	74,8
1-12	11,1	1165	760	12,4	2-12	6,5	773	1125	85,3
1-13	10,3	1024	676	11,8	2-13	6,4	690	1039	84,8
1-14	8,5	981	629	11,8	2-14	5,1	665	1017	98,7
1-15	8,7	878	662	12,9	2-15	5,8	677	997	79,0
1-16	10,4	1056	749	12,1	2-16	6,8	777	1095	78,2
1-17	10,9	1081	737	12,1	2-17	6,7	760	1036	69,2
1-18	10,0	1027	679	12,1	2-18	6,8	771	1070	91,1
1-19	10,1	1082	720	12,6	2-19	6,5	792	1012	67,5
1-20	10,4	1118	721	12,0	2-20	7,0	840	1049	70,3
1-21	9,8	958	706	12,8	2-21	5,8	657	1078	82,0
1-22	10,4	1063	720	11,5	2-22	7,3	825	1033	77,8
1-23	9,2	1014	664	12,9	2-23	6,0	780	1041	78,5
1-24	9,1	966	583	12,9	2-24	6,2	748	968	94,6
1-25	10,7	1145	742	11,7	2-25	6,5	843	1040	68,2
1-26	10,2	1012	709	11,9	2-26	6,2	656	1033	66,9
1-27	8,5	883	645	13,4	2-27	5,4	650	1016	82,6
1-28	10,0	1077	714	12,6	2-28	6,0	734	1054	78,8
1-29	8,9	945	616	11,9	2-29	5,2	647	1039	91,5
1-30	9,2	985	602	12,2	2-30	6,0	739	996	94,9
1-31	9,5	1062	629	11,5	2-31	5,9	732	1025	96,9
1-32	9,4	1099	668	11,9	2-32	6,6	670	1033	101,1
1-33	11,3	1160	734	12,2	2-33	7,7	821	1054	71,9
1-34	9,2	1023	623	11,4	2-34	5,7	697	1007	95,8
1-35	10,5	1158	711	13,0	2-35	6,6	810	1063	92,4
1-36	10,4	1032	649	11,9	2-36	6,3	701	991	87,7
min	8,5	878	583	11,4	min	5,1	628	968	66,9
mittel	10,0	1052	690	12,3	mittel	6,3	743	1041	82,7
max	11,8	1275	800	13,4	max	7,7	861	1125	101,1

Tabelle F-7Puspa: Einfluss der Holzfeuchte auf die Querdruckfestigkeit fc,90(Fall 1: Querdruckbeanspruchung unter Vollbelastung)

Tabelle F-8	Puspa: Einfluss der Holzfeuchte auf die Querdruckfestigkeit f _{c,90}									
	(Querdruckbeanspruchung unter Teilflächenbelastung; Fall 2a: Belastung auf									
	Lasteinleitungsfläche bezogen; Fall 2b: Spannungsausbreitung und Mitwirken der									
	Überstände berücksichtigt)									

			u =	12 %						u >	FS		
Nir	Fa	ll 2a	Fa	ll 2b			Nir	Fa	ll 2a	Fa	ll 2b	_	
INF.	f _{c,90}	E _{c.90}	f _{c.90}	E _{c.90}	ρ [NI/mm2]	u r0/, 1	INF.	f _{c,90}	E _{c,90}	f _{c,90}	E _{c.90}	ρ [NI/mm2]	u 10/, 1
	[N/mm²]	[N/mm²]	[N/mm²]	[N/mm²]	[IN/IIIII-]	[70]		[N/mm²]	[N/mm ²]	[N/mm²]	[N/mm ²]	[IN/IIIII-]	[70]
3-1	18,3	3871	9,2	1108	657	11,9	4-1	12,5	3101	6,2	866	964	83,9
3-2	23,5	4662	11,8	1333	793	13,3	4-2	15,6	3845	7,8	1083	1006	63,2
3-3	24,2	4622	12,1	1322	721	12,8	4-3	15,9	3501	8,0	992	943	55,0
3-4	20,4	3878	10,2	1109	666	12,7	4-4	12,2	2782	6,1	781	942	78,2
3-5	20,5	4249	10,2	1215	687	12,5	4-5	12,6	3231	6,3	911	949	71,4
3-6	24,6	4862	12,3	1391	788	13,0	4-6	15,8	3735	7,9	1056	1034	54,4
3-7	24,9	4560	12,4	1305	717	12,5	4-7	16,4	3732	8,2	1054	1038	83,1
3-8	21,5	4388	10,8	1256	696	12,9	4-8	14,2	3254	7,1	922	1018	71,8
3-9	20,7	3793	10,4	1084	718	12,7	4-9	12,8	2973	6,4	841	1054	76,7
3-10	20,0	3669	10,0	1055	693	13,3	4-10	14,3	3150	7,2	867	963	78,6
3-11	21,2	3906	10,6	1116	714	12,6	4-11	13,5	3153	6,7	888	1015	74,2
3-12	22,0	4322	11,0	1237	739	12,9	4-12	15,2	3719	7,6	1049	1030	67,9
3-13	21,6	3902	10,8	1116	682	12,5	4-13	14,4	2947	7,2	835	1062	90,1
3-14	18,1	3873	9,0	1107	659	12,1	4-14	13,2	3204	6,6	900	952	80,1
3-15	19,2	3736	9,6	1069	694	12,8	4-15	13,4	3173	6,7	898	1034	76,5
3-16	21,3	3962	10,7	1132	752	13,0	4-16	13,9	3052	7,0	865	1010	60,2
3-17	23,2	4422	11,6	1265	730	12,8	4-17	15,2	3441	7,6	978	981	61,4
3-18	21,2	3976	10,6	1137	667	12,6	4-18	14,2	3115	7,1	877	977	81,9
3-19	21,4	4046	10,7	1156	701	12,3	4-19	14,9	3279	7,5	924	995	72,7
3-20	22,6	4516	11,3	1292	756	13,4	4-20	14,4	3224	7,2	914	1021	60,0
3-21	20,2	3754	10,1	1074	749	13,1	4-21	13,0	2883	6,5	812	982	63,1
3-22	22,5	4381	11,2	1254	713	12,5	4-22	14,6	3312	7,3	936	999	74,0
3-23	19,7	4008	9,8	1146	691	12,8	4-23	13,9	3236	6,9	914	995	84,6
3-24	19,0	3438	9,5	983	616	11,8	4-24	13,5	2911	6,8	815	970	73,2
3-25	22,3	4232	11,1	1212	728	13,1	4-25	14,6	3224	7,3	913	1060	73,5
3-26	22,7	4146	11,4	1186	708	12,5	4-26	14,4	3095	7,2	876	1026	68,3
3-27	19,6	3934	9,8	1126	629	11,8	4-27	12,4	2821	6,2	796	967	80,6
3-28	21,5	4087	10,7	1170	711	12,4	4-28	14,7	3388	7,4	955	971	68,6
3-29	19,2	3779	9,6	1082	639	12,1	4-29	12,4	2716	6,2	771	1029	84,3
3-30	20,2	3788	10,1	1083	656	12,9	4-30	12,8	3051	6,4	850	953	83,6
3-31	20,3	4233	10,2	1212	635	11,4	4-31	13,1	3214	6,5	902	969	83,3
3-32	19,7	3921	9,9	1122	688	11,9	4-32	13,9	3294	6,9	920	943	68,2
3-33	23,8	4382	11,9	1254	738	12,7	4-33	15,7	3488	7,9	984	975	61,1
3-34	19,8	3934	9,9	1126	596	12,2	4-34	12,9	2959	6,5	838	947	87,0
3-35	23,0	4617	11,5	1319	713	12,8	4-35	14,6	3458	7,3	976	955	71,6
3-36	22,2	3873	11,1	1108	648	12,7	4-36	15,1	3126	7,6	877	914	73,2
min	18,1	3438	9,0	983	596	11,4	min	12,2	2716	6,1	771	914	54,4
mittel	21,3	4103	10,6	1174	697	12,6	mittel	14,1	3216	7,0	907	990	73,3
max	24,9	4862	12,4	1391	793	13,4	max	16,4	3845	8,2	1083	1062	90,1

		u = 1	2 %		1	u > FS					
Nr.	f _{c 90}	E _{c.90}	ρ	u	Nr.	f _{c 90}	E _{c.90}	ρ	u		
	[N/mm ²]	[N/mm ²]	[kg/m³]	[%]		[N/mm²]	[N/mm²]	[kg/m³]	[%]		
1-1	2,6	293	586	11,6	2-1	1,8	217	899	81,7		
1-2	3,3	347	606	12,7	2-2	2,5	267	901	87,2		
1-3	3,0	301	565	10,8	2-3	1,9	206	849	97,9		
1-4	3,1	333	627	11,6	2-4	2,1	244	861	81,5		
1-5	2,8	316	578	10,6	2-5	1,9	220	855	86,8		
1-6	3,0	355	620	11,2	2-6	2,2	276	852	99,0		
1-7	3,1	320	597	12,2	2-7	2,0	219	860	107,7		
1-8	3,0	342	598	12,3	2-8	2,0	247	888	89,1		
1-9	2,8	355	604	12,8	2-9	1,8	261	923	86,7		
1-10	3,4	349	634	11,6	2-10	2,2	243	815	76,2		
1-11	3,4	367	655	11,9	2-11	2,1	245	915	96,3		
1-12	3,3	360	635	11,1	2-12	2,0	266	900	91,3		
1-13	2,8	293	627	11,9	2-13	1,6	208	840	72,6		
1-14	2,7	365	608	11,5	2-14	1,7	273	841	74,7		
1-15	3,0	355	621	11,3	2-15	1,9	219	826	69,0		
1-16	3,5	382	669	11,8	2-16	2,0	268	847	68,8		
1-17	2,6	361	609	12,3	2-17	1,6	233	883	70,0		
1-18	2,6	344	627	11,3	2-18	1,6	222	858	76,9		
1-19	2,8	277	610	12,4	2-19	1,9	200	877	67,8		
1-20	3,1	405	672	11,3	2-20	1,9	286	892	65,8		
1-21	3,3	359	592	12,5	2-21	2,5	292	883	68,8		
1-22	2,6	339	652	12,7	2-22	1,4	235	873	67,7		
1-23	2,8	374	666	12,8	2-23	1,9	269	929	63,3		
1-24	3,4	438	613	12,0	2-24	2,0	286	909	78,8		
1-25	2,8	365	647	12,5	2-25	1,5	250	856	64,7		
1-26	3,4	385	620	11,9	2-26	2,0	253	877	79,2		
1-27	2,6	284	604	12,5	2-27	1,6	218	833	66,7		
1-28	3,0	363	609	12,0	2-28	1,9	260	879	98,9		
1-29	3,5	389	596	12,0	2-29	2,2	252	894	95,1		
1-30	3,3	367	639	11,4	2-30	2,1	229	902	85,5		
1-31	3,3	390	611	11,1	2-31	2,3	302	849	72,0		
1-32	3,5	416	597	12,4	2-32	2,2	285	826	99,9		
1-33	3,2	349	622	11,6	2-33	1,7	223	922	95,7		
1-34	3,0	351	655	12,5	2-34	1,8	227	799	70,8		
1-35	3,6	468	655	12,5	2-35	2,2	306	858	67,9		
1-36	3,6	422	668	12,0	2-36	2,2	270	881	76,4		
min	2,6	277	565	10,6	min	1,4	200	799	63,3		
mittel	3,1	358	622	11,9	mittel	2,0	249	871	80,5		
max	3,6	468	672	12,8	max	2,5	306	929	107,7		

Tabelle F-9Lärche: Einfluss der Holzfeuchte auf die Querdruckfestigkeit fc,90(Fall 1: Querdruckbeanspruchung unter Vollbelastung)

Tabelle F-10 Lärche: Einfluss der Holzfeuchte auf die Querdruckfestigkeit $f_{\text{c},90}$

(Querdruckbeanspruchung unter Teilflächenbelastung; Fall 2a: Belastung auf Lasteinleitungsfläche bezogen; Fall 2b: Spannungsausbreitung und Mitwirken der Überstände berücksichtigt)

			u =	12 %						u >	• FS		
Nir	Fa	ll 2a	Fa	ll 2b			Nir	Fa	ll 2a	Fa	ll 2b		
INI.	f _{c,90}	E _{c,90}	f _{c,90}	E _{c,90}	ρ [Nl/mm²]	u [%]	INI.	f _{c,90}	E _{c,90}	f _{c,90}	E _{c,90}	ρ [Nl/mm²]	u [%]
	[N/mm²]	[N/mm²]	[N/mm²]	[N/mm ²]	[13/11111]	[/0]		[N/mm²]	[N/mm²]	[N/mm²]	[N/mm ²]		[/0]
3-1	5,9	1159	2,9	312	603	12,9	4-1	4,0	867	2,0	232	803	63,4
3-2	6,5	1280	3,2	346	636	13,0	4-2	4,7	1076	2,3	287	810	63,8
3-3	6,8	1303	3,4	351	587	12,8	4-3	4,7	942	2,3	252	771	73,1
3-4	6,8	1401	3,4	377	611	12,9	4-4	4,6	1062	2,3	285	795	68,2
3-5	6,2	1279	3,1	344	572	12,5	4-5	4,2	1044	2,1	278	749	75,4
3-6	6,8	1444	3,4	390	602	13,6	4-6	4,6	1251	2,3	335	778	68,3
3-7	6,6	1355	3,3	365	586	13,3	4-7	4,6	1096	2,3	293	759	69,6
3-8	7,1	1482	3,6	399	604	13,0	4-8	4,6	1034	2,3	276	774	62,0
3-9	6,1	1454	3,1	392	608	12,9	4-9	4,1	1086	2,0	291	807	59,7
3-10	7,1	1329	3,6	358	632	12,8	4-10	5,1	1135	2,6	303	753	56,2
3-11	7,4	1431	3,7	386	650	13,1	4-11	4,9	1116	2,4	299	794	61,9
3-12	6,9	1437	3,5	387	632	14,0	4-12	4,5	1108	2,3	297	827	66,1
3-13	6,1	1165	3,0	314	623	12,8	4-13	3,9	872	2,0	233	810	56,6
3-14	6,2	1450	3,1	391	612	11,8	4-14	4,2	1091	2,1	292	765	56,1
3-15	6,4	1417	3,2	382	602	12,7	4-15	4,4	1158	2,2	310	828	61,3
3-16	7,5	1488	3,7	401	648	13,6	4-16	4,9	1147	2,4	307	820	59,6
3-17	6,0	1525	3,0	411	615	12,3	4-17	4,2	1020	2,1	272	836	61,0
3-18	5,6	1357	2,8	366	622	12,4	4-18	4,0	924	2,0	248	797	62,6
3-19	6,3	1155	3,2	311	630	11,9	4-19	4,2	924	2,1	247	754	51,4
3-20	7,0	1712	3,5	461	656	11,7	4-20	4,3	1301	2,2	348	777	49,6
3-21	7,3	1443	3,6	388	585	12,6	4-21	5,0	1214	2,5	323	762	51,5
3-22	5,8	1370	2,9	369	641	11,0	4-22	3,8	1042	1,9	278	770	52,4
3-23	6,1	1447	3,0	390	646	12,7	4-23	4,2	1125	2,1	301	856	55,2
3-24	7,4	1735	3,7	467	648	13,4	4-24	4,9	1419	2,5	376	825	54,1
3-25	5,9	1359	3,0	366	602	13,6	4-25	4,5	1224	2,2	326	839	54,7
3-26	7,4	1489	3,7	401	617	12,0	4-26	5,3	1231	2,6	329	830	70,6
3-27	5,7	1150	2,8	309	607	14,0	4-27	4,0	893	2,0	237	804	55,5
3-28	6,7	1467	3,3	395	625	13,4	4-28	4,2	1069	2,1	287	825	67,8
3-29	7,4	1560	3,7	420	621	14,8	4-29	4,9	11/5	2,4	314	829	/1,1
3-30	7,2	1451	3,6	391	597	11,8	4-30	4,8	1155	2,4	308	801	74,8
3-31	7,1	1543	3,6	416	582	11,8	4-31	5,3	1328	2,6	353	847	71,1
3-32	7,3	1541	3,6	415	597	13,1	4-32	5,0	11/3	2,5	313	758	69,4
3-33	6,9	1424	3,4	384	624	11,5	4-33	4,5	1046	2,3	280	814	69,5
3-34	6,6	1374	3,3	370	635	13,3	4-34	4,3	1042	2,1	279	763	56,6
3-35	7,9	1817	4,0	490	645	12,3	4-35	5,2	1265	2,6	337	/66	53,9
3-36	/,ð	1647	3,9	444	643	12,4	4-36	5,4	1292	2,7	344	863	/3,5
min	5,6	1150	2,8	309	572	11,0	min	3,8	867	1,9	232	/49	49,6
mittel	6,7	1429	3,4	385	618	12,8	mittel	4,5	1110	2,3	296	799	62,4
max	7,9	1817	4,0	490	656	14,8	max	5,4	1419	2,7	376	863	75,4

Bild F-1 Akasia: Einfluss der Holzfeuchte auf die Querdruckfestigkeit fc.90

Bild F-2 Jati: Einfluss der Holzfeuchte auf die Querdruckfestigkeit fc,90

Bild F-3 Keruing: Einfluss der Holzfeuchte auf die Querdruckfestigkeit fc,90

Bild F-4 Puspa: Einfluss der Holzfeuchte auf die Querdruckfestigkeit f_{c,90}

Bild F-5 Lärche: Einfluss der Holzfeuchte auf die Querdruckfestigkeit f_{c,90}

Anhang G Anlagen zu Kapitel 4.4

Tabelle G-1Akasia: Einfluss der Holzfeuchte auf die Scherfestigkeit fv(Scherbene in der Radialfläche)

		u = 12 %				u > FS	
Nr.	f _v	ρ	u	Nr.	f _v	ρ	u
	[N/mm²]	[kg/m³]	[%]		[N/mm²]	[kg/m³]	[%]
1-1	15,5	763	12,3	2-1	11,9	1087	71,2
1-2	14,1	747	13,9	2-2	11,2	1037	72,7
1-3	13,8	756	13,5	2-3	10,9	1085	76,4
1-4	15,0	768	13,2	2-4	11,8	1090	65,4
1-5	11,9	759	14,5	2-5	10,3	1124	67,7
1-6	15,0	755	14,1	2-6	11,1	1054	67,5
1-7	14,9	809	14,9	2-7	12,5	1124	73,9
1-8	13,8	776	12,5	2-8	11,1	1088	69,6
1-9	12,6	696	11,4	2-9	10,4	1042	72,9
1-10	12,7	779	14,3	2-10	10,8	1103	75,2
1-11	14,8	765	12,0	2-11	10,7	1029	62,9
1-12	12,8	699	13,6	2-12	10,8	1031	71,3
1-13	13,3	759	12,4	2-13	10,8	1085	73,2
1-14	11,6	716	14,8	2-14	9,9	1073	89,1
1-15	14,9	791	11,3	2-15	12,6	1100	60,4
1-16	12,6	759	14,6	2-16	10,9	1124	78,1
1-17	12,1	768	11,9	2-17	10,6	1118	72,4
1-18	15,0	832	15,5	2-18	12,9	1108	61,8
1-19	11,5	682	12,9	2-19	9,0	1074	121,3
1-20	11,7	659	14,3	2-20	10,1	1055	65,8
1-21	12,7	707	12,6	2-21	10,7	1059	80,6
1-22	15,8	793	11,9	2-22	12,5	1108	64,3
1-23	12,5	766	13,5	2-23	10,5	1143	73,3
1-24	11,5	707	15,1	2-24	10,0	1063	89,1
1-25	15,0	806	13,7	2-25	12,9	1158	65,9
1-26	12,4	740	14,0	2-26	9,8	1080	72,7
1-27	15,5	833	14,7	2-27	12,7	1137	56,0
1-28	13,2	792	14,3	2-28	11,0	1111	75,2
1-29	14,8	819	14,7	2-29	12,8	1157	66,9
1-30	10,9	663	14,1	2-30	8,9	1023	92,4
1-31	13,5	778	12,7	2-31	11,1	1122	70,1
1-32	10,6	671	15,3	2-32	9,2	1065	92,4
1-33	10,7	696	14,1	2-33	9,2	1073	95,3
1-34	12,5	784	12,6	2-34	10,9	1136	63,5
1-35	10,4	692	15,6	2-35	8,8	1053	88,9
1-36	14,6	740	12,9	2-36	11,2	1037	66,0
min	10,4	659	11,3	min	8,8	1023	56,0
mittel	13,2	751	13,6	mittel	10,9	1088	74,5
max	15,8	833	15,6	max	12,9	1158	121,3

·	r	10.0/		ľ	1		
N.L.,	6	u = 12 %		N.L.	6	u>r5	
INF.	T _V	ρ []	U	Nr.	T _V	ρ []	U
0.4	[N/mm ⁻]		[%]	4.4	[IN/mm ⁻]		[%]
3-1	16,0	828	12,5	4-1	12,0	1122	64,6
3-2	11,9	698 774	12,5	4-Z	9,3	1037	68,2
3-3	11,5	774	14,7	4-3	9,9	1110	69,7
3-4	13,1	/5/	11,7	4-4	10,6	1087	71,0
3-5	11,1	713	14,4	4-5	9,6	1097	72,1
3-6	11,3	703	13,6	4-6	9,0	982	73,6
3-7	12,6	822	14,5	4-7	10,7	1126	68,4
3-8	11,0	683	12,0	4-8	9,2	1007	82,1
3-9	11,0	701	12,3	4-9	9,2	1038	71,8
3-10	12,1	760	13,2	4-10	10,3	1069	69,2
3-11	14,2	781	11,7	4-11	10,6	1084	63,5
3-12	10,9	665	12,7	4-12	8,9	1033	62,0
3-13	10,5	717	14,8	4-13	8,9	1095	92,3
3-14	10,4	722	15,3	4-14	8,8	1068	92,4
3-15	14,8	850	13,7	4-15	11,6	1122	54,0
3-16	13,3	774	14,8	4-16	10,5	1142	65,8
3-17	10,1	718	12,6	4-17	8,5	1073	79,7
3-18	10,4	717	15,0	4-18	9,3	1022	74,8
3-19	8,7	651	13,0	4-19	7,4	1021	93,6
3-20	12,4	711	12,4	4-20	10,6	1078	67,1
3-21	12,0	678	12,7	4-21	9,8	1035	79,8
3-22	14,5	785	12,7	4-22	11,5	1114	65,1
3-23	13,1	822	15,0	4-23	11,3	1144	69,2
3-24	11,3	746	14,7	4-24	9,9	1075	88,1
3-25	14,0	809	14,7	4-25	11,3	1108	84,0
3-26	11,1	756	13,7	4-26	9,3	1088	70,6
3-27	14,8	790	12,5	4-27	11,9	1133	55,8
3-28	13,8	827	13,9	4-28	11,7	1112	74,1
3-29	13,6	829	13,4	4-29	11,2	1149	69,4
3-30	8,9	655	13,8	4-30	7,5	1048	97,9
3-31	12,7	773	12,5	4-31	9,5	1113	62,7
3-32	8,6	669	14,0	4-32	7,4	993	99,5
3-33	10,0	697	14,3	4-33	8,4	1064	94,0
3-34	12,2	745	13,5	4-34	9,7	1083	74,8
3-35	10,1	683	13,3	4-35	8,5	976	73,0
3-36	11,5	727	12,0	4-36	9,7	1084	69,0
min	8.6	651	11.7	min	7,4	976	54.0
mittel	11.9	743	13,4	mittel	9.8	1076	74.5
max	16,0	850	15,3	max	12,0	1149	99,5

Tabelle G-2 Akasia: Einfluss der Holzfeuchte auf die Scherfestigkeit fv (Scherbene in der Tangentialfläche)

		u = 12 %				u > FS	
Nr.	f _v	ρ	u	Nr.	f _v	ρ	u
	[N/mm ²]	[kg/m³]	[%]		[N/mm²]	[kg/m³]	[%]
1-1	13,0	713	12,4	2-1	10,1	1150	97,6
1-2	9,5	618	12,4	2-2	7,6	989	84,6
1-3	11,2	704	11,8	2-3	9,3	1072	79,0
1-4	11,8	682	12,5	2-4	9,8	1109	82,2
1-5	10,0	593	12,5	2-5	8,6	1037	95,8
1-6	13,2	755	12,5	2-6	9,7	1104	68,9
1-7	9,0	607	12,9	2-7	7,9	1028	89,6
1-8	13,3	763	11,5	2-8	9,7	1105	80,7
1-9	10,2	610	12,5	2-9	7,6	1070	100,6
1-10	9,0	576	12,5	2-10	6,8	987	100,2
1-11	9,4	631	12,3	2-11	7,2	1037	91,8
1-12	9,5	621	12,2	2-12	8,1	1012	89,6
1-13	14,1	772	12,3	2-13	11,7	1150	70,2
1-14	11,2	664	12,1	2-14	8,6	1047	81,5
1-15	13,0	685	12,5	2-15	10,4	1058	78,1
1-16	10,0	636	12,7	2-16	8,2	1005	87,4
1-17	9,4	627	12,5	2-17	7,3	990	85,8
1-18	10,4	614	12,1	2-18	8,5	1007	80,5
1-19	10,7	639	11,7	2-19	8,8	1061	85,7
1-20	10,8	627	12,6	2-20	9,0	1045	91,4
1-21	12,0	662	12,4	2-21	10,3	1060	86,5
1-22	13,0	715	12,0	2-22	9,8	1028	67,4
1-23	8,3	548	12,3	2-23	6,4	957	109,4
1-24	8,5	553	12,9	2-24	7,3	1054	113,8
1-25	11,9	734	13,1	2-25	10,2	1149	71,2
1-26	11,8	700	11,7	2-26	9,7	1105	84,5
1-27	12,9	775	11,7	2-27	10,3	1139	72,7
1-28	9,1	598	12,7	2-28	7,2	1054	111,2
1-29	10,2	655	11,7	2-29	8,2	1031	85,0
1-30	11,5	650	13,0	2-30	8,9	985	74,0
1-31	13,6	703	12,5	2-31	9,9	1129	93,9
1-32	8,9	624	12,5	2-32	7,5	1008	90,7
1-33	12,6	757	12,1	2-33	10,4	1135	70,1
1-34	8,4	570	13,2	2-34	6,1	979	101,2
1-35	11,0	710	12,9	2-35	9,4	1115	84,0
1-36	10,3	649	12,7	2-36	8,8	1073	95,1
min	8,3	548	11,5	min	6,1	957	67,4
mittel	10,9	659	12,4	mittel	8,8	1057	87,0
max	14,1	775	13,2	max	11,7	1150	113,8

 Tabelle G-3
 Jati: Einfluss der Holzfeuchte auf die Scherfestigkeit fv

 (Scherbene in der Radialfläche)
u = 12 %			u > FS				
N I.v	4	u – 12 %		NI#	£	u - F3	
INF.	I _v [N/mm²]	ρ [ka/m³]	U [%]	INF.	I _v [Nl/mm²]	ρ [ka/m³]	u 1%1
3_1		[Kg/III] 680	12.1	1_1	86	110/	08.7
3-2	9,9 8 1	578	12,1	<u>-</u> -1 ∕/_2	6.8	038	84.5
3-2	10.0	677	11 /	4-2 1-3	7.0	1063	88.4
34	10,0	670	12.5	4-J 1 1	10.2	1005	70.7
3-4	0.0	586	12,5	4-4 1-5	83	1030	99,7
3-6	13.3	771	11 7	4-6	10.9	1070	88.8
3-0 3_7	9.1	619	12.6	4-0 4-7	77	1007	91 0
3-8	10.8	687	11 7	4-7 4-8	87	1007	91.3
3-9	10,0	616	12.1	4-9	9.3	1050	93.8
3-10	74	566	12,1	4-10	5.4	949	97.7
3-11	8.6	574	11.9	4-11	74	951	89.8
3-12	9.0	569	11.9	4-12	6.4	1041	113.0
3-13	12.8	746	12,1	4-13	9.4	1059	59.7
3-14	11.9	705	12.1	4-14	10.0	1079	75.8
3-15	9.5	644	12.8	4-15	7.9	1038	84.7
3-16	10.0	642	12.3	4-16	8.7	1028	89.3
3-17	9,3	640	12,1	4-17	8,1	1066	80,7
3-18	9,9	609	12,1	4-18	7,5	943	89,8
3-19	11,1	647	12,1	4-19	9,9	1018	77,4
3-20	9,0	638	12,3	4-20	8,0	1058	88,6
3-21	12,0	696	11,6	4-21	10,0	1035	74,6
3-22	9,3	631	12,1	4-22	7,7	1013	69,4
3-23	7,9	550	12,3	4-23	6,1	988	100,3
3-24	8,1	561	11,8	4-24	6,8	1092	106,9
3-25	11,3	715	12,8	4-25	8,0	1081	79,5
3-26	9,3	665	13,0	4-26	7,6	1034	77,5
3-27	12,9	764	11,6	4-27	9,3	1084	69,0
3-28	8,9	551	12,5	4-28	7,0	1030	115,2
3-29	8,7	631	11,8	4-29	7,3	1004	82,7
3-30	12,2	685	12,0	4-30	9,9	1030	72,6
3-31	10,6	644	12,8	4-31	8,1	973	71,9
3-32	8,5	648	12,4	4-32	7,2	1071	91,9
3-33	10,9	671	11,5	4-33	9,0	1081	81,5
3-34	8,2	589	12,8	4-34	6,0	963	113,9
3-35	8,5	596	12,4	4-35	6,2	970	92,0
3-36	10,4	643	12,2	4-36	8,5	1050	84,0
min	7,4	550	11,4	min	5,4	938	59,7
mittel	10,0	642	12,2	mittel	8,1	1032	87,4
max	13,3	771	13,0	max	10,9	1104	115,2

 Tabelle G-4
 Jati: Einfluss der Holzfeuchte auf die Scherfestigkeit fv

 (Scherbene in der Tangentialfläche)

	u = 12 %			u > FS			
Nr	f.	0		Nr	f.	0	П
	IN/mm²1	[ka/m³]	[%]		IN/mm²]	ہم [ka/m³]	[%]
1-1	12,0	642	13,4	2-1	7,3	1061	89,1
1-2	11,4	610	13,9	2-2	7,8	1013	89,9
1-3	13,7	724	13,6	2-3	7,9	1056	73,6
1-4	14,4	729	13,7	2-4	9,4	1086	91,3
1-5	10,4	575	13,6	2-5	7,0	1069	114,3
1-6	15,1	777	13,3	2-6	8,3	1089	66,7
1-7	13,2	686	14,0	2-7	8,3	1029	79,9
1-8	12,4	639	13,5	2-8	8,3	1021	89,4
1-9	13,6	747	13,7	2-9	7,6	1056	70,4
1-10	14,8	774	13,4	2-10	9,0	1066	64,3
1-11	15,0	815	13,4	2-11	8,7	1068	77,1
1-12	15,5	760	13,3	2-12	9,5	1103	71,9
1-13	10,8	639	13,8	2-13	7,3	1048	96,5
1-14	13,4	721	13,6	2-14	7,6	1044	73,9
1-15	15,2	795	13,2	2-15	8,5	1105	56,0
1-16	12,9	725	13,7	2-16	8,9	1106	54,9
1-17	14,9	742	13,2	2-17	9,2	1040	64,9
1-18	15,8	799	13,1	2-18	9,0	1050	59,7
1-19	11,7	609	13,8	2-19	8,1	1006	98,5
1-20	12,8	672	13,8	2-20	8,1	1044	88,3
1-21	14,7	774	13,2	2-21	8,2	1074	69,4
1-22	12,4	672	13,0	2-22	8,3	1105	92,3
1-23	12,2	632	14,0	2-23	8,5	1018	81,5
1-24	12,8	647	13,4	2-24	7,7	1047	92,4
1-25	13,4	754	13,3	2-25	7,9	1060	69,5
1-26	11,0	587	13,5	2-26	7,5	1012	99,1
1-27	11,9	690	13,5	2-27	7,5	1066	84,4
1-28	14,3	803	13,0	2-28	8,4	1071	80,8
1-29	13,7	733	13,2	2-29	9,3	1047	71,7
1-30	14,2	797	13,5	2-30	8,0	1093	78,1
1-31	11,1	619	13,3	2-31	6,9	1023	96,9
1-32	12,5	638	13,9	2-32	8,1	1030	85,4
1-33	13,1	732	13,1	2-33	8,1	1044	82,7
1-34	14,0	716	13,3	2-34	8,7	1088	83,9
1-35	12,0	721	13,9	2-35	8,2	1005	67,3
1-36	12,6	657	13,7	2-36	7,8	1047	89,6
min	10,4	575	13,0	min	6,9	1005	54,9
mittel	13,2	704	13,5	mittel	8,2	1055	80,4
max	15,8	815	14,0	max	9,5	1106	114,3

Tabelle G-5 Keruing: Einfluss der Holzfeuchte auf die Scherfestigkeit fv (Scherbene in der Radialfläche)

u = 12 %					11 > FS		
Nr	f	u 1270		Nr	f	u - 10	
	'v [N/mm²]	ہم [kg/m³]	[%]		'v [N/mm²]	ہم [kg/m³]	[%]
3-1	11,2	624	11,7	4-1	6.6	1012	92,4
3-2	11,5	633	11,9	4-2	7,1	1013	95,3
3-3	12,6	783	11,6	4-3	7,3	1103	76,0
3-4	11,8	651	12,2	4-4	7,4	1090	101,3
3-5	10,7	598	11,8	4-5	6,5	1032	110,2
3-6	12,6	793	11,9	4-6	6,9	1067	66,3
3-7	11,1	687	12,3	4-7	6,7	1033	77,7
3-8	10,3	630	12,2	4-8	6,7	1015	88,5
3-9	13,8	738	11,6	4-9	8,2	1062	71,1
3-10	14,0	748	11,7	4-10	7,6	1034	66,1
3-11	14,0	825	11,7	4-11	8,3	1110	70,8
3-12	14,3	772	11,6	4-12	8,5	1109	71,0
3-13	9,7	621	12,3	4-13	6,6	1041	94,2
3-14	12,5	738	12,3	4-14	6,9	1059	75,5
3-15	14,2	824	11,7	4-15	8,0	1041	56,5
3-16	13,1	759	12,0	4-16	7,7	1071	50,2
3-17	12,8	770	11,6	4-17	8,1	1066	74,7
3-18	13,4	788	11,6	4-18	7,6	1078	66,4
3-19	9,5	603	12,1	4-19	5,8	1028	98,2
3-20	12,3	669	12,2	4-20	8,2	1068	89,0
3-21	13,6	740	11,6	4-21	7,4	1059	74,8
3-22	11,3	680	11,7	4-22	7,4	1125	97,5
3-23	12,2	654	12,2	4-23	7,1	1042	80,1
3-24	10,9	625	12,0	4-24	7,3	1064	87,1
3-25	12,6	768	11,6	4-25	7,4	1074	73,4
3-26	10,4	597	12,0	4-26	7,0	1017	99,8
3-27	12,2	769	11,8	4-27	7,3	1081	73,3
3-28	13,9	805	11,6	4-28	7,5	1137	69,1
3-29	11,1	675	12,4	4-29	6,4	1066	87,9
3-30	12,7	800	11,8	4-30	7,1	1107	78,3
3-31	10,7	662	12,1	4-31	6,3	1027	88,5
3-32	12,3	679	12,3	4-32	7,0	1071	86,6
3-33	12,0	733	11,9	4-33	7,1	1126	82,4
3-34	12,5	701	11,9	4-34	8,0	1094	83,6
3-35	10,9	699	11,8	4-35	6,4	1001	71,1
3-36	10,7	670	11,9	4-36	6,0	1043	91,5
min	9,5	597	11,6	min	5,8	1001	50,2
mittel	12,1	709	11,9	mittel	7,2	1063	81,0
max	14,3	825	12,4	max	8,5	1137	110,2

 Tabelle G-6
 Keruing: Einfluss der Holzfeuchte auf die Scherfestigkeit fv

 (Scherbene in der Tangentialfläche)

		u = 12 %	1			u > FS	
Nr.	f _v	ρ	u	Nr.	f _v	ρ	u
	[N/mm ²]	[kg/m³]	[%]		[N/mm²]	[kg/m³]	[%]
1-1	12,6	629	12,8	2-1	7,5	1124	97,3
1-2	15,4	744	12,8	2-2	8,8	1117	82,6
1-3	16,4	788	12,7	2-3	9,6	1109	83,8
1-4	14,2	690	13,4	2-4	7,9	1070	101,7
1-5	13,0	675	13,0	2-5	8,8	1101	95,3
1-6	14,9	775	13,5	2-6	9,7	1174	84,3
1-7	13,3	721	13,1	2-7	9,0	1177	86,8
1-8	13,5	705	13,0	2-8	7,8	1138	91,3
1-9	14,8	736	13,3	2-9	9,5	1143	83,2
1-10	10,5	652	13,3	2-10	7,3	1075	92,1
1-11	13,9	672	12,9	2-11	9,1	1159	97,0
1-12	14,8	767	13,1	2-12	9,4	1142	89,0
1-13	13,8	697	12,8	2-13	8,3	1108	96,5
1-14	11,3	636	13,0	2-14	7,7	1096	113,0
1-15	12,3	655	12,8	2-15	8,2	1116	100,0
1-16	13,9	739	13,0	2-16	9,1	1136	81,4
1-17	16,2	766	13,0	2-17	9,1	1155	85,8
1-18	13,0	664	12,8	2-18	7,9	1106	101,6
1-19	11,9	691	13,0	2-19	7,3	1068	84,8
1-20	13,1	724	13,2	2-20	9,1	1154	89,8
1-21	15,8	750	12,9	2-21	9,4	1111	83,9
1-22	15,3	739	12,7	2-22	8,6	1100	84,4
1-23	13,7	657	12,7	2-23	9,3	1112	97,9
1-24	12,2	671	13,3	2-24	6,8	1110	116,6
1-25	10,3	618	13,4	2-25	7,1	1114	117,2
1-26	15,2	757	13,4	2-26	9,6	1152	82,9
1-27	11,7	621	13,7	2-27	7,7	1101	102,4
1-28	14,1	690	12,9	2-28	7,8	1075	94,4
1-29	13,5	728	13,4	2-29	9,3	1152	93,1
1-30	13,3	643	13,5	2-30	8,4	1075	102,2
1-31	13,1	700	13,2	2-31	8,8	1162	106,8
1-32	10,4	617	13,4	2-32	7,0	1099	117,4
1-33	15,0	720	13,3	2-33	8,5	1066	77,1
1-34	10,1	604	13,4	2-34	6,9	1106	129,3
1-35	11,9	647	13,1	2-35	8,1	1160	107,1
1-36	12,3	630	13,2	2-36	7,6	1116	108,7
min	10,1	604	12,7	min	6,8	1066	77,1
mittel	13,4	692	13,1	mittel	8,4	1119	96,1
max	16,4	788	13,7	max	9,7	1177	129,3

 Tabelle G-7
 Puspa: Einfluss der Holzfeuchte auf die Scherfestigkeit fv (Scherbene in der Radialfläche)

u = 12 %				u > FS			
Nir	£	u – 12 %		Nir	£	u - r 3	
INF.	I _v [N/mm²]	ρ [kɑ/m³]	u [%]	INF.	I _v [N/mm²]	ρ [kɑ/m³]	u [%]
3-1	10.4	622	13.1	4-1	69	1113	106.4
3-2	13.2	747	13.1	4-2	7.8	1087	84.4
3-3	13.0	749	13.0	4-3	8.5	1140	79.0
3-4	12.1	698	13.4	4-4	7.3	1107	98.9
3-5	11.3	687	13.0	4-5	6.9	1107	94.4
3-6	13.7	785	13.4	4-6	8.6	1170	79.2
3-7	10.6	672	13.0	4-7	7.4	1129	96.8
3-8	11.3	655	13.0	4-8	7.4	1115	102.7
3-9	14.5	800	13.0	4-9	9.4	1159	88.9
3-10	11,4	726	13,6	4-10	6,6	1095	91,4
3-11	14,8	759	13,0	4-11	9,2	1169	94,8
3-12	13,8	708	13,1	4-12	9,5	1154	90,2
3-13	11,3	685	13,2	4-13	7,3	1122	101.6
3-14	9,7	639	13,4	4-14	6,1	1065	116,9
3-15	11,7	670	13,2	4-15	8,1	1101	93,1
3-16	13,7	792	13,3	4-16	9,0	1145	77,9
3-17	12,9	754	13,3	4-17	8,8	1166	82,4
3-18	11,0	666	13,0	4-18	7,4	1098	96,0
3-19	11,3	680	13,1	4-19	7,6	1110	88,6
3-20	12,4	735	13,3	4-20	7,9	1130	90,0
3-21	11,9	708	12,8	4-21	7,8	1077	86,9
3-22	11,2	697	12,8	4-22	7,4	1069	91,1
3-23	12,2	671	13,1	4-23	7,6	1092	95,5
3-24	10,5	646	13,0	4-24	6,1	1098	106,7
3-25	10,9	694	13,4	4-25	7,7	1152	96,5
3-26	13,8	733	13,2	4-26	9,6	1142	87,9
3-27	10,9	606	13,2	4-27	7,5	1100	114,2
3-28	12,8	721	13,0	4-28	8,3	1096	87,2
3-29	11,9	684	13,0	4-29	8,0	1142	102,6
3-30	11,3	652	13,6	4-30	6,7	1107	102,2
3-31	12,6	680	13,4	4-31	8,2	1134	100,3
3-32	11,4	624	13,4	4-32	7,3	1099	111,0
3-33	12,8	774	13,2	4-33	7,4	1092	79,3
3-34	10,9	649	13,4	4-34	7,1	1107	103,6
3-35	10,8	643	13,2	4-35	7,5	1114	106,4
3-36	9,8	612	13,5	4-36	6,7	1063	114,0
min	9,7	606	12,8	min	6,1	1063	77,9
mittel	11,9	695	13,2	mittel	7,7	1116	95,5
max	14,8	800	13,6	max	9,6	1170	116,9

 Tabelle G-8
 Puspa: Einfluss der Holzfeuchte auf die Scherfestigkeit fv

 (Scherbene in der Tangentialfläche)

	u = 12 %		1			u > FS	
Nr.	f _v	ρ	u	Nr.	f _v	ρ	u
	[N/mm²]	, [kg/m³]	[%]		[N/mm²]	[kg/m³]	[%]
1-1	9,9	615	12,8	2-1	6,7	892	86,6
1-2	10,5	619	11,7	2-2	7,1	942	88,3
1-3	9,2	567	12,7	2-3	5,9	860	97,7
1-4	10,0	629	11,7	2-4	6,4	873	82,3
1-5	10,2	584	13,0	2-5	6,9	878	90,1
1-6	9,9	566	12,6	2-6	6,9	863	93,6
1-7	9,5	581	13,5	2-7	6,4	866	94,0
1-8	10,0	615	11,5	2-8	6,4	884	90,7
1-9	10,8	638	11,8	2-9	7,1	918	80,4
1-10	10,4	559	12,8	2-10	7,0	856	74,3
1-11	10,2	613	12,4	2-11	6,5	894	93,5
1-12	9,8	614	13,7	2-12	6,5	896	85,6
1-13	11,1	673	12,3	2-13	7,5	901	71,6
1-14	10,9	599	11,2	2-14	6,8	840	72,9
1-15	10,2	642	11,9	2-15	6,6	865	76,3
1-16	10,2	638	11,3	2-16	6,5	859	77,7
1-17	11,4	693	12,2	2-17	7,4	928	75,4
1-18	10,3	622	12,6	2-18	6,6	880	84,8
1-19	10,0	611	12,8	2-19	6,7	891	81,1
1-20	10,3	639	11,1	2-20	6,5	855	69,3
1-21	11,1	652	12,0	2-21	7,2	865	70,0
1-22	11,0	592	11,8	2-22	7,1	897	85,5
1-23	11,7	683	11,7	2-23	7,7	955	65,4
1-24	12,2	690	11,3	2-24	7,8	878	72,4
1-25	11,1	640	11,3	2-25	6,7	870	72,4
1-26	10,4	618	12,1	2-26	6,8	903	87,7
1-27	10,5	632	11,9	2-27	6,4	867	73,4
1-28	11,4	667	12,1	2-28	7,4	962	90,8
1-29	10,4	624	13,1	2-29	7,1	944	104,2
1-30	10,1	580	11,1	2-30	6,2	877	100,4
1-31	9,8	567	12,1	2-31	6,4	897	95,9
1-32	9,5	550	12,9	2-32	6,5	900	108,7
1-33	10,1	611	11,6	2-33	6,3	898	92,6
1-34	11,2	660	11,9	2-34	7,1	919	77,0
1-35	11,0	627	12,4	2-35	6,9	886	77,3
1-36	11,0	628	12,3	2-36	7,2	881	77,0
min	9,2	550	11,1	min	5,9	840	65,4
mittel	10,5	620	12,1	mittel	6,8	890	83,8
max	12,2	693	13,7	max	7,8	962	108,7

 Tabelle G-9
 Lärche: Einfluss der Holzfeuchte auf die Scherfestigkeit fv

 (Scherbene in der Radialfläche)

		u = 12 %		. .	_	u > FS	
Nr.	t _v	ρ	u	Nr.	t _v	ρ	u Tay T
	[N/mm ²]	[kg/m³]	[%]		[N/mm ²]	[kg/m³]	[%]
3-1	9,6	669	14,3	4-1	6,5	958	86,3
3-2	10,1	643	13,9	4-2	7,0	945	89,2
3-3	8,4	583	14,2	4-3	5,8	869	103,5
3-4	8,7	607	12,7	4-4	6,0	880	80,3
3-5	8,4	574	12,1	4-5	5,6	873	90,9
3-6	9,7	617	13,8	4-6	7,0	960	105,2
3-7	8,4	606	13,6	4-7	5,7	884	90,4
3-8	9,9	640	11,5	4-8	6,3	946	93,6
3-9	9,6	618	12,3	4-9	6,6	941	95,3
3-10	10,9	651	11,1	4-10	6,7	920	84,5
3-11	9,6	626	13,0	4-11	6,4	897	84,3
3-12	9,4	642	14,0	4-12	6,5	939	91,0
3-13	9,9	636	13,2	4-13	6,8	906	80,0
3-14	9,3	602	13,0	4-14	6,5	900	92,4
3-15	9,7	685	13,3	4-15	6,8	936	81,2
3-16	9,2	655	12,3	4-16	6,1	895	78,9
3-17	9,3	643	13,5	4-17	6,6	963	93,1
3-18	9,5	618	12,7	4-18	6,6	934	94,2
3-19	10,3	667	12,1	4-19	6,6	904	70,4
3-20	8,9	639	11,8	4-20	5,6	873	67,7
3-21	11,2	702	11,0	4-21	6,8	925	65,9
3-22	10,3	657	11,8	4-22	6,5	893	70,8
3-23	10,4	724	12,2	4-23	6,7	960	71,2
3-24	11,1	719	11,9	4-24	7,2	964	68,2
3-25	9,8	708	12,9	4-25	6,3	949	72,3
3-26	9,8	635	11,2	4-26	6,3	901	80,5
3-27	10,8	705	11,2	4-27	6,7	961	77,1
3-28	10,4	619	12,8	4-28	7,1	934	95,7
3-29	10,3	600	13,7	4-29	6,9	944	107,7
3-30	10,0	596	11,6	4-30	6,8	913	101,5
3-31	10.2	608	12.1	4-31	7.0	913	87.9
3-32	9,9	575	11,2	4-32	6,6	901	103,1
3-33	10.3	605	12.5	4-33	6.6	899	97.3
3-34	9.4	578	12.2	4-34	6.2	896	96.2
3-35	10.5	642	11.7	4-35	6.6	894	73.1
3-36	10.5	666	11.2	4-36	6.4	901	70.2
min	8.4	574	11.0	min	5.6	869	65.9
mittel	9.8	638	12.5	mittel	6.5	919	85.9
max	11.2	724	14.3	max	7.2	964	107.7
	· · , -		,•		• , -		,

Tabelle G-10 Lärche: Einfluss der Holzfeuchte auf die Scherfestigkeit f_v

(Scherbene in der Tangentialfläche)

Bild G-1 Akasia: Einfluss der Holzfeuchte auf die Scherfestigkeit fv

Bild G-2 Jati: Einfluss der Holzfeuchte auf die Scherfestigkeit fv

Bild G-3 Keruing: Einfluss der Holzfeuchte auf die Scherfestigkeit fv

Bild G-4 Puspa: Einfluss der Holzfeuchte auf die Scherfestigkeit f_v

Bild G-5 Lärche: Einfluss der Holzfeuchte auf die Scherfestigkeit fv

Anhang H Anlagen zu Kapitel 4.5

Tabelle H-1 Akasia: Einfluss der Holzfeuchte auf Haftungs- ($\mu_{\rm H}$) und Reibungs- koeffizient ($\mu_{\rm G}$)

Flächen-		u = 12 %		u > FS		
pressung σ _v [N/mm²]	Nr.	μ _н [-]	μ _G [-]	Nr.	μ _н [-]	μ _G [-]
	1-1	0,347	0,311	2-1	0,598	0,463
	1-2	0,326	0,286	2-2	0,562	0,475
	1-3	0,283	0,260	2-3	0,559	0,428
	1-4	0,275	0,262	2-4	0,453	0,387
	1-5	0,317	0,305	2-5	0,468	0,381
	1-6	0,377	0,303	2-6	0,528	0,421
	1-7	0,334	0,303	2-7	0,516	0,435
0,1	1-8	0,283	0,250	2-8	0,590	0,502
	1-9	0,373	0,319	2-9	0,449	0,375
	1-10	0,334	0,300	2-10	0,517	0,438
	1-11	0,387	0,357	2-11	0,486	0,373
	1-12	0,355	0,311	2-12	0,500	0,425
	min	0,275	0,250	min	0,449	0,373
	mittel	0,332	0,297	mittel	0,519	0,425
	max	0,387	0,357	max	0,598	0,502
	3-1	0,357	0,348	4-1	0,458	0,370
	3-2	0,248	0,238	4-2	0,463	0,387
	3-3	0,353	0,294	4-3	0,443	0,350
	3-4	0,345	0,300	4-4	0,472	0,338
	3-5	0,291	0,242	4-5	0,428	0,353
	3-6	0,293	0,253	4-6	0,425	0,327
	3-7	0,231	0,219	4-7	0,414	0,378
0,5	3-8	0,294	0,269	4-8	0,459	0,369
	3-9	0,376	0,332	4-9	0,444	0,394
	3-10	0,277	0,256	4-10	0,483	0,390
	3-11	0,285	0,269	4-11	0,471	0,402
	3-12	0,343	0,321	4-12	0,484	0,364
	min	0,231	0,219	min	0,414	0,327
	mittel	0,308	0,278	mittel	0,454	0,369
	max	0,376	0,348	max	0,484	0,402
	5-1	0,304	0,240	6-1	0,410	0,333
	5-2	0,259	0,245	6-2	0,441	0,330
	5-3	0,264	0,254	6-3	0,435	0,373
	5-4	0,363	0,303	6-4	0,417	0,341
	5-5	0,259	0,228	6-5	0,474	0,350
	5-6	0,253	0,232	6-6	0,415	0,349
	5-7	0,325	0,291	6-7	0,467	0,344
1,0	5-8	0,299	0,274	6-8	0,458	0,328
	5-9	0,353	0,275	6-9	0,429	0,318
	5-10	0,296	0,277	6-10	0,444	0,343
	5-11	0,351	0,279	6-11	0,480	0,381
	5-12	0,278	0,266	6-12	0,421	0,319
	min	0,253	0,228	min	0,410	0,318
	mittel	0,300	0,264	mittel	0,441	0,342
	max	0,363	0,303	max	0,480	0,381

Elvis en el		u = 12 %			u > FS			
Flachen-								
[N/mm ²]	Nr.	μ _Η [-]	μ _G [-]	Nr.	μ _Η [-]	μ _G [-]		
	1-1	0.357	0.329	2-1	0.549	0.456		
	1-2	0.303	0.265	2-2	0.437	0.340		
	1-3	0.222	0.194	2-3	0.464	0.378		
	1-4	0.210	0.182	2-4	0.510	0.461		
	1-5	0,235	0,183	2-5	0,501	0,416		
	1-6	0,203	0,171	2-6	0,472	0,411		
	1-7	0,327	0,302	2-7	0,457	0,360		
0,1	1-8	0,362	0,295	2-8	0,523	0,397		
	1-9	0,225	0,165	2-9	0,411	0,339		
	1-10	0,180	0,167	2-10	0,488	0,395		
	1-11	0,252	0,225	2-11	0,493	0,425		
	1-12	0,341	0,290	2-12	0,474	0,399		
	min	0,180	0,165	min	0,411	0,339		
	mittel	0,268	0,231	mittel	0,482	0,398		
	max	0,362	0,329	max	0,549	0,461		
	3-1	0,207	0,200	4-1	0,335	0,309		
	3-2	0,176	0,152	4-2	0,339	0,280		
	3-3	0,223	0,190	4-3	0,306	0,266		
	3-4	0,158	0,143	4-4	0,338	0,305		
	3-5	0,241	0,192	4-5	0,348	0,309		
	3-6	0,223	0,182	4-6	0,394	0,299		
	3-7	0,264	0,225	4-7	0,403	0,317		
0,5	3-8	0,216	0,188	4-8	0,306	0,278		
	3-9	0,214	0,187	4-9	0,316	0,270		
	3-10	0,209	0,195	4-10	0,399	0,280		
	3-11	0,235	0,204	4-11	0,378	0,282		
	3-12	0,224	0,206	4-12	0,410	0,287		
	min	0,158	0,143	min	0,306	0,266		
	mittel	0,216	0,189	mittel	0,356	0,290		
	max	0,264	0,225	max	0,410	0,317		
	5-1	0,209	0,183	6-1	0,318	0,238		
	5-2	0,223	0,214	6-2	0,324	0,249		
	5-3	0,184	0,170	6-3	0,356	0,256		
	5-4	0,225	0,199	6-4	0,377	0,255		
	5-5	0,175	0,160	6-5	0,334	0,256		
	5-6	0,195	0,186	6-6	0,364	0,254		
	5-7	0,209	0,179	6-7	0,334	0,285		
1,0	5-8	0,224	0,191	6-8	0,360	0,273		
	5-9	0,161	0,143	6-9	0,303	0,253		
	5-10	0,236	0,212	6-10	0,388	0,255		
	5-11	0,240	0,206	6-11	0,325	0,301		
	5-12	0,247	0,230	6-12	0,339	0,248		
	min	0,161	0,143	min	0,303	0,238		
	mittel	0,211	0,189	mittel	0,344	0,260		
	max	0,247	0,230	max	0,388	0,301		

Tabelle H-2 Jati: Einfluss der Holzfeuchte auf Haftungs- ($\mu_{\rm H}$) und Reibungs- koeffizient ($\mu_{\rm G}$)

Flächen-		u = 12 %			u > FS		
pressung σ_V	Nr	μ _H	μ_{G}	Nr	μ _H	μ_{G}	
[N/mm²]		[-]	[-]		[-]	[-]	
	1-1	0,458	0,336	2-1	0,657	0,426	
	1-2	0,361	0,347	2-2	0,664	0,470	
	1-3	0,470	0,349	2-3	0,596	0,424	
	1-4	0,346	0,300	2-4	0,667	0,438	
	1-5	0,498	0,386	2-5	0,607	0,417	
	1-6	0,408	0,374	2-6	0,665	0,457	
	1-7	0,440	0,340	2-7	0,637	0,408	
0,1	1-8	0,432	0,384	2-8	0,644	0,441	
	1-9	0,489	0,387	2-9	0,629	0,437	
	1-10	0,448	0,349	2-10	0,579	0,371	
	1-11	0,396	0,328	2-11	0,682	0,472	
	1-12	0,451	0,359	2-12	0,597	0,399	
	min	0,346	0,300	min	0,579	0,371	
	mittel	0,433	0,353	mittel	0,635	0,430	
	max	0,498	0,387	max	0,682	0,472	
	3-1	0,396	0,309	4-1	0,457	0,300	
	3-2	0,395	0,317	4-2	0,528	0,276	
	3-3	0,375	0,315	4-3	0,494	0,313	
	3-4	0,369	0,304	4-4	0,555	0,325	
	3-5	0,406	0,301	4-5	0,522	0,310	
	3-6	0,322	0,287	4-6	0,436	0,321	
	3-7	0,379	0,299	4-7	0,534	0,325	
0,5	3-8	0,327	0,308	4-8	0,520	0,366	
	3-9	0,376	0,304	4-9	0,565	0,296	
	3-10	0,353	0,292	4-10	0,571	0,351	
	3-11	0,325	0,277	4-11	0,490	0,337	
	3-12	0,351	0,282	4-12	0,435	0,303	
	min	0,322	0,277	min	0,435	0,276	
	mittel	0,365	0,300	mittel	0,509	0,319	
	max	0,406	0,317	max	0,571	0,366	
	5-1	0,408	0,298	6-1	0,505	0,283	
	5-2	0,350	0,277	6-2	0,528	0,302	
	5-3	0,386	0,299	6-3	0,434	0,254	
	5-4	0,351	0,287	6-4	0,444	0,341	
	5-5	0,384	0,320	6-5	0,517	0,313	
	5-6	0,351	0,317	6-6	0,452	0,245	
	5-7	0,307	0,283	6-7	0,484	0,279	
1,0	5-8	0,336	0,285	6-8	0,569	0,317	
	5-9	0,372	0,290	6-9	0,545	0,325	
	5-10	0,376	0,321	6-10	0,525	0,272	
	5-11	0,312	0,267	6-11	0,487	0,322	
	5-12	0,323	0,269	6-12	0,567	0,304	
	min	0,307	0,267	min	0,434	0,245	
	mittel	0,355	0,293	mittel	0,505	0,296	
	max	0,408	0,321	max	0,569	0,341	

Tabelle H-3 Keruing: Einfluss der Holzfeuchte auf Haftungs- ($\mu_{\rm H}$) und Reibungs- koeffizient ($\mu_{\rm G}$)

				I			
Flächen-		u = 12 %			u > FS		
pressung σ _v [N/mm²]	Nr.	μ _н [-]	μ _G [-]	Nr.	μ _н [-]	μ _G [-]	
	1-1	0,332	0,263	2-1	0,609	0,426	
	1-2	0,485	0,312	2-2	0,622	0,359	
	1-3	0,355	0,268	2-3	0,665	0,428	
	1-4	0,370	0,266	2-4	0,679	0,441	
	1-5	0,350	0,297	2-5	0,580	0,365	
	1-6	0,387	0,307	2-6	0,576	0,331	
	1-7	0,436	0,316	2-7	0,580	0,393	
0,1	1-8	0,387	0,324	2-8	0,674	0,481	
	1-9	0,466	0,334	2-9	0,565	0,370	
	1-10	0,436	0,342	2-10	0,652	0,465	
	1-11	0,399	0,276	2-11	0,600	0,400	
	1-12	0,460	0,356	2-12	0,555	0,375	
	min	0,332	0,263	min	0,555	0,331	
	mittel	0,405	0,305	mittel	0,613	0,403	
	max	0,485	0,356	max	0,679	0,481	
	3-1	0,373	0,253	4-1	0,411	0,229	
	3-2	0,237	0,171	4-2	0,472	0,262	
	3-3	0,249	0,177	4-3	0,482	0,319	
	3-4	0,317	0,267	4-4	0,421	0,261	
	3-5	0,327	0,257	4-5	0,447	0,220	
	3-6	0,336	0,277	4-6	0,459	0,335	
	3-7	0,321	0,264	4-7	0,379	0,295	
0,5	3-8	0,368	0,280	4-8	0,474	0,341	
	3-9	0,381	0,317	4-9	0,426	0,255	
	3-10	0,312	0,249	4-10	0,387	0,236	
	3-11	0,272	0,227	4-11	0,469	0,358	
	3-12	0,320	0,237	4-12	0,404	0,291	
	min	0,237	0,171	min	0,379	0,220	
	mittel	0,318	0,248	mittel	0,436	0,283	
	max	0,381	0,317	max	0,482	0,358	
	5-1	0,376	0,283	6-1	0,374	0,253	
	5-2	0,315	0,244	6-2	0,364	0,276	
	5-3	0,320	0,280	6-3	0,454	0,284	
	5-4	0,245	0,178	6-4	0,464	0,243	
	5-5	0,280	0,203	6-5	0,371	0,310	
	5-6	0,351	0,285	6-6	0,416	0,295	
	5-7	0,298	0,195	6-7	0,436	0,358	
1,0	5-8	0,332	0,255	6-8	0,460	0,251	
	5-9	0,288	0,227	6-9	0,427	0,342	
	5-10	0,375	0,285	6-10	0,363	0,211	
	5-11	0,343	0,255	6-11	0,465	0,261	
	5-12	0,233	0,189	6-12	0,379	0,226	
	min	0,233	0,178	min	0,363	0,211	
	mittel	0,313	0,240	mittel	0,414	0,276	
	max	0,376	0,285	max	0,465	0,358	

Tabelle H-4 Puspa: Einfluss der Holzfeuchte auf Haftungs- ($\mu_{\rm H}$) und Reibungs- koeffizient ($\mu_{\rm G}$)

				1			
Flächen-		u = 12 %			u > FS		
pressung σ _v [N/mm²]	Nr.	μ _н [-]	μ _G [-]	Nr.	μ _н [-]	μ _G [-]	
	1-1	0,352	0,300	2-1	0,674	0,368	
	1-2	0,285	0,205	2-2	0,623	0,418	
	1-3	0,427	0,318	2-3	0,694	0,450	
	1-4	0,411	0,290	2-4	0,787	0,455	
	1-5	0,369	0,306	2-5	0,656	0,435	
	1-6	0,353	0,243	2-6	0,657	0,403	
	1-7	0,418	0,295	2-7	0,756	0,504	
0,1	1-8	0,438	0,347	2-8	0,701	0,487	
	1-9	0,416	0,354	2-9	0,785	0,539	
	1-10	0,336	0,240	2-10	0,648	0,410	
	1-11	0,419	0,303	2-11	0,764	0,478	
	1-12	0,410	0,344	2-12	0,736	0,440	
	min	0,285	0,205	min	0,623	0,368	
	mittel	0,386	0,296	mittel	0,707	0,449	
	max	0,438	0,354	max	0,787	0,539	
	3-1	0,368	0,321	4-1	0,587	0,282	
	3-2	0,304	0,218	4-2	0,534	0,295	
	3-3	0,317	0,272	4-3	0,587	0,318	
	3-4	0,397	0,321	4-4	0,484	0,240	
	3-5	0,210	0,164	4-5	0,538	0,290	
	3-6	0,275	0,177	4-6	0,563	0,338	
	3-7	0,362	0,274	4-7	0,527	0,353	
0,5	3-8	0,305	0,258	4-8	0,497	0,244	
	3-9	0,325	0,213	4-9	0,575	0,270	
	3-10	0,334	0,285	4-10	0,532	0,326	
	3-11	0,243	0,189	4-11	0,481	0,301	
	3-12	0,372	0,324	4-12	0,455	0,265	
	min	0,210	0,164	min	0,455	0,240	
	mittel	0,318	0,251	mittel	0,530	0,293	
	max	0,397	0,324	max	0,587	0,353	
	5-1	0,265	0,197	6-1	0,565	0,338	
	5-2	0,323	0,200	6-2	0,546	0,364	
	5-3	0,337	0,241	6-3	0,488	0,354	
	5-4	0,303	0,187	6-4	0,474	0,332	
	5-5	0,324	0,219	6-5	0,478	0,247	
	5-6	0,320	0,233	6-6	0,540	0,244	
	5-7	0,232	0,182	6-7	0,509	0,324	
1,0	5-8	0,365	0,231	6-8	0,532	0,292	
	5-9	0,335	0,221	6-9	0,441	0,296	
	5-10	0,372	0,337	6-10	0,556	0,324	
	5-11	0,352	0,291	6-11	0,514	0,369	
	5-12	0,262	0,189	6-12	0,528	0,283	
	min	0,232	0,182	min	0,441	0,244	
	mittel	0,316	0,227	mittel	0,514	0,314	
	max	0,372	0,337	max	0,565	0,369	

Tabelle H-5 Lärche: Einfluss der Holzfeuchte auf Haftungs- ($\mu_{\rm H}$) und Reibungs- koeffizient ($\mu_{\rm G}$)

		0 0	,	Ŭ		0 -7
Flächen-	u = 12 %		u > FS			
pressung σ_V	Nr.	μ_{H}	μ_{G}	Nr.	μ _H	μ_{G}
[N/mm-]		[-]	[-]		[-]	[-]
0,1	1-1	0,440	0,346	2-1	0,864	0,643
	1-2	0,578	0,506	2-2	0,829	0,537
	1-3	0,541	0,460	2-3	0,760	0,536
	1-4	0,440	0,355	2-4	0,749	0,503
	1-5	0,467	0,352	2-5	0,855	0,588
	1-6	0,513	0,374	2-6	0,829	0,598
	1-7	0,487	0,349	2-7	0,934	0,648
	1-8	0,531	0,491	2-8	0,796	0,524
	1-9	0,560	0,479	2-9	0,817	0,556
	1-10	0,553	0,471	2-10	0,900	0,663
	1-11	0,496	0,434	2-11	0,792	0,587
	1-12	0,427	0,398	2-12	0,905	0,642
	min	0,427	0,346	min	0,749	0,503
	mittel	0,503	0,418	mittel	0,836	0,585
	max	0,578	0,506	max	0,934	0,663
0,5	3-1	0,336	0,275	4-1	0,644	0,485
	3-2	0,464	0,395	4-2	0,577	0,388
	3-3	0,502	0,442	4-3	0,608	0,386
	3-4	0,393	0,363	4-4	0,661	0,408
	3-5	0,361	0,314	4-5	0,559	0,358
	3-6	0,413	0,379	4-6	0,624	0,401
	3-7	0,364	0,263	4-7	0,698	0,452
	3-8	0,357	0,278	4-8	0,588	0,365
	3-9	0,503	0,440	4-9	0,695	0,466
	3-10	0,468	0,401	4-10	0,554	0,341
	3-11	0,380	0,324	4-11	0,633	0,434
	3-12	0,440	0,391	4-12	0,575	0,373
	min	0,336	0,263	min	0,554	0,341
	mittel	0,415	0,355	mittel	0,618	0,405
	max	0,503	0,442	max	0,698	0,485
1,0	5-1	0,382	0,334	6-1	0,534	0,413
	5-2	0,428	0,387	6-2	0,679	0,476
	5-3	0,511	0,431	6-3	0,648	0,477
	5-4	0,388	0,347	6-4	0,680	0,398
	5-5	0,390	0,277	6-5	0,603	0,323
	5-6	0,377	0,313	6-6	0,560	0,450
	5-7	0,474	0,414	6-7	0,691	0,383
	5-8	0,417	0,372	6-8	0,592	0,313
	5-9	0,340	0,303	6-9	0,610	0,388
	5-10	0,363	0,269	6-10	0,548	0,375
	5-11	0,351	0,314	6-11	0,642	0,392
	5-12	0,433	0,355	6-12	0,552	0,425
	min	0,340	0,269	min	0,534	0,313
	mittel	0,404	0,343	mittel	0,612	0,401
	max	0,511	0,431	max	0,691	0,477

Tabelle H-6 Lärche (mit Nut- und Federverbindung): Einfluss der Holzfeuchte auf Haftungs- ($\mu_{\rm H}$) und Reibungskoeffizient ($\mu_{\rm G}$)

Bild H-1 Akasia: Einfluss der Holzfeuchte auf den Haftungskoeffizient μ_{H}

Bild H-2 Jati: Einfluss der Holzfeuchte auf den Haftungskoeffizient μ_{H}

Bild H-3 Keruing: Einfluss der Holzfeuchte auf den Haftungskoeffizient μ_{H}

Bild H-4 Puspa: Einfluss der Holzfeuchte auf den Haftungskoeffizient μ_{H}

Bild H-6 Lärche (mit Nut- und Federverbindung): Einfluss der Holzfeuchte auf den Haftungskoeffizient $\mu_{\rm H}$

Anhang I Anlagen zu Kapitel 6

Bild I-1 Moody-Diagramm

Bild I-2 Druckwellengeschwindigkeit c in Abhängigkeit der Rohrleitungsparameter für dünnwandige Rohrleitungen

Bild I-3 Druckwellengeschwindigkeit c in Abhängigkeit der Rohrleitungsparameter für dickwandige Rohrleitungen (s = 5 cm)

Anhang J Anlagen zu Kapitel 7.1

Bild J-1 stehender Rohrabschnitt 1 (Vorspannung 5 kN): Verlauf der Zugkraft in Spannring 1 infolge Quellen

stehender Rohrabschnitt 1 (Vorspannung 5 kN): Verlauf der Zugkraft in Bild J-2 Spannring 2 infolge Quellen

Bild J-3 stehender Rohrabschnitt 2 (Vorspannung 20 kN): Verlauf der Zugkraft in Spannring 1 infolge Quellen

Bild J-4 stehender Rohrabschnitt 2 (Vorspannung 20 kN): Verlauf der Zugkraft in Spannring 2 infolge Quellen

Anhang K Anlagen zu Kapitel 7.2

Bild K-2 horizontaler Rohrabschnitt: Verlauf der Zugkraft in Spannring 2

Bild K-3 horizontaler Rohrabschnitt: Verlauf der Zugkraft in Spannring 3

Bild K-5 horizontaler Rohrabschnitt: Verlauf der Zugkraft in Spannring 5

Im Hinblick auf die Nutzung unterirdischer Wasserressourcen auf der indonesischen Insel Java wurde der Einsatz von Druckrohrleitungen aus Holz als Zuleitung für Wasserkraftanlagen untersucht.

Die Forschungsarbeit beschreibt den Einfluss der Holzfeuchte auf relevante Festigkeits- und Steifigkeitseigenschaften ausgewählter Holzarten. Die Ergebnisse dieser Versuche dienten als Eingangsdaten für ein Rechenmodell, mit dem das Biegetragverhalten von Druckrohrleitungen aus Holz bestimmt wurde. Durch umfangreiche experimentelle Untersuchungen von Druckrohrleitungen aus Holz, welche auf Sättel aufgelagert sind, wurde die Eignung des Rechenmodells nachgewiesen.

Zusammenfassend wurden Bemessungsvorschläge ausgearbeitet. Mit Hilfe einer Parameterstudie wurden Bemessungstabellen erstellt, mit denen eine schnelle Bemessung von aufgelagerten Druckrohrleitungen aus Nadelholz der Festigkeitsklasse C24 durchgeführt werden kann.

ISSN 1860-093X ISBN 3-86644-025-1

www.uvka.de